
Exploiting Dynamic Information in IDEs Eases Software Maintenance

David Röthlisberger
Software Composition Group, University of Bern, Switzerland

roethlis@iam.unibe.ch

Abstract

The integrated development environment (IDE) is the
primary tool used by developers to maintain software sys-
tems. The IDE, however, narrowly focuses on the static
structure of a system, neglecting dynamic behavior and dy-
namic relationships between static source artifacts such as
classes and methods. Developers often have difficulties to
understand the dynamic aspects of a system just based on
the static source perspectives provided by IDEs. Exist-
ing IDE tools to analyze the running of software systems
such as debuggers or profilers present volatile dynamic in-
formation from specific system executions, requiring devel-
opers to manually trigger debugging or profiling sessions.
To better support the understanding and maintenance of
software systems, we developed several extensions to tradi-
tional IDEs to incorporate dynamic information in the static
source perspectives. In this paper we describe these exten-
sions and report on the empirical experiments we conducted
to evaluate the practical usefulness of these IDE extensions.

Keywords: dynamic analysis, development environ-
ments, software maintenance, program comprehension

1 Introduction

Object-oriented language features such as inheritance,
abstract types, late-binding, or polymorphism lead to dis-
tributed and scattered code, rendering a software system
hard to understand and maintain when just looking at its
static source artifacts such as classes or methods [1, 3, 13].
By means of dynamic analysis developers can explore the
dynamic aspects of software systems and hence better un-
derstand the implementation of these systems [2, 13]. Even
though the concept of dynamic analysis has been widely
studied [2, 3, 8, 12, 13], traditional integrated development
environments (IDEs), the primary tools used by developers
to maintain software systems, still purely operate on static
source code and do not reveal dynamic relationships be-
tween distributed source artifacts, which makes it difficult
for developers to understand and navigate software systems

in these IDEs [10, 11]. Due to the lack of dynamic infor-
mation in IDEs developers are forced to build up a men-
tal model of a system’s dynamic behavior based on a static
view of the system. Such a mental model, however, is error-
prone as it is very difficult to understand a large object-
oriented system without having available information about
its running [1, 3].

In this paper we propose to enhance the Eclipse IDE [4]
for Java with dynamic information in order to help devel-
opers during program comprehension and software main-
tenance activities. To achieve the goal of supporting de-
velopers to more efficiently maintain object-oriented code,
we augment the static source perspectives of IDEs with dy-
namic information. We contribute several different tech-
niques to integrate dynamic information seamlessly into the
IDE. The implemented techniques are:

• Source code enrichments to embed dynamic informa-
tion such as runtime types of variables or callers of
methods directly in an IDE’s source code view

• Presenting dynamic metrics such as number of method
invocations or number of objects created in a method
next to the source code perspectives

• Collaboration view, a navigable view showing the dy-
namic collaborators of source artifacts, for instance
all callers and callees of a method

We validate these techniques by means of empirical ex-
periments with professional developers to assess the practi-
cal usefulness of the availability of dynamic information in
the traditional perspectives of IDEs.

In the following we first describe these techniques in de-
tail and subsequently report on how we evaluated their prac-
tical usefulness. The paper is structured as follows: In Sec-
tion 2 we present the enrichments to the IDE’s source code
view to present dynamic information, Section 3 reports on
the integration of various dynamic metrics, and Section 4
explores the collaboration view we integrated into the IDE.
In Section 5 we describe the conducted empirical exper-
iment to evaluate the implemented techniques embedding
dynamic information in IDEs. Section 6 concludes the pa-
per and outlines ideas for further work.



2 Source Code Enrichments

All techniques to present dynamic information have been
implemented for the Eclipse IDE. We opted for this IDE
since it is the most widely adopted IDE in industry [5], at
least for developing Java software. The dynamic informa-
tion that is exploited by these techniques typically stems
from different system executions. We aggregate dynamic
information over multiple executions to obtain a more com-
plete picture of the dynamics of a system compared to de-
buggers or profilers that just focus on a specific execution.
The aggregation of dynamic information in the IDE sup-
ports developers in understanding the general execution pat-
terns of a system whereas the traditional debugger can be
applied to study the execution flow of a specific scenario.

