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   Beyond Objects:  Components 1

Theo Dirk Meijler and Oscar Nierstrasz 
Software Composition Group, University of Berne2

Abstract. Traditional software development approaches do not cope well with the
evolving requirements of open systems. We argue that such systems are best viewed a
flexible compositions of “software components” designed to work together as part of a
component framework that formalizes a class of applications with a common software ar-
chitecture. To enable such a view of software systems, we need appropriate support from
programming language technology, software tools, and methods. We will briefly review
the current state of object-oriented technology, insofar as it supports component-oriented
development, and propose a research agenda of topics for further investigation.3

1 Introduction

In large scale networks, such as the internet, many different kinds of resources are av
These resources include not only information systems and their contents, but also infor
processing programs, expert system shells, and other kinds of computational resource
der to synthesize information from various sources and avoid having to duplicate inform
processing resources, it is necessary to make information systems and computational re
cooperate. Cooperation can take various forms: in decentralized cooperation, resources ar
agents that cooperate actively (and possibly interactively) to arrive at a common result, a
thus visible to each other; in centralized cooperation an integrating agent manages underly
resources that are not visible to each other, issues requests to the resources, and is respo
for synthesizing the results.

In order to realize different forms of cooperation, technological support is needed: F
all, an infrastructure is needed to allow heterogeneous resources to communicate eith
each other or with an integrating agent. Since there are now several industrial standards
ble that provide this kind of support (i.e., CORBA, OLE, OpenDoc, etc.), we will assume i
chapter that the necessary infrastructure is in place. Second, reliable solutions for coord
and synthesis are needed. This encompasses such aspects as “brokering” (i.e., decidin
requests should go where), coordinating concurrent or simultaneous access to shared 
es, establishing a valid execution order for servicing requests, maintaining consistency 

1. In Cooperative Information Systems: Current Trends and Directions, M.P. Papazoglou, G. Schlageter 
(Ed.), Academic Press, Nov. 1997, pp 49-78.

2. Authors’ address: Institut für Informatik (IAM), Universität Bern, Neubrückstrasse 10,
CH-3012 Berne, Switzerland. Tel: +41 (31) 631.4618. Fax: +41 (31) 631.3965. 
E-mail: {meijler, oscar}@iam.unibe.ch. WWW: http://iamwww.unibe.ch/~scg.

3. Some of the material presented here was previously published in “Research Topics in Software C
position” in Proceedings, Langages et Modèles à Objets, A. Napoli (Ed.), Nancy, Oct. 1995, pp. 193-204. 



Theo Dirk Meijler and Oscar Nierstrasz 2.

eral we
. In a
ted in a

in
lica-
thesis
rds, it
and re-
r “com-
d when

ing re-
but also
ons to

tent to
 infor-
e non-
 coop-
 be re-

ost rel-
 by pro-
at they
rdinate

n and
he ques-
plied in

f re-
onents

tional
tails of
 check
s and
 it eas-

en hid-

 they
-

sistent state, gathering and integrating results from various resources, and so on. In gen
will distinguish non-functional behavioural aspects of a system and the functional aspects
Cooperative Information System the latter correspond to the resources that are integra
cooperation.

Cooperative information systems are essentially open systems: systems that are open 
terms of topology, platform and evolution[55]. A key characteristic of open, network app
tions is that requirements continuously change. This implies that coordination and syn
must not only be reliable, but they must be robust, flexible and configurable. In other wo
is necessary to identify and implement software abstractions that encapsulate efficient 
liable solutions to standard coordination and synthesis problems. These abstractions, o
ponents”, can then be used across many different applications, and can be reconfigure
application requirements change.

Thus “software reuse” is the key to building these systems: not only are the cooperat
sources themselves software components that are used across multiple applications, 
the components that realize non-functional behaviour will be used in various configurati
address a variety of requirements.

In this chapter we will summarize the state of the art in software reuse, evaluate the ex
which available approaches support (or fail to support) the construction of flexible, open
mation systems. We shall especially focus on the possibilities to configure and specializ
functional behaviour independently from functional behaviour as needed to realize open
erative information systems. We shall identify a series of open research problems to
solved.

We start by noting that object-oriented languages and techniques presently offer the m
evant and promising support for our problem. Objects encapsulate data and operations
viding an interface that only responds to messages. They can therefore hide the fact th
might encapsulate existing programs, act as proxies for remote resources, or even coo
multiple, concurrent requests. In short, objects provide a uniform way to hide distributio
heterogeneity. If we assume that resources will be encapsulated as distributed objects, t
tion then becomes how to realize coordination and synthesis abstractions that can be ap
a reusable way to these distributed objects.

It is useful to distinguish between “white box” reuse — in which the implementation o
used components is exposed to some degree — and “black box” reuse, in which comp
can only be reused according a specially-provided reuse interface, or contract. We will take the
position in this chapter that the most desirable form of reuse is “black-box” or composi
reuse, since this frees the application developer from having to study implementation de
components to be reused. Since the reuse contract is explicitly specified, it is possible to
the contract, and to actively support it in a development environment. Furthermore, link
dependencies between black box components must be explicitly specified, thus making
ier to adapt a composition to new requirements. With white box reuse, these links are oft
den and implicit in the extension code, and therefore harder to understand and change.

In section 2 we will give an overview of black box components, illustrate what problems
address through their support for variability and adaptability, and provide a scenario for com
ponent-oriented application development.
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In the next section we shall evaluate how well current object-oriented technology su
this form of black-box reuse, and at the same time indicate what the consequences are 
izing components for non-functional behaviour. We see for example in section 3.1 that
problems arise when trying to integrate such non-functional aspects in object-oriente
gramming languages. Furthermore, in section 3.2 we shall see that subclassing is really 
box reuse mechanism, which makes it quite difficult to reuse by inheritance classes that
ment coordination abstractions.

