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Abstract. Tools incorporating design patterns combine the advantage of
having a high-abstraction level of describing a system and the possibility of
coupling these abstractions to some underlying implementation. Still, all cur-
rent tools are based on generating source code in which the design patterns
become implicit. After that, further extension and adaptation of the software
is needed but this can no longer be supported at the same level of abstraction.
This paper presents FACE, an environment based on an explicit representa-
tion of design patterns, sustaining an incremental development style without
abandoning the higher-level design pattern abstraction. A visual composition
tool for FACE has been developed in the Self programming language.
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1 Introduction

Design patterns [4] are gaining more and more attention as a technique for supporting
the development and maintenance of object-oriented applications and frameworks. As
a result of this success tools are being developed that support software engineers think-
ing and working at the level of design patterns as well as mapping these abstractions to
an underlying implementation. Tools providing such a high level of abstraction for rep-
resenting and dealing with patterns have indeed been described or have even reached
the market (see the “Related Work” section).

Currently these tools generate source code and possibly documentation from the
higher-level design pattern abstraction. Although such an approach provides the basic
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facilities for the initial development phases (i.e., rapid prototyping via code generation
and library support), it fails to adequately support an incremental style of programming
necessary to build mature frameworks and corresponding applications. The reason is
that editing source code — almost inevitable in such an incremental process — breaks
the implicit link between the higher abstraction level within the tools and the lower level
implementation within the source code. This implies that once the source-code is
changed all such tools become useless since changes to the higher-level representation
code generation would override the “hand-made” changes. We call this problem the de-
sign-implementation gap.

Here we present FACE (Framework Adaptive Composition Environment), an ap-
proach that bridges this design-implementation gap by supporting incremental develop-
ment using frameworks at the abstraction level of design patterns.

A framework is a software artifact that is specifically directed at enabling, through
reuse, the easy development of applications in a certain domain. Current object-oriented
frameworks, however, are still hard to use for application development, due to their use
of subclassing as a specialization mechanism. The developer of the application is ex-
pected to have (almost) the same expertise as the person(s) who implemented frame-
work. He has to understand the framework (the superclasses) almost as well as the
framework developer does. Moreover, the application developer also uses the same lan-
guage and tools as the framework developer.

FACE is, in contrast to object-oriented frameworks, an environment where a frame-
work is used, and an application is built, on the basis of an approach that we call “mod-
eling = programming.” Application development is a task clearly distinct from frame-
work development. Building an application is done by building a model which is de-
scribed in terms of modeling primitives that the framework developer has defined. The
purpose of this is to let the application developer work at a higher level of abstraction,
circumventing the use of subclassing, and preventing, as much as possible the need for
coding.

Design patterns are normally seen as micro architectures, reusable pieces of design,
that link often occurring problems to a “best-practice” design, where a corresponding
implementation is suggested but not enforced. At best a framework is made up of a
combination of such micro architectures. In the modeling = programming approach of
FACE the level of abstraction of design patterns coincides with the modeling abstrac-
tions of the application developer. Thus design patterns provide him with understand-
able modeling primitives with a hidden — framework specific as we shall see — im-
plementation. Modeling will be a matter of defining the roles and relationships of class-
es in pattern-specific terms. For example, in the abstract factory pattern (see section 2),
a factory class must be specialized by specifying its creation operations and specifying
which creation operation instantiates which product class.

The model that must be composed by the application developer will be referred to
as aschema. It is in general made using four kinds of modeling primitives: 1) classes
and the role they play in the pattern, 2) operations and the role they play in the pattern,
3) relationships between classes and/or operations which may be pattern specific, and



4) parameters. Specifying which creation operation instantiates which product class, as
mentioned before, is an example of a pattern-specific relationship.

When creating such a schema the application developer is said toinstantiate the pat-
tern. This goes as follows: A so-calledprimal schema consists of a basic set of abstract
classes and their relationships capturing the essence of the micro architecture. This pri-
mal schema is cloned to form thekernel of the schema. Next, the kernel is extended by
defining concrete classes with associated roles and operations, creating corresponding
relationships and specifying necessary parameters. Since this must be done correctly,
this must conform to a kind of “syntax” of available modeling primitives and how they
may be combined. The modeling syntax is furthermore coupled to a semantics such that
the run time behavior indeed corresponds to what was intended, e.g., with respect to
which operation instantiates which product. We note explicitly that in order to allow for
sufficient flexibility we may need to be able to parameterize a schema with source code.

