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Abstract—Detecting code duplication in large code bases,
or even across project boundaries, is problematic due to the
massive amount of data involved. Large-scale clone detection
also opens new challenges beyond asking for the provenance
of a single clone fragment, such as assessing the prevalence of
code clones on the entire code base, and their evolution.

We propose a set of lightweight techniques that may scale
up to very large amounts of source code in the presence of
multiple versions. The common idea behind these techniques
is to use bad hashing to get a quick answer. We report on
a case study, the Squeaksource ecosystem, which features
thousands of software projects, with more than 40 million
versions of methods, across more than seven years of evolution.
We provide estimates for the prevalence of type-1, type-2, and
type-3 clones in Squeaksource.
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I. INTRODUCTION

Detecting clones in source code is computationally
expensive and does not easily scale up to massive amounts
of data such as when analyzing entire software ecosystems.
On the other hand, counting identical duplicates, even in
large amounts of data, is computationally less expensive. It
has been shown that indexing source code fragments based
on the result of a hashing function, is a promising approach
to achieve good performance when large amounts of source
code must be handled [1]: The problem of finding snippets
of similar source code can be reduced to finding identical
hashes, if the hash function is “bad”—generates collisions
on similar documents.

The literature defines three types of clones: type-1—
identical source code duplication; type-2 clones may feature
renames of identifiers; type-3 clones may feature more
extensive changes [2]. Current hash-based approaches to
clone detection handle only type-1 and type-2. In this paper,
we provide hash functions for type-1, type-2, and type-3
clones which exhibit reasonable detection accuracy.

Beyond mere clone detection, exploiting the results is
a challenge. Most approaches focus on finding the clones
of a given code fragment efficiently. In contrast, we store
all hashes of the analyzed corpus in one database. This
dedicated infrastructure handles large quantities of clone
groups, and allows us to answer cloning-related questions
at the level of ecosystems, such as “how much cloning
exists between different projects?”, in contrast to simply
searching for the clones related to one fragment. Similar
holistic queries include analyzing the successive versions
of a given piece of code to detect the origin of a clone
among several copies: the version that appeared the first in
a software repository is likely the original clone [3].

In this paper, we show how bad hashes, i.e., hashes
where similar items collide on the same hash, can identify

clones corresponding to each criterion (type-1, type-2, and
type-3 clones), and how the analysis must be tailored to the
versioning system in use. We use it on the entire history
of an open source software ecosystem, Squeaksource which
features thousands of projects and tens of thousands of
versions in a total of 47 GB of uncompressed source code,
or 579 MLOC, to answer holistic queries about clones.

Contributions. The contributions of this paper are
threefold:

1) Three lightweight, language-independent, clone detec-
tion techniques. Each defines a clone type (1, 2, and 3)
which can be detected by bad hashes on source code.
The presented techniques scale to entire ecosystems.

2) An evaluation of the three detection techniques
in terms of performance on a real-world software
ecosystem which demonstrates their scalability

3) Preliminary ecosystem-level results, showing that a
large amount of code is duplicated, and that clone
groups can feature hundreds of members accross many
projects.

II. RELATED WORK

There are two fundamentally different approaches to clone-
detection: clustering approaches, and index-based approaches.
Traditional clone detection tools compute all pairwise dis-
tances of code fragments and then cluster all code fragments
based on these distances. A popular example is CCFinder [4].
Livieri et al. [5] present an extension of the popular clone de-
tector that is distributed over several machines to improve its
scaling, named D-CCFinder, which they used to have 80 ma-
chines find all clones in 10.8 GB of source code in 51 hours.

Uddin et al. [6] show how hashes can speed the
computation of all pairwise distances. In their approach, in a
first step, all source code is first hashed, and then in a second
step, all pairwise distances are computed from the hashes
only. Their approach still requires a third clustering step.

Krinke et al. [7] investigated cloned code in 30 projects of
the Gnome suite of programs. They found 3096 clone groups
(8003 clones in total), and that the probability of clones being
copied between systems increased with the size of the clones.

On the other hand, index-based approaches, first suggested
by Hummel et al. [8], save computation by not having a
clustering phase. In their paper, Hummel et al. describe how
they implemented their own tables that could be queried in
parallel using MapReduce. This is a much more complex
and demanding approach than using off-the-shelf databases,
which are built for the express purpose of querying and
keeping indexes and data in sync. In the absence of a query
planner, all queries must be written as parallel MapReduce
programs. Their approach does not tackle type-3 clones.