Section 3 gives us an overview of necessary object-oriented technology, but also sh
the current limitations of that technology. In section 4 we give an overview of future direc
We focus on the requirements and possible realization of a composition environment. O
portant aspect of such an environment will be the distinction between two separate role
separate concerns: (i) application developers develop specific applications by composing bo
domain-specific functional components and generic, coordination components, in a bla
fashion; (ii) component developers build black box components by identifying useful softwa
abstractions and factoring out both domain-specific and generic components. The imple
tion of the components themselves may incorporate white box reuse, but this should not
ible to application developers. Furthermore, a clear distinction will be made bet
extensional object composition and intentional class level composition, components for no
functional behaviour mostly being part of the latter. In such a composition environment a
rules, together called the composition model, determines what compositions are legal. A co
position environment will allow for visual composition, and support the developer to do 
compliance with the composition model.

We conclude by noting that present-day software development methods do not yet s
component-oriented development in two important senses: first, component reuse is oft
sidered far too late in the software lifecycle, after detailed design is complete, whereas s
atic reuse of component requires that software architectures also be reused. Second, no
well-known methods gives any hint how to develop reusable software components. Meth
support component development are still an open research topic.

2 Software Composition for Open Systems

If we examine successful approaches to developing open, adaptable systems — such a
application generators, component toolkits and builders, and object-oriented framewo
we find that there are striking similarities. In each case, (i) the application domain is we
derstood, (ii) a generic software architecture captures families of applications, (iii) param
ized software components are designed to be specialized or instantiated to meet 
requirements, and (iv) the path from requirements collection to implementation is reduc
least to some degree) to a recipe or formula.

Each of these points is true to a lesser or greater degree depending on how specialized
eral the approach is. For example, software components are clearly visible in the latter th
proaches, but are often hidden behind the language in a 4GL. On the contrary, the s
development path is most streamlined with a 4GL, and less evident with a framework, sin
tailed knowledge of the implementation details of a framework is typically required befor
can use it to build a specific application. 
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In each case, variability — how much variation can be achieved — is attained by provid
components on top of which variations can be introduced. Adaptability — how easy it is to
adapt existing applications — is achieved by providing a generic application architectur
can be adapted to different needs. Ease of use is achieved by providing “black-box” inte
to components that on the one hand constrain the ways in which components can be u
on the other hand limit the need to understand implementation details of components.

2.1 Components and Black-Box Reuse

Software reuse addresses two seemingly contrasting sets of requirements: (i) streamlin
development process, and (ii) ensuring robustness and run-time efficiency of products
introduction we asserted that “black box” reuse is preferable to “white box” reuse. We wil
try to make this distinction precise by explaining what we mean by the term “component

We may see a program as a structure: a structure of statements, or of procedures, m
classes etc. In the most basic form of software development the developer has to crea
structures from scratch. We can abstract away from the elements of a structure in order 
up to various levels of reuse. A programmer who is provided with certain pieces of stru
that can be adapted and combined (e.g., a sequence of statements or a group of coo
classes) can already achieve a certain degree of reuse. We call this “open” or “white-box”  soft-
ware reuse, since the structures that are reused are not encapsulated.

Adapting white-box structures can be very difficult, however: one has to understand
each element in the structure means and how the elements work together in order to re
structure. The complexity of adaptation of course depends on the complexity of structur
adapted. Moreover, putting several complex structures together to form a bigger system
merging together groups of statements or different class hierarchies) is also difficult. T
where software components help us.

A component is an abstraction of a software structure that may be used to build bigge
tems, while hiding the implementation details of the smaller structure. Putting together co
nents is simple, since each component has a limited set of “plugs” with fixed rules spec
how it may be linked with other components. Instead of having to adapt the structure of a
of software to modify its functionality, a user plugs the desired behaviour into the param
of the component.

There are therefore two important aspects to components: (1) encapsulation of software
structures as abstract components, and (2) composition of components by binding their param
eters to specific values, or other components. A simple example is a function or a proced
rameterized by its run-time arguments. An object-oriented example is a generic or “tem
(In C++ [13]) container class, which can be parameterized by the type of the containe
ments. Encapsulation is the means to achieve variability, since the possible variation
pressed in the parameters (or “plugs”) of the component. Adaptability is achieved d
composition, since a software structure composed from components can be more easily
figured than an unencapsulated structure.

We can exchange the open variability of white-box structures for the fixed variability of
sible connections to the plugs of the component. This restriction of variability is possibl
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to the fixed intended purpose of the component; it also includes the possibility to check th
rectness of combinations of parameters. We call this “closed” or “black-box”  software reuse.

When we build systems by putting together pieces of software, the need for compositio
is even clearer. It is difficult to integrate open pieces of software structure, as anyone w
“cut-and-pasted” software code can testify. Creating new classes through inheritance ca
a similar problem, since object-oriented languages do not support the specification of an
it, typed “inheritance interface” for programmers who develop subclasses [23]. Putting to
er components is much simpler, due to a well defined composition interface that define
components may be “plugged” together.

What, if any, are the differences between objects and components? First of all, objects
sulate services, whereas components are abstractions that can be used to construct object-o
ented systems. Objects have identity, state and behaviour, and are always run-time 
Components, on the other hand, are generally static entities that are needed at syste
time. They do not necessarily exist at run-time. Components may be of finer or coarser
larity than objects: e.g., classes, templates, mix-ins, modules. Components should hav
plicit composition interface, which is type-checkable (see figure 1). An object can be see
special kind of stateful component that is available at run-time.

It is certainly possible to implement many kinds of components as objects, which is 
source of a great deal of confusion. By encapsulating components as objects, one ac
great deal of flexibility, since components can then be configured and substituted at run
This notion is fundamental to all interactive component-based development environ
(such as user interface builders). On the other hand, this does not mean that either every objec
is usable as a component, or that components must be implemented as objects! Function
ules, templates and even whole applications can be seen as components. Conversely
that are not designed to be connected to other objects are not “pluggable”, and hence ca
seen as components.