We illustrate the FACE modeling = programming approach in this paper for indi-
vidual patterns. Since — as in “normal” object-oriented frameworks — the full frame-
work may encompass several design patterns the specialization of the framework goes
accordingly: The developer copies a full primal schema to create the kernel schema and
extends it. This also includes “non-pattern” specific relationships and classes. We will
not further treat this in this paper.

The patterns that are presented here must be seen as “mini-frameworks.” The reason
being that it is generally known that there is no such thing as a standard implementation
for a pattern; it is always fitted to the specific usage. Thus, the realization presented here
cannot be simply copied to fit any framework. This is true for primal schema modeling
primitives as well as semantics. The patterns have been chosen from the “Design pat-
terns” book design pattern catalogue [4], each having a non-trivial class structure and
belonging to a different pattern category, namely the “AbstractFactory” and the “State”
pattern.

Although we focus in this paper on explaining and illustrating the programming =
modeling concept of FACE through design patterns, and thus basically introduce a
framework technology/ methodology, FACE allows (and needs) to let the modeling of
the application developer be actively supported by a tool. We shall shortly discuss a
prototype implementation of such a tool.

The rest of this paper is organized as follows: In section 2 we give a short descrip-
tion of the Abstract Factory design pattern. In section 5 the same is done for the State
design pattern. In section 3 we show an example instantiation of the Abstract Factory
design pattern in the FACE approach; in section 6 the same is done for the State pattern.
In section 4 we present adefinition of the Abstract Factory pattern which consists of the
meta-schema describing the modeling syntax and a primal-schema. In section 7, this is
done for the State pattern. In section 8, we show how a run-time meaning is given to
schemas that instantiate the State design pattern. In section 9 we discuss how the syntax
rules as embodied in the meta-schema are used to support the application developer in
creating a correct schema. In section 10 we discuss related work, in section 11 we give
a conclusion and discuss future work.



2 Short Description of the Abstract Factory
Design Pattern

The first example in this paper will be the Abstract Factory design pattern. We refer to
[4] for details. The Abstract Factory design pattern is used when client objects want to
create certain objects (e.g., window objects, scrollbar objects) but the instantiation of
these objects should not commit the client to choosing a specific implementation for
these objects (e.g., either Presentation Manager Window or Motif Window). The basic
idea of the pattern is to delegate the creation to a special factory object upon a client
request. By using polymorphism, the factory object’s class determines how the factory
object reacts to a request for a certain object. E.g., when requested to create a window
a MotifWidgetFactory object will return a Motif window, a PMWidgetFactory a PM-
Window.

3 Instantiating the Abstract Factory design
pattern

In FACE, application development and adaptation is done at a higher level of abstrac-
tion than that of source code. It is done at the level of schema extension and editing. In
figure 2 we see a diagram of a schema representing a typical instantiation of the Ab-
stract Factory design pattern, corresponding to the example in figure 1.

We first make some remarks about the notation. The concept of a schema in FACE
is related to the concept of a class-diagram in an object-oriented modeling technique
such as OMT, since it intends to show the classes (entities that are or may be instantiated
to run-time objects) and their relations. Thus, it is no surprise that the graphical notation
uses elements similar to those used in class-diagrams of OMT. Standard relationships
like subtyping (which is purely interface based sub-typing) and associations are used in
FACE schemas, and occur in the figure. However as mentioned in the introduction, the
schema for a specific pattern contains pattern specific relationships, in this case which

Figure 1. Illustration of the Abstract Factory pattern. We extend the OMT notation
with dashed lines to indicate the relationship between the widget factories and the
classes they relate. Note that this relationship will normally be hidden in the code.
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operation instantiates which class. Such a modeling primitive falls outside the standard
OMT modeling and thus has its own notation. Furthermore diamonds have a somewhat
changed meaning: Diamonds do not automatically mean aggregation; they mean asso-
ciation. Some of the notational deviations are more conceptual and will be discussed be-
low. We note explicitly that the diagram is meant to describe how a design pattern in-
stantiation can be modeled in FACE. Such a notation might also be used by a corre-
sponding tool, but this is currently not the case.

