
Synchronizing Concurrent Objects in the
π-Calculus 1

Jean-Guy Schneider — Markus Lumpe

Software Composition Group
Institut für Informatik (IAM), Universität Bern
Neubrückstrasse 10, CH-3012 Bern, Switzerland
{lumpe,schneidr}@iam.unibe.ch

http://www.iam.unibe.ch/∼scg

résumé. Le développement des langages orientés objets concurrents a souffert de l’ab-
sence d’un support formel fédérateur dédié à la définition de leur sémantique. C’est
une des raisons pour lesquelles nous essayons de trouver une fondation sémantique
minimale pour définir les abstractions des langages orientés objets. Nous avons montré
précédemment l’intérêt du π-calcul à cet égard en proposant la définition d’un modèle
à objets contenant des abstractions communes aux langages orientés objets. Nous
nous proposons maintenant de définir un cadre formel de type bôıte noire pour la
modélisation objet. Nous présentons ici une première extension de notre modèle à
objets fondé sur le π-calcul permettant l’intégration des abstractions pour la synchro-
nisation des objets concurrents. Nos résultats montrent d’une part, que les objets
sont synchronisés plus aisément si les schémas de synchronisation sont réifiés comme
des entités de première classe (des méta-objets) et d’autre part, que le concept de
“schéma générique de synchronisation” de McHale forme une base prometteuse pour
la définition d’abstractions de synchronisation réutilisables et de plus haut niveau.

abstract. The development of concurrent object-based programming languages has
suffered from the lack of any generally accepted formal foundation for defining their
semantics. Therefore we are seeking for a minimal semantic foundation for defining
features of concurrent object-based languages. Our previous work has shown that
the π-calculus is a promising formal foundation for modelling objects, and we have
defined an object model integrating common features of object-oriented programming
languages. Our goal is to define a black-box framework for modelling objects. As a first
extension of our π-calculus based object model, we present in this work the integration
of abstractions for synchronizing concurrent objects. Our results show that objects are
most easily synchronized when synchronization policies are reified as first class entities
(i.e. metaobjects) and that McHale’s concept of “generic synchronization policies”
forms a promising base for the definition of higher-level, reusable synchronization
abstractions.

1. In Proceedings of Languages et Modèles à Objets, Roland Ducournau and Serge Garlatti
(Eds.), Hermes, Roscoff, October 1997, pp. 61–76.

mots-clés : π-calcul, modèles á objets, synchronisation, réflexion.
keywords: π-calculus, object models, synchronization, reflection.

1. Introduction

The development of concurrent object-based programming languages has
suffered from the lack of any generally accepted formal foundation for defin-
ing their semantics, although several formal models have been presented (see
[Men94] for a summary). We are, therefore, seeking for a minimal semantic
foundation for defining features of concurrent object-based languages which
can also be used for modelling components [NSL96]. It is our goal to define a
black-box framework for experimenting with different object and component
models.

The π-calculus is a calculus in which the topology of communication can
evolve dynamically during evaluation [Mil89]. It has been successfully used
to model objects [BS95, Jon93] and simple object-oriented programming lan-
guages [Wal95]. Our previous work has shown that the π-calculus is a promising
formal foundation for modelling objects [SL96]. It was, therefore, a natural step
to extend our existing π-calculus based object model with further abstractions.
In our previous work, we mainly concentrated on modelling features of object-
oriented programming languages that do not necessarily address concurrency
[LSN96]. It is obvious, however, that the presence of concurrent activities with-
in an object requires some degree of synchronization. As a first extension to our
object model, we were, therefore, investigating abstractions for synchronizing
concurrent objects.

Several synchronization schemes have been proposed to address various le-
vels of concurrency control [Bri96]. Centralized schemes, such as path express-
ions or bodies, specify in an abstract way the possible interleavings of me-
thod invocations [Ame87, VdBL89]. Decentralized schemes, such as guards, are
based on boolean activation conditions that may be associated to each me-
thod [DLDR+91]. Higher level formalisms are based on the notion of abstract
behaviours [TV89]. Recent work has tried to integrate these synchronization
schemes into a framework for classifying, comparing, customizing, and combin-
ing synchronization abstractions for object-oriented concurrent programming
[Bri96].

