Research Topics in

Software Composition

Oscar Nierstrasz

University of Berné

Abstract. Traditional software development approaches do not cope well with the
evolving requirements of open systems. We argue that such systems are best viewed as
flexible compositions of “software components” designed to work together as part of a
component frameworthat formalizes a class of applications with a common software
architecture. To enable such a view of software systems, we need appropriate support
from programming language technology, software tools, and methods. We will briefly
review the current state of object-oriented technology, insofar as it supports compo-
nent-oriented development, and propose a research agenda of topics for further inves-
tigation.

1 Open Systems

Modern applications can be characterizedpen systema terms of topology, platform and
evolution. Of these, the most difficult requirement to meet is the third, since it states, in effect,
that all application requirements cannot be known in advance due to changing needs and tech-
nological demands. Traditional application development methods are inadequate to the extent
that they assume closed and fixed requirements, and therefore result in inflexible systems that
cannot be easily adapted to unexpected changes in requirements [10].

We can distinguish between Open Systems Requirements that are essantipllya-
tional (i.e., dealing with functionality, distribution, concurrency, etc.), and those that are es-
sentially compositional(i.e., dealing with evolution, interoperability, etc.). A complete
approach should take both kinds of requirements into account.

Current object-oriented technology and methods provide only limited kinds of support for
both kinds of requirements. Object-oriented languages and models supporting concurrency
and distribution are either experimental, or adopt approaches that are poorly integrated with
an object model. Actual component models, such as CORBA, SOM, COM, are designed to
address interoperability rather than software composition, and are not intended to support ap-
plication evolution. Object-oriented Analysis and Design methods provide little or no explicit
support for software reuse, evolution, or the development, use and adaptation of frameworks
and component toolkits.

1. InProceedings, Langages et Modeéles & ObjgtdNapoli (Ed.), Nancy, Oct. 1995, pp. 193-204.

2. Software Composition Groupmstitut fur Informatik (IAM), Universitat Bern, 3012 Switzerland.
E-mail: oscar@iam.unibe.dWWW:http://iamwww.unibe.ch/~scg

Oscar Nierstrasz 2.

_ <

. — \4
N Opgn Requirements_~_

—_ — ~. _ —

Evolving Systems

Figure 1 Open Systems as Families of Applications

In a sense, we need to view Open Systenfisragiesof applications rather than as indi-
vidual applications themselves. A truly open system can only be batfitlypatingrequire-
ments evolution. An individual system, therefore, can be seen iastanceof a generic
family of applications.

We shall continue by attempting to define software composition and explain its relevance
to open systems development. Then, in sections 3, 4 and 5, we will consider briefly the open
research issues in supporting compositional software development through languages, tools
and methods. In our concluding remarks we summarize a research agenda.

2 Software Composition

Before attempting to define software composition, let us consider some approaches that seem
to work well for composing applications in specific application domains:

4GLs:

» aspecialized, high-level programming language characterizes a class of applications;
typical 4GLs facilitate the rapid development of forms-based user-interfaces to data-
base applications

Application Generators:
* ahigh-level language or interface describes application configurations
» source code is generated

Component Toolkits and Builders:

» ahigh-level language or graphical tool is used to combine and configure existing soft-
ware components

Object-Oriented Frameworks:
 standard software components are specified as abstract/concrete object classes
 applications are programmed by specializing and extending framework classes

If we consider each of these approaches in turn, we can readily see a number of significant
commonalities:

* the application domain is well-understood
* ageneric software architecture captures families of applications

» parameterized software components are designed to be specialized or instantiated to
meet specific requirements

3. Research Topics in Software Composition

7

(¢
Domain Knowledge }; Requirements _)
N oo

—_
Requirements Models

—

L] . Component-Oriented
@ Wﬁgﬂ L, Generic Software Developmentis

Architecture Framework-Driven

\
Components %m ——]
<) 4 U

/ Specific Application

XXX

_

Figure 2 Component-Oriented Software Development

« the path from requirements collection to implementation is reduced to a recipe or for-
mula (as much as possible)

Each of these points is true to a lesser or greater degree depending on how specialized or
general the approach is. For example, software components are clearly visible in the latter
three approaches, but are mostly hidden behind the language in a 4GL. On the contrary, the
software development path is most streamlined with a 4GL, and less evident with a frame-
work, since detailed knowledge of the implementation details of a framework is typically re-
quired before one can use it to build a specific application. The more general the approach, the
more difficult it seems to apply.

