
Agile Software Assessment with Moose∗

[Extended Abstract]

Oscar Nierstrasz
Software Composition Group

University of Bern, Switzerland
http://scg.unibe.ch

ABSTRACT
During software maintenance, much time is spent reading
and assessing existing code. Unfortunately most of the tools
available for exploring and assessing code, such as browsers,
debuggers and profilers, focus on development tasks, and of-
fer little to support program understanding. We present
a platform for software and data analysis, called Moose,
which enables the rapid development of custom tools for
software assessment. We demonstrate how Moose supports
agile software assessment through a series of demos, we il-
lustrate some of the custom tools that have been developed,
and we draw various lessons learned for future work in this
domain.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments

1. INTRODUCTION
It is well-acknowledged that developers often spend as much
time understanding code as they do writing new code [17].
There are many reasons for this phenomenon. As established
by Lehmann and Belady [18], real-world software systems
become more complex over time as they are adapted to fulfill
new requirements, unless effort is invested to simplify their
design.

The needed reengineering effort is made more difficult be-
cause critical information is missing from the software arti-
facts. As an example, we can note that software architec-
ture is not in the code. Although software architecture is
perhaps the most important technological driver of a com-
plex system, its presence is only implicit in the source code.
Worse, written documentation is rarely accurate and often
fails to capture many of the important aspects of architec-
ture [6]. Ideally, like in literate programming, the source

∗PREPRINT. Invited keynote presentation at IWRE
2012(3rd India Workshop on Reverse Engineering), SIG-
SOFT Softw. Eng. Notes, Vol 37, No. 3, pp. 1–5, May
2012. DOI: 10.1145/180921.2180925

code would be self-explanatory, but that is rarely the case.
For this reason, much effort is often spent in recovering ar-
chitecture. Many tools have been developed over the years,
such as architectural description languages [28], tools to de-
tect violations of architectural constraints [3], and clustering
tools to recover aspects of architecture from source code [20,
21]. Nevertheless, such tools have not yet entered the main-
stream.

Few dedicated tools are available to the developer to sup-
port program understanding and analysis. Most tools in the
IDE (integrated development environment), such as clas-
sical browsers, debuggers and profilers, focus on low-level
programming tasks rather than on broader architectural or
software engineering issues. Some specialized tools exist, but
they are expensive to develop, maintain and integrate into
the IDE. (As an example, consider Senseo [27], an Eclipse
plugin that integrates run-time information into the classical
source code views.)

Program understanding entails software assessment, the pro-
cess of posing specific questions about the software system
under study and carrying out specialized analyses to answer
these questions. This requires the development of special-
ized tools. Two examples of such tools are feature views [11],
which establish a correspondence between software artifacts
and the features they support, and object-flow analysis [19],
which tracks the flow of objects at run-time to identify the
source of obscure bugs.

We argue that there is a demonstrated need for agile soft-
ware assessment, that is, a meta-tooling infrastructure and
environment that allows developers to rapidly and cheaply
develop lightweight, custom tools to support program under-
standing. Such an environment must go beyond the conven-
tional IDE to integrate various sources of information (i.e.,
not just source code), construct high-level models of this in-
formation, offer querying and navigation facilities, support
metrics extraction, and offer means to generate high-level,
interactive views to support exploration and ad hoc analyses.
As step in this direction, we present Moose1, a software and
data analysis platform (section 2), and we illustrate some of
the ways in which it supports agile software assessment. We
draw some key lessons learned (section 3) and conclude with
remarks on open problems and future work (section 4).

1http://moosetechnology.org

http://scg.unibe.ch
http://iwre.cdacmumbai.in/
http://iwre.cdacmumbai.in/
http://dl.acm.org/citation.cfm?id=2180925
http://moosetechnology.org


2. MOOSE: AN ANALYSIS PLATFORM
Moose is a platform for analyzing software and data [23].
The system was originally developed between 1996 and 1999
as part of the FAMOOS2 project. At the core of Moose
is the FAMIX meta-model (Figure 1), which offers a sim-
ple, language-independent way to represent object-oriented
models.

Inheritance

Class Attribute

Access

* *

subclass superclass

*

belongsTo

*belongsTo

*

accesses

Invocation

*

candidate

*

invokedBy

Method

Figure 1: FAMIX core metamodel (extract)

A typical use-case for Moose is to use one of several available
importers to parse source code in one of many languages,
such as Java or C++, to generate a so-called MSE (Moose
exchange) file. Moose then imports this file to build a model
that can be queried and manipulated. Moose is implemented
in Pharo3 [4], an open-source Smalltalk implementation. As
a consequence, Moose models reside in a Smalltalk image.

