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Abstract

Reverse engineering software systems has become a major concern in software industry because of their sheer size and ¢
plexity. This problem needs to be tackled, since the systems in question are of considerable worth to their owners and maintaine
In this article we present the concept opalymetric view a lightweight software visualization technique enriched with software
metrics information. Polymetric views help to understand the structure and detect problems of a software system in the initi
phases of a reverse engineering process. We discuss the benefits and limits of several predefined polymetric views we have
plemented in our tool CodeCrawler. Moreover, based on clusters of different polymetric views we have developed a methodolot
which supports and guides a software engineer in the first phases of a reverse engineering of a large software system. We t
refined this methodology by repeatedly applying it on industrial systems, and illustrate it by applying a selection of polymetric
views to a case study.
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. INTRODUCTION

Reverse engineering large software systems is difficult due to their sheer size and complexity. However, it
a prerequisite for their maintenance, reengineering, and evolution. Chikofsky [1] defines reverse engineeri
as “the process of analyzing a subject system to identify the system’s components and their relationshi
and to create representations of the system in another form or at a higher level of abstraction”. Maintainir
and evolving existing software systems is difficult for several reasons, among which are the acceleratir
turnover of developers, the increasing size and complexity of software systems, and the constantly chang
requirements of software systems. Theéggcy systemare large, mature, and complex software systems,
which are the result of a long-term investment effort of a company and must therefore be maintained ar
evolved, because new requirements must be fulfilled [2] [3], and because the company'’s investment has to |
back. Parnas [4] assessed that most legacy systems suffer from several typical problems, including origil
developers may be no longer available, outdated development methods and/or programming languages,
outdated, incomplete or missing documentation.

The maintenance and evolution of such systems is therefore, apart from being technically difficult, prc
hibitively expensive: Sommerville [5] and Davis [6] estimate that the cost of software maintenance accoun
for 50% to 75% of the overall cost of a software system. Rewriting these systems from scratch is also pro
lematic, because this would take vast amounts of time, money, and human resources.

Since legacy systems tend to be large — hundreds of thousands of lines of poorly documented code
no exception — there is a definite need for effective approaches which help in program understanding a
problem detection. We focus on object-oriented legacy systems, mainly because most current systems
written using this paradigm, and because it isag@that turns a piece of software into a legacy system, but
therate at which it has been developed and adapted [7]. Moreover, since the object-oriented paradigm do
not support a sequential reading ordee.( the domain model is distributed across classes, hierarchies, and
subsystems), the reverse engineer needs to know where to look into the system to understand its struct
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We are targeting the first phased, the first week) of a reverse engineering process, because in this phase
a reverse engineer has to form an initial mental picture of the system [8]. Our approach helps the rever
engineer get a mental picture by viewing the system by means of polymetric views, lightweight softwar
visualizations enriched with software metrics.

We usesoftware visualizatioin this context because visual displays allow the human brain to study mul-
tiple aspects of complex problems — like reverse engineering — in parallel [9]. Ware states that “Visualizatio
provides an ability to comprehend huge amounts of data” [10]. However, software visualizations are ofte
too simplistic and lack visual cues for the viewer to correctly interpret them [11]. In other cases the obtaine
visualizations are still too complex to be of any real value to the viewer.

We usesoftware metrichecause they can be used to assess the quality and complexity of a system ar
because they are known to scale up well. Furthermore, metrics are a good means to control the quality &
the state of a software system during the development process [12]. However, metrics often come in hu
tables that are hard to interpret, and this is even more difficult when metrics are combined to generate \
other metrics.

We propose a lightweight approach basedtmcombination of software visualization and software met-
rics, by enriching simple visualizations with metrics information. We refer to these lightweight combinations
aspolymetric viewsDepending on the applied polymetric view, the viewer can visually, (by looking and
interacting with the visualization) extract different kinds of information about the visualized syisterm-
formation about the structure of hierarchies, about the size of classes and methods, about the use of attribu
etc. The viewer can then verify his findings by inspecting the corresponding source code fragments (accol
ing to the program cognition model vocabulary proposed by Littetaal. [13] we support an approach of
understanding that pportunisticin the sense that it is not based osystematidine-by-line understanding
but as needed). Note that opportunistic code reading is also useful in a forward engineering eantext,
such a context our approach helps in code browsing, but this goes beyond the scope of this paper and is |
of our current research. In this article we describe several polymetric views in detail, and point out the ide:
the strengths, and the weaknesses of each view.

To guide a reverse engineer in the beginning phasegs (he first one or two weeks, depending on the size
of the system) of a reverse engineering process we have developed a methodology based on the polyme
views, which we have extended and refined by applying it repeatedly on industrial case studies.

II. OBJECTORIENTED REVERSEENGINEERING

Chikofsky states thdtThe primary purpose ofeverse engineerin@ software system is to increase the
overall comprehensibility of the system for both maintenance and new develogdileritherefore, before
starting a reverse engineering process, it is essential to decide which primary goals to pursuit and whi
ones are only of secondary importance. In the context of object-oriented legacy systems we settled on f
following goals for getting a first impression and a mental model of a system:

« Assess the overall quality of the system and gain an overview of the system in terms of size, complexi
and structure.

« Locate and understand the most important classes and inheritance hierarehiéad the classes and
hierarchies that represent a core part of the system’s domain and understand their structure in terms of img
mentation and purpose in terms of functionality.

« ldentify exceptional classes in terms of size and/or complexity compared to all classes in the subject syste
These may be candidates for a further inspection or for the application of refactorings.

« Identify the possible presence of design patterns or occasions where design patterns could be introduce
ameliorate the system’s structure.

The result of a reverse engineering process is therefore not only a list of problematic classes or subsystel
even if the identification of possible design defects is a valuable piece of information. Indeed, we are lookin
for the bad use as well as the good use of object-oriented desighpbtaining information about how a
system has been implemented is important, independently from the quality of its implementation. Moreove
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in a reengineering context the fact that a class may have a design problem does not necessarily imply t
the class should be modified or completely redesigned, as this would cost time and money. Indeed, if
badly designed clas®.g, too many methods, inconsistent use of accessors, dead code, etc.) or subsyste
accomplishes the work it has been assigned to, without having a negative impact on the overall working
the system, there is no point in changing it. However, being aware of such information is still valuable fo
getting a better mental model of the system.

