
Onward! 2014 – October 20–24, 2014, Portland, OR, USA

Mining the Ecosystem to Improve
Type Inference For Dynamically Typed Languages
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Abstract
Dynamically typed languages lack information about the
types of variables in the source code. Developers care about
this information as it supports program comprehension. Ba-
sic type inference techniques are helpful, but may yield
many false positives or negatives.

We propose to mine information from the software ecosys-
tem on how frequently given types are inferred unambigu-
ously to improve the quality of type inference for a single
system.

This paper presents an approach to augment existing
type inference techniques by supplementing the informa-
tion available in the source code of a project with data from
other projects written in the same language. For all available
projects, we track how often messages are sent to instance
variables throughout the source code. Predictions for the
type of a variable are made based on the messages sent to it.

The evaluation of a proof-of-concept prototype shows
that this approach works well for types that are sufficiently
popular, like those from the standard librarie, and tends
to create false positives for unpopular or domain specific
types. The false positives are, in most cases, fairly easily
identifiable. Also, the evaluation data shows a substantial
increase in the number of correctly inferred types when
compared to the non-augmented type inference.

Categories and Subject Descriptors D.2.3 [Coding Tools
and Techniques]: Object-oriented programing; D.3.m [Mis-
cellaneous]

Keywords Ecosystem Mining; Type Inference
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1. Introduction
Software developers spend more time on maintaining and
evolving existing software than writing new code. Mainte-
nance consumes over 70 percent of the total life-cycle cost of
a software product [4]. This means that support for reading
and understanding code is very important. Static type infor-
mation in source code helps developers understand how the
software system works [15], but the expressiveness provided
by dynamically typed languages can make developers more
productive [10]. Many attempts have been made at getting
the best of both through type inference or optional typing.

Most type inference techniques rely on statically analysing
the source code of the software system in question, and us-
ing the gathered data to infer the possible types. A basic
approach is to track the usage of a variable i.e., the messages
sent to it, and infer the type by determining which classes
implement the corresponding methods. This can lead to false
positives, i.e., types that match the required interface but
can never actually be reached at run time. More advanced
techniques perform deeper analysis i.e., using data flow or
control flow, but ultimately suffer from the same problem
of false positives. A developer faced with a provided set of
possible types cannot easily identify the false positives.

This paper presents an approach to augment existing
type inference techniques by supplementing the informa-
tion available in the source code of a project with data from
other projects written in the same language. Since programs
written in the same language often share dependencies we
will consider as the background of this work a corpus of sys-
tems that belong to the same software ecosystem [13]. By
using the data from the ecosystem, it is possible to increase
the amount of information used to infer types and thus help
avoid and identify potential false positives. For all available
projects from the ecosystem, we track how many times mes-
sages are sent to instances of available types throughout the
source code. With this information, we can sort the potential
types of a variable the developer cares about based on their
likelihood of being the actual type in the context. The like-
lihood is computed based on how many times the messages
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sent to this variable have been observed to be sent to each
potential type throughout the ecosystem.

We have implemented a proof-of-concept prototype and
used it to evaluate the approach. We show that, for our imple-
mentation, measuring the frequency of association between
a message and a type throughout the ecosystem source code
is helpful in identifying correct types. The evaluation data
shows a substantial increase in the number of correctly in-
ferred types when compared to the type inference working
only on data from one project.

The paper is organized as follows: section 2 gives a high
level overview of the problem and the proposed approach
to solving it; section 3 presents the related work of type in-
ference and mining software repositories; section 4 gives a
detailed description of the proposed approach, as well as the
formal model used to describe it; section 5 presents the de-
tails of the implementation of the prototype; section 6 shows
the methods and results of the evaluation of the prototype;
and finally section 7 concludes and discusses future work.

2. Overview
To better understand the contributions of this paper, we take
a look at an existing three-step approach to type inference
[20]. We start from this approach because it is simple to
understand and implement, is reasonably fast and is repre-
sentative of its field. Other more complex approaches would
gather more data about the system to increase precision, and
such complexity is unneeded for the purpose of this paper.

The approach has three steps:

1. Interface type extraction. This phase reconstructs the type
of a variable of interest by using static analysis to find all
messages sent to it within the context of the given class.
The system is then searched for all classes that implement
this set of messages.

