
IST-1999-20398 PECOS Requirements for the
Composition Environment

FZI

Last Revision: 12.10.2001 Editor: Michael Winter

Document File / Identification

D31-RequirementsForTheCompositionEnvironment.doc
D3.1 Requirements for the Composition Environment

Classification

Confidential
Status

Approved

Page

1 of 15

© 2001, The PECOS Consortium

Deliverable D3.1

Requirements for the Composition Environment

1. Identification
Project Id: IST-1999-20398 PECOS

Deliverable Id: D3.1 Requirements for the composition environment

Date for delivery: 2001-10-12

Planned date for delivery: 2001-03-31

Classification Public

WP(s) contributing to: WP 3

Author(s): Benedikt Schulz (FZI), Thomas Genssler (FZI),
Alexander Christoph (FZI), Michael Winter (FZI)

1.1 Abstract
This document describes the requirements for the composition environment. Starting from the
presentation and discussion of usage scenarios, a set of requirements, that the composition
environment should meet, is derived.

IST-1999-20398 PECOS Requirements for the
Composition Environment

FZI

Last Revision: 12.10.2001 Editor: Michael Winter

Document File / Identification

D31-RequirementsForTheCompositionEnvironment.doc
D3.1 Requirements for the Composition Environment

Classification

Confidential
Status

Approved

Page

2 of 15

© 2001, The PECOS Consortium

1.2 Keywords
Composition environment, requirements, specification, graphical composition, composition rules, glue
code generation, repository, configuration management, deployment

1.3 Version History
Ver Date Editor(s) Status & Notes

0.5 01-04-07 Benedikt Schulz First draft
0.8 01-05-23 Thomas Genssler Most of the requirements filled out, some spell

checking
0.9 01-06-07 Alexander Christoph Some more requirements
1.0 01-06-12 Benedikt Schulz Final draft
1.1 01-09-24 Michael Winter Some rewriting and updating. New section on

component composition in PECOS.
1.3 01-10-08 Michael Winter Reflect some comments from partners
1.5 01-10-10 Benedikt Schulz Reflect rest of comments from partners
1.51 01-10-11 Thomas Genssler Internal review, minor changes, summary

1.4 Classification
The classification of this document is done according to the security / dissemination level categories
stated in Annex I (page 35) of the PECOS contract:

Classification Dissemination level

Public (PU) Public
Restricted (PP) Restricted to other programme participants (including the Commission Services)
Restricted (RE) Restricted to a group specified by the consortium (including the Commission

Services)
Confidential
(CO)

Confidential, only for members of the consortium (including the Commission
Services)

1.5 Disclaimer
The information in this document is provided as is and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and
liability.

IST-1999-20398 PECOS Requirements for the
Composition Environment

FZI

Last Revision: 12.10.2001 Editor: Michael Winter

Document File / Identification

D31-RequirementsForTheCompositionEnvironment.doc
D3.1 Requirements for the Composition Environment

Classification

Confidential
Status

Approved

Page

3 of 15

© 2001, The PECOS Consortium

 Table of Contents

1. Identification.. 1

1.1 Abstract.. 1
1.2 Keywords ... 2
1.3 Version History .. 2
1.4 Classification ... 2
1.5 Disclaimer .. 2

2. Introduction ... 4
3. Introduction to the Composition Environment .. 4

3.1 Purpose and Scope ... 4
3.2 Architecture ... 5

4. Component Composition in PECOS ... 5
5. Tasks to be Supported by the Composition Environment ... 7

5.1 Developing Leaf Components ... 7
5.2 Developing Composite Components... 8
5.3 Deployment and Testing.. 9

6. Requirements .. 10
6.1 Requirements coming from the usage scenarios .. 10

6.1.1 General... 10
6.1.2 Component Specification ... 10
6.1.3 Component Adaptation .. 10
6.1.4 Component Composition.. 10
6.1.5 Code Generation .. 10
6.1.6 Component Implementation ... 11
6.1.7 Compilation .. 11
6.1.8 Documentation ... 11
6.1.9 Repository Access.. 11
6.1.10 Design Rules .. 11
6.1.11 Conformity Checks... 12
6.1.12 Testing.. 12
6.1.13 Deployment .. 12

