
Tracking Objects to Detect Feature Dependencies

Adrian Lienhard, Orla Greevy, and Oscar Nierstrasz

Software Composition Group
University of Berne, Switzerland

{lienhard, greevy, oscar}@iam.unibe.ch

Abstract

The domain-specific ontology of a software system in-
cludes a set of features and their relationships. While the
problem of locating features in object-oriented programs
has been widely studied, runtime dependencies between fea-
tures are less well understood. Features cannot be under-
stood in isolation, since their behavior often depends on
objects created and referenced in previously exercised fea-
tures. It is difficult to spot runtime dependencies between
features just by browsing source code. Hence, code mod-
ifications intended for one feature, often inadvertently af-
fect other features. In this paper, we propose an approach
to precisely identify dependencies between features based
on a fine-grained dynamic analysis which captures details
about how objects are referenced at runtime. The results of
two case studies indicate that our approach helps software
maintainers in understanding critical feature dependencies.

Keywords: reverse engineering, dynamic analysis, fea-
ture analysis, object aliasing, visualization

1 Introduction

A feature is a unit of domain functionality as understood
from the user’s perspective. During requirements analysis,
relationships between features are specified to express con-
ceptual dependencies and constraints of a system [21]. Cor-
rect specification of dependencies is vital to ensure correct
behavior of a system and to avoid behavioral problems.

Much of the feature-related research for system compre-
hension focuses on feature identification, a technique for
locating parts of code that implement features [25, 26, 7, 1].
Only few researchers have investigated relationships be-
tween features [22, 9, 14].

The runtime behavior of object-oriented systems is char-
acterized by object instantiations and message sends. Ob-
jects may be long-lived and used by many different features

of a system. Before a feature can be exercised, it may re-
quire other features to establish a particular program state.
In a previous work, we defined relationships between fea-
tures based on shared usage of static entities (i.e., classes
and methods) [9]. A static perspective however, overlooks
runtime characteristics of object-oriented systems. Our fo-
cus in this work is on analyzing runtime feature dependen-
cies. We consider a runtime dependency to exist between
features if state changes in one feature potentially impact
the behavior of another feature.

Salah et al. described a technique to identify runtime de-
pendencies between features by detecting situations where
objects are created in one feature and are later used in an-
other feature [22]. However, considering only object in-
stantiation is not sufficient to detect all runtime dependen-
cies. We also need to consider object aliasing, a situation
which occurs when multiple references to an object exist
[12]. The approach of Salah et al. only considers object
creation, thus it misses dependencies between features that
result from one feature accessing object aliases (i.e., refer-
ences to objects) in features other than the one where an
object was originally instantiated.

In this paper, we propose a technique that tracks objects
at runtime to detect dependencies between features. As a
motivation for our work, we address the following research
questions:

1. What is an accurate definition of feature runtime de-
pendencies? In the context of object-oriented pro-
gramming we need to define a notion of dependencies
which also considers object aliasing.

2. Which runtime dependencies exist between features?
Understanding runtime dependencies between features
is essential for carrying out maintenance tasks without
inadvertently breaking seemingly unrelated code.

3. How can we interpret feature dependencies? To cap-
ture feature dependencies, we need to determine on
which objects a feature depends. For example, changes

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00 © 2007

in the implementation of one feature may affect the ob-
ject state used by another feature. A challenge of an-
alyzing runtime dependencies between features at the
level of objects is that it is difficult to attribute semantic
or contextual interpretation to these dependencies.

To tackle these questions, we propose an approach that
adopts a fine-grained dynamic analysis technique which
traces the transfer of object references at runtime. We re-
fer to our technique as Object Flow Analysis [16].

The key contribution of this paper is a new definition of
runtime dependencies and a detection strategy based on a
meta-model which captures object aliases. The new defini-
tion is shown to be more precise than the one proposed by
Salah et al. [22]. Furthermore, to help a software engineer
interpret dependencies, we propose a visualization which
supports understanding the relationships between objects a
feature depends on.

Paper structure. In the next section we discuss prob-
lems of aliasing in object-oriented programs that complicate
the detection and comprehension of runtime dependencies
between features. In Section 3 we briefly introduce object
flow analysis, as it serves as a basis for our fine-grained
dynamic analysis approach. Subsequently, in Section 4 we
introduce our approach. In Section 5 we apply our approach
to two case studies and detail the results we obtained. We
discuss different aspects of our approach in Section 6. Sec-
tion 7 outlines related work and we conclude in Section 8.

2 The Problem of Feature Dependencies

Functional requirements are often centered around fea-
tures since they reflect the end-user’s perspective of a sys-
tem. We adopt the definition of a feature proposed by Eisen-
barth et al.: “A feature is a realized functional requirement
of a system. A feature is an observable unit of behavior of a
system triggered by the user” [6].

