
A Meta-model for Language-Independent Refactoring1

Sander Tichelaar*, Stéphane Ducasse*, Serge Demeyer+ and Oscar Nierstrasz*

(*)Software Composition Group, IAM, Universität Bern (+)Lab on Reengineering, University of Antwerp
Neubrückstrasse 10, CH-3012 Berne, Switzerland Universiteitsplein 1, B-2610 Wilrijk, Belgium

{tichel,ducasse,oscar}@iam.unibe.ch www.iam.unibe.ch/~scg Serge.Demeyer@uia.ua.ac.be. win-www.uia.ac.be/u/sdemey

1. Proceedings ISPSE 2000, IEEE, 2000, pp. 157-167.

Abstract
Refactoring —transforming code while preserving be-

haviour— is currently considered a key approach for im-
proving object-oriented software systems. Unfortunately, all
of the current refactoring tools depend on language-depend-
ent refactoring engines, which prevents a smooth integration
with mainstream development environments. In this paper
we investigate the similarities between refactorings for
Smalltalk and Java, derive a language-independent meta-
model and show that it is feasible to build a language-inde-
pendent refactoring engine on top of this meta-model. Our
feasibility study is validated by means of a tool prototype
which uses the same engine to refactor both Smalltalk and
Java code. Using our approach we minimize the language-
dependent part of refactoring tools, providing a standard
way for programmers and tools to perform refactorings no
matter what language they work in.

1. Introduction

Refactoring is defined as “changing a system to improve
its internal structure without altering its external behaviour”
[5]. Especially when automated by a tool, refactoring is an
easy, quick and safe way to improve software systems at the
code level. Recently, refactoring has been gaining wide-
spread acceptance, as for example illustrated by the increas-
ing popularity of the Refactoring Browser [7] (an almost
ubiquitous Smalltalk tool), the growing success of Fowler’s
refactoring catalogue [5] and the explicit integration of re-
factoring into a software development method (namely Ex-
treme Programming [9]). Due to this growing demand, one
may safely assume that refactoring tools will soon become
part of mainstream software development environments.

Surveying existing software development environments,
we perceive alongside the standard code editors a whole
range of program auditing facilities. These facilities support
developers in understanding existing programs (e.g., ex-
tracting UML diagrams, generating documentation) and in

detecting potential problems (e.g., gathering performance
profiles, measuring code attributes). Of course, a tight inte-
gration between these auditing facilities and refactoring
tools is highly desirable as the former provides the necessary
input for the latter. Most commonly, integration in software
development environments is achieved by means of a repos-
itory: a shared database accumulating all knowledge about
the software system under development. Thus, for refactor-
ing tools to become part of mainstream software develop-
ment environments, the most natural way would be to adhere
to a repository architecture.

Such a repository architecture requires a central data
model (the so-called meta-model) which —to deal with the
multiple languages these environment typically support —
should be highly language independent and contain suffi-
cient information to represent refactorings. While there is
sufficient proof that a refactoring tool can be built for almost
any object-oriented language (Smalltalk [10], Eiffel [1],
Java [11][12] and C++ [6][13]) it is yet unknown whether it
is feasible to build a language-independent refactoring en-
gine. Support for multiple languages in a refactoring tool is
mentioned by Ó Cinnéide [12]. He presents a layered archi-
tecture which shields language specifics as much as possi-
ble, but so far his tool prototype only supports one language,
namely Java.

This paper presents the results of a feasibility study for a
language-independent refactoring engine. Based on the list
of primitive refactorings, we derive a common meta-model
that is sufficient to perform the necessary analysis. We vali-
date our sufficiency claim by means of a tool prototype
which uses a single engine based on a common meta-model
to refactor both Smalltalk and Java. We have chosen Java and
Smalltalk, because these two languages are both mainstream
object-oriented languages and they differ sufficiently to
make the step to language independence non-trivial. The
most significant differences are that Smalltalk has explicit
metaclasses, that Java has a special interface concept, and
that Java is statically typed while Smalltalk is dynamically
typed.

http://win-www.uia.ac.be/u/sdemey
mailto:tichel@iam.unibe.ch
http://www.iam.unibe.ch/~scg
http://win-www.uia.ac.be/u/sdemey
mailto:Serge.Demeyer@uia.ua.ac.be
mailto:tichel@iam.unibe.ch

After presenting the context of our work in section 2, we
present a meta-model for describing object-oriented sys-
tems that enables us to describe refactorings at a language-
independent level (section 3). We categorize the refactorings
from the perspective of this model (section 4) and discuss
two refactorings, Add Class and Rename Method, in detail
as an illustration of what issues typically arise (section 5).
The research has been verified by building a prototype that
applies a non-trivial sequence of refactorings on a similar
software system in both Java and Smalltalk (section 6). In
this case-study all described refactorings are used. We finish
with a discussion, related work and conclusion.

