
Moldable Requirements
Nitish Patkar

Software Composition Group
University of Bern

Switzerland
Email: http://scg.unibe.ch/staff

Abstract—Separate tools are employed to carry out
individual requirements engineering (RE) activities.
The lack of integration among these tools scatters
the domain knowledge, making collaboration between
technical and non-technical stakeholders difficult, and
management of requirements a tedious task. In this
Ph.D. research proposal, we argue that an integrated
development environment (IDE) should support vari-
ous RE activities. For that, distinct stakeholders must
be able to effortlessly create and manage requirements
as first-class citizens within an IDE.

With “moldable requirements,” developers create
custom hierarchies of requirements and build tailored
interfaces that enable other stakeholders to create
requirements and navigate between them. Similarly,
they create custom representations of requirements
and involved domain objects to reflect various levels
of detail. Such custom and domain-specific representa-
tions assist non-technical stakeholders in accomplish-
ing their distinguished RE related tasks. The custom
interfaces make the IDE usable for non-technical
stakeholders and help to preserve requirements in one
place, closer to the implementation.

I. INTRODUCTION

Requirements engineering (RE) is a phase of the
software development lifecycle (SDLC), where user
requirements are collected and transformed into sys-
tem ones to be eventually implemented [1], [2]. Sev-
eral techniques and tools have sought to automate
the RE process and enable collaboration among
stakeholders. There is a variety of proprietary and
open-source tools proposed in the industry and
academia to support distinct RE activities. Analysis
of these tools, among other things, revealed that:
(1) most of them are intended to support a particular
RE activity and have a specific target audience,
and (2) they offer limited support for IDEs, often
through plugins. Due to such specialization of the

tools for one or few RE activities and distinct
target audiences, requirements scatter through many
documents and are maintained in numerous formats.
Therefore, facilitating collaboration among stake-
holders to iteratively build a product vision also
means making the employed tools to interact with
each other.

Let us consider building an address book appli-
cation that allows users to create and add contacts
to an address book. Although very small, this ex-
ample will allow us to discuss the underlying ideas
nicely. Requirements for this application could be
maintained in different formats and in several tools,
from high-level ones, such as epics [3] in a platform
like Jira [4], down to concrete scenarios [5] in a
separate tool like Cucumber [6]. In addition to spec-
ifying requirements, domain experts need to verify
whether developers have accurately implemented
the requirements. They achieve it either by running
tests or by interacting with the running application
using a user interface (UI). Both verification ap-
proaches have limitations, as testing merely asserts
how much functionality is actually working and
does not warrant that the application behavior is
modeled correctly. Likewise, building a UI costs
time and effort [7].

As a solution, researchers have proposed to
specify requirements directly in the development
environment (i.e., an IDE). However, this research
field is less explored compared to proposing new
tools and techniques and exhibits several chal-
lenges that need attention: (1) understanding dif-
ferent requirements formats and their correspond-
ing characteristics to determine the usefulness for
distinct stakeholders, and (2) determining efficient



navigation strategies between requirements to make
them accessible to all stakeholders. We argue that
requirements should be specified, maintained, and
implemented as first-class citizens within an IDE
to truly justify the integrated nature of IDEs. To
support the RE process and to engage non-technical
stakeholders, the IDE must enable effortless cre-
ation and maintenance of requirements. For that,
developers must build requirements hierarchies, i.e.,
model high-level formats, such as epics, and other
more specific formats, such as user stories [3]
as first-class entities. Additionally, they must also
provide appropriate interfaces to iteratively create,
manage, and link the corresponding requirements to
the implementation [8].

