
Walls, Pillars and Beams:
A 3D Decomposition of Quality Anomalies

Yuriy Tymchuk, Leonel Merino, Mohammad Ghafari, Oscar Nierstrasz
SCG @ Institute of Informatics - University of Bern, Switzerland

Abstract—Quality rules are used to capture important imple-
mentation and design decisions embedded in a software system’s
architecture. They can automatically analyze software and assign
quality grades to its components. To provide a meaningful
evaluation of quality, rules have to stay up-to-date with the con-
tinuously evolving system that they describe. However one would
encounter unexpected anomalies during a historical overview
because the notion of quality is always changing, while the
qualitative evolution analysis requires it to remain constant.

To understand the anomalies in a quality history of a real-
world software system we use an immersive visualization that
lays out the quality fluctuations in three dimensions based on two
co-evolving properties: quality rules and source code. This helps
us to identify and separate the impact caused by the changes of
each property, and allows us to detect significant mistakes that
happened during the development process.

Demonstration video: https://youtu.be/GJ8BONoaF0Q
Dataset artifact: http://dx.doi.org/10.5281/zenodo.56111

This paper makes heavy use of colors. Please read a colored version
of this paper to better understand the presented ideas.

I. Introduction

As a software system evolves, its architecture tends to erode,
making it harder to understand, change, test and debug [1].
There are different ways to counter the erosion such as code
reviewing or precise testing. We are focusing on code quality
tools that use static analysis [2] to detect critiques: violations
of certain rules in the source code. This kind of tool can run au-
tomatically and supply developers with important information
whether they are developing, reviewing, or sending changes
for an integration [3], [4].

Despite the benefits provided by static analysis tools devel-
opers are often reluctant to use them due to a large number of
false positives [5]. Thus it is natural to update the metrics and
thresholds of the tools to suit the architectural requirements
and decrease the quantity of false positive reports. For example
to improve the acceptance of the Tricorder static analysis tool
by Google developers, every rule with more than 10% of false
positives was either improved or removed completely [6].

Challenges arise when one has to assess whether the quality
tools that are the part of a development process do their job
well. The easiest way to do this is by analyzing evolution of the
main property that they should affect: quality of code. However
it is not easy, because the measure of quality always changes
together with the rules’ evolution. For example version n
contained 5 critiques from a rule that was removed (together
with its critiques) in version n + 1. The removal of 5 critiques

in the new version was not caused by improvements in the
code but rather by changes of the quality measure: the rules.

We were asked to perform such an analysis on a one year
development cycle of a real project measuring 520 thousand
lines of code. While not realizing the fact of rule evolution
we tried to identify which changes happened to the critiques
through the development history. We encountered versions
where the number of changed critiques was as high as 5%
of the total number of methods in the software system. We
manually examined these anomalies and detected that in one
of them a rule was fixed to include the violations that it
was previously ignoring. Another anomaly was caused by
unloading of a big module.

We could not relate the observed anomalies to a single
cause, which restricted us from using already available visual
and statistical methods. To understand the nature of our data
set we created a visualization that uses the changes between
quality values as building blocks and lays them out in three
dimensions: software components, quality rules and software
versions. The visualization relies on the sparse nature of the
data, and pre-attentive clustering possibilities of human brain
to quickly detect the anomalies. This approach allowed us
to see a high level overview of our data set, distinguish the
anomalies caused by rule changes from the ones caused by
software changes and finally clean the data from the anomalies.
Moreover with our approach we identified a dozen anomalies
that reveal bad practices or wrong design decisions and can
be valuable for the stakeholders.

This paper makes the following contributions:

• A visual approach that enables analysis of evolution
anomalies for values dependent on two co-evolving prop-
erties: quality rules and source code;

• A case study that demonstrates how the visualization
was used on a real project to answer the questions of
stakeholders;

• Summary of the changes that can cause anomalies in a
historical data of critiques.

Structure of the Paper. Section II provides a description
of the problem that we are trying to solve based on a
real project. Section III contains an overview of the related
work. In Section IV we describe the visualization and its
features. In Section V we demonstrate how the problem can
solved with our visualization, and present findings. We discuss
different aspects of the visualization based on the use case in
Section VI. Section VII concludes the paper.

https://youtu.be/GJ8BONoaF0Q
http://dx.doi.org/10.5281/zenodo.56111

40K Critics

Versions

30K

20K

10K

 0

Fig. 1: Critiques histogram

II. Problem Description

The Pharo1 development environment is an open-source
software system developed by both employed engineers and
individual contributors [7]. It consists of approximately 92’000
methods and 5’500 classes grouped into 240 packages. The
most recent development cycle of Pharo lasted for one year
during which 680 incremental updates (also known as versions
or patches) took place. During this period, Pharo developers
used SmallLint [8], a static analyzer to validate the quality of
their code based on 124 unique rules some of which changed
over the time. Each rule belongs to a category (like “bugs”,
“style”, “optimization” and others) and specifies its severity
(information, warning or error). A violation of a quality rule
by a piece of source code is called a critique.

SmallLint is used in two stages of Pharo’s development
process. First of all an integration tool validates each con-
tribution with a large subset of rules before integrating it.
This practice has been present in the development process for
3 years already. Secondly, during this development cycle a
new tool was integrated. It provides live information about
the critiques of the source code that a developer is working
on. Maintaining the tools and ensuring a certain development
workflow requires additional resources, so the stakeholders
who make decisions about Pharo’s future features and devel-
opment process wanted to know whether the tools that they
use to maintain good quality of code have a real impact.