2. Experimental Set-up

The work presented in this paper has been done in the
context of the FAMOOS project [14], a European ESPRIT
project on reengineering object-oriented software. In this
project we have developed a tool environment called Moose
[4] which has the goal to support reengineering tasks such as
metrics, visualisation and reorganisation, and which is
based on a repository architecture. One of the goals —
which is the main topic of this paper — was to integrate re-
factorings. We introduce here the design goals of the model,
which defines the framework in which the rest of the paper
needs to be viewed.

The repository and its underlying model have been devel-
oped with the following goals in mind:

• Support for multiple languages. We had to deal with dif-
ferent object-oriented languages (C++, Java, Smalltalk,
Ada) and did not want to rewrite our tools for each of
those languages.

• Minimalisation of information. Our aim was not to cov-
er all aspects of all languages, but rather to capture the
common features that we needed for reengineering ac-
tivities.

To fulfil these goals the model describes software sys-
tems at the so-called program entity level as opposed to the
abstract syntax tree level. The most detailed information the
model represents concerns local variables and which meth-
od calls which method and accesses which attribute, but we
do not analyse the exact control flow within methods. This
allows us to reason at a level which is sufficiently abstracted
from language-specific details, but which is sufficiently de-
tailed to support the analysis we need to perform.

We claim that this level of information is sufficient to sup-
port most of the primitive refactorings on a language-inde-
pendent level. The refactorings we support are shown in
table 1 together with their pre- and postconditions. They are
what Opdyke [6] calls low-level refactorings, i.e. primitive
program transformations for adding, removing and renam-
ing entities and moving entities within their inheritance hier-

archies. These low-level transformations can be combined
to perform more complex transformations, called high-level
refactorings, for instance to introduce design patterns
[12][5]. The high-level refactorings are outside the scope of
this paper. They are typically a combination of low-level re-
factorings and therefore have not much to do with language
issues that are handled on the lower level.

Consequent to the choice not to model information that
requires a thorough analysis of method bodies, we do not
support refactorings that need this kind of information. Ex-
amples include Extract Method and Move Method [5]. The
last kind of refactorings that are not covered in this paper are
those that are relevant for only a single language. These in-
clude Change Type and Move Class (between packages).

Note that changing code can be done in a safe way only
when the information about a software system is 100% com-
plete. Anything less might result in a non-working or wrong-
ly behaving system. Although extracting all information is
not always a trivial task we assume in this paper we have all
required information readily available.

3. A Language meta-model for Refactoring

In order to be able to check the preconditions of table 1
and to analyse which code changes need to be undertaken for
every supported refactoring at a language-independent lev-
el, we have developed the FAMIX model. FAMIX provides
for a language-independent representation of object-orient-
ed source code. It is an entity-relationship model that models
object-oriented source code at the program entity level. fig-
ure 1 shows the core entities and relations. The core model

specifies the entities and relations that are extracted immedi-
ately from source code. It consists of the main object-orient-
ed entities, namely Class, Method and Attribute. In addition
there are the associations InheritanceDefinition, Access and
Invocation. An Access represents a Method accessing an At-
tribute and an Invocation represents a Method calling anoth-
er Method. These abstractions are needed for dependency
analysis. Note that we model statically determinable invoca-
tions. The actual invocations at runtime can be to any meth-
od that is polymorphically equivalent to the statically

Figure 1 The core of the FAMIX model

determined method. The complete model, which is set up as
an object-oriented hierarchy, consists of more entities, such

as functions and formal parameters. Additionally to the en-

Table 1: Overview of the refactorings supported by our approach

Refactoring pre-condition post-condition

Add Class (classname, pack-
age, superclasses, subclasses)

• no class exists with classname in the same
scope

• no global variable exists with classname in the
same scope

• subclasses are all subclasses of all superclasses
• [Smalltalk] superclasses must contain one class
• [Smalltalk] superclasses and subclasses cannot

be metaclasses

• new class is added into the hierarchy with
superclasses as superclasses and sub-
classes as subclasses.

• new class has name classname
• subclasses inherit from new class and not

any more from superclasses

Remove Class (class)

• class has no attributes or its attributes are not
referenced

• idem for methods
• class does not implement abstract methods

from its superclass hierarchy
• [Smalltalk] class cannot be a metaclass

• class is removed (including non-refer-
enced attributes and methods)

• superclasses of class are now superclasses
of its subclasses

• [Smalltalk] corresponding meta-class is
deleted as well

Rename Class (class, new
name)

• no class exists with new name in the same
scope

• no global variable exists with new name in the
same scope

• classes that refer to class do not have any
(inherited) variable with new name

• [Smalltalk] a metaclass cannot be renamed
independently of the class it represents

• class has new name
• all references (types, casts, class method

calls, superclass references) are updated
with the new name

• [Java] constructors are updated with the
new name

• [Java] casts to class have been updated
• [Smalltalk] the corresponding metaclass

of class has been renamed as well

Add Method (name, class)
• no (inherited) method with signature derived

from name exists in class

• class has a method called name with an
empty body or is abstract if class repre-
sents a Java interface

Remove Method (method) • method has no static candidate invocations
• method is removed from its containing

class

Rename Method (method, new
name)