2. Assignment type extraction. This phase reconstructs the
type with respect to the assignments to the variable. This
is a heuristic based analysis of the right side of assign-
ments to the variable in question.

3. Merger. Merging the results from phases one and two into
the final type results for the variable. Several different
ways exist to do the merge [20], but we focus on the one
that gives priority to the assignment type, and moves to
interface types if an assignment type does not exist .

This “single-system type inference” (SSTI), is not helpful
in cases where the amount of data gathered by the first two
phases is limited. To understand this limitation consider the
example in Listing 1.

The example1 is written in Pharo Smalltalk2. The first
part (lines 1–7) declares a new class called MethodBrowser

1 The code snippet is actual code from the Spec system, to be found at
http://smalltalkhub.com/#!/~Pharo/Spec
2 http://www.pharo-project.org

and lists the instance variables of the class. Special atten-
tion for this example is put on the instance variable tool-
barModel. The second part is the definition of a method
named initializePresenter. This method is the only place
toolbarModel is used. The only usage is sending it the mes-
sage method:.

1 ComposableModel subclass: #MethodBrowser
2 instanceVariableNames:
3 'listModel
4 textModel
5 toolbarModel'
6 category:
7 'Spec−Examples−PolyWidgets'
8

9 MethodBrowser>>initializePresenter
10 listModel whenSelectedItemChanged: [:selection |
11 selection
12

13 ifNil: [
14 textModel text: ''.
15 textModel behavior: nil.
16 toolbarModel method: nil ]
17

18 ifNotNil: [:m |
19 textModel text: m sourceCode.
20 textModel behavior: m methodClass.
21 toolbarModel method: m ]].
22

23 self acceptBlock: [:t |
24 self listModel selectedItem inspect ].
25 self wrapWith: [:item |
26 item methodClass name,'>>#', item

selector ].

Listing 1. The type of toolbarModel cannot be detected by
the single-system approach

Suppose the developer needs to know the type of the
toolbarModel instance variable. She could care about this in
order to understand which of the implementations of method
: will be invoked when this code is executed or just use the
knowledge of the type of this variable to better understand
the entire system. In Smalltalk, good practices recommend
instance variable names to match the type of the variable.
However, we find no ToolbarModel class in the system.

Applying the previously described approach to this in-
stance variable would produce 21 possible classes. This is
due to the fact that there are no assignments to the variable
and only one method invocation, and the method in question
is defined in all 21 classes. This means that if the developer
wishes to understand which implementation of method: is
invoked, she is in an uncomfortable position of having 21
possibilities. The actual number of possible classes is even
larger, because we ignore all subclasses of the classes defin-
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ing the method in question. Obviously in cases like this, the
information provided to the developer is not helpful. Plu-
quet et al. show that on average less than 40% of instance
variables from their evaluation receive enough messages and
initializations to successfully infer one possible type [20].

Given a set of possible types provided by the SSTI it
would be helpful to the developer if the set were sorted by
how likely each of the types is to be correct. Since the data
we have available is a set of selectors3 that the instance vari-
able receives, we can compare this set to patterns of message
sending in other projects from the ecosystem. The intuition
is that the more often we find that the same messages are
sent to a uniquely identifiable type, the more likely that type
is to be correct.

In our case, after the analysis of other systems we find out
that the message method: is commonly sent to instances of
3 classes out of the 21 that implement the method. Those are
MethodToolbar, ZnRequest, and SourceMethodConverter.
The actual type assigned to the instance variable toolbar-
Model at run time is MethodToolbar. In this paper we argue
that type association information from other projects can be
beneficial to recovering types.

The proposed approach (Ecosystem-aware type inference
— EATI) automates the process of using ecosystem data for
augmenting SSTI and it consists of two phases. The first is an
analysis of a large number of systems that results in the data
about the frequency of association of messages and types.
The second phase concerns the developer in need of type
inference. To infer a type, we attempt SSTI and in case the
results are ambiguous we query the data from phase one to
receive a collection of possible types sorted by the number
of times the messages were sent to types in the ecosystem.

3. Related work
Two field of related work are relevant to EATI, namely type
inference and large scale software analysis.

3.1 Type Inference
EATI addresses type inference for dynamically typed object-
oriented languages to support program comprehension. The
scope of this work is different from classical type inference
techniques for statically typed languages like Scala [18],
where type inference frees the developer from having to
specify types that can be inferred.