6.2 Requirements coming from [D 1.1].. 12
6.2.1 General... 12
6.2.2 Component Composition.. 12
6.2.3 Code Generation .. 13
6.2.4 Repository Access.. 13
6.2.5 Design Rules .. 13
6.2.6 Testing.. 14
6.2.7 Deployment .. 14

7. Summary.. 15
8. Bibliography .. 15

IST-1999-20398 PECOS Requirements for the
Composition Environment

FZI

Last Revision: 12.10.2001 Editor: Michael Winter

Document File / Identification

D31-RequirementsForTheCompositionEnvironment.doc
D3.1 Requirements for the Composition Environment

Classification

Confidential
Status

Approved

Page

4 of 15

© 2001, The PECOS Consortium

2. Introduction
Component-based software engineering is a discipline that aims at constructing software out of
components. Components are considered to be reusable software artifacts realizing a certain
functionality. This functionality can be accessed through the components’ interface – usually without
the need to know anything about the internals (e.g., design, implementation) of the components. This
allows for the so-called black-box reuse of components that happens while composing several
components into one application. Black-box composition is the key explanation for being able to build
software-systems of better quality within a shorter period of time – the main goals of component-based
software-engineering. [Szyp98][Mons00][SG96][Sieg96][D 2.2.8-5]

Reducing development time while increasing product quality are exactly the challenges that engineers
in the domain of field devices are facing. This is why they want to move to a component-based
development of their embedded software which is currently done by hand-writing monolithic
applications in C or assembly in a time-consuming and error-prone way. Supporting this paradigm shift
towards the component-based engineering of software for field devices by appropriate methods and
tools is the overall goal of the PECOS project.

Obviously modeling components and composing components into composite components
representing the embedded software are the core intellectual tasks of this new approach. Methods and
tools to support these tasks are therefore crucial to the success of the project. Whereas deliverable
[D 2.2.8-5] describes the PECOS component model (e.g., it says what a component is, what
properties a component has, what kinds of relationships between components exist and how they are
composed) and deliverable [D 2.2.5] describes the syntax of the component description language
CoCo in which (composite) components can be expressed, the deliverable at hand describes the
requirements towards the respective tool-support, the so-called Composition Environment.

Besides supporting component-modeling and -composition the Composition Environment is
responsible for interfacing with other PECOS tools like code- and test-case-generators, rule engines,
repositories or (cross-)compilers. This is why the Composition Environment can be seen as the
PECOS integrated development environment (IDE) that is collecting and managing all relevant data
and running tools using that data. This IDE approach makes it clear, that most of the requirements
described in this document are not requirements on the IDE but on the tools which interface with it.

The document is organized as follows: Section 3 outlines the main purpose of the composition
environment and gives an overview on the development tasks that it will support. In addition, the
overall architecture of the composition environment is sketched.

Section 4 gives a short introduction into the basics of component composition in PECOS, which is one
of the fundamental ideas of the whole project. This section should help to get a clearer understanding
about component and application development in PECOS and serve as a basis for the discussion in
the following section.

Section 5 presents in detail the development tasks, which are supposed to be supported by the
composition environment. This discussion is subdivided into usage scenarios concerning the role of
the composition environment during component development, component composition, as well as
deployment and testing.

Section 6 presents a set of requirements for the composition environment. The first part of the section
is dedicated to requirements stemming from the usage scenarios of section 5. In the second part,
requirements from other deliverables are discussed.

3. Introduction to the Composition Environment

3.1 Purpose and Scope
The composition environment is in the heart of the PECOS tool-set. It’s main task is to provide an
effective development environment that supports the developer during several steps of the PECOS
development process. This process is roughly described in [D 1.1] and will be further elaborated in
[D 5.2].