Features and their relationships are not represented ex-
plicitly in the source code of object-oriented systems. How-
ever, a software engineer frequently needs to understand
which parts of a system implement a feature to carry out
maintenance activities, as change requests and bug reports
are usually expressed in terms of features [18]. Further-
more, a software engineer needs to understand relationships
between features, as code modifications to one feature may
cause unexpected side effects in other features.

2.1 Runtime Dependencies Between Features

The behavior of one feature may depend on certain pro-
gram state being established during the exercising of an-
other feature. For example, in a Mail Client application, a
“send mail” feature may require a “compose mail” feature
to set mail recipients before it can be exercised.

During program execution, the object reference graph
(i.e., the objects and their reference relationships) steadily
changes, as new objects are created, references between ob-
jects are changed, or objects are garbage collected. As a
feature is exercised, it typically produces side effects on this
graph. Therefore, since program behavior depends on the
reference relationships of objects, the behavior of a feature
may be influenced by a previously exercised feature.

To analyze those dependency situations we have to con-
sider the interrelationships between objects. This is compli-
cated by the fact that there may exist multiple access paths
to the same object – a situation generally referred to as ob-
ject aliasing.

Object aliasing is endemic in object-oriented program-
ming and has been recognized to cause problems like rep-
resentation exposure [17] or argument dependency [19].
While strategies to prevent aliasing problems at compile
time have been more widely studied [12], the dependencies
caused by aliasing at runtime are less well understood.

2.2 Why Object Aliases Cause Dependencies

Intuitively, we consider a feature to depend on another
one if object state is changed in the first feature and then the
second feature’s behavior uses this state.

Salah et al. [22] define a relationship depends from a
feature Fi to a feature Fj if Fi uses objects that are created
by Fj (i.e., Fi depends on Fj). Let I(F) be the set of ob-
jects used by F (i.e., the objects imported by a feature), and
E(F) be the set of objects created by F (i.e., the objects
that can be exported by a feature), then:

depends ≡ {(Fi, Fj) | I(Fi) ∩ E(Fj) #= ∅, i #= j}

To use an object in this context means that the object is sent
a message (not including changing references to it). This
definition, however, does not capture all runtime dependen-
cies. Let’s consider the following simplified case illustrated
by Figure 1. It shows the features Startup, Join Channel,
and Receive Message of an IRC chat client from one of our
case studies presented in Section 5.

Between each feature, we show the snapshot of live ob-
jects; the first taken before running the Join Channel fea-
ture and the second before the Receive Message feature.
We treat a snapshot as a directed graph, commonly termed
object reference graph. Nodes represent objects and edges
represent a field of one object referring to another object.

While exercising the feature Startup, two objects, a win-
dow object (w) and connection object (c), are created. Then,
while exercising the feature Join Channel, the first snapshot
is transformed into the second. It creates an observer object
(o) and assigns the connection object to one of its fields, i.e.,
a reference o → c is created. Now the object c is aliased
since there are two objects referring to it.

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00 © 2007

Figure 1. State changes between features.

Let’s assume that in the Receive Message feature, the ob-
server sends messages to the connection through the object
reference o → c. Therefore, the Receive Message feature
depends on the Join Channel feature. The rationale is that
without the appropriate state changes in Join Channel, Re-
ceive Message would exhibit a different behavior, or in the
worst case, abort with a null pointer exception.

The depends relationship proposed by Salah et al. [22]
is not capable of detecting that Receive Message depends on
Join Channel. It only detects the dependency on the Startup
feature, in which the connection is instantiated.

We conclude that a dependency detection strategy as de-
scribed by depends at the object level (object creation and
usage) is not precise enough to detect this type of depen-
dency. We solve this problem by tracking object aliases.

3 Object Flow Analysis in a Nutshell

Typically, dynamic analysis approaches trace execution
of a system by capturing the sequence and nesting in which
methods are executed [3, 7, 14]. In contrast, our Object
Flow Analysis adopts an orthogonal view of runtime behav-
ior, by capturing how object references are passed around
the system at runtime. An Object Flow represents the life
cycle of an object at runtime, i.e., where it was instantiated
and how it was then passed through the system.

To trace the flow of objects, we exercise features on an
instrumented system and capture both the message events
(referred to as activations) and the object flow data (i.e.,
the creation of object aliases). Our meta-model treats ob-
ject aliases explicitly [16]. We consider an object alias to
be created when an object is (1) instantiated, (2) stored in a
field (i.e., instance variable) or global, (3) read from a field
or global, (4) stored in a local variable, (5) passed as argu-
ment, or (6) returned from a method execution.

The rationale is that each object alias is bound to ex-
actly one activation, namely the activation in which the alias
makes the object visible. By definition, arguments, return
values, and local variables are only visible in one method
activation. In contrast, objects that are stored in fields (i.e.,
instance variables) or globals, can be accessed in other ac-
tivations as well. Therefore, we distinguish read and write
access of fields and global variables.

