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Abstract

Unanticipated changes to complex software systems can introduce anomalies such as duplicated code,
suboptimal inheritance relationships and a proliferation of run-time downcasts. Refactoring to elimi-
nate these anomalies may not be an option, at least in certain stages of software evolution.

A class extension is a method that is defined in a module, but whose class is defined elsewhere. Class
extensions offer a convenient way to incrementally modify existing classes when subclassing is inap-
propriate. Unfortunately existing approaches suffer from various limitations. Either class extensions
have a global impact, with possibly negative effects for unexpected clients, or they have a purely local
impact, with negative results for collaborating clients. Furthermore, conflicting class extensions are
either disallowed, or resolved by linearization, with subsequent negative effects.

To solve these problems we present classboxes, a module system for object-oriented languages that
provides for behavior refinement (i.e. method addition and replacement). Moreover, the changes made
by a classbox are only visible to that classbox (or classboxes that import it), a feature we call local
rebinding.

We present an experimental validation in which we apply the classbox model to both dynamically
and statically typed programming languages. We used classboxes to refactor part of the Java Swing
library, and we show two extensions built on top of classboxes which are (i) runtime adaptation with
dynamically classboxes and (ii) expressing crosscutting changes.
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Chapter 1

Introduction

It is well-established that object-oriented programming languages gain a great deal of their power
and expressiveness from their support for the open/closed principle [Mey88]: classes are closed in
the sense that they can be instantiated, but they are also open to incremental modification by inheri-
tance.

Nevertheless, classes and inheritance alone are not adequate for expressing many useful forms of
incremental change. For example, modern object-oriented languages introduce modules or packages
as a complementary mechanism to structure classes and control visibility of names. Reflection is
another example of an increasingly mainstream technique used to modify and adapt behaviour at run-
time. Aspect-oriented programming, on the other hand, is a technique to adapt sets of related classes
by introducing code that addresses cross-cutting concerns.

Systems written in a modular way are closed in the sense that they can be executed, but they are open
for unanticipated extensions that add, refine, or replace modules or whole subsystems. Module and
class systems have evolved to meet the demand of reusable software components and defining incre-
mental changes. However the range of supported extensions is often limited because subclassing is
not expressive enough to refine code. In the literature this limitation is referenced under the extensi-
bility problem [FF98b]. System extensions implemented with class inheritance introduce duplicated
code and type-checking issues.

1.1 Hypothesis: Class Extension to Support Unanticipated Changes

A module is regarded as a closed entity containing class definitions. Incremental changes are enabled
by adding or replacing modules. However to regard a module as closed hampers extensibility in many
ways. For instance, cross-cutting changes cannot be modeled using classical mechanisms like Java
packages.

In this thesis we focus on a particular technique, known as class extensions, which addresses the
need to extend existing classes with new behaviour. Smalltalk [GR89], CLOS [Pae93], Objective-C
[PW88], and more recently MultiJava [CLCM00] and AspectJ [KHH+01] are examples of languages
that support class extensions.

1



2 CHAPTER 1. INTRODUCTION

Text
String

substrings
indexOf:
asUrl
...

Network

Url

...

Figure 1.1: The package Network extends the class String defined in the package Text with a
new method asUrl

A class extension is a set of class members (e.g. variable and methods) defined in a modular unit that
is distinct from the one that defines the class to which these class members are related. A classical
example of a class extension present in most of Smalltalk libraries is a method that converts a string
into a url. One natural and concise way of defining such a method is on the class String. This
is illustrated in Figure 1.1. The package Text defines the class String which contains methods like
substrings and indexOf:. The package Network defines network-related classes and extends the class
String with a method asUrl. As a result, a url can be obtained from a string by directly sending a
message asUrl to it, as in the Smalltalk expression ’http://www.iam.unibe.ch/∼bergel’ asUrl.

Class extensions offer a good solution to the dilemma that arises when a developer would like to
modify or extend the behaviour of an existing class. In such a case, subclassing is often inappropriate
because that specific class is referred to by existing clients (and the source code of the class in question
cannot be modified). But a class extension can then be applied to that specific class.

1.2 Understanding the Problem

Despite the demonstrated utility of class extensions, a number of open problems have limited their
widespread acceptance. Briefly, these problems are:

1. Globality. In existing approaches, the effects of a class extension are either global (i.e., visible
to all clients), or purely local (i.e., only to specific clients named in the application of the class
extension). In the first case, clients that do not require the class extension may be affected.
In the second case, collaborating clients that are not explicitly named will not see the class
extension.