Initially we conducted a survey and asked the developers
whether they find one of the tools useful [9]. The feedback
was positive, but we assume a certain level of bias from
the developers who were pleased to obtain a new tool to
work with. Although the survey showed that the developers
like the tool, it did not answer the question of whether the
tool positively influenced the quality of code. To answer
this question we decided to analyze the changes in quality
throughout the last development cycle. However, we had
to work with contemporary critiques: the ones reported to
developers when they actually used the quality tool, not post
hoc critiques reported by rules introduced later.

Running SmallLint on all versions in this development
cycle produces around 19.5 million critiques. Figure 1 shows
the total number of critiques per each version. Many of the
critiques are related to essential complexity [10] and never

1http://pharo.org/

change. The number of critiques that were added or removed
from version to version is around 64.5 thousand. Inspection
of the plot quickly reveals many versions where the number
of critiques changed by as many as 5’000 or 15% from the
version’s total. We refer to these changes as anomalies because
according to our investigation they are clear outliers and are
unlikely to have been caused by a common refactoring or
feature implementation.

During the manual investigation of a few anomalies we
analyzed the data from the versioning system to understand
which source code changes caused the anomalies. Additionally
we analyzed the issue tracker entries linked to the software
patches to understand what was the reason behind the changes.
We discovered that in some cases developers were fixing a
faulty rule, cleaning code from certain critiques, or simply
applying a refactoring. Here we provide an example of the
anomalies that we selectively inspected:

1) An increase of 5’000 critiques, all of which were reported
by a single rule responsible for detecting unused methods.
Previously the rule was broken. After a fix it reported all
5’000 unused methods. The anomaly does not represent a
change in quality: the methods were present previously,
but not reported. The anomaly itself can be interesting
for stakeholders to learn about improvements happening
to the quality support system and their impact.

2) A decrease of 1’000 critiques caused by a removal of
a big module that was implementing low-level function-
ality. The anomaly represents a change in quality, as the
removal of a module simplifies maintenance of the whole
project. On the other hand the change is mostly related
to essential complexity and is not useful when included
on the same level with common changes.

3) Another decrease of 2’500 critiques was caused by de-
velopers troubleshooting reports caused by a single rule.
The anomaly is caused by intentional changes in the
source code and rises a question: “when and why were
these critics introduced and why were they not addressed
earlier?”

4) 2’500 critiques were added because of multiple reasons:
a) one rule was fixed, as previously it was including
false-positive results; b) a new rule was added; c) a new
version of a package management module was integrated.
Multiple types of changes that could significantly affect
the number of critiques made it very hard to reason about
the anomaly.

Additionally, around 90% of all rules were changed to
some degree. Not all the changes affected the functionality.
They could be related to the changes of a description, group,
severity, or could be caused by a refactoring of the critique
detection algorithm.

Detecting the anomalies from the chart in Figure 1 may
seem easy, but not all the critiques of an affected version are
related to an anomaly, and we want to keep the “innocent”
critiques for further analysis. Moreover one version can have
multiple anomalies of different types that should be handled

http://pharo.org/

separately. We acknowledge that some statistical methods may
help to identify the anomalies, but at the moment we are not
aware of the “anatomy” of anomalies, thus we want to obtain
an overview with the help of visualization.

After analyzing the selected anomalies and other aspects of
the data set we compiled the requirements for analyzing the
impact of the quality analysis tools. Critique evolution consists
of two types of changes: gradual and extreme. The former are
the result of common code evolution that slightly impacts the
critiques on each commit. We can analyze gradual changes by
using graphical and statistical methods and draw conclusions
based on the trend of changes. However, the latter consist
of anomalies. It is complicated to provide an evolutionary
summary for them as extreme changes are diverse and not
frequent. The previous inspections revealed that the anomalies
are caused by critiques that represent a single rule in one
version, or are related to a single package in one version. We
believe that a report about extreme changes should consist of
summaries that describe each individual anomaly. Additionally
we need a possibility to analyze the data on a time scale and
correlate an anomaly with similar ones that have occurred in
other versions.

III. RelatedWork

Our visualization approach is driven by the characteristics
of our data set. In our first attempt we used a simple bar
chart (as demonstrated on Figure 1). Thus, to understand the
behavior of each package and each group of rules we had to
create separate charts. We could detect versions, and packages
revealing high changes in the number of rules. However, we
could not identify the reason behind the anomaly, as in the
chart both package changes and rule changes are projected
onto a single dimension.

The ChronoTwigger [11] visualization supports the analysis
of two co-changing properties. However, it is constrained to
properties in the same dimension, and in our case we needed
to analyze the evolution of critiques based on two evolving
parameters: packages and rules.

The Evolution Matrix [12] technique, uses polymetric views
to visualize the evolution of software packages over the
time. We visualized the number of critiques and number of
rules from where the critiques originated as the metrics on
the rectangles’ extents. We found that the Evolution matrix
provided a good overview of the relation between packages
and versions. Although this gave us a better understanding
about the places with significantly higher number of critiques
from diverse rules, we could not investigate the reason behind
the anomalies.

To assess the benefit of visualizing package-rule relations,
we created an incidence matrix. In it, one axis represented
packages while another one represented rules. The only metric
that we applied to matrix cells was the number of changed cri-
tiques represented as an amount of blue coloring. We produced
several samples for data coming from different versions. They
revealed patterns that helped us to identify abnormal changes
of critiques. Figure 2 shows part of the visualization of version

Fig. 2: An incidence matrix to visualize change of critiques.