Apart from the very first alias, which stems from the ob-
ject instantiation primitive, all aliases are created from an
existing one. This gives rise to a parent-child relationship
between aliases originating from the same object.

4 A Detection Strategy for Fine-grained De-
pendencies

As discussed in Section 2, a precise notion of runtime
dependencies between features needs to distinguish the ref-
erences through which messages are sent to an object.

We define the runtime dependency relationship
dependsnew(Fi, Fj) to show that Fi depends on Fj . Let
C(F) be the set of aliases created in F and U(F) be the
set of aliases used in F to send messages to objects. Also,
let A(a) be the transitive closure of the parent relationship
(i.e., ancestors of alias a), extended to sets of aliases, then:

dependsnew ≡ {(Fi, Fj) | A(U(Fi)) ∩ C(Fj) #= ∅, i #= j}

In other words, a feature depends on another if any of
the objects it uses can be traced back as originating from
the latter feature. This definition represents our detection
strategy and yields a superset of dependencies compared to
depends as defined in Section 2.2. For each object created
in a feature, there exists an alias which is the root of all
subsequently created aliases. Therefore, an object that is
subject to a dependency, dependsnew includes the feature
in which the object was created.

Our new definition detects additional dependencies
caused by aliases created in features other than the one in
which the object was instantiated.

4.1 Detecting Runtime Dependencies

We now discuss how our analysis detects runtime depen-
dencies as specified above. We defined a object-flow meta-
model to express features as a collection of object aliases,
activations and their relationships. We implemented a trac-
ing tool (Object Flow Tracer) to track aliases and method
activations of features.

In our object flow meta-model, illustrated by Figure 3,
we identify the alias through which a message is sent to an
object (the receiver of an activation is an Alias rather than
an Instance). Each alias knows the method activation in
which it was created and which made the instance visible.
Aliases and activations each have a link to their parent (i.e.,
the sender instance of an activation). For conciseness, Fig-
ure 3 omits the different types of aliases and how they are
linked with the static model. For more details of our meta-
model, we refer the reader to our previous work [16].

Based on our meta-model, we detect runtime dependen-
cies for a given feature F . First we find all aliases through

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00 © 2007

context Alias
def allParents: Set(Alias) =

self.parent->union(self.parent->collect(p|p.allParents))

context Feature
def dependencies: Set(Feature) =

self.activation.receiver.allParents.creator.feature->reject(self)

Figure 2. OCL specification of a feature’s dependencies.

Figure 3. Core of the object flow meta-model.

which messages are sent in F , i.e., the receivers of the acti-
vations of F . Then, the parent chain of each detected object
alias is traversed backward. If a parent alias originates in
a feature other than the current feature F , we consider that
we have detected a dependency.

We define the dependencies of a feature in OCL as shown
in Figure 2. allParents yields the transitive closure of
the parents of an alias. This is then used to navigate from
a feature to all features (excluding itself) on which it de-
pends. For a feature, the resulting features of the query
dependencies satisfy the dependsnew relation.

4.2 Example

Figure 4 illustrates an example of an Object Flow from
our case study, IRC chat client. It shows the flow of an
IRCConnection instance between the features Startup, Join
Channel, and Receive Message.

Let’s assume that we look at the Receive Message feature
to find its runtime dependencies. The connection instance
is a candidate, as it receives messages while the feature is
exercised. The aliases through which the messages are sent
are two field read aliases. The first is from the field named
model in a main window instance. The second is from the
field named connection in a channel observer.

To determine whether the Receive Message feature has a
dependency on other features with respect to the connec-

Figure 4. Object flow of an IRCConnection.

tion instance, we trace back its flow. The parent of the
model field read alias is in the feature Startup. On the other
hand, the connection field read alias first leads back to Join
Channel, and further back in the flow, it joins the other flow
in Startup. Therefore, we detect that Receive Message de-
pends on both Join Channel and Startup features.

In Section 2.2 we showed that object aliasing potentially
introduces dependencies on features even if the objects de-
pended on were created in a different feature (see Figure 1).
Figure 4 illustrates the same situation and we discuss how
our approach also detects these dependency situations.

In the remainder of this section, we discuss how we sup-
port a software engineer to understand runtime feature de-
pendencies by providing information about how they are re-
lated to each other.

4.3 Exploring Object Dependencies

With our detection strategy, we obtain for a feature un-
der investigation, a set of other features it depends on. Each
dependency points out an object alias that was stored in a
field during the exercising of a previous feature. Through
this field, the object is then accessed and used in the fea-
ture. If the field was assigned with a different object, or not
assigned at all, the behavior of the feature would likely be
altered or the execution would result in an error.

To help understanding the details of a dependency, as it is
required when carrying out maintenance work, the objects
depended on in the feature need to be made explicit.