After evaluating several synchronization schemes and mechanisms, we found
out that objects are most easily synchronized through metaobjects. This im-
plies that synchronization policies have to be reified as first class entities. Our
experiments showed that McHale’s concept of “generic synchronization poli-
cies” [McH94] could be easily integrated into the metalevel of our existing
object model, and that it formed a promising base for the definition of higher-
level, reusable synchronization abstractions. Generic synchronization policies
do not only allow a complete separation of computational and synchronization
abstractions, but enhance the reuse of existing (sequential) components in a

concurrent environment. The extension of our object model also allows us to
formalize the concept of generic synchronization policies.

This report is organized as follows: in section 2 we introduce or π-calculus
object model followed by a description of McHale’s “generic synchronization
policies” in section 3. In section 4, we present the integration of the “generic
synchronization policies” into our π-calculus based object model. Section 5
summarizes the main observations and results of our integration. We conclude
with some remarks about future work and directions.

2. Objects in the π-calculus

In this section, we will briefly introduce our π-calculus based object model.
For further details, refer either to [LSN96] or [SL96].

We have used Pict [PT97], an experimental programming language based
on the polyadic mini π-calculus [San95], as an executable specification language
for our modellings. We will first informally present the polyadic mini π-calculus,
which is a simplified polyadic π-calculus [Mil91]. The polyadic mini π-calculus is
built from the operators of inaction, input prefix, output, parallel composition,
restriction, and replication. Small letters a, b, ..., x, y, ... range over the infinite
set of names, and P,Q,R, ... over the set of processes:

P ::= 0
∣∣∣ a(x̃).P

∣∣∣ a〈x̃〉 ∣∣∣ P1|P2

∣∣∣ (υ a)P
∣∣∣ !P

0 is the inactive process. An input-prefixed process a(x̃).P , where x̃ has
pairwise distinct components, waits for a tuple of names ỹ to be sent along a
and then behaves like P{x̃\ỹ}, where {x̃\ỹ} is the simultaneous substitution of
names x̃ with names ỹ. An output a〈x̃〉 emits names x̃ at a. Parallel composition
runs two processes in parallel. The restriction (υ a)P makes name a local to
P 2. A replication !P stands for a countable infinite number of copies of P in
parallel. We use the special name as wildcard symbol. Values bound to this
name are unimportant for the following process and will be ignored.

Throughout the rest of this report, we will use the following notation to
denote process abstractions:

ProcessAbstraction(global-channel-arguments) ≡ P

Our object model is based on the basic object model introduced by Pierce
and Turner [PT95]. Using a π-calculus notation, the modelling of a reference
cell object can be illustrated as follows 3:

RefCell (init) ≡ (υ contents)(contents 〈init〉
| get(res).contents(val).(contents 〈val〉 | res 〈val〉)
| set(val).contents().contents 〈val〉)

2. A local channel name can be communicated to other processes. This mechanism is called
scope extrusion.

3. A reference cell is an updatable data structure. In order to simplify the notation, we
have used a channel based instead of an record based reference cell.

� �� �
����
�� 	

� ��
� � ������������������������

!#" ��$��

Figure 1. Object model in the π-calculus.

This object model integrates the essentials of concurrent objects (e.g., ins-
tance variables and methods), but does not capture other common features of
object-oriented programming languages such as self-references, dynamic bind-
ing, class variables, and inheritance. In order to integrate those features, we
extended the object model by introducing a metalevel (see figure 1).

