
Program Visualization Support for Highly Iterative Development Environments

Michele Lanza
lanza@iam.unibe.ch

Software Composition Group
University of Bern, Switzerland

Abstract

Software Visualization is, despite the many publications
and advances in this research field, still not being consid-
ered by mainstream software industry: currently very few
integrated development environments offer (if at all) only
limited visualization support, and in general it can be said
that software visualization is being ignored at a profes-
sional level by the average software developer. Moreover,
even relatively successful software visualization tools (such
as Rigi, Shrimp, JInsight, etc.) are seldom being used ex-
cept by their developers themselves. In this position paper,
based on our own experience and an analysis of the current
state and possible future trends of integrated development
environments, we put up a non-exhaustive list of features
that software visualization tools should possess in the future
to have more consideration by mainstream development.

1 Introduction

Software visualization is a fairly recent research field
dating back to the 1960’s, and started to become an estab-
lished research field in the 1980’s. The main benefit that
software visualization (as a specialization of the more gen-
eral field of information visualization) brings, is that it “pro-
vides an ability to comprehend huge amounts of data” and
“allows the perception of emergent properties [of the data]
that were not anticipated” [28]. Despite these and other
benefits of software visualization, the contributions that this
field has made to mainstream software industry are barely
noticeable and largely ignored.

In this position paper we want to analyze this research
field from different points of view, investigate and discuss
some of the reasons that make software visualization still a
“secondary” research domain, and put up a non-exhaustive
list of features that need to be implemented by the devel-
opers of software visualization tools, should they want to
propagate their research into an industrial context.

2 Software Visualization

“Software visualization is [..] the use of the crafts
of typography, graphic design, animation, and
cinematography with modern human-computer
interaction and computer graphics technology to
facilitate both the human understanding and ef-
fective use of computer software.” [20]

Software visualization is a specialization ofinformation
visualization, whose goal is to visualize any kind of data,
while in software visualization the sole focus lies on visual-
izing software. Information visualization is defined as “the
use of computer-supported, interactive, visual representa-
tions of abstract data to amplify cognition.” [3]. It derives
from several communities. Starting with Playfair (1786),
the classical methods of plotting data were developed. In
1967, Jacques Bertin, a French cartographer, published his
theory inthe semiology of graphics[2]. This theory identi-
fies the basic elements of diagrams and describes a frame-
work for their design. A few decades later Edward Tufte
published a theory of data graphics that emphasized max-
imizing the density of useful information and minimized
recurrent errors in data visualization [25, 26, 27]. Both
Bertin’s and Tufte’s theories have influenced the various
communities that led to the development of information vi-
sualization.

The goal of information visualization is tovisualize any
kind of data. Note that the above definition by Cardet al. of
information visualization does not necessarily imply the use
of vision for perception: visualizing does not only involve
visual approaches, but any kind ofperceptiveapproach.
Data can be perceived by a person by using the senses at
his/her disposition,e.g.,apart from seeing the data, a person
can also hear it (information auralization) and/or touch it
(by using virtual reality technology). However, most infor-
mation visualization systems currently use computer graph-
ics which render the data using 2D- and/or 3D-views of the
data. Applications in information visualization are so fre-
quent and common, that most people do not notice them:

1



examples include metereology (weather maps), geography
(street maps), geology, medicine (computer-aided displays
to show the inner of the human body), transportation (train
tables and metro maps), etc.

In short, information visualization is about visualizing
any kind of data, while software visualization is about visu-
alizing software.

According to Staskoet al. the field of software visual-
ization can be divided into two separate areas [20]:

1. Program visualizationis the visualization of actual
program code or data structures in either static or dy-
namic form. Most of the present approaches deal with
static code visualization, because the source source
code is visualized by using only information which can
bestaticallyextracted without the need to actually run
the system.

2. Algorithm visualizationis the visualization of higher-
level abstractions which describe software. A good ex-
ample isalgorithm animation, which is the dynamic
visualization of an algorithm and its execution. It is
used to explain the inner working of algorithms like
sort-algorithms. In the meantime this discipline has
lost importance, mainly because the advancement in
computer hardware and the possibility to use standard
libraries containing such algorithms have shifted the
focus away from the implementation of such algo-
rithms.