We developed our approach in the context of the European Esprit project FAMOOS, whose main resul
have been summarized in a reengineering handbook [14] which was the basis for a book on object-orient
reengineering patterns [7]. The goal of the project was to reengineer several large industrial object-orient
software systems. The industrial setting of the FAMOOS project introduced the following constraints:

Simplicity. In software industry, reengineers face many problerss, short time constraints, little tool
support, and limited manpower. It is for this reason that we wanted our results to be reproduceable |
software engineers at their workplace, without having to rely on complex or expensive tools. Moreover, b
choosing a lightweight approach, we were able to get results quickly, in order to evaluate whether certa
ideas were viable or not.

Scalability. We wanted to make sure that our approach could handle the size of industrial systems, whic
can be of several millions of lines of code. The scalability is on one hand guaranteed by the use of softwa
metrics, since metrics can be computed independently from the size of the system. On the other hand «
approach allowed us to generate, test and accept/reject new ideas in short iteration cycles. After starting
development of our tools we constantly tested them in industrial settings to see whether they were actua
viable and could indeed scale up.

Language Independencdn order to handle software systems written in different languages, we devel-
oped FAMIX [15], a language independent metamodel. Our implementation in Smalltalk of the FAMIX
metamodel, called the Moose Reengineering Environment [16], is presented in detail in Section VI.

I1l. THE APPROACH
A. The Principle

Our visualization tool CodeCrawler uses two-dimensional displays to visualize object-oriented softwar
[17]. The nodes represent software entities or abstractions of them, while the edges represent relationst
between those entities. This is a widely used practice in information visualization and software visualizatio
tools. Ware claims that “other possible graphical notations for showing connectivity would be far less effec
tive” [10]. We enrich this basic visualization method by rendering up to 5 metric measurements on a sing|
node simultaneously, as we see in Figure 1.[A]. A list of some of the metrics we can enrich our visualization
with is given in Table I.

Node Size.The width and the height of a node can each render one metric measurement. The bigger the
measurements are, the bigger the node is in one or both of the dimensions.

Node Color. The color interval between white and black can be used to render another metric measure
ment. The convention is that the higher the metric value is, the darker the node is. Thus light gray represet
a smaller metric measurement than dark gray.

Node Position.The X and Y coordinates of the position of the node can also reflect two metrics measure
ments. This requires the presence of an absolute origin within a fixed coordinate system. Not all layouts ¢
exploit position metrics, as some of them implicitly dictate the position of the nadgsd tree layout).

In measurement theory, this procedure of rendering metrics on two-dimensional nodes isneslfede-
ment mappingand fulfills the representation condition, which asserts that “a measurement méppingt
map entities into numbers and empirical relations into numerical relations in such a way that the empiric:
relations preserve and are preserved by the numerical relations” [12]. In other words, if a mUBbgger
than a numbeb, the graphical representation@fndb must preserve this fact.
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Fig. 1. [A]: Up to 5 metrics can be visualized on one node. The list of possible metrics is given in Table I. [B]yShens
CoMPLEXITY view. This visualization of classes uses a tree layout. The edges represent inheritance relationships. The metrics
use to enrich the view are NOA (the number of attributes of a class) for the width and NOM (the number of methods of a class) fc
the height. The color shade represents WLOC (the number of lines of code of a class).

B. Software Metrics

We make extensive use of object-oriented software metrics. In the wide array of possible metrics [18] [1¢
[12] we selectedlesign metricsi.e., metrics that can be extracted from the source code entities themselves.
These metrics are usually used to assess the size and in some cases the quality and complexity of softw
The metrics we use are termdidect measuremenhetrics because their computation involves no other at-
tributes or entities [12]. We don't make useinflirect measurementhere metrics are combined to generate
new ones, because theeasurement mappirgesented in the previous section works best with direct mea-
surements. Examples of indirect metrics inclpdegrammer productivitydefect detection density module
defect densityas well as more code-oriented ones BBO and RFC, presented in [20]. We chose to use
metrics that can be extracted from source code entities, and which have a simple and clear definition. As st
we don’t usecomposite metricswvhich raise the issue of dimensional consistency [19].

In Table | (see appendix) we list all metrics mentioned in this article.

C. The Actual Visualization: A Polymetric View

An actual visualization of software in CodeCrawler depends on three ingredidaigut a set of metrics
anda set of entities
1. Alayout. A layout takes into account the choice of the displayed entities and their relationships and issue
like whether the complete display should fit on the screen, whether space should be minimized, whether noc
should be sorted, etc. Some layouts make sense for all purposes, while others are better suited for spe
casesé€.g, a tree layout is better suited for the display of an inheritance hierarchy than a circle layout).

As part of our lightweight approach, we chose to implement only simple layouts, although more advance
and powerful layouting techniques [21] are also interesting in this context. We use the following layouts
described in detail in the appendix of this article: tree, scatterplot, checker, and stapled.

2. The metrics. We incorporate up to 5 metrics selected from Table | into a view, as we have seen in Sec
tion llI-A. The choice of the metrics heavily influences the resulting visualization, as well as its interpretation
3. The entities. Certain views are better suited for small parts of the system, while others can handle :
complete large system. The reverse engineer must choose which parts or entities of the subject systerr
wants to visualize. These choices are part of the methodology discussed in depth in Section IV.

Example. Figure 1.[B] shows a tree layout of nodes enriched with metrics information. The nodes rep-
resent classes, while the edges represent the inheritance relationships between them. The size of the n
reflects the number of attributes (width) and the number of methods (height) of the classes, while the col
tone represents the number of lines of code of the classes. The position of the nodes does not reflect me
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measurements in this case, as the nodes’ position is implicitly given by the tree layout. In the figure we st
that the visualized system is composed of two large inheritance hierarchies (one of which is quite deep) a
some standalone classes.

The combination of the tree layout, the metrics mentioned above and the selection of classes as nodes
inheritance relationships as edges yields a polymetric view that we eafteSa COMPLEXITY view, whose
properties are described in more detail in Section V-A.