A base-level object consists of three parts: an intermediate object, an in-
terface adaptor, and a set of request and reply channels. All request and reply
channels represent the service interface of an object. In order to call a particu-
lar method, a message representing the actual input parameters has to be sent
along the corresponding request channel. The result of this method invocation
can be obtained by reading the appropriate reply channel. In figure 1, request
channels are represented by a small square inside and reply channels by a square
outside an object, respectively. The solid lines with arrowheads denote channels
used for one-way communication within an object and between an object and
its class object, and are not accessible by external clients. The intermediate
object consists of a set of local channels representing instance variables and a
number of process abstractions representing all method implementations. The
interface adaptor maps each request and reply channel to the process abstrac-
tion representing the corresponding method implementation. One may note
that there is no limit on the number of concurrently executing methods in an
object and that methods are not explicitly synchronized.

In order to reuse (inherit) method implementations, but having a cor-
rect binding of self-references, intermediate objects still have an unbound self-

reference 4. The actual binding of self is achieved in the interface adaptor by
passing the value of self as a first parameter to each method invocation.

A commonly used mechanism in various object-oriented programming lan-
guages is to represent classes as objects in a metalevel [KdRB91]. We have used
this technique not only to model class features as features of a metaobject, but
also to obtain a disciplined way to create objects and to model inheritance. In
order to create an object, the class object instantiates an intermediate object,
defines a new set of request and reply channels, and binds them all using an
appropriate interface adaptor. Inheritance can be achieved by combining and
extending intermediate object templates of already existing classes [SL96].

3. Generic Synchronization Policies

This section briefly describes the concept of Generic Synchronization Po-
licies (GSPs), the synchronization mechanism we have integrated into our π-
calculus based object model. For further information, refer to the thesis of
McHale [McH94].

GSPs provides a mechanism to synchronize objects at the granularity of
method invocations and are based on a paradigm called “Service-object Syn-
chronization” (Sos). The paradigm consists of the following four concepts: 1)
events (and code executed at them), 2) delaying and starting method invo-
cations, 3) accessing information about method invocations, and 4) a strict
separation between synchronization code/data and code/data of the object it-
self.

In order to show how this paradigm works, we first need to describe the
sequence of events that take place when an object invokes an operation upon
another object.

From the service object’s perspective (which is the only one we will consi-
der), there are three events of interest: arrival, start and term (short for termi-
nation) of a method invocation. When an invocation arrives, it may be delayed
due to some synchronization constraints. Some time later, it will start execu-
tion, and finally it will terminate execution. We assume that events do not
overlap. For example, if two invocations arrive at the same time, we assume
that their arrival events will be ordered. The sequence of events is summarized
in figure 2.

GSPs permit an action (user code) to be associated with each possible event.
The execution of an action will always complete before another event can occur.
Synchronization constraints between methods are expressed using the concept
of a guards (i.e. a boolean expression). Each invocation will be delayed until
the corresponding guard evaluates to true.

In GSPs the genericity lies in the fact that actions and guards are not
associated directly with a particular method of a given object. Conceptually,

4. They can be compared to generator objects used by Abadi and Cardelli [AC96].

�����������

	
�����������

���������������

	
���������

�
��������

����������������������� �����������������������

Figure 2. The events in the lifespan of a typical method invocation.

methods are grouped into categories for which actions and guards are speci-
fied. At instantiation time, all methods will “inherit” all actions and guards
according to their associated category.

The second concept of the Sos paradigm is needed in order to delay a method
invocation due to some synchronization constraints and start its execution when
all synchronization constraints are fulfilled. The Sos paradigm, however, does
not specify how the mechanism for delaying and starting invocation has to be
implemented.

In order to express complex synchronization schemes, it is necessary to
access information about the method invocations upon an object. In code for
actions and guards, the following information needs to be made available:

– the arrival time of the current invocation (for which the action or guard
is executed),

– the number of waiting invocations from a given category,

– the number of executing invocations from a given category,

– a list of all waiting invocations from a given category, and

– the method’s parameters.

Other information could be added, like, for example, the number of terminated
invocations or the list of all executing invocations from a given category. In our
modelling, however, we restricted ourselves to the points mentioned above.

