

s

t

-

effect,
d tech-
 extent
ms that

e es-

te

rt for
rrency
d with

ned to
ort ap-

plicit
eworks

Research Topics in

Software Composition 1

Oscar Nierstrasz

University of Berne2

Abstract. Traditional software development approaches do not cope well with the
evolving requirements of open systems. We argue that such systems are best viewed a
flexible compositions of “software components” designed to work together as part of a
component framework that formalizes a class of applications with a common software
architecture. To enable such a view of software systems, we need appropriate suppor
from programming language technology, software tools, and methods. We will briefly
review the current state of object-oriented technology, insofar as it supports compo-
nent-oriented development, and propose a research agenda of topics for further inves
tigation.

1 Open Systems

Modern applications can be characterized as open systems in terms of topology, platform and
evolution. Of these, the most difficult requirement to meet is the third, since it states, in
that all application requirements cannot be known in advance due to changing needs an
nological demands. Traditional application development methods are inadequate to the
that they assume closed and fixed requirements, and therefore result in inflexible syste
cannot be easily adapted to unexpected changes in requirements [10].

We can distinguish between Open Systems Requirements that are essentially computa-
tional (i.e., dealing with functionality, distribution, concurrency, etc.), and those that ar
sentially compositional (i.e., dealing with evolution, interoperability, etc.). A comple
approach should take both kinds of requirements into account.

Current object-oriented technology and methods provide only limited kinds of suppo
both kinds of requirements. Object-oriented languages and models supporting concu
and distribution are either experimental, or adopt approaches that are poorly integrate
an object model. Actual component models, such as CORBA, SOM, COM, are desig
address interoperability rather than software composition, and are not intended to supp
plication evolution. Object-oriented Analysis and Design methods provide little or no ex
support for software reuse, evolution, or the development, use and adaptation of fram
and component toolkits.

1. In Proceedings, Langages et Modèles à Objets, A. Napoli (Ed.), Nancy, Oct. 1995, pp. 193-204.

2. Software Composition Group, Institut für Informatik (IAM), Universität Bern, 3012 Switzerland.
E-mail: oscar@iam.unibe.ch WWW: http://iamwww.unibe.ch/~scg

Oscar Nierstrasz

2.

i-

vance
e open
s, tools

at seem

ations;
 data-

 soft-

s

nificant

iated to
In a sense, we need to view Open Systems as families of applications rather than as ind
vidual applications themselves. A truly open system can only be built by anticipating require-
ments evolution. An individual system, therefore, can be seen as an instance of a generic
family of applications.

We shall continue by attempting to define software composition and explain its rele
to open systems development. Then, in sections 3, 4 and 5, we will consider briefly th
research issues in supporting compositional software development through language
and methods. In our concluding remarks we summarize a research agenda.

2 Software Composition

Before attempting to define software composition, let us consider some approaches th
to work well for composing applications in specific application domains:

4GLs:
• a specialized, high-level programming language characterizes a class of applic

typical 4GLs facilitate the rapid development of forms-based user-interfaces to
base applications

Application Generators:
• a high-level language or interface describes application configurations
• source code is generated

Component Toolkits and Builders:
• a high-level language or graphical tool is used to combine and configure existing

ware components

Object-Oriented Frameworks:
• standard software components are specified as abstract/concrete object classe
• applications are programmed by specializing and extending framework classes

If we consider each of these approaches in turn, we can readily see a number of sig
commonalities:

• the application domain is well-understood
• a generic software architecture captures families of applications
• parameterized software components are designed to be specialized or instant

meet specific requirements

1A 1B 1C

2A 2B 2C

3A 3B

2D

Open Requirements

Evolving Systems

Figure 1 Open Systems as Families of Applications

3.

Research Topics in Software Composition

r for-

lized or
 latter

ary, the
rame-
ly re-
ch, the

ar limi-

to new

bining

est at
tware

 to use

they can
e fol-

• the path from requirements collection to implementation is reduced to a recipe o
mula (as much as possible)

Each of these points is true to a lesser or greater degree depending on how specia
general the approach is. For example, software components are clearly visible in the
three approaches, but are mostly hidden behind the language in a 4GL. On the contr
software development path is most streamlined with a 4GL, and less evident with a f
work, since detailed knowledge of the implementation details of a framework is typical
quired before one can use it to build a specific application. The more general the approa
more difficult it seems to apply.