Interpretation of a View. The polymetric views are revealerssfmptomsvhich reside at a purely visual
level,i.e., they can be small dark nodes or large nodes, or even nodes at a certain position. These sympto
provide information about the subject system and support the decision process of which next view shou
be applied on which part of the system by the reverse engineer. Not all views lead to other views, but the
may also result in specific reengineering actions that represent the next logical step after the detection
defects. For example detecting a “god class”, defined by Riel [22] as a class that has grown over the ye:
ending up with too many responsibilities, may lead to a necessary splitting of the class. For example, lor
methods can be analyzed to see if they contain duplicated code or if they can be split up into smaller, mo
reusable methods [23], etc. The interpretation of the views is based on heuristics which mainly come from tt
experience of the authors, but have also been documented by Riel [22], Fowler [24], Beck [25], and others

Useful Views. Note that since our approach allows one to combine a subset of the metrics presented |
Table | with a layout algorithm on any kind of software artifacts, there is a great number of possible views
However, many of those are similar to otheesg( by exchanging the width and height metrics) and many
others do not help the reverse engineering process. We identified a numissfulfviews, i.e., polymetric
views that are useful for the reverse engineering process, and present a subset of them in this article.

IV. ALIGHTWEIGHT VISUAL REVERSEENGINEERING METHODOLOGY

We have already presented a first version of our methodology [26], and now present an extended a
elaborated version. Ideally such a methodology defines which views to apply, what the paths are between:
different views, and on what parts of the system the next view should be applied. There are many challeng
to the elaboration of such a methodology:

« There is no unique or ideal path through the views, since different views can be applied at the same sta
depending on the current context.

« The decision to use a certain view most of the time depends on some interactions with the currently di
played view. Furthermore, the views can be applied to different entities implying some navigation facilitie:
between the different views.

« A view displays a system from a certain perspective that emphasizes a particular aspect of the syste
However, the view has to be analyzed and the code understood to determine if the details revealed by |
view are interesting for further investigation.

« The views are heavily customizable. For instance exchanging two metrics is easy, yet it may yield con
pletely different views. The reverse engineer must steer this process in order to apply and customize t
useful views.

By loosely grouping the polymetric views into clusters and by indicating alternative views and navigatior
possibilities between the views we think that these challenges can be overcome. Furthermore, although
views are customizable, our tool offers a set of predefined views, some of which are presented in this pap
that can be applied directly and without requiring the user to define them himself, unless he wishes to do ¢
We identified the following clusters:

First Contact. The first thing to do with a subject system is to gain a first overview. We would like to
know how big and complex the system is and in which way it is structured. The views in this cluster provide
answers to the following questions: How big is the system and how is it composed: only of standalone classt
or of some (maybe large / deep) inheritance hierarchies. Is the system composed of many small classe:
are there some really big ones? Where in the system do these large classes reside? This cluster contain:
views SYsTEM HoTspoTsand SYSTEM COMPLEXITY.
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Inheritance Assessment. Inheritance is a key aspect of object-oriented programming languages, and
thus represents an important perspective from which to understand applications. Inheritance can be us
in different ways, for example as pure addition of functionality in the subclasses or as an extension of tr
functionality provided by the superclasses. The views in this cluster help in the analysis of inheritance ar
provide answers to the following questions: How are inheritance hierarchies structured and how do they ma
use of inheritance? Are subclasses merely adding new functionality of redefining the functionality define
in the superclasses? This cluster contains the viewsE RITANCE CLASSIFICATION and INHERITANCE
CARRIER.

Candidate Detection. One of the primary goals of a reverse engineer is to detect candidates which may
be either cases where further investigation is necessary or where code refactorings are needed. The vi
in this cluster help in this problem detection process and provide answers to the following questions: Whe
are the large (small) classes or methods? Are there methods which contain dead code or attributes which
never used? This cluster contains the views A STORAGE CLASS DETECTION, METHOD STRUCTURE
CORRELATION and DRECT ATTRIBUTE ACCESS

Class Internal. Understanding classes is a key activity in object-oriented programming, since classe
represent the primary abstractions from which applications are built. The main problem of this task is t
quickly grasp the purpose of a class and its inner structure. We have performed extensive research on t
subject [27], but to keep this paper within a certain scope, we do not present the views contained in th
cluster, especially the dss BLUEPRINT view. However, note that several of the views belonging to the
other clusters can easily be applied on single classes as well, such as those from the candidate detec
cluster.

V. A REVERSEENGINEERING SCENARIO

Reporting about a case study is quite difficult without sacrificing the exploratory nature of our approach
Indeed, the idea is that different views provide different yet complementary perspectives on the softwar
Consequently, a concrete reverse engineering strategy should be to apply the views in some specific ort
although the exact order would vary depending on the kind of system at hand and the kind of questiol
driving the reverse engineering effort. Therefore, readers should read this case study report as one poss
use case, keeping in mind that reverse engineers must always customize their approach to a particular revi
engineering project.

Some Facts about the Case Studyl'he system we report on is called Duploc (version 2.16a), which is
a tool for the detection of duplicated code [28]. We have already done a preliminary case study on an old
version from 1999 of Duploc [29], and are curious to see how Duploc has evolved in the meantime. Duplo
has become a mature application, consisting of more than 300 classes. Duploc detects code duplication
means of a visualization of each line as a dot in a two-dimensional matrix.

A. Reverse Engineering a System

Reverse engineering a system is a non-linear procedure and is difficult to present as a sequential text. |
reasons of simplicity we discuss the views of each of the clusters, show their application on the case stu
and put them into relation according to our methodology presented in Section 1V, as well as depending ¢
the situations encountered during the reverse engineering of Duploc.

SYSTEM HOTSPOTSVIEW

Description: Layout: Checker. Target: Classes.Scope: Full system. Metrics: Width: NOA. Height:
NOM. Color: WLOC.Sort: Width. Example: Figure 2.[A].

This simple view helps to identify large and small classes and scales up to very large systems. It relates 1
number of methods with the number of attributes of a class. The nodes are sorted according to the form
which makes the identification of outliers easy.

Symptoms(1) Large nodes represent voluminous classes that may be further investigated. (2) Tall, and ne
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Fig. 2. [A]: A SysTEM HoTspoTsview (Variation 1 and 2) of Duploc. The nodes represent all the classes, while the size of the
nodes represent the number of methods they define. They grey nodes represent metaclasses.S[EHMACOMPLEXITY view

on Duploc. The nodes represent the classes, while the edges represent inheritance relationships. As metrics we use the nul
of attributes (NOA) for the width, the number of methods (NOM) for the height and the number of lines of code (WLOC) for the
color. [E]: An INHERITANCE CLASSIFICATION view of theModelhierarchy in Duploc. The width and height of the class nodes
represents the number of added methods and the number of overridden methods, while the color represents the number of extel
methods. [F]: An NHERITANCE CARRIER view of one hierarchy in Duploc. The width and the color of the class nodes represents
the number of descendants, while the height represents the number of methods.

row nodes represent classes which define many methods and few or no attributes. (3) Wide nodes are cla:
with many attributes. When such nodes show a 1:2 width-height ratio it may represent a class whose me
purpose is to be a data structure implementing mostly accessor methods. Further evidence can be gained f
the color, which reflects the number of lines of code of a class. Should a tall class have a light color it mear
that the class contains mostly short methods.