2.2 Why Do We Need Components?

Let us now consider what specific problems are addressed by components:

Fast time-to-market. Applications that can be built from reusable components ca
developed more quickly and thus brought to market and sold more cheaply than cu
made applications.

request

reply

input plugs (required)

output plugs (exported)

an object a component

Figure 1   Objects and Components.
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Reliability. Components that are reused across many applications are bound to be
reliable than new, hand-coded components. Applications built according to tested f
works are bound to be more reliable than newly designed and implemented applic

Division of labour. Components with well-defined interfaces are natural units for d
tribution to software teams. The development of applications from software compo
and the development of reusable components themselves are tasks requiring d
kinds of skills and experience.

Variability. Families of applications can be developed using a common software
only if the software base can accommodate sufficient variability. Software compo
support variability through parameterization. Parameters represent functionality
must be provided by the client of the component, or (as is often the case with obje
ented components) default functionality that may be overridden.

Adaptability. A flexible application is one that can be easily adapted to changing
quirements. Software components support adaptability if an application can be v
abstractly as a configuration of components linked together. If the components hav
well-designed, many changes in requirements can be addressed at this abstract 
reconfiguring the application’s components. In well-understood application dom
many possible changes in requirements can be anticipated and incorporated into 
sign of the components and the ways in which they may be composed.

Note that adaptability may be viewed as a form of reusability, since it entails the 
of an existing application to create a changed version. However, it is a special form
it does not focus on newly building (larger) systems from (smaller) existing softw
components. Variability is a pre-requisite to adaptability but increasing variability in
components may damage adaptability since adaptation becomes correspondin
creasingly complex.

Distribution and concurrency. In order to use hardware resources optimal
systems are becoming more distributed and consequently concurrent. Since dist
systems are notoriously difficult to implement correctly, application developers 
software abstractions that can simplify the task. Components offer on the one han
ural units for distribution, and on the other hand may encapsulate protocols and c
rency abstractions, thus hiding the complexity of distributed programming from app
tion developers.

Heterogeneity. Open systems are inherently heterogeneous. Components of a dis
ed system will be developed using different platforms and programming langu
Components help by hiding differences in implementation platform behind interf
that are (in principle) independent of programming languages, as in component m
such as COM and CORBA [22][47].

A piece of software can be called a component if it has been designed to be composed with
other components. In general this is done to address a particular class of applications. I
the case1 we say a component framework has been developed for that application area. This
tion still needs to be better understood. The key principles, however, are:
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• A component framework does not just consist of a library of components, but mus
define a generic architecture for a class of applications.

• Flexibility in a framework is achieved through variability in the components and adapt-
ability in the architecture.

• Flexibility in an application is promoted by making the specific architecture explicit and
manipulable.

2.3 A Scenario for Compositional Development

Since black-box components are not isolated entities, but only become useful in the con
a framework, or at least of an environment[37], this form of reuse cannot be achieved 
starting to develop components. So, how should software development be organized in o
achieve compositional, black-box reuse? In an attempt to answer this question, we prop
following scenario for component-oriented software development (see figure 2): 

• A component framework is a collection of software artefacts that encapsulates (i) dom
knowledge, (ii) requirements models, (iii) a generic software architecture and (iv) a
lection of software components addressing a particular application domain.

• Development of specific applications is framework-driven, in the sense that all phases 
the software lifecycle, including requirements collection and specification are d
mined according to set patterns formalized within the framework. To a large exten
tem design is already done, since the domain and system concepts are specifie
generic architecture.

1. Note in the Componentware [37], [56] approach a whole component environment may be said to s
as a “framework”.

Figure 2   Component-Oriented Software Development

Specific Application

Generic

Components

Domain Knowledge

Requirements Models

Architecture

A Component Framework

Specific
Requirements
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• The remaining art is to map the specific requirements to the concepts and comp
provided by the framework. This is in sharp contrast to naive approaches that wou
ply either a traditional or an object-oriented method for analysis and design, and
during implementation attempt to find “reusable object classes” matching the d
specification in a software repository. Experience shows that the most valuable k
reuse occurs in the early stages of the software lifecycle [14][15].

Such a scenario would therefore correspond to a new, framework-driven method of so
development that is much more strongly directed towards software reuse than existing 
oriented development methods.

The scenario assumes that all parts of the component framework are formally specifie
managed by an application development environment. The environment guides the re
ments collection and specification activities, and helps to guide the specialization and co
ration of the application from available components.

Given this scenario of component-oriented development, we can define software com
tion as the systematic construction of software applications from components that imple
abstractions pertaining to a particular problem domain. Composition is systematic in that it i
supported by a framework, and in the sense that components are designed to be composed.

Now let us be more precise about what we mean by a “software architecture”:

• A software architecture is a description of the way in which a specific system is co
posed from its components (cf. [50]).

• A generic software architecture is a description of a class of software architectures
terms of component interfaces, connectors, and the rules governing software compos
tion.

Connectors [50] mediate the interconnection between software components. Conne
may either be static or dynamic. Static composition entails interface compatibility (e.g., type-
checking), and binding of parameters (e.g., binding of self and super in inheritance). Dyna
connectors additionally entail any kind of run-time behaviour, such as buffering, pro
checking, translation between language/execution models, and service negotiation. Co
tion often reduces to some combination of (i) generics/macro expansion; (ii) higher-order
tional composition; or (iii) binding of names to resources (e.g., object identifi
communication channels).

Composition rules formalize the kinds of components that may be composed using the
able connectors, and may be expressed in a type system, in the semantics of the progr
language used, or as part of a tool or environment. For example, the fact that certain k
applications may be composed with “Unix pipes” depends partly on the definition of the
ponents (they must be designed as “sources”, “filters” or “sinks”), on the semantics of th
programming language, and on the run-time environment (i.e., the buffering of input and 
by the operating system). All composition rules together, in whatever form, make up thecom-
position model.

A component framework helps in the development of open systems by allowing a sp
system to be viewed as a generic family of applications in the sense that its software ar
ture is derived from a generic one. The resulting system is open and flexible if its softwa
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chitecture is explicit and manipulable. (This is clearly a necessary condition, since a sys
whose architecture is not explicit cannot easily be adapted to new requirements.)