• no method exists with the signature implied by
new name in the inheritance hierarchy that con-
tains method

• [Smalltalk] no methods with same signature as
method outside the inheritance hierarchy of
method

• [Java] method is not a constructor

• method has new name
• relevant methods in the inheritance hier-

archy have new name
• invocations of changed method are

updated to new name

Pull Up Method (method,
superclass)

• method should not access attributes or methods
from its containing class

• superclass does not contain a method with the
same signature as method

• method cannot have super references to super-
class

• pulled up method should not hide implementa-
tions higher up in the hierarchy from referring
subclasses of superclass

• [Java] method is not a constructor
• [Java] non-empty method cannot be pulled to

an interface

• method defined in superclass
• method not defined in original containing

class

Push Down Method (method)

• method is not invoked in or through its contain-
ing class

• direct subclasses of the containing class of
method do not contain a method with the same
signature already.

• [Java] method is not a constructor

• method not defined in original containing
class

• method defined in subclasses of the con-
taining class

Add Parameter (name, method)

• method does not have a parameter with name
already

• method does not have a local variable with
name already

• no method exists with the signature implied by
name in the inheritance hierarchy that contains
method

• [Smalltalk] containing class does not have an
attribute with name

• [Smalltalk] no methods with same signature as
method outside the inheritance hierarchy of
method

• method and all relevant methods in the
inheritance hierarchy have an extra
parameter with name

• invocations of method are updated to
invoke it with an extra parameter with a
default value

Remove Parameter (parame-
ter)

• parameter is not referenced in the containing,
any overriding or overridden method

• no method exists with the signature implied by
removing parameter in the inheritance hierar-
chy of the containing method

• [Smalltalk] no methods with same signature as
method outside the inheritance hierarchy of
method

• method and all relevant methods in the
inheritance hierarchy have parameter
removed

• invocations of method are updated to
invoke it without parameter

Add Attribute (name, class)
• no (inherited) attribute with name exists in

class
• subclasses do not contain attribute with name

• class has attribute named name

Remove Attribute (attribute) • attribute is not accessed
• attribute is removed from its containing

class

Table 1: Overview of the refactorings supported by our approach

Refactoring pre-condition post-condition

tities themselves, FAMIX defines for every entity a set of at-
tributes. A Method, for instance, has attributes such as
signature and isAbstract. The complete specification of
the model can be found in [3].

The different supported languages need to be mapped to
FAMIX. For Java [8], C++ [16] and Ada [15] we have de-
scribed those mappings. The Smalltalk mapping is work in
progress. The goal of the mappings is to be able to treat all lan-
guages similarly. However, as shown in table 1, in some cases
the difference in semantics of a concept in two languages can-
not be ignored. An example is the mapping from Java interfac-
es to FAMIX classes. Additionally, we need to store language-
specific information to be able to do the necessary language-
specific analysis.

Certain design choices for the meta-model have special
impact on refactorings and refactoring analysis for Smalltalk
and Java, and therefore require special attention. Note that
they are discussed in more detail in section 7.

FAMIX supports types

Static type information is important information to store
for languages that support it such as Java and C++. Dynami-
cally typed languages such as Smalltalk are covered by stor-
ing the most general type (Object) wherever needed.

FAMIX supports multiple inheritance.

Naturally this covers languages with multiple inheritance
such as C++ and single inheritance in, for instance, Smalltalk.
Java is covered by interpreting Java interfaces as abstract
classes.

One might wonder why we came up with our own model in
the first place. One reason is that when we started we did not
find any model that adequately modelled source code in the
way we needed it to. Different source code models exist [17],
but typically they do not have clearly defined mappings to dif-
ferent languages. Another reason is that models such as UML
[18] are directed towards object-oriented analysis and design
rather than source code representation. Especially concepts
such as invocations and accesses are hard to model using
UML. This issue is extensively discussed in [2].

4. Language-independent refactoring

The meta-model described in section 2 allows us to reason
about the refactorings introduced in table 1 at a language-in-
dependent level. To see if a refactoring is language-independ-
ent, or rather how language independent a refactoring is, we
take FAMIX as a reference. We categorize the analysis, i.e.
checking the preconditions and determining what needs to be
changed, in the following way:

• complete reuse. The analysis is completely language-in-
dependent, meaning that the model can give a conclusive
answer to the question whether a certain precondition
holds or what exactly needs to be changed, for all sup-
ported languages. An example of this case is that if a
class is to be renamed, the new name may not already ex-
ist in the context of that class. This rule applies for both
Smalltalk and Java.

• interpretation issues. The analysis can be performed
based on the model, but needs to be interpreted different-
ly for different languages. For instance, types are
checked in the model, but are of no relevance for Small-
talk which is dynamically typed.

• language-specific analysis. Parts of the analysis need
language-specific information (for instance, an extra
check needs to be made in case a class represents a Java
interface). Typically this information is available in the
model through language extensions [8][15][16].