Variations: (1) If we use the lines of code (WLOC) or the number of methods (NOM), as we see in Fig-
ure 2.[A] for rendering both the width and height of the nodes, we obtain a slightly different view which
helps to assess the whole system in terms of raw measure: are there any big classes and how big are
actually? (2) In the case of Smalltalk classes, we can color metaclasses differently and check how they d
tribute themselves across the display. Should there now be large, colored nodes at the bottom of the displa
may be a sign that these metaclasses have too many responsibilities or that they function facades or as bric
to other classes [30].

Scenario: In Figure 2.[A] we see all the Duploc classes. The classes in the bottom row contain more tha
100 methods and should be further investigated. TheyagdocPresentationModelController (107 meth-
ods), RawMatrix (107), DuplocSmalltalkRepository (116) and DuplocApplication (117 methddsave
colored the nodes representing metaclasses with grey. Note the bottom-most grey node which is the metac
DuplocGlobalswith 59 methods. This class, as suggested as well by the name, is a holder for global value
However, instead of using the metaclass, one suggestion to the developer is to apply the singleton des
pattern instead [30].



SYSTEM COMPLEXITY VIEW

Description: Layout: Tree. Target: Classes.Scope: Full system.Metrics: Width: NOA. Height: NOM.
Color: WLOC.Sort: -. Example: Figure 2.[B].

This view is based on the inheritance hierarchies of a subject system and gives clues on its complexity a
structure. For very large systems it is advisable to apply this view first on subsystems, as it takes quite a |
of screen space. The goal of this view is to classify inheritance hierarchies in terms of the functionality the
represent in a subject system. If we want to understand the inner working at a technical level of inheritanc
hierarchies we apply the views of the inheritance assessment cluster.

Symptoms(1) Tall, and narrow nodes represent classes with few attributes and many methods. When su
nodes appear within a hierarchy, applying theiERITANCE CLASSIFICATION view or the NHERITANCE
CARRIER view helps to qualify the semantics of the inheritance relationships in which the classes are in
volved. (2) Deep or large hierarchies are definitively subsystems on which the views of the inheritanc
assessment cluster help to refine understanding. (3) Large, standalone nodes represent classes with n
attributes and methods without subclasses. It may be worth to have a look at the internal structure of the cle
to learn if the class is well structured or if it could be decomposed or reorganized. (4) Flat, light nodes witl
a width:height ration of 1:2 often represent data storage classes that define several attributes and for e
attribute implement two accessor methods. The light color often denotes that a class has very short meth
as is the case for accessors.

Scenario: Before showing this view we perform a manual preprocessing which consists in removing the
classObject which is the root class of the Smalltalk languagsgy, every class inherits from it. We do this

in order to focus on the use of inheritance within Duploc: Since many classes inherit directlyDtrjmot

this view would be distorted if we included it in our view. We see the resultingt&mM COMPLEXITY view

in Figure 2.[B]. We can see now that Duploc is in fact mainly composed of classes which are not organize
in inheritance hierarchies. Indeed, there are some very large classes which do not have subclasses.
largest inheritance hierarchies are five and six levels deep. Noteworthy hierarchies seem to be the ones v
the following root classeAbstractPresentationModelControllerState, AbstractPresentationModelViewState,
DuplocSourceLocatiarThe first one, with the root clagsstractPresentationModelControllerStatéh 31
descendants, seems to be the application osthtedesign pattern [30] for the controller part of an MVC
pattern. Such a complex hierarchy within Duploc is necessary, since Duploc does not make any use of &
vanced graphical frameworks, but uses the basic standard VisualWorks GUI framework. Following this trac
of investigation we look for the other signs of the MVC pattern and find a hierarchyAigitractPresenta-
tionModelViewStatas root class with 12 descendants, which seems to constitute the view part of the MVC
pattern.

INHERITANCE CLASSIFICATION VIEW

Description: Layout: Tree. Target: Classes.Scope: SubsystemMetrics: Width: NMA. Height: NMO.

Color: NME. Sort: -. Example: Figure 2.[E].

This view qualifies the inheritance relationships by displaying the amount of added methods relative to tf
number of overridden or extended methods. By extended methods we mean methods which contain a su
call to a method with the same signature defined in one of the superclasses.

Symptoms:(1) Flat, light nodes represent classes where a lot of methods have been added but where fe
methods have been overridden or extended. In this case the semantic of the inheritance relationship is
addition of functionality by the subclasses. (2) Tall, possibly darker nodes represent classes where a
of methods have been overridden and/or extended. They may represent classes that have specialized |
methods [30]. If the nodes are dark, it means that many methods have been extended, which hints at a hig
degree of reuse of functionality.

Scenario: We have selected only one hierarchy, the one indicated ddalel hierarchy in Figure 2.[B], to
demonstrate the application of this view. We see in Figure 2.[E] tha¥itsael hierarchy is mainly composed

of flat, lightly colored nodes: these classes mainly add functionality (denoted by their width) without really



overriding or extending functionality defined in the superclasses. We also see there are some exceptio
the subclasses of the two widest class no&esvMatrixand AbstractRawSubMatr)pxwith 96 and 72 added
methods define several methods which are then overridden or extended by their subclasses. For example
two subclassesSymmetricRawMatriand AsymmetricRawMatrjxof RawMatrixheavily override function-

ality, as is indicated by their tall, narrow shape: both override 33 methods and add only 4, respectively
methods.

INHERITANCE CARRIER VIEW

Description: Layout: Tree. Target: ClassesScope:SubsystemMetrics: Width: WNOC. Height: NOM.
Color: WNOC.Sort: -. Example: Figure 2.[F].

This view helps to detect classes with a certain impact on their subclasses in terms of functioeality,
helps to see which classes transmit the most functionality to their subclasses.