In this paper we concentrate ourselves on program vi-
sualization, because most software visualization tools be-
long to this category, and because algorithm visualization
has greatly lost importance in the past two decades, except
for educational contexts (e.g., teaching algorithms to stu-
dents).

3 The Mission

The overall mission of program visualization is to visual-
ize the static structure or the dynamic behavior of a software
system.

In that sense software visualization researchers are trying
to visualize an immaterial construct (software has no physi-
cal limits, no notion of proximity or distance) like software
the way it is, although this is (by definition) not feasible:
there is no unique and correct way of visualizing software.
Taking an ambitious stance, we claim that the ultimate goal
of a good visualization is to become the preferred way of
developers of looking at software. We do not claim that
software visualization could replace the most important and
still most used way of perceiving software: code reading.
We rather suggest that software visualization should have a
symbiotic relationship with the practice of code reading by

pointing the viewer to the location in the system where he
should read and/or modify the code. According to the pro-
gram cognition model vocabulary proposed by Littmanet
al. [15] we propagate an approach of software understand-
ing that isopportunisticin the sense that it is not based on a
systematicline-by-line understanding butas needed.

Moreover, software visualization has become relevant in
the reverse engineering research community. Software re-
verse engineering is defined by Chikosfky and Cross as “the
process of analyzing a subject system to identify the sys-
tem’s components and their relationships, and to create rep-
resentations of the system in another form or at a higher
level of abstraction” [4]. The goal is thus toconstruct a
mental modelof a software system. Storeyet al. have high-
lighted in various papers that a good software visualization
is a powerful asset in the building of such a mental model
[23, 21, 22].

Although software visualization is at least in a reverse
engineering context of great importance (as shown by the
number of publications on software visualization in the re-
verse engineering community), this could lead to a detri-
mental distinction between a forward and a reverse engi-
neering phase. This view is not up-to-date anymore: an
evolutionary view of software is taking its place, putting for-
ward a notion of continuous iterative development including
tasks such as code editing, refactoring, reverse engineering,
and (in a larger context) reengineering.

Of course software visualization tools cannot ignore the
current evolutionary/highly iterative view of software, even
less so because they could be the key to propagate this view
by combining and compressing large amounts of informa-
tion into simple, yet expressive, visualizations.

Based on the assumption that such an evolutionary
view of software will be predominant in the next years or
decades, we want to briefly highlight some characteristics
and features that software visualization tools of the future
should possess to propagate such a view:

Symbiotic relationship with the development environ-
ment. The best way to propagate software visualiza-
tion is to infiltrate existing development environments
and complement the existing functionalities. We do
not think that standalone software visualization tools
would be used extensively, mainly because working
people dislike changing their habits: a separate visu-
alization tool introduces a disruptive latency between
what one is seeing and what one is editing and/or ma-
nipulating. The market, represented by a few million
programmers on this planet, will only adapt itself if
there are evident technical, cognitive, and ultimately
financial benefits provided by the software visualiza-
tion facilities.

Refactoring support. Code refactoring, originally intro-

2



duced by Opdyke at the beginning of the 1990s [16],
has become an issue in software development since its
first mainstream appearance in the book of Fowleret
al. which comes up with a list of dozens of ways
to manipulate object-oriented software [9], most of
which can preserve the behavioral semantics of the
manipulated software,i.e., it is certain that the sys-
tem will still work after the manipulations. Such ma-
nipulations include renaming a class/method/attribute,
pushing up and down methods/attributes from/to a
subclass/superclass, transforming temporary variables
into instance variables, etc. A few years ago, elegant
and powerful implementations of software refactoring
engines have made their way into existing develop-
ment environments such as the Visualworks Smalltalk
Refactoring Browser [19, 18] and the refactoring en-
gine plugin of the IDE developed by the OpenSource
Eclipse project1. It is clear that if a software visual-
ization tool is to become a preferred way of looking
at software, the manipulations must be possible as part
of the software visualization tool and should be ren-
dered visually, if only by updating the view given by
the visualization tool. However, a technical problem is
given if the source code of the development environ-
ment or the refactoring engine cannot be obtained and
understood by the visualization tool makers.

Multi-user support. Complex software systems are being
designed and developed by many people concurrently.
To support a cooperative view as can be done with col-
laborative/versioning tools (such as the concurrent ver-
sions system CVS2, Microsoft SourceSafe3, and Visu-
alWorks Store4), a good visualization tool would cer-
tainly need to visually render the current point of inter-
est (i.e., the position) of the developers and their most
recently changed software artifacts.