IST-1999-20398 PECOS Requirements for the
Composition Environment

FZI

Last Revision: 12.10.2001 Editor: Michael Winter

Document File / Identification

D31-RequirementsForTheCompositionEnvironment.doc
D3.1 Requirements for the Composition Environment

Classification

Confidential
Status

Approved

Page

5 of 15

© 2001, The PECOS Consortium

Developing components in the sense of deriving useful component specifications and interfaces is
beyond the scope of this document. The composition environment comes into play when the first
analysis phase is done, that means that there is already an idea of what the components should be
and how their interfaces should look like.

Thus, the composition environment supports the tasks of application construction, testing and
deployment. Application construction deals basically with component specification, implementation
and composition. Testing comprises test case generation, test case execution and debugging. Finally,
deployment deals with installing a PECOS application on a PECOS device which is a prerequisite for
testing.

3.2 Architecture
As it becomes clear above, the composition environment has to support a wide range of activities from
component implementation to application deployment. In order to cover all these tasks, the
composition environment interfaces to specialised PECOS tools, like the skeleton and glue code
generator, the rule checker, the compiler and so on. Figure 1 shows this concept, which is typical for
many development environments.

PECOS Composition Environment

Tool
Interface

Skeleton
generator Compiler Testing

Environment
...

Figure 1: Global Architecture of the Composition Environment

4. Component Composition in PECOS
As pointed out, the main goal of the PECOS project is to construct applications for field devices from
components. This means, that an application is built by configuring and composing components.
Therefore, we will present the mechanism of composing components within the CoCo language
[D 2.2.5] in some detail here, before taking a look at the usage scenarios. Building a PECOS
application from components means creating a (composite) component that represents the
application.

Let us explain how to build a composite component by giving a simple example. Assume, we have an
Adder component, which can calculate the sum of two input float values. Input and output of
components is modelled by so-called ports – places, where data flows into or out of a component.
Such a component would have two in ports, which provide it with the values it should add. And it would
have an out port, to which it writes the sum it calculates, whenever it is executed. In CoCo, this
component would look like the following (see [D 2.2.5] for a detailed description of CoCo):

component Adder {
in float value1;
in float value2;
out float result;

}

Now, we can build a component, which adds not only two float values, but three of them. Evidently,
this can be done with two Adder components, the first one adding the first two values and the second
one taking the result of the first Adder and adding the third value to it. Thus, we build the following

IST-1999-20398 PECOS Requirements for the
Composition Environment

FZI

Last Revision: 12.10.2001 Editor: Michael Winter

Document File / Identification

D31-RequirementsForTheCompositionEnvironment.doc
D3.1 Requirements for the Composition Environment

Classification

Confidential
Status

Approved

Page

6 of 15

© 2001, The PECOS Consortium

composite component, say Adder3, which consists of two instances of the above Adder component.
In CoCo we get the following description:

component Adder3 {
// here are the external ports of Adder3
in float value1;
in float value2;
in float value3;
out float result;

// here are the two simple Adder instances, called adder1 and adder2
Adder adder1;
Adder adder2;

// here are the wirings coming in
connector c1 (value1, adder1.value1);
connector c2 (value2, adder1.value2);
connector c3 (value3, adder2.value2);
// here are the internal wirings
connector c4 (adder1.result, adder2.value1);
// here are the wirings going out
connector c5 (adder2.result, result);

}

In order to get a better idea of what is going on, figure 2 shows a simple graphical representation of
the above CoCo specification.

adder1
value1

value2

result

adder2
value1

value2

result

result

value3

value2

value1

Adder3

Figure 2: Graphical view of Component Adder3

The semantics of a connector (of a line in the diagram above) is the one of “a data-sharing relationship
between ports” [D 2.2.8-5]. A connector represents a data variable, which is common to the connected
ports. Writing data to a port, or reading data from a port means accessing the connector which
connects the respective port to another one and thus means accessing the corresponding data
variable.

In order to complete our Adder3 example, we have to specify the order, in which the two Adder
components have to be scheduled. Clearly, it should be adder1 before adder2. Up to now it is not
fixed, how the schedule is specified. This will be subject to further research. However it is clear that
scheduling is crucial for the semantics of the application, which becomes clear if you consider adder2
running before adder1.