Although each of these approaches works well in certain cases, they each have cle
tations:

• openness is hard to achieve: integration with external components, adaptation
requirements are not necessarily straightforward

• approaches not easy to combine: the paradigms are largely disjoint; even com
two frameworks or class libraries can pose technical difficulties

• software architecture not always explicit: component toolkits are perhaps the b
making visible at a high level the relationships and interactions between sof
components; frameworks tend to hide these

• trade-off between convenience and generality: the most convenient techniques
(e.g., 4GLs) tend to be the least general, and vice versa (frameworks)

2.1 Component Frameworks
The natural question to ask is: can we learn from and generalize these approaches so
work well for arbitrary application domains? In the spirit of this question, we propose th
lowing model for component-oriented software development (see figure 2): A component

Generic

Components

Domain Knowledge

Requirements Models

Architecture

Requirements

Specific Application

Component-Oriented
Software Development is
Framework-Driven

Figure 2 Component-Oriented Software Development

Oscar Nierstrasz

4.

quire-
nts ad-

ection
work.
epts are
ents to
ive ap-
is and
tching
luable

posi-

ment

t

pro-
g lan-
s and
e third
n only
ber of

nts and
 (which
tware

cts en-

t-
ntities.

m build-
ty than
it com-
special

nts.
n; (ii)
osi-
framework is a collection of software artefacts that encapsulates domain knowledge, re
ments models, a generic software architecture and a collection of software compone
dressing a particular application domain. Development of specific applications is framework-
driven, in the sense that all phases of the software lifecycle, including requirements coll
and specification are determined according to set patterns formalized within the frame
To a large extent, system design is already done, since the domain and system conc
specified in the generic architecture. The remaining art is to map the specific requirem
the concepts and components provided by the framework. This is in sharp contrast to na
proaches that would apply either a traditional or an object-oriented method for analys
design, and only during implementation attempt to find “reusable object classes” ma
the design specification in a software repository. Experience shows that the most va
kind of reuse occurs in the early stages of the software lifecycle.

Given this model of component-oriented development, we can define software com
tion as the systematic construction of software applications from components that imple
abstractions pertaining to a particular problem domain. Composition is systematic in that i
is supported by a framework, and in the sense that components are designed to be composed.

Clearly there are different levels of software composition. The most familiar to all
grammers is at the level of the programming constructs of a particular programmin
guage. The next level, of solution domain specific components is also familiar: pipe
filters in Unix are perhaps the best example of a successful composition paradigm. Th
level, of application domain specific components, is the hardest to achieve, since it ca
be achieved after first gathering and abstracting from the experience of a sufficient num
specific applications in a domain, and then developing an adequate model of compone
composition for that domain. The best successes are in the domain of user interfaces
is arguably just a solution domain). At any level, software composition requires that sof
components be systematically designed to be composed.

What, if any, are the differences between Objects and Components? First of all, obje
capsulate services, whereas components are abstractions that can be used to construct objec
oriented systems. Objects have identity, state and behaviour, and are always run-time e
Components, on the other hand, are generally static entities that are needed at syste
time. They need not exist at run-time. Components may be of finer or coarser granulari
objects: e.g., classes, templates, mix-ins, modules. Components should have an explic
position interface, which is type-checkable (see figure 3). An object can be seen as a
kind of stateful component that is available at run-time.

Composition mechanisms mediate the interconnection between software compone
Composition generally reduces to some combination of (i) generics/macro expansio
higher-order functional composition; or (iii) binding of communication channels. Comp

request

reply

input plugs (required)

output plugs (exported)

an object a component

Figure 3 Objects and Components

5.