Symptoms11) Tall, dark nodes represent classes that define a lot of behavior and have many descendar
Therefore these classes have a certain importance for the (sub)system in question. (2) Flat, light noc
represent classes with little behavior and few descendants. (3) Flat, dark nodes represent classes with |i
behavior and many descendants. They can be the ideal place to factor out code from to the subclasses.
Scenario: Figure 2.[F] shows this view for thilodel hierarchy. It shows that the classes which are carrying
the weight of the implementation in this hierarchy are first of all the claAbstractPresentationModelCon-
trollerStateand PMCS where the latter is the sole subclass of the former. These classes are emphasized
this view because of their darker color.

O 15, _ U H ExternalSortComparer
'—"—Ll'—'|_1| — _I
A o DuplocPresentationModelController
B o

H f =] E;‘:E nﬂ a

T Phe 8 o

Jexllesezst Hh o
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° Dn%nnnmj Bg %o o ° [B]
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Fig. 3. [A]: A DATA STORAGE CLASS DETECTION view on the largest classes in terms of number of methods of Duploc. The
color and height metrics represents the number of lines of code of each class, while the width represents the number of methc
The nodes are sorted according to their width. [B]: AMIOD STRUCTURE CORRELATION view of Duploc. As horizontal
position metric we use the lines of code, while for vertical metrics we use the number of statements. [BE@TTTRIBUTE
AccEssview (Variation 3) of Duploc. The width of each attribute node represents the number of direct local accesses from withil
its defining class (NLA). The height of each node represents the number of accesses from outside of its class (NGA), while tl
color represents the number of total direct accesses. The nodes are sorted according to the color metrics.

DATA STORAGE CLASS DETECTION VIEW
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Description: Layout: Stapled. Target: Classes. Scope: Subsystem.Metrics: Width: NOM. Height:
WLOC. Color: NOM.Sort: -. Example: Figure 3.[A].

This view relates the number of methods (NOM) with the lines of code (WLOC) of classes and interprets thi
information in the context of a subsystem or small system. Ideally this view should return a staircase patte
from left to right, since the nodes are sorted according to the first metric and the two metrics are related. Nc
that this view works in any settinge., since it puts two values in relation it doesn’t matter how big the actual
measurements are.

Symptoms(1) The staircase effect is broken by nodes which are too tall. These represent classes which ha
long methods compared to the classes which comply with the staircase pattern. (2) The staircase patter
broken by nodes which are too short. These classes, given a certain number of methods, do not have
expected length in terms of lines of code. Such classes are often data storageiotgsdasses which have
short, simple methods, possibly only accessor methods. Data storage classes may point to sets of couy
classes being brittle to changes.

Variations: (1) To enhance the detection of data storage classes we use the number of attributes (NOA)
color metric, because data storage classes often have many attributes.

Scenario: We see in Figure 3.[A] that the fourth class from the righiiplocPresentationModelControlles

very short (265 line of code) compared to the great number of methods (107) indicated by the position on tt
right. Upon closer inspection we see that the class contains dozens of one-line methods which return const
values. We also see the inverse case for the first tall class on the left raterdalSortComparewhich
contains 12 methods for a total length of 330 lines. This class contains methods which can be refactored
splitting them up in smaller, more reusable pieces.

METHOD STRUCTURE CORRELATION VIEW

Description: Layout: Scatterplot. Target: Methods. Scope: Full system. Metrics: Position (X): LOC.
Position (Y): NOS Sort: -. Example: Figure 3.[B].

This very scalable view shows all methods using a scatterplot layout with the lines of code (LOC) and th
number of statements (NOS) as position metrics. As the two metrics are related (each line may contain sta
ments) we end up with a display of all methods, many of which align themselves along a certain correlatic
axis.

Symptoms(1) Nodes to the right of the display represent long methods and should be further investigated ¢
candidates for split method refactorings [24] [25]. (2) Nodes to the very left and top of the display represer
empty methods. (3) Nodes to the top of the display, but not necessarily to the left, represent methods cc
taining commented lines or possibly dead code. (4) Nodes to the left and more to the bottom of the displ:
represent methods which are probably hard to read, as they contain several statements on each line. In
case one should check whether there are formatting rules within the application which are being violated.
Variations: (1) This view can be enriched using size metrics as well. One useful variation is using the numbe
of parameters (NOP) for the size of the nodes, which reveals not only long methods but methods with mal
input parameters as well.

Scenario: We can see in Figure 3.[B] how well this view scales up: the figure shows nearly 5000 of Duploc’s
methods. Several method nodes seem to be good candidates for further investigations. All the methods lon
than a certain number of lines (for example 30 or 50, depending on the average length of methods in the st
ject system) should be inspected. Note in this regard that the average length of Smalltalk methods is arou
7 lines [31]. We can also see that there are many methods at the top of the display which therefore do r
contain many statements. Upon closer inspection we can see this is partly due to code which is commen
out (in some cases dead code), partly this is also due to very long comments written by the developer
explain what the methods are actually doing. Another insight which can come from this view is a gener:
assessment of the system. We have seen that the methods tend to align themselves along a certain correl;
axis. Depending on the age of the system the axis changes its angle: methods are written and corrected alll
time, and slowly get messy with many statements on few lines. In this regard Duploc can still be considere
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a young system.

DIRECT ATTRIBUTE ACCESSVIEW

Description: Layout: Checker. Target: Attributes. Scope: Full system.Metrics: Width: NAA. Height:

NAA. Color: NAA. Sort: -. Example: Figure 3.[C].

This view uses the number of direct accesses (NAA) for the width, height and color of each attribute nod
and sorts the nodes according to this metric.

Symptoms(1) Small nodes at the top of the display represent attributes which are never accessed and m
point to dead code. (2) Large, dark nodes at the bottom point to attributes which heavily directly accesse
which may lead to problems, in case the internal implementation changes. For such nodes one should a
check whether accessor methods have been defined, and if yes why they are not always being used.
Variations: (1) Instead of using as size and color metric the number of direct global accesses, we use eith
the number of accesses via accessor methods to reveal how heavily these accessor methods are actually
(2) We use as size and color metric the number of direct accesses by subclasses, in order to reveal coup
aspects of classes within inheritance hierarchies. (3) We use the number of local accesses (NLA) (from witr
the class where the attribute resides) for the width and the number of global accesses (NGA) (from outside
the class) for the height. Normally the attributes rendered like this should be as flat as possible, and in ca:
where this does not apply, a deeper inspection could be useful, since tall, narrow nodes represent attribL
which are heavily accessed from outside of its defining class by means of direct accesses.