Finally, the Sos paradigm requires a strict separation between synchroni-
zation code/data and code/data of the object itself. As an example, synchro-
nization code (guards and actions) cannot access instance variables of the ob-
ject and vice versa, ensuring that concurrent execution of synchronization and
sequential code cannot interfere (e.g., synchronization code cannot access in-
formation currently being updated by sequential code). This requirement also

ensures that it is not only possible to completely separate the specification and
implementation of synchronization code from sequential code, but also allows
to reuse synchronization policies in a different setting.

As an example, we present the (well-known) Readers-Writers policy. The
policy has two categories of methods: one category representing methods that
only read instance variables and another category representing methods that
change the value of some instance variables of an object. Using GSPs, the
Readers-Writers policy could be specified as follows (we use the same syntax
as in [McH94]):

policy ReadersWriters [ReadOps, WriteOps] {

function ReaderAllowed (t: Invocation): Bool
begin

return exec (WriteOps) = 0;
end

function WriterAllowed (t: Invocation): Bool
begin

return exec (ReadOps) + exec (WriteOps) = 0;
end

map guard(ReadOps) → ReaderAllowed
guard(WriteOps) → WriterAllowed

}

This policy specifies that a read operation can only take place when there is
no executing write operation (i.e. exec (WriteOps) = 0) and a write operation
can only take place when no other operation is executing (exec (ReadOps) +
exec (WriteOps) = 0). The construct

map guard(ReadOps) → ReaderAllowed
guard(WriteOps) → WriterAllowed

binds the guards for the different method categories.
The Readers-Writers synchronization policy defined above can be used in a

class-based way to synchronize objects where all methods are either reader or
writer methods, like in the example below:

class IntStack {
. . . /* defines empty, push, pop, and top */
synchronization

ReadersWriters [<push pop>, <empty top>]
}

4. Modelling GSPs in the π-calculus

The concept of GSPs is not tied to a particular language and can be easily
adapted to most object models. In the following, we are illustrating the integra-
tion of GSPs into our π-calculus based object model. This integration not only

���������	�
�
���
��	���
���������	�
�
���
��	���

�������	�����
��������	�

���������	�
�
���
��	���

���������������! ���������������#"

$�%'&)(�*	+,(.-0/)1�&2(�3

4!5 (�6�&

7�89 :;
<�=>:�?
@A =B
9 C;

Figure 3. Integration of GSPs into the object model.

shows that our object model is open enough to be extended with additional
features like GSPs, but also demonstrates that the GSP paradigm can be easily
adapted to be used in any object model.

In order to model GSPs, we use a similar architecture as for modelling
normal objects. Synchronization policies are represented as objects in the me-
talevel (and, therefore, they behave as metaobjects) while so-called method
wrapper objects providing an interface for synchronization are part of the base
level. The main difference of modelling GSPs compared with our modelling of
plain objects is that the policy metaobjects are not linked to method wrapper
objects a priori. Method wrapper objects are fully generic: they can wrap any
method of any type and they can be bound to any policy. Furthermore, the
binding to a policy can be changed at runtime. The overall structure of the
GSP integration is shown in figure 3.

4.1. Synchronization wrappers

Like McHale we have also opted for the technique of placing a synchro-
nization wrapper around each method to be synchronized. This technique is
commonly employed in the implementation of synchronization mechanisms.
The main idea of the synchronization wrappers is to take a pure unsynchron-

ized object and to wrap its methods in a pre- and post-synchronization code.
For example, a method like

method m1()
begin

body;
end

will be transformed (wrapped) into

method m1()
begin

pre-synchronization code;
body;
post-synchronization code;

end

In terms of the π-calculus this means, that if a method is represented as the
process

M ≡ a(xn, r).(υ ym)(P | r〈ym〉)

the wrapping operation will lead to the following process:

WM ≡ (υ aw, rw) (a(xn, r).(PreWrapper | aw〈xn, rw〉)
| aw(xn, rw).(υ ym)(P | rw〈ym〉)
| rw(ym).(PostWrapper | r〈ym〉))

Fortunately, the encoding of this wrapping operation can be greatly simpli-
fied by the use of records [Var96]. The reader should note that the term
(υ ym)(P | r〈ym〉) is an asynchronous encoding of a method.