Research Topics in Software Composition

 in
tocol
is list is

m-

 in

ecific
chitec-
re ar-

em

e

, but
ed for
nd the
ource

n:

ition
rame-
tures

hat

 ar-
nance

 ap-
pment
)?

 ob-

w

ac-
t is not
mply
tion mechanisms, therefore, are either static or dynamic. Static composition entails interface
compatibility (e.g., type-checking), binding of parameters (e.g., binding of self and super
inheritance). Dynamic composition mechanisms may additionally entail buffering, pro
checking, translation between language/execution models, and service negotiation (th
not intended to be complete).

Now let us be more precise about what we mean by a software architecture:

• A software architecture is a description of the way in which a specific system is co
posed from its components.

• A generic software architecture is a description of a class of software architectures
terms of component interfaces, composition mechanisms, and the rules governing
software composition.

A component framework helps in the development of open systems by allowing a sp
system to be viewed as a generic family of applications in the sense that its software ar
ture is derived from a generic one. The resulting system is open and flexible if its softwa
chitecture is explicit and manipulable. (This is clearly a necessary condition, since a syst
whose architecture is not explicit cannot easily be adapted to new requirements.)

Finally, we can define a component framework as a generic software architecture together
with a corresponding collection of generic software components, that can be used to realiz
flexible applications whose architectures conform to the generic family.

4GLs, application generators and application builders follow a framework approach
are closed to a single application domain. Object-oriented frameworks can be develop
arbitrary domains, but the generic software architectures they define are not explicit, a
rules for specializing and composing components can be difficult to determine from s
code alone.

We shall now consider the following research issues related to software compositio

1. Languages: How, in general, can we specify software components and compos
mechanisms? How can we specify generic architectures and component f
works? How can we specify applications as compositions so that their architec
will be explicit?

2. Tools: How can we support framework-driven requirements specification? W
kinds of software information systems are needed to manage the relevant software
tefacts? What kinds of interactive tools can help in the construction and mainte
of applications composed from components?

3. Methods: To what extent can existing methods be adapted to framework-driven
plication development? What techniques and methods can help in the develo
and evolution of component frameworks (as opposed to individual applications

3 Composition Languages

Object-oriented languages and tools address open systems development by introducing
jects (1) as an organizing principle, and (2) as a paradigm for reuse. Present-day Object-Ori-
ented Languages emphasize programming (i.e., using language primitives to define ne
objects) over composition (i.e., building applications by composing higher-level abstr
tions), that is, they emphasize the first view to the detriment of the second. In general, i
possible to build applications from an object-oriented class library or framework by si

Oscar Nierstrasz

6.

s pro-
riented
 con-

 of the
en as a
works
nstructs

ver,
ssible

der the
compo-
ed pro-

e-

egrate
ave at-
ected

ulation
om or-
lation
]. Con-
 a se-
ining
s that

y mean-
f an
rch prob-
 gen-

ently
e,
composing and linking objects instantiated from pre-existing classes. One must alway
gram new classes that use, or are derived from those provided. In this sense, object-o
technology fails to raise the level of abstraction from programming with core language
cepts to composition with domain specific components.

We posit the need for a so-called composition language, which would support both the
composition of applications from domain-specific components, as well as the definition
component frameworks themselves. A composition language may or may not be se
programming language itself: in principle one could use it to define component frame
at the level of basic programming language constructs, just as one may define such co
on top of the λ calculus (or, for that matter, on top of pure Lisp). It is more interesting, howe
to view such a language as enabling “glue” for composing pre-existing components, po
developed using different programming languages and platforms.

3.1 Interference of Object-oriented Features
Before considering the possible requirements of a composition language, let us consi
degree to which object-oriented programming languages support features needed for
sitional software development. Wegner [21] has proposed a classification of object-bas
gramming languages according to a set of “orthogonal” dimensions1:

• Object-Based: encapsulation (objects) [+ identity]

• Object-Oriented: + classes + inheritance

• Strongly-typed:+ data abstraction + types

• Concurrent:+ concurrency [+ distribution]

• Persistent:+ persistence + sets

An additional dimension not originally considered was homogeneity: in a homogeneous
object-oriented language, everything (within reason) is an object. So Smalltalk is a homog
neous object-oriented language whereas C++ is not.

