
Taking an Object-Centric View on Dynamic

Information with Object Flow Analysis

Adrian Lienhard a Stéphane Ducasse b Tudor Gı̂rba a

aSoftware Composition Group
IAM — Universität Bern, Switzerland

bINRIA-Lille Nord Europe – LIFL (CNRS UMR 8022) – University of Lille

Abstract

A large body of research analyzes the runtime execution of a system to extract ab-
stract behavioral views. Those approaches primarily analyze control flow by tracing
method execution events or they analyze object graphs of heap memory snapshots.
However, they do not capture how objects are passed through the system at run-
time. We refer to the exchange of objects as the object flow, and we claim that it is
necessary to analyze object flows if we are to understand the runtime of an object-
oriented application. We propose and detail Object Flow Analysis, a novel dynamic
analysis technique that takes this new information into account. To evaluate its
usefulness, we present a visual approach that allows a developer to study classes
and components in terms of how they exchange objects at runtime. We illustrate
our approach on three case studies.

Key words: Dynamic Analysis, Object Flow Analysis

1 Introduction

A large body of research exists for supporting the reverse engineering process
of legacy systems. However, especially in the case of dynamic object-oriented

? This work is based on an earlier work: “Object Flow Analysis – Tak-
ing an Object-Centric View on Dynamic Analysis”, in Proceedings of the
2007 International Conference on Dynamic Languages (ESUG/ICDL 2007)
http://doi.acm.org/10.1145/1352678.1352686 c©ACM, 2007.

Email addresses: lienhard@iam.unibe.ch (Adrian Lienhard),
stephane.ducasse@inria.fr (Stéphane Ducasse), girba@iam.unibe.ch (Tudor
Gı̂rba).

Computer Languages, Systems & Structures vol. 35, Issues 1 (2009), pp. 63–79

programming languages, statically analyzing the source code can be difficult.
Dynamic binding, polymorphism, and behavioral and structural reflective ca-
pabilities pose limitations to static analysis.

Many approaches tackle these problems and complement static analysis by
investigating the dynamic information collected from system runs [1,2,3,4].
Most proposed approaches are based on execution traces, which typically are
viewed as UML sequence diagrams or as a tree structure representing the se-
quence and nesting of method executions [4,5,6,7]. Such views analyze message
passing to reveal the control flow in a system or the communication between
objects or between classes [8,9]. Another category of approaches analyzes the
interrelationships of objects on the heap [10,11]. None of those dynamic anal-
ysis approaches, however, capture the runtime transfer of object references.
Those approaches lack information required to analyze, for instance, how ob-
jects created in one class or package propagate to others.

In this paper we present Object Flow Analysis, a novel dynamic analysis that
tracks the transfer of object references in a program execution. In previous
works, we demonstrated how we successfully applied Object Flow Analysis
to reveal fine-grained dependencies between features [12] and to analyze side
effects to extract blueprints for writing Unit tests [13]. While the concept of
data flow has been widely studied in static analysis [14], it has attracted little
attention so far in the field of dynamic analysis.

To illustrate the usefulness of our analysis, we propose an application for
understanding the design of a legacy system. A difficulty with studying the
control flow of a program, for instance using an UML sequence diagram, is
that the propagation of objects is not apparent. Also, inspecting how objects
refer to each other using debuggers or object inspectors does not reveal how
the object reference graph evolved. Our goal is to analyze how the objects
are passed at runtime to iteratively recover the design of a system. We want
to address the following explicit questions that arose from our experience
maintaining large industrial applications written in dynamic languages:

• Which classes exchange objects?
• Which classes act as object hubs?
• Which continuous object flows span multiple classes?
• Given a class, which objects are passed to or from it?
• Which objects get stored in a class, and which objects just pass through it?

To address these questions, we present an experimental tool that implements
Object Flow Analysis. It provides visualizations to explore the results of our
analysis. We implemented the tracing infrastructure in Squeak 1 , an open
source Smalltalk dialect, and the meta-model in Visual Works Smalltalk using

1 See www.squeak.org

2

the reengineering platform Moose [15] and the visualization engine Mondrian
[16].

This work is based on our previous work [17] and the main contributions
are: (1) extended problem statement and overview of the state-of-the-art, (2)
improved description and presentation of the approach, and (3) a new case
study.

Outline. In the next section we emphasize the need for complementing exe-
cution traces with object flow information to provide a more exhaustive fun-
dament for object-oriented program analysis. Section 3 is dedicated to discuss
Object Flow Analysis, our novel dynamic analysis technique that tracks how
objects are passed through the system. Section 4 presents our approach to ex-
ploit object flows for studying how classes interact with each other at runtime
by exchanging objects. Section 5 evaluates our visual approach based on three
case studies, Section 6 provides a discussion, and Section 7 concludes.

2 Approaches to Analyze Object-Oriented Runtime Behavior

The power of objects lies in the flexibility of their interconnecting structure.
But this flexibility comes at a cost. Because an object can be modified via any
object reference, and references can be transferred, object-oriented programs
are hard to understand, maintain, and analyze. Although object aliasing in-
troduces fundamental difficulties we accept its presence as it constitutes an
essential feature of object-orientation [18].

A large body of research has been conducted into type systems for controlling
object aliasing [19,20,21]. Those approaches extend the programming language
with constructs that allow the developer to enforce object encapsulation. Im-
portant for program comprehension, however, are insights into the behavior of
objects that are not encapsulated, that is, the objects that are aliased and that
are passed around at runtime. Those are the objects that make understanding,
maintaining and analyzing object-oriented programs difficult. Two examples
of well known problems are representation exposure [22] and argument depen-
dency [19]. Although difficulties caused by aliasing in object-oriented programs
have long been recognized [18], the analysis of data flow has attracted little
attention so far in the field of dynamic analysis.

In the literature we can distinguish two major categories of dynamic analysis
approaches:

• Approaches that analyze message passing by recording method execution
events of an instrumented system (Section 2.1).

3

• Approaches that analyze object reference graphs from program memory
snapshots (Section 2.2).

2.1 Message passing analyses

Typically, dynamic analysis techniques focus on execution traces, which cap-
ture method execution events [1,5,6,8,23,24]. Most common tracing techniques
are based on introducing sensors into methods that generate an event when
they are encountered. Instrumentation is usually done by manipulating the
bytecode of the target program [25,26,27,28]. Recent approaches have also
made use of the Java VM Tool Interface [29] and aspects [30]. In Smalltalk,
wrapping compiled method objects to intercept method execution is another
often used technique [31].

Since execution traces cannot be directly analyzed by a human due to their
typical large size, most approaches are concerned with filtering and building
higher abstractions.

The following approaches focus on identifying (reoccurring) patterns in traces
of method executions [23,32,33,34]. Lange and Yuichi built the Program Ex-
plorer to identify design patterns [2]. De Pauw et al. propose an approach to
automatically identify reoccurring execution patterns to detect domain con-
cepts that appear at different locations in the method trace [1]. Richner et
al. recover collaborations and roles by applying pattern matching on execu-
tion traces [23]. Scenariographer is a tool, which computes groups of similar
sequences of method executions to reveal class usage scenarios [34]. Zaidman
and Demeyer propose to apply a heuristic clustering of method executions
in a trace based on the execution frequency of methods [35], and in another
work Zaidman et al. propose to apply web mining techniques to identifying
important classes [8].