IST-1999-20398 PECOS Requirements for the
Composition Environment

FZI

Last Revision: 12.10.2001 Editor: Michael Winter

Document File / Identification

D31-RequirementsForTheCompositionEnvironment.doc
D3.1 Requirements for the Composition Environment

Classification

Confidential
Status

Approved

Page

7 of 15

© 2001, The PECOS Consortium

In this section, we have presented what component composition means in PECOS. We have
presented a simple example which illustrates, how more complex components (the Adder3
component) can be build from pre-build components (the Adder component) and how this is done in
the CoCo language. The semantics of connectors as data dependencies has been sketched.

5. Tasks to be Supported by the Composition Environment
In this section we discuss the different scenarios, in which the composition environment plays a certain
role. First, the role of the composition environment during component development is discussed.
Then, the process of composing components in order to build more complex components and
applications is presented. The section closes on deployment and testing scenarios.

5.1 Developing Leaf Components
As pointed out above, the first step in the PECOS development process which is supported by the
composition environment concerns the implementation of leaf components, which means components
that have no sub-components [D 2.2.8-5]. (Note: From “outside” a component leaf components and
composite components can not be distinguished, because the fact whether a component has sub-
components or not is hidden. [D 2.2.8-5] states, that “a field device is modelled as a component
hierarchy, i.e., a tree of components with an active composite component as its root.” Obviously
modelling can start top-down and bottom-up. We assume the latter and therefore describe the
developing of leaf components first. Obviously developing leaf components is done the same way as
developing composite components without the specification and connecting of sub-components.)

We refer to the PECOS development process in an idealised form, with strictly sequential subtasks. In
a real development scenario, there would be certainly some kind of iteration. But this does not directly
concern the requirements imposed on the composition environment. So, we can safely do this
simplification here.

The following tasks have to be supported by the composition environment during this process:

- specifying the component within the CoCo language in terms of

o ports

o consistency rules

o properties

- implementing the component

o skeleton code generation: generating target code frame (C++ or Java classes) out of Coco
description

o filling out skeleton (done by application developer, cannot be generated!)

- compilation of component

- documenting the component

- storing the component together with its documentation in the repository

First, the developer specifies the component’s entities in the CoCo language. This consists of
describing the data ports, consistency rules and properties of the component. We have already seen
the use of ports in the example presented in section 4. Consistency Rules are used to express
properties that make sense even for leaf components without composition. They will be described in
detail in the respective deliverable [D 3.3], so for this document is sufficient to state that they express
rules on the existence and on values of component properties. For a discussion on component

IST-1999-20398 PECOS Requirements for the
Composition Environment

FZI

Last Revision: 12.10.2001 Editor: Michael Winter

Document File / Identification

D31-RequirementsForTheCompositionEnvironment.doc
D3.1 Requirements for the Composition Environment

Classification

Confidential
Status

Approved

Page

8 of 15

© 2001, The PECOS Consortium

properties refer to [D 2.2.5] and [D 2.2.8-5]. For the task of specifying components, the developer,
especially in the domain we are considering1, normally uses a text editor.

The implementation of the component is done in two steps: First, the Coco-description of the
component is used to generate a target code frame (that is, C++ or Java classes). This is referenced
to as skeleton code generation. Second, the skeleton is filled out by the application developer by
adding the concrete actions (e.g., reading values, changing values, storing values) the component is
to perform.

The next step is to compile the implemented component in order to find implementation errors, local to
the component. Compilation is triggered from within the composition environment. Errors occurring
during compilation are returned to the composition environment, where they can be viewed and
browsed by the developer. (Note: The compiling and testing of one single component may require test-
bed and driver-generation. Although not all checks can be already done on parts of the system, a
compiled and “running” single component is important to be able to determine and verify non-
functional requirements like execution time and memory consumption. Deliverable [D 2.2.7] will deal
with these issues in more detail. Most probably, leaf components will not be tested on the target
device but in a testing environment.)

Then, the developer has to document the component he has just created. For this task, one can use a
documentation tool, which is also interfaced by the composition environment.