241, where critiques have changed in many packages, but for
only one rule.

2-dimensional matrices were already used to visually solve
diverse time-related problems. The Small MultiPiles [13] ap-
proach clusters similar matrices from the history into piles and
presents them as small multiples. Brandes and Nick use glyphs
based on gestaltlines [14] to represent an evolution between
relations in an incidence matrix [15]. Finally AniMatrix [16]
uses animated matrix cells to convey the evolutionary informa-
tion. While these approaches looked promising we found them
difficult to use with our dataset because matrix cells were as
small as 2.5mm or 10px in width and height when the matrix
was fully expanded on a 27 inch display. Additionally our
main concern was to detect anomalies in the project’s evolution
instead of sequential patterns. We believed that seeing the
correlation between packages, rules and versions in one image
will solve this problem. Thus, we explored a visualization that
uses a 3-dimensional metaphor.

We reviewed Sv3D [17] which uses a 3D representation. In
it, data is depicted by cylinders that are positioned using three
numerical attributes of data. One extra attribute is mapped to
the height of cylinders. Finally, cylinders are colored to encode
a categorical attribute. Although we found it useful to provide
an overview, it did not help us to identify anomalies since
occlusion among cylinders hindered our ability to identify
anomalies in the data.

Matrix Cubes [18] is a visualization technique based on a
space-time cube metaphor of stacked adjacency matrices in
chronological order. Since we have to analyze the relation
between objects of different kind, we adopted this technique
and expand it to use incidence matrices.

IV. Visualization Approach

Our visualization is developed in Pharo itself using a 3D
version of Roassal [19] – an agile visualization engine. While
we believe that our approach is applicable in many different
contexts, we decided to script the exact visualization that we
need instead of building a highly customizable application.
This is why our main focus is on the explanation of the
general approach and discussion of the details that may work
differently for other cases.

Our data set can be indexed with triples of the form: package
name, rule name; version number. We want to study a metric
called the critique delta: an integer value that represents the

Packages

R
u
le
s

Versions3

1

4

5

2

Fig. 3: Visualization Example.

number of critiques that have changed in a package based on
a rule in a version. A critique delta of version v is calculated
by subtracting the number of critiques in version v − 1 from
the number of critiques in version v.

As we wanted to build a visualization based on three
independent values, we decided to use a 3-dimensional space
and encode the critique delta values with the help of color
intensity. An example of the visualization is presented on
Figure 3.

Critique deltas are represented as cubes in a 3D matrix.
Versions are natural numbers, and we sort them in an ascend-
ing order to represent data in a historical way. Also we sort
packages and rules in an alphabetical order. First of all they are
represented in this order in many tools that are used inside an
IDE that makes this ordering a common way to comprehend
them. Secondly, multiple packages form implicit groups by
beginning with common prefixes. Alphabetic ordering keeps
implicit package groups together and enhances comprehension
as it is common for these groups to co-evolve at the same time.

Hovering over cubes displays a popup (5 in Figure 3)
with information about the cube and a crosshair that allows a
user to identify which entities are at the same level as the one
being hovered over.

We believe our visualization technique is general enough
to tackle problems of other domains. Therefore, we classify it
using the five dimensions proposed by Maletic et al. [20]. The
task tackled by our visualization is identification of anomalies
and cleaning of data; the audience consists of software analysts
who need to make sense of quality evolution; the target is a
data set containing a set of critique rules for each package of
a range of revisions; the representation used can be classified
as a geometrically-transformed projection according to Keim’s
taxonomy [21]); the medium used to display the visualization
is a high-resolution monitor with at least 2560 x 1440 pixels.

We designed our visualization according to the visualization
mantra introduced by Shneidermann [22]. First, users obtain an
overview to identify places of interest. Once they find one, they
zoom in to have details, they can also filter surrounding data

to maximize the focus on the objects of interest, and finally
they can obtain details-on-demand of the critiques delta of a
package within a version.

A. Coloring

We use color coding to determine if the critiques delta is
positive or negative. Red represents an increased number of
critiques, while blue means that the number of critiques has
decreased in that version. Translucency of cubes is determined
based on the absolute value of the critique delta: the cube with
the biggest absolute critiques delta value will be opaque, while
the one with no changes will be transparent. The other cubes
will have their translucency proportional to the maximum of
absolute values of the critiques deltas. This ensures that the
larger changes will have more visual impact in comparison
with the smaller ones.

We considered two approaches for calculating translucency:
one of them calculates a separate maximum for each version,
while another one uses a single maximum based on all the
critique deltas. The former approach ensures that in case there
is one significantly larger change in the whole history, it will
not make all the other cubes barely visible. However we also
find it important to base the alpha value on the whole history to
get a better idea if at some time there were bigger changes. We
determined that an alpha that is 2/3 based on local maximum
and 1/3 based on global maximum works well in our case. We
cannot generalize this decision, but rather suggest to calculate
alpha based on both local and global maximums.

B. Changes. 2D Meta Information

v

r

p

Fig. 4: Meta planes illustra-
tion

As can be seen on Figure 3, our
visualization also contains cyan
and yellow spheres. They are
situated in 2-dimensional planes
and contain additional information
about packages and rules for each
version. Cyan spheres reside in
a rule-version plane and each of
them represents changes made to
the rule in the version. Yellow
spheres are related to the changes
in packages and reside in package-

version plane. To better explain the location of the spheres,
we provide an illustration in Figure 4. We use a different
shape: spheres, as they represent completely different data
from cubes. We also color them with distinct colors that are
different from the critiques delta color codes.