Various approaches make use of additional data that is captured for each
method execution event, such as the identity of the receiver object, argu-
ments, and return values. Some approaches also capture the creation of new
instances [9,36,37,38]. For example, Gschwind et al. illustrate object interac-
tions as UML sequence diagrams taking arguments into account [36]. De Pauw
et al. exploited visualization techniques to present instance creation events and
calls between classes [9,39].

Limitation of message passing analyses. Execution traces are usually
represented as a method call-tree. Figure 1 illustrates a small excerpt of an ex-
ecution trace, displaying the method executions as a tree (the notation follows
the pattern targetclass�methodsignature). The example is from a Smalltalk
bytecode compiler.

4

RBMethodNode>>generate
ASTTranslator class>>new

...
...

IRBuilder>>initialize
IRMethod class>>new

...
ASTTranslator>>visitNode:
ASTTranslator>>ir
IRMethod>>compiledMethod

IRTranslator class>new

?
How is the IRMethod
instance passed to
RBMethodNode?

Fig. 1. Excerpt of an execution trace represented as a tree.

A limitation of execution traces is that they typically provide little information
about the actual objects involved in the execution. By reading the trace in
Figure 1 we see that an IRMethod instance is created in IRBuilder by a call of the
new primitive. Later an IRMethod instance is sent the message compiledMethod in
the method RBMethodNode�generate. Some of the execution trace approaches
record the identity of the receiver object of a method execution. With this
information we can reveal that the IRMethod object is the identical instance
in both places of the trace.

However, from the information provided by the execution trace we cannot
answer how this instance was passed from where it is instantiated to where it
is used later on. The instance could be passed from IRBuilder to RBMethodNode

via a sequence of method return values through other classes, but it could as
well be stored in a field and then be accessed directly later on.

Speculating about the answer is further hampered by the sheer size of execu-
tion traces. Figure 1 only shows the first five levels and ten method executions.
In our case, the area of the tree hidden by the dots, though, is 46 levels deep
and comprises 4793 method executions.

2.2 Object reference analyses

The second category of approaches analyze the structure of object relation-
ships. Super-Jinsight visualizes object reference patterns to detect memory
leaks [10], and the visualizations of ownership-trees proposed by Hill et al.
show the encapsulation structure of objects [11]. To support debugging, tools
like the GNU Data Display Debugger [40] visualize program memory. Tonella
et al. extract the object diagram statically and dynamically by analyzing test
runs [41].

5

Query based approaches let the programmer test relationships between objects
and method execution trace data. Goldsmith proposes relational queries over
program traces [38]. Testlog is a system to write tests using logic queries on
execution traces [42]. Dynamic query-based debuggers offer programmers an
effective tool that provides instant error alert by continuously checking inter-
object relationships while the debugged program is running [43].

Dynamic data flow analysis is a method of analyzing the sequence of define,
reference, and undefine actions on data fields at runtime. It has mainly been
used for testing procedural programs, but has been extended to object-oriented
programming languages as well [44,45]. The goal of those approaches is to
detect improper sequences on data access.

Limitation of object reference analyses. Object graphs can be visualized
by an UML object diagram [46] as illustrated by Figure 2.

:IRBuilder

:IRMethod

:IRSequence

:RBMethodNode

:ASTTranslator

?How is the IRMethod
instance passed to
RBMethodNode?

Fig. 2. UML object diagram representing an excerpt of the object graph.

This shows a snapshot of the objects and their reference relationships from
the same example discussed in the previous section. The snapshot is taken
just before IRMethod�compiledMethod is executed. In the diagram we can see
that IRBuilder references the IRMethod instance (from the trace we know that
the IRMethod is instantiated in IRBuilder). But like with the method execution
trace perspective, this perspective does not reveal how the IRMethod instance
is passed from the IRBuilder to the MethodNode. The missing link is how the
object references is transferred in conjunction with the methods executed.

2.3 Towards a deeper understanding of object-oriented program behavior

The two perspectives taken by the message passing and object reference anal-
ysis approaches seem like a natural choice as objects and messages are the
cornerstones of object-orientation. In object-oriented systems, objects, which
are connected through object references, collaborate together to accomplish a

6

complex task. This collaboration is expressed through the exchange of mes-
sages.

Program execution continuously transforms the object graph. Conceptually,
behavior can be characterized as the process of transforming a graph of ob-
jects, where edges represent field references between objects. Through message
passing, references can be transferred from one object to another.

The approaches focusing on method executions capture details of message
passing. They reveal the sequence and nesting of messages. On the other hand,
the approaches focusing on the object references, capture the shape of the
object graph at a particular point in time. Neither category of approaches,
however, captures how object references are transferred. Even a combination
of both perspectives cannot close this gap as it is not possible to reveal the
continuous path along which an object has been passed through the system.

We argue that bridging this gap opens a new perspective on dynamic analysis.
We formulate the following thesis:

To gain an exhaustive understanding of object-oriented runtime behavior,
we need to complement the analysis of message passing with the analysis of
how object references are transferred.

Our solution is to explicitly represent object references and capture how they
propagate. The flow of an object through the system is then given by all its
references and how they are transferred.

Figure 3 illustrates an execution trace (marked as gray nodes and edges) and
the flow of one object (marked as red edges) as extracted from one of our case
studies. The jumps from one branch of the execution trace to another branch
shows that the object is stored into and later accessed from field references (A)
as this is the only way how an object reference can be transferred between
two distant method executions. (B) and (C) are cases where the object is
transferred along the path of control. First, the object is passed multiple times
as argument downwards the execution tree (B), then it is passed upwards as
a method return value (C).

The flow of an object takes place within method executions (through field
references and local variables) or between two method executions (arguments
and return values). On the other hand, the effect of a message send depends
on the referenced target object. Therefore, the object and control flow are
tightly interrelated.

On the other hand, the object graph of the program at a particular point in
time can be reconstructed from the object flow information as we capture each
time an object is stored into a field. Compared to the object reference analyses,

7

A C

B

Fig. 3. Example of how an object can jump from one branch to another in an
execution trace. The gray edges represent the method executions, and the red ones
show the flow of an object.

which examine object graphs, our model is more powerful as it additionally
captures the history of each reference in the graph. This information adds a
new dimension to traditional execution traces. With our model, dynamic in-
formation can be navigated not only along the flow of control but additionally
along the flow of objects.

3 Object Flow Analysis

In this section we present Object Flow Analysis, our approach to track how
objects are passed through the system at runtime. This technique is based on
an explicit model of object reference and method execution.

3.1 Representing Object References

The key idea we propose to extract such runtime information is to record each
situation in which an object reference is made visible in a method execution.
We represent in our meta-model each such situation by a so-called Alias (see
Figure 4).