The wrapping process itself is modelled by an object which has at least two
methods. One method is used to execute the synchronized method (compare
with the given wrapped process WM) and the other method is used to set
the policy specific method wrappers. The following π-process illustrates the
wrapping:

(υ PreWrapper, PostWrapper)

(SetWrapper(pre, post).(PreWrapper().P reWrapper 〈pre〉
| PostWrapper().PostWrapper 〈post〉)

| WM)

The wrapper objects behave as two-way generic communication intercep-
tors. The reason why we had to use such objects is that the language Pict does
not support message interception. Such a facility could be added to the lan-
guage through an extension of the semantics of channel creation. The creation
of a new channel would be mapped internally to a process which can be pa-
rameterized with an input and output related process which is activated when
an input or output takes place. After the interceptor process has finished, the
initiated communication proceeds as usual.

4.2. Binding a GSP to an object

A Readers-Writers policy described in section 3 can roughly be represented
by the following process:

ReadersWritersPolicy(Readers,Writers) ≡ (ReaderAllowed(Invocation)
| WriterAllowed(Invocation)
| Map(Readers,ReaderAllowed)
| Map(Writers,WriterAllowed))

This process takes as arguments the methods belonging to the appropriate
categories. Then the ReadersWritersPolicy process starts four processes in
parallel: ReaderAllowed and WriterAllowed which are the policy specific syn-
chronization guards and two Map processes which immediately end after bind-
ing the methods of a category to its synchronization guards (see section 3 for
details).

An initial binding of a GSP is done at object creation time. In order to
add GSPs to our object model, the method Create 5 of the class object had
to be modified. First, this method takes an additional parameter Policy which
holds the actual synchronization policy and second, two additional processes
(CreateWrapped and BindPolicy) had to be added to the method Create. The
following process illustrates the modified method Create:

Create(Policy,Object) ≡ (υ Intermediate,WrappedIntermediate,NewInstance, Self)
(CreateIntermediate(Intermediate)
| CreateWrapped(Intermediate,WrappedIntermediate)
| CreateInstance(WrappedIntermediate,NewInstance)

| (BindPolicy(NewInstance, Policy, Self) | Object 〈Self 〉))

To create a new object, the method Create receives a synchronization policy
in Policy and a reply channel Object which is used to return the new created
object to the caller. The method Create starts four processes in parallel which
are synchronized through its communicated channels. CreateIntermediate sends
an intermediate object along the channel Intermediate. CreateWrapped takes
this object and sends an intermediate object with empty synchronization wrap-
pers along WrappedIntermediate. CreateInstance creates the interface adapter
and sends the resulting object along NewInstance. Finally, BindPolicy takes
this instance, binds it to the given policy, and establishes the correct binding
of self.

With this implementation, we have an object based approach of the GSP
mechanism because the object creation is parameterized with the actual syn-
chronization policy. McHale proposed that the synchronization code is class
based and that the synchronization policy is part of the class definition. We
use an object based approach in order to allow different synchronization poli-
cies to be assigned to objects of the same class and that policies can also be
changed at runtime. As mentioned earlier, a policy is represented as an ob-
ject in the metalevel (see figure 3). This policy object is a metaobject for the

5. Create is a method of the class object used to create a new objects (see [LSN96]).

method wrapper objects as well as for the synchronized object. The method
wrapper objects themselves do not have any instance variables: all method
wrapper objects use exclusively the synchronization variables provided by the
policy object. Therefore, the synchronization variables can been viewed as class
variables, and the policy methods as class methods.

It is important to note that the binding of a GSP only affects the creation
of an object. The interface of an object for use remains the same.

4.3. GSPs and Inheritance

In our model, synchronization code is not inherited to subclasses. This
means that when a subclass is defined, we have to assign synchronization code
also to the inherited methods. This sounds like a drawback, but this decision
has a serious reason.