2. Conflicts. If two or more class extensions attempt to extend the same class, this may lead to
a conflict. In existing approaches, conflicts are either forbidden, or extensions are linearized.
This may lead to unexpected behaviour. In either case, the class extension utility is severely
impacted.

1.3 Our proposal: Classboxes

We propose a modular approach to class extensions that solves the two problems outlined above
by defining an implicit context in which class extensions are visible. We introduce the notion of a
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classbox which acts as a kind of module with three main characteristics:

• It is a unit of scoping in which classes, global variables and methods are defined. Each entity
belongs to precisely one classbox, namely the one in which it is first defined, but a class can be
made visible to other classboxes by means of an import mechanism. Importing from a classbox
a class from another classbox makes this class visible. Methods can be defined for any class
visible within a classbox, independently of whether that class is defined or imported. Methods
defined (or redefined) for imported classes are called class extensions.

• A class extension is locally visible from the perspective of the classbox in which it is defined.
This means that the extension is only visible in (i) the extending classbox, and (ii) other class-
boxes that directly or indirectly import the extended class.

• A class extension supports local rebinding. This means that, although extensions are locally vis-
ible, their effects extend to all collaborating classes. A classbox thereby determines a namespace
within which local class extensions behave as though they were global.

Thesis statement. A scoping mechanism is necessary to efficiently control visibility of changes by
means of class extensions.

1.4 Contributions

The main contributions of this thesis are summarized as follows and have been published as shown by
the references:

• First-class environment module calculus – Understanding the multitude of module systems re-
quires a common foundation in which differences between various semantics are expressed. We
define a module calculus for this purpose. Because the notion of namespace is implicitly asso-
ciated to module, this calculus makes the notion of environment a first-class entity [BDN05a].

• Analysis of a large library – An analysis of a large and widely used Java library (Swing) is used
to define criteria for a better mechanism to deal with changes. This analysis points out code
duplications, broken inheritance and explicit type checking in this Java library, which justifies
the need of having at the language level constructs to express changes and how they can be
applied [BDN05b].

• Scoped class extensions – Scoping facilities to deal with changes by means of class extensions
are provided by means of a new module system, classboxes [BD05b, BDW03a, MBCD05].

• Strategies to efficiently implement scoped class extensions – A description of two implemen-
tations of classboxes in the Smalltalk dialect Squeak is proposed. The first implementation
implies a modification of the virtual machine, and the second is based on bytecode manipula-
tion. Benchmarks are provided for each of these implementations [BDW03b, BDNW05].

• Dynamic classboxes – Uniform and expressive mechanism to support crosscutting changes
made of class extensions [BD05a].
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1.5 Thesis Outline

This dissertation is structured as follows: In Chapter 2, we present a detailed state of the art based on
an analysis of different module systems. Several properties are formalized according to features of
various module systems. These properties are then used to establish a taxonomy. In Chapter 3, we
identify and illustrate issues with classical object models when dealing with incremental changes. An
analysis of the Java Swing library is presented and we point out some anomalies and inconsistencies.
This defines the focus of Chapter 4. We introduce classboxes by means of a formal model. We evaluate
the classbox model against the problems identified in Chapter 3: we refactor Swing using classboxes,
and anomalies in the original version are removed. In Chapter 5, we describe two implementations
of classboxes in the Smalltalk dialect Squeak: the first one based on a modification of the virtual
machine, and the second one based on bytecode manipulation. In Chapters 6, 7, and 8 we present
three extensions of classboxes: expressing runtime adaptation with dynamic classboxes, symbiosis
with traits and classboxes, and classboxes in a statically typed environment. In Chapter 9, we conclude
by summarizing how the main results of our work support the statement of the thesis, and we outline
areas of future work related to classboxes.



Chapter 2

Language and Module Constructs to
Support Changes

“Software maintenance” is an activity consisting of modifying a software after it has been delivered.
Sommerville [87] and Davis [30] estimate that the cost of software maintenance accounts for 50%
to 75% of the overall cost of a software system. Supporting unanticipated changes is probably one
of the most challenging task in software engineering. This issue can be tackled using forward en-
gineering and reverse engineering techniques. This thesis focuses on the former by offering new
language constructs to ease software maintenance and evolution. This chapter analyses the exist-
ing approaches in three different fields related to supporting unanticipated changes: module system
supporting class refinement, packaging and deploying static changes, and dynamic application of
crosscutting changes.

Module systems supporting class refinement. Each object-oriented programming language proposes
various grouping mechanisms to bundle interacting classes (i.e. packages, modules, selector names-
paces, etc). To understand such diversity and to compare the different approaches, a common foun-
dation is needed. As far as we are aware of, no major attempt in that direction has been realized to
date.