3 Object-Oriented Software Composition

From the previous sections we can now distil some requirements for the construction o
information systems in general, and Cooperative Information Systems in particular. In th
minology of section 2, we see that we need to develop component frameworks. In the c
of Cooperative Information Systems, the components of a such a framework would in
first of all, the individual systems that cooperate, and, second of all, the components that
the coordination and synthesis. This is necessary to keep the cooperation as flexible as p
allowing us, for example, to have both central and decentralized cooperations. In order to
having undesirable and undocumented dependencies between components, it is impor
cooperative systems be built from components in a “black box” fashion.

We assert that the fundamental problem to be addressed by a framework for Coopera
formation Systems and for open systems in general, is to provide black box components 
capsulate both functional and non-functional aspects of behaviour (i.e., systems an
coordination), that can easily be combined. This separation of concerns is both critical
ensuring that systems remain flexible and reconfigurable — and non-trivial — since func
and non-functional aspects are typically intertwined in programs.

In our search for technology that supports this, we turn to object-oriented programmin
guages and methods, where combining functional and non-functional features in a re
form has been studied extensively in the past. In this section we consider both approach
use and approaches to separating functional and non-functional aspects of behaviour.

3.1 Interference of Object-oriented Features

Wegner [58] has proposed a classification of object-based programming languages ac
to a set of “orthogonal” dimensions: 

• Object-Based: encapsulation (objects) [+ identity]

• Object-Oriented: + classes + inheritance

• Strongly-typed: + data abstraction + types

• Concurrent: + concurrency [+ distribution]

• Persistent: + persistence + sets

An additional dimension not originally considered was homogeneity: in a homogeneous ob
ject-oriented language, everything (within reason) is an object. So Smalltalk is a homogene
object-oriented language whereas C++ is not.

Dimensions are considered to be orthogonal if features supporting them can be found ind
pendently in different programming languages. Concurrency is therefore considered or
nal to inheritance, since some languages support concurrency features but not inheritan
vice versa. Orthogonality in Wegner’s sense does not tell us anything about how easy it i
tegrate orthogonal features within a single programming language. Numerous researche
attempted to integrate such features [39],[5] only to discover that they interfere in unexp
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ways [41] (see [46] for an overview). In fact, most of the problems arise because inherita
basically a white box reuse mechanism. Inheritance conflicts with encapsulation sinc
classes are dependent upon implementation details of superclasses in a way that is
scribed by an explicit interface (figure 3).

Concurrency and persistence are examples of non-functional issues. Combining inhe
with concurrency poses problems in that it is difficult to define classes that make use of c
rency mechanisms and can be then inherited and extended in any meaningful way with
posing implementation details [19] [27]. That one would like to configure these non-funct
aspects independently from the functional issues can also seen from the fact that obje
function correctly in a sequential environment may fail when exposed to concurrent c
[46]. Similarly, one would like to switch persistence “on” and “off” independently of the w
functionality is inherited in an inheritance hierarchy. Introducing persistence through the 
itance hierarchy reduces flexibility.

The development of an adequate type model that addresses both objects and inher
still an open research problem [42], let alone one that addresses type compatibility for c
rent objects [43].

3.2 Inheritance

Even in approaches where functional and non-functional aspects are separated, both m
be developed independently through inheritance. Although inheritance is an important m
nism for sharing interfaces and implementation in object-oriented design, its principle w
ness is that it essentially supports “open”, or white-box reuse: the superclass is ge
viewed as an open structure of methods and instance variables that the builder of the s
adapts and extends. This is really a problem since the subclass is not even a copied ve
the superclass: The subclass remains dependent on the superclass, and the “openness
mains. The superclass cannot be viewed as a component with respect to the subclass, 
implementation of the superclass cannot be changed independently.

There have been several developments that address this problem. Both Eiffel [36] an
[13] provide mechanisms for controlling which features are visible to subclasses, and
controlling visibility of sets of features to specific client classes. Beta [25] provides a sp

Object Encapsulation

Inheritance Concurrency

Types

violation of 
encapsulation

poorly 
understood

violation of 
encapsulation

inadequate 
characterization

Figure 3   Interference of OO Features
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construct (called “inner”) that can be used to control exactly where subclasses may ext
herited behaviour. Lamping [23] has proposed a discipline for explicitly typing the inherit
interface, which goes a long way towards turning inheritance into a black-box form of re

Bracha [4] has proposed a finer granularity approach to class composition based on c
sition of “mix-ins.” Mix-ins are comparable to abstract classes, in the sense that they defi
complete sets of methods and instance variables, but then can be combined using a v
operators, not just by inheritance.

As mentioned above, once functional and non-functional aspects have been combin
single class, adapting the functional aspects in a subclass requires that the non-functi
pects be adapted as well, so the two become intertwined and can no longer be indepe
configured. Still, as demonstrated by the ACE toolkit1, it is possible to (i) provide support fo
non-functional aspects — such as synchronization — in a set of dedicated classes, (ii) p
“pure” functional aspects in a separate set of classes, and then (iii) finally build a subcla
combines the two. No further subclassing should be done on basis of this latter class. 

3.3 Object Composition

A more dynamic approach to separating non-functional and functional aspects is to use
composition. In ACE, for example, both requests and the mechanism for handling reque
be “reified” (made explicit) as objects that are separate from the object that implemen
functional part [24]. Having a separate object manage the non-functional aspect of reque
dling (such as queuing, copying to other server objects etc.) separates this concern, an
it easier to flexibly substitute different policies.

Object composition provides for more flexible and disciplined reuse than inheritance,
(i) object compositions may be changed at run-time, and (ii) objects are composed accor
explicit interfaces. In fact, many of the basic design patterns [14] of object-oriented dev
ment introduce flexibility through object composition. For example, the effective behavio
an object can be changed at run-time if an object delegates some of its responsibilities 
supporting objects, and these supporting objects can by dynamically substituted. Objec
position addresses such diverse problems as adaptation of object interfaces, augment
“decoration”) of an object’s services, dynamically changing the effective behaviour of a
ject, provide transparent interfaces to remote objects, and so on [14].