Orthogonality in Wegner’s sense does not tell us anything about how easy it is to int
orthogonal features within a single programming language. Numerous researchers h
tempted to integrate such features [9] [11] only to discover that they interfere in unexp
ways [13]. In fact, just considering objects, inheritance, types and concurrency, we can see
that each interferes with the others (figure 4): inheritance interferes with object encaps
in that subclasses must typically be aware of implementation details that are hidden fr
dinary clients — if the implementation of a class changes in arbitrary ways, encapsu
may be broken since subclasses may not necessarily continue to function correctly [20
currency interferes with object encapsulation in that objects that function correctly in
quential environment may not when exposed to concurrent clients [17]. Comb
inheritance with concurrency poses further problems in that it is difficult to define classe
make use of concurrency mechanisms and can be then inherited and extended in an
ingful way without exposing implementation details [5] [7]. Finally, the development o
adequate type model that addresses both objects and inheritance is still an open resea
lem [15], let alone one that addresses type compatibility for concurrent objects [16]. In

1. Dimensions are considered to be orthogonal if features supporting them can be found independ
in different programming languages. Concurrency is therefore considered orthogonal to inheritanc
since some languages support concurrency features but not inheritance, and vice versa.

7.

Research Topics in Software Composition

osition
racteri-
avat-
s and

alls
t of a

he ap-

:

re ab-
s as a

:

n)

 are
nder
eral, we can attribute these semantic interferences to weak support for software comp
in object-oriented languages [13]: in each case, interference is due to inadequate cha
zation of the client/supplier contract. With inheritance in particular, this situation is aggr
ed by the two distinct interfaces a class must provide: one to clients of its instance
another to its subclasses.1 A composition language could only hope to avoid the same pitf
by drawing a clear distinction between the interfaces supported for each kind of clien
software component.

3.2 Requirements for Composition Languages

Composition languages would be used at two distinct levels: the framework level and t
plication level.

At the Framework Level, a composition language would support the specification of

• generic software architectures

• standard component interfaces and protocols

• composition mechanisms (or “glue”)

• open, generic software components

• high-level syntax for compositions

A composition language in this sense serves as a tool for defining the kinds of softwa
stractions that are needed to build flexible applications in a particular domain. It serve
kind of “meta-language” for defining the domain concepts.

At the Application Level, a composition language would support the specification of

• elaboration and instantiation of generic components

• applications as compositions

• explicit, manipulable software architectures

• meta-level reasoning (access to framework level to support dynamic compositio

1. Aside from serving as component s for instantiating both (i) objects and (ii) subclasses, classes
often also asked to play the roles of (iii) types, (iv) sets of instances, and (v) meta-objects. Small wo
semantic difficulties arise in trying to integrate various language features!

Object Encapsulation

Inheritance Concurrency

Types

violation of
encapsulation

poorly
understood

violation of
encapsulation

inadequate
characterization

Figure 4 Interference of OO Features

Oscar Nierstrasz

8.

ctions
s, spe-
at the

vels:

3]

ition,

ning

 rapid
ment

mantic
n
 affect
be de-
com-
 for a

ents,

us with
ave
 and an
e
are ab-

 space.
uages,
guage

ctions
ompo-

her-
s of
”?
This is the real domain of software composition: once the appropriate software abstra
are specified in a systematic way, flexible applications can be defined as instantiation
cializations and compositions of framework components. Ideally, applications are built
level of the abstractions provided by the framework.

Let us consider what specific language features are needed to support these two le
1. Active objects: objects can be viewed as autonomous communicating agents [1
2. Components: are first-class, higher-order abstractions [15]
3. Composition: should be general, not restricted to inheritance, structural compos

or other arbitrary paradigms
4. Types: must encompass both objects and components
5. Subtyping: means conformance to client/server contracts
6. High-level syntax: explicit and software architectures are supported by assig

high-level syntax to domain concepts
7. Interoperability: multi-language and multi-platform composition
8. Scalability: both small and large scale systems should be addressed; similarly

prototyping and production development (since component-oriented develop
spans all phases of the software lifecycle)