Section 2.1 presents a simple module calculus together with a set of operators for modeling the compo-
sition semantics of different grouping mechanisms. Using this module calculus we are able to express
the semantics of Java packages [AG96], C# namespaces [C#], Ruby modules [TH01], selector names-
paces [WBW88], gbeta classes [Ern99b], MZScheme units [FKF98], and MixJuice modules [IT02].
This calculus supports the identification of system families sharing similar characteristics. In addition
it provides a uniform way to represent and analyze fine-grained module semantics.

Packaging and deploying static changes. Section 2.2 presents various approaches to package and
deploy system changes. These changes are qualified as static because they are applied at compile time.
The section studies static changes based on (i) class extension, (ii) module systems, (iii) mechanism
enhancing or completing class inheritance, and (iv) aspect oriented programming.

Dynamic application of crosscutting changes. Section 2.3 summarizes the existing approaches in
dynamic application of crosscutting changes. Mainly two approaches are studied: dynamic code
adaption and dynamic extension and replacement of classes.

5
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2.1 Module systems supporting class refinement

Object-oriented languages support the construction of applications based on sets of interacting classes.
Classes, methods and global definitions are then grouped together as packages or modules for deploy-
ment reasons or for delimiting abstraction layers. Unfortunately, though the intent behind packages
and modules is clear, their semantics often is not. The simple fact that the terms module and package
are overloaded with different semantics reveals a larger problem: the diversity of grouping mecha-
nisms hampers their comparison and understanding.

Modeling modules by means of a calculus has always been an active research topic (e.g. [AZ99,
BPS99, BL91, Ler00, MvL96]). These calculi are aimed at tackling various issues with modules like
mutual recursion and higher order features [AZ99] or to model class and mixins application in a typed
setting [BPS99]. In this section we focus on expressing various module operators semantics obtained
from programming languages like Java, C#, MZScheme, Modular Smalltalk, and gbeta under a single
module calculus.

Summary. Classical module systems, like those of Modula-2 [Wir83], Modula-3 [CDG+92], Oberon-
2 [Mös93], Ada [Taf93], Java, C++, and Eiffel [Mey92] do not support the notion of class extensions
(i.e. the fact that a method can be added or overidden from a package different from the one that
defines the class). However, class extensions are widely used in the languages that support it, such as
Smalltalk [WBW88], CLOS [Kee89] and gbeta [Ern99b]. OpenClasses [CLCM00], Keris [Zen02b]
and MixJuice [IT02] offer packaging systems that introduce class extensions, virtual classes and other
new features to packages.

Other languages such as Ruby [TH01] and Unit [FKF98] support the definition and application of
mixins to modules at different levels. Languages such as VisualWorks Smalltalk [Vis03] totally de-
couple the issues of namespaces from those of code packaging, hence a package in VisualWorks does
not provide any support for scoping of names.

Contributions. In this section we introduce a simple calculus of modules, together with a set of op-
erators designed to express various encapsulation policies, composition rules, and extensibility mech-
anisms. The contributions of this section are:

• A formalism in which the semantics of different module systems can be expressed,

• The identification of a set of properties useful to characterize different languages, and

• A taxonomy of different module systems.

The approach presented in this section enables a language designer to compare module systems for
various OOP languages.

Structure of the section. In Section 2.1.1 we define the calculus and its operators. In Sections
Section 2.1.2 through Section 2.1.8 we use the calculus to model Java packages, C# namespaces, Ruby
modules, selector namespaces, gbeta virtual classes, MZScheme units and MixJuice modules. We
chose Java and C# as they are mainstream languages, Ruby as it defines the notion of module mixin,
Modular Smalltalk [WBW88] and Smallscript [Sim02] as they define changes that crosscut classes
with selector namespaces, Beta [KMMPN87] as it introduces the notion of virtual classes, MZScheme
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unit [FF98b] as it separates the unit definition from the dependancy statements, and MixJuice [IT02]
as it constrains only one class version to be present in the system.

In Section 2.1.9 we develop a taxonomy to characterize the studied module systems according to
the set of properties we modeled. In Section 2.1.10 we describe related work. In Section 2.1.11 we
summarize the results obtained and outlining future work regarding the module calculus.

2.1.1 A Simple Module Calculus

The module calculus we propose makes use of the primitive notion of an environment. We first define
environments and the basic operators for manipulating them. Then we define modules as abstractions
over environments, and we propose further operators for composing and manipulating modules.

Note that we have implemented all the formulas described below in DrScheme [DrS]. The source
code, accompanied with unit tests, is in the Annex A.