Object-composition involves instantiating objects, parameterizing those objects and li
them together. Objects can be parameterized by object-specific methods. Object-comp
should take place in the context of a component framework that provides sets of objects t
be linked together. Links have meaning in the sense of a certain corresponding run-time
eration.

Presently the only way to specify rules for the composition of objects is by means of th
system: objects may be composed if the dynamic type of an object conforms to the sta
of the variable used to store the link. There are two shortcomings to this approach.

1. ACE is an object-oriented network programming toolkit for developing communication software; it
well-known for its design and its flexibility.
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First of all, in most (typed) object-oriented languages (such as Eiffel) there is “equality
tween classes and types. A class is considered to be a subtype of another only if it inher
the latter (and also satisfies substitutability constraints). This is especially a problem if w
to be able to acquire or replace an implementation later, possibly over the net or from so
dependent vendor. The Java language [16] shows how the separation between interf
class can allow for this kind of “pluggability”. Note that the use of “untyped” linking, a
Smalltalk or in Objective-C is not really a solution, since such mechanisms provide no su
for creating correct compositions. 

Second, in certain cooperations, instances from one class will not merely play the r
servers for instances of the other class. A more detailed cooperation protocol is involved
ging in another class, which has the same interface, but does not use that protocol leads
an incorrect composition. Thus checking on interface only is not enough [43]. So far no o
oriented language supports checking of cooperation protocols.

Although object composition can help to make applications more flexible, it does not n
sarily help make application architecture more explicit. The way in which a system is 
posed of objects is typically hidden in the implementation of the objects themselves. H
implementation details is, of course, what objects are good at, but this does not help the
architect who wants to explicitly view a system as a composition of objects. In this sense,
composition is not well supported by existing object-oriented languages.

An environment for object composition (see section 4) would not only represent com
tions of objects explicitly, but would help to manage what kinds of links can be establishe
tween components. In a visual tool, type checking may not only be “corrective”, that is de
incorrect links, but also “supportive” that is, suggest correct links.

Commercial tools exist that support visual object composition, but these tools are a
specialized for a particular composition domain, such as user interface constructing. G
commercial tools for visual composition that are adaptable to different component frame
have not yet been introduced, though some experimental systems have been develope

3.4 Class-level Black-Box Composition: Genericity

Genericity is a form of parameterization where a component, for example a class or a
dure, has a parameter which is a type (or a class) rather than a value. Genericity can be 
ed to varying degrees by a programming language. In C++, for example, generic classes
“templates”, are little more than glorified macros, since their parameters must be bound
any type-checking is performed. STL (The Standard Template Library) is a well-known e
ple of the use of templates in C++ [38]. In Ada 95 and Eiffel, on the other hand, generic c
are well-integrated into the language, and can be independently type-checked and co
Being a special form of parameterization, genericity can be viewed as separating the var
of a software component from that component.

McHale [29] has shown that genericity can be used in concurrent object-oriented pro
ming languages to separate the programming of the synchronization control from the “no
programming of the methods. McHale provides many examples of “generic synchroniz
policies” that can be independently specified and later bound to arbitrary classes. An ex
is a “readers writers” policy, a synchronization policy that allows either several readers
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multaneously access the state of an object, or a single writer at a time. Such a policy is a
abstraction that can be applied by (i) linking it to a certain class that should have that poli
plemented, and (ii) describing which methods of the class are readers and which are 
Using such a policy is purely a matter of black-box parameterization, and totally indepe
of how the policy is implemented. In McHale’s work we see that the policy’s dependency o
set of requests (and possibly other parameters) is separated from the component.

Contracts [18] provide another example of extending the idea of genericity, and how th
be used to specify cooperation between classes separately from the classes themselve
tract is basically parameterized by the classes that participate in such a cooperation. C
help to make systems more flexible since they make it easier to substitute different class
a given cooperation pattern. They also make systems more understandable since contra
to make system architecture explicit and manipulable.

Genericity has also been applied to Federated Database Systems [51] (an area close 
erative Information Systems): Generic mechanisms are offered to describe a federated d
schema in terms of the external schemas of the various databases constituting the fed
one formally describes an integration contract between the various databases in term
data and operations they provide, without a need for programming. These ideas are also
to the ideas described in the chapter “Reflection is the Essence of Cooperation” of this b

If we compare class parameterization — generic classes are a special form of this — 
heritance, we can again note differences in “open” vs. “closed” forms of reuse: the whit
form of reuse supported by inheritance provides more variability, whereas the black-box
of class parameterization provides better ease of use and robustness. On the other ha
consider how to realize either generic synchronization policies of contracts in existing o
oriented languages, we encounter some difficulties. In fact, both have been supported by
of software generation, since existing object-oriented languages typically support only
weak or restricted forms of genericity.

This leads us to conclude that, contrary to some early opinions concerning the relat
pressive power of genericity and inheritance [35], the notion of genericity is still underes
ed as a simple mechanism for providing variability in the way objects are implemented a
way they cooperate, that works well when the possible purposes of a certain software c
nent (e.g., a synchronization mechanism) can be known ahead, as is often the case in
works. Furthermore, there is a need for general mechanisms to define and realize variou
of genericity and class parameterization.

3.5 Genericity and Componentware

There has been a shift in attention in industry from general object-oriented programmin
tems to so-called “componentware” environments [56]. Delphi [44] and Visual Basic [37] 
are good examples. These approaches are also of interest here due to their black-box a
and their close relationship to class parameterization.

Componentware approaches are closely related to — or may be seen as a form of — c
rameterization, since components are typically parameterized by the developer so that t
be easily adapted to different applications. A component with bound parameters is insta
— in contrast to classes in general only once — at run-time. The parameters are not no
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classes or types, but configuration values or in some cases other components. Even if a
eter is another component, this cannot be seen as a form of genericity, since the link is b
an object composition: It means that the instance of the one will be linked to the instance
other.

Componentware environments provide a visual presentation of components. Since c
nents are black box entities, a visual presentation is often natural. Furthermore, most c
nents are instantiated just once in an application, making it relatively straightforwa
represent applications as static configurations of components. Finally, since many comp
in environments such as Delphi and Visual Basic are directly concerned with user intera
it is natural that their visual presentation correspond directly to their interface in the final 
cation (though, of course, the behaviour of the component will differ during application
struction and run-time).