Although each of these approaches works well in certain cases, they each have clear limi-
tations:

» openness is hard to achieve: integration with external components, adaptation to new
requirements are not necessarily straightforward

» approaches not easy to combine: the paradigms are largely disjoint; even combining
two frameworks or class libraries can pose technical difficulties

» software architecture not always explicit: component toolkits are perhaps the best at
making visible at a high level the relationships and interactions between software
components; frameworks tend to hide these

« trade-off between convenience and generality: the most convenient techniques to use
(e.g., 4GLs) tend to be the least general, and vice versa (frameworks)

2.1 Component Frameworks

The natural question to ask is: can we learn from and generalize these approaches so they can
work well for arbitrary application domains? In the spirit of this question, we propose the fol-
lowing model for component-oriented software development (see figurecdmponent

Oscar Nierstrasz 4,

frameworkis a collection of software artefacts that encapsulates domain knowledge, require-
ments models, a generic software architecture and a collection of software components ad-
dressing a particular application domain. Development of specific applicatitamaésvork-

driven in the sense that all phases of the software lifecycle, including requirements collection
and specification are determined according to set patterns formalized within the framework.
To a large extent, system design is already done, since the domain and system concepts are
specified in the generic architecture. The remaining art is to map the specific requirements to
the concepts and components provided by the framework. This is in sharp contrast to naive ap-
proaches that would apply either a traditional or an object-oriented method for analysis and
design, and only during implementation attempt to find “reusable object classes” matching
the design specification in a software repository. Experience shows that the most valuable
kind of reuse occurs in the early stages of the software lifecycle.

Given this model of component-oriented development, we can define software composi-
tion asthe systematic construction of software applications from components that implement
abstractions pertaining to a particular problem doma@mmposition is systematic in that it
is supported by a framework, and in the sense that componedesayeedo be composed.

Clearly there are different levels of software composition. The most familiar to all pro-
grammers is at the level of the programming constructs of a particular programming lan-
guage. The next level, of solution domain specific components is also familiar: pipes and
filters in Unix are perhaps the best example of a successful composition paradigm. The third
level, of application domain specific components, is the hardest to achieve, since it can only
be achieved after first gathering and abstracting from the experience of a sufficient number of
specific applications in a domain, and then developing an adequate model of components and
composition for that domain. The best successes are in the domain of user interfaces (which
is arguably just a solution domain). At any level, software composition requires that software
components be systematicallgsignedo be composed.

What, if any, are the differences between Objects and Components? First of all, objects en-
capsulateserviceswhereas components atestractionghat can be used to construct object-
oriented systems. Objects have identity, state and behaviour, and are always run-time entities.
Components, on the other hand, are generally static entities that are needed at system build-
time. They need not exist at run-time. Components may be of finer or coarser granularity than
objects: e.g., classes, templates, mix-ins, modules. Components should have an explicit com-
position interface, which is type-checkable (see figure 3). An object can be seen as a special
kind of stateful component that is available at run-time.

input plugs (required)
L
request
an object a component
reply

L.
output plugs (exported)

Figure 3 Objects and Components

Composition mechanisnmediate the interconnection between software components.
Composition generally reduces to some combination of (i) generics/macro expansion; (ii)
higher-order functional composition; or (iii) binding of communication channels. Composi-

5. Research Topics in Software Composition

tion mechanisms, therefore, are either static or dynamic. Static compositionieteddse
compatibility(e.g., type-checkinghinding of parameters (e.g., binding of self and super in
inheritance). Dynamic composition mechanisms may additionally entail buffering, protocol
checking, translation between language/execution models, and service negotiation (this listis
not intended to be complete).