Much of modern type system research is based on the
work of Milner who published the description of a polymor-
phic type-inference algorithm called “Algorithm W”[16]. It
is a fast algorithm, performing type inference in almost lin-
ear time with respect to the size of the source code and was
first implemented as part of the type system of the program-
ming language ML.

3 In Smalltalk jargon, a selector is the name of a message, i.e.,+ or
method:, used to select the method to respond to the message.

A well known type inference algorithm is the Cartesian
Product Algorithm [1] (CPA). This algorithm infers con-
crete types to support performance of parametric polymor-
phism. CPA does this by partitioning the calling context of
a method based on the types of the actual arguments passed
to the method. It supports dynamically typed languages, as
it is implemented originally for Self, and its contribution is
limited to inferring concrete types from polymorphic types.
CPA is the basis for other type inference engines for other
languages i.e., Starkiller [25], a type inferencer and compiler
for Python.

A fast type inference technique presented by Pluquet [20]
is used as a basis for the prototype implementation of the
type inference presented in this paper. This technique is
outlined in the motivating example section.

The approaches so far use different kinds and quantities
of data obtained through statical analysis to infer types.
None of them expand to more then one system, so any of
them can benefit from EATI. An implementation of EATI
on top of these approaches would need to be significantly
different from the one presented in this paper, as it would
have to manage the different data used.

Other approaches use the execution of a program to
gather types. One such approach is presented by Jong-hoon
et al. for the language Ruby [6]. This approach uses wrap-
pers for variables that generate constraints during execution
which are later used to infer types. The inferred types can
be used for documentation, and thus better code comprehen-
sion, but all dynamic approaches are limited by the require-
ment that the code needs to be runnable, either through test
cases or symbolic execution [8].

Another field of related work has to do with optional
typing. Optional typing attempts to enable developers all
the benefits of using dynamically typed languages, with
the option of specifying types when and where they deem
appropriate [2]. This enables compile-time type checking
for provided types, and also enriches the source code with
static types. Examples of optionally typed languages are
Strongtalk and Gradualtalk — dialects of smalltalk, Dart
— a language developed by Google, and Typescript — an
optionally typed Javascript developed by Microsoft. A type
inference engine for these languages could be used to infer
and generate the optional types. This would free the devel-
oper from specifying inferable types, as with Scala, and such
engines could also benefit from ecosystem data.

3.2 Large Scale Software Analysis
A large body of work is concerned with mining open source
software repositories to address a variety of software de-
velopment issues: from predicting which parts of the sys-
tem are likely to have defects [5], to automatically detect-
ing code clones across open source systems [24], support-
ing code search across the web or large collections of soft-
ware projects [3] and automatically detecting the license of
jar archives [7].
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One particular direction of research related to ours is the
work on API specification mining [23]. In order to detect
groups of methods that are usually called together Nguyen
et al. [17] statically analyse method call and field access
graphs. The mined API patterns represent sets of methods
that are called on a single object, thus making the part which
extracts the protocol similar to ours. Pradel and his col-
leagues used a combination of static and dynamic analysis
to automatically detect illegal uses of APIs [21] while build-
ing multi-object protocols.

To support developers writing code with APIs they are not
familiar with, the Strathcona tool automatically searches a
given corpus of systems and finds relevant contextual source
code examples [11]. The developer indicates a relevant code
fragment as input for the tool which then fetches and dis-
plays a series of relevant code examples which the developer
can browse.

Ossher et al. present a method for automatically resolv-
ing dependencies for open source software which works by
cross-referencing the missing type information in a project
with a repository of candidate artifacts [19]. They — simi-
lar to us — build a detailed AST for every individual sys-
tem they analyze. The AST is used to analyze an individ-
ual project and detect the missing types. Once the missing
types have been identified, the final step is to match them
against the artifacts in the candidate repository. In our previ-
ous work we have also analyzed inter-system dependencies
by analyzing the method call graph, identifying the targets
of calls which do not exist inside of a system, and detecting
these targets elsewhere in the ecossytem [14].