Scenario: In Figure 3.[C] we use a slight variation of the regular view definition and render for the width
and the height the number of local, respectively the number of non-local accesses, while the color renders
total number of direct accesses. We see that Duploc uses a considerable number of attributes. The top |
contains 11 attributes which are never accessed, and can therefore be removed. The bottom row contains
most heavily accessed attributes. For example the attitwat®belonging to clasBinValueColorerinterface

is directly accessed 77 times. Upon closer inspection we see that in fact the class defines accessor meth
but they are not consistently used, which may be risky [31]. Note also the tall, narrow attribute node at th
bottom of this view. This attribute is heavily accessed directly from outside of its containing class. In such:
case we suggest to define accessor methods and invoke them instead of directly accessing the attribute.

B. Evaluation

Case study. Our approach provided us with an initial understanding of the case study and helps us t
identify some of the key classes without having to focus on the details. The developer of Duploc confirme
several of our findings and was surprised that we obtained our results in less than two days. Indeed, one
the major problems with large systems is to get an overview and some initial understanding at the beginnil
without getting lost in their intrinsic complexity [7]. The methodology based on clusters of views helps to
stay focused at the different levels of understanding we want to gain. We cannot present all the results \
obtained during this case study, as this would go beyond the scope of this paper. We rather limit ourselv
to draw some specific conclusions on the major findings obtained during this case study, and some gene
conclusions on other case studies we have performed.

First Contact Views. The views in this cluster help us to get a first feeling for the size and structure of the
system, and in more detail to see how a system’s major hierarchies are composed and where larger classe:
located. In the present case, we have seen that Duploc is composed of several standalone classes, and t
major part of Duploc is dedicated to the management of the graphical user interface. A first list of prominer
classes and hierarchies of the system is useful to get an orientation. Especially on very large case studies,
cluster’s views help to obtain results quickly.

Inheritance Assessment Views.The views in this cluster are useful for the easy understanding of the
complex mechanisms related to inheritance. We can classify inheritance relationships and detect import:
classes in large hierarchies. Especially for larger hierarchies, which however this case study did not conta
this cluster’s views reduce the time to understand complete inheritance hierarchies. In one special case,
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reverse engineered a system which contained very large inheritance hierarchies, with several hundreds
classes and where in one case the root class, had 97 direct subclasses. The views obtained after visuali
this hierarchy led us to coin the terflging saucethierarchy, because of its very flat shape.

Candidate Detection Views. The views in this cluster help us to identify many candidates for closer
examination. The problem with those candidates is that their number can be large. The reverse engin
can easily produce long lists of suspicious code fragments, classes, methods, etc., but the usefulness of <
an approach is doubtful: in the end it is the software company that decides on which parts of their syste
they want to spend time and money for reengineering. In the case of Duploc, together with its developer v
inspected several candidates and he confirmed our findings, but it is difficult to present the results in dete
because this would go beyond the scope of this article.

Industrial Experiences. We applied our approach on several large industrial applications ranging from a
system of approximately 1.2 Million lines in C++ to a Smalltalk framework of approximately 3000 classes
(600 kLOC). During our experiments we were able to quickly gain an overall understanding of the analyze
applications, identify problems, and point to classes or subsystems for further investigation. Moreover w
learned that the approach is preferably applied during the first contact with a software system, and provid
maximum benefit during the first one or two weeks of the reverse engineering process. However, due to nc
disclosure agreements with the industrial partners, we cannot deliver a detailed report on those experience

We applied and refined our reverse engineering methodology by using our tool on industrial applicatior
in an explorative way. The common point about these experiences was that the subject systems were
considerable size and that there were narrow time constraints (maximum 4 days). This led us to mainly ¢
an understanding of the system’s overall structure (subsystems, important hierarchies and their purpose)
produce overviews. We were also able to point out potential design problems (overly large classes, unus
classes, dead code, overlong methods, unused attributes) and on medium-sized case studies we even ha
time to propose possible redesigns of the system (for example in one case we suggested to inverse the ord
the classes in a hierarchy and increase its stability by introducing the template method design pattern, whi
resulted in a considerable reduction of complexity of the hierarchy).

Taking the time constraints into account (none of the case studies lasted more than a few days) we obtair
very satisfying results. The — often initially sceptical — developers were surprised that we had not onl
gained an overview over such large systems, but had also uncovered many design flaws in such a short til
Even though they were aware of at least half of the problems we found, many develapghe complete
software system they were working on for the first time. The typical result of each case study was a repc
containing a presentation of polymetric views of the system and a list of possible problems and errors, fi
example suspicious classes, overlong methods, unused attributes, etc. The developers liked our overvie
(for example the 8sTEM COMPLEXITY view) and even used them for documentation purposes. The list
of problems and design flaws we delivered was also well accepted, and although during the final discussi
with the developers we saw that they were keen on examining them, we do not know to which extent this h:
been done, since the software companies in question were very protective regarding such information. \
consider this protectiveness as harmful, as it would allow us to further improve our approach.

Moreover, our goal is to provide expressive views on a system, which can easily be complemented wir
code browsing. The time it takes the reverse engineer to go from a visualization to the source code level, mi
be kept as short as possible. In this context we speak aipmatrtunistic code reading.g, the polymetric
views do not replace code reading, they support it and point a reverse engineer to the spots where code reat
is needed. Combining the polymetric views with manual code browsing thus proved to be a good way to g
the results [32]. The obvious conclusion is that tools are necessary but not sufficient on their own.

VI. IMPLEMENTATION

A. Moose, a Language Independent Reengineering Environment

Moose [16] is a language independent reengineering environment written in Smalltalk. It is based on tf
FAMIX metamodel [15], which provides for a language independent representation of object-oriented sourc
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code and contains the required information for the reengineering and reverse engineering tasks perforn
by our tools. It islanguage independenbecause we need to work with legacy systems written in different
implementation languages. Itéxtensiblesince we cannot know in advance all information that is needed in
future tools. Since for some reengineering probleeng,(refactorings [33]) the tools might need for language
specific information, we allow for language plug-ins that extend the model with language specific feature:
Next to that we also allow the tool plug-ins to extend the model with tool specific information.