Now let us be more precise about what we mean by a software architecture:

» A software architecturés a description of the way in which a specific system is com-
posed from its components.

» A generic software architectuie a description of a class of software architectures in
terms ofcomponent interfacegomposition mechanisgmand therules governing
software compositian

A component framework helps in the development of open systems by allowing a specific
system to be viewed as a generic family of applications in the sense that its software architec-
ture is derived from a generic one. The resulting system is open and flexible if its software ar-
chitecture iexplicitandmanipulable (This is clearly a necessary condition, since a system
whose architecture is not explicit cannot easily be adapted to new requirements.)

Finally, we can define@mponent framewoiks ageneric software architectutegether
with a correspondingollection of generic software componertkgt can be used to realize
flexible applications whose architectures conform to the generic family.

4GLs, application generators and application builders follow a framework approach, but
are closed to a single application domain. Object-oriented frameworks can be developed for
arbitrary domains, but the generic software architectures they define are not explicit, and the
rules for specializing and composing components can be difficult to determine from source
code alone.

We shall now consider the following research issues related to software composition:

1. Languages:How, in general, can we specify software components and composition
mechanisms? How can we specify generic architectures and component frame-
works? How can we specify applications as compositions so that their architectures
will be explicit?

2. Tools: How can we support framework-driven requirements specification? What
kinds ofsoftware information systemase needed to manage the relevant software ar-
tefacts? What kinds of interactive tools can help in the construction and maintenance
of applications composed from components?

3. Methods: To what extent can existing methods be adapted to framework-driven ap-
plication development? What techniques and methods can help in the development
and evolution of component frameworks (as opposed to individual applications)?

3 Composition Languages

Object-oriented languageand tools address open systems development by introducing ob-
jects (1) as anrganizing principleand (2) as paradigm for reuse?resent-day Object-Ori-

ented Languages emphasm®gramming(i.e., using language primitives to define new
objects) overcomposition(i.e., building applications by composing higher-level abstrac-
tions), that is, they emphasize the first view to the detriment of the second. In general, it is not
possible to build applications from an object-oriented class library or framework by simply

Oscar Nierstrasz 6.

composing and linking objects instantiated from pre-existing classes. One must always pro-
gram new classes that use, or are derived from those provided. In this sense, object-oriented
technology fails to raise the level of abstraction from programming with core language con-
cepts to composition with domain specific components.

We posit the need for a so-calledmposition languagevhich would support both the
composition of applications from domain-specific components, as well as the definition of the
component frameworks themselves. A composition language may or may not be seen as a
programming language itself: in principle one could use it to define component frameworks
at the level of basic programming language constructs, just as one may define such constructs
on top of the\ calculus (or, for that matter, on top of pure Lisp). Itis more interesting, however,
to view such a language as enabling “glue” for composing pre-existing components, possible
developed using different programming languages and platforms.

3.1 Interference of Object-oriented Features

Before considering the possible requirements of a composition language, let us consider the
degree to which object-oriented programming languages support features needed for compo-
sitional software development. Wegner [21] has proposed a classification of object-based pro-
gramming languages according to a set of “orthogonal” dimerisions

» Object-Based:encapsulatiorfobjects) [+ identity]
» Object-Oriented: + classes #heritance

» Strongly-typed:+ data abstractiontypes

» Concurrent: + concurrency + distribution]

» Persistent+ persistence + sets

An additional dimension not originally considered wmasnogeneityin a homogeneous
object-oriented languageyerything(within reason) is an object. So Smalltalk is a homoge-
neous object-oriented language whereas C++ is not.