In their work, Thummalapenta and Xie crawl the web
for methods and classes that are often reused [26]. They
collect the frequency of calls to methods and classes of
a given API in order to recognize so-called hotspots. The
information that they collect is similar to ours; the difference
is in the end-goals — they support the understanding of an
API while we aim at improving the type inference. Unlike
their, and most of the related work which is targetted at
Java systems, we have to address challenges inherrent to
dynamically typed programming languages.

Robbes et al. analyzed an entire Smalltalk ecosystem to
understand the way in which changes in one system propa-
gate to the systems downstream [22]. In their case they an-
alyze the entire ecosystem and stored the information in the
Ecco meta-model. They discard the information regarding
the object that receives a certain message, thus that meta-
model is simpler than the one we use in this work. To build
the model they analyze method calls but their analysis is lim-
ited to building the AST of a single method for data extrac-
tion. This results in a less rich model but enables them to
analyze any kind of project, even the ones that do not com-
pile. In their work they analyze all the available versions of
all the systems in the ecosystem; in our work we do not make
use of evolutionary information.

4. Ecosystem-aware Type Inference
To explain EATI we introduce a simple set-theoretic model
in Figure 1 that captures key properties for the entities shown
in the UML diagram in Figure 2. For simplicity we ignore
temporary variables and method arguments throughout the
paper. We can greatly simplify the model and implemen-
tation by ignoring them, and since the approach works the
same for these variables application of the approach to them
is trivial.

4.1 Core model
Given all the source code in a software ecosystem, C is
the set of all classes, F the set of all instance variables
(i.e., fields), M the set of all methods, and S the set of all
“selectors” (i.e., method names).

deff : F → C (1)

defm : M → C (2)

sup : C → C (3)

sel : M → S (4)

sends : M × F → 2S (5)

where deff (f) /∈ sup∗(defm(m))⇒ sends(m, f) = ∅ (6)

Figure 1. The core model. F = fields, C = classes, M =
methods, S = selectors.

A given field f is uniquely defined in a class c = deff (f)
(Equation 1). Similarly, each method m is defined in a
unique class c = defm(m) (Equation 2). Every class c other
than Object has a unique superclass c′ = sup(c) (Equa-
tion 3). sup is a partial function, since sup(Object) = ⊥.

Every method m has a unique method name (i.e., a se-
lector used select m) s = sel(m) (Equation 4), and every
method m sends a set of messages selectors to a given field
f , namely sends(m, f) (Equation 4).

Note that a method m can only access fields defined in
the same class where m is defined, or fields inherited from
one of its superclasses. For all other combinations of m and
f , sends(m, f) returns the empty set (Equation 6).

Consider the example class hierarchy Figure 3. In the ex-
ample, deff (rect) = deff (tri) = defm(main) = DrawEditor,
as both these instance variables and the method main are de-
fined in the class DrawEditor. Also, sup(DrawEditor) =
sup(Shape) = Object which is obvious from the hierarchy.

We can now query the model to compute metrics that will
allow us to rank the results of type inference, as summarized
in Figure 4. The interface of a class c, ifc(c), is the set4

of selectors of all methods defined in c and its superclasses

4 Note that we implicitly extend sel, defm and other functions in the usual
way to take sets of values as arguments and similarly return sets of values.
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Figure 2. The core model in UML.

Figure 3. Sample class hierarchy with the implementation
of one method .

Equation 7. The selectors received by a field f , rec(f) is the
set of all selectors of messages sent to f by methods defined
in the same class c = deff (f) (Equation 8)5.

Returning to the example, the interface of the class Rect-
angle is:

ifc(Rectangle) = {isSquare, surface, toString}

as those are all the methods defined in it and its superclasses.
Looking at the implementation of method main we can see
that messages are sent to the instance variables rect and tri.
We can express which messages with

rec(rect) = {surface}

and
rec(tri) = {surface, height}

5 This definition is consistent with classical SSTI [20]. Later we will con-
sider messages sent by methods in subclasses as well.

ifc(c) ≡ sel(def−1m (sup∗(c))) (7)

rec(f) ≡ sends(def−1m (deff (f)), f) (8)

types(f) ≡ {c ∈ C|rec(f) ⊆ ifc(c)} (9)

roots(C ′) ≡ {c ∈ C|∀n > 0, supn(c) /∈ C ′} (10)

unique(f, c) =

{
1 roots(types(f)) = {c}
0 o/w

(11)

selscore(c, s) =
∑

f∈F,s∈rec(f)

unique(f, c) (12)

classscore(c, f) =
∑

s∈rec(f)

selscore(c, s) (13)

Figure 4. Computing class scores over the core model.