• front-end issues. The front-ends, i.e. the actual code
changers, are naturally specific for the language they
change the code of. Apart from the trivial issues of the
syntax of the language, sometimes analysis must be per-
formed to apply changes according to the specific lan-
guage rules. For instance, although both Java classes and
interfaces are represented as classes in the model, in
some cases they need to be treated differently at the code
level.

Typically a refactoring does not fall into only one category
as its preconditions and latent code changes often are partly
language independent, partly they need a language-specific
interpretation, and yet other parts are language specific. In ta-

Pull Up Attribute (attribute,
superclass)

• any attribute in the superclass and its subclasses
with the same name as attribute has the same
type as attribute

• attribute will not hide another attribute with the
same name

• superclass contains attribute
• all attributes in the subclasses of super-

class with the same name and type as
attribute have been removed

Push Down Attribute
(attribute)

• attribute is not referenced or accessed through
its containing class

• the direct subclasses of the containing class do
not contain an attribute with the same name as
attribute

• attribute is removed from its containing
class

• all subclasses that need it (i.e. that have a
reference to the attribute somewhere in its
hierarchy) define an attribute with the
same name and type as attribute

Table 1: Overview of the refactorings supported by our approach

Refactoring pre-condition post-condition

ble 2 we present the categorization of our refactorings using
short descriptions of how each refactoring depends on lan-
guage specific issues.

Java interfaces

Interfaces in Java require special rules to be observed.
One cannot, for instance, pull up a non-abstract method to an
interface. For the class refactorings and the Add Method re-
factoring the Java code changing front-end needs to know if
it is dealing with Java classes or Java interfaces.

Smalltalk metaclasses

FAMIX interprets Smalltalk classes and Smalltalk meta-
classes as classes. However, the semantics of Smalltalk im-
poses certain rules. Every class in Smalltalk has a metaclass
associated with it. Metaclasses do not have an explicit name

and cannot be added or removed independently of the nor-
mal classes they represent.

Static vs dynamic typing

Due to the type-awareness of FAMIX, and the mapping to
FAMIX of statically typed Java and dynamically typed
Smalltalk, three phenomena can be observed:

• Type related analysis. In several refactorings there ex-
ists analysis for dealing with typed information (for in-
stance, in the case of a Rename Class refactoring, the
types of the attributes that have this class as a type need
to be changed). For Smalltalk much of that analysis is
unnecessary. The query for all attributes with a certain
type will return the empty set and this is known before-
hand. Note that this does not make the refactoring lan-
guage-independent. It just means that analysis is done

Table 2: Language dependency issues for refactorings in Java and Smalltalk

Refactoring interpretation issues language-specific analysis front-end issues

Add Class
Java interfaces,
Smalltalk metaclasses

Java interfaces

Remove Class type related analysis Smalltalk metaclasses Java interfaces

Rename Class type related analysis

Smalltalk metaclasses,
class methods,
Java constructors,
Java casts

Java interfaces

Add Method
Java interfaces,
Java constructors,
default types

Remove Method Java abstract methods

Rename Method
Java constructors,
lack of static type information

Pull Up Method
Java constructors,
lack of static type information,
Java interfaces

Push Down Method
Java constructors,
lack of static type information

Add Parameter lack of static type information default types

Remove Parameter lack of static type information

Add Attribute global variables default types

Remove Attribute

Rename Attribute global variables

Pull Up Attribute Java hiding

Push Down Attribute

that is unnecessary for Smalltalk: preconditions will not
be violated and it will not result in any changes in the
Smalltalk sources.

• Due to the lack of static type information in Smalltalk,
invocations to a certain method name cannot be tracked
to one implementation (or at least one hierarchy with
implementations). To apply the Rename Method refac-
toring safely, the model needs to be checked for imple-
mentations outside of the inheritance hierarchy of the
target implementation. The Add Parameter and Remove
Parameter refactorings in Smalltalk suffer from the
same problem, because in Smalltalk adding and remov-
ing a parameter require a method name change.

• Default types. Several creational refactorings (Add
Method, Add Attribute and Add Parameter) need to
provide type information for Java. The solution we have
chosen is to assign default types (Object for new at-
tributes and parameters, void for method return types).
Another solution would be to ask the user for a type and
ignore this information in the Smalltalk case.

Class methods
Due to the different way of representing class methods —

instance methods of metaclasses in Smalltalk and static
methods in Java — class method calls need to be gathered
from the model in a language-specific way.

Java constructors
In Java constructors are a special kind of method. Special

rules apply, for example, that a constructor has to have the
same name as its class, it does not have a return type, and the
syntax to invoke it is different from a normal method invoca-
tion. In FAMIX Java constructors are represented as normal
methods. Therefore, to cover constructors extra analysis
needs to be performed to ensure the naming conventions are
adhered to, and the code changer needs to interpret invoca-
tion information differently. Also some refactorings cannot
be applied to constructors such as Pull Up Method and Push
Down Method. And renaming a Java constructor can only be
done in the context of a Rename Class refactoring.