As a technique to complement source code with dynamic
information without impeding its readability we opted to
use hovers, small windows that pop up when the mouse
hovers over a source element (a method name, a variable,
etc.). Hovers are interactive, which means the developer can
for instance open the class of a receiver type by clicking on
it. We now describe the integration of dynamic information
into the source code:

Figure 1. Hover appearing for a method name
in its declaration.

Figure 2. Hover for a message send occurring
in a method.

Method header. The hover that appears on mouse over
the method name in a method header shows (i) all senders
invoking that particular method, (ii) all callees, that is, all
methods invoked by this method, and optionally (iii) all
argument and return value types. For each piece of in-
formation we also show how often a particular invocation

occurred. For instance for a sender, we display the qual-
ified name of the method containing the send (that is, the
calling method) and the number of invocations from this
sender. Optionally, we also display the type of object to
which the message triggering the invocation of the cur-
rent method was sent, if this is a sub-type of the class im-
plementing the current method. For a callee we provide
similar information: The class implementing the invoked
method, the name of the message, and how often a par-
ticular method was invoked. Additionally, we can show
concrete receiver types of the message send, if they are
not the same as the class implementing the called method.
Figure 1 shows a concrete method name hover for method
readFileEntriesWithException.

In a method header, we can optionally show information
about argument and return types, if developers have cho-
sen to gather such data. Hovers presenting this information
appear when the mouse is over the declared arguments of
a method or the defined return type. These hovers also in-
clude numbers about how often specific argument and re-
turn value types occurred at runtime.

Method body. We also augment source elements in the
method body with hovers. For each message send defined
in the method, we provide the dynamic callee information
similarly as for the method name, optionally along with ar-
gument or return types that occurred in this method for that
particular message send at runtime, as shown in Figure 2.
Of course all these types listed are always accompanied
with the number of occurrences and the relative frequency
of the specific types at runtime.

3 Dynamic Metrics

There are two kind of rulers next to the source editor:
(i) the standard ruler on the left showing local information
and (ii) the overview ruler on the right giving an overview
over the entire file opened in the editor. In the traditional
Eclipse IDE these rulers denote annotations for errors or
warnings in the source file. Ruler (i) only shows the an-
notations for the currently visible part of the file, while the
overview ruler (ii) displays all available annotations for the
entire file. Clicking on such an annotation in (ii) brings the
developer to the annotated line in the source file, for in-
stance to a line containing an error.

We extended these two rulers to also display dynamic
metrics. For every executed method in a Java source file the
overview ruler presents, for instance, how often it has been
executed on average per system run using three different
icons colored in a hot/cold scheme: blue means only a few,
yellow several, and red many invocations. Clicking on such
an annotation icon causes a jump to the declaration of the
method in the file. The ruler on the left side provides more
detailed information: It shows on a scale from 1 to 6 the



frequency of invocation of a particular method compared to
all other invoked methods. A completely filled bar for a
method denotes methods that have been invoked the most
in this application. The dynamic metrics in these two rulers
allow developers to quickly identify hot spots in their code,
that is, methods being invoked frequently. The applied heat
metaphor allows different methods to be compared in terms
of number of invocations.

Figure 3. Rulers left and right of the editor
view showing dynamic metrics.

To associate the continuous distribution of metric values
to a discrete scale with for instance three representations
(e.g., red, yellow, and blue), we use the k-means clustering
algorithm [7].

To see fine-grained values for the dynamic metrics, the
annotations in the two columns are also enriched with hov-
ers. Developers hovering over a heat bar in the left column
or over the annotation icon in the right bar get a hover dis-
playing precise metric values, for instance exact total num-
bers of invocations or even number of invocations from spe-
cific methods or receiver types.