The set of possible types of a field f , types(f), is the set
of classes whose interface includes all selectors received by
f (Equation 9). The roots of the hierarchies of a set of classes
C ′ is the subset of those classes without superclasses in C ′

(Equation 10).
Applying this to our example we get

types(rect) = {Shape,Rectangle,Triangle}

and
types(tri) = {Triangle}

A field f is inferred to be of a unique type c if set
of inferred types of f has a unique root c. The function
unique(f, c) returns a count of 1 for all such fields (Equa-
tion 11). This means that unique(f, c) will, in our example,
equal 1 in only two cases.

unique(rect,Shape) = 1

unique(tri,Triangle) = 1

Now we compute the selector score of a class c with
respect to a selector s, selscore(c, s), as the number of fields
f that are determined to be of the unique type c, where s
is sent to f (Equation 12). A few selector score values for
combinations of classes and selectors from our example are

selscore(Shape, surface) = 1

selscore(Rectangle, surface) = 0

selscore(Triangle, height) = 1

Finally, we compute the class score of a given class c
with respect to a field f , classscore(c, f), as the sum of
all its selector scores for selectors of messages sent to f
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(Equation 13). The usage of class score is beyond the scope
of our small example, but will be explained further in the
paper.

4.2 Storing data from the ecosystem
The first step to the proposed approach is to gather type
information from projects in the ecosystem and information
on message sending to instances of those types. We store
the gathered data in a central repository, so it can be queried
when necessary.

An entry in the stored data consists of a class name
c ∈ C, selectors {s1...sn} ⊆ S sent to instances of c, and
the number of times each si ∈ {s1...sn} has been sent to
instances c. This number is called the selector score of a class
(selscore(c, s)|s ∈ S, c ∈ C), as messages with the same
selector can be sent to instances of different classes, yielding
different selector scores. A sample database is presented
in Table 1. In this paper we show that this information is
sufficient for improving the type inference.

The data needed for EATI can be gathered through dy-
namic or static analysis. In this context, dynamic analysis
means gathering type information from a running system [6].
This provides actual run time types, but requires the system
to be runnable and produces false negatives — a variable
may not actually be bound to a type during the observed ex-
ecution of the system, but might during others. Static anal-
ysis means running a type inference engine on the source
code. As we saw in the example from the beginning of sec-
tion 2, static analysis can often produce false positives —
types deemed “possible” that never occur at run time. Since
the ecosystem data is large, we can ignore the false positives
and false negatives and store the remaining data.

4.3 Using the stored data
In order to infer types, we apply SSTI, and in case there
is more than one possible type, the data gathered from the
ecosystem is queried for more information in order to sort
the possible types and present the developer with the more
likely candidates. The repository query for an instance vari-
able f ∈ F ′ should contain rec(f), where F ′ is the set of all
instance variables in the system being typed by the user. The
result of the query is a set of possible classes {c1...cn} ⊆ C,
determined by which classes in the repository have records
of their instances receiving selectors from rec(f). The result
of the query should be sorted by the class score.

For example, given the repository table from Table 1,
querying the repository with a set of selectors {substring:,
startsWith:} would return just the class ByteString with a
score of 23. ByteString is the only result because it is the
only class found in the repository whose instances received
the given selectors. The score is due to the selector substring:
having a score of 9 and the selector startsWith: having a
score of 14, yielding 23.

If the query contained only the selector +, the result
would have been a set of classes containing the class Integer

with a score of 27 and the class ByteString with a score of
10. Instances of both classes have been observed to receive
this selector, but instances of class Integer receive it more
often.

Class Name Selector Score

ByteString substring: 9
toUpperCase 6
+ 10
startsWith: 14
endsWith: 4

Integer + 27
− 63
toString 40
bitAnd: 2

Table 1. A sample repository containing information on the
frequency of sending certain selectors to classes ByteString
and Integer

5. Implementation
We have implemented a prototype of EATI for Pharo Smalltalk.
We chose Smalltalk because it is highly reflective, and en-
ables fast and easy development of analysis tools [9]. The
implementation consists of three distinct subsystems: a data
gatherer that mines usage data from the ecosystem, a GUI
available to the developer, and a persistent store through
which the other two subsystems communicate.