In order to address such diverse issues within a common language, a common se
foundation is needed for reasoning about objects, components and composition, and aobject
model that relates objects and components is needed. The choice of object model will
the ease with which composable behaviour and flexible component frameworks can
fined [13]. A kind of “object calculus” is sorely needed as a formal basis for specifying,
paring and evaluating possible object models, and as a possible core language
composition language. As a bare minimum, we would need features to express:

1. Encapsulation: objects provide services, may change state, and have an identity
2. Active Objects: objects are autonomous, may be internally concurrent, and may cope

with multiple pending requests
3. Composition: applications can be viewed as compositions of software compon

and objects as compositions of object parts
An Object Calculus, it seems, would merge the operational features of a process calcul
the compositional features of the λ calculus. Recent progress in process calculi, in fact, h
addressed many of the obstacles in developing an adequate object calculus [12][15],
asynchronous variant [4] of the higher-order π calculus [19] appears in many ways to provid
a suitable foundation: objects can be modelled as concurrent processes [18], and softw
stractions (components) can be viewed as higher-order abstractions over the process

Because a composition language will cut across all dimensions of object-based lang
it is imperative to have a common semantic foundation, and a suitable mapping of lan
concepts to this foundation (i.e., an object model). Some issues to consider are:

1. Object Models: How can we model objects as processes, components as abstra
over the object space, and objects and object systems as compositions of c
nents?

2. Composition: How can we express the basic forms of composition (generics, hig
order functions and communication)? How can we express more complex form
composition (like inheritance) as software abstraction, and thus “unbundle them

9. Research Topics in Software Composition

hism
 inter-
odel

 about

 sys-
uilt?

of soft-
works

ould
on sys-
ools to
 using

ent
 to be

rom
 gen-
onent

data-
te that
onent
rthe-

 repre-
le tool
t

3. Types: How can we develop an adequate type system with parametric polymorp
and subtyping for both objects and components? Can we “type the inheritance
face” [6] and thus achieve a more compositional view of inheritance? Can we m
generic synchronization policies [8] as typed software abstractions, and reason
plug compatibility of protocols? [16]

4. Compositional reasoning: can we reason about the correctness of a composed
tem on the basis of the specifications of the components from which they are b

4 Tools

Component-Oriented Software Development depends on systematic management
ware information (i.e., domain knowledge, requirements models, component frame
and applications). This leads us to the following problems:

• How to represent software information?

• How to develop software information?

• How to drive application development from software information?

• How to evolve and maintain software information?

Only the first of these problems is relatively well understood. Two classes of tools w
appear to be essential to support component-oriented development: software informati
tems for representing and managing component frameworks, and visual composition t
drive the interactive development and maintenance of software systems developed
component frameworks.

A Software Information System [2] represents and manages software information pertin
to component frameworks and derived applications. Some of the kinds of information
managed include:

• Requirements models and dialogues

• Design guidelines

• Integration with development tools

• Component repository

• Evolution management for applications and frameworks

A Visual Composition Tool [3] supports the interactive construction of applications f
plug-compatible software components by direct manipulation and graphical editing. A
eral approach to interactive software composition must be parameterized by comp
frameworks. Existing commercial tools are typically restricted to specific domains (UI,
flow ...), and cannot be adapted to arbitrary domains. Experimental results [3] indica
general-purpose visual composition is feasible by separating the tool from the comp
framework and the composition rules. Various technical and pragmatic difficulties neve
less remain. Complex systems are hard to visualize, and require flexible filtering and
sentation techniques to support the needed user abstractions. A sufficiently flexib
requires a framework and composition model itself to allow it to be easily adapted to differen
composition models and application domains [14].

Oscar Nierstrasz 10.

ifficult
onent
ition-
 since

 the de-
rame-

arate
].
ers the

d
ponent
issing
s. These
object-

ompo-
5 Methods

In addition to the technological issues of component-oriented development, there are d
methodological issues. First, how can we drive application development from comp
frameworks? Existing methods ignore reuse, or introduce it too late in the lifecycle. Trad
al separation of analysis and design is incompatible with a framework-driven approach
framework reuse should be anticipated during requirements collection and analysis.