Finally, the newly created component is stored in the repository together with its implementation and
documentation. (Note: There was a decision not to spend any effort on repositories, because a
”persistent repository and an associated query language become relevant only when there are a lot of
components and when these components need to be accessed by several developers.” [D 6.3] This is,
however not the case at this time.)

5.2 Developing Composite Components
Now, we take a look at the development of composite components out of already built ones. Of
course, in a real development scenario, this step would be mixed up with the above one (see
comments in the previous subsection), but for simplicity we assume here that all required (leaf)
components have already been built.

The following tasks have to be supported by the composition environment during this process:

- browsing the repository in order to find components to be used to build the composite component

- inspecting and setting property values of these components

- specifying the composite component in terms of

o wiring of its sub-components by connectors

o ports

o consistency and composition rules

o properties

- implementing the component

o skeleton code generation: generating target code frame (C++ or Java classes) out of Coco
description

o filling out skeleton (done by application developer, cannot be generated!)

- compiling the component

1 Software for field devices is usually developed using normal text-based development IDEs (like
Microsoft Visual Studio) or even with normal text editors like Emacs and command-line based tools
like gcc.

IST-1999-20398 PECOS Requirements for the
Composition Environment

FZI

Last Revision: 12.10.2001 Editor: Michael Winter

Document File / Identification

D31-RequirementsForTheCompositionEnvironment.doc
D3.1 Requirements for the Composition Environment

Classification

Confidential
Status

Approved

Page

9 of 15

© 2001, The PECOS Consortium

- documenting the component

- storing the component together with its documentation in the repository

First, the knowledge about the composite component has to be used to find already existing
components in the repository. Once the necessary components are found, they need to be loaded into
the composition environment for further investigation and – if necessary – adaptation.

Then, the components can be composed together in order to build the composite component. This
means that the developer decides, which component ports have to be connected together, as we have
described in the example of section 4. In addition, scheduling information has to be provided.

The rest of the process is similar to the simple case and is therefore not repeated here. (Note:
Composition rules express rules on the existence and values of certain properties: the sub-
components. Details are left to [D 3.3])

5.3 Deployment and Testing
The tasks supported by the composition environment during deployment and testing are the following:

- consistency rule checking

- test case generation and execution

- downloading the application to the device

- debugging the application on the device

Rule checking is a central idea in PECOS. The goal is to construct applications, which are correct by
construction with respect to certain design rules. As pointed out earlier, rule checking will be the topic
of [D 3.3].

Testing is another technique to eliminate errors from an application before deployment. The
composition environment has to provide a tool interface for this purpose.

There should certainly be support for installing a ready PECOS application on the field device. And
there should also be the possibility to debug the application right on the filed device from within the
composition environment.

All these tasks rely heavily on the PECOS execution environment, which will be in focus of work
package 4.

IST-1999-20398 PECOS Requirements for the
Composition Environment

FZI

Last Revision: 12.10.2001 Editor: Michael Winter

Document File / Identification

D31-RequirementsForTheCompositionEnvironment.doc
D3.1 Requirements for the Composition Environment

Classification

Confidential
Status

Approved

Page

10 of 15

© 2001, The PECOS Consortium

6. Requirements
In this section all the requirements that can be derived from the usage scenarios are presented. In
addition, we include requirements stemming from [D 1.1] and comment on them. Any requirement is
attributed with a priority (given in brackets). Priority levels are high, medium and low.

6.1 Requirements coming from the usage scenarios

6.1.1 General
R01 Textual Representation of Model Entities (high)

The model entities must have a textual representation (plain ASCII) in order to incorporate
existing development tools for standard tasks (e.g., standard editors for editing component
specifications, etc.). The syntax and semantics of this textual representation is specified by
the CoCo language [D 2.2.5].

R02 Graphical Representation of Component and Project Structure (high)
The composition environment must provide support for a GUI like representation for the
component and project structure of composite components. We suggest a tree view or
similar representations known from state-of-the art development tools. This view should
provide folding capabilities i.e., collapsing/expanding component elements in order to
support quick browsing.