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00 © 2007

The challenge we face is that there are potentially hun-
dreds of objects on which a feature depends. Thus, it is dif-
ficult to understand the dependencies in isolation. What is
missing are the relationships between objects. If we view
object dependencies in a larger context we can interpret
them more easily and attribute semantic meaning to them.

An interesting observation we made is that most objects
depended on are part of a reference relationship to another
object dependency. This is plausible because, to use an ob-
ject, a feature often needs to access another object which
stores a reference to it. Consequently, the feature also de-
pends on the object from which the reference was accessed.
The exceptions are objects referred to from outside the ap-
plication, e.g., from the UI framework or the main method.

Based on these reference relationships of the object de-
pendencies, we build the object dependency graph. Figure 5
illustrates such a graph taken from the Receive Message fea-
ture of the IRC chat client case study. Each node represents
an object depended on in the feature. Each edge represents a
reference that is subject to a dependency, i.e., the reference
is accessed in the feature but created in another one. In other
words, the object dependencies of a feature directly map to
the references (edges) shown in the graph.

Figure 5. Object dependency graph of Re-
ceive Message feature.

We use grayscale to convey information about which fea-
ture an object or a reference was created in. Light gray
means an object or reference was created in a feature that
was exercised early in the run; dark gray in a more recent
one. We apply a force-based layout algorithm to visualize
the graph.

We integrated this visualization into our Object Flow
Tracer tool used to carry out the case studies. In this tool,
the class name of an object is shown in a tooltip when mov-
ing the mouse over it. Accordingly, the tooltip of a reference
shows in which feature it was created.

In the IRC Chat Client case study presented in the subse-
quent section, we discuss the object dependency graph illus-

trated by Figure 5 in more detail. We discuss how this view
helped us to understand object dependencies in the context
of exercising a feature. This is key to be able to attribute
semantical meaning to feature dependencies.

5 Validation

We structure the discussion of the case studies based on
two questions presented in the introduction.

To answer the first question, “Which runtime dependen-
cies exist between features?”, we compare our approach to
the one of Salah et al. [22]. To do so, we implemented
their approach and compared the resulting dependencies
with ours. Furthermore, we focussed on the additionally
detected dependencies. We were interested to find out how
important those kind of dependencies are and which role
they play among the other dependencies of a feature.

To answer the second question, “How can we interpret
feature dependencies?”, we used the object dependency
graph to evaluate how helpful it is to support understand-
ing the relationships between the dependencies.

5.1 Case Study: IRC Chat Client

As a first case study we chose an IRC Chat Client [24].
It is implemented in Squeak, an open source dialect of
Smalltalk [23]. Our motivation was (1) because it is a small
(39 classes and 1063 methods) but non-trivial legacy appli-
cation and (2) we have access to the source code. A total of
six developers contributed to the project which underwent
various refactorings and enhancements over nine years.

Which runtime dependencies exist between features?
We exercised nine distinct features. Figure 6 shows the fea-
tures in the order they were run from top to bottom with
the number of dependencies they have. The feature Startup
naturally does not have dependencies because it is run first.
In all subsequent features our analysis found dependencies
upon previous features.

Figure 6 also provides the number of dependencies of
Salah’s approach. It shows that compared to their approach,
we detect more dependencies in the Connect feature and
all subsequent features. In the second feature, Setup, we
found exactly the same number of dependencies. This is
what we expected as this feature was the second feature we
exercised, it cannot depend on more than one feature.

We now present some anecdotal evidence indicating that
the additionally found dependencies play a central role
among the other dependencies of a feature for maintenance.

For instance, the Connect feature depends on both the
Open and the Setup feature with respect to the connec-
tion instance. The connection was created in Open, hence,
Salah’s approach only finds this dependency.

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00 © 2007

Figure 6. IRC features and dependencies.

A closer investigation showed that the setup dialog cre-
ated in the Setup feature was still alive and had a reference
to the connection to poll its state. This coincides with the
documentation which states that it disables user input when
connected. To our surprise, however, this dependency oc-
curred in the Connect feature, although the dialog had been
closed earlier. The conclusion we can draw from this is
that closing the setup window did not clean up correctly
and hence left instances behind which continued to be used.

The same dependency also occurred in all subsequent
features and hence contributed to the number of additional
dependencies.

Another additional dependency is the one discussed as
an example in Section 4.2 (see Figure 4). It illustrates how
Receive Message depends not only on Startup but also on
Join Channel. We found a very similar dependency on Join
Channel in the feature Send Message. This reflects a do-
main constraint: sending and receiving messages requires
to take place in an IRC channel.

How can we interpret feature dependencies? To sup-
port the interpretation of runtime dependencies of a feature,
we used the object dependency graph visualization.