Pict is a strongly typed language [PT97]. The type system of Pict allows
to define polymorphic data structures which we heavily use in our object encod-
ings. Unfortunately, our encodings are also restricted by the Pict type system.
When we inherit wrapped methods, the types of the methods of the superclass
and the subclass have to be invariant. This invariance is introduced by the
self parameter in the method interfaces 6 and the method wrapper objects,
especially by the PreWrapper process (see the process encoding of WM).
When the type of the arguments (xn, r) is T , it is type safe to pass arguments
of type S to PreWrapper along channel a when S is a subtype of T (written
S <: T). The prewrapper process ends sending the received value 〈xn, r〉 along
channel aw. When the type of 〈xn, r〉 is T , it is type safe to send a value of
type S along aw when T is a subtype of S (written T <: S). From these
two conditions, it follows that T and S must be invariant (written T ≡ S).
But this condition is too restrictive for practical use because it implies that
the type of self must be the same in the super- and subclass which means
that it is not possible to extend a subclass with additional features. Therefore,
synchronization code cannot be inherited.

Furthermore, inheritance and synchronization constraints in concurrent ob-
ject systems can often conflict with each other, resulting in inheritance anoma-
lies where reprogramming of inherited code is necessary [MY93]. Our approach
that wrapped methods cannot be inherited, does not intent to overcome inhe-
ritance anomalies; it is rather driven by the underlying type system. A more
detailed analysis of this problem is part of future research.

6. The parameter self is part of the implementation interface of methods used in the
intermediate object [LSN96].

5. Discussion

In the following, we will discuss our main observations of the integration of
GSPs into our π-calculus based object model.

5.1. Evaluation of Generic Synchronization Policies

Our experiments have shown that the concept of generic synchronization
policies is a promising base for the definition of higher-level, reusable synchron-
ization abstractions. The original specification described in [McH94], however,
has a few drawbacks which we will discuss in the following.

First of all, GSPs are used to synchronize concurrent objects, but their
instantiation is restricted to classes: each instance of a class has the same
synchronization code. Due to the fact that the concept of GSPs is independent
of classes, we have extended it in our modelling in order to decide at object
creation time which synchronization policy is bound to an object. Therefore,
it is possible that not all instances of a class have the same synchronization
policy.

McHale claims that both, external and Self calls of methods, should be
synchronized by the same synchronization mechanism [McH94]. However, we
argue that there are good reasons why a single layer/scheme of synchronization
is not enough. On a prototype implementation of connector types [Duc97] in a
concurrent setting, we discovered that it is necessary to call (internal) methods
of an object without passing through the external interface and, therefore,
bypassing the synchronization layer for external clients. In order to guarantee
consistency of an objects internal state, there is a need for a second layer of
synchronization which is a topic for future research.

The concept of GSPs does not take care of method invocations that recur-
sively call other methods of the same object by external clients (e.g., method
m1 of object A calls a method of object B which calls method m2 of A). There
is no possibility to assign an information to the invocation of m2 that this
invocation is a direct cause of the execution of m1 and, therefore, should be
synchronized differently.

5.2. π-calculus based object model

As we have described in section 4, the integration of GSPs into our object
model is not straightforward. The integration would be much easier if we could
observe and control method invocations directly from a metalevel without the
need to explicitly instantiate method wrapper objects. What we need to add
to the language is a metalevel abstraction which allows to control the message
sending over channels. One could think of a kind of channel interceptors which
observe, delay, and eventually modify all messages sent over the channel to be

controlled. We think that such an abstraction will not have any implications on
the underling calculus, but only changes the semantics of message passing in
the language itself. It is a topic of ongoing research to investigate the expressive
power of message interception in general, and in our π-calculus based object
model in particular.

On the other hand, our π-calculus based object model is open enough to
be easily extended with additional abstractions. It has proven to be a pro-
mising formal base for the definition of a black-box framework for modelling
objects and compositional abstractions. Furthermore, our work illustrates that
the use of a metalevel allows for an easy and flexible integration of additional
abstractions without the need to change the underlying existing model.