The cyan plane is located on the side of the matrix. It is
in front of the matrix if you are looking from the position
where the versions increase from left to right. We find this to
be a common position for inspecting the matrix, as in western
culture people expect time to travel to the right. We place the
spheres in front of the visualization as changes in rules are not
frequent and most of the time we want to correlate exceptional
changes of critiques with the changes of rules.

Packages have significantly more changes in comparison
with rules, in fact each version is an update of some packages.
We found that the change metadata can obstruct the rest
of visualization. This is why the yellow plane is located at
the bottom of the matrix, as it is common to look at 3D
visualizations from above the horizon level.

The crosshair extends slightly beyond the change planes
making it easy to see if a sphere is on the same line with a
square. Hovering over spheres also displays the crosshair in
the same way it works with cubes. This allows a user to easily
see what cubes are related to a change, what other changes
happened in the same version, or in which versions the same
rule (package) was changed.

The change spheres can be used in two ways. One of them
is to easily see if there was a change in the rules or packages
for some set of squares. For example in Figure 3 a cursor is
hovered over a cube that is on one line with the other ones
and the crosshair is penetrating a cyan sphere 3 revealing
that the rule of the hovered cube has changed in this version.
Secondly one can start by looking at the patterns in changes
1 2 and inspect the impact that they made based on the

visualization.

C. Visual Features

The visualization provides many different pieces of informa-
tion, as we have a cube position based on 3 coordinates, color,
translucency and 2 extra planes that have a sphere position
based on 2 coordinates. It may seem that this amount of data
pollutes the visualization and makes it hard to understand. For
this reason we identify 2 sequential questions that a user of
our visualization wants to answer.

1) What are the irregularities in the system’s evolution?
2) Why did this irregularity occur?
To answer the first question a user can use the camera

movement and identify clusters of cubes. We based our
approach on the proximity principle: a pre-attentive feature
that allows us to cluster closely-situated visual elements in a
fraction of a second [23]. The principle works in 2D space so
that the 3D visualization is eventually projected on a plane.
We took into account many aspects, such as the sparse nature
of the critic deltas and translucency of smaller deltas, to avoid
occlusion, because it can cause false clusters to appear on a 2D
projection. The cube clusters form lines, as seen in Figure 5.
At this phase spheres do not obstruct the visualization; the
color of cubes is not as important as whether the cubes are
there or not, and whether the proximity is preserved during
the camera movement.

After a user has identified the pattern of cubes and locked
on it, the second question should be answered. In this case the
rest of the visualization comes into play and helps a user to
understand what is the version, which rules have changed in
this version, were the critiques added or removed, etc.

D. Interaction

The visualization supports orbiting of the camera around
the 3D matrix with a mouse. Also a keyboard can be used to

move horizontally or vertically the point at which the camera is
looking (the same one used as the center of orbital movement).
By hovering with a mouse over visual elements user can see a
popup (5 in Figure 3) with an information about the version,
rule and package of the element. Also a crosshair appears on
the hovered element and spans the whole matrix including
planes with spheres. This allows a user to easily identify which
elements are on the same line. For example on Figure 3 the
crosshair’s line is passing thorough many red cubes and a cyan
sphere. This demonstrates that all the critique changes are on
the same line, and are reported by a rule that has changed in
this version 3 . Another line of the crosshair is penetrating
a yellow sphere, which means that the package related to the
hovered cube has changed in this version 4 .

While we rely on the natural clustering, we also provide
slicing functionality that allows a user to hide the unneeded
parts of the visualization to avoid being distracted by them.
These options are accessible from the context menu of any
cube. One kind of slicing removes all cubes that are more
than two steps away from the selected one. This can be
done based on all three dimensions: by versions, rules or
packages. As the result only a slice with a thickness of 5
cubes is visible as shown on Figure 8. The other kind of
slicing simply generates a 2-dimensional incidence matrix
visualization (Figure 9). This slicing approach eliminates the
distortion caused by perspective, but also lacks information
about the neighbor slices.

We encode a large amount of data into the visualization,
but some information like a textual change log summarizing
the patch cannot be conveyed by colors or layouts. For this
purpose we provide a dialog window with a textual description
of the patch release notes together with links to the discussions
on an issue tracker.

Finally we envision our visualization as a tool for identify-
ing and removing anomalies. For this purpose we provide an
option to log an anomaly which can be:
• rule anomaly: all critiques with a certain rule and version;
• package anomaly: all critiques with a certain package and

version;
• version anomaly: all critiques with a certain fixed.

After being logged the cubes related to the anomaly will be
removed from the visualization to simplify the detection of
other anomalies. This action can be accessed either from a
cube’s context menu, of from the dialog window with a patch
summary.

V. Case Study

Figure 7 displays our visualization applied on the full Pharo
data set described in Section II. In this section we will do a
step-by-step walkthrough for decomposing the evolution, and
provide the obtained results.

A. Decomposing the Data Set

To find anomalies in the system’s evolution we orbited
around the visualization and looked for patterns that stood out.
All the patterns that we identified by this approach had a line

(a) Beams (side view): critiques
of a same rule changed for many
packages.

(b) Pillars (top view): critiques of
many rules changed for a same
package.

Fig. 5: Common critique anoma-
lies.

1

2

Fig. 6: Core rule refactoring.

made out of cubes as their base component. The cubes that
make these lines represent critiques from the same version.
There are two types of this lines: beams – the critiques are
related to a single rule and form a horizontal line (Figure 5a)
and pillars – the vertical counterpart where the critiques are
about a single package (Figure 5b).