Furthermore, developers can choose between different
dynamic metrics to be visualized in the rulers. Besides the
number of invocations of methods, we also provide metrics
such as the number of objects a method creates, the num-
ber of bytecodes it executes, and the amount of memory
it allocates, either on average or in total over all executions.
Such metrics allow developers to quickly assess the runtime
complexity of specific methods and thus to locate candidate
methods for optimization. Changing the dynamic metrics to
be displayed is done in the Eclipse preferences; the chosen
metric is immediately displayed in the rulers.

The following dynamic metrics are collected at runtime
and can be visualized in the ruler columns:

Number of invocations. This dynamic metric helps
the developer quickly identify hot spots in code, that is,
very frequently invoked methods or classes containing such
methods. Furthermore, methods never invoked at runtime
become visible, which is useful when removing dead code
or extending the test coverage of the application’s test suite.
Related to this metric is the number of invocations of other

methods triggered from a particular method.

Number of created objects. By reading static source
code, a developer usually cannot tell how many objects are
created at runtime in a class, in a method or in a line of
source code. It is unclear whether a source artifact creates
one or one thousand objects — or none at all. This dynamic
metric, however, is useful to assess the costs imposed by
the execution of a source artifact, to locate inefficient code,
or to discover potential problems, for instance inefficient
algorithms creating enormous numbers of objects.

Allocated memory. Different objects vary in memory
size. Having many but very tiny objects might not be an
issue, whereas creating a few but very huge objects could
be a sign of an efficiency problem. Hence, we also pro-
vide a dynamic metric recording memory usage of various
source artifacts such as classes or methods. This metric can
be combined with the number of created objects metric to
reveal which types of objects consume most memory and
thus are candidates for optimization.

Number of executed bytecode instructions. The static
source code does not disclose how many bytecode instruc-
tions have to be executed during the runtime of the code.
Calling a particular method in a piece of code might trig-
ger the execution of very complex code, that is, many byte-
code instructions. To assess the complexity of the execution
of a piece of code we also gather the number of bytecode
instructions executed when invoking a particular method.
This metric is also an estimator for the execution time of a
particular method invocation.

4 Collaboration View

In a separate view next to the source code editor of
Eclipse (Figure 4), we present all dynamic collaborators for
the currently selected artifact. For instance, if a method has
been selected, the collaboration view shows the collabora-
tors at the package, class, or method level; that is, it lists
all packages or classes invoking methods of the package or
class in which the selected method is declared (callers). The
collaboration view also shows all packages or classes with
which the package or class declaring the method is actively
communicating (callees). For the method itself, the collab-
oration view lists all direct callers and callees.

This collaboration view allows developers to navigate
the callers and calleers. If for instance a caller of a method
is selected, the view is refreshed to show all callers of the
selected caller, and so on. Like this, developers can easily
navigate through all dynamic callers of source artifacts of
interest.



Figure 4. A view of all collaborators of the se-
lected artifact (package, class, or method).

5 Validation

We conducted a controlled experiment with 30 profes-
sional Java developers to evaluate the benefits for software
maintenance that arise from the three presented means to
integrate dynamic information into IDEs.

Experimental Procedure. We asked the experiment
subjects to solve five typical software maintenance tasks
and analyzed the time spent to solve these tasks and the cor-
rectness of the solutions. Each subject was either assigned
to the control group or to the experimental group. The ex-
perimental group had available dynamic information inte-
grated with the aforementioned techniques while the con-
trol group used a standard Eclipse IDE. With an expertise
questionnaire we collected information about a developer’s
expertise concerning software development, software anal-
ysis, Java, or Eclipse. Based on the results of this ques-
tionnaire we assigned developers to either the experimental
or the control group to obtain two groups of nearly equal
expertise. As all subjects were unfamiliar with the tools
integrating dynamic information into Eclipse we gave the
subjects of the experimental group a 30 minutes introduc-
tion to the extensions to Eclipse.