Especially interesting aspects are:

• Componentware environments draw a sharp distinction between programmers, who im-
plement components, and developers, who use components to build applications.

• Components are implemented using relatively standard object-oriented program
techniques. It is therefore possible to develop new components by (white box) in
ance from existing components. Objects that implement components adapts their 
iour at run-time by interpreting the component parameters.

• There is already quite a large market of available ready-made components for Visu
sic and Delphi.

The basic criticisms we have are the following:

• Neither Visual Basic nor Delphi provides any standard support for (visually) link
components, checking links, or creating correct links. As a result there is not mu
centive for creating domain specific component frameworks: In such a framework s
ard cooperations between various component are supported. Such cooperations 
be “instantiated” (declaring that two components indeed have a certain cooperatio
linking the components.

• Neither Visual Basic nor Delphi provides any support for subdividing components
separate functional and non-functional aspects.

• Neither Visual Basic nor Delphi provides any extra support for creating the dynamic
(e.g., a tree editor) of a user interface.

3.6 Separating Functional and Non-Functional 
Concerns

In the previously described approaches a separation between functional and non-functio
haviour could be realized by delegating non-functional aspects to a specialized compo
object or superclass. Two rather different approaches to separating concerns that sh
mentioned are reflection, and aspect-oriented programming.

A well-known mechanism for separating functional and non-functional behaviour is th
of a explicit reflective or “meta” computation. In such approaches, some aspect of the a
tion is explicitly “reified,” or represented as an object. One can then reason about this asp
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plicitly at the meta-level, and then “reflect” the desired behaviour back into the applicatio
example, if messages sent to an object are themselves reified as objects, then synchro
policies can be realized by explicitly examining, manipulating, and scheduling messages
meta-level. In addition to synchronization mechanisms ([6], [3], [28]), many other non-f
tional aspects have been successfully modelled using reflection, such as transaction 
nisms [54], persistence [45], and request logging [12], to mention but a few.

Aspect-oriented programming [21] is a newer approach based on the idea that each fu
al or non-functional aspect of a application can best be described using a separate, dom
cific language. These different aspects are than “weaved together” to produce a final pr
The specification of each aspect can then be altered or adapted without affecting othe
pendent aspects. In contrast to meta-level computation, a separation into more than two
is possible, and aspects can be described declaratively.

A basic criticism applicable to both kinds of approaches is that neither supports higher
(generic) parameterization: Non-functional behaviour is still inherently described for a sp
class (and, of course for its superclasses), and is not a generic mechanism (cf. generic s
nization mechanisms [29], section 3.4) that can be parameterized by a class or by some
ating classes. We note however, that the aspect-oriented approach seems to allow fo
principle, since it is based on software generation.

4 Requirements for a Composition Environment

We have argued that the development of open systems should be based on componen
works, and we have shown that object-oriented technology falls short in its support for co
sitional development in various ways. We consequently identify a set of requirements 
environment to support developers building and using component frameworks:

• Object composition is an essential ingredient of component frameworks, which is 
ed for creating the static object structures used at run-time. Object composition m
used for linking very large grained objects (complete encapsulated databases) as
small objects, such as dialogue boxes, buttons etc. Objects can be instances of cl
of “class-level components.”1

• Genericity, or “class composition” is needed to bind parameters of class-level co
nents, and thus to adapt the behaviour and cooperation of their instances. As in “c
nentware” approaches (section 3.5) but in contrast to normal object-oriented appro
that support genericity, a strong separation will be kept between the (black-box) us
class-level component by the application developer (the user of the component f
work) and by the framework developer, who may implement such a component 
normal (white-box) inheritance.

• The contrast between object composition vs. class composition is fundamental an
essary. This corresponds to the fundamental contrast between intentional and ext
al descriptions. In an intentional description — such as in generic synchronization

1. A “class level component” is a component that is used to create object instances, but may not nec
ily be implemented as a class. Generic synchronization policies, for example, are class level compon
but are not implemented as classes.
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cies, or in approaches to schema integration — aspects of behaviour are descr
terms of “things to be”, that is in terms of procedural or structural interfaces. We
that this kind of intentional composition is not provided by componentware approa

• Different component frameworks may require different kinds of connectors. What k
of connectors there are should therefore be extensible. For example, the link betwe
interface descriptions might express standard template parameterization: the str
elements of instances of the one (e.g. of lists) must be instances of the other (e.g.
objects); another kind of link might indicate that all requests handled by instances 
one should be forwarded to instances of the other. We note that most environmen
languages only provide a limited “hard-wired” set of connector types.

• Connectors should possibly cover intra-object behaviour, e.g., changing the sync
zation policies of instances, as well as inter-object behaviour.

• Following the discussion in section 3.4 and section 3.6, the environment should su
arbitrary kinds of generic components for non-functional behaviour.

• Both object composition and class composition need some support to ensure tha
positions are correctly constructed. The framework developer should be able to 
what constitutes a correct composition (the so-called component model); the appli
developer should be supported in creating compositions that are compatible to the
ponent model. Compositions should of course be made persistent.

• Implementation independence is required and principally possible in a component
approach. We see compositions as “configurations” that may name components
used (or name class level components of which objects should be instances), but
the black-box approach, implementation choices may be delayed to link or run tim
an example, in the approach we propose (see below) we use two complementary
mentation mechanisms: One more based on software generation, the other more
on parameter interpretation. Such implementation independence is of course als
vant for portability, dynamic loading etc.

A Visual Composition Environment [34] supports the interactive construction of applicatio
from plug-compatible software components by direct manipulation and graphical editi
general approach to interactive software composition must be parameterized by com
frameworks. Existing commercial tools are typically restricted to specific domains (UI, 
flow...), and cannot be adapted to arbitrary domains. Experimental results [34] indica
general-purpose visual composition is feasible by separating the tool from the comp
framework and the composition rules. Various technical and pragmatic difficulties neverth
remain. Complex systems are hard to visualize, and require flexible filtering and represe
techniques to support the needed user abstractions. A sufficiently flexible tool requires a
work and composition model itself to allow it to be easily adapted to different compositi
models and application domains.