5.1 Data gathering
The data gatherer is tasked with populating a database with
information on type-selector relationships from the ecosys-
tem. As an input, it requires access to repositories of a num-
ber of software projects. After loading the source code of a
project, the gatherer proceeds to run a type inference engine
on the entire project source code.

The type inference engine used is an improved implemen-
tation of the SSTI described in the example from the begin-
ning of section 2 that takes into account field usage data from
the subclasses. This provides more information for instance
variables that are used predominantly in the subclasses of the
class that declares it and requires a small modification to our
model redefining rec as

rec(f) ≡ sends(M,f)

for all f ∈ F . Note that this definition will give empty results
for all m where f is not accessible, so only methods of
the class c = deff (f) and its subclasses actually contribute
selectors to the result.

The prototype iteratively pre-computes selscore(c, s) for
all classes and selectors, starting with the class Object, the
root of the class hierarchy. Perfroming a depth-first search
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of the class hierarchy ensures that all the data from the sub-
classes of each class are gathered. Once the entire subtree for
a particular class has been traversed, the search for adequate
types of the instance variables of the class begins, based on
the data collected from the subtree.

The gatherer runs on a timed schedule to ensure that the
data in the store is up-to-date. The gatherer is run regularly
and all the data in the store is rebuilt. Newer versions of
the projects from the ecosystem should contain more data,
and the new store should be superior to the old one. This
also ensures that the entire system is aware of changes in the
ecosystem, such as the introduction of new libraries.

5.2 The store
The pre-computed selscore are represented as a set of
triplets:

(c, s, selscore(c, s))|c ∈ C, s ∈ S

and stored as a key-value JSON-document. We group all the
triplets with the same c, and use c as the key for that entry
in the database. A textual representation of a sample JSON-
document follows.

1 {
2 ” id” : ObjectId(”51b0df6b44b1392c8e7ee0ec”),
3 ”className” : ”Mutex”,
4 ”selectors” :
5 {
6 ”critical:” : 2,
7 ”ifNil:” : 1
8 }
9 }

By the end of the analysis of all the projects the database
contains the global score for every available class-selector
combination. We use a MongoDB6 database to store the
data.

5.3 The client
The client is the front end of the entire system, and is the
bridge between the user and the system. We implemented a
very simple GUI that offers the developer the choice which
class should be processed, and whether or not to include
its subclasses in the analysis. Processing the class consists
of running SSTI on its instance variables, consulting the
database when necessary and presenting the results to the
developer. There are many ways to use the provided data
both by tools and by the developer, but the client side usages
are beyond the scope of this paper.

6. Evaluation
To evaluate the prototype implementation we populate the
store with data from 74 open source projects from the Pharo
Smalltalk ecosystem. The projects were chosen based on

6 http://www.mongodb.org

their availability and ease of automated access. Automated
access is important because their source code needs to be
loaded and analysed by a tool during the data gathering
phase. The gatherer loads the source code of all the projects
using the configuration browser. The configuration browser
is a tool to automatically load Smalltalk project source code
and dependencies, similar to Maven7 for Java.

A total of 8374 classes were analyzed. This produced 746
entries in the store. This means that running type inference
on all the instance variables of the classes produced 746
classes {c1...c746} ⊂ C such that

∃f ∈ F |unique(f, c) = 1, rec(f) 6= ∅

After populating the store with data gathered from the
projects, we take 97 instance variables from 5 projects.
These projects are not a part of the set of used to populate
the store and were chosen because they have unit tests avail-
able. We where limited to these 5 projects because of the
relatively small size of the Pharo ecosystem and availability
of projects with unit test coverage is small.

The run-time types of the instance variables are recov-
ered by instrumenting the source code of the projects to log
types of objects assigned to instance variables and running
the unit tests. These types are held to be the actual types,
implications of which are described in the threats to validity
section.

Types of these instance variables are then inferred using
SSTI and EATI.