As a concrete example, we discuss the dependencies of
the Receive Message feature. We already illustrated its ob-
ject dependency graph in Section 4.3. Figure 7 presents a
part of this graph with annotations of instances and mes-
sages sent to them in the feature (in our tool we can access
this information interactively on demand).

Striking is the long loop starting at the IRCConnection
object. The connection holds a dictionary which maps chan-
nel names to a channels (instances of IRCChannelInfo). We
can see that the channel was not created in the Connect fea-
ture, but later in the Join Channel feature. It holds a channel
observer stored in a set.

The object dependency graph reveals the composition hi-
erarchy of objects depended on in the context of the feature.
Inspecting the message sends further helps us to map the
object dependencies to the runtime behavior of the feature.

Figure 7. Object dependency graph of Re-
ceive Message feature annotated with in-
voked methods.

Based on our analysis, we extract and reconstruct the fol-
lowing activity in the Receive Message feature. First, the
connection gets the appropriate channel for the message re-
ceived (see messages subscribedChannels and at:). Then
the channel iterates over the set of subscribers to notify
them of a received message (ircMessageReceived:). The
observer adds the new message to its text lines object which
is the model of the UI list widget being updated with dis-
play:atRow:.

Summarizing, the object dependency graph reveals the
following key information about the runtime dependencies
of a feature:

• The software engineer quickly grasps how many and
which object dependencies originate in a feature, and
whether this feature was exercised recently or earlier
in the program execution. In Figure 7 we see that most
objects are created in three stages, namely in the Open,
Connect and Join Channel features.

• For each object dependency, the incoming references
show through which other object(s) it was accessed
while the feature was exercised. The brightness of a
reference indicates in which feature the reference was
created. In Figure 7, for example the list morph and
text lines objects are only accessed through the channel
observer, whereas the connection received messages
from multiple objects.

• It shows object dependencies that served as starting
points to further extensions of the object graph in a
later run feature. An example is the connection which
stores a dictionary of channels. This dictionary is not
created in the same feature as the connection but later
in the Connect feature.

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00 © 2007

• It shows object aliasing, i.e., an object referred to by
more than one other object. The software engineer can
spot aliases of an object that are created in a later fea-
ture than the one which created the object. For exam-
ple the connection instance is aliased. We can see that
some aliases were created in the same feature (Open)
as the connection itself. Two aliases to the connection,
on the other hand, were created in later features.

The aliasing situation described in the last point is par-
ticularly interesting because it allows one to visually spot
dependencies on objects referenced in one feature but cre-
ated in another. These are exactly those cases which our
approach is capable of detecting because it does not only
consider object creation and usage but also tracks aliases.

Summary of results. The case study showed that Salah
et al. indeed captures most of the feature dependencies.
However, the additional dependencies that we uncover are
precisely the indirect feature dependencies that can be prob-
lematic during maintenance. In one case, a dependency
even pointed out an anomaly of the program.

The object dependency graph visualization proved to be
of great help for our analysis – it was much simpler than if
we had looked at the dependencies one by one. The visu-
alization allowed us to get a quick overview of the depen-
dencies of a feature but also helped us to spot interesting
dependency situations.

5.2 Case Study: Pier

Pier is a web content management system [20]. It is
a reengineered version of SmallWiki [5] ported to Squeak
[23]. Its core comprises 177 classes and the meta-model
200 classes. Our choice of Pier was motivated by the fol-
lowing reasons: (1) it is open source, thus its source code
is freely available, (2) we are familiar with the predecessor
application SmallWiki and have also analyzed this applica-
tion in previous research [9, 10], (3) we are familiar with the
features of Pier from the user’s perspective, and (4) we have
direct access to developer knowledge to verify our findings.

Which runtime dependencies exist between features?
For our experiment, we traced 11 features as listed in Fig-
ure 8. The average number of dependencies per feature is
much higher compared to the IRC Client cases study. Again
the first feature does not have any dependencies. The com-
parison with the approach of Salah et al. shows that we
found additional dependencies in all features, except for the
first two (for the same reason as explained above).

All features are related to Initialization, the feature that
is exercised to load the Pier application, and to the Start
feature which displays the first web page. This is because
these features are responsible for initializing the system, the
user session, and its UI components.

Figure 8. Pier features and dependencies.

As with the IRC Client case study we analyzed the ad-
ditionally detected dependencies. Again, it turned out that
they play important roles in the system.

For example, in all features we see a dependency on an
instance of User. It is created during the feature Initializa-
tion. In the Login feature (we logged in as administrator)
it is accessed from the kernel and stored in a context ob-
ject. In each subsequent feature this user object is then used
for controlling access. Additionally, in the feature Change
Owner, we see that the user is accessed also from the page
on which we are changing the owner. The object depen-
dency graph accurately shows that the reference from the
page to the owner was created in the feature Add Page. This
means, that when the page was instantiated, the user creat-
ing it is assigned to be its owner.