6.1.2 Component Specification
R03 Editing CoCo component specification (high)

The composition environment must provide support for editing component specifications in
CoCo during component specification. Syntax highlighting should be provided.

6.1.3 Component Adaptation
R04 Modifying component properties for adaptation (high)

Adaptation of PECOS components means setting or changing the component’s properties.
Thus, the composition environment must provide support for the modification of component
properties during component adaptation.

6.1.4 Component Composition
R05 Adding Component Instances (high)

The composition environment must provide support for adding component instances to a
composite component. These instances may come from the local project or from the
repository.

R06 Textual wiring components together on model level (high)
The composition environment must provide support for wiring ports of the components
within a composite component on a textual basis.

6.1.5 Code Generation
R07 Skeleton generation (high)

The composition environment must provide a tool interface for skeleton generators.

R08 Scheduler generation (high)
The composition environment must provide a tool interface for scheduler generators.

IST-1999-20398 PECOS Requirements for the
Composition Environment

FZI

Last Revision: 12.10.2001 Editor: Michael Winter

Document File / Identification

D31-RequirementsForTheCompositionEnvironment.doc
D3.1 Requirements for the Composition Environment

Classification

Confidential
Status

Approved

Page

11 of 15

© 2001, The PECOS Consortium

6.1.6 Component Implementation
R09 Handling of target language code (medium)

The composition environment must provide support for adding and modifying target
language code for the different supported target languages to a component. The actual
modification of target language code must be supported by providing an internal text editor or
by interfacing with an external one. Once added, the target language code must also be
stored within the repository. (Note: Since the PECOS approach is model-based, only the
hand-written code can be changed. Generated target code frames (skeletons) should not be
changeable.)

6.1.7 Compilation
R10 Compilation of components (high)

The composition environment must be able to interface to compilers for different languages.

6.1.8 Documentation
R11 Generating documentation (low)

The composition environment must provide support for generating javadoc like
documentation out of component specifications.

R12 Documenting a component (low)
The composition environment must provide support for editing additional component
documentation. This documentation can either be plain ASCII text or formatted HTML.

6.1.9 Repository Access
R13 Interface to repository for querying existing components (low)

The repository is the basic storage for already defined components. Beside simple browsing
facilities, the repository should also support search queries, which specify the component
properties.

R14 Loading components in from the repository (low)
The composition environment must be able to load or export component specifications from
the repository into the project or working directory. The components must be selectable by
simple browsing the repository, or by performing queries, which select components by
specifying their properties.

R15 Storing version/update of component back to repository (low)
The repository must be able to store different versions of a component specification. Also
updates of existing versions must be possible.

R16 Storing composed components in the repository (low)
New components, which can also be compositions of existing components, can be stored
back into the repository to support later usage of these components. Therefor the repository
supports different versions and updates of existing versions (see R12).

6.1.10 Design Rules
R17 System composition rule checking (high)

The composition environment must interface to a tool, which can be used to do system
checking using composition rules. Composition rules will be described in [D 3.3].

IST-1999-20398 PECOS Requirements for the
Composition Environment

FZI

Last Revision: 12.10.2001 Editor: Michael Winter

Document File / Identification

D31-RequirementsForTheCompositionEnvironment.doc
D3.1 Requirements for the Composition Environment

Classification

Confidential
Status

Approved

Page

12 of 15

© 2001, The PECOS Consortium

6.1.11 Conformity Checks
R18 Model conformity checks (high)

The composition environment has to provide an interface for a conformity checking tool.

This tool has to support for checking the conformance of a component specification with
respect to the PECOS model. This includes syntactical checks as well as semantic checks
on the level of the underlying ADL, such as “all used identifiers have been declared”, type
checking (i.e., signatures of connected ports match), etc.

6.1.12 Testing
R19 Interfacing to a testing tool (high)

The composition environment must interface to a testing tool, which can be used to generate
test cases and execute these test cases.

6.1.13 Deployment
R20 Interfacing to a deployment tool (high)

The composition environment must interface to a deployment tool, which enables the
developer to download his application to the PECOS device.