Moose offers a lightweight user interface (Figure 2) for brows-
ing and querying models. A model consists of a group of
entities. Properties and metrics over entities can be used to
pose ad hoc queries and filter groups of interest.

Moose is designed as an open system. The FAMIX meta-
model is extensible, thus allowing custom tools to be built
that extend the meta-model with new concepts, for example,
modeling history [9], semantic clustering [13], and feature
views [11].

One of the key features needed for custom tools is a means
to generate lightweight visualizations. Polymetric views [16]
map software metrics to very simple graphical representa-
tions. A system complexity view (Figure 3), for example,
maps the number of methods, number of attributes, and
lines of code, respectively, to the height, width and color of
the classes in a class hierarchy view, thus offering an easily
comprehensible overview of the “big” and “small” classes in
a system.

Polymetric views are used for producing many different kinds
of visualization, such as clone evolution [2] (showing the evo-

2http://scg.unibe.ch/archive/famoos/
3http://pharo-project.org

Figure 2: Moose User Interface

lution of clones over time), class blueprints [8] (showing the
relationships between methods and attributes of a class),
topic correlation matrices [13] (showing the clusters of se-
mantic topics within a system), distribution map [7] (show-
ing how features relate to artifacts), hierarchy evolution [9]
(showing how a system has evolved over time), and owner-
ship maps [10] (showing who has worked on which parts of
a system over time).

Polymetric views were introduced in an early version of
Moose as a classical object-oriented white box framework,
allowing developers to use subclassing to define new visual-
izations. As is common with such frameworks, considerable
experience is required to effectively use the framework.

Mondrian [22] (Figure 3) is a black box component frame-
work that makes it much easier to build such visualizations.
Since the host language, Smalltalk, has a very simple syn-
tax, composing new visualization resembles writing scripts
in a DSL. A lightweight, interactive UI allows developers
to immediately see the result of changes to their Mondrian
scripts. Mondrian supports agile software assessment by en-
abling developers to generate new visualizations in minutes
instead of days.

Figure 3: Mondrian visualization engine displaying
a scripted System Complexity view

This same principle has been used successfully to develop

http://scg.unibe.ch/archive/famoos/
http://pharo-project.org


two related meta-tooling environments. Glamour [5] applies
this idea to the construction of custom browsers for arbitrary
models (not just source code). A browser is built up from
a number of components, each of which renders some frag-
ment of a model, and transmits information about that frag-
ment to another connected component. Data exploration is
a fundamental component of data analysis. Glamour aims
at modeling the basic navigation and interaction methods
inherent in any information exploration tool. A classical
Smalltalk browser with panels displaying packages, classes,
methods and source code can be constructed as a compact
Glamour script. Such a script can then easily be adapted
to incorporate useful visualizations. Dedicated browsers for
other kinds of models can similarly be scripted with low ef-
fort.

EyeSee [12] also takes the same idea and applies it to the
construction of graphical charts. Since the underlying infras-
tructure is the same, EyeSee charts can also be integrated
into Glamour browsers.

3. LESSONS LEARNED
Here follow some of the lessons we have learned based on
our experience using and developing Moose over roughly a
15 year period (NB: the first three of these are discussed in
more detail in a previous paper [24]):

Less is more. In other words, lightweight techniques go a
long way to solving most problems. Simple visual-
izations, simple techniques, simple and general meta-
models, languages with simple syntax, are important
enablers for agile software assessment.

You can change a running system. Unlike mainstream
programming languages and development environments,
Smalltalk does not artificially split compile time and
run time. The only way to change a Smalltalk system
is at run time. This is an important enabler as it al-
lows one to move very quickly when developing new
tools and ideas.

Reify everything. By making meta-level concepts (such
as the implementation of the underlying system) ex-
plicit as first-class model entities, they become queryable
and manipulable at run time.

A black box framework is a DSL. A clean, component-
oriented design yields an “algebra of objects” that can
be composed and configured at run time. If the host
language has a simple and readable syntax (as Smalltalk
does), the interface of the framework yields a so-called
internal DSL (domain-specific language), and configu-
rations of components can be read like scripts in this
DSL.