How can we interpret feature dependencies? By ex-
ploring the object dependency graphs we notice that some
of the dependencies are recurring (i.e., the same dependen-
cies exist in most of the features). The dependencies are
due to the nature of the Pier application as a web applica-
tion. Thus every feature makes use of page rendering ac-
tivity. For example, the Login feature reveals similar de-
pendencies to the Start Page. This is due to the page being
redisplayed after the login action has completed. This char-
acteristic of Pier explains the much higher average number
of dependencies compared to the IRC Client case study.

A revealing observation was that the object dependency
graph of most features reflects the hierarchical structure of
pages. We see that Pier has a very fine-grained object model
to represent content (e.g., lists are composed from list items,
each containing text or link objects etc.). Behavior like page
rendering or copying is performed by Visitors which tra-
verse the full object trees. Hence, there exist a large number
of dependencies on the features that create or copy pages.

The order of exercising the features also impacts the de-
pendencies. For example, each feature accesses a PRCon-
text instance created by the previously exercised feature.

The Remove Page feature stands out in Figure 8 with a
much larger number of dependencies compared to the other

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00 © 2007

Figure 9. Object dependency graph of the Remove Page feature from Pier.

features. This surprised us because we expected that remov-
ing a page would be a rather small feature.

Figure 9 illustrates the object dependency graph of the
Remove Page feature. It contains large trees representing
all existing pages of Pier. There are three default pages at
the left side and two smaller pages at the right. Latter are
created by Add Page and Copy Page. A closer investigation
showed that when the Pier application removes a page, it
iterates over the entire structure to check for the existence
of links to the page that is to be removed. This activity
generates a lot of dependencies.

Summary of results. The Pier application showed very
different characteristics compared to the IRC Client. It
comprises a larger number of dependencies. There are two
reasons. (1) being a web application the web page is re-
generated on each request, and (2) the domain model of Pier
is larger and much more fine-grained.

As in the IRC Client case study our approach detected
additional and invaluable dependencies which are missed
with the approach of Salah et al.

6 Discussion

In our evaluation we do not consider precision of our
approach because the analysis tool implements the meta-
model and detection strategy as specified in Section 4. Con-
sidering recall, a noteworthy limitation of our approach is
the well-known fact that dynamic analysis is not exhaus-
tive, as all possible paths of execution are not exercised [2].
Therefore, an analysis of feature runtime dependencies al-
ways has to be understood in the context of the actual exe-
cution. While this is a difficulty, at the same time it is a key
characteristic as running a feature can be related directly to
internal program behavior.

To cover all relevant dependency situations in a concrete
program execution, the tracing technique has to be consider
carefully. Our Object Flow Tracer not only traces objects
of application classes but also instances of system classes.
For example, collections and arrays have to be taken into
account because they preserve permanent object references
between the holder of the collection and its contained ele-
ments. Furthermore, since all messages sent to an object
have to be traced, also the class Object has to be instru-
mented.

Language independence. To perform object-flow analy-
sis, we need to capture details in the trace that reveal the
path of objects through the system. We chose Smalltalk
to implement our Object Flow Tracer because of its open-
ness and reflective capabilities which allowed us to evaluate
different alias tracking techniques. We believe that an im-
plementation of the Object Flow Tracer for example in Java
is possible. A potential problematic area is the instrumen-
tation of system classes or the tracking of primitive object
types. The meta-model (both the static and dynamic part)
and the detection strategy we describe are language inde-
pendent.

Points of variation. The object dependency graph shows
all objects that a feature depends on. This means that also
implementation details are visible, for example the objects
from which a dictionary is built. Similarly, domain model
objects often encapsulate other objects that serve as their
internal representations. Ideally, in a system those inter-
nal objects are strictly encapsulated, i.e., all access paths go
through the owner object. An enhanced visualization ap-
proach could detect such ownership situations and hide the
internal objects. This would reduce information that is not
strictly required to understand the dependencies.

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00 © 2007

Our approach to visualize the dependencies of a selected
feature provides a perspective of looking back into the past,
i.e., showing dependencies on previously exercised fea-
tures. Alternatively, a perspective which would provide a
look ahead from the point of view of a feature could pro-
vide additional insights. Such a view would show which
dependencies originate in a feature and how they may af-
fect features exercised at a later point in time.

Scalability. From a scalability point of view, time and
space complexity of the detection algorithm is linear to the
number of messages sent in a feature. Rather a limiting
factor is the object dependency graph visualization. It is
limited in that (i) with increasing number of dependencies
the visualization naturally gets harder to understand and (ii)
with too many different dependent features (about 10 or
more), the different grayscale colors are not easily distin-
guishable anymore.

7 Related Work

Our work is directly related to the fields of feature related
research [2, 6, 18, 9] and dynamic analysis [2], which covers
a number of techniques for analyzing information gathered
while running the program, and visualization techniques for
presenting object-oriented program behavior.