Second, where do the frameworks come from? Traditional methods do not address
velopment of generic systems from previously completed projects. Refactoring and f
work evolution [1] are not yet well-understood or widely practised.

A Component-Oriented Software Lifecycle (figure 5) must take into account that applica-
tion development (the construction of applications from component frameworks) is a sep
activity from component engineering (the iterative development of the framework itself) [10
Component engineering is capital investment whereas application development recov
investment.

Since application development is ideally driven by component engineering, analysis an
design are largely done already. The hard parts are: identifying the appropriate com
framework to use, matching specific requirements to available components, building m
components and subsystems, and adapting components to unforeseen requirement
aspects of object-oriented design and implementation fall outside the scope of today’s
oriented methods.

6 Concluding Remarks

Object-oriented languages typically provide only limited support for component definition
and composition. This suggests a need for cleaner integration of (active) objects and c

Component
Engineering

Application
Maintenance and

Evolution

Framework
Refinement and

Evolution

Application
Development

Component
Framework

Specific
Application

Existing Applications and
Domain Knowledge

Specific Application
Requirements

Figure 5 A Component-Oriented Software Lifecycle

11. Research Topics in Software Composition

-
ent
ring is
eed for

d on a

the
the de-
bility
rency
 dis-

gram-
devel-
dients
nent
.

01-

nfor-

n,”

t-Ori-
t-

-

Ori-

ge,

ive
nce,
nents within a so-called composition language for component-oriented development. Com
ponent reuse is always systematic, not accidental. This suggests a need for compon
frameworks and systematic software information management. Component enginee
difficult and iterative; present practice discourages design for reuse. This suggests a n
an evolutionary software life-cycle and corresponding methods.

A composition language would support an integrated object/component model base
rigorous semantic foundation. Such a foundation — or object calculus — could well be based
on a variant of the π calculus [4][12][18][19]. Challenges for such a language include
modeling of the foundational software abstractions (components, active objects, etc.),
velopment of an appropriate type system with type inference, support for interopera
with existing languages and component libraries, modeling of abstractions for concur
and distribution, and modeling of reflective capabilities to support evolution of long-lived
tributed systems.

The hardest problems are not in the technological domain of designing better pro
ming languages, but in the domain of methodological support for component-oriented
opment. Software information systems and visual composition tools are two such ingre
in an environment that helps to drive application development from existing compo
frameworks. The most difficult problem is to develop those frameworks in the first place

References
[1] Eduardo Casais, “Managing Class Evolution in Object-Oriented Systems,” Object-Oriented

Software Composition, O. Nierstrasz and D. Tsichritzis (Ed.), Prentice Hall, 1995, pp. 2
244.

[2] Panos Constantopoulos and Martin Dörr, “Component Classification in the Software I
mation Base,” Object-Oriented Software Composition, O. Nierstrasz and D. Tsichritzis
(Ed.), Prentice Hall, 1995, pp. 177-200.

[3] Vicki de Mey, “Visual Composition of Software Applications,” Object-Oriented Software
Composition, O. Nierstrasz and D. Tsichritzis (Ed.), Prentice Hall, 1995, pp. 275-303.

[4] Kohei Honda and Mario Tokoro, “An Object Calculus for Asynchronous Communicatio
Proceedings ECOOP ’91, ed. P. America, Lecture Notes in Computer Science, vol. 512,
Springer-Verlag, Geneva, July 15–19, 1991, pp. 133–147.

[5] Dennis G. Kafura and Keung Hae Lee, “Inheritance in Actor Based Concurrent Objec
ented Languages,” Proceedings ECOOP ’89, ed. S. Cook, Cambridge University Press, No
tingham, July 10–14, 1989, pp. 131–145.

[6] John Lamping, “Typing the Specialization Interface,” Proceedings OOPSLA 93, ACM SIG
PLAN Notices, vol. 28, no. 10, Oct. 1993, pp. 201–214.

[7] Satoshi Matsuoka and Akinori Yonezawa, “Analysis of Inheritance Anomaly in Object-
ented Concurrent Programming Languages,” Research Directions in Concurrent Object-
Oriented Programming, ed. G. Agha, P. Wegner and A. Yonezawa, MIT Press, Cambrid
Mass., 1993, pp. 107–150.