It should be noted that the projects used for testing con-
tain a total of 402 instance variables, but most of them were
ignored for one of two reasons:

1. A total of 107 instance variables received no messages
thus the instance variable is not a valid candidate for this
type inference technique;

2. Running the unit tests did not provide a run-time type for
198 instance variables. This is most likely due to poor
test coverage.

Throughout the evaluation we try to answer the following
questions: How well does SSTI work, what is the improve-
ment with EATI, and when and why does EATI fail? The
evaluation discussion is divided into 3 parts, one focusing
on discussing successfully inferred types, one focusing on
the false positives and the last commenting on the remaining
situations in which the single-system approach failed and no
data was provided by the ecosystem-aware approach. A sum-
mary of the evaluation results is given in Table 2.

6.1 Successful attempts
EATI provides a sorted list of the most likely types of an
instance variable. In the best case scenario the correct type

7 http://maven.apache.org
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Total Successful False positives No data

Single
system

Eco-
aware

Selectors
only from

Object

True
failures

97 21 20 23 25 8

Table 2. Summary of the evaluation results

should be at the top of the list. We declare two scenarios for
a successful attempt:

1. if the SSTI infers the correct type (as provided by running
the unit tests)

2. if the SSTI provides several types and the correct type is
at the top of the sorted list provided by EATI.

The results show 21 instance variable types that have been
successfully inferred using SSTI and an additional 20 using
EATI. This means that using the EATI almost doubled the
number of successfully inferred types.

An analysis of the inferred types shows that EATI works
reliably for types from the standard library, as 19 of the
20 instance variables have run-time types from the standard
library. These include Array, SmallInteger, ByteString and
others. We argue the approach works well with the standard
library because it is so widely used, and the data on type-
selector relations is abundant. We expect that the success
would generalize to any types sufficiently popular in the
ecosystem.

6.2 False positives
For an inference to be considered false positive the types
provided by the EATI should be different than the actual run-
time type of the instance variable (as provided by running
the unit tests). This situation can be more damaging to the
comprehension of the source code than not receiving any
result at all. This is because it may lead the developer to
make wrong decisions based on the wrong type of a variable.

The results show 48 false positives. The number seems
unacceptably high, but a second look at the data reveals
that almost half of the false positives were caused by the
lack of selectors sent to those instance variables. A total of
23 instance variables that caused a false positive received
only selectors declared in the Object class, such as the ifNil
: selector used to check if the object in question is a nil
object8. Selectors declared in the Object class, can be sent
to any Smalltalk object. Thus, those selectors carry no useful
type information. We argue that those false positives can be
ignored, as they would very easily be identified by checking
if all the given selectors are defined in Object, which can be
easily automated.

8 nil is an object in Smalltalk. It is the sole instance of the UndefinedObject
class.

Out of the remaining 25 false positives, 6 fail to give
the correct type at the top of the list, but the correct type
is present in the top three. We call these “near misses”.

The remaining 19 false positives each fall into one of two
categories:

1. Run-time types not present in the ecosystem — These
types are specific to the project in question, and as such
are not present in the store i.e., classes only used within
this project. Since EATI can not access source code that
uses these classes, they can only be identified through
SSTI.

2. Domain specific selectors and types — this false posi-
tive arises when selectors used widely for one purpose
are used in a different or domain specific manner. For ex-
ample, the comma selector (“,”) when sent to an object
of type ByteString is used to concatenate strings. On the
other hand, in the PetitParser [12] framework this selector
is used to create a sequence of parser combinators. Since
concatenation of strings is far more frequent then parser
combinator sequences, the data in the store suggests that
the type of a variable receiving only the selector , is a
ByteString. At this point, it is left to the developer to use
her knowledge of the specifics of the project in question
to detect this kind of false positive. In future work we
would like to explore whether additional context infor-
mation can be exploited to determine the domain of the
project, and adjust the EATI accordingly.

6.3 No data from the EATI
A total of 8 instance variables were completely unidentifi-
able. The selectors sent to these variables are declared in
more then one class in the system, thus SSTI results in many
false positives. The combination of these selectors has never
been linked to a type in the store, i.e.,:

6 ∃c ∈ C|unique(f, c) = 1

This does not mean that all individual selectors from
rec(f) have never been seen in the ecosystem. It means that
during the data gathering phase no uniquely inferred type
has received this combination of selectors.