Our work builds on the analysis of runtime feature rela-
tionships, pioneered by Salah and Mancoridis [22]. Their
approach built on well-established dynamic analysis Fea-
ture Identification techniques (e.g., Software Reconnais-
sance) [25] to extract features. They defined a hierarchy of
dynamic views which track inter-feature dependencies. As
discussed in Section 2.2, their main definition depends de-
tects situations where an object is used in a different feature
than the one it is created in. We show why this definition
misses crucial dependencies and we propose a more precise
notion of feature runtime dependencies.

Kothari et al. [14] proposed an approach to system com-
prehension that considers features as the primary unit of
analysis. They define a relationship between features based
on comparing the implementations of two features in terms
of the executed methods. Also other approaches are based
on an analysis of the executed methods, e.g., for locating
features in the source code [7].

Those approaches analyze the dynamic behavior of a
system at the granularity of methods. For our problem,
however, tracing method executions alone is not enough.
The reason is that a feature potentially has a dependency
relationship on another feature even without executing the
same methods. Our approach detects the dependency which
occurs when a feature stores an object in a field and a later
run feature accesses this field in a different method.

Various approaches have extended method tracing to im-
prove object-oriented program understanding. For example,

apart from Salah et al. [22] mentioned above, also Anto-
niol et al. [1] consider instance creation events to locate
features. In contrast, our Object Flow Analysis is much
more radical as it proposes a new model which is centered
around objects, capturing object aliasing, a key characteris-
tic of object-orientation.

Related to the analysis of object references are query
based approaches, which let the programmer test relation-
ships between objects [8]. In contrast to our approach, the
query based approaches are more suited to finding incon-
sistencies in object graphs than detecting feature dependen-
cies. Also, a priori knowledge about the implementation is
required to be able to write queries whereas our approach
can be used to study an unfamiliar system.

To present method traces or instance creation events,
many approaches exploit visualization techniques [3, 13,
15, 10]. Only few approaches visualize object reference re-
lationships. Super-Jinsight visualizes object reference pat-
terns to detect memory leaks [4], and the visualizations of
ownership-trees proposed by Hill et al. show the encapsu-
lation structure of objects [11]. Both approaches are mainly
concerned with a compact representation of large object ref-
erence graphs. In contrast, for our approach, this is less
of an issue because the set of objects a feature depends on
is typically a relatively small subset of the complete object
reference graph. Our approach provides a focused view by
only showing those objects and references relevant for a fea-
ture under investigation. A novel concept of our approach is
the notion of time encoded in a grayscale scheme which re-
veals in which feature an object or a reference was created.

8 Conclusions

In this paper we analyze the problem of runtime depen-
dencies between features in an object-oriented system. Our
work contributes to the state-of-the-art by proposing a pre-
cise feature runtime dependency definition and a detection
strategy based on a meta-model which explicitly represents
object references.

Furthermore, we present a dedicated visualization of fea-
ture runtime dependencies to support a software engineer in
his maintenance tasks. As our case studies indicate, the vi-
sualization approach is helpful and effective for a feature
analysis that requires a detailled understanding of the inter-
nals of an application.

In the future we plan to extend our approach in the fol-
lowing ways. We want to extend our visualization with ad-
ditional interactive features, e.g., to collapse or expand an
owner object and its internal representation objects. Fur-
thermore, we plan to integrate our tool into the source code
browser to support exploring object dependencies directly
from where they origin or where they are used in the code.

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00 © 2007

Acknowledgments: We gratefully acknowledge the financial
support of the Swiss National Science Foundation for the project
“Analyzing, capturing and taming software change” (SNF Project
No. 200020-113342, Oct. 2006 - Sept. 2008). We also thank Tudor
Gı̂rba for his constructive comments on this work.

References

[1] Giuliano Antoniol and Yann-Gaël Guéhéneuc. Feature iden-
tification: a novel approach and a case study. In Proceedings
IEEE International Conference on Software Maintenance
(ICSM 2005), pages 357–366, Los Alamitos CA, September
2005. IEEE Computer Society Press.

[2] Thomas Ball. The concept of dynamic analysis. In Proceed-
ings European Software Engineering Conference and ACM
SIGSOFT International Symposium on the Foundations of
Software Engineering (ESEC/FSC 1999), number 1687 in
LNCS, pages 216–234, Heidelberg, sep 1999. Springer Ver-
lag.

[3] Wim De Pauw, Doug Kimelman, and John Vlissides. Mod-
eling object-oriented program execution. In M. Tokoro and
R. Pareschi, editors, Proceedings ECOOP ’94, LNCS 821,
pages 163–182, Bologna, Italy, July 1994. Springer-Verlag.