Before we go into detail regarding the elements and structure of such a schema, we
need some special terminology. In general we shall speak of the components of the
schema. We shall use the term “class-component”; one of the reasons for this terminol-
ogy is that, for the application developers, classes in the schema are really black-box
components that can only be specialized by means of parameters1 and relationships. We
now list some relevant aspects.

Figure 2. Diagram of a schema representing a typical instance of the
AbstractFactory pattern, as corresponding to the example given in section 2.
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The first relevant aspect is the use of a separate component indicating that the Ab-
stract Factory component has been used. It is also a container since it refers, using ref-
erences named after the role that they play, to the most important abstract classes of the
pattern. The class “AbsProd” in a sense plays a similar role: It is a container for the ab-
stract product classes such as “Window” and “Scrollbar”; this will be used in the copy-
ing of the primal schema see section 4.

Secondly, the operations that form the heart of the pattern are promoted into explicit
components of the schema, in this case the “create...” operations.

Thirdly, relationships are made explicit that have a context specific run-time mean-
ing. In this case the operation “createWindow” of the class-component “MotifWidget-
Factory” has an “instantiates” relationship with the class-component “MotifWindow,”
indicating that this operation will create instances of that class.

Fourthly, class-components are typed as corresponding to the role they play in the
pattern: For example, the class-components “MotifWidgetFactory” and “PMWidget-
Factory” are both of the type “ConcFact” (Concrete Factory). This means that they are
specialized in a specific way, namely in this case with the set of operations and per op-
eration the link to the class-component that it creates and that this specialization has the
corresponding run-time meaning (see section 8).

Finally, we made the association descriptor (as indicated using a diamond in the fig-
ure) as a separate independent schema component. One of the parameters of an associ-
ation descriptor is whether the association is an ownership (and thus aggregation) or
otherwise a reference. There are various both conceptual and FACE-implementation
technical reasons for this which we will not further discuss.

We stress again that the schema makes only aspects explicit that are relevant: oper-
ations of the product classes that do not play a role in this pattern are not shown; internal
structure is hidden, since it is of no relevance to the application developer. We thus re-
quire that product classes be implemented beforehand, either coming “ready made”
with the framework or implemented in a separate coding phase of components.

In section 4, we show how we can define a meta-schema, what kind of elements
(what kind of classes, what kind of relationships) a schema may have, and how these
may be combined.

4 Framework specific definition of the Abstract
Factory Pattern

In section 3 we saw that pattern specific class-components were used, and pattern spe-
cific relationships (e.g., “creates”) between these to form a schema. However, not all
combinations of relationships and class-components lead to a correct “well-formed”
schema. For example, the “creates” relationship must be made from a create operation
to a concrete product class-component, and not to any other kind of class-component.
In general, each pattern usage in a framework comes with a specific set of class-com-

1. Not shown in this example, parameters may also be procedures, thus allowing, where
necessary, for greater flexibility.



ponents and relationships and with rules how these may be combined. This must be ex-
pressed in a so-called “meta-schema” to allow FACE to adapt to a specific framework
with specific patterns. The meta-schema thus expresses the “modeling syntax” of the
schema and will be discussed below. In section 9 we shall see how such a meta-schema
may be used to support the application developer in creating a correct schema.

Just as an application developer using standard (“classical”) source code level ap-
plication development starts from the set of abstract classes, the application developer
in FACE does not start from scratch, but starts from a kernel schema, a schema that only
contains the identifying component and the abstract class-components and their rela-
tionships, and adds concrete class-components and their relationships to this kernel.
Therefore, a pattern definition not only encompasses the meta-schema (that defines how
the kernel schema may be extended), but also a template for the kernel schema. This
template is called the “primal schema.” These two together are represented together in
figure 3.

The figure illustrates that the syntax rules themselves are also embodied as a sche-
ma, the “meta-schema.” This allows for the similar treatment of schemas and meta-
schemas by tools (see section 9). The class-components in this meta-schema are called
metaclass-components, the reason being that instances of a metaclass-component are
class-components. The structural relationship between a metaclass-component and its
instances is the same as between a class-component and its instances (see section 3).
Thus, a meta-class component defines the existence and possible use of a certain type
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e.g., all Concrete Widget class components in figure 5 are instance of
“ConcreteFact.” Association descriptors are again indicated by diamonds. Dashed
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of special purpose class-components. In figure 3, for example, “ConcreteFact” defines
the type of those class-components that correspond to factory objects. These class-com-
ponents have “ConcFact” written behind their name in figure 2.