The core FAMIX metamodel comprises the main object-oriented concepts — Class, Method, Attribute ar
Inheritance — plus the necessary associations between them — Invocation and Access. Note that the comg
FAMIX metamodel includes many more aspects of the object-oriented paradigm, and contains source co
entities like formal parameters, local variables, functions, etc. We opted against the use of UML because
is not sufficient for modeling source code for the purpose of reengineering, since it is specifically targete
towards OOAD and not at representing source code as such [34].

B. CodeCrawler

CodeCrawler uses Moose for representing software and uses the HotDraw framework [35] for the visue
ization part. In the remainder of this section we discuss some implementation issues and design decisions

Extensibility. One lesson learned during all case studies we made, is that none of them is typical o
normal. Every case study posed certain problems: size, use of atypical language constructs, use of domr
specific aspects, to list just a few. A reverse engineering tool cannot be prepared for every situation whi
may arise and must therefore be easily extended and adapted to the current context. CodeCrawler provides
an easy way to integrate new kinds of entities and relationships. In the occasion of a research project deal
with a legacy system written in Cobol [36], the changes needed to enable visualizations of Cobol code we
performed in a few hours. Thus, it doesn’t necessarily need Moose entities, but can handle and visualize &
kind of entity. The most recent examples include visualizations from the domain of concept analysis an
visualizations of Prolog statements. CodeCrawler also exploits the properties of the entities within a Moos
model. These properties, implemented as a dictionary, are freely and easily extensible, and are heavily u:
for example to add new metric measurements or to add new annotations, for example package affiliatic
comments, etc. In this context we treat Moose models not as a read-only facility, but enrich it during th
reverse engineering process with additional information which can in turn be used by CodeCrawler.

Interactivity. Software visualization needs to offer interactive facilities to the user. As most visualizations
can be heavily parameterized, one must offer an easy way to do so by medirecbmanipulation idioms
[37], which give the user the freedom to directly manipulate the resulting visualization by means of zooming
scaling, deletion, elision, etc. [9]. In the case of the systems we reverse engineered, direct manipulation w
necessary to reduce complexity by providing basic navigation support, as well as to cut down latency tim¢
between visualizations. In this context we claim that our visualizations do not merely represent source coc
as in the case of static visualizatioresd, static pictures which cannot be manipulated), but theythe
source code. This is further emphasized by another aspect, which wendallproximity discussed below.
Since we use the size and color of the nodes to render metric measurements, it is not possible to disp
the name or any other information in the nodes themselves, although CodeCrawler supports this as well
course in this case the size does not render metric measurements anymore, but is dictated by the displa
contents). Since the user wants to know what he is interacting with, CodeCrawler provides the request
information in several ways: (1) By means of a tool-tip figure (2) By displaying it in the status field at the top
(3) By displaying it in a separate window. Another issue in the context of interactivity is the definition of the
measurement mapping function, whose principles we have presented in Section IlI-A: in order for the us
to click on a desired node, the node must have a certain size. On the other hand the size of the node
render the underlying metric measurement as truthfully as possible. The first idea which comes to mind is
direct one-to-one mapping. However, this idea must be rejected because if a measurement is zero, the n
will have no dimension. We have considered several possible solutions [29] for this problem, and have final
settled on defining a minimal node size (MNS) value, to which the metric measurements are directly adde
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The MNS has the experience value of 4, it can however easily be changed by the user. Therefore we obtai
mapping function (width/height = MNS + metric measurement) that maps the metric measurement O on 4,
on5,2o0n6,50n9,10o0n 14, 100 on 104, etc.

Code Proximity. Providing easy and fast access to the original source code can greatly reduce latenc
times. Since our goal is to provide alternative, yet expressive, views of a system, it is necessary to quick
verify the correctness of a visualizatiare(, is that class really that big?), but is also important to “get down”
from the visualization to the source code level. CodeCrawler provides access to the source code represer
by the nodes in two ways. For Smalltalk code it can directly access and open a browser on the correspond
classes or methods. In the case of non-Smalltalk code we gain access to the right location in the right file
means of aource anchagrwhich is defined for every entity.

Scalability. One of the major issues software visualization tools are confronted with is scalability. Code-
Crawler can visualize at this time ca. 1 Million entities. Note that we keep all the entities in memory.

Tool Usability. Our tool has been downloaded over 2000 times, and although we haven't performed a use
survey yet, from personal and e-Mail discussions with the users, we have learned that after a short learni
time they know what they can get out of each view. However, although the views are easily editable, we ha
also learned that most of the users apply the predefined views and seldom create new views of their own.

VIl. RELATED WORK

Since our approach is a mixture of two already present approaches, we discuss first the work performed
those two areas, before focusing on the methodological aspects of related approaches.

Software Visualization. The graphical representations of software used in the field of software visual-
ization, a subarea of information visualization [10][38], have long been accepted as comprehension aids
support reverse engineering. Indeed, software visualization itself has become one of the major approache
reverse engineering. Prie¢al. have presented an extensive taxonomy of software visualization, with several
examples and tools [39].

Many tools make use of static information to visualize software, like Rigi [40], Hy+ [41], SeeSoft [42],
ShrimpViews [43], TANGO [44] and the FIELD environment [45], to name but a few prominent examples.

Substantial research has also been conducted on runtime information visualization, called program vis
alization. Various tools and approaches make use of dynamic (trace-based) information such as Progr
Explorer [46], Jinsight and its ancestors [47] and Graphtrace [48]. Various approaches have been discus:
like in [49] where interactions in program executions are being visualized. In our current approach we d
not exploit dynamic information. Richner has conducted research on the combination of static and dynam
information [50], where the static information is provided by the Moose Reengineering Environment.

Several systems make use of the third dimension by rendering software in 3D. Brown and Najork e»
plore three distinct uses of 3D [9], namely (1) expressing fundamental information about structures that a
inherently two-dimensional, (2) uniting multiple views of an object, and (3) capturing a history of a two-
dimensional view. They exemplify these uses by showing screen dumps of views developed with the Zel
algorithm animation system [51]. However, they also state that “the potential use of 3D graphics for progratr
visualization is significant and mostly unexplored”. Some of the systems cited above make both use of 2
and 3D visualizations. Until now we have refrained from using 3D for our visualizations, mainly because
it would contradict the lightweight constraint. However, we consider the exploration of the use of 3D as
possible future work.