6.2 Requirements coming from [D 1.1]
In this subsection we discuss the requirements stemming from [D 1.1] concerning the composition
environment.

6.2.1 General
FR55 Customisation GUI (high)

The composer has to provide a user interface for customisation of instances of components.
Herein e.g., properties can be set.

see R04.

FR56 Engineering Data Export (high)
An export interface has to be provided for the engineering data generated in FR57.

See discussion of FR57.

FR57 Engineering Support (high)
Configuration data for the infrastructure have to be automatically generated from the block
and parameter configuration. These can then be used to create configuration software for
this particular field device and application (→ FDT, DTM etc.)

It is unclear, what block and parameter configuration means. May be components and
properties? Anyway, we don’t see this requirement being essential to the project.

6.2.2 Component Composition
FR58 Graphical Composition (low)

Components are represented as blocks. These blocks can be selected from a menu and
placed on a sheet (instantiation). A sheet represents an architecture template and can also
be selected from a menu. Blocks have stubs by which they can be connected to other
blocks. During the composition the design is validated based on the composition rules which
are part of the template. The stubs represent the ports and lines between the blocks
visualise connectors. The connectors are the "glue code" between the components.

IST-1999-20398 PECOS Requirements for the
Composition Environment

FZI

Last Revision: 12.10.2001 Editor: Michael Winter

Document File / Identification

D31-RequirementsForTheCompositionEnvironment.doc
D3.1 Requirements for the Composition Environment

Classification

Confidential
Status

Approved

Page

13 of 15

© 2001, The PECOS Consortium

We don’t see the graphical composition as a major requirement. If possible, the composition
environment will interface to existing graphical editors, even better would be using graphical
editors from OTI if available. The major innovation in PECOS is not the graphical support of
the composition but the correct-by-construction software composition as realised by the
model-based approach and the different composition rules. We therefore strongly suggest to
release this requirement. Note: This suggestion was already confirmed [D 6.3].

FR59 Composer API (high)
The composition environment has to provide an interface to programmatically access the
composer functionality.

The “composer functionality” is provided on several levels: Specifying composite
components with Coco, generating skeletons and schedulers and hand-writing component
code in a target language. All that should be possible without the IDE (=composition
environment).

6.2.3 Code Generation
FR60 Glue Code Editor (low)

An editor for glue code has to be provided. Code that is used to fill the gap between
components. This corresponds to designing new classes of connectors.

This requirement should get a very low priority because there is only one connector type in
the model and thus there is no need to editing glue code.

6.2.4 Repository Access
FR61 Repository Integration (low)

Search inquiries on the component repository can be executed from within the composition
environment. The search results are presented in a list or menu. Component updates are
also possible. Tested applications and components can be checked-in into the repository.

The facilities of the composition environment concerning repository integration depend
heavily on the facilities of the repository and the complexity of its interface. The composition
environment will make as much use of these facilities as possible and sensible concerning
the overall project goals.

6.2.5 Design Rules
FR62 Composition Rule Designer (high)

An editor for composition rules has to be provided. These rules are stored as part of
architecture templates which are used as starting point for application development.

Composition rules can be classified under two categories: computation rules and validation
rules.

Computation rules are used to derive non-functional properties of composites from their
underlying components.

Validation rules are used to validate a composition based on its non-functional properties
and constraints.

It is not yet clear, how rules will be used for in PECOS. This will be described in detail in
[D 3.3].

FR63 Validation (high)
The composition environment has to provide functionality to validate the design at design-
time. This validation is based on constraints and composition rules.

IST-1999-20398 PECOS Requirements for the
Composition Environment

FZI

Last Revision: 12.10.2001 Editor: Michael Winter

Document File / Identification

D31-RequirementsForTheCompositionEnvironment.doc
D3.1 Requirements for the Composition Environment

Classification

Confidential
Status

Approved

Page

14 of 15

© 2001, The PECOS Consortium

Constraints could be the overall execution time, the power consumption etc. These values
are either properties of components or calculated values on composite components
(composition of components). The validation can either be triggered automatically whenever
blocks are placed on the sheet and connected or manually by the user.