A few patterns especially attracted our attention. The cri-
tiques in this case form a wall of cubes by spanning both
multiple rules and packages (Figure 8). All anomalies of this
kind were related to critical issues in the system that were
immediately fixed. This is why all the walls came in pairs of
opposite colors separated by at most one version. For these
anomalies slicing the visualization to present only a subset
of cubes in a range of 5 versions was useful to remove all
the noise around and investigate the pair of walls alone. The
two dimensional representation shown on Figure 9 helped us
to isolate one plane even more and remove the perspective
distortion. We viewed the patch comments for each version
and analyzed changes made. After this we saved the version
numbers together with comments about the reason of each
anomaly. In the end we hid the walls to remove unneeded
obstructions.

The second kind of special pattern that drew our attention
appeared in cyan spheres and was related to rule changes.
There were two versions where changes occurred in almost

every rule, which is most likely a sign of refactoring, as
many similar components of a working system have changed
simultaneously. One of them did not have any beams, and the
other one is shown on Figure 6. The visualization contains 4
beams. The crosshair on one of them does not penetrate any
sphere from the cyan pillar 1 . This allows us to easily see that
the beam is not aligned with the pillar which means that they
are from different versions. The only red beam 2 is also not
in the version with rule refactoring, but it follows a blue beam
and also has a cyan sphere on its end. The next hypothesis
can be formed by simply looking at the visualization: “There
was a refactoring globally performed on all the rules, because
of which two rules were broken and one of them was fixed
in the following patch.” By looking at the patch summary we
confirmed that our hypothesis was correct except for the detail
that one of the rules was not broken but rather fixed during the
refactoring session. This also explains why it didn’t receive
any more attention in comparison with other rule that was
immediately fixed.

After dealing with walls and rule refactoring we started to
process other beams, as they were more prominent in compar-
ison with pillars. The standard workflow went as follows:

1) visually locate: we visually explored our visualization
and focused on the lines that can be seen at Figure 5a.
We used camera movement to change the angle of view
and viewpoint to ensure that the cubes are not forming a
line only in one projection.

2) analyze relations: we used a crosshair as demonstrated
in Figure 6 to better understand how are the other
elements situated relatively to the beam. We also used
slicing to focus only on the critiques of a few versions
(Figure 8), or on the critiques of a single rule by using
2-dimensional slice similar to the one in Figure 9. The
slicing functionality was used to identify if there were
other beams in the same version or in the whole history
but related to the same rule.

3) understand the cause: at this point we mainly relied on
the patch summaries, issue tracker messages and source
code diffs to understand the reason of changes and the
cause of the anomaly.

4) log and hide: we annotated the anomaly with the expla-
nation about the changes that caused it. Finally we hid the
anomaly to avoid distractions during further explorations.

After dealing with beams we moved to pillars. We quickly
noticed that most of them are related to the changes that were
introduced in the package that they represented. It is arguable
whether there is a benefit of logging and removing such kind
of anomalies from the data set. They are related to the one
of the main questions of software quality analysis: “how does
this change impact the software quality?” However we decided
to log these anomalies anyway, as we wanted to investigate if
there are other causes and also by removing or hiding them we
could reveal other less prominent anomalies. The strategy for
processing pillars was the same one as for processing beams.
We naturally finished our analysis when we were not able to

Fig. 7: A complete visualization of Pharo critiques over the history of 680 incremental patches.

Fig. 8: “Wall”: Critiques of a significant
amount of rules changed for many packages.

Fig. 9: 2D representation of one version.

Type Subtype Number
Complete versions 6

Rules (32)
added or removed 8
fixed or broken 17
other (non-related to rule changes) 7

Packages (45) added or removed 42
modified 3

TABLE I: Number of recorded anomalies by type.

detect anomalies any more.

B. Obtained Results

The quantitative results of the decomposition that we per-
formed are presented in Table I. The minority of anomalies
affected both many rules and packages of a version. This is
natural, as such anomalies are related to severe issues in the
system. In our case there were 6 such cases that formed 3 pairs,
as each defective patch was instantly fixed or reverted. Only
one such pair was related to changes in the quality validation
system. It was very hard to identify the cause of all such
anomalies, and this involved reading patch summaries, bug
tracker issues and even code that was changed.

For the most of the logged anomalies critiques of many rules
affected a single package. Out of the total of 45 anomalies,

42 were related to the packages being added or removed. This
could in fact be easily detected automatically. The remaining
3 anomalies were caused also by a package-related changes,
where a significant amount of code was changed in one patch.

The third type of anomaly – critiques about a single package
that originated from many rules, had 32 occurrences. 8 of
them were related to an addition or a removal of the rule.
This subtype of anomaly could be detected automatically. 17
anomalies were related to the rules being fixed or broken.
And the smallest subtype with only 7 cases is related to the
anomalies that are not related to the rule changes. Some of
them were results of a planned eradication of the critiques of
a certain rule. The others were related to the specific changes
of the source code that had an impact only on a single rule.

Despite eliminating all the visual anomalies, we missed a
few cases where a single cube had a large delta of critiques.
For example the average delta is around 10 critiques and two
cubes had a delta of more than 2000 critiques. These cases
are very rare and very hard to detect, as in the 3D matrix they
are represented by a lonely completely opaque cube that is not
very different from its surroundings. On the other hand these
anomalies can be easily detected by sorting all deltas by their
absolute value and inspecting the largest ones.