Global variables
New attributes in Smalltalk cannot have the same name as

a ‘global’ (i.e. global classes and global variables), because

this might hide these globals in the scope of the new at-
tribute. In Java types and attribute names do not interfere.

5. Two refactorings in detail

In this section we discuss two refactorings in more detail.
We present the Add Class refactoring and the Rename Meth-
od refactoring with their definitions, their preconditions and
a discussion of issues regarding language-independence and
mapping of information to FAMIX. We have chosen these
two refactorings, because they cover some typical problems
and illustrate the complexity of the language independent
analysis. Trivial preconditions like “a class should really be
a class” are not mentioned. For both refactorings we com-
pare our approach with language-specific approaches by
Werner [11], Roberts[10] and Opdyke [6]. These PhD theses
describe refactorings including their pre- and postcondi-
tions for Smalltalk, Java and C++ respectively.

Add Class (classname, package,
superclasses, subclasses)

Inserts a new class with name classname in package
package where superclasses are the superclasses of
the new class and subclasses are subclasses of all su-
perclasses that have to become subclasses of the
new class (see figure 2).

Typically this is a simple refactoring, because the new
class is not referenced yet, so no relationships need to be up-
dated and only name clashes need to be checked. However,
abstractness of classes and multiple superclasses need to be
taken into account.

Dealing with abstract classes. When the new class inher-
its abstract methods without implementing them, it must be
declared abstract. The model contains the information to de-
termine this. However, for Smalltalk the analysis is unneces-
sary, because in Smalltalk abstractness of classes is implicit.

Single versus multiple superclasses. Multiple inheritance
can be easily supported if the precondition that all subclass-
es inherit from all superclasses is fulfilled. Inserting a class
in the middle will have no impact on the outside behaviour,
because the new class does not add, overwrite or hide any be-
haviour and the existing classes will still inherit from the

B

C D F
N

Figure 2 Add Class refactoring with classname N, superclasses A and B and subclasses C and D

A B

C D

F

A

same set of classes. Smalltalk’s single inheritance is sup-
ported by this scheme and also the Java interface concept.
However, for Java additional analysis is needed to determine
if the new class needs to be an interface or a class.

Classes and files in Java. A new class in Java typically
needs a new file to be created as well. This is transparently
taken care of by the Java front-end.

Note that we do not deal with inner classes and that we
currently do not cope with constructor chaining and array in-
stantiations in Java.

Preconditions

Language-independent preconditions

1. No class with the same unique name already exists

2. No global variable with the same unique name al-
ready exists

3. All subclasses are subclasses of all superclasses or
no subclasses are specified

Language-dependent preconditions

4. Classname is a valid name.

Smalltalk-specific preconditions

5. Superclasses (and therefore subclasses) cannot be
metaclasses.

Precondition discussion

The preconditions are mainly language-independent.
The language-dependent preconditions are about naming
rules and checks to ensure that the refactoring is not applied
to ‘special’ classes that cannot be used in standard ways such
as metaclasses in Smalltalk and interfaces in Java.

Some comments concerning the preconditions:

• ad 1. Covers classes in Smalltalk and classes and inter-
faces in Java. Classes with the same name in different
packages are allowed by this rule, because the unique
name in FAMIX includes scoping (for Java the contain-
ing packages are part of the name).

• ad 2. This precondition is a typical example of a lan-
guage-independent precondition that does not fit all
supported languages, but will always return true for the
languages it does not fit. Smalltalk supports global var-
iables but Java does not. Therefore, there will never be
global variables in Java and consequently no global var-
iables with the same unique name as the new class.

• ad 3. Necessary condition to handle multiple inherit-
ance in a behaviour preserving way. See comments be-
fore.

• ad 5. Smalltalk has explicit metaclasses, which map to
classes in FAMIX. Every class has an accompanying
metaclass. However, it is not possible to create a meta-
class independent of a class and thus to add a class in a
metaclass hierarchy.

Related work

For this refactoring the main difference with the language
specific approaches by Werner [11], Roberts [10] and Op-
dyke [6] is that they only support single inheritance. For
Smalltalk this just follows the language, for Java and C++
this is done for reasons of simplicity. However, we feel it im-
portant to support Java interfaces because of their wide-
spread use, which implies multiple inheritance with the
mapping we have chosen.

Rename Method(method, new name)

Renames method and all method definitions with the
same signature in the same hierarchy. All invoca-
tions to all changed methods are changed to refer to
the new name (see figure 3).

A method can only be renamed in a behaviour-preserving
way if all overriding methods and overridden methods (and
all their overriding and overridden methods) are renamed as
well. Furthermore, all invocations to all changed methods
need to be renamed accordingly. In the context of language
independence the issues of Java constructors and the lack of
dynamic type information discussed in section 4, need to be
dealt with.

BX

Figure 3 Rename Method refactoring renaming blnc in class B to balance

B b = new B();
b.blnc();

blnce ()

A
blnce()

D
blnce()

C
blnce()

BX
balance ()

A
balance ()

D
balance ()

C
balance ()

B b = new B();
b.balance();

Preconditions

Language-independent preconditions

1. The subclass hierarchies of the classes highest up in
the superclass hierarchies of the class containing
method do not already contain a method with a sig-
nature implied by the new name and the parameters
of method.