Since generic composition is one of the novel aspects of the proposed approach we sh
give two examples of generic compositions and the corresponding composition mod
shall use the fact that not only compositions but also composition models are implemen
independent: A composition model is itself an intentional description, similar to a data
schema, describing what kinds of components may occur and how they may be linked.
thus also be seen as a “composition” and thus as an implementation independent config
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The diagrams we used to illustrate our examples should give the reader hint as how th
positions might be represented in a visual composition environment.

4.1 Examples

We shall now consider two examples of generic compositions that make non-functional a
explicit. 

Figure 4 represents a generic composition for describing a centralized integration bet
database system and a pattern recognition package used to perform statistical informati
ysis. This example has been taken from [31]. This form of integration is meant to hide f
user of the integrated system the fact that data and operations are located in different p
and possibly different machines. It furthermore hides the fact that in order to apply stat
pattern recognition to numerical data in a database, the data have to be copied and tra
from the database to the pattern recognition program. This means that the data as the u
them (called the “conceptual objects”) may have more than one representation in the u
ing packages. Execution of a user request therefore entails relatively complex non-fun
behaviour in the integrating system. The choice of a specific generic policy represents t
that this kind of request execution is used. We note however that this policy needs certai
mation to be available in the generic composition, e.g., which conceptual operation 
sponds to which implementation operation. Thus, this policy can only be used together
composition model that enforces the existence of such links. Figure 5 shows the corresp
composition model.

Figure 4    A “conceptual table” is an object that provides a common interface to opera-
tions supported by several implementation objects. A “select” request, for example, is for-
warded to a DB implementation, whereas a “cluster” request (i.e., to cluster table values 
according to some statistical properties) is forwarded to a pattern recognition component. 
How requests are handled is determined by a separate generic “policy” component and 

through the connections that exist between the elements in the interface description.

select

select

cluster

cluster

policy

TableInt.
Descr

DB
ImplInt.Descr

Pat.Rec
Impl.Int.Descr

Request

Conc.
Table

DB.
Table

policy policy
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Figure 6 represents a generic composition describing the coupling of a “Readers W
synchronization policy [29] to a class component of which instances are objects repres
accounts. This example has been taken from [10]. In this example we see that a possibilit
to exchange policies. Figure 7 shows the corresponding composition model. We see spe
ly how for a specific policy as in this case the “Readers Writers” a specific part of the com
tion model is given that specifies how such a policy should be configured.

4.2 Towards a Visual Composition Environment

Visual formalisms are important for specifying and representing software composition be
they can support multiple views of the same structures, they can provide important visu
to aid understanding, and because they can directly represent the final application interfa
hence can conveniently support a direct manipulation paradigm during development.

Framework developers must be able to specify and represent generic architectures, 
nents, component interfaces and glue using a high-level graphical “syntax.” Application d

Figure 5    Composition model for the generic composition given in figure 4. The diamonds 
are called property descriptors correspond to association descriptors in UML: For in-

stance the descriptor “Policy” indicates that a Conc. Interface Descriptor must be linked 
to one policy component.

Conc. Int. Descr

Impl.Int.Descr

Operations Oper. Descr

Oper. Descr

1:1

Policy Descr

1:1
1:n

Policy

Imp. Op.Imp. Int.

1:n

Operations
1:n

Figure 6    Configuration of Synchronization policy for accounts: In this example a readers 
writers policy. The readers writers policy is configured by identifying the set of readers (in 

this case “getPin”, “getBalance”) and the set of writers (“setBalance”, “setPin”)

setBalance

setPin

policy

Account Int.
Descr

Request

Account

RWconfig

W R

getBalance

getPin
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opers should be able to instantiate architectures by elaborating, binding and linking fram
components. Abstractions must be available as explicitly manipulable (and visually repr
ed) entities in the composition environment. Composition structures must be mappable
guage sentences. The visual environment should support the user actively in creati
adapting compositions correctly. The environment should be homogeneous with respec
ther object or class level composition.

The visual environment should be configurable by the composition model and to spe
tions how the components have to be presented. We note that this need for composition
configurability is surely one of the reasons why there has not yet been any commercial
mentation of an open visual composition environment: all existing visual composition too
dress a very specific application domain, typically user interface construction.

Since:

1. it is (should be) relatively simple through composition models to define new kin
connectors (by just defining a new kind of link between class level components

2. a visual environment “reifies” — represents as explicit object structures — co
nent structures including generically linked class structures, and

3. some form of run-time testing and/or debugging of compositions is needed in a 
composition environment

It is attractive for a visual composition environment to support the possibility to give run
meaning to compositions by interpreting the information in the structure1. This means that the
composition environment should be extensible in this sense as well: for new generic link
interpretation mechanisms must be introduced.

We now briefly illustrate each of these points for the two composition examples.

1. Another possibility would be to generate code from (compile) the class composition.

Figure 7    Composition model for the generic composition given in figure 6.

Int. Descr Operations
1:n

Oper. Descr

Policy Descr

Policy

1:1

Policy Config

Prior.Policy Config

Writers

1:n

Readers
1:n

Config
1:1

ReadWrite PolicyConfig
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Visual Composition Support

Supporting visual composition for either one of the examples corresponds to making th
grams shown in figure 4 and in figure 6 into explicitly manipulable structures represented
jects and links between objects. The environment can provide a separate “toolbox” wind
components that may be instantiated. In the case of an interface description with its pol
toolbox will contain, amongst others, possible different policies to be created and oper
and interface descriptor components themselves. The environment checks the links the
oper attempts to create between components: For example the developer can only cre
from the readers property to one of the operations, and not to the interface descriptor itse
environment provides a special “global check” operator, it checks whether all connectio
consistent with each other; for example, a specific operation cannot both be a reader an
er. The composition can only be used for run-time execution if all connections are consis
this global sense.