The most important findings were concluded from the
anomalies related to the critiques of a whole version, critiques
related to rules that were not caused by the rule changes and
critiques of a single rule that affected only a single package in
a version. These findings show weak points in the system, and
the integration approach. Rule-related anomalies caused by the
rule changes allowed us to understand how requirements to the
code quality were changing over time.

C. Anatomy of the Anomalies

Most of the package-related anomalies were caused by
addition or removal of the packages themselves. These changes
were caused by replacing old submodules by new alternatives,
integration of new features or removal of the unused ones.
The smaller amount of anomalies caused by dramatic package
changes happened in the packages that belong to external
submodules. They are versioned separately from the main
project and the integrated versions contain more changes.

Rule-related anomalies have a more diverse nature. Poor
value of the critiques reported by rules was the main reason for
their removal. The rules that were added captured the design
decisions of different parts of the project. Some of them were
related to a method invocation order, others provided sugges-
tions about the usage of core API migrations, or about the
methods that have to be defined under certain circumstances.
Rule fixes either were focused on capturing the violations
that were missed or excluding false positives from the results.
Also few rules had their scope reduced to avoid the overlap
of critiques. The regressions in rule functionality happened
because of two reasons: either a mistake was made during a
refactoring or the precision of a rule was sacrificed in favor of
performance. After analyzing the data set and rule anomalies
in particular we can suggest stakeholders a test that can warn
about these kinds of changes in rules prior to integration.

Some rule-related anomalies were caused by changes in the
code. For example one of them reported many invocations of
undefined methods. This was caused by the changes to the
API of an icon factory. Another case involved deprecation of
a widely used API, which caused many deprecation warning
critiques. A third case involved the addition of support classes
that reported a high number of “unused class” critiques. The
last two cases were negated by counter-anomalies where issues
introduced previously were fixed. We suggest the stakeholders
to review the quality validation in their integration process,
because according to our findings the critiques that can be
easily solved with a simple automatic refactoring were ignored
and integrated.

Wall anomalies are the most interesting type. We identified
three pairs of them and only one was related to the changes is
the quality validation framework. It occurred when the server-
side validation system was broken, and the changes made were
intended to fix the issue. As the result integrated changes
broke the validation system completely and were instantly
reverted. Other two anomalies were caused by integration of a
changes with invalid source code. Beside breaking the quality
validation the changes also causes issue with source code

recompilation and were fixed in the following versions. We
encourage stakeholders to investigate the integration process,
as two changes that broke the validation were nevertheless
integrated. We also advise to add a test of source code integrity
to detect the similar issues more easily.

Finally, our use case contained two single-cube anomalies
that were related to a single issue. The rule violated by
this anomaly is checking whether a class contains methods
identical to the ones defines in traits [24] that the class is using.
First anomaly was caused by a package rename refactoring
during which all trait methods were copied into the classes
of that package. The second anomaly appeared 170 versions
later when the duplicated methods were removed. The issue
was identified because developers noticed the related critiques.
However we advise the stakeholders to investigate why this
changes were integrated in the first place, and solve the
duplication bug of rename package refactoring.

VI. Discussion

In this section we reflect on our use case experience and
discuss both positive and negative aspects of the visualization.

The visualization represents anomalies as natural clusters
of data that are easily detectable by visual exploration. The
orbital camera movement was essential to identify whether
the detected pattern is not an accidental alignment of the
elements in the current projection. For the same reason we
suggest to use the same size for all the cubes, as different sizes
will complicate the perception of dimensional positioning.
The sparse nature of the data is also very important for the
visualization. Because the changes to the critiques should not
be frequent and large, most cubes are highly translucent or
completely transparent and do not obstruct the view of the
ones positioned behind them.

The movement interactions were not very user-friendly and
could benefit from improvements. For example visual elements
could be selectable, after which they will serve as a center of
the orbital movement. Also the effort spent on getting closer
to a desired element to inspect it can be enhanced by using
semantic zooming [25]. As the visualization presents data in
an immersive 3-dimensional environment and mainly relies
on pre-attentive processing possibilities of a human brain we
believe that it can be interesting for researchers that explore
visualizations in virtual reality [26].

Slicing was another important feature. It allowed us to
isolate an interesting piece of information from the rest of
the visualization that was obstructing the view. We found out
that 3-dimensional slicing (Figure 8) was the most useful when
applied to the version axis. This allowed us to see the changes
in the adjacent versions and often we were able to detect cases
where some changes were rolled back, or continued on other
entities. The same kind of slicing was useful for packages
axis, however this is related to the nature of our data set.
As mentioned previously the packages form implicit groups
that have same base name and different suffixes. These groups
usually change together, so having a 5 block deep slice allowed
us to capture up to 5 co-changing packages. This was not

always practical as sometimes more than 5 packages formed
a group. This suggests that we need to have a support of a
variable slice depth. 3-dimensional slicing was not applicable
to rules, as every rule evolves independently of the others.
The main goal of slicing the rule axis is to see if there were
similar anomalies for the rules throughout the whole history.
If the slice contains more than 1 rule, the anomalies from
other rules will also appear in the slice and make the analysis
more complex. Thus 2-dimensional slicing (Figure 9) worked
the best for the rule axis. Similarly 2-dimensional slicing was
useful in every case where a single relation between two
properties (rule, package or version) had to be examined. Also
the possibility of creating a multiple slices can be useful when
inspecting similar changes separated by a large period of time.