With moldable requirements, we suggest that
requirements hierarchies, as well as their repre-
sentations, must be adapted (i.e., molded) to suit
the application domain and project needs. Devel-
opers first create custom requirements hierarchies.
A model hierarchy of requirements to implement
the address book example might involve creating
epics, use cases, user stories, and scenarios as first-
class entities in an IDE. Next, developers build
interfaces, such as graphical ones, that enable other
stakeholders to create, access, and navigate the
corresponding requirements. For the address book
application, stakeholders can use buttons and forms
to create and save epics, etc. Likewise, they can use
graph structures to navigate from epics to associated
user stories. Developers also craft domain-specific
representations for the involved domain entities in
the requirements. Such domain-specific represen-
tations will enable non-technical stakeholders to
inspect a contact with a contact card representation
built by the developers. The same approach allows
us to represent design models, such as the use
case diagram, as just another representation of a
particular instance of a use case. To realize this
vision, we pose the following hypothesis and aim
to answer the following research question.

Hypothesis. An IDE could be used to support
various RE activities given a mechanism to build
appropriate interaction interfaces for both technical
and non-technical stakeholders.

Research question. What features must an IDE
exhibit and what infrastructure needs to be built to
enable distinct stakeholders to actively participate
in the iterative RE process?

II. STATE-OF-THE ART

Researchers, through approaches such as user-
centered design [9], behavior-driven development
(BDD) [10], and domain modeling [11], have at-
tempted to: (1) facilitate agile collaboration among
stakeholders by proposing specification formats that
everybody in a team easily understands, and (2) en-
able requirements specification in an IDE, mostly
through developing plugins. User stories, originat-
ing from user-centered design, define the applica-
tion behavior from the end-user perspective and are
maintained in one of the tools. Often these tools
are isolated from the development environment,
which leads to traceability issues. Some of the
proposed tools offer IDE integration; however, the
characteristics of the available integration are not
studied in the existing research [12]. With BDD,
non-technical stakeholders specify application be-
havior in a constrained natural language format. The
behavior is tested by linking the specification to
the implementation through automatically generated
test cases [10]. The success of BDD depends heav-
ily on the employed tools [13], [14]. Our analysis
revealed that many popular BDD tools already
support BDD workflow in IDEs through plugins.
However, these plugins offer limited capabilities
for specifying behavior as they solely focus on
textual specification formats. Similarly, they provide
limited opportunities for non-technical stakeholders
to verify the details about the specified behavior as
the tools mostly output a test status.

To tackle issues, such as ambiguities and in-
consistencies, inherent with natural language spec-
ifications, requirements modeling approaches sug-
gest using formal notations. There is an extensive
support for requirements and domain modeling in
IDEs [15], [16]. Model-driven approaches, such
as model-driven development (MDD) and model-
driven engineering (MDE), encourage expressing
the application domain using concepts that are
independent of underlying implementation tech-



Fig. 1: Moldable requirements approach

nology, which facilitates communication between
team members [17]. However, such approaches have
received limited appreciation in practice due to
extensive required training and laborious efforts for
specifying detailed models [18].

III. MOLDABLE REQUIREMENTS

The term “moldable requirements” extends the
concept of “moldable development” to refer to an
environment that enables distinct stakeholders to
specify requirements at different levels of detail and
verify with representations specific to a particular
application domain [19]. Such a moldable environ-
ment supports the creation of custom (i) require-
ments hierarchies, and (ii) requirements representa-
tions. Custom hierarchies make requirements navi-
gable from higher-level ones down to the involved
domain objects. Custom representations make the
relationships between requirements explicit and aid
domain experts in inspecting the modeled domain
entities.

Figure 1 shows a prototype implementation of a
project specific requirements hierarchy for the toy
address book example. Users navigate between two
windows. The second window enables domain ex-
perts to edit a particular scenario. Here, a user edits
a scenario of adding a contact to an address book by
selecting an address book and a contact and inspects
the resulting address book. The third window shows
the result of the changes (i.e., the resulting address
book). Such domain-specific representation enables
non-technical stakeholders to inspect the details of
the domain objects more efficiently compared to
a test status. This hierarchy and the corresponding

tree representation is custom created by developers.
The tree representation enables other stakeholders
to effortlessly navigate between requirements, as
well as to gain a general overview of the existing
ones. Figure 2 highlights the idea of custom rep-
resentations. The tree view from Figure 1 for the
requirements hierarchy is represented with another
interactive visualization. This graphical interface
facilitates the creation and navigation between re-
quirements. In other words, it enables non-technical
stakeholders to create and access requirements with-
out any programming overhead. To validate such a
generic approach with a controlled experiment or a
field study is cumbersome. Every case has different
conditions depending on the task at hand and people
performing the RE activities for a specific domain.
Therefore, instead of relying on experiments or
empirical studies, one can validate the approach by
demonstrating how easy it is to adapt it to several
domains.