Adaptability of Run-time Semantics

Run-time behaviour of a system depends on the properties (composition) of the run-tim
jects, and the generic information. As mentioned, in the visual composition environmen
will be a run-time execution mechanism based on interpretation of that information. In su
approach, run-time behaviours of objects in the system are determined by:

1. The underlying implementation of the object in a class, which must take into acc

2. The properties of the object, and the information in the class structure

In both examples, the object to which a request is applied has an “execute” method for e
ing a request. In order to allow for explicit request handling, requests themselves are firs
objects, as mentioned in section 3.3. Requests for an operation are instances of the corr
ing interface description of that operation; the request shown in figure 4 is thus a reque
cluster operation. In both examples, most relevant information for the execution of the re
is in the class structure: the policy and the generic links.

In order to allow this information to be interpreted for request execution it has to be exp
available as an object structure. As mentioned before, this is no problem since the clas
ture is explicitly represented as an object structure during composition anyhow. We mu
however, how such a structure can play both the role of an object that can be queried by 
time objects, and that of a class that they can be asked to generate instances. For this w
prototype design pattern [14]: each class object carries a prototype that is copied when t
object is requested for instantiation.

Interpreting the information in the class structure by the “execute” will do the followin
will delegate the knowledge of how to execute the request (the non-functional part, at le
the same-named “execute” method in the policy object. It is this method that interpre
knowledge in the class structure, for example in the case of the centralized integratio
method will find which implementation operation has to be executed, on which kind of im
mentation object (in the example: cluster implementation on a pattern recognition obje
will generate the new object to which the implementation operation must be executed a
ate a request for that implementation operation. The execution of the implementation req
again determined by a policy.
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In general, we say that the adaptation of the behaviour of the run-time objects to th
composition is done through “up-calls” to methods defined in the class objects.

Adaptability of the Visual Composition Support to the 
Composition Model

A visual composition environment has to adapt itself to the chosen composition model.
the composition model is itself an intentional “class level” structure, the environment ada
self in the same way to the composition model as (other) run-time systems adapt thems
“normal” class compositions as described in the previous paragraph. Thus, it itself is an
ple of an application of giving run-time semantics through interpretation to such a class
position. This goes as follows: the composition model is explicitly represented as an 
structure and attempted links are checked by querying that structure. When, for examp
developer attempts to link a read-writers policy via the “Readers” property to one of the o
tions, the visual composition environment can query the corresponding “Readers” prope
scriptor to find out if the target of the link is an instance of the right component type, in this
whether the target is an “Operation Descriptor”.

Current Research

In our latest research on visual composition environments we have achieved the followi

• The principle of interpreting generic class information has been worked out for 
smaller examples [32],[33]

• The principle of having visual composition being checked on basis of a compo
model has been worked out and tested [32].

Since the composition model is itself a class composition (see above), there must also be
position model of this composition model etc. This leads to the need for a self-descriptive
position model. This and the need for dynamic adaptation —the environment should be a
to a new composition model without having to recompile it— poses severe requiremen
kernel implementation in the form of a self-descriptive data model [31]. This kernel data m
has been implemented in Self [57] and C++ [13]. Current work is focused on developing
realistic examples and further elaborating our component model.

4.3 Towards Compositional Methods

In addition to the technological issues of component-oriented development, there are d
methodological issues. First, how can we drive application development from comp
frameworks? Existing methods ignore reuse, or introduce it too late in the lifecycle. Tradi
separation of analysis and design is incompatible with a framework-driven approach
framework reuse should be anticipated during requirements collection and analysis. 

Second, where do the frameworks come from? Traditional methods do not address the
opment of generic systems from previously completed projects. Refactoring and fram
evolution [7] are not yet well-understood or widely practised.

A Component-Oriented Software Lifecycle (figure 8) must take into account that applica-
tion development (the construction of applications from component frameworks) is a sep
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activity from framework development (the iterative development of the framework itself) [40
Framework development is capital investment whereas application development recov
investment. 

Since application development is ideally driven by framework development, analysis an
design are largely done already. The hard parts are: identifying the appropriate com
framework to use, matching specific requirements to available components, building m
components and subsystems, and adapting components to unforeseen requirements. T
pects of object-oriented design and implementation fall outside the scope of today’s obje
ented methods.

5 Concluding Remarks

Open systems pose special requirements for software development tools and method
systems must be easily adaptable to changing requirements, hence should be designed
neric requirements in mind. A component framework addresses changing requirements 
viding a generic software architecture for a family of applications, and a set of componen
can be configured and composed in a variety of ways.

Object-oriented languages and systems support the development of component fram
to some degree, but suffer from a number of limitations. Object-oriented languages s
both “black-box” and “white-box” components. The former are fully encapsulated and c
used in arbitrary contexts, whereas the latter may introduce implementation dependenc
tween components and their clients: subclasses, for example, may depend on impleme
details of superclasses they inherit from, thus violating encapsulation.

Object-oriented languages also typically force one to view all kinds of components a
jects, whether this model is appropriate or not. A cooperation pattern encapsulating a re

Framework 
Development

Application 
Maintenance and 

Evolution

Framework 
Refinement and 

Evolution

Application 
Development

Component 
Framework

Specific 
Application

Existing Applications and 
Domain Knowledge

Specific Application 
Requirements

Figure 8   A Component-Oriented Software Lifecycle
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writers synchronization policy, for example, would be a perfectly reasonable componen
does not make much sense to represent as an object.

Finally, object-oriented systems tend to hide application architecture rather than make
plicit and manipulable. This is an obstacle to open systems comprehension and evolu
composition environment would support open systems development by explicitly repres
components and their interfaces, and by managing and guiding the composition activity

Component-oriented software development is notably distinct from traditional develop
because it forces a separation between framework development and application develo
These two activities are interdependent, since a component framework should drive app
development, while at the same time, experiences with application development influen
iterative design of frameworks. Composition environments will provide tools needed to
port these two activities, but they do not tell us what methods we should use to develop a
ply software components. Most of the well-known object-oriented methods do not say an
about framework development or reuse. This is where we can expect to see the most sig
advances in the near future [48].
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