While obtaining the information about an inspected patch,
the main summary and issue tracker discussions were not
always enough. Sometimes we had to analyze which classes
and methods were changes in the particular patch. Additionally
it may be useful to have a support of calculating difference
for non-adjacent versions, this can help in detecting rollbacks.
We detected a few anomalies that were related to each other in
our use case. This requires not only a possibility of multiple
slices or selection, but also some features to record this relation
between anomalies.

A unique feature of our visualization was the metadata
representation by spheres. We found the information about the
rule changes extremely useful. It allowed us to easily identify
if there were changes made to the rule related to a visual
element, and see if it was also changed in the nearby version.
Similarly we could see if the other rules changed in the same
version. In some cases changes to the rules were driving our
exploration because we were able to detect patterns of cyan
spheres.

On the other hand information about the package changes
was not very useful. Because of the nature of our data set
changes to the package are frequent, and yellow spheres
obstruct the view if placed on top. We placed them at the
bottom and then it was hard to see how they are related to
the data. There were some use cases where yellow spheres
clearly revealed groups of packages that changed together
(Figure 10a). Also during the pillar inspection yellow spheres
at the bottom of pillars were clearly identifying that the
critiques are related to a historical group of package changes
(Figure 10b).

The difference between the usability of cyan and yellow
spheres can be explained by the nature of our problem. The
yellow spheres represent the changes of packages. These
changes are the the building blocks of software evolution.
They are frequent and we are considering their existence to
be natural. Rules are also evolving, but at a much slower pace
and they do not clutter the view. Our main focus is to identify
the changes in rules, because they are not as common to us
as the changes in packages. These relations can be different
in another use case that will focus on something other than
changes in rules and packages. This is why we encourage the
users of our approach to experiment with positioning the meta

Packages

V
e
rs
io
n
s

(a) Co-changing packages. (b) Spheres at the bottom of pillars.

Fig. 10: Package change metadata.

information planes on the different sides of the visualization.
We already mentioned in Section V-B that many of the

anomalies were related to the addition or removal for rules
and packages. Before decomposing the visualization into the
anomalies we were not expecting such high percentage of them
to be caused by addition or removal. Now we can recommend
the users of our approach to automatically detect and remove
from visualization the anomalies based on this criteria. Also
we suspect that some of the other anomalies can be detected
by a statistical approach, or at least be shortlisted statistically.
We have not investigated this idea, but without building the
visualization we did not know how our data looks like and
what the statistical approaches should look for.

We presented a use case where quality critiques were
influenced by the changes of both quality rules and source
code. We believe that this visualization can be applicable to
many problems where one value depends on the other two
co-evolving values. The immediate related problems that can
be tackled by the approach are concerning failing tests and
changes in the performance.

Many visualizations suffer from scalability issues, as the
visual elements become too small and the encoded metrics can
not be read. In contrast, our approach relies on the significant
amount of data that allows a user to detect anomalies that
span the whole visualization. We expect that at some point
the number of visual elements will decrease the performance
of visualization, but this can be mitigated with a sliding time
window approach [27]. Also at some point the lines that form
anomalies may become too thin to identify them. In this case
we suggest to group the entities into blocks that unite the
entities with some feature but evolve independently of each
other. For example in our case packages can be grouped by
their base name, while rules can be grouped by their category.

VII. Conclusion

We have presented an approach for visualizing the evolution
of a value that depends on two co-evolution properties. The
main goal of the approach is to detect, identify and log the
anomalies that prevent the evolutionary analysis of dependent
values. The visualization is constructed in 3-dimensional space
and relies on the sparse nature of analyzed data. It enables
quick detection of the anomalies with the help of pre-attentive
cluster recognition and provides multiple visual features that
enable a user to obtain more detailed information. While
many visualizations try to provide meaningful information
in each visual element, our approach can be referred to
as “anti-matrix”, because the data provided by the matrix
serves secondary purposes while we focus on detection of
“structures” in the 3D space that indicate anomalies. This
makes our approach resistant to large dataset sizes e.g., we
don’t analyze individual cells of a 200x100 matrix, but detect
walls, pillars and beams that can consist of different number
of elements.

We evaluated our approach by analyzing quality evolution
of a real project measuring 520 thousand lines of code. The
quality was affected by both changes in the source code and
changes in the rules that define quality concerns. We were
able to successfully identify most of the anomalies, while
the remaining ones can be easily detected by using statistical
approaches. We analyzed 85 anomalies and categorized them
into different types. Some of the types turned out to be easily
detectable automatically, the summary about the others can
help to deal with the anomalies in similar problems.

We described all the possible scenarios that can be followed
with our visualization, but one can also benefit by using it for
a single task such as: 1) obtaining a general overview of the
system to understand the status of anomalies; 2) extracting
anomalies caused by only one of the co-evolving parameters;
3) completely cleaning the system of anomalies. Also our
approach can be combined with others to perform a more
advanced analysis.

Acknowledgments

We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile
Software Analysis” (SNSF project No. 200020-162352, Jan
1, 2016 - Dec. 30, 2018).

References
[1] L. de Silva and D. Balasubramaniam, “Controlling software architecture

erosion: A survey,” Journal of Systems and Software, vol. 85, no. 1,
pp. 132–151, Jan. 2012.

[2] P. Louridas, “Static code analysis,” Software, IEEE, vol. 23, no. 4, pp. 58
–61, 2006.