These situations leave the developer with no insight into
the type of a variable, but are also not damaging as they do
not mislead like the false positives do.

6.4 Threats to validity
Even though EATI is applicable to any dynamically typed
language we cannot guarantee the evaluation will generalize
to other ecosystems. Although the approach should benefit
type inference in any ecosystem, we cannot state in what
way without more insight.

The main threats to validity of our evaluation come from
the projects that were used. One threat is that the 74 selected
projects are not truly representation of the ecosystem. In
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the selection process we attempted to address this threat by
identifying projects covering a wide range of domains and
sizes.

Another threat is the fact that unit tests are used to deter-
mine the run-time types for instance variables. Unit tests do
not provide a complete picture of the running system, and
their execution provides a limited set of possible types for
instance variables. With that in mind, the effort to precision
ratio for using unit tests is high, and the alternatives of sym-
bolic execution or manually running the systems are signifi-
cantly more difficult, and are also prone to false negatives. It
is an open question to determine whether a given set of unit
tests offers a representative picture of the actual types that
would be bound during typical (non-test) runs.

It is possible that the selection of SSTI we made could
have affected the results. Even though the SSTI we used
is representative it is hard to say what effect using other
techniques to enable EATI would have on the results. We
chose this SSTI for its simplicity and speed, and as such
it served the needs of this evaluation. Since EATI is meant
as a supplement for SSTI, changing the SSTI engine could
increase the SSTI success rate and make EATI seem less
potent. On the other hand, if another SSTI were used in the
data gathering phase of EATI, the results might normalize. In
future work we plan to explore the impact of EATI on other
SSTI approaches.

Throughout the paper we ignore how the fact that differ-
ent versions of APIs coexisting in the ecosystem could affect
the results. The magnitude and implications of this escape
the scope of the paper.

Finally, using different type inference engines in the data
gathering phase and on the client side could yield very dif-
ferent result.

7. Conclusion and future work
This paper presents a novel approach to type inference that
supplements the information available in the source code of
a project with data from other projects written in the same
language. The approach requires a large set of projects from
the same ecosystem to be analyzed, statically or dynamically
and indexes the times selectors are associated to different
types. After a gathering phase, we store the findings, and a
client that infers more than one possible type for a variable
can consult the data to sort the candidates and identify the
most likely ones.

The prototype implementation, written for the Pharo
Smalltalk ecosystem, enables an analysis of the pros and
cons of the approach. The approach has shown to be par-
ticularly useful in inferring standard types (SmallInteger,
Boolean, ByteString, etc.), and the collection types (Set,
Dictionary, etc.). We conclude that this is due to the massive
usage of these types throughout the ecosystem, and hypoth-
esize that the approach applies to any sufficiently popular
type.

In the situations where the approach fails, three patterns
can be identified.

Firstly, the situations where no relevant selectors are sent
to the instance variable. In these cases the approach will of-
fer either no solution or an unhelpful one (i.e., Object class).
We conclude that these cases are easily identifiable by pre-
senting to the developer not just the type recommendations
but also the set of selectors sent to the instance variables in
question. If the selectors are too few or two generic (i.e., the
ones defined in the Object class) the developer or a tool will
be able to conclude that the recommendations are based on
loose data.

Secondly, the approach does not work on types that are
specific to the project in question. For all the types used
only in the project, the ecosystem data is useless as it is
completely oblivious to the existence of these types. If these
types cannot be inferred by the data available in the project
that defines them, they receive no benefit from ecosystem
data either. Such cases can be easily recognized.

Finally, in situations where selectors are commonly used
for operations on one type, but less commonly for other
operations on different types, the approach will favor the
more frequent one in all situations. We conclude that these
cases are not faulty, as the EATI generates recommendations
solely based on the highest count of messages sent to types.
Once again, it is up to the developer to be aware of the
domain of the project and the issues that may arise from
it. As future work, we plan to explore how knowledge of
the project domain can be used to automatically adjust the
rankings.

Throughout the analysis of the approach described in this
paper, several opportunities for improvement have arisen.
With more engineering effort it would be possible to solve
some of the shortcomings, i.e., allowing the developer to
specify the domain or by attempting to infer the domain
automatically.
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