Evolution analysis support. Software systems are con-
stantly being evolved (at whatever pace) to cope with
new requirements and to integrate bug fixes. The study
of the past, present, and future of software systems is
the research focus of the expanding and increasingly
interesting field of software evolution research [14]. It
would be useful for the developers to be able to re-
play the past lifetime of a class or a group of classes.
This could provide an important source of information
for decision making. Moreover, it could also help to
identify costly parts (e.g., if a class is changed over
and over again, it is costing more than other parts in

1See http://www.eclipse.org/ for more information.
2See http://www.cvshome.org/ for more information.
3See http://msdn.microsoft.com/ssafe/ for more information.
4See http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/

for more information.

the system) or obsolete parts (e.g., if a class is never
changed, it is either dead code or good code). A thor-
ough knowledge of the history of a system represents
important information about that system.

Unification of information sources. There is a great spec-
trum of different sources of information about a soft-
ware system. Apart from the primary one, the source
code itself, one can also take into account documenta-
tion, bug reports, comments in the source code, UML
diagrams, CRC Cards, user stories, unit tests, etc. Soft-
ware visualization is an ideal vehicle to unify all these
sources into one data pool which can then be visual-
ized. Of course most of these data sources come with-
out a formal definition and must be formalized before
they can be integrated into any visualization. A sim-
ple example are comments in the source code: in the
Java programming language the tool JavaDoc parses
the declarations and documentation comments in a set
of source files and produces a group of cross-linked
HTML pages describing the software artifacts. An at-
tempt to formalize these comments to use them for re-
verse engineering purposes has for example been pro-
posed by Torchiano [24]. A visualization tool could
display the comments for example as tool tips when
the point of attention of the viewer is moving around.
The benefits of these formalizations is that several
of these informal sources of information could enrich
the already present visualizations, thus augmenting the
amount of information transmitted by them. The tech-
nical problems involved with such a unification are not
to be underestimated, and even a standardization of the
information sources (e.g.,with XML [7, 8]) will only
solve part of the problems. An example of an open
problem is keeping the various sources synchronized.

Spectrum of views. Various software visualization tools
visualize software in different ways. Some of the tools
propose views residing at different/complementary
levels of granularity and visualize also different kinds
of information (classes, applications, collaboration,
subsystems, etc.). A good software visualization tool
should not only propose good/complementary views,
but also keep the views synchronized between them
and allow the user to easily define new views. This
is important in a reverse engineering context where a
software visualization tool must be specialized to take
case study-specific aspects into account.

Real-world validation. A crucial test that software vi-
sualization tools must undergo is certainly the indus-
trial validation: the real world has many challenges,
such as scaling up, being able to even parse the system
or extract whatever information which can be fed into

3



the visualization tool. Through repeated confrontation
with real case studies, one will also remark where the
tool still needs general improvements or where there
is need for specialization. A simple example of such
a specialization are the acronyms often present within
class names, which convey hidden semantic informa-
tion about which subsystem or subarea of the system
the class belongs to from the developer’s point of view.
After repeatedly encountering this kind of information
one quickly wants to get an elegant way of modeling
and handling it, for example by encoding it into nomi-
nal colors.

4 An Example

In this section we want to give a simple example of how
some of the previous features can be achieved without a
huge effort, although we do not want to minimize the tech-
nical difficulties that some of these points involve and which
we still did not solve yet.

In Figure 1 we see a screenshot of the VisualWorks
Refactoring Browser which we extended to accomodate
visualizations provided by our software visualization tool
CodeCrawler [11, 12]. In the figure we see a Class Blueprint
view [13] of the currently selected class. Moreover we see
that all methods selected in the browser (actually a com-
plete method protocol ’private’ has been selected) are also
selected in the visualization. Furthermore a rename refac-
toring is being performed on one method of this class. Note
that the visualization occupies the space normally used for
displaying the method body. However, since during the
browsing of the class (e.g., looking for a certain method,
method protocol, or attribute) the method body panel re-
mains often empty anyway, this is not such a severe prob-
lem. Our implementation (re)uses the refactoring engine of
the Refactoring Browser and thus allows us to perform even
more complex refactorings like push-up and pull-down of
methods or attributes. After the software has changed, our
tool gets notified and automatically redisplays an updated
view of the software.