IV. CONTRIBUTIONS

The following projects lead us to accomplish
the discussed vision for “moldable requirements”
approach.

A. Current contributions

RE tools survey. The study presents a comprehen-
sive overview of 112 RE tools proposed at the top
software engineering (SE) venues during the past
five years. We reviewed a total of 203 publications
and identified 112 tools that support one of the
several RE activities. The findings indicate a lack of



Fig. 2: Moldable requirements- multiple views

tools that support multiple RE activities. Likewise,
activities, such as requirements management, are
largely neglected.

Moldable scenarios. The study presents a review of
14 popular BDD tools, reports their characteristics
regarding the support for input and output formats
and interfaces for distinct stakeholders in an IDE.
We observed that the existing BDD tools are vastly
developer-oriented in the functionalities they offer.
As a result, they poorly engage other stakeholders
in the BDD process. Commonly used BDD tools
facilitate linking textual specifications to the cor-
responding implementation through the glue code.
For behavior verification these tools only display
test status as an output. We present the “moldable
scenarios” approach and an advanced prototype im-
plementation that demonstrates effective integration
of the BDD process into an IDE. Non-technical
stakeholders can leverage graphical widgets to build
complex domain objects and use those objects to
compose behavior tests. Subsequently, they run the
tests and inspect the output that is presented to them
with custom representations.

Moldable artifacts. There is a lack of research
that studies the characteristics of the numerous
requirements and software artifacts to understand
their suitability for distinct stakeholders and an-
alyze their flow within the SDLC. We present a
comprehensive overview of 62 artifacts and discuss

their characteristics, such as format, nature, phases
of origin, and usage. We observed that a lot of
artifacts are produced during the requirements gath-
ering and design phases, but most of them are used
during the development and maintenance phases. To
simplify artifacts management across isolated tools,
we present an advanced prototype implementation
of the “moldable artifacts” approach, wherein we
model a selection of artifacts in an IDE as first-
class entities.

B. Planned contributions

Survey of glue code properties in BDD tools. There
is little evidence in the existing literature how
much glue code is auto-generated by the BDD
tools and how much must be manually written
to connect behavior specification and respective
test code. Researchers have recently published two
datasets that contain open-source projects that use
BDD tools [13], [14]. We plan to conduct a study
that takes a closer look at the characteristics of
the glue code provided by the BDD tools in these
projects.

Living user stories. There are several tools pro-
posed for agile project management that specif-
ically facilitate user story creation, editing, and
management. Existing studies have attempted to
identify functional requirements for such tools and
consequently classified them to see if they fulfill



these requirements. However, none of the studies
tried to analyse the support of such tools within
IDEs. In this project, we will review a selection
of user story management tools to uncover their
limitations regarding support in IDEs. A prototype
implementation will demonstrate a model of user
story wall to manage user stories in an IDE.

Moldable graphical actor modeling. A lot of graph-
ical modeling tools are proposed and used in prac-
tice. In this project, we will study the character-
istics of a selection of graphical modeling tools.
In particular, we will take a comprehensive look at
their support in an IDE and bi-directional change
propagation mechanism between model code and
source code they provide. We will present an ad-
vanced prototype implementation that enables non-
technical stakeholders to create actors of a domain
in an IDE graphically. Domain experts can then iter-
atively give behavior to the actors to send each other
messages to accomplish a task. We will generate the
corresponding source code and keep it up-to-date
with the modeled actors.

V. CONCLUSION

“Moldable requirements” enables both technical
and non-technical stakeholders to participate in re-
quirements engineering and modeling processes by
providing them appropriate and engaging interac-
tion possibilities within an IDE. This approach and
corresponding prototype implementation will allow
researchers to think of issues, such as traceability,
from a different perspective and simplify the re-
quirements management.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support
of the Swiss National Science Foundation for the
project “Agile Software Assistance” (SNSF project
no. 200020-181973, Feb. 1, 2019 - April 30, 2022).