Orthogonality in Wegner’s sense does not tell us anything about how easy it is to integrate
orthogonal features within a single programming language. Numerous researchers have at-
tempted to integrate such features [9] [11] only to discover that they interfere in unexpected
ways [13]. In fact, just considerirgpjects inheritance typesandconcurrencywe can see
that each interferes with the others (figure 4): inheritance interferes with object encapsulation
in that subclasses must typically be aware of implementation details that are hidden from or-
dinary clients — if the implementation of a class changes in arbitrary ways, encapsulation
may be broken since subclasses may not necessarily continue to function correctly [20]. Con-
currency interferes with object encapsulation in that objects that function correctly in a se-
quential environment may not when exposed to concurrent clients [17]. Combining
inheritance with concurrency poses further problems in that it is difficult to define classes that
make use of concurrency mechanisms and can be then inherited and extended in any mean-
ingful way without exposing implementation details [5] [7]. Finally, the development of an
adequate type model that addresses both objects and inheritance is still an open research prob-
lem [15], let alone one that addresses type compatibility for concurrent objects [16]. In gen-

1. Dimensions are considered to be orthogonal if features supporting them can be found independently
in different programming languages. Concurrency is therefore considered orthogonal to inheritance,
since some languages support concurrency features but not inheritance, and vice versa.

7. Research Topics in Software Composition

Object Encapsulation

violation of violation of
encapsulation encapsulation
poorly
) understood
Inheritance g p Concurrency
T inadequate
ypes characterization

Figure 4 Interference of OO Features

eral, we can attribute these semantic interferences to weak support for software composition
in object-oriented languages [13]: in each case, interference is due to inadequate characteri-
zation of the client/supplier contract. With inheritance in particular, this situation is aggravat-
ed by the two distinct interfaces a class must provide: one to clients of its instances and
another to its subclass&A.composition language could only hope to avoid the same pitfalls

by drawing a clear distinction between the interfaces supported for each kind of client of a
software component.

3.2 Requirements for Composition Languages

Composition languages would be used at two distinct levels: the framework level and the ap-
plication level.

At the Framework Level, a composition language would support the specification of:
* generic software architectures
» standard component interfaces and protocols
» composition mechanisms (or “glue”)
* open, generic software components
* high-level syntax for compositions

A composition language in this sense serves as a tool for defining the kinds of software ab-
stractions that are needed to build flexible applications in a particular domain. It serves as a
kind of “meta-language” for defining the domain concepts.

At the Application Level, a composition language would support the specification of:
* elaboration and instantiation of generic components
» applications as compositions
 explicit, manipulable software architectures
* meta-level reasoning (access to framework level to support dynamic composition)

1. Aside from serving as component s for instantiating both (i) objects and (ii) subclasses, classes are
often also asked to play the roles of (iii) types, (iv) sets of instances, and (v) meta-objects. Small wonder
semantic difficulties arise in trying to integrate various language features!

Oscar Nierstrasz 8.

This is the real domain of software composition: once the appropriate software abstractions
are specified in a systematic way, flexible applications can be defined as instantiations, spe-
cializations and compositions of framework components. Ideally, applications are built at the
level of the abstractions provided by the framework.

Let us consider what specific language features are needed to support these two levels:

1. Active objectspbjects can be viewed as autonomous communicating agents [13]
2. Componentsare first-class, higher-order abstractions [15]

3. Composition:should be general, not restricted to inheritance, structural composition,
or other arbitrary paradigms

4. Types:must encompass both objects and components
. Subtyping:means conformance to client/server contracts

6. High-level syntax:explicit and software architectures are supported by assigning
high-level syntax to domain concepts

7. Interoperability: multi-language and multi-platform composition

8. Scalability: both small and large scale systems should be addressed; similarly rapid
prototyping and production development (since component-oriented development
spans all phases of the software lifecycle)