The idea of using bad hashes for clone detection was
proposed by Baxter et al. [9]. Their approach creates bad
hashes for sub-trees of the ASTs of classes, and thus
requires full parsing of the source code in question.

Keivanloo et al. [1] show that the index-based approach
scales to entire ecosystems. They build up a database of
hashes for 18,000 Java programs. Their hashes are created
for 3 consecutive lines while our hashes are created based
on tokens. As a result we can detect type 3 clones that are
generated by removing, adding, or changing a single token
whereas their approach requires that three lines are exactly
the same. Further, they use their own storage of the index,
whereas we use an off-the-shelf database, Postgresql. This
enables us to run elaborate queries, like “how much cloning
exists between different projects” within hours, even without
the use of parallelization.

III. LIGHTWEIGHT APPROACHES

To handle large amounts of data, we took Broder’s [10]
similarity metric and modified it towards greater speed.
Instead of a distance metric, we compute bad hashes of the
source code of each method. We compute three hashes: one
for type-1 clone detection, another for type-2 clones, and
one for type-3 clones. Detecting code duplication in an index
is fast, because it does not involve cluster editing—and
allows us to do without approximating algorithms.

To allow our algorithms to work independent of the pro-
gramming language we use working definitions which slightly
differ from the canonical ones. We feel this deviation is
permissible since the canonical definitions emerge solely from
ontological reasoning, rather than from empirical evidence.

A. Type 1: Hashes of Source Code

Type-1 clones are defined as “identical code
fragments except for variations in whitespace, layout and
comments” [11]. However, identifying comments is language
specific and requires full parsing of the source code in most
instances. In our approach, we do not ignore comments for
this reason. As we show later in section §IV-B, even including
comments, we detect a large number of type-1 clones across
repositories. In our work we define type-1 clones as such:

Working Definition: Two documents are type-1 clones iff
they differ in nothing but white-space.

The charm of this definition is that to find type-1 clones, it
is enough to tokenize the input using the regular expression
/s+/, concatenate the resulting tokens delimited by a
separator, and then compute the SHA1 hash of the resulting
string. Then, two snippets are type-1 clones iff they produce
the same hash.

B. Type 2: Hashes of Source Code With Renames

Type-2 clones are defined as “syntactically identical
fragments except for variations in identifiers, literals, types,
whitespace, layout and comments” [11]. We use the
following definition of type-2 clones, which should not be
in conflict with the canonical one:

Table I – Example normalization of type-2 clones.

Source Normalized

myGetProv ide rFor : aSymbol
| bound |
bound := b i n d i n g s a t : aSymbol

i f A b s e n t : [ ^ n i l ] .
s e l f a s s e r t : bound n o t N i l .
^ bound

t : t | t | t := t
t : t t : [ ^ t ] . t
t : t t . ^ t

Working Definition: Two documents are type-2 clones iff
they are type-1 clones after every sequence of alphabetical
letters is replaced by the letter “t”, and all sequences of digits
are replaced with the number “1”. For an example, see Table I.

This is the same definition that has been successfully
employed in detecting plagiarism [12] and it is
computationally inexpensive. While this definition
appears to be inclusive, as we will see in Table III, it catches
barely more clones than there are type-1 clones.

C. Type 3: Shingles
Type-3 clones are defined as “Copied fragments with

further modifications such as changed, added or removed
statements, in addition to variations in identifiers, literals,
types, whitespace, layout and comments” [11]. This
definition leaves open just how much “further modification”
is tolerable; clearly, it appeals to the intuitive sense of
similarity. Broder [10] reports that defining resemblance
based on shingles matches the intuitive sense of similarity
in examining their data. We use this shingles-resemblance,
which works as follows:

Let a “shingle” be a consecutive sequence of w tokens
in a document, after the document has been transformed
according to the rules of type-2 clones. The “sketch” of a
document is a subset of its shingles.

Working Definition: Two documents are type-3 clones if
and only if they share the same sketch.

By selecting only a subset of all the shingles two methods
can be detected as similar even if they do not share all shin-
gles. Also, their shingles do not need to appear in the same
order to be detected as similar. While the selection should be
random so as to not favor certain shingles over others, a doc-
ument should also be equal to itself. Selecting shingles based
on the bit representation of their hashes achieves just that.

In our implementation, shingles are sequences of four
tokens (w=4), the hashes for the shingles are computed with
SHA-1, and the subset constituting the sketch contains only
those shingles whose hashes binary representation ends in
“11”. This selects an expected quarter of all shingles, since the
digits of the binary representation of a hash each have an inde-
pendent chance of 1/2 to be ‘1’. Table II presents an example.