Most of the relationships between metaclass-components is via association descrip-
tors as these were also described in section 3. These describe what kinds of structures
are allowed in the schema. For instance the “creates” association descriptor between
“ConcrCreateOp” and “ConcreteProd” describes that an operation such as “CreateWin-
dow” has an explicit reference to the class-component that will be created by this oper-
ation (which must be a concrete product class-component). Through the “operations”
association descriptor between “AbstractFact” and “CreateOp” is stated that Factories
have these special kind of “creating” operations.

In figure 3 we also see the primal schema. This schema is copied, and used as the
kernel for the rest of the schema development when the application developer instanti-
ates “MetaAbsFactPattern.” In order to make the primal schema relatively general,
“PrimalClient” is given an association with “PrimalAbstrProd” so that the Client object
may refer to any kind of product.

5 Short Description of the State Design Pattern

The next example in this paper will be the State design pattern. We refer to [4] for de-
tails. The state design pattern is used when an object has to exhibit state dependent be-
havior, that is, dependent on its state the object reacts differently to the same requests
for operation execution. The solution the pattern offers is illustrated in figure 4 for an
object p that has to implement the “TCP” network protocol. The object delegates re-
quests that have to be handled state dependently to another object (the state object). It
changes state by exchanging that object.

The TCP network protocol implementation that is an example of the use of the state
pattern is taken from [5]. The solution is somewhat different from the standard solution
[4] in that, instead of the context object (here called a “protocol” object) directly react-
ing to messages, and delegating these to its state object, there will be a request object1

that represents the operation to be executed. The protocol handles the request by giving
it a reference to the state object and sending it the message “apply.” The request then
sends the corresponding message to the state object. In this way the protocol class can
be generally applied in any use of the pattern, independent of what kind of operation
requests may need to be handled.

6 Instantiating the State design pattern

In figure 5 a schema for a particular instantiation of the state design pattern is represent-
ed. This diagram is again close to a class-diagram, as in the example for the Abstract-
Factory pattern (figure 2), it contains much more pattern specific information, so that it

1. In [5] this is called a messenger object. We follow however the general terminology in
[4].
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Figure 4. Solution to implementing the state design pattern as used by Hueni
et.al.[5]. Left: An object p refers in its property “state” to one of the state objects.
Each of these state objects is a “singleton” instance of the classes given at the right
side. The figure shows a typical sequence of messages. The class hierarchy at the
right side shows that each state object is an instance of the abstract class
TCPState, which defines the basic messages that can be sent in each state. Each
of the subclasses specifically defines the behavior of the object for each of these
states for each of these commands. A fully implemented protocol needs more
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for the closed state. Note that we shall call “messengers” as used in [5] “requests” in
the text.
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describes in sufficient detail what the run-time system should do. Particularly, the en-
richment encompasses:

• The use of framework (pattern) specific component types in the schema: for ex-
ample all the concrete class-components that represent a state are of the type
“ConcreteState.” This corresponds to a generic implementation. Another exam-
ple are the transition descriptors like “Close,” “Send” that describe the links be-
tween the ConcreteState class-components.

• The use of framework (pattern) specific relationships between components of the
schema: In particular, the links between ConcreteState class-components (as
qualified by the transition descriptor) represent corresponding state transitions.
The name of the transition descriptor corresponds to the operation that invokes
this transition

• The transition descriptor may be parameterized with extra information that de-
scribes what else should happen in a state transition. Two such parameters are
pre- and post- transition procedures, e.g. used for measuring response times. This
is not shown.

• A pattern specific identifying component “TCPStatePattern” identifies the fact
that the pattern is used; it is a container in the sense that it refers to all the major
(abstract) class-components that play a role in the pattern.

As in figure 2, association descriptors are used here. For instance, the association de-
scriptor between TCPProtocol and TCPState, describes that instances of TCPProtocol
contain a reference to a state object. The association descriptor is thus a general com-
ponent that can be used in any schema.

7 Framework-specific Definition of the State
Pattern

Figure 6 illustrates how the state pattern may be defined as a meta-schema and linked
to that a primal schema. Again the meta-schema embodies the rules for correctly creat-
ing schemas for this pattern and the primal schema defines the basic abstract class-
structure that the application developer will use to extend. This primal schema is copied
as a whole when the application developer instantiates the “MetaStatePattern.”