As a subject system we had chosen jEdit1, an open-
source text editor written in Java. JEdit consists of 32 pack-

1http://www.jedit.org/

ages with 5275 methods in 892 classes totaling more than
100 KLOC. The tasks we gave the subjects are concerned
with analyzing and gaining an understanding for various
features of jEdit. We selected tasks representative for real
maintenance scenarios and not being biased towards dy-
namic analysis by following the framework of Pacione et al.
[9]. For solving the tasks, subjects had to provide an answer
in free text, they could not select from multiple choices.

The dynamic information shown in Eclipse to the sub-
jects of the experimental group was obtained by executing
all actions from the menu bar of jEdit to make sure that
this pre-recorded information is not biased towards the ex-
periment tasks. As the control group did not receive any
dynamic information, we clearly stated in the task descrip-
tions how to run and analyze the feature under study with
the conventional debugger in Eclipse.

The two dependent variables studied in this experiment,
time the subjects spent to answer the questions, and cor-
rectness of the answers, were manually determined by the
experimenters. The time spent on a task is the time span
between the starting time of one task and the next. Cor-
rectness is measured using a score from 0 to 4 according to
the overlap with the model answers, which forms a set of
expected answer elements that have been identified by the
experimenters beforehand.

To determine whether dynamic information has a statis-
tically significant effect on the variables time spent and cor-
rectness, we applied the parametric, one-tailed Student’s t-
test at a confidence level of 95% (α=0.05).

Results. The results of the experiment were promising.
On average, the experimental group spent significantly less
time solving the maintenance tasks, we could measure a
17.5% decrease in time spent on the tasks for the exper-
imental group compared to the control group. With the
Student’s t-test we verified whether the availability of dy-
namic information in the IDE had an impact on the time
to solve the maintenance tasks. The p-value resulting from
the t-test is with 0.0016 considerably lower than α=0.05,
which means that the time spent is statistically significantly
reduced by the availability of dynamic information.

For the correctness variable we could discover a 33.5%
increase for the subjects having available dynamic infor-
mation compared to those using a traditional Eclipse IDE.
Applying the t-test to the correctness variables shows that
this increase is statistically significant: the t-test gives a p-
value of 0.0001 which is clearly below α=0.05. This means
that having available dynamic information during software
maintenance activities helps developers to more correctly
solve maintenance tasks.

Qualitative Feedback. In a debriefing questionnaire the
subjects provided qualitative feedback about the usefulness
of dynamic information integrated into the IDE. On a Lik-
ert scale from 0 (useless) to 4 (very useful), the subjects



rated the various techniques to embed dynamic information
in the IDE. The source code enrichments obtained an aver-
age rating of 3.6, the dynamic metrics embedded in the ruler
columns were rated with 3.2, and the collaboration view got
an average rating of 3.7. These ratings clearly show that
subjects considered all techniques to be useful for solving
the software maintenance tasks of this experiment. In par-
ticular the collaboration view but also the source code en-
richments have been an important aid to quicker and more
accurately complete the imposed tasks.

Subjects also gave feedback about how often they used
what kind of dynamic information during the experiment. It
turned out that information about dynamic collaborators has
been used the most, nearly by all subjects in all tasks, while
dynamic information shown in the source code views, e.g.,
information about runtime types has been used less often.
Most subjects have just occasionally used dynamic metrics,
for instance for tasks where they had to assess performance
aspects of the application.

These results from the controlled experiment make us
confident that the implemented techniques to embed dy-
namic information seamlessly and tightly in the IDE are
indeed helpful for developers to more efficiently and more
correctly solve typical software maintenance tasks. A more
detailed report on this experiment is available in the Masters
thesis of Marcel Haerry [6].