Know when to invest in infrastructure. Moose has been
re-designed and reimplemented several times over its
15-year history. Although there have been virtually
no scientific papers published on Moose itself, and al-
though maintaining, refining, and re-architecting the
infrastructure has been expensive, the investment has
paid off handsomely as an enabler for research for (lit-
erally) hundreds of research papers, and numerous PhD
and Masters theses.

4. FUTURE WORK
Although we believe that Moose makes significant steps to-
wards supporting agile software assessment by offering a
meta-tooling environment for rapidly developing tools for
custom analyses, there remain many open questions, both
technical and methodological.

First, we have only limited insight into precisely what ex-
actly developers do. There has recently been increasing
interest in performing empirical studies to determine what
obstacles developers encounter, and how better to support
them. A successful environment to support agile software
assessment should be well-grounded in such studies.

Second, there is a tragic disconnect between programming
languages and software engineering issues. We have already
mentioned the lack of support for encoding architecture and
architectural constraints in programming languages. Pro-
gram source code is similarly disconnected from high-level
domain models, requirements models, and user-oriented fea-
ture views, to mention just a few examples. Program source
code is similarly disconnected from other kinds of software
artifacts. An IDE supporting agile software assessment should
track all such dependencies and connections. IDEs further-
more focus too much on static views of source code. Senseo
[27], mentioned earlier, offers just one example of an attempt
to link static and dynamic views, but more needs to be done.
An effective IDE should support continuous monitoring of
source code evolution as well as the running system to sup-
port analysis of architecture, design, code smells, and so on.

Third, though by no means finally, a key bottleneck for agile
software assessment is the automated construction of soft-
ware models. Although Moose can readily import models
from Java source code, importing models from other lan-
guages, such as PHP, Cobol or PL/1, is problematic, since a
custom parser must be developed to generate FAMIX mod-
els. This can entails days or weeks of effort. We have ex-
plored several innovative techniques to speed up this process,
such as generating parsers automatically from examples [25],
recovering models from the abstract or concrete syntax trees
of existing parsers [15, 14], and even using genetic program-
ming to generate grammars [29]. Although modest success
was achieved in each case, we are far from having practi-
cal techniques to rapidly import models from unknown lan-
guages. A related issue is that modern software systems
are rarely implemented using a single source language. Java
enterprise applications, for example, include not only Java
source code but also HTML, JavaScript, XML, SQL and
possibly other kinds of artifacts. To analyze such systems,
one must construct software models that combine all these
sources of information [26, 1].

Acknowledgments
We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Synchronizing
Models and Code” (SNF Project No. 200020-131827, Oct.
2010 - Sept. 2012). We also thank Tudor Gı̂rba, Fabrizio
Perin and Mircea Lungu for their contributions in prepar-
ing the keynote presentation and in reviewing this extended
abstract.



5. REFERENCES
[1] Amir Aryani, Fabrizio Perin, Mircea Lungu,

Abdun Naser Mahmood, and Oscar Nierstrasz. Can
we predict dependencies using domain information? In
Proceedings of the 18th Working Conference on
Reverse Engineering (WCRE 2011), October 2011.
Available from: http://scg.unibe.ch/archive/

papers/Aria11aWCRE11.pdf,
doi:10.1109/WCRE.2011.17.

[2] Mihai Balint, Tudor Gı̂rba, and Radu Marinescu. How
developers copy. In Proceedings of International
Conference on Program Comprehension (ICPC 2006),
pages 56–65, 2006. Available from:
http://scg.unibe.ch/archive/papers/

Bali06aHowDevelopersCopy.pdf,
doi:10.1109/ICPC.2006.25.

[3] Walter Bischofberger, Jan Kühl, and Silvio Löffler.
Sotograph – a pragmatic approach to source code
architecture conformance checking. In Software
Architecture, volume 3047 of LNCS, pages 1–9.
Springer-Verlag, 2004. doi:10.1007/b97879.

[4] Andrew Black, Stéphane Ducasse, Oscar Nierstrasz,
Damien Pollet, Damien Cassou, and Marcus Denker.
Pharo by Example. Square Bracket Associates, 2009.
Available from: http://pharobyexample.org.

[5] Philipp Bunge. Scripting browsers with Glamour.
Master’s thesis, University of Bern, April 2009.
Available from: http:

//scg.unibe.ch/archive/masters/Bung09a.pdf.