Metrics. Metrics have long been studied as a way to assess the quality and complexity of software [12], ar
recently this has been applied to object-oriented software as well [18][19]. Metrics profit from their scalability
and, in the case of simple ones, from their reliable definition. However, simple measurements are hard
enough to sufficiently and reliably [52] assess software quality. Some metric tools visualize informatior
using diagrams for statistical analysis, like histograms and Kiviat diagrams. TAC++ [53] and Crocodile [54
are tools that exhibit such visualization features. However, in all these tools the visualizations are mere si
effects of having to analyze large quantities of numbers. In our case, the visualization is an inherent part
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the approach, hence we do not visualize numbers, but constructs as they occur in source code.

Methodology. To the best of our knowledge none of the approaches we reference in this paper presen
a reverse engineering methodology, which can help a reverse engineer to apply a certain tool or techniq
Storeyet al. present in [8] some basic ideas on how to build a mental model during software exploration
but do not provide the much-needed, yet difficult to obtain, empirical evidence. We suppose this is becau
of thead hocnature of reverse engineering tools (including ours) and because software industry has not y
adopted such tools as concrete aids for their development process.

VIIl. CONCLUSIONS ANDFUTURE WORK

In this article we have presented thelymetric viewslightweight visualizations enriched with software
metrics. Furthermore we have presented a reverse engineering methodology based on clusiao/aidie
ric views This methodology enables to quickly gain insights into the inner structure of large software legac
systems and helps to detect problems.

Furthermore, we have shown CodeCrawler, a reverse engineering tool which was built on the principles
using simple ideas and applying them constantly on industrial case studies. CodeCrawler has been succ
fully used for reverse engineering several large industrial software systems.

Finally, we have used our methodology by applying different views and have reverse engineered a ca
study. We have been able to understand different aspects of the case study, among which an overview of
application, a discussion on the used inheritance mechanisms, the detection of design patterns, the detectic
several places where in-depth examinations are needed, as well as propositions on where possible refactor
could be applied.

We have also seen that reverse engineering is not a systematic process, but that the understanding of a
tem non-linear and complemented dyyportunisticcode reading. This corroborates the work of Mayrhauser
and Vans [32] in which they show that the understanding resides at all level of astractions.

Our lightweight approach is especially useful in the first phase (one to two weeks) of a reverse engineeri
process. We believe it can be combined with more complex and traditional approaches (code reading bei
one of the simplest), because our approach can point out where these complementary approaches can/sh
be used. However, we also believe the approach could be used iteratively during the complete reverse er
neering process to generatieap shot®f the system at the different stages. This has however not been tried
out systematically and is part of our future work.

A. Future Work

Language specific viewSince FAMIX is language-independent we have focused on developing views in
this context. We believe there are views which exploit language specific information, for example modifie
information in languages like C++ and Java or metaclasses in Smalltalk.

New entities and relationship3.he introduction of new entities and relationships, which may but do not
need to have an equivalent in software could help to generate new views based on these new artifacts.
way to interactively generate these artifacts can be supported by grouping mechanisms, similar to the or
implemented in Rigi [40], which group entities and relationships according to certain rndeshéming
conventions, types, etc.).

Usability and navigationThe extensive use of direct-manipulation idioms [37], especially those relevant
to the reverse engineering process, should further increase the malleability and flexibility of our tools. Th
introduction of navigation mechanisms can further increase the efficiency of the reverse engineering proce

3D. The use of the third dimension (see for example [55]) can help to exploit and visualize more semanti
information, although we believe that using such techniques generates results which cannot be classifiec
“lightweight” anymore.

Forward engineeringWe are convinced the presented approach has also many benefits for forward eng
neering, code browsing, and programming environments. We are currently integrating CodeCrawler with tt
VisualWorks Smalltalk development environment.
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APPENDIX
I. SOFTWARE METRICS

In the context of this article we make use of the software metrics described in Table I. The metrics ar
divided into three groups, namely class, method and attribute mdtacshese are the entities the metric
measurements are assigned to. Note that our metrics engine is able to compute many more metrics, which
have omitted in the table, as they are not mentioned within this article. Since one of our main constraints
to reengineer systems written in different object-oriented languages we have chosen to include in our metr
engine metrics whose computation does not depend on any language-specific features, but can be be
directly on our language-independent metamodel, which we present in Section VI.

TABLE |
A LIST OF THE SOFTWARE METRICS USED IN THIS PAPER

[ Name | Description |
[ Class Metrics |
HNL Number of classes in superclass chain of class
NME Number of methods extendeds., redefined in subclass by invoking the same method on a superclass
NMI Number of methods inheritede., defined in superclass and inherited unmodified by subclass
NMO Number of methods overriddene., redefined compared to superclass
NOA Number of attributes (NOA = NIV + NCV)
NOC Number of immediate subclasses of a class
NOM Number of methods
WLOC Sum of LOC over all methods
WNOC Number of all descendant classes
[ Method Metrics
LOC Method lines of code
MSG Number of method message sends
NOP Number of (input) parameters
NI Number of invocations of other methods within method body
NMAA Number of accesses on attributes
NOS Number of statements in method body
[ Attribute Metrics
NAA Number of times directly accessed. Note that NAA = NGA + NLA
NGA Number of direct accesses from outside of its class
NLA Number of direct accesses from within its class
[I. LAYOUTS

In the context of this article we make use of the following layouts:
« Tree. It positions all entities according to some hierarchical relationship. See Figure 1.[B] for an exam-
ple. This layout is essential to visualize hierarchical structures. In the case of object-oriented programmir
languages this applies especially for classes and their inheritance relationships.
« Scatterplot. It positions nodes in an orthogonal grid (origin in the upper left corner) according to two
measurements. Entities with two identical measurements will overlap. This algorithm is useful for comparin
two metrics in large populations. See Figure 3.[B] for an example. This layout is very scalable, because tI
space it consumes is due to the measurements of the nodes and not to the actual number of nodes.
« Checker.lIt sorts nodes according to a given metric and then places them into several rows in a checke
board pattern. It is useful for getting a first impression, especially for the relative proportions between th
measurements of the visualized nodes. See Figure 2.[A] for an example. This layout's advantage is that
uses little space to layout large numbers of nodes. Moreover, since the nodes are sorted according to a cer
metric, it can also be used to easily detect outliers.
« Stapled.It sorts nodes according to the width metric, renders a second metric as the height of a node at
then positions nodes one besides the other in a long row. This layout is used to detect exceptional cases
metrics that usually correlate, because it normally results in a steady declining staircase, while exceptio
break the steady declination. See Figure 3.[A] for an example.
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