Language-dependent preconditions

2. New name is a valid method name.

Smalltalk-specific preconditions

3. There exists no method with the same signature as
method outside of the inheritance hierarchy of the
class that contains method.

Java-specific preconditions

4. When method is a constructor the refactoring can
not be applied unless in the context of a rename class
refactoring.

Precondition discussion

Precondition 1. is language independent, because
FAMIX maps language-dependent signatures to a language-
independent naming scheme. Also the multiple inheritance
scheme covers all supported languages. However, it adds
complexity also for languages that only have single inherit-
ance.

Related work

Opdyke [6] and Werner [11] allow for names to be re-
named to an already existing name when either the other
method is not referenced, or if the methods are semantically
equivalent. We have chosen a stricter approach, because the
first solution, although it works, produces unclear (a same
name conveys similar behaviour and a relation between the

methods, which in this case does not need to be true at all)
and therefore low-quality code. The second option is very
hard to check in practice. The Refactoring Browser [7] de-
tects a few cases by checking if two syntax trees are equal
with possibly different parameter and local variable names.
Additionally to the above arguments the stricter approach is
easier to check and to abstract from the specific languages.

Roberts [10] includes an extensive discussion about how
dynamic analysis and dynamic refactoring could solve the
lack of static type information in dynamically typed lan-
guages. In this paper we have limited ourselves to statically
available information.

As mentioned before all three approaches only cover sin-
gle inheritance.

6. Tool Support

We have built a prototype, the Moose Refactoring En-
gine, that supports the language-independent refactorings
described in this paper. It is part of the Moose Reengineering
Environment [4], a tool environment for reengineering ob-
ject-oriented systems. Moose contains a repository, which is
based on the FAMIX model. The Refactoring Engine uses
the repository to retrieve the required information, perform
the needed analysis and calls its so-called language front-
ends that act directly on the source code to apply the chang-
es. The Smalltalk front-end uses parts of the Refactoring
Browser [7] to change Smalltalk code, the Java front-end
currently uses a text-based approach based on regular ex-
pressions. Although the text-based approach is more power-
ful than we initially expected, we plan to move to an abstract
syntax tree based approach in the future, because it better ab-
stracts from layout details and is better fit to the more com-
plex code changes such as replacing the third parameter of a
method name.

Customer
getCustomerNr()

Account

getBalance()
Bank

seeBalance

setBalance(amount)
getAccountNr()

Customer
getCustomerNr(id)

Account

getBalance(id)
setBalance(amount,id)
getAccountNr(id)Customer

getCustomerNr()

Lockable

lock(id)
isLocked()
commit(id)
abort(id)

1 2
Figure 4 Refactoring scenario which introduces transactional support to a toy banking system

 (accountNr,
customer)

transfer(amount,
from,to,
customer)

Bank
seeBalance

 (accountNr,
customer)

transfer(amount,
from,to,
customer)

Bank
seeBalance

 (accountNr,
customer)

transfer(amount,
from,to,
customer)

getBalance(id)
setBalance(amount,id)
getAccountNr(id)
lock(id)
isLocked()
commit(id)
abort(id)

transactionId
workingBalance

Account
transactionId

3

workingBalance

A scenario
The different refactorings implemented in the Moose Re-

factoring Engine have been tested on two pieces of similar
Smalltalk and Java code. A sequence of refactorings has
been applied and after every refactoring the adapted soft-
ware has been tested if it still functions as expected. figure 4
shows the used scenario in a nutshell. A toy banking system
(1) with just accounts and customers is transformed into a
system with transactional support. First the Account class
gets transactional support (2). New attributes are added (e.g.
transactionId), new methods are added (e.g. lock(id)), new
parameters are added to existing methods (e.g. id to getBal-
ance()). Method bodies need to be added and adapted as
well, which is not covered by the refactorings and therefore
done by hand. From 2 to 3 the generic part of the transac-
tional support is lifted into an common superclass for Ac-
count and Customer, so that a customer can take part in
transactions as well. This step includes the Add Class refac-
toring (Lockable) and pulling up of attributes and methods.
Again some actions need to be taken at the method body lev-
el: account specific functionality needs to be separated from
transactional functionality before the transactional func-
tionality can be pulled up. This separation could be done us-
ing an Extract Method refactoring, but this refactoring is not
covered by our model and engine.

This scenario including reversing it from 3 to 1 covers all
refactorings of table 1. Although the case study only con-
tains toy code and experiments with real world systems still
need to be undertaken, the scenario shows that the approach
is applicable to non-trivial, in our view realistic, sequences
of refactorings. We are therefore confident that the approach
will work for real systems as well.