In order to address such diverse issues within a common language, a common semantic
foundation is needed for reasoning about objects, components and compositiomfgactan
modelthat relates objects and components is needed. The choice of object model will affect
the ease with which composable behaviour and flexible component frameworks can be de-
fined [13]. A kind of “object calculus” is sorely needed as a formal basis for specifying, com-
paring and evaluating possible object models, and as a possible core language for a
composition language. As a bare minimum, we would need features to express:

1. Encapsulation:objects provideservices may changstate and have aidentity

2. Active Objectsobjects arautonomousmay benternally concurrentand may cope
with multiple pending requests

3. Composition:applications can be viewed as compositions of software components,
and objects as compositions of object parts

An Object Calculus, it seems, would merge the operational features of a process calculus with
the compositional features of thealculus. Recent progress in process calculi, in fact, have
addressed many of the obstacles in developing an adequate object calculus [12][15], and an
asynchronous variant [4] of the higher-ordealculus [19] appears in many ways to provide
a suitable foundation: objects can be modelled as concurrent processes [18], and software ab-
stractions (components) can be viewed as higher-order abstractions over the process space.
Because a composition language will cut across all dimensions of object-based languages,
it is imperative to have a common semantic foundation, and a suitable mapping of language
concepts to this foundation (i.e., an object model). Some issues to consider are:

1. Object ModelsHow can we model objects as processes, components as abstractions
over the object space, and objects and object systems as compositions of compo-
nents?

2. Composition:How can we express the basic forms of composition (generics, higher-
order functions and communication)? How can we express more complex forms of
composition (like inheritance) as software abstraction, and thus “unbundle them”?

(93]

9. Research Topics in Software Composition

3. Types:How can we develop an adequate type system with parametric polymorphism
and subtyping for both objects and components? Can we “type the inheritance inter-
face” [6] and thus achieve a more compositional view of inheritance? Can we model
generic synchronization policies [8] as typed software abstractions, and reason about
plug compatibility of protocols? [16]

4. Compositional reasoningcan we reason about the correctness of a composed sys-
tem on the basis of the specifications of the components from which they are built?

4 Tools

Component-Oriented Software Development depends on systematic management of soft-
ware information (i.e., domain knowledge, requirements models, component frameworks
and applications). This leads us to the following problems:

» How torepresentsoftware information?

* How todevelopsoftware information?

* How todrive application development from software information?
* How toevolveand maintain software information?

Only the first of these problems is relatively well understood. Two classes of tools would
appear to be essential to support component-oriented development: software information sys-
tems for representing and managing component frameworks, and visual composition tools to
drive the interactive development and maintenance of software systems developed using
component frameworks.

A Software Information Systg@] represents and manages software information pertinent
to component frameworks and derived applications. Some of the kinds of information to be
managed include:

* Requirements models and dialogues

» Design guidelines

* Integration with development tools

« Component repository

» Evolution management for applications and frameworks

A Visual Composition Tool [3] supports the interactive construction of applications from
plug-compatible software components by direct manipulation and graphical editing. A gen-
eral approach to interactive software composition must be parameterized by component
frameworks. Existing commercial tools are typically restricted to specific domains (Ul, data-
flow ...), and cannot be adapted to arbitrary domains. Experimental results [3] indicate that
general-purpose visual composition is feasible by separating the tool from the component
framework and the composition rules. Various technical and pragmatic difficulties neverthe-
less remain. Complex systems are hard to visualize, and require flexible filtering and repre-
sentation techniques to support the needed user abstractions. A sufficiently flexible tool
requires a framework and composition matsallfto allow it to be easily adapted to different
composition models and application domdity.

Oscar Nierstrasz 10.

Existing Applications and
Domain Knowledge

Specific Application
Requirements

Component Application
Engineering Development
Component /\ Specific
Framework - Application
Framework
Refinement and
Evolution .
Application
Maintenance and
Evolution

Figure 5 A Component-Oriented Software Lifecycle

5 Methods

In addition to the technological issues of component-oriented development, there are difficult
methodological issues. First, how can we drive application development from component
frameworks? Existing methods ignore reuse, or introduce it too late in the lifecycle. Tradition-
al separation of analysis and design is incompatible with a framework-driven approach since
framework reuse should be anticipated during requirements collection and analysis.