Note that it is not necessary to keep the shingles that
make up the sketch. Rather, we can XOR them into one
hash, which is a measure for whether or not two sketches
are equivalent. This allows us to compute whether or not
two documents are type-3 clones by checking whether
their hashes are equal. Since clones that are too short are
meaningless, we consider only documents that are at least
16 tokens long in our implementation.

While our definition of a type-3 clone is equivalent
to Broder’s Option B predictor with parameters w = 4,



Table II – Example normalization of type 3 clones. The under-
lined shingles are selected, because their binary representation
ends in ‘11’. We only show the last 4 hex digits of hashes.

Normalized Shingles hashes

t: t |t| t
:= t t: t
t: [^t]. t
t: t t. ^
t

t: t |t| t, t |t| t :=,
|t| t := t, t := t t:,
:= t t: t, t t: t t:,
t: t t: [^]., t t: [^].
t, t: [^]. t t:, [^]. t
t: t, t t: t t, t: t t.
^, t t. ^ t

bd2d, c80b,
a3f8, 11b5,
6951, 4f55,
a43b, 8f58,
f7d2, d549,
bcee, fbe7,
84f4

m = 4 [10, Theorem 1], it works out differently. Choosing
only hashes that end in a certain bit pattern is proposed by
Broder in an attempt to estimate the true resemblance, for
which it is an unbiased estimate. Thus, he selects a subset
of all shingles to improve performance and not, like us, to
allow for deviation between similar code snippets.

IV. EMPIRICAL STUDY: SQUEAKSOURCE

We used our approach to detect code duplication across
repositories on Squeaksource (http://www.squeaksource.com);
Squeaksource is the de-facto standard code repository in the
Smalltalk ecosystem. As of June 2011, Squeaksource contains
2705 projects created by 3188 contributors over 7 years.

Each Squeaksource project is an individual repository. The
version control system Squeaksource uses, called Monticello,
creates a snapshot of the program (or package, depending on
coding conventions) at every commit. The snapshot contains
all of the program source code in a zipped text file, as a
sequence of method definitions; this makes the method the
natural granularity for our approach. Squeaksource amounts
to a grand total of 47 GB of uncompressed data.

Projects in Squeaksource often include complete
duplications of packages from other projects they depend
on in their own repositories. The duplicated package has
the same name as the original. This happens whenever a
developer marks his own repository to depend on another
repository. However, once stored, one cannot distinguish
anymore between packages that directly belong to a project
and those that come from the outside. Whether this inclusion
of dependencies qualifies for code duplication or not may
well be discussed. However, measuring it would report
on the workings of Monticello more than on the behavior
of developers. Therefore, while we stored all packages,
regardless of origin, we tweaked our analysis to consider
two methods to be cloned only if they were found both in
different projects, and in differently named packages.

We compute and store all hashes of all versions of all meth-
ods and classes published on SqueakSource. We obtain a table
in which each every hash is stored together with the clone-
type it represents, and the places where it was found (a place
is a tuple consisting of project, version, class, and method).

A. Space and Time Performance
We read a total of 22,641,865 method strings, which

boil down to 560,842 different methods and 74,026 classes.
For our purposes, similar to how Monticello stores class
definitions, a class is merely the set of its methods, thus
ignoring the inheritance hierarchy. For each method string, as
well as for every class, we compute three hashes, one for each

Table III – Percentage of cloned methods and classes out of
560,842 methods and 74,026 classes on SqueakSource.

Type 1 type-2 Type 3
Percentage of cloned methods 14.55 % 16.33 % 17.85 %

Percentage of cloned classes 0.16 % 0.19 % 0.21 %

clone type. The data weighs in at merely 3.2 GB. However,
due to alignment issues, they take significantly more space in
memory. We store all hashes and method descriptors in a Post-
gresql database, where the data occupies 20 GB of space.1

Computing and storing all the hashes for the three tech-
niques took 4:45 hours for all of Squeaksource (47 GB), on an
8 core Xeon at 2.3 GHz with 16 GB of RAM, using the Ruby
1.9.1 interpreter. Creating database indexes for every column
took another 3 hours in total. Detecting code duplication
across all projects then took only 2 hours. However, this also
counted code duplication caused by the automated copying of
Monticello, rather than willful code duplication. Removing
these uninteresting clones was done with a database query that
took another 10 hours of computation time. In contrast, the D-
CCFinder experiment ran a single clone detection technique
on 7.5GB of data for 51 hours, on 80 machines [5].

Since on more than twice the amount of data, and on
ten times fewer cores, all three techniques together ran
seven times faster, we can conclude that our lightweight
approaches kept their promises regarding scalability.