In our program execution representation, an object alias is created when an
object is (1) instantiated, (2) stored in a field (including indexable fields) (3)
read from a field, (4) stored in a local variable, (5) passed as argument, or (6)
returned from a method execution.

The rationale is that each object alias is bound to exactly one method execu-
tion (referred to as Activation in our meta-model), namely the method exe-
cution in which the alias makes the object visible. By definition, arguments,
return values, and local variables are only visible in one method activation.

8

execution model static model

Alias

Instance

*
0..1

0..1 *
sender

Method
* 1

Class1*

*

1

Attribute

1

Activation
parent receiver

subject

ArgumentAlias TempAlias FieldAlias

creator

ReturnAlias

*

Fig. 4. The Object Flow meta-model extends the static and execution meta-models
with the notion of Alias.

In contrast, objects that are stored in fields (i.e., instance variables), can be
accessed in other activations as well. Therefore, we distinguish between read
and write access of fields.

With the record of all aliases of an object and their relationships to method
activations, we can now determine where the object was visible during program
execution. The other key information from which we can extract the object
flow resides in the relationships among the aliases.

Apart from the very first alias, which stems from the object instantiation
primitive, all aliases are created from a previously existing one. This gives
rise to a parent-child relationship between aliases originating from the same
object. With this relationship we can organize the aliases of an object as a
tree where the root is the alias created by the instantiation primitive. This
tree represents the object flow, that is, it tells us how the object is passed
through the system.

3.2 Control Flow vs. Object Flow Perspective

To illustrate and discuss details of the object flow construction we introduce
a concrete example taken from one of our case study applications, namely the
Smalltalk bytecode compiler. The compiler has four phases: (1) scanning and
parsing of source code, (2) verifying and annotating the abstract syntax tree
(AST), (3) translating AST to the intermediate representation (IR), and (4)
translating IR to bytecode.

The example used in this section shows the interplay of important classes of the
last two compiling phases (translating the AST to the IR, and translating the
IR to bytecode). We focus on an instance of the class IRMethod which represents

9

a method in the IR. It acts as a container of IRSequence instances, which
group instructions and form a control graph. We now take two complementary
perspectives to study the program behavior in which the IRMethod instance is
used. The first perspective emphasizes the control flow, that is, the sequence
and nesting of the executed methods. The second perspective, illustrates the
one we gain from studying object flows.

Control flow perspective. The execution trace in Figure 1 illustrates the
order and nesting of the executed methods through which the IRMethod in-
stance is passed. RBMethodNode�generate is the first executed method. On
the left side of Figure 5 we see its source code. It creates an instance of AST-

Translator, which in turn instantiates and stores an instance of IRBuilder in a
field. IRBuilder in its constructor method initialize instantiates an IRMethod and
stores it in the field named ir.

After this, the control is returned to RBMethodNode which then sends to AST-

Translator the message visitNode:. ASTTranslator is a visitor which traverses the
AST and delegates the building of the IR to the IRBuilder instance. In the
process IRBuilder creates several new sequences.

instantiation
field store

field read

argument
field store

return

return
field store

argument

field read

4

1

2

3

IRBuilder>>initialize
 ir := IRMethod new.
 ...

IRBuilder>>startNewSequence
 newSequence := IRSequence new.
 newSequence method: ir.

IRSequence>>method: aMethod
 method := aMethod.

ASTTranslator>>ir
 ^ builder ir.

RBMethodNode>>generate
 ast := ASTTranslator new visitNode: self.
 ir := ast ir.
 ^ ir compiledMethod.

IRMethod>>compiledMethod
 ^ compiledMethod := IRTranslator new
 interpret: self;
 compiledMethod.

IRTranslator>>interpret: ir
 ...

1

2

3

4

Fig. 5. Object flow of an IRMethod.

When the IR is built, the IRMethod object is obtained by sending ir to the
ASTTranslator which indirectly gets it from the IRBuilder instance. The execu-
tion now continues by sending compiledMethod to the IRMethod instance which
eventually generates bytecode.

10

Object flow perspective. The object flow perspective focuses on the runtime
flow of the IRMethod instance. The methods on the left side of Figure 5 are
ordered by when the instance is passed through them (rather than by the order
of the control flow). The right side of Figure 5 illustrates the corresponding flow
as a tree. Nodes represent aliases and edges represent parent-child relationships
of the aliases.

This tree represents the object flow of the IRMethod instance. The flow starts
with the root alias instantiation in the method IRBuilder�initialize where the
IRMethod instance is created. The object is then directly assigned to a field
named ir (represented as a field store alias).

During the lifetime of IRBuilder the object is read from the field (1) and then
passed as argument to IRSequence objects where it is stored in a field called
method. Notice that in the actual execution the branch starting with (1) hap-
pens multiple times, but Figure 5 only shows one for conciseness.

When RBMethodNode�generate requests the IRMethod instance, the object is
first returned from the IRBuilder to the ASTTranslator (2) (this happens through
a getter not shown here). Only then it is returned to RBMethodNode (3). This
last return alias directly gets stored into the field ir of RBMethodNode.

A special case of aliasing is when an object passes itself as argument. In our
code example this happens when the method compiledMethod of IRMethod is
executed through the field read alias in RBMethodNode. The object instantiates
an IRTranslator and passes itself to it as argument (see bottom of Figure 5).
The argument alias which is created in IRTranslator has as parent alias the field
read alias, that is, the alias which was used to activate the object that passed
itself. This property of our model assures that the object flows are continuous.

In the next section, to illustrate the usefulness of Object Flow Analysis, we
present a visual approach to answer the reverse engineering questions formu-
lated in Section 1.

4 Visualizing Object Flows between Classes

Based on our meta-model we can analyze the transfer of object references
between classes to answer questions such as:

(1) Which classes exchange objects?
(2) Which classes act as object hubs?
(3) Which continuous object flows span multiple classes?
(4) Given a class, which objects are passed to or from it?

11

(5) Which objects get stored in a class, and which objects just pass through
it?

We propose two explorative and complementary views to address the above
questions:

• The Inter-unit Flow View depicts units connected by directed arcs sub-
suming all objects transferred between two units (Section 4.1). By unit we
understand a class, or a group of classes that a software engineer knows they
conceptually belong together (e.g., all classes in a package, in a component,
or in an application layer like the business logic or the user interface). This
view answers the questions (1-3) stated above.
• The Transit Flow View allows a user to drill down into a unit to identify de-

tails of the actual objects and of the sequence of their passage (Section 4.2).
This view answers the questions (4-5).

4.1 Inter-unit Flow View

Figure 6 shows an Inter-unit Flow View produced on our compiler case study.
The nodes represent units (i.e. either individual classes or groups of classes),
and the directed arcs represent the flows between them. The thickness of an
arc is proportional to the number of unique objects passed along it.

A force based layout algorithm is applied (nevertheless, the user can drag
nodes as she wishes). This layout results in a spatial proximity of classes and
units that exchange objects.