Second, where do the frameworks come from? Traditional methods do not address the de-
velopment of generic systems from previously completed projects. Refactoring and frame-
work evolution [1] are not yet well-understood or widely practised.

A Component-Oriented Software Lifecycle (figure 5) must take into accouaptblata-
tion developmer{the construction of applications from component frameworks) is a separate
activity fromcomponent engineerir{the iterative development of the framework itself) [10].
Component engineering is capital investment whereas application development recovers the
investment.

Since application development is ideallyven by component engineering, analysis and
design are largely done already. The hard parts are: identifying the appropriate component
framework to use, matching specific requirements to available components, building missing
components and subsystems, and adapting components to unforeseen requirements. These
aspects of object-oriented design and implementation fall outside the scope of today’s object-
oriented methods.

6 Concluding Remarks

Object-oriented languages typically provide olyited support for component definition
and composition. This suggests a need for cleaner integration of (active) objects and compo-

11. Research Topics in Software Composition

nents within a so-callecbomposition languagt®r component-oriented development. Com-
ponent reuse is alwaysystematic not accidental. This suggests a need for component
frameworks and systematic software information management. Component engineering is
difficult and iterative; present practice discourages design for reuse. This suggests a need for
an evolutionary software life-cycle and corresponding methods.

A composition language would support an integrated object/component model based on a
rigorous semantic foundation. Such a foundation -ebgect calculus— could well be based
on a variant of thex calculus [4][12][18][19]. Challenges for such a language include the
modeling of the foundational software abstractions (components, active objects, etc.), the de-
velopment of an appropriate type system with type inference, support for interoperability
with existing languages and component libraries, modeling of abstractions for concurrency
and distribution, and modeling of reflective capabilities to support evolution of long-lived dis-
tributed systems.

The hardest problems are not in the technological domain of designing better program-
ming languages, but in the domain of methodological support for component-oriented devel-
opment. Software information systems and visual composition tools are two such ingredients
in an environment that helps to drive application development from existing component
frameworks. The most difficult problem is to develop those frameworks in the first place.

References

[1] Eduardo Casais, “Managing Class Evolution in Object-Oriented Syst@ngtt-Oriented
Software CompositiqrD. Nierstrasz and D. Tsichritzis (Ed.), Prentice Hall, 1995, pp. 201-
244,

[2] Panos Constantopoulos and Martin Dorr, “Component Classification in the Software Infor-
mation Base,'Object-Oriented Software Compositjdd. Nierstrasz and D. Tsichritzis
(Ed.), Prentice Hall, 1995, pp. 177-200.

[3] Vicki de Mey, “Visual Composition of Software Application€bject-Oriented Software
Composition O. Nierstrasz and D. Tsichritzis (Ed.), Prentice Hall, 1995, pp. 275-303.

[4] Kohei Honda and Mario Tokoro, “An Object Calculus for Asynchronous Communication,”
Proceedings ECOOP '9Ed. P. Americd,ecture Notes in Computer Sciengel. 512,
Springer-Verlag, Geneva, July 15-19, 1991, pp. 133-147.

[5] Dennis G. Kafura and Keung Hae Lee, “Inheritance in Actor Based Concurrent Object-Ori-
ented LanguagesProceedings ECOOP '8@d. S. Cook, Cambridge University Press, Not-
tingham, July 10-14, 1989, pp. 131-145.

[6] John Lamping, “Typing the Specialization Interfaderbceedings OOPSLA 93, ACM SIG-
PLAN Noticesvol. 28, no. 10, Oct. 1993, pp. 201-214.