The main drawback of our current integration is that be-
tween selecting a class or a group of classes and their vi-
sualization in the browser takes a few seconds5: this la-
tency introduces wait times which disturb the viewer. We
have already taken some countermeasures by implementing
a cache which yields (the cached visualizations) in less than
one second, but our personal experience shows that even
small latencies disturb the viewer.

5from 2 to 20 seconds, depending on the number of classes and con-
tained methods/attributes, measured on a PPC 500 MHz Apple G4.

5 The Goal?

The future of software visualization can hardly be pre-
dicted, we think however to be able to predict a possible
and desirable goal that at least some program visualization
tools will inevitably try to achieve:quasi-real-time static
software visualization. Versioning systems like CVS have
introduced a novel way of handling source code: they al-
low us to retrieve any version of any source file ever written
by any person. If software visualization is to become the
preferred way of developers of looking at source code, we
cannot ignore the issue of this quasi-real-time: there must
be a dependency mechanism between the versioning tool,
the integrated development environment, and the software
visualization tool:e.g.,as soon as someone changes a part
of the system several people are editing and manipulating at
once, they must be notified by the change at once. This is
also a place where software visualization can fully exploit
its potential: notifying the developers of system changes by
means of text boxes, dialogs, log files, etc. are all clumsy
approaches compared to literallyseeingthe changes happen
and the system grow/shrink/change its shape in quasi-real-
time.

6 Discussion

Should the goal described above be achieved, the result
would be a real-time visual collaborative environment in
which software engineers develop a system together, and in
which they all have a common view of the system, namely
the one proposed by the software visualization tool. This
of course makes the achievement of the goal heavily depen-
dent on the quality and the success of such a software visu-
alization tool: should the users (i.e., the software engineers)
dislike or disagree with the proposed visualization, they will
not accept it as part of their mental model of the system.
Therefore, before software visualization tool providers can
give it a try at such a long-term vision, they must first cope
with the following (and many other) issues:

Human-Computer-Interaction issues. The field of
Human-Computer-Interaction (HCI) deals with how
humans interact with computer and with how to in-
crease the quality of the interactions. User Interface
design [6, 17] plays an important part in this context,
and is also an issue in context of software visualiza-
tion: the better a human viewer can interact with the
visualizations, the more (s)he will think that the visu-
alizations are useful. These are largely unsolved is-
sues which can only increase in the context of real-
time- or 3D-visualization. Another obstacle are the
current input devices we are using to communicate
with a computer: a computer mouse is for example

4



Figure 1. The integration of CodeCrawler with the VisualWorks Refactoring Browser.

not an ideal device to navigate three-dimensional in-
formation spaces, trackballs and other gadgets may be
more appropriate, but are far less present at people’s
working place, and therefore not a recognized industry
standard.

Scalability issues.Scalability has always been an issue in
reverse engineering and reengineering, mainly because
the examined subject systems are usually very large
and complex. Although the ever-accelerating com-
puter hardware can solve a part of this issue, our own
experiments in the field of software evolution have
shown that the massive amounts of data (hundreds of
versions of systems which contain hundreds of classes
and tens of thousands or software artifacts) put a heavy

strain on even the fastest hardware. Therefore an im-
portant part of the scalability problem must be solved
on the software side. Note also that a different kind
of scalability problem, a purely visual one, came up
during our experiments on software evolution: when a
tool visualizes thousands of software artifacts the visu-
alized items either take up too much space (generating
navigation problems) or, in order to fit on a display,
become too small to be interacted with.

7 Conclusion

New techniques like Design Patterns [10], Code Refac-
toring [9], and methodologies like eXtreme programming

5



[1] and Agile Development [5] have changed the way devel-
opers see software: we are more and more going towards an
evolutionary view of a quasi-living software systems. This
view is further amplified by the right tool support like refac-
toring engines, multi-way browsers, etc. We are convinced
software visualization still does not exploit its full potential
in such an evolutionary context, on the contrary it is rather
being ignored so far. The future challenge of software vi-
sualization is thus to prove its value in the tough arena of
mainstream (professional) software development.