Constructing the visualization. The Object Flow model shows how objects
are passed between other objects. As the goal of our visualization is to show
how objects are passed through classes, we aggregate the flow at the level
of classes and groups of classes (units). In our experimental tool, units are
stated by the developer using a declarative mapping language (similar to the
approach of Walker et al. [37]). Rules are provided to map classes to units
based on different properties such as the package they are contained in, their
inheritance relationship, or a pattern matching their names. For instance, the
first rule below maps all classes in the AST-Nodes package to the unit AST.
The second rule maps IRInstruction and all classes inheriting from it to the unit
IR.

classes containedInPackage: ’AST-Nodes’ mapTo: ’AST’
classes hierarchyRootedIn: ’IRInstruction’ mapTo: ’IR’

The following two rules gather all classes with names ending in scope or var.

12

SmaCCToken

BytecodeGenerator

StackCount

IRBuilder

IRTranslator

AST (9)

AST-Translator (5)

Intermediate-Representation (16)

Scopes/Vars (8)

Parser (4)

Scanner (3)

Fig. 6. Inter-unit Flow View of the bytecode compiler.

classes matchingName: ’*scope’ mapTo: ’Scopes/Vars’
classes matchingName: ’*var’ mapTo: ’Scopes/Vars’

The mapping is ordered. That is, each class is mapped to at most one unit, the
first one for which a rule matches. If no rule matches, the class is displayed as
a single node in the visualization. For convenience, there exist two additional
rules:

classes mapAllToPackages
classes mapAllTo: ’Rest’

The first one maps each remaining class to the package it is contained in,
that is, for each package a unit is created. The second rule maps all remaining
classes to a single unit (it is syntactic sugar for matching the names with ’*’).

For the proposed visualization we do not take into account (i) through which
instances of a class objects are passed, and (ii) the flow of objects that are only
used within one class. Another important property is that we treat the flows
through collections transparently. This means that when an object is passed
from one class to a collection, and later from the collection to another class,
the intermediate step through the collection is omitted in the visualization.
The flow directly goes from one class to the other and there is no node created

13

for the collection class. This abstraction makes the visualization much more
concise and emphasises the conceptual flows between application classes.

Example. Let’s consider again Figure 6, which shows the Inter-unit Flow
View of the Smalltalk bytecode compiler case study. Various classes are ag-
gregated to units, displayed with the number of contained classes in brackets.
For instance, the group AST (9) contains the nine classes representing the
abstract syntax tree.

The visualization shows which classes exchange objects. For example, there
are many objects passed from the Scanner to the Parser or from Intermediate-

Representation to IRTranslator. On the other hand, we also see which classes are
distant in that objects only flow between them via several other classes.

Considering the thick arcs, we can detect a propagation of objects from Scan-

ner (top) to BytecodeGenerator (bottom-right) traversing the Parser (top). This
corresponds to the conceptual steps of a compiler. An interesting exceptional
flow is the one from AST to IRTranslator. It contains exactly one object, the
IRMethod instance we encountered in the previous examples.

The chronological propagation of objects. The Inter-unit Flow View
shows an overview of the entire execution. However, as not all objects are
passed around at the same time, we are also interested in the chronological
order to identify different phases of a system’s execution. For example, in
a program with an UI the phases may be related directly to the exercised
features.

With our tool, the user can scope the visualized object flow information to a
specific time period by using a slider representing the timeline. The position
of the slider defines up until which point in time object flows are taken into
account. A recently active arc is displayed in dark gray which then fades and
eventually becomes invisible. The goal of this feature is to help investigate
how objects are propagated during a program execution.

Figure 7 illustrates three snapshots in the evolution of the compiler execu-
tion (compare with Figure 6). In the first step we see that objects are passed
from Scanner to Parser and from Parser to AST. In the second step, many ob-
jects are passed between AST and AST-Translator, IRBuilder and Intermediate-

Representation. In the third step, many objects pass from Intermediate-Representation

to BytecodeGenerator.

Highlighting spanning flows. With the aforementioned features we can see
which units directly exchange objects and when. However, we cannot see if
there exist objects that are passed from one unit to another indirectly, i.e.,
spanning intermediate units.

14

step 1

step 2

step 3

Fig. 7. Chronological propagation of flows in the compiler.

This information is useful to understand which units act as steps in object
flows leading to a unit. The same holds for the objects passed outside a unit
where it is interesting to know to which other units the objects are forwarded
and which paths are taken.

In our tool the user can select a unit. Thereafter, all arcs that contain objects
being passed to the selected unit are highlighted in orange and all arcs with

15

objects passed from the selected entity are highlighted in blue 2 .

Figure 8 shows twice the same visualization (compare with Figure 6) but with
different classes selected. In Figure 8.A Parser is selected. We see that objects
are passed to it directly from Scanner (orange arc). On the other hand, the ob-
jects it passes outside reach many different units, the longest path reaches the
Intermediate-Representation unit (blue arcs). In Figure 8.B IRBuilder is selected.
We see that it obtains objects from most above units and forwards objects to
almost all units below.

A B

Fig. 8. Orange and blue arcs indicate flows leading to and coming from selected unit
Parser (A), resp. unit IRBuilder (B).

This view highlights from where objects are passed to a unit and which routes
are taken. This tells us, for example, how dependent a unit is on other units,
e.g., IRBuilder depends on objects created by or passed through all upper classes
except for Scanner and SmaCCToken. The highlighted outgoing flows, on the
other hand, tell us how influential a class is.

4.2 Transit Flow View

The aforementioned visualization lacks information about the actual objects
being passed through a unit. To help investigate this information, our tool
allows the user to drill down to access detailed information about the objects
transiting a unit.

Figure 9 illustrates the Transit Flow View for the class IRBuilder. It lists from
top to bottom all instances that transit IRBuilder grouped by their class. The
objects inside a class are grouped by their arrival time. For each instance the
point in time when it was passed into or out of the class is indicated with

2 On a B/W print, orange corresponds to light gray and blue to dark gray.

16

a rectangle. An orange rectangle shows that the object is passed in; a blue
rectangle that it is passed out. A line is displayed during the time when the
object is stored in a field (or contained in a collection that is stored in a field).

classes timeline

Legend

object passed in
object passed out
object passed in and
immediately out again

object permanently
stored in a field

Each line of the view shows one
distinct object and how it is moved:

Fig. 9. IRBuilder Transit Flow View.

The Transit Flow View shows when flows take place and how many instances
of which class are involved. Further exploration reveals: (1) objects passed
through directly (orange/blue pairs without line), (2) objects stored in fields
or collections (line), (3) objects created (the first rectangle is not orange,
therefore, the object is created in the class), and (4) objects passed in or out
multiple times (several rectangles for the same object).

For example, in Figure 9, the IRMethod instance is created in IRBuilder, it is
stored in a field, and it is passed out multiple times. Intermediate represen-
tation instances are created in IRBuilder but are not stored in it, whereas the
instances at the bottom (AST nodes) are passed from outside and are stored.

17

5 Case Studies

In this section we provide an overview of the results we obtained from apply-
ing the visualizations on three case studies: a Smalltalk bytecode compiler,
a health insurance web application and an IRC chat client. All three appli-
cations are implemented in Squeak, an open-source Smalltalk dialect. Our
choice of those case studies was motivated by the following reasons: (1) they
are non-trivial and model very different domains, (2) we have access to the
source code, and (3) for the compiler and health insurance application we have
direct access to developer knowledge to verify our findings.