[4] Wim De Pauw and Gary Sevitsky. Visualizing reference pat-
terns for solving memory leaks in Java. In R. Guerraoui, ed-
itor, Proceedings ECOOP ’99, volume 1628 of LNCS, pages
116–134, Lisbon, Portugal, June 1999. Springer-Verlag.

[5] Stéphane Ducasse, Lukas Renggli, and Roel Wuyts.
Smallwiki—a meta-described collaborative content manage-
ment system. In Proceedings ACM International Symposium
on Wikis (WikiSym’05), pages 75–82, New York, NY, USA,
2005. ACM Computer Society.

[6] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Lo-
cating features in source code. IEEE Computer, 29(3):210–
224, March 2003.

[7] Andrew Eisenberg and Kris De Volder. Dynamic feature
traces: Finding features in unfamiliar code. In Proceedings
IEEE International Conference on Software Maintenance
(ICSM 2004), pages 337–346, Los Alamitos CA, September
2005. IEEE Computer Society Press.

[8] Simon Goldsmith, Robert O’Callahan, and Alex Aiken. Re-
lational queries over program traces. In Proceedings of
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’05), pages 385–402, New York, NY,
USA, 2005. ACM Press.

[9] Orla Greevy and Stéphane Ducasse. Correlating features and
code using a compact two-sided trace analysis approach. In
Proceedings of 9th European Conference on Software Main-
tenance and Reengineering (CSMR’05), pages 314–323, Los
Alamitos CA, 2005. IEEE Computer Society.

[10] Orla Greevy, Michele Lanza, and Christoph Wysseier. Vi-
sualizing live software systems in 3D. In Proceedings of
SoftVis 2006 (ACM Symposium on Software Visualization),
September 2006.

[11] T. Hill, J. Noble, and J. Potter. Scalable visualisations with
ownership trees. In Proceedings of TOOLS ’00, June 2000.

[12] John Hogg, Doug Lea, Alan Wills, Dennis deChampeaux,
and Richard Holt. The Geneva convention on the treatment
of object aliasing. SIGPLAN OOPS Mess., 3(2):11–16, 1992.

[13] Dean J. Jerding, John T. Stasko, and Thomas Ball. Visual-
izing interactions in program executions. In Proceedings of
ICSE ’97, pages 360–370, 1997.

[14] Jay Kothari, Trip Denton, Spiros Mancoridis, and Ali Shok-
oufandeh. On computing the canonical features of software
systems. In 13th IEEE Working Conference on Reverse En-
gineering (WCRE 2006), October 2006.

[15] Danny Lange and Yuichi Nakamura. Interactive visualiza-
tion of design patterns can help in framework understanding.
In Proceedings ACM International Conference on Object-
Oriented Programming Systems, Languages and Applica-
tions (OOPSLA 1995), pages 342–357, New York NY, 1995.
ACM Press.

[16] Adrian Lienhard, Stéphane Ducasse, Tudor Gı̂rba, and Os-
car Nierstrasz. Capturing how objects flow at runtime. In
Proceedings International Workshop on Program Compre-
hension through Dynamic Analysis (PCODA 2006), pages
39–43, 2006.

[17] Barbara Liskov and John Guttag. Abstraction and Specifi-
cation in Program Development. MIT Press/McGraw-Hill,
Cambridge, Mass., 1986.

[18] Alok Mehta and George Heineman. Evolving legacy sys-
tems features using regression test cases and components. In
Proceedings ACM International Workshop on Principles of
Software Evolution, pages 190–193, New York NY, 2002.
ACM Press.

[19] James Noble, John Potter, and Jan Vitek. Flexible alias pro-
tection. In Eric Jul, editor, Proceedings ECOOP ’98, vol-
ume 1445 of LNCS, Brussels, Belgium, July 1998. Springer-
Verlag.

[20] Lukas Renggli. Magritte – meta-described web application
development. Master’s thesis, University of Bern, June 2006.

[21] Matthias Riebisch. Towards a More Precise Definition of
Feature Models, pages 64–76. BooksOnDemand Publ. Co.
Norderstedt, 2003.

[22] Maher Salah and Spiros Mancoridis. A hierarchy of dy-
namic software views: from object-interactions to feature-
interacions. In Proceedings IEEE International Conference
on Software Maintenance (ICSM 2004), pages 72–81, Los
Alamitos CA, 2004. IEEE Computer Society Press.

[23] Squeak home page. http://www.squeak.org/.
[24] Squeak IRC client. http://www.preeminent.org/squeak/irc-

help/irc-help.html.
[25] Norman Wilde and Michael Scully. Software reconnaisance:

Mapping program features to code. Software Maintenance:
Research and Practice, 7(1):49–62, 1995.

[26] Eric Wong, Swapna Gokhale, and Joseph Horgan. Quantify-
ing the closeness between program components and features.
Journal of Systems and Software, 54(2):87–98, 2000.

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00 © 2007