This kind of validation is a core innovation of the PECOS project. Therefore the composition
environment should provide as much support as possible. Details of what can be checked
and how are, however, still to be elaborated and therefore left to [D 3.3].

6.2.6 Testing
FR64 Test Case Generation (low)

The development environment has to provide an editor to define test cases. These test
cases can then be generated partly automated.

Test case generation is considered to be done by a specialised tool. Thus it is not part of the
composition environment directly. The composition environment only has to provide a tool
interface, which supports for plugging such a tool.

FR65 Test Case Execution (low)
A test framework has to be provided that allows for test suite-based automated testing of
applications.

Test case generation is considered to be done by a specialised tool. Thus it is not part of the
composition environment directly. The composition environment only has to provide a tool
interface, which supports for plugging such a tool.

6.2.7 Deployment
FR66 Automated Deployment (low)

The deployment has to be (more or less) a one-step deployment process (for the user) and
not an error-prone sequence of tasks.

Application updates are directly validated before downloading to the target platform. If an
update has not proven to be valid the changes will not go in operation.

Test case generation is considered to be done by a specialised tool. Thus it is not part of the
composition environment directly. The composition environment only has to provide a tool
interface, which supports for plugging such a tool.

FR67 RTOS Configuration (low)
Configuration parameters for the run-time environment have to be derived. These are used
during application building and deployment.

This is more a requirement to the ultra-light component environment rather than the
composition environment.

FR68 Selection of Target Platform (low)
The target platform to deploy the application on has to be selected. The development
platform connects then to the target platform and further actions like e.g., download can be
executed.

This is more a requirement to the ultra-light component environment rather than the
composition environment.

FR69 Concurrent Configuration and Development (low)
The composition environment has to support concurrent development. The granularity for
access has to be on application level so that only one user can manipulate an application at
a time.

IST-1999-20398 PECOS Requirements for the
Composition Environment

FZI

Last Revision: 12.10.2001 Editor: Michael Winter

Document File / Identification

D31-RequirementsForTheCompositionEnvironment.doc
D3.1 Requirements for the Composition Environment

Classification

Confidential
Status

Approved

Page

15 of 15

© 2001, The PECOS Consortium

Concurrent development is a question of transaction management or entity locking and
releasing. Although we see that this requirement is important for a production tool, it’s
beyond the scope of the prototypical implementation of the composition environment
provided during the scope of PECOS.

7. Summary
In this document we first gave a short introduction into the composition environment and its overall
architecture. After discussing the process of component composition we presented a list of use cases,
the composition environment has to support. Starting from these use cases, concrete requirements on
the composition environment were derived and discussed. We also discussed requirements which
originated from [D 1.1] and related them to the use case discussed earlier.

The most important shift in the requirements compared to [D 1.1] and the original approach for the
composition environment was that we decided to assign a low priority to both a graphical composition
tool, where components are composed in a graphical way, i.e., by drawing lines an boxes and the
interface to the repository.

8. Bibliography
[D 1.1] Field Device Requirements

[D 2.2.5] Description of the PECOS Component Model and the COCO language

[D 2.2.6] Verifying scheduling, timing and memory consumption of components.

[D 2.2.8-5] Field-Device Component Model-V (previously D 2.2.1 and D 2.2.2)

[D 2.2.7] The Component Instrumentation Environment.

[D 3.3] Composition rules for case study

[D 4.1] C++/C-based ultra-light component environment

[D 4.2] Java-based ultra-light component environment

[D 4.4] Remote Embedded Component Debugger

[D 5.2] Manual for the cookbook

[D 6.3] Refined and updated project plan

[Mons00] R. Monson-Haefel, Enterprise Java Beans, O’Reilly, 2000.

[SG96] M. Shaw and D. Garlan. Software Architecture – Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

[Sieg96] J. Siegel, Corba: Fundamentals and Programming, John Wiley & Sons, 1996

[Szyp98] C. A. Szyperski. Component Software. Addison-Wesley, 1998.