The table below shows the static dimensions of the code:

Compiler Insurance App. IRC Chat Client

Classes 127 308 39

Methods 1912 4432 1063

Lines of code 11208 40917 7652

The objective of these preliminary investigations is to evaluate the useful-
ness of the two visualizations of our approach and to learn about a practical
exploration process using our tool.

5.1 Bytecode Compiler

We chose the Smalltalk bytecode compiler as a case study because we wanted
to understand its underlying mechanism to use it as basis for the future im-
plementation of our Object Flow Analysis infrastructure. The compiler is a
complex program, yet its domain is well known.

To generate experimental data we run the compiler on a typical method source
code which includes class instantiations, local variable usage, a conditional and
a return statement.

The Inter-unit Flow View illustrated by Figure 6 shows the final state of the
view after several iterations of exploring and refining the mappings of units.
We describe the exploration process of our tool which crystallized from the
three case studies in the next section.

Using the Inter-unit Flow View we could extract the key phases of the com-
piler. This was straight forward from studying the chronological propagation
of the object flows. The activity starts on top (Scanner and Parser) and then

18

shifts downwards to center around AST-Translator and IRBuilder and eventu-
ally shifts to IRTranslator and BytecodeGenerator (see Figure 7). This obser-
vation is in line with the documentation, which describes the following main
phases: (i) scanning and parsing, (ii) translating AST to the intermediate rep-
resentation, and (iii) translating the intermediate representation to bytecode.

With the help of the highlighting feature we obtained more detailed knowl-
edge about the system. For example, IRBuilder plays a key role as it is a hub
through which objects from the upper units in the view are passed to the
lower ones. Using the Transit Flow View (see Figure 9) we studied detailed
interrelationships between the units. For example, in the transition from AST
to IR (phase 2) we see that the unit AST-Translator passes AST nodes (classes
with the RB prefix) to IRBuilder. In Figure 9 we see that AST nodes are passed
into IRBuilder and from the Figure 6 we see that they come from AST-Translator.
In the Figure 9 we also see that IRBuilder creates three sequence objects which
are passed outside multiple times.

Surprisingly, also the AST nodes are forwarded to the Intermediate Repre-
sentation package (we expected that after IRBuilder created the IR from the
AST, the AST nodes are discarded). Following the flow of the AST nodes we
reach the Intermediate Representation package. Figure 10 shows the Transit
Flow View of the IR package. We see here that the AST nodes are passed in
and are then stored in the class but are never passed out again. This points
to the fact that IR objects hold a reference to the AST node from which they
originate. Also interesting in Figure 10 is that one can distinguish two phases
of activity. The first phase is when the IR is built, where we see IR and AST
nodes being passed into the IR package (marked in Figure 10). The second
phase is when the bytecode is generated, where IR objects are passed outside
(but not AST nodes). In this phase we can also see that the single instance of
IRTranslator is transferred many times.

In the the remaining part of this section we want to shed light on an interesting
aspect of our approach we noticed in this case study.

Inversion of execution flow. The object flows do not necessarily evolve
in the same direction as the execution flow. For instance, the Parser creates
the Scanner and then regularly accesses it to get the next token. An analysis
of the execution trace shows the call relation Parser → Scanner. The object
flow view, on the other hand, shows the conceptually more meaningful order
Scanner → Parser. The reason is that with Object Flow Analysis we can
provide object-centric views, which abstract implementation details, e.g., the
distinction of sender and receiver of a message. This trait also distinguishes
our approach from the ones that are based call graphs in which edges point
from the sender to the receiver class of a method execution [8,9].

19

classes timeline
IR

 in
st

an
ce

s
AS

T
no

de
 in

st
an

ce
s

Fig. 10. Transit Flow View of the Intermediate Representation package.

There are two ways how objects are passed to an instance: (i) objects are
pushed to an object, i.e., passed to the instance as method arguments, or (ii)
objects are pulled by the instance, i.e., received as return value in response to
a message send. In the latter case (ii) the objects flow in the opposite direction
compared to the message sends.

To further illustrate this point, let’s consider again the introductory exam-
ple of the IRMethod instance. In the execution trace excerpt, shown in Fig-
ure 1, the first executed method in which the IRMethod instance occurs is
RBMethodNode�generate. Studying this method first, however, leaves us with
the question of how the object is set up and how it is passed there – some-
thing which is only visible later (or deeper) in the execution tree. In contrast,
Object Flow Analysis is capable of providing a more meaningful viewpoint for
studying the life cycle of the instance as illustrated by Figure 5.

20

5.2 Insurance Web Application

This industrial application was put into production six years ago and since that
time has undergone various adaptations and extensions. The analyzed scenario
comprises the oldest and most valuable part for the customer, the process of
creating a new offer. It is composed of ten features, including adding persons,
specifying entry dates, selecting and configuring products, computing prices,
and generating PDFs.

With this case study we focus our discuss on the exploration process, rather
than on the details of the actual findings.

Step 1: Creating coarse-grained units. We started by investigating the
Inter-unit Flow View with units corresponding to packages. However, the view
was hard to work with because it was cluttered with many small packages that
were part of the GUI layer (see Figure 11).

PLWeb-Form-Validation

PLModel-NewsPLModel-Offers (2)

PLModel-Products-Risikoschutz (9)
PLModel-Products-Additional (9)

PLModel-Products-Taggeld (8)

PLModel-Versioning (3)

PLWeb-Decoration (2) PLModel-Products (10)

PLWeb-Navigation (5)

PLModel-Products-Hospital (27)

PLModel-Products-TSC (8)

PLWeb-Metamodel-Core (2)

PLModel-People (4)

PLModel-Products-Basis (6)

PLWeb-Editors (5)

PLWeb-Form-Fields (4)

PLWeb-Offer (11)

PLWeb-Components (5)

PLWeb-Metamodel-Attributes (7)

PLWeb-Desktop (3)

Fig. 11. Inter-unit Flow View of the insurance application case study before refining
the mapping. In this state it is too cluttered for comprehension.

Step 2: Re-grouping to appropriate units. As a first refinement of the
mapping of classes to units we put all classes of web GUI related packages
into one unit, representing the presentation layer.

self containedInPackage: ’PLWeb*’ mapTo: ’Web app UI layer’

The resulting view was already more concise. Now focusing on the business
logic, we saw many packages corresponding to individual products, each pack-
age containing the product classes and associated calculation model classes.
We re-grouped the classes into a Products unit and a Calculation Models unit
because we wanted to learn about the higher-level concepts rather than how
single products differ.

21

self hierarchyRootedIn: ’Product’ mapTo: ’Products’
self hierarchyRootedIn: ’CalculationModel’ mapTo: ’Models’

This change dramatically improved the view. We obtained only nine units and
we could identify interesting flows between them (see Figure 12). For instance,
with the help of the Transit Flow View, we could understand how versioning
works and how products and calculation models relate to each other. Products
pass dates to the package responsible for versioning and in turn calculation
models are passed to the products (we used the Transit Flow View to access
this information).