6 Conclusions

In this paper we described three different techniques
we implemented to seamlessly integrate dynamic informa-
tion into the Eclipse IDE to help developers to easier and
more accurately understand the dynamic behavior of Java
systems. These three techniques are (i) source code en-
richments embedding dynamic information such as runtime
types, callers or callees of a method; (ii) dynamic metrics
such as number of created objects, memory size of these ob-
jects, or number of executed bytecode instructions; and (iii)
a collaboration view presenting the dynamic collaborators,
that is, the callers and callees of particular source artifacts
such as packages, classes, or methods. We evaluated the
practical usefulness of these three contributed techniques by
means of a controlled experiment with 30 professional soft-
ware developers solving typical software maintenance tasks
in a large unfamiliar application (i.e., jEdit). The results
of this experiment show that developers can 17.5% faster
and 33.5% more correctly solve the maintenance tasks when
Eclipse is enhanced with the aforementioned dynamic infor-
mation compared to a standard Eclipse installation.

In the future we aim at extending the integration of dy-
namic information into Eclipse, for instance by embedding
visualizations of the collaboration between source artifacts
to ease the navigation and understanding of collaboration

patterns. Furthermore, we plan to apply the proposed tech-
niques to large industrial systems such as rich client plat-
form systems in the finance sector to gather more empirical
feedback from practice.

Acknowledgments. We gratefully acknowledge the financial
support of the Swiss National Science Foundation for the projects
“Bringing Models Closer to Code” (SNF Project No. 200020-
121594, Oct. 2008 – Sept. 2010)

References

[1] S. Demeyer, S. Ducasse, K. Mens, A. Trifu, and R. Vasa. Re-
port of the ECOOP’03 workshop on object-oriented reengi-
neering. In Object-Oriented Technology (ECOOP’03 Work-
shop Reader), LNCS, pages 72–85. Springer-Verlag, 2003.

[2] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refac-
torings via change metrics. In Proceedings of 15th Interna-
tional Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA ’00), pages
166–178, New York NY, 2000. ACM Press.

[3] A. Dunsmore, M. Roper, and M. Wood. Object-oriented
inspection in the face of delocalisation. In Proceedings of
ICSE ’00 (22nd International Conference on Software Engi-
neering), pages 467–476. ACM Press, 2000.

[4] Eclipse platform: Technical overview, 2003.
[5] G. Goth. Beware the march of this IDE: Eclipse is overshad-

owing other tool technologies. IEEE Software, 22(4):108–
111, 2005.

[6] M. Haerry. Augmenting eclipse with dynamic information.
Master’s thesis, University of Bern, May 2010.

[7] S. P. LLoyd. Least squares quantization in pcm. IEEE Trans-
actions on Information Theory, 28:129–137, 1982.

[8] W. Löwe, A. Ludwig, and A. Schwind. Understanding soft-
ware – static and dynamic aspects. In 17th International
Conference on Advanced Science and Technology, pages
52–57, 2001.

[9] M. Pacione, M. Roper, and M. Wood. A novel software visu-
alisation model to support software comprehension. In Pro-
ceedings of the 11th Working Conference on Reverse Engi-
neering, pages 70–79. IEEE Computer Society, Nov. 2004.

[10] D. Röthlisberger, O. Greevy, and O. Nierstrasz. Exploit-
ing runtime information in the IDE. In Proceedings of the
16th International Conference on Program Comprehension
(ICPC 2008), pages 63–72, Los Alamitos, CA, USA, 2008.
IEEE Computer Society.

[11] D. Röthlisberger, M. Härry, A. Villazón, D. Ansaloni,
W. Binder, O. Nierstrasz, and P. Moret. Augmenting static
source views in IDEs with dynamic metrics. In Proceed-
ings of the 25th International Conference on Software Main-
tenance (ICSM 2009), pages 253–262, Los Alamitos, CA,
USA, 2009. IEEE Computer Society.

[12] T. Systä. On the relationships between static and dynamic
models in reverse engineering java software. In Working
Conference on Reverse Engineering (WCRE99), pages 304–
313, Oct. 1999.

[13] N. Wilde and R. Huitt. Maintenance support for object-
oriented programs. IEEE Transactions on Software Engi-
neering, SE-18(12):1038–1044, Dec. 1992.