[6] Serge Demeyer, Stéphane Ducasse, and Oscar
Nierstrasz. Object-Oriented Reengineering Patterns.
Square Bracket Associates, 2008. Available from:
http://scg.unibe.ch/download/oorp/.

[7] Stéphane Ducasse, Tudor Gı̂rba, and Adrian Kuhn.
Distribution map. In Proceedings of 22nd IEEE
International Conference on Software Maintenance
(ICSM ’06), pages 203–212, Los Alamitos CA, 2006.
IEEE Computer Society. Available from:
http://scg.unibe.ch/archive/papers/

Duca06cDistributionMap.pdf,
doi:10.1109/ICSM.2006.22.

[8] Stéphane Ducasse and Michele Lanza. The Class
Blueprint: Visually supporting the understanding of
classes. Transactions on Software Engineering (TSE),
31(1):75–90, January 2005. Available from:
http://scg.unibe.ch/archive/papers/

Duca05bTSEClassBlueprint.pdf,
doi:10.1109/TSE.2005.14.

[9] Tudor Gı̂rba and Stéphane Ducasse. Modeling history
to analyze software evolution. Journal of Software
Maintenance: Research and Practice (JSME),
18:207–236, 2006. Available from: http:

//scg.unibe.ch/archive/papers/Girb06aHismo.pdf.

[10] Tudor Gı̂rba, Adrian Kuhn, Mauricio Seeberger, and
Stéphane Ducasse. How developers drive software
evolution. In Proceedings of International Workshop
on Principles of Software Evolution (IWPSE 2005),
pages 113–122. IEEE Computer Society Press, 2005.
Available from: http://scg.unibe.ch/archive/

papers/Girb05cOwnershipMap.pdf,
doi:10.1109/IWPSE.2005.21.

[11] Orla Greevy, Stéphane Ducasse, and Tudor Gı̂rba.
Analyzing software evolution through feature views.

Journal of Software Maintenance and Evolution:
Research and Practice (JSME), 18(6):425–456, 2006.
Available from: http://scg.unibe.ch/archive/

papers/Gree06bTraceScraperJSME-SCG.pdf,
doi:10.1002/smr.340.

[12] Matthias Junker and Markus Hofstetter. Scripting
diagrams with eyesee. Bachelor’s thesis, University of
Bern, May 2007. Available from:
http://scg.unibe.ch/archive/projects/

Junk07aJunkerHofstetterEyeSee.pdf.

[13] Adrian Kuhn, Stéphane Ducasse, and Tudor Gı̂rba.
Semantic clustering: Identifying topics in source code.
Information and Software Technology, 49(3):230–243,
March 2007. Available from: http://scg.unibe.ch/

archive/drafts/Kuhn06bSemanticClustering.pdf,
doi:10.1016/j.infsof.2006.10.017.

[14] Daniel Langone. Recycling trees: Mapping Eclipse
ASTs to Moose models. Bachelor’s thesis, University
of Bern, January 2009. Available from: http:

//scg.unibe.ch/archive/projects/Lang09a.pdf.

[15] Daniel Langone and Toon Verwaest. Extracting
models from IDEs. In 2nd Workshop on FAMIX and
Moose in Software Reengineering (FAMOOSr 2008),
pages 32–35, October 2008. Available from:
http://scg.unibe.ch/archive/papers/

Lang08aModelExtraction.pdf.

[16] Michele Lanza and Stéphane Ducasse. Polymetric
views—a lightweight visual approach to reverse
engineering. Transactions on Software Engineering
(TSE), 29(9):782–795, September 2003. Available
from: http://scg.unibe.ch/archive/papers/

Lanz03dTSEPolymetric.pdf,
doi:10.1109/TSE.2003.1232284.

[17] Thomas D. LaToza, Gina Venolia, and Robert DeLine.
Maintaining mental models: a study of developer work
habits. In ICSE ’06: Proceedings of the 28th
international conference on Software engineering,
pages 492–501, New York, NY, USA, 2006. ACM.
doi:10.1145/1134285.1134355.

[18] Manny Lehman and Les Belady. Program Evolution:
Processes of Software Change. London Academic
Press, London, 1985. Available from: ftp://ftp.umh.

ac.be/pub/ftp_infofs/1985/ProgramEvolution.pdf.

[19] Adrian Lienhard, Tudor Gı̂rba, and Oscar Nierstrasz.
Practical object-oriented back-in-time debugging. In
Proceedings of the 22nd European Conference on
Object-Oriented Programming (ECOOP’08), volume
5142 of LNCS, pages 592–615. Springer, 2008.
ECOOP distinguished paper award. Available from:
http://scg.unibe.ch/archive/papers/

Lien08bBackInTimeDebugging.pdf,
doi:10.1007/978-3-540-70592-5_25.