We note again:

• In the meta-schema metaclass-components specify what kind of class-compo-
nents may occur, e.g., all the concrete State classes such as “TCPClosed,” “TC-
PListen” etc. are instances of ConcreteState, all transition descriptors are instance
of “MetaTransDescr.” Association descriptors specify what kind of relationships
these components may have, e.g., the association descriptor “operations” of Con-
creteState describes that a ConcreteState class-components can have operations
of the type “MetaTransDescr,” i.e., transition descriptors.

• Through the correspondence between meta-class components and primal classes,
the correspondence between the meta-schema and the primal schema is made. In
general, when the developer instantiates a metaclass-component, the resulting
class-component is a copy of the primal-class of the metaclass-component. For



MetaStatePattern, the whole structure consisting of PrimalStatePattern, Primal-
Context and PrimalState is copied, since PrimalContext and PrimalState are
structurally contained by PrimalStatePattern.

8 Realizing the Run-Time Meaning of the Class-
Composition.

The idea of using schemas to describe applications has been described so far in an im-
plementation independent way. One of the major questions is how the parameterization
and linking of class-components and relationship components may lead to the corre-
sponding run-time behaviour of the objects, and how we would allow such a correspon-
dence to be easily (or as easy as possible) set up by the framework developer.

Basically two approaches are possible: a compiled approach in which “real” classes
in standard object-oriented technology are generated from a schema or an interpreted
approach in which the schema is represented explicitly (or “reified”) at run-time and the
run-time software adapts its behavior to this information. Due to a greater simplicity
and run-time configurability we have currently only applied the second approach. The
first approach leads to more efficient execution, but this has not been a major concern
so far.

In the second approach the schema is represented explicitly at run-time as objects
that represent the class-components and relationships. This is quite natural, since the
schema will normally be created interactively as an object structure by the application
developer anyway. The class-components are thus run-time represented as objects but
they function as classes, in the sense that they can be requested for instances. When re-
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Figure 6. Meta-component structure for the state composition pattern. Metaclass-
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5 Note that since “MetaTransDescr” is a subtype of “MetaOperation,” transition
descriptors, which are instances of MetaTransDescr are really operation
descriptors.



quested for instances, they will return an instance object (either by copying a prototype
that they carry or by calling a constructor). The instance objects will have a generic im-
plementation, implemented in the underlying object-oriented language1. The imple-
mentation is generic in the sense that these instance objects will query the objects in the
schema to adapt their behaviour to the parameters. Such a query will be called an “up-
call.” The class-component in its role of run-time accessible object thus implements be-
haviour to answer these queries.

We describe in further detail how the state class-components and their linking via
transition descriptors determine the behaviour of the corresponding instances at run-
time (figure 7).

Assume that the TCP-Protocol object p refers through its state property to an in-
stance of the state class-component “TCPClosed” and it has to handle a request that is
an instance of “PassiveOpen.” The default behaviour of the protocol object is (as de-
scribed in section 2), to send the message “apply” to the request, together with a refer-
ence to the state object. As a result (this is shown in figure 7) the request will send the
message “execute” to the state object, with the name “PassiveOpen” as a parameter.
The state object will query its class-component “TCPClosed” for the transition descrip-
tor using the upcall message “findConcrOperationDescr.” TCPClosed will return the
transition descriptor. This descriptor is queried for its parameters. The object will query
the transition descriptor for the transition target. It will return a reference to the class-
component “TCPListen.” The state object will ask “TCPListen” for an instance (“TC-
PListen” has only one instance). This instance will be returned to the protocol object,
that will change the value of its “state” property to refer to this other state object.

1. This underlying language can be anything: so far, implementations have been done in
Self and C++.
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Figure 7. Object interaction for making a state object execute a transition
diagram: The state object does an up-call to its class-component, in this case to
“TCPClosed.” “TCPClosed” finds the concrete operation descriptor for
“PassiveOpen.” The state object retrieves the information from this object,
especially the reference to the next class-component, being “TCPListen.” The
state object asks it for instantiation. “TCPListen” returns its prototype. This
instance is returned to the calling protocol object.
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9 Using a Meta-schema to Drive the Visual
Composition Environment

So far we have shown through examples how a schema contains information for mod-
eling a pattern in pattern specific terms, and how a meta-schema contains the modeling
syntax for this. A FACE editing tool can actively support the application developer in
modeling schemas correctly. Such a tool can be generic since it will be driven by the
meta-schema.