REFERENCES

[1] I. Sommerville, “Software engineering 9th edition,” ISBN-
10, vol. 137035152, p. 18, 2011.

[2] M. dos Santos Soares, J. Vrancken, and A. Verbraeck,
“User requirements modeling and analysis of software-
intensive systems,” Journal of Systems and Software,
vol. 84, no. 2, pp. 328–339, 2011.

[3] N. Bik, G. Lucassen, and S. Brinkkemper, “A reference
method for user story requirements in agile systems devel-
opment,” in 2017 IEEE 25th International Requirements
Engineering Conference Workshops (REW). IEEE, 2017,
pp. 292–298.

[4] JIRA. Tool website at https://www.atlassian.com/software/
jira. Accessed: 2020-11-22.

[5] A. G. Sutcliffe, N. A. Maiden, S. Minocha, and D. Manuel,
“Supporting scenario-based requirements engineering,”
IEEE Transactions on software engineering, vol. 24,
no. 12, pp. 1072–1088, 1998.

[6] Cucumber. Tool website at https://cucumber.io/. Accessed:
2020-11-22.

[7] T. S. Da Silva, A. Martin, F. Maurer, and M. Silveira,
“User-centered design and agile methods: a systematic
review,” in 2011 AGILE conference. IEEE, 2011, pp. 77–
86.

[8] B. Ramesh, L. Cao, and R. Baskerville, “Agile require-
ments engineering practices and challenges: an empirical
study,” Information Systems Journal, vol. 20, no. 5, pp.
449–480, 2010.

[9] J.-Y. Mao, K. Vredenburg, P. W. Smith, and T. Carey, “The
state of user-centered design practice,” Communications of
the ACM, vol. 48, no. 3, pp. 105–109, 2005.

[10] M. Wynne, A. Hellesoy, and S. Tooke, The cucumber book:
behaviour-driven development for testers and developers.
Pragmatic Bookshelf, 2017.

[11] H. Gomaa and L. Kerschberg, “Domain modeling for
software reuse and evolution,” in Proceedings Seventh
International Workshop on Computer-Aided Software En-
gineering. IEEE, 1995, pp. 162–171.

[12] S. Dimitrijević, J. Jovanović, and V. Devedžić, “A compar-
ative study of software tools for user story management,”
Information and Software Technology, vol. 57, pp. 352–
368, 2015.

[13] A. Z. Yang, D. A. da Costa, and Y. Zou, “Predicting co-
changes between functionality specifications and source
code in behavior driven development,” in 2019 IEEE/ACM
16th International Conference on Mining Software Repos-
itories (MSR). IEEE, 2019, pp. 534–544.

[14] F. Zampetti, A. Di Sorbo, C. A. Visaggio, G. Canfora,
and M. Di Penta, “Demystifying the adoption of behavior-
driven development in open source projects,” Information
and Software Technology, p. 106311, 2020.

[15] V. Viyović, M. Maksimović, and B. Perisić, “Sirius: A
rapid development of dsm graphical editor,” in IEEE 18th
International Conference on Intelligent Engineering Sys-
tems INES 2014. IEEE, 2014, pp. 233–238.

[16] E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer,
J. Deantoni, and B. Combemale, “Execution framework
of the gemoc studio (tool demo),” in Proceedings of the
2016 ACM SIGPLAN International Conference on Software
Language Engineering, 2016, pp. 84–89.

[17] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven
software engineering in practice,” Synthesis lectures on
software engineering, vol. 3, no. 1, pp. 1–207, 2017.

[18] J. Whittle, J. Hutchinson, and M. Rouncefield, “The state
of practice in model-driven engineering,” IEEE software,
vol. 31, no. 3, pp. 79–85, 2013.

[19] A. Chis, Moldable tools. Lulu. com, 2016.

https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://cucumber.io/