[20] Mircea Lungu and Michele Lanza. Softwarenaut:
Exploring hierarchical system decompositions. In
Proceedings of CSMR 2006 (10th European Conference
on Software Maintenance and Reengineering), pages
351–354, Los Alamitos CA, 2006. IEEE Computer
Society Press. doi:10.1109/CSMR.2006.52.

[21] Mircea Lungu and Oscar Nierstrasz. Recovering
software architecture with softwarenaut. ERCIM
News, 88, January 2012. Available from:
http://ercim-news.ercim.eu/en88/special/

recovering-software-architecture-with-softwarenaut.

http://scg.unibe.ch/archive/papers/Aria11aWCRE11.pdf
http://scg.unibe.ch/archive/papers/Aria11aWCRE11.pdf
http://dx.doi.org/10.1109/WCRE.2011.17
http://scg.unibe.ch/archive/papers/Bali06aHowDevelopersCopy.pdf
http://scg.unibe.ch/archive/papers/Bali06aHowDevelopersCopy.pdf
http://dx.doi.org/10.1109/ICPC.2006.25
http://dx.doi.org/10.1007/b97879
http://pharobyexample.org
http://scg.unibe.ch/archive/masters/Bung09a.pdf
http://scg.unibe.ch/archive/masters/Bung09a.pdf
http://scg.unibe.ch/download/oorp/
http://scg.unibe.ch/archive/papers/Duca06cDistributionMap.pdf
http://scg.unibe.ch/archive/papers/Duca06cDistributionMap.pdf
http://dx.doi.org/10.1109/ICSM.2006.22
http://scg.unibe.ch/archive/papers/Duca05bTSEClassBlueprint.pdf
http://scg.unibe.ch/archive/papers/Duca05bTSEClassBlueprint.pdf
http://dx.doi.org/10.1109/TSE.2005.14
http://scg.unibe.ch/archive/papers/Girb06aHismo.pdf
http://scg.unibe.ch/archive/papers/Girb06aHismo.pdf
http://scg.unibe.ch/archive/papers/Girb05cOwnershipMap.pdf
http://scg.unibe.ch/archive/papers/Girb05cOwnershipMap.pdf
http://dx.doi.org/10.1109/IWPSE.2005.21
http://scg.unibe.ch/archive/papers/Gree06bTraceScraperJSME-SCG.pdf
http://scg.unibe.ch/archive/papers/Gree06bTraceScraperJSME-SCG.pdf
http://dx.doi.org/10.1002/smr.340
http://scg.unibe.ch/archive/projects/Junk07aJunkerHofstetterEyeSee.pdf
http://scg.unibe.ch/archive/projects/Junk07aJunkerHofstetterEyeSee.pdf
http://scg.unibe.ch/archive/drafts/Kuhn06bSemanticClustering.pdf
http://scg.unibe.ch/archive/drafts/Kuhn06bSemanticClustering.pdf
http://dx.doi.org/10.1016/j.infsof.2006.10.017
http://scg.unibe.ch/archive/projects/Lang09a.pdf
http://scg.unibe.ch/archive/projects/Lang09a.pdf
http://scg.unibe.ch/archive/papers/Lang08aModelExtraction.pdf
http://scg.unibe.ch/archive/papers/Lang08aModelExtraction.pdf
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
http://dx.doi.org/10.1109/TSE.2003.1232284
http://dx.doi.org/10.1145/1134285.1134355
ftp://ftp.umh.ac.be/pub/ftp_infofs/1985/ProgramEvolution.pdf
ftp://ftp.umh.ac.be/pub/ftp_infofs/1985/ProgramEvolution.pdf
http://scg.unibe.ch/archive/papers/Lien08bBackInTimeDebugging.pdf
http://scg.unibe.ch/archive/papers/Lien08bBackInTimeDebugging.pdf
http://dx.doi.org/10.1007/978-3-540-70592-5_25
http://dx.doi.org/10.1109/CSMR.2006.52
http://ercim-news.ercim.eu/en88/special/recovering-software-architecture-with-softwarenaut
http://ercim-news.ercim.eu/en88/special/recovering-software-architecture-with-softwarenaut


[22] Michael Meyer, Tudor Gı̂rba, and Mircea Lungu.
Mondrian: An agile visualization framework. In ACM
Symposium on Software Visualization (SoftVis’06),
pages 135–144, New York, NY, USA, 2006. ACM
Press. Available from: http://scg.unibe.ch/

archive/papers/Meye06aMondrian.pdf,
doi:10.1145/1148493.1148513.