B. Clones in the Squeaksource Ecosystem
Table III shows the percentage of all methods across all

versions and projects that were cloned in another project. We
see that regardless of type, at least 14.5 % of all methods
are present in at least two distinct repositories. Classes are
cloned less frequently: only 0.16 %, or 115 classes in an
entire repository, of all classes of all versions are straight
copies from another package in another repository.

The table presents only a small increase in prevalence
from type-2 clones to type-3. This shows that our definition
of type-3 clones is rather restrictive. The reason for this is the
following: if any one token changes, or is removed or added,
then at most 4 shingles are removed from the document, and
at most 4 are added. The chance of each shingle’s hash to be
part of the sketch is 1/4. If none of the 4 removed shingles
and none of the 4 added shingles is part of the sketch, then
the sketch does not change. The chance of that happening
is (3/4)8 ≈ .1. This is somewhat balanced by the fact that
the 4 added and removed shingles don’t have to be different,
and that at the start and end of a document, changes involve
fewer shingles. The high chance of the sketch changing
explains why our working definition of type-3 clones in
section §III-C clones is much more restrictive than it appears.

Figure 1 shows the distribution of type 1 clone groups
according to their size. The distribution resembles a Pareto
distribution. The median number of projects a cloned method
is in is 3. There are large numbers of small clone groups,
and few large clone groups. Note that some clone groups
are very large, featuring hundreds of identical methods (in
the case of type-1 clones). This is evidence that there are
massive amounts of duplication in the ecosystem.

1The database can be accessed here: http://scg.unibe.ch/research/
hot-clones.
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Figure 1 – Distribution of clone group sizes for type 1 clones.
The x-axis is the size of the clone groups; the y-axis is the
number of clone groups of that size across the ecosystem.

C. Multi-Version Analysis
We computed how many clones we would have missed us-

ing our approach, had we only looked at the latest versions of
packages. Ignoring previous versions is plausible at first since
code in repositories usually grow continuously. Furthermore,
even if code changes after being cloned, type-3 clone detec-
tion might still find it. Setting aside the issue that determining
the provenance of clones needs a version history anyways
[3], this approach underestimates cloning by more than 20%.

We queried our data set for every method of which we
know that it was cloned at some point in time, whether it
is a type-3 clone in any latest version of any package. We
found that when looking at the latest versions of all packages
24.4 % of all type-1 clones, 23.1 % of all type-2 clones,
and 22.9 % of all type-3 clones would have been missed.

Note that more type-1 clones than type-2 clones are missed,
and more type-2 clones than type-3 clones. Suppose that
project A changes a method that was previously cloned by
project B. Now, if we only look at latest versions, we may or
may not detect this duplication as a type-3 clone. If, however,
we look at all versions, we can detect the type-1 clone.
Thus, more type-1 clones are missed than type-3 clones.

D. Threats to Validity
In order to scale to larger amounts of data, we adopted

slightly modified definitions of type 1, 2 and 3 clones. Thus
the results may differ if more orthodox definitions of these
clone groups are adopted. We have applied our techniques to
a single ecosystem, which is comprised of Smalltalk systems
only. Our findings may not generalize to other ecosystems,
and other programming languages. Squeaksource is also
considerably smaller than other ecosystems; if our techniques
have been successful so far, it remains to be determined
whether they scale to even larger code bases.

V. CONCLUSIONS

An index of bad hashes can detect type-1, type-2, and
type-3 clones on large amounts of source code such as
entire ecosystems—gigabytes of source code. Since bad
hashing is such a cheap approach to clone detection, we

can afford to index all versions, and thus detect clones that
would otherwise be missed. In Squeaksource, 22.9 % of all
type-3 clones are missed if only the latest versions of all
packages are examined.

We found evidence for large amounts of duplication in the
Squeaksource ecosystem. More than 14 % of all methods are
copied from another package in another project. Regardless
of one’s opinion of code duplication: it is common.

Even though classes are meant to be modular, we have
found that methods are reused in new contexts far more
frequently than classes. Since projects on Squeaksource tend
to stand for themselves, this suggests to us that this number
is a good estimator of true duplication of source code, being
used in different contexts to different ends.

Future work. Whether our definition of type-1, type-2
and type-3 clones is better or worse than the conventional one
is yet to be determined. So far, evidence for the usefulness of
clone type definitions is purely anecdotal. We will evaluate
our definition agains Bellon’s benchmark [11]. Furthermore,
we plan to put our techniques to the test by applying them
to other large ecosystems such as the Maven repository.
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