[7] Satoshi Matsuoka and Akinori Yonezawa, “Analysis of Inheritance Anomaly in Object-Ori-
ented Concurrent Programming Languag&gsearch Directions in Concurrent Object-
Oriented Programminged. G. Agha, P. Wegner and A. Yonezawa, MIT Press, Cambridge,
Mass., 1993, pp. 107-150.

[8] Ciaran McHale, “Synchronisation in Concurrent, Object-oriented Languages: Expressive
Power, Genericity and Inheritance,” Ph.D. Dissertation, Department of Computer Science,
Trinity College, Dublin, 1994.

[9] Oscar Nierstrasz, “Active Objects in Hybrid?toceedings OOPSLA'8ACM SIGPLAN
Notices vol. 22, no. 12, Dec. 1987, pp. 243-253.

Oscar Nierstrasz 12.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Oscar Nierstrasz, Simon Gibbs and Dennis Tsichritzis, “Component-Oriented Software De-
velopment,”"Communications of the ACMol. 35, no. 9, Sept. 1992, pp. 160-165.

Oscar Nierstrasz, “A Tour of Hybrid — A Language for Programming with Active Objects,”
Advances in Object-Oriented Software Engineeredy D. Mandrioli and B. Meyer, Pren-
tice Hall, 1992, pp. 167-182.

Oscar Nierstrasz, “Towards an Object Calcul®sgdceedings of the ECOOP '91 Workshop
on Object-Based Concurrent Computiegl. M. Tokoro, O. Nierstrasz, P. Wegriegcture
Notes in Computer Scienosl. 612, Springer-Verlag, pp. 1-20, 1992.

Oscar Nierstrasz, “Composing Active ObjecBRgsearch Directions in Concurrent Object-
Oriented Programminged. G. Agha, P. Wegner and A. Yonezawa, MIT Press, Cambridge,
Mass., 1993, pp. 151-171.

Oscar Nierstrasz and Theo Dirk Meijler, “Requirements for a Composition Lang@mye,”
ject-Based Models and Languages for Concurrent Sysien@@ancarini, O. Nierstrasz and
A. Yonezawa (Ed.), LNCS 924, Springer-Verlag, 1995, pp. 147-161.

Oscar Nierstrasz and Laurent Dami, “Component-Oriented Software Technolo@p- in
ject-Oriented Software Compositioed. O. Nierstrasz and D. Tsichritzis, Prentice Hall,
1995, pp. 3-28.

Oscar Nierstrasz, “Regular Types for Active ObjectsObject-Oriented Software Compo-
sition, ed. O. Nierstrasz and D. Tsichritzis, Prentice Hall, 1995, pp. 99-121.

Michael Papathomas, “Concurrency in Object-Oriented Programming Languag®eb;’ in
ject-Oriented Software Compositioed. O. Nierstrasz and D. Tsichritzis, Prentice Hall,
1995, pp. 31-68.

Benjamin C. Pierce and David N. Turner, “Concurrent Objects in a Process CalPudus,”
ceedings Theory and Practice of Parallel Programming (TPPP Sghinger LNCS 907,
Sendai, Japan, 1995, pp. 187-215.

Davide Sangiorgi, “Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms,” Ph.D. thesis, CST-99-93 (also: ECS-LFCS-93-266), Computer Science Dept.,
University of Edinburgh, May 1993.

Alan Snyder, “Encapsulation and Inheritance in Object-Oriented Programming Languages,”
Proceedings OOPSLA '86, ACM SIGPLAN Notjesd. 21, no. 11, Nov. 1986, pp. 38—45.

Peter Wegner, “Dimensions of Object-Based Language De$tgogeedings OOPSLA '87,
ACM SIGPLAN Noticewol. 22, no. 12, Dec. 1987, pp. 168-182.

	Research Topics in Software Composition
	1 Open Systems
	2 Software Composition
	2.1 Component Frameworks

	3 Composition Languages
	3.1 Interference of Object-oriented Features
	3.2 Requirements for Composition Languages

	4 Tools
	5 Methods
	6 Concluding Remarks