7. Discussion

We have described refactorings in the light of a language-
independent meta-model. Looking at table 2 and at the two
refactorings that are discussed in detail, we make the follow-
ing observations:

Language independence brings useful reusability. Ma-
jor parts of the refactorings are described and analysed on a
language-independent level. Similar concepts in the differ-
ent languages are treated in a uniform way, resulting in reuse
of analysis and reducing the language specifics to only the
changes in the source code. However, in some cases the ad-
vantages of reuse come at a cost:

• Increased complexity of algorithms. To deal with mul-
tiple languages the underlying model needs to be gener-
al enough to cover the supported languages. For in-
stance, the model supports multiple inheritance, which
involves more complexity than would be needed, for in-
stance, for single inheritance in Smalltalk alone.

• Mapping back to the actual code. The actual code
changes are, naturally, language specific. However, in
some cases the concepts that are generalized at the lan-
guage-independent level (e.g. Java constructors are
methods, Java interfaces are classes) need to be mapped
back to their language-specific kind, because at the
code level they need to be dealt with differently than
their ‘normal’ counterparts. For example, on the code
level invocations of Java constructors are different from
invocations to ‘normal’ methods. This implies that the
language-specific information about how an entity has
been mapped needs to be stored, because it is necessary
information when mapping back.

• Language-independent defaults. To keep some refac-
torings as language independent as possible, some de-
faults are used. Typical examples are types: some refac-
torings use the most general type, i.e. Object for both
Smalltalk and Java. This works well for both languages,
although it is clear that support for defining or changing
types would be desirable for statically typed languages
such as Java.

Not all language differences can be abstracted from.

i.e. most refactorings cannot be completely described at a
language independent level. We see the following kinds of
issues:

• Standard issues that are apparent in all languages, but
need a language-specific interpretation, like if a name
of a class is a valid class name for that language.

• Issues that are caused by the mapping from the language
to FAMIX. For example, the meta-model does not
know the concept of metaclasses or interfaces. Rules
that apply to these specific concepts need to be checked
nonetheless and are inherently language specific.

• The most problematic issues are in the core differences
between the languages. The fact that Smalltalk is dy-
namically and Java statically typed, means that there is
less information available at compile-time. Especially
for dependency analysis through invocations and ac-
cesses, the type information tells much more precisely
which method is invoked or which attribute is accessed.
In dynamically typed languages a certain method invo-
cation can be any method with that signature, no matter
what class it is defined in. Therefore, some refactorings
can only be applied for dynamically typed languages
when more severe restrictions are taken into account.
An example is the Rename Method refactoring which
can only be applied when there is no method with the
same signature as the method to be renamed outside of
the targeted inheritance hierarchy. Note that the type in-
formation for dynamically typed languages can be re-
fined through additional analysis (for instance, using

type inference techniques) [10], but this is outside the
scope of this paper.

All in all we can say that the presented model is adequate
to represent refactorings for multiple object-oriented lan-
guages. The program entity level of information is sufficient
for refactorings that do not need detailed information about
method bodies. Some language-dependent details, however,
must be coped with.

Many design decisions for the model —to apply a lan-
guage-independent naming scheme including scoping and
the different mappings to allow to treat similar constructs in
different languages in a similar way— result in language in-
dependence and reuse of analysis code. However, especially
with the mappings, it is always a trade-off between reuse and
complexity. Instead of mapping similar constructs to one
representation, the two constructs can be both modelled ex-
plicitly. Naturally this decreases problems with differences
between the constructs, but it also maked the model less gen-
eral and opportunities for reuse could be missed. Another
possibility is to not model a construct at all. This typically al-
lows to get rid of language specifics, but also makes the
model less useful.

In our view the chosen mappings, most notably those of
Java constructors to methods and Java interfaces and Small-
talk metaclasses, have worked out well. We especially found
both Java mappings to easily fit and allow to exploit the sim-
ilarities with other constructs. For the metaclass mapping
the advantages are less clear. Method and Attribute refactor-
ings can be applied to (members of) metaclasses without any
problems, but the class refactorings are not applicable at all.
An alternative would be to not model metaclasses explicitly
and model metaclass methods and attributes as class (in Java
static) methods and attributes of the class the metaclass is
representing. We have chosen not to do this, because, as said,
some refactorings do work with this scheme and the alterna-
tive mapping results in problems with name clashes between
class methods and instance methods and problems with the
equal treatment of instance level class attributes and class
level instance attributes which are different concepts in
Smalltalk.

A last word about supporting other languages than the
ones discussed in this paper. The FAMIX model is already
set up to support more languages than Smalltalk and Java.
For reverse engineering purposes we have used the model
for C++ and Ada as well [16][15]. Therefore, we are confi-
dent we can use our model and extend our tool to support
these and other languages without too many problems.

8. Conclusion

We have presented the results of a feasibility study con-
cerning refactorings for multiple object-oriented languages.
The main conclusions of our experiment are:

• A meta-model including concepts to represent classes,
methods, attributes, inheritance, method invocations
and attribute accesses is a necessary and sufficient basis
to test the preconditions for the majority of the primitive
refactoring operations. A subset of this meta-model
would be insufficient to test all preconditions, while a
richer one would support more refactorings but would
become too language-dependent.