It was suggested in section 1, and it is only natural, that the application developer
should havevisual support in creating and editing the schema. This strengthens the idea
of explicitness: It gives immediate insight in (makes explicit) what components there
are in the schema, what relationships there are between them, and thus also, what can
be edited. Visual support should further help the developer in creating the right kinds
of components, and creating the right kinds of relationships between them.

Currently, FACE uses the Kansas-Self [19] visual presentation to support visual
modeling see figure 8. This means that (as mentioned in section 8) all components in a
schema are represented as objects, and relationships as links between objects in Kansas.
Kansas provides direct presentation and editing of these objects. The user of Kansas can
also directly send messages to objects by entering the message in an evaluator dialogue
box of the presented object. For example, the user can instantiate a meta-class compo-
nent by directly sending the message “instantiate” to the object that represents it. To
support meta-schema driven modeling only those meta-class components that need to
be instantiated are presented, other information in the meta-schema is not shown. Rela-
tions between class-components are created by first using Kansas support to create a
link between the objects that present those, and then sending a message to an object that
represents the link to create the relationship; in doing so, a test will be made on basis of
the meta-schema if the relationship is correct, otherwise it will be denied.

One could say that this is the “poor-man’s solution” of visual support; there are no
“tailor made” presentations for schemas such as the ones shown in the figures in this
paper, and the developer is not helped in performing a certain sequence of actions. We
admit this but on the other hand we assert that it provides a proof of concept as it con-
tains all the elements presented in this paper. Creating instances of a class or meta-class
component, corresponds to copying the prototype it carries as described in section 8,
which is again natural in Self. Using the schemas to determine run-time behaviour fol-
lowing the principle described in section 8 is no problem in the Kansas environment.
Furthermore we assert that fancier presentations will not change the principle of sup-
porting the developer in creating the correct components and relationships.

The principle of checking relationships that the developer attempts to create on the
basis of the meta-schema is as follows: The system is implemented in such a way that
for an attempted relationship (e.g., “creates” between the “CreateWindow” operation of
“PMWidgetFactory” and the “PMWindow” product class in figure 2) the correspond-
ing association descriptor can be found (in this case the “creates” association descriptor
as presented in figure 3). This association descriptor is queried by the method that
checks the attempt. A check is made whether the target of the link is an instance of the



meta-class component that the association descriptor points to or of one of its subtypes.
If this check returns true, the attempt succeeds. In this example, “PMWindow” is an in-
stance of “ConcreteProd,” so the attempt succeeds.

10 Related work

The idea of actively supporting design patterns is finding its way into CASE tools. A
first commercial product supporting patterns is Objectif [12]. A more experimental ap-
proach is described by Pagel & Winter [15]. These kinds of tools focus on helping the
framework designer: patterns are mainly used to support the design of the framework
architecture. Code can be generated, but this is not the main goal of these tools.

Closer to our work is work is work described by Soukop [19] and Sommerlad, et.al.
[17], which supports application developers. Basically these tools provide quite exten-
sive code generation. In the case of Soukop, it is quite clear that the developer has to
further adapt the classes after code has been generated and that thus the link between
the higher abstraction (which are basically only macros) and the code will further be lost
(this was called the design-implementation gap problem in the introduction). In the
work of Sommerlad et.al, it is not clear whether the higher abstraction level allows for
adding code, and thus precludes having to change generated code. We assume that they
have the same design -implementation problem. They certainly have the problem that
creating framework-specific support is a heavy burden on the framework developer. In
FACE, no tool extension or adaptation is needed: only the adaptation or extension of
meta-schemas.

Figure 8. Snapshot of FACE Class-composition as made available through
Kansas: Each class-component is represented by an object. Each property, e.g.,
“transitionTarget” (corresponding to the “transition” property described in figure 6)
is itself represented by an object. Linking the tmp attribute of that object to another
object corresponds to “attempting” to make the link between the owner of the
property object and the other object, in this case the link is attempted between a
concrete operation component for the transition ‘Close’ for the “transitionTarget”
property to a concrete state class-component, namely the one that represents
TCPClosed. By requesting evaluation of “addTmp” (push the “Evaluate” button) the
composition will be made if it is a correct link, as is the case here.