Fig. 12. Inter-unit Flow View of the insurance application case study.

Step 3: Extract interesting candidate classes. Once we gained an overview,
we started to dig deeper. By refining the mapping rules we split off packages
to show individual classes, e.g., ProductValidator which is packaged in PLModel-

Products, but from its name does not seem to be a product but rather provides
specific behavior. Another similar candidate class is OveviewCalculator.

To obtain more details of those classes we used the highlighting feature to
show which other units are involved in passing objects with respect to the
selected class. In the case of OverviewCalculator we see that this class passes
persons and dates to products, which eventually return price objects.

Discussion. The exploration process we took, which proved useful, was to
first gain a coarse-grained view (step 1), find appropriate units (step 2), and
only then get into more detail (step 3). Our internal declarative mapping
language was helpful to create conceptual groups of classes with varying level
of detail. It was essential to be able to structure units differently compared to
packages. For instance, classes representing products and classes representing
calculation models were organized together in the same packages. However,
we wanted to distinguish products and their calculation models and hence
created two units, one for all classes inheriting from Product, and the other for
all classes inheriting from CalculationModel.

22

From the Inter-unit Flow View, conceptual relationships between units were
intuitively understandable. The presented information is high-level and thus
appropriate for studying an unfamiliar system. Yet, means are provided to
drill down to gain more detailed knowledge where appropriate.

In contrast to the compiler case study, the feature for investigating the chrono-
logical propagation of objects was not particularly useful. A plausible expla-
nation is that the compiler has a much stronger notion of sequentially trans-
forming one representation to another. The exercised features of the health
insurance application, on the other hand, do not exhibit this characteristic.

5.3 IRC Chat Client

As the last case study we chose an IRC Chat Client [47]. A total of six devel-
opers contributed to this open source project which underwent various refac-
torings and enhancements over nine years. We analyzed nine features: open,
setup, connect to server, request MOTD, join channel, send and receive mes-
sage, opening new console, and disconnect.

In contrast to the other two case studies, we enhanced the Inter-unit Flow View
with information about features. We wanted to study if two classes exchange
objects in only one feature or in several features.

IRCConnection

IRCProtocolMessage

IRCConnectionProfile

IRCChannelMember

IRCMessage

IRCTextLines

IRCMessagePlayback

SystemWindow

IRCChannelObserver

IRCDirectMessagesObserver

IRCChannelFilter

IRCChannelInfo

GUI (19)

Fig. 13. Inter-unit Flow View of the IRC chat client case study with gray toning of
edges indicating the number of participating features.

Figure 13 illustrates the Inter-unit Flow View after grouping all GUI classes
into one unit. The largest flows are coming into or going out of IRCConnection.
Those flows take place in several features (the darkest gray corresponds to
5 features, and the flow between IRCConnection and IRCChannelObserver takes
place in 2 features). On the other hand, many flows around the GUI unit

23

are specific to one feature only. For example IRCConnectionProfile only passes
objects to the GUI classes during the setup feature. Another example is the
class IRCChannelInfo, where flows either take place in the feature join channel
or in the feature disconnect – even though the edges are relatively thick (20
objects being transferred along the thickest edge).

6 Discussion

The application of Object Flow Analysis proposed in this paper focuses on
studying classes or intentional groups of classes referred to as units. Hence, in
our information space, classes are the basic parts, which represent fixed points
on which the object flows are mapped.

As a point of variation, the basic entities could be instances. This would allow
one to study the object flows at a much more detailed level (“which objects
pass through a particular instance?”). Whether this information is valuable
depends on the task at hand. The objective of the approach presented in this
paper is to study a system at the design level, therefore, we focused on classes.

Other applications of Object Flow Analysis. We believe that Object
Flow Analysis can be exploited in many other ways, which yet have to be dis-
covered. Our approach maps object flows to structural entities. For instance,
a very different way of looking at object flows is to consider dynamic bound-
aries. In previous work we described an approach to analyze the flow of objects
between features to detect feature runtime dependencies [12] and to analyze
side effects in parts of an execution trace to extract blueprints for writing Unit
tests [13]. Another promising application of our object flow analysis technique
could be to analyze object flows between threads, which would reveal how
objects are shared between them and how they are transferred.

Scalability. Naturally, the additional information about object flows do not
come for free. Namely, a larger amount of data has to be dealt with. We
adopt an offline approach, that is, at runtime the tracer gathers aliasing and
method execution events. After execution, the data is then fed into the analysis
framework on top of which our analysis and experimental tool is implemented.

In a typical program, the number of alias events is higher compared to method
execution events. However, as the figures in the table below show, the relative
increase is moderate.

Summarizing, Object Flow Analysis, which gathers both object aliasing and
method executions, consumes roughly 2.5 times the space of conventional ex-
ecution trace approaches that capture all method execution events including

24

Compiler Insurance App. IRC Chat Client

Method executions 11910 120569 71183

Aliases 16033 197499 136485

Ratio 1.3 1.6 1.9

the identification of the message receiver and the return value. Our approach
presented in this paper deals with the potential large number of events by pro-
viding abstract views. Detailed information about the objects is only shown
on demand.

While a factor of 2.5 is not negligible, we believe that the complementary
information about the flow of objects justifies the overhead.

Limitations. Considering recall, a noteworthy limitation of our approach is
the well-known fact that dynamic analysis is not exhaustive, as not all possible
paths of execution are exercised [48]. Therefore, a dynamic analysis always has
to be understood in the context of the actual execution.

Like with most other dynamic analysis approaches, scalability may be a lim-
iting factor. The Transit Flow View is most vulnerable because it shows indi-
vidual objects. While in our case studies this view scaled well (the largest one
displaying about 100 instances that were passed between two units), it may
be cumbersome to study when containing thousands of instances. A solution
to this problem may be to even further compact the representation, to ap-
ply filters to sort out less interesting objects, or to make selected application
classes transparent like collections.

Dynamic analysis requirements. To cover all object flows in a program
execution, the tracing technique has to be implemented carefully. Our Object
Flow tracer not only tracks objects of application classes but also instances of
system classes and primitive type values. For example, collections and arrays
have to be taken into account as they preserve permanent object references
between the holder of the collection and its contained elements. Furthermore,
since all method executions and state modifications have to be captured, also
behavioral reflection has to be dealt with appropriately.

We chose Smalltalk to implement a dynamic analysis prototype because of
its openness and reflective capabilities, which allowed us to evaluate different
alias tracking techniques. In our current implementation, each regular object
reference is substituted by an alias object as presented in the meta-model.
Every time a reference is transferred, we construct the corresponding alias. To
track read and write of variables our current implementation uses bytecode
instrumentation [49], and to capture argument passing and return values it
uses method wrappers [31].

25

We are currently also investigating how to implement Object Flow Analysis
in Java. In the current state of the Java implementation [50], which is based
on Javassist [26], we can detect all aliases but tracking their transfer is still
missing. A possible direction is to investigate how precise the object flow
information can be reconstructed by complementing the dynamic analysis with
a static points-to analysis (for instance, using a pointer assignment graph as
proposed by Lhoták [51]).