5.3. Evaluation of Pict

Both the integration of GSPs into our object model and first experiments in
integrating connector types [Duc97] have shown that it is necessary to extend
the existing metalevel and metaobject protocol (MOP). The current version of
Pict, however, did not allow a straightforward integration of these extensions.
We are, therefore, looking for a set of small extensions to the current Pict

version which allow us to express the required abstractions in a more natural
way.

The type system of Pict integrates a number of features found in recent
work on theoretical foundations for typed object-oriented languages [Tur96]
and allows the definition of polymorphic data structures and processes what
we heavily use in our encodings. However, our results show that the current
type system is too restrictive for an efficient implementation of metaobject
protocols and lacks of a support for runtime type information. One of our next
steps will be to investigate how the type system could be extended in order to
fulfill our needs.

Implementing GSPs, we have discovered an interesting property of the type
system of Pict: it is not only possible to define generic classes, but also generic
methods. We have used this property for the SetWrapper process of a method
wrapper object, in order to attach generic synchronization code. To our know-
ledge, no strongly typed object-oriented programming language supports such
a feature.

6. Conclusions and future work

Our experiments show that the π-calculus is a promising formal foundation
for experimenting with different object and component models, that objects
are most easily synchronized when synchronization policies are reified as first
class entities (i.e. metaobjects), and that McHale’s concept of “generic syn-

chronization policies” forms a base for the definition of higher-level, reusable
synchronization abstractions.

Ultimately, we are targeting the development of open, hence distributed
systems [NSL96]. Given the ad hoc way in which the development of open
systems is supported in existing languages, we identify the need for composing
software from predefined, plug-compatible software components. The overall
goal of our work is the development of a formal model for software composition,
integrating a black-box framework for modelling objects and components, and
an executable composition language for specifying components and applications
as compositions of software components.

A composition language for open systems should not only have its formal
semantics specified in terms of communicating processes, but should really sup-
port concurrent and distributed behaviour. Since the present runtime system of
Pict only works for a single processor system, and the development of the lan-
guage itself focuses more on a functional programming style, we have decided
to implement an environment for a Pict-like language on top of Java. This will
allow us to further experiment with abstractions needed for distribution and
the implementation of a sophisticated metalevel.

Acknowledgements

We thank all members of the Software Composition Group for their support
of this work, especially Oscar Nierstrasz, Patrick Varone, Tamar Richner, and
Franz Achermann.

References

[AC96] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.

[Ame87] Pierre America. POOL-T: A Parallel Object-Oriented Language. In Aki-
nori Yonezawa and Mario Tokoro, editors, Object-Oriented Concurrent
Programming, pages 199–220. MIT Press, 1987.

[Blo79] Toby Bloom. Evaluating Synchronization Mechanisms. In Proceedings of
the Seventh Symposium on Operating Systems Principles, pages 24–32,
December 1979.

[Bri96] Jean-Pierre Briot. An Experiment in Classification and Specialization of
Synchronization Schemes. In Kokichi Futatsugi and Satoshi Matsuoka,
editors, Object Technologies for Advanced Software, LNCS 1049, pages
227–249. Springer, March 1996. Proceedings ISOTAS ’96.

[BS95] Manuel Barrio Solorzano. Estudio de Aspectos Dinamicos en Sistemas
Orientados al Objecto. PhD thesis, Universidad de Valladolid, September
1995.

[DLDR+91] D. Decouchant, P. Le Dot, M. Riveill, C. Roisin, and X. Rousset de
Pina. A Synchronization Mechanism for an Object Oriented Distributed

System. In Proceedings of 11th International Conference on Distributed
Computing Systems, pages 152–159. IEEE, May 1991.

[Duc97] Stéphane Ducasse. Réification des schémas de conception: une
expérience. In Roland Ducournau and Serge Garlatti, editors, Procee-
dings of Langages et Modèles à Objets ’97, pages 95–110, Roscoff, Octo-
ber 1997. Hermes.