Vista [11] is a visual tool that supports composition, and that can be adapted to the
composition rules. In contrast to FACE, Vista does not support a precise distinction be-
tween class components and instances.

Composition at the level of classes (although not visually supported) is encountered
in particular in “generic” constructs, where classes can be parameterized with other
classes, such as in the template classes in C++. The Standard Template Library STL
[13] shows the power of applying this idea. Also the work of Batory et. al. [1][2] is
based on parameterizing class-level components with class-level components. The
work of McGee and Kramer on Darwin [10] represents another form of class-level com-
position: Links between components basically describe communication possibilities
between the instances. All these approaches offer a fixed meaning to links between
classes. In contrast, in FACE arbitrary kinds of relationships may be introduced. This
is a result of the meta-level that is provided.

In this respect, our work has roots in the area of open programming languages such
as CLOS[6], and in Open Implementations[16]. Open programming languages such as
CLOS reify their software components (classes), but the reification is not “black-box”
the reification is quite complex, and it is difficult to create “drastically” different com-
ponents because of the intricate cooperation between all parts of the reified class.

The way in which we use reification and reflection is close to the model of Klas and
Neuhold [7]. Their model also allows one to introduce new kinds of relationships. They
focus on adaptive data models for databases systems, less on frameworks and applica-
tion development. We feel that our model is simpler and therefore easier to understand
and use.

Steyaert et. al. [20] have described how the use of a meta-level interface could be
applied to provide powerful configuration capabilities for user interface builders. Also,
using reflection, new kinds of components could be described using the composition
environment itself. However, the way in which they open up the framework and corre-
sponding visual composition seems to be restricted: They do not describe mechanisms
for introducing new component cooperation forms in the framework.

The work of Lieberherr et. al.[8][9] on adaptive programming also shows how use-
ful it is to have programs that adapt to the class-structure. They focus on adaptiveness
of traversal operations. We think that our approach is broader. It may also cover travers-
al adaptiveness (but we still have to prove that), although it is, of course, not as well
“tuned” for that.

11 Conclusion and Further work

In most software development environments, there is a gap between the design level,
where new CASE tools may let the designer represent the system in terms of design pat-
terns, and the implementation level, where the developer works at the level of source
code. In working at the implementation level the connection with the higher-level con-
cepts is either implicit or only available in terms of documentation, so that adapting and
extending a system in agreement with the chosen design patterns is not actively support-
ed. We call this problem the design-implementation gap. We have shown in this paper
how to represent software as a “model” at the high-level abstraction of design patterns,



while still capturing enough information for running the application. We have thus pre-
sented a “modeling = programming” approach. Basically, the model (called a “sche-
ma”) makes explicit all the information that the application developer may want to see
and/or change. Such information is normally implicit in source code, such as the roles
of classes and relation between the classes. All other implementation information re-
mains implicit. Furthermore we have shown that a visual composition tool, for which
FACE currently implements a simple solution, can help the developer to create and
adapt these models correctly according to the pattern specific syntax rules.

By illustrating such a modeling = programming approach for design patterns, we
imply that the same approach will carry over to full frameworks consisting of several
patterns and other components and relationships. Still, how this would work is outside
the scope of this paper. We stress furthermore that we have focussed on raising the ab-
straction level to the level of design patterns, not on making instantiations of design pat-
terns into modeling “molecules” that can be reused blindly in any framework. The rea-
son is that each framework applies design patterns in a specific way.

FACE is a framework adaptive “environment.” It can be adapted to different frame-
works and in more restrained sense to the patterns in the framework by means of a meta-
schema and generic software that implements the semantics of a schema. We have
shown how this may be done. It is our hypothesis that due to this technology the gain
of simpler application development is not lost by the effort setting up and adapting such
a “modeling = programming” framework and that this approach will thus be an attrac-
tive alternative to “standard” object-oriented framework technology. This still needs to
be proven.

Future work will be in two directions:

• Using FACE for re-engineering purposes [19]: discovering patterns, anti-pat-
terns, the relationships between classes etc. and representing this in FACE sche-
mas; afterwards, improve system design by applying restructuring transforma-
tions based on design patterns.

• Applying FACE to real world frameworks. Interesting questions will be, how
complex meta-schemas will become. We want to investigate whether we can un-
couple patterns (similar as described by Soukop [19]) so that the reuse and merg-
ing of patterns will be easy.
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