7 Conclusions

The hallmark of object-oriented applications is the deep collaboration of ob-
jects to accomplish a complex task. Understanding such applications is then
difficult since reading the classes only reveals the static aspects of the com-
putation. While dynamic analysis approaches offer solutions, they often focus
only on the execution of a program from a message passing point of view.

In this paper we identified a missing aspect of dynamic object-oriented pro-
gram analysis, namely the tracking of how objects are passed through the
system. We introduce our approach called Object Flow Analysis, in which
we treat object references as first class entities to track the flows of objects.
This approach complements the view on method executions with the view on
objects.

To show the usefulness of our approach, we illustrated it with an applica-
tion in the form of two visualizations: Inter-unit Flow View and Transit Flow
View. We used these visualizations to explore the object flows between classes
and we applied them on three case studies. These initial experiments showed
promising benefits of this new perspective.

We strongly believe that our approach opens a new perspective on dynamic
analysis and we intend to further pursue various applications based on it.

Acknowledgments. We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Analyzing, capturing and taming soft-
ware change” (SNF Project No. 200020-113342, Oct. 2006 - Sept. 2008) and the
Cook ANR project “COOK (JC05 42872): Réarchitecturisation des applications
industrielles objets”.

References

[1] W. De Pauw, D. Lorenz, J. Vlissides, M. Wegman, Execution patterns in
object-oriented visualization, in: Proceedings Conference on Object-Oriented

26

Technologies and Systems (COOTS’98), USENIX, 1998, pp. 219–234.

[2] D. Lange, Y. Nakamura, Interactive visualization of design patterns can help
in framework understanding, in: Proceedings ACM International Conference
on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA’95), ACM Press, New York NY, 1995, pp. 342–357.

[3] T. Richner, S. Ducasse, Recovering high-level views of object-oriented
applications from static and dynamic information, in: H. Yang, L. White (Eds.),
Proceedings of 15th IEEE International Conference on Software Maintenance
(ICSM’99), IEEE Computer Society Press, Los Alamitos CA, 1999, pp. 13–22.

[4] G. Antoniol, Y.-G. Guéhéneuc, Feature identification: a novel approach and
a case study, in: Proceedings IEEE International Conference on Software
Maintenance (ICSM’05), IEEE Computer Society Press, Los Alamitos CA,
2005, pp. 357–366.

[5] M. F. Kleyn, P. C. Gingrich, GraphTrace — understanding object-oriented
systems using concurrently animated views, in: Proceedings of International
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’88), Vol. 23, ACM Press, 1988, pp. 191–205.

[6] O. Greevy, S. Ducasse, Correlating features and code using a compact two-
sided trace analysis approach, in: Proceedings of 9th European Conference on
Software Maintenance and Reengineering (CSMR’05), IEEE Computer Society,
Los Alamitos CA, 2005, pp. 314–323.

[7] M. El-Ramly, E. Stroulia, P. Sorenson, Recovering software requirements from
system-user interaction traces, in: Proceedings ACM International Conference
on Software Engineering and Knowledge Engineering, ACM Press, New York
NY, 2002, pp. 447–454.

[8] A. Zaidman, T. Calders, S. Demeyer, J. Paredaens, Applying webmining
techniques to execution traces to support the program comprehension process,
in: Proceedings IEEE European Conference on Software Maintenance and
Reengineering (CSMR’05), IEEE Computer Society Press, Los Alamitos CA,
2005, pp. 134–142.

[9] W. De Pauw, D. Kimelman, J. Vlissides, Modeling object-oriented program
execution, in: M. Tokoro, R. Pareschi (Eds.), Proceedings of the European
Conference on Object-Oriented Programming (ECOOP’94), LNCS 821,
Springer-Verlag, Bologna, Italy, 1994, pp. 163–182.

[10] W. De Pauw, G. Sevitsky, Visualizing reference patterns for solving memory
leaks in Java, in: R. Guerraoui (Ed.), Proceedings of the European Conference
on Object-Oriented Programming (ECOOP’99), Vol. 1628 of LNCS, Springer-
Verlag, Lisbon, Portugal, 1999, pp. 116–134.

[11] T. Hill, J. Noble, J. Potter, Scalable visualisations with ownership trees, in:
Proceedings 37th International Conference on Technology of Object-Oriented
Languages and Systems (TOOLS’00), 2000, pp. 202–213.

27

[12] A. Lienhard, O. Greevy, O. Nierstrasz, Tracking objects to detect
feature dependencies, in: Proceedings International Conference on Program
Comprehension (ICPC’07), IEEE Computer Society, Washington, DC, USA,
2007, pp. 59–68.

[13] A. Lienhard, T. Gı̂rba, O. Greevy, O. Nierstrasz, Test blueprints – exposing
side effects in execution traces to support writing unit tests, in: 12th European
Conference on Software Maintenance and Reengineering (CSMR’08), IEEE
Computer Society Press, 2008, pp. 83–92.

[14] M. Hind, Pointer analysis: Haven’t we solved this problem yet?”, in: 2001 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE’01), ACM, New York, NY, USA, 2001, pp. 54–61.

[15] O. Nierstrasz, S. Ducasse, T. Gı̂rba, The story of Moose: an agile reengineering
environment, in: Proceedings of the European Software Engineering Conference
(ESEC/FSE’05), ACM Press, New York NY, 2005, pp. 1–10, invited paper.

[16] M. Meyer, T. Gı̂rba, M. Lungu, Mondrian: An agile visualization framework,
in: ACM Symposium on Software Visualization (SoftVis’06), ACM Press, New
York, NY, USA, 2006, pp. 135–144.

[17] A. Lienhard, S. Ducasse, T. Gı̂rba, Object flow analysis — taking an object-
centric view on dynamic analysis, in: Proceedings of the 2007 International
Conference on Dynamic Languages (ICDL’07), ACM Digital Library, New York,
NY, USA, 2007, pp. 121–140.

[18] J. Hogg, D. Lea, A. Wills, D. deChampeaux, R. Holt, The Geneva convention
on the treatment of object aliasing, SIGPLAN OOPS Mess. 3 (2) (1992) 11–16.

[19] J. Noble, J. Potter, J. Vitek, Flexible alias protection, in: E. Jul (Ed.),
Proceedings of the 12th European Conference on Object-Oriented Programming
(ECOOP’98), Vol. 1445 of LNCS, Springer-Verlag, Brussels, Belgium, 1998, pp.
158–185.

[20] D. G. Clarke, J. Noble, J. M. Potter, Simple ownership types for object
containment, in: Proceedings of the 15th European Conference on Object-
Oriented Programming (ECOOP’91), LNCS, Springer Verlag, London, UK,
2001, pp. 53–76.

[21] C. Boyapati, B. Liskov, L. Shrira, Ownership types for object encapsulation,
in: Principles of Programming Languages (POPL’03), ACM Press, 2003, pp.
213–223.