[3] N. Ayewah, D. Hovemeyer, J. Morgenthaler, J. Penix, and W. Pugh,
“Using static analysis to find bugs,” Software, IEEE, vol. 25, no. 5,
pp. 22–29, Sep. 2008.

[4] G. A. Campbell and P. P. Papapetrou, SonarQube in Action, 1st.
Greenwich, CT, USA: Manning Publications Co., 2013.

[5] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” In Proceed-
ings of the 2013 International Conference on Software Engineering, ser.
ICSE ’13, San Francisco, CA, USA: IEEE Press, 2013, pp. 672–681.

[6] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in Proceedings of
the 37th International Conference on Software Engineering - Volume 1,
ser. ICSE ’15, Florence, Italy: IEEE Press, 2015, pp. 598–608.

[7] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and M.
Denker, Pharo by Example. Square Bracket Associates, 2009.

[8] D. Roberts, J. Brant, R. E. Johnson, and B. Opdyke, “An automated
refactoring tool,” in Proceedings of ICAST ’96, Chicago, IL, Apr. 1996.

[9] Y. Tymchuk, “What if clippy would criticize your code?” In
BENEVOL’15: Proceedings of the 14th edition of the Belgian-
Netherlands software evoLution seminar, Dec. 2015.

[10] F. P. Brooks Jr., The Mythical Man-Month, 2nd. Reading, Mass.:
Addison Wesley Longman, 1995.

[11] B. Ens, D. Rea, R. Shpaner, H. Hemmati, J. E. Young, and P. Irani,
“Chronotwigger: A visual analytics tool for understanding source and
test co-evolution,” in Software Visualization (VISSOFT), 2014 Second
IEEE Working Conference on, 2014, pp. 117–126.

[12] M. Lanza and S. Ducasse, “Understanding software evolution using a
combination of software visualization and software metrics,” in Pro-
ceedings of Langages et Modèles à Objets (LMO’02), Paris: Lavoisier,
2002, pp. 135–149.

[13] B. Bach, N. Henry-Riche, T. Dwyer, T. Madhyastha, J.-D. Fekete, and
T. Grabowski, “Small multipiles: Piling time to explore temporal patterns
in dynamic networks,” Computer Graphics Forum, vol. 34, no. 3, pp. 31–
40, 2015.

[14] U. Brandes, B. Nick, B. Rockstroh, and A. Steffen, “Gestaltlines,”
Computer Graphics Forum, vol. 32, no. 3pt2, pp. 171–180, 2013.

[15] U. Brandes and B. Nick, “Asymmetric relations in longitudinal social
networks,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, no. 12, pp. 2283–2290, Dec. 2011.

[16] S. Rufiange and G. Melanon, “Animatrix: A matrix-based visualization
of software evolution,” in Software Visualization (VISSOFT), 2014
Second IEEE Working Conference on, Sep. 2014, pp. 137–146.

[17] A. Marcus, L. Feng, and J. I. Maletic, “3D representations for software
visualization,” in Proceedings of the ACM Symposium on Software
Visualization, IEEE, 2003, 27–ff.

[18] B. Bach, E. Pietriga, and J.-D. Fekete, “Visualizing dynamic networks
with matrix cubes,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’14, Toronto, Ontario, Canada:
ACM, 2014, pp. 877–886.

[19] V. P. Araya, A. Bergel, D. Cassou, S. Ducasse, and J. Laval, “Agile visu-
alization with Roassal,” in Deep Into Pharo, Square Bracket Associates,
Sep. 2013, pp. 209–239.

[20] J. I. Maletic, A. Marcus, and M. Collard, “A task oriented view
of software visualization,” in Proceedings of the 1st Workshop on
Visualizing Software for Understanding and Analysis (VISSOFT 2002),
IEEE, Jun. 2002, pp. 32–40.

[21] D. A. Keim and H.-P. Kriegel, “Visualization techniques for mining large
databases: A comparison,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 8, no. 6, pp. 923–938, 1996.

[22] B. Shneiderman, “The eyes have it: A task by data type taxonomy for
information visualizations,” in IEEE Visual Languages, College Park,
Maryland 20742, U.S.A., 1996, pp. 336–343.

[23] C. Ware, Information Visualisation. Sansome Street, San Fransico:
Elsevier, 2004.

[24] N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black, “Traits: Com-
posable units of behavior,” Institut für Informatik, Universität Bern,
Switzerland, Technical Report IAM-02-005, Nov. 2002, Also available
as Technical Report CSE-02-014, OGI School of Science & Engineering,
Beaverton, Oregon, USA.

[25] A. Woodruff, J. Landay, and M. Stonebraker, “Goal-directed zoom,” in
CHI 98 conference summary on Human factors in computing systems,
ser. CHI ’98, Los Angeles, California, United States: ACM, 1998,
pp. 305–306.

[26] F. Fittkau, A. Krause, and W. Hasselbring, “Exploring software cities
in virtual reality,” in Software Visualization (VISSOFT), 2015 IEEE 3rd
Working Conference on, 2015, pp. 130–134.

[27] T. Zimmermann and P. Weißgerber, “Preprocessing CVS data for fine-
grained analysis,” in Proceedings 1st International Workshop on Mining
Software Repositories (MSR 2004), Los Alamitos CA: IEEE Computer
Society Press, 2004, pp. 2–6.

	Introduction
	Problem Description
	Related Work
	Visualization Approach
	Coloring
	Changes. 2D Meta Information
	Visual Features
	Interaction

	Case Study
	Decomposing the Data Set
	Obtained Results
	Anatomy of the Anomalies

	Discussion
	Conclusion