[Jon93] Cliff B. Jones. A Pi-Calculus Semantics for an Object-Based Design
Notation. In Eike Best, editor, Proceedings CONCUR ’93, LNCS 715,
pages 158–172. Springer, 1993.

[KdRB91] Grégor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of
the Metaobject Protocol. MIT Press, 1991.

[LSN96] Markus Lumpe, Jean-Guy Schneider, and Oscar Nierstrasz. Using Me-
taobjects to Model Concurrent Objects with PICT. In Proceedings of
Langages et Modèles à Objets ’96, pages 1–12, Leysin, October 1996.

[McH94] Ciaran McHale. Synchronization in Concurrent, Object-oriented Lan-
guages: Expressive Power, Genericity and Inheritance. PhD thesis, De-
partment of Computer Science, Trinity Collegue, Dublin, Ireland, Octo-
ber 1994.

[Men94] Tom Mens. A survey on formal models for OO. Technical Report vub-
tinf-tr-94-03, Department of Computer Science, Vrije Universiteit Brus-
sel, Belgium, 1994.

[Mil89] Robin Milner. A Calculus of Mobile Processes, Part I+II. Technical
Report ECS-LFCS-89-85, Computer Science Department, University of
Edinburgh, UK, 1989.

[Mil91] Robin Milner. The Polyadic Pi-Calculus: a Tutorial. Technical Report
ECS-LFCS-91-180, Computer Science Department, University of Edin-
burgh, UK, October 1991.

[MY93] Satoshi Matsuoka and Akinori Yonezawa. Analysis of inheritance ano-
maly in object-oriented concurrent programming languages. In Gul
Agha, Peter Wegner, and Akinori Yonezawa, editors, Research Direc-
tions in Concurrent Object-Oriented Programming, pages 107–150. MIT
Press, 1993.

[NSL96] Oscar Nierstrasz, Jean-Guy Schneider, and Markus Lumpe. Formalizing
Composable Software Systems – A Research Agenda. In Proceedings 1st
IFIP Workshop on Formal Methods for Open Object-based Distributed
Systems, pages 271–282. Chapmann & Hall, 1996.

[PT95] Benjamin C. Pierce and David N. Turner. Concurrent Objects in a
Process Calculus. In Takayasu Ito and Akinori Yonezawa, editors, Theory
and Practice of Parallel Programming (TPPP), LNCS 907, pages 187–
215. Springer, April 1995.

[PT97] Benjamin C. Pierce and David N. Turner. Pict: A Programming Lan-
guage based on the Pi-Calculus. Technical Report CSCI 476, Computer
Science Department, Indiana University, March 1997.

[San95] Davide Sangiorgi. Lazy functions and mobile processes. Technical Report
RR-2515, INRIA Sophia-Antipolis, April 1995.

[SL96] Jean-Guy Schneider and Markus Lumpe. Modelling Objects in PICT.
Technical Report IAM-96-004, University of Bern, Institute of Computer
Science and Applied Mathematics, January 1996.

[Tur96] David N. Turner. The Polymorphic Pi-Calculus: Theory and Imple-
mentation. PhD thesis, Department of Computer Science, University
of Edinburgh, UK, 1996.

[TV89] Chris Tomlinson and Singh Vineet. Inheritance and Synchronization
with Enabled-Sets. In Norman Meyrowitz, editor, Proceedings OOPSLA
’89, volume 24 of ACM SIGPLAN Notices, pages 103–112, October 1989.

[Var96] Patrick Varone. Implementation of ”Generic Synchronization Policies”
in PICT. Technical Report IAM-96-005, University of Bern, Institute of
Computer Science and Applied Mathematics, April 1996.

[VdBL89] Jan Van den Bos and Jan Laffra. PROCOL – A Parallel Object Language
with Protocols. In Norman Meyrowitz, editor, Proceedings OOPSLA ’89,
volume 24 of ACM SIGPLAN Notices, pages 95–102, October 1989.

[Wal95] David J. Walker. Objects in the Pi-Calculus. Information and Compu-
tation, 116(2):253–271, 1995.