Acknowledgments

We would like to thank Gabriela Arévalo and St́ephane
Ducasse for commenting drafts of this paper.

References

[1] K. Beck. Extreme Programming Explained: Embrace
Change. Addison Wesley, 2000.

[2] J. Bertin.Graphische Semiologie. Walter de Gruyter, 1974.
[3] S. K. Card, J. D. Mackinlay, and B. Shneiderman, edi-

tors. Readings in Information Visualization - Using Vision
to Think. Morgan Kaufmann, 1999.

[4] E. J. Chikofsky and J. H. Cross, II. Reverse engineering and
design recovery: A taxonomy.IEEE Software, pages 13–17,
Jan. 1990.

[5] A. Cockburn. Agile Software Development. Addison Wes-
ley, 2001.

[6] A. Cooper. About Face - The Essentials of User Interface
Design. Hungry Minds, 1995.

[7] S. DeRose, E. Maler, and D. Orchard. XML Linking Lan-
guage (XLink) version 1.0 - w3c proposed recommendation
20 december 2000. Technical Report PR-xlink-20001220,
World Wide Web Consortium, Dec. 2000.

[8] e. a. Didier Martin, Mark Birbeck.Professional XML. Wrox
Press Ltd., 2000.

[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code. Addi-
son Wesley, 1999.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Reading, Mass., 1995.

[11] M. Lanza. Codecrawler - lessons learned in building a soft-
ware visualization tool. InProceedings of CSMR 2003,
pages 409 – 418. IEEE Press, 2003.

[12] M. Lanza. Object-Oriented Reverse Engineering - Coarse-
grained, Fine-grained, and Evolutionary Software Visual-
ization. PhD thesis, University of Berne, may 2003.

[13] M. Lanza and S. Ducasse. A categorization of classes based
on the visualization of their internal structure: the class
blueprint. InProceedings of OOPSLA 2001, pages 300–311,
2001.

[14] M. M. Lehman and L. Belady.Program Evolution - Pro-
cesses of Software Change. London Academic Press, 1985.

[15] D. Littman, J. Pinto, S. Letovsky, and E. Soloway. Mental
models and software maintenance. In Soloway and Iyengar,
editors,Empirical Studies of Programmers, First Workshop,
pages 80–98, 1996.

[16] W. F. Opdyke. Refactoring Object-Oriented Frameworks.
Ph.D. thesis, University of Illinois, 1992.

[17] J. Raskin.The Humane Interface. Addison Wesley, 2000.
[18] D. Roberts, J. Brant, and R. E. Johnson. A refactoring

tool for Smalltalk. Theory and Practice of Object Systems
(TAPOS), 3(4):253–263, 1997.

[19] D. Roberts, J. Brant, R. E. Johnson, and B. Opdyke. An
automated refactoring tool. InProceedings of ICAST ’96,
Chicago, IL, April 1996.

[20] J. T. Stasko, J. Domingue, M. H. Brown, and B. A. Price,
editors. Software Visualization - Programming as a Multi-
media Experience. The MIT Press, 1998.

[21] M.-A. D. Storey.A Cognitive Framework for Describing and
Evaluating Software Exploration Tools. PhD thesis, Simon
Fraser University, dec 1998.

[22] M.-A. D. Storey, F. D. Fracchia, and H. A. M̈uller. Cogni-
tive design elements to support the construction of a mental
model during software exploration.Journal of Software Sys-
tems, 44:171–185, 1999.

[23] M.-A. D. Storey, K. Wong, and H. A. M̈uller. How do pro-
gram understanding tools affect how programmers under-
stand programs? In I. Baxter, A. Quilici, and C. Verhoef,
editors,Proceedings Fourth Working Conference on Reverse
Engineering, pages 12–21. IEEE Computer Society, 1997.

[24] M. Torchiano. Documenting pattern use in java programs.
In Proceedings of ICSM 2002 (International Conference on
Software Maintenance), pages 230–233. IEEE Computer
Society, IEEE Press, 2002.

[25] E. R. Tufte.Envisioning Information. Graphics Press, 1990.
[26] E. R. Tufte.Visual Explanations. Graphics Press, 1997.
[27] E. R. Tufte.The Visual Display of Quantitative Information.

Graphics Press, 2nd edition, 2001.
[28] C. Ware. Information Visualization. Morgan Kaufmann,

2000.

6