[22] B. Liskov, J. Guttag, Abstraction and Specification in Program Development,
MIT Press/McGraw-Hill, Cambridge, Mass., USA, 1986.

[23] T. Richner, Recovering behavioral design views: a query-based approach, Ph.D.
thesis, University of Berne (May 2002).

[24] A. Hamou-Lhadj, T. Lethbridge, Summarizing the content of large traces
to facilitate the understanding of the behaviour of a software system,

28

in: Proceedings of International Conference on Program Comprehension
(ICPC’06), IEEE Computer Society, Washington, DC, USA, 2006, pp. 181–
190.

[25] M. Dahm, Byte code engineering, in: Proceedings of Java-Informations-Tage
(JIT’99), Düsseldorf, Deutschland, 1999, pp. 267–277.

[26] S. Chiba, M. Nishizawa, An easy-to-use toolkit for efficient Java bytecode
translators, in: In Proceedings of the second International Conference on
Generative Programming and Component Engineering (GPCE’03), Vol. 2830
of LNCS, 2003, pp. 364–376.

[27] E. Bruneton, R. Lenglet, T. Coupaye, ASM: A code manipulation tool to
implement adaptable systems, in: Proceedings of Adaptable and Extensible
Component Systems, Grenoble, France, 2002.

[28] M. Denker, S. Ducasse, É. Tanter, Runtime bytecode transformation for
Smalltalk, Journal of Computer Languages, Systems and Structures 32 (2-3)
(2006) 125–139.

[29] Sun microsystems, inc. JVM tool interface (JVMTI),
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/.

[30] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
J. Irwin, Aspect-Oriented Programming, in: M. Aksit, S. Matsuoka (Eds.),
Proceedings ECOOP ’97, Vol. 1241 of LNCS, Springer-Verlag, Jyvaskyla,
Finland, 1997, pp. 220–242.

[31] J. Brant, B. Foote, R. Johnson, D. Roberts, Wrappers to the rescue,
in: Proceedings European Conference on Object Oriented Programming
(ECOOP’98), Vol. 1445 of LNCS, Springer-Verlag, 1998, pp. 396–417.

[32] D. J. Jerding, J. T. Stasko, T. Ball, Visualizing interactions in program
executions, in: Proceedings of International Conference on Software Engineering
(ICSE’97), 1997, pp. 360–370.

[33] T. Systä, K. Koskimies, H. Müller, Shimba — an environment for reverse
engineering Java software systems, Software — Practice and Experience 31 (4)
(2001) 371–394.

[34] M. Salah, T. Denton, S. Mancoridis, A. Shokoufandeh, F. I. Vokolos,
Scenariographer: A tool for reverse engineering class usage scenarios from
method invocation sequences, in: Proceedings of 21th International Conference
on Software Maintenance (ICSM’05), IEEE Computer Society Press, 2005, pp.
155–164.

[35] A. Zaidman, S. Demeyer, Managing trace data volume through a heuristical
clustering process based on event execution frequency, in: Proceedings IEEE
European Conference on Software Maintenance and Reengineering (CSMR’04),
IEEE Computer Society Press, Los Alamitos CA, 2004, pp. 329–338.

29

[36] T. Gschwind, J. Oberleitner, Improving dynamic data analysis with aspect-
oriented programming, in: Proceedings of the Seventh European Conference on
Software Maintenance and Reengineering (CSMR’03), IEEE Computer Society,
Washington, DC, USA, 2003, p. 259.

[37] R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wright, D. Swanson,
J. Isaak, Visualizing dynamic software system information through high-
level models, in: Proceedings of International Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’98), ACM,
1998, pp. 271–283.

[38] S. Goldsmith, R. O’Callahan, A. Aiken, Relational queries over program traces,
in: Proceedings of Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’05), ACM Press, New York, NY, USA, 2005, pp. 385–
402.

[39] W. De Pauw, R. Helm, D. Kimelman, J. Vlissides, Visualizing the behavior of
object-oriented systems, in: Proceedings of International Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA’93),
1993, pp. 326–337.

[40] A. Zeller, D. Lütkehaus, DDD — a free graphical front-end for Unix debuggers,
SIGPLAN Not. 31 (1) (1996) 22–27.

[41] P. Tonella, A. Potrich, Static and dynamic C++ code analysis for the recovery
of the object diagram, in: Proceedings of 18th IEEE International Conference
on Software Maintenance (ICSM’02), IEEE Computer Society, Los Alamitos,
CA, USA, 2002, p. 54.

[42] S. Ducasse, T. Gı̂rba, R. Wuyts, Object-oriented legacy system trace-based logic
testing, in: Proceedings of 10th European Conference on Software Maintenance
and Reengineering (CSMR’06), IEEE Computer Society Press, 2006, pp. 35–44.

[43] R. Lencevicius, U. Hölzle, A. K. Singh, Dynamic query-based debugging, in:
R. Guerraoui (Ed.), Proceedings of European Conference on Object-Oriented
Programming (ECOOP’99), Vol. 1628 of LNCS, Springer-Verlag, Lisbon,
Portugal, 1999, pp. 135–160.

[44] T. Y. Chen, C. K. Low, Dynamic data flow analysis for C++, in: Proceedings
of the Second Asia Pacific Software Engineering Conference (APSEC’95), IEEE
Computer Society, Washington, DC, USA, 1995, p. 22.

[45] A. S. Boujarwah, K. Saleh, J. Al-Dallal, Dynamic data flow analysis for Java
programs., Information & Software Technology 42 (11) (2000) 765–775.

[46] M. Fowler, UML Distilled, Addison Wesley, 2003.

[47] Squeak IRC client, http://www.preeminent.org/squeak/irc-help/irc-help.html.

[48] T. Ball, The concept of dynamic analysis, in: Proceedings European Software
Engineering Conference and ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (ESEC/FSC 1999), no. 1687 in LNCS,
Springer Verlag, Heidelberg, 1999, pp. 216–234.

30

[49] M. Denker, S. Ducasse, A. Lienhard, P. Marschall, Sub-method reflection,
Journal of Object Technology 6 (9) (2007) 231–251.

[50] J. Fierz, Java Wiretap — extracting
feature execution models for reverse engineering, Informatikprojekt, University
of Bern, http://scg.iam.unibe.ch/Archive/Projects/Fier07a.pdf (Jun. 2007).

[51] O. Lhoták, L. Hendren, Scaling Java points-to analysis using Spark, in: G. Hedin
(Ed.), Compiler Construction, 12th International Conference, Vol. 2622 of
LNCS, Springer, Warsaw, Poland, 2003, pp. 153–169.

31

	Introduction
	Approaches to Analyze Object-Oriented Runtime Behavior
	Message passing analyses
	Object reference analyses
	Towards a deeper understanding of object-oriented program behavior

	Object Flow Analysis
	Representing Object References
	Control Flow vs. Object Flow Perspective

	Visualizing Object Flows between Classes
	Inter-unit Flow View
	Transit Flow View

	Case Studies
	Bytecode Compiler
	Insurance Web Application
	IRC Chat Client

	Discussion
	Conclusions
	References