• Based on this meta-model, it is possible to construct a
refactoring engine that performs primitive refactoring
operations for a representative pair of implementation
languages, namely Smalltalk and Java. Such a refactor-
ing engine necessarily includes a language-dependent
part, but this part can be kept sufficiently small to show
that a language independent refactoring engine is
worthwhile.

Apart from increasing the understanding of refactorings
and the differences between the supported languages, sepa-
rating the analysis for refactorings in a language-independ-
ent and a language-dependent part has basically the
advantage that complex analysis can be reused for many lan-
guages. This is particularly relevant for hybrid tool environ-
ments that need to support many languages, repository-
based CASE tools being the most notable examples.

In the future we first of all plan to perform more experi-
ments with our refactoring engine. The presented work is an
initial feasibility study and needs more work to be conclu-
sive. Especially we will be working with the tool on real
world code as opposed to a toy case study. Furthermore we
plan to extend the number of supported refactorings and
cover more languages such as C++, Ada and possibly proce-
dural languages such as COBOL. Apart from that we will be
exploring the combination of refactoring with program anal-
ysis techniques, aiming at language-independent analysis
tools that propose improvements in terms of refactorings.

Acknowledgements

This work has been funded by the Swiss Government un-
der projects NFS-2000-46947.96, BBW-96.0015 and BBW
00.0170 as well as by the European Union under the ES-
PRIT programme Project no. 21975 (FAMOOS) and IST-
1999-20398 (PECOS). Furthermore, we thank Matthias
Rieger for his useful comments on earlier drafts of this pa-
per.

References
[1] E. Casais, “An Incremental Class Reorganization Ap-

proach,” Proceedings ECOOP’92, O. Lehrmann Madsen
(Ed.), LNCS 615, Springer-Verlag, June 1992, pp. 114-132.

[2] S. Demeyer, S. Ducasse and S. Tichelaar, “Why Unified is
not Universal. UML Shortcomings for Coping with Round-
trip Engineering,” Proceedings UML’99, B. Rumpe (Ed.),
LNCS 1723, Springer-Verlag, October 1999.

[3] S. Demeyer, S. Tichelaar and P. Steyaert, “FAMIX 2.0 - The
FAMOOS Information Exchange Model,” Technical Re-
port, University of Berne, August 1999.

[4] S. Ducasse, M. Lanza and S. Tichelaar, “Moose: an Extensi-
ble Language-Independent Environment for Reengineering
Object-Oriented Systems,” Proceedings of CoSET 2000,
June 2000.

[5] M. Fowler, K. Beck, J. Brant, W. Opdyke and D. Roberts,
Refactoring: Improving the Design of Existing Code, Addi-
son-Wesley, 1999.

[6] W. F. Opdyke, “Refactoring Object-Oriented Frameworks,”
Ph.D. thesis, University of Illinois, 1992.

[7] D. Roberts, J. Brant and R. E. Johnson, “A Refactoring Tool
for Smalltalk,” Theory and Practice of Object Systems (TA-
POS), vol. 3, no. 4, 1997, pp. 253-263.

[8] S. Tichelaar, “FAMIX Java language plug-in 1.0,” Techni-
cal Report, University of Berne, September 1999.

[9] Kent Beck, Extreme Programming Explained: Embrace
Change, Addison-Wesley, 1999.

[10] D. B. Roberts, “Practical Analysis for Refactoring,” Ph.D.
thesis, University of Illinois, 1999.

[11] M. M. Werner, “Facilitating Schema Evolution With Auto-
matic Program Transformation,” Ph.D. thesis, Northeastern
University, 1999.

[12] M. Ó Cinnéide and P. Nixon, “A Methodology for the Auto-
mated Introduction of Design Patterns,” Proceedings IC-
SM’99, 1999.

[13] L. Tokuda and D. Batory, “Automating Three Modes of Ev-
olution for Object-Oriented Software Architecture,” Pro-
ceedings COOTS’99, 1999.

[14] S. Ducasse and S. Demeyer (Eds.), The FAMOOS Object-
Oriented Reengineering Handbook, University of Berne,
October 1999, See http://www.iam.unibe.ch/~famoos/hand-
book.

[15] R. Nebbe, “FAMIX Ada language plug-in 2.2,” Technical
Report, University of Berne, August 1999.

[16] H. Bär, “FAMIX C++ language plug-in 1.0,” Technical Re-
port, University of Berne, September 1999.

[17] T. C. Lethbridge, “Requirements and Proposal for a Soft-
ware Information Exchange Format (SIEF) Standard,”
Technical Report, University of Ottawa, November 1998,
http://www.site.uottawa.ca/~tcl/papers/sief/
standardProposalv1.html.

[18] Object Management Group, Unified Modeling Language
(version 1.3), Object Management Group, June 1999.

	A Meta-model for Language-Independent Refactoring
	1. Introduction
	2. Experimental Set-up
	3. A Language meta-model for Refactoring
	4. Language-independent refactoring
	5. Two refactorings in detail
	6. Tool Support
	7. Discussion
	8. Conclusion