[23] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̂rba.
The story of Moose: an agile reengineering
environment. In Proceedings of the European Software
Engineering Conference (ESEC/FSE’05), pages 1–10,
New York, NY, USA, 2005. ACM Press. Invited
paper. Available from: http://scg.unibe.ch/

archive/papers/Nier05cStoryOfMoose.pdf,
doi:10.1145/1095430.1081707.

[24] Oscar Nierstrasz and Tudor Gı̂rba. Lessons in software
evolution learned by listening to Smalltalk. In J. van
Leeuwen et al., editor, SOFSEM 2010, volume 5901 of
LNCS, pages 77–95. Springer-Verlag, 2010. Available
from: http://scg.unibe.ch/archive/papers/

Nier10aSmalltalkLessons.pdf,
doi:10.1007/978-3-642-11266-9_7.

[25] Oscar Nierstrasz, Markus Kobel, Tudor Gı̂rba,
Michele Lanza, and Horst Bunke. Example-driven
reconstruction of software models. In Proceedings of
Conference on Software Maintenance and
Reengineering (CSMR 2007), pages 275–286, Los
Alamitos CA, 2007. IEEE Computer Society Press.
Available from: http://scg.unibe.ch/archive/

papers/Nier07aExampleDrivenMR.pdf,
doi:10.1109/CSMR.2007.23.

[26] Fabrizio Perin, Tudor Gı̂rba, and Oscar Nierstrasz.
Recovery and analysis of transaction scope from
scattered information in Java enterprise applications.
In Proceedings of International Conference on
Software Maintenance 2010, September 2010.
Available from: http://scg.unibe.ch/archive/

papers/Peri10aTransactionRecovery.pdf,
doi:10.1109/ICSM.2010.5609572.

[27] David Röthlisberger, Marcel Härry, Alex Villazón,
Danilo Ansaloni, Walter Binder, Oscar Nierstrasz, and
Philippe Moret. Exploiting dynamic information in
ides improves speed and correctness of software
maintenance tasks. Transactions on Software
Engineering, 2011. To appear (preprint online).
Available from: http://scg.unibe.ch/archive/

papers/Roet11aSenseoTSE.pdf,
doi:10.1109/TSE.2011.42.

[28] Mary Shaw and David Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice-Hall,
1996.

[29] Sandro De Zanet. Grammar generation with genetic
programming — evolutionary grammar generation.
Master’s thesis, University of Bern, July 2009.
Available from: http:

//scg.unibe.ch/archive/masters/DeZa09a.pdf.

http://scg.unibe.ch/archive/papers/Meye06aMondrian.pdf
http://scg.unibe.ch/archive/papers/Meye06aMondrian.pdf
http://dx.doi.org/10.1145/1148493.1148513
http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.pdf
http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.pdf
http://dx.doi.org/10.1145/1095430.1081707
http://scg.unibe.ch/archive/papers/Nier10aSmalltalkLessons.pdf
http://scg.unibe.ch/archive/papers/Nier10aSmalltalkLessons.pdf
http://dx.doi.org/10.1007/978-3-642-11266-9_7
http://scg.unibe.ch/archive/papers/Nier07aExampleDrivenMR.pdf
http://scg.unibe.ch/archive/papers/Nier07aExampleDrivenMR.pdf
http://dx.doi.org/10.1109/CSMR.2007.23
http://scg.unibe.ch/archive/papers/Peri10aTransactionRecovery.pdf
http://scg.unibe.ch/archive/papers/Peri10aTransactionRecovery.pdf
http://dx.doi.org/10.1109/ICSM.2010.5609572
http://scg.unibe.ch/archive/papers/Roet11aSenseoTSE.pdf
http://scg.unibe.ch/archive/papers/Roet11aSenseoTSE.pdf
http://dx.doi.org/10.1109/TSE.2011.42
http://scg.unibe.ch/archive/masters/DeZa09a.pdf
http://scg.unibe.ch/archive/masters/DeZa09a.pdf

	Introduction
	Moose: an analysis platform
	Lessons Learned
	Future work
	References