[8] Ciaran McHale, “Synchronisation in Concurrent, Object-oriented Languages: Express
Power, Genericity and Inheritance,” Ph.D. Dissertation, Department of Computer Scie
Trinity College, Dublin, 1994.

[9] Oscar Nierstrasz, “Active Objects in Hybrid,” Proceedings OOPSLA’87, ACM SIGPLAN
Notices, vol. 22, no. 12, Dec. 1987, pp. 243–253.

Oscar Nierstrasz 12.

e De-

ts,”

p

t-
ge,

”

-

”

rder
ept.,

ges,”
.

[10] Oscar Nierstrasz, Simon Gibbs and Dennis Tsichritzis, “Component-Oriented Softwar
velopment,” Communications of the ACM, vol. 35, no. 9, Sept. 1992, pp. 160–165.

[11] Oscar Nierstrasz, “A Tour of Hybrid — A Language for Programming with Active Objec
Advances in Object-Oriented Software Engineering, ed. D. Mandrioli and B. Meyer, Pren-
tice Hall, 1992, pp. 167–182.

[12] Oscar Nierstrasz, “Towards an Object Calculus,” Proceedings of the ECOOP ’91 Worksho
on Object-Based Concurrent Computing, ed. M. Tokoro, O. Nierstrasz, P. Wegner, Lecture
Notes in Computer Science, vol. 612, Springer-Verlag, pp. 1–20, 1992.

[13] Oscar Nierstrasz, “Composing Active Objects,” Research Directions in Concurrent Objec
Oriented Programming, ed. G. Agha, P. Wegner and A. Yonezawa, MIT Press, Cambrid
Mass., 1993, pp. 151–171.

[14] Oscar Nierstrasz and Theo Dirk Meijler, “Requirements for a Composition Language,Ob-
ject-Based Models and Languages for Concurrent Systems, P. Ciancarini, O. Nierstrasz and
A. Yonezawa (Ed.), LNCS 924, Springer-Verlag, 1995, pp. 147-161.

[15] Oscar Nierstrasz and Laurent Dami, “Component-Oriented Software Technology,” in Ob-
ject-Oriented Software Composition, ed. O. Nierstrasz and D. Tsichritzis, Prentice Hall,
1995, pp. 3-28.

[16] Oscar Nierstrasz, “Regular Types for Active Objects,” in Object-Oriented Software Compo
sition, ed. O. Nierstrasz and D. Tsichritzis, Prentice Hall, 1995, pp. 99-121.

[17] Michael Papathomas, “Concurrency in Object-Oriented Programming Languages,” inOb-
ject-Oriented Software Composition, ed. O. Nierstrasz and D. Tsichritzis, Prentice Hall,
1995, pp. 31-68.

[18] Benjamin C. Pierce and David N. Turner, “Concurrent Objects in a Process Calculus,Pro-
ceedings Theory and Practice of Parallel Programming (TPPP 94), Springer LNCS 907,
Sendai, Japan, 1995, pp. 187-215.

[19] Davide Sangiorgi, “Expressing Mobility in Process Algebras: First-Order and Higher-O
Paradigms,” Ph.D. thesis, CST-99-93 (also: ECS-LFCS-93-266), Computer Science D
University of Edinburgh, May 1993.

[20] Alan Snyder, “Encapsulation and Inheritance in Object-Oriented Programming Langua
Proceedings OOPSLA ’86, ACM SIGPLAN Notices, vol. 21, no. 11, Nov. 1986, pp. 38–45

[21] Peter Wegner, “Dimensions of Object-Based Language Design,” Proceedings OOPSLA ’87,
ACM SIGPLAN Notices, vol. 22, no. 12, Dec. 1987, pp. 168-182.

	Research Topics in Software Composition
	1 Open Systems
	2 Software Composition
	2.1 Component Frameworks

	3 Composition Languages
	3.1 Interference of Object-oriented Features
	3.2 Requirements for Composition Languages

	4 Tools
	5 Methods
	6 Concluding Remarks