Environments. The following definitions introduce environments and some basic operators.

Definition 1 environment: an environment ε : D → R? , is a mapping from some domain D to an
extended range R? = R ∪ {⊥}, such that the inverse image ε−1(R) is finite. The set of environments
is E and we assume it to be a subset of R.

We will represent environments as finite sets of mappings, for example:

ε1 = {a 7→ x, b 7→ y}

is an environment that maps a to x and b to y. All other values in the domain of this environment (let’s
say, c) are mapped to ⊥.

We will normally leave out unessential parentheses. Since an environment is a function, we simply
invoke it to look up a binding. In this case, ε1 a = x, ε1 b = y and ε1 c = ⊥.

Definition 2 keys: The set of keys of an environment ε : D → R? is κ ε:

κ ε
def= ε−1(R)

For instance, κ ε1 = {a, b}.

Definition 3 override: An environment ε : D → R? may override another environment ε′. We define
ε � ε′ : D → R? as follows:

(ε � ε′) x
def=

{
ε′ x if ε x = ⊥
ε x otherwise

For example, if ε2 = {b 7→ z, c 7→ w}, then (ε1 � ε2) a = x, (ε1 � ε2) b = y, and (ε1 � ε2) c =
w.
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Definition 4 extend: An environment ε : D → R? such that ε a = ⊥ may be extended to produce a
new environment ε‖{a 7→ x} containing all the mappings of ε plus a 7→ x.

ε‖{a 7→ x} def=
{

ε � {a 7→ x} if ε a = ⊥
⊥ otherwise

Note that the ‖ operation does not allow an entry to be added if the key is already present.

Definition 5 exclusion: Given an environment ε : D → R? and a key a, the exclusion ε\a is:

(ε\a) x
def=

{
ε x if x 6= a
⊥ otherwise

Exclusion simply removes any binding present for the given key.

Modules. We define modules as abstraction built over environments. Modules are composed and
manipulated using operators

Definition 6 Module: A module m : E → E? , is a mapping from an environment to an environment.
We denote M the set of modules.

Example. We represent modules as functions taking an environment and returning an environment.
An example of two modules m1 and m2:

m1 = λself. {a 7→ 1, b 7→ 2}
m2 = λself. {a 7→ 3, b 7→ self a}

As we see in m2, the ε parameter makes it possible for entries in a module to look up other bindings
in the parameter environment (i.e. self). Shortly we will see how a module can be instantiated to an
environment by taking its fixpoint with the fix operator. Therefore, an instantiated module can look
up bindings in itself.

We overload the operators previously introduced, and from the context it is always clear whether we
mean the environment or module operator.

Definition 7 extend: A module can be extended with a new mapping using the ‖ operation:

m‖{a 7→ x} def=
{

λself. (m self) ‖ {a 7→ x} if (m self) a = ⊥
⊥ otherwise

Definition 8 override: Two modules m and m′ can be merged to produce a third module m � m′.

m � m′ def= λself. (m self) � (m′ self)

Note that this operator is associative but not symmetric.
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Definition 9 exclusion: Exclusion on modules is expressed using \:

m\x def= λself. (m self)\x

Restricting a key x on a module removes x from the environment that defines this module.

Module Encapsulation Operators. Module encapsulation is articulated by operators manipulating
the set of keys visible from outside the module. We call this set the module’s interface. Three operators
are involved: fix is used to instantiate a module, κ to get all the mapping names (keys) of a module,
and hide to remove one mapping from a module interface.

Definition 10 fix: A module m : E → E? can be instantiated to an environment as follows:

fix m
def= µε.mε

(We assume the usual definition of µ, where µx.e reduces to e[µx.e/x], so fix m = m(fix m).)

Since m is a function from environment to environment, fix m represents a fixpoint in which all the
mappings provided by the module are made available to each other. The use of fixpoints to model
self-references in object-oriented languages was introduced by Cardelli [Car88].

Example. For instance, for the two modules m1 = λself. {a 7→ 1, b 7→ self} and m2 = λself. {a 7→
2} we have:

(fix (m2� m1 )) b a = 2
(fix (m2� λself. {b 7→ (fix m1) b} )) b a = 1

In the first example, let Φ = fix(m2 �m1). By the fixpoint operator, this gives Φ = {a 7→ 2}� {a 7→
1, b 7→ Φ}, so Φ b a = Φ a = 2. Since m1 and m2 are effectively merged, m2’s binding of a becomes
visible within m1.

In the second example, let Φ1 = (fix m1) = {a 7→ 1, b 7→ Φ1} and Φ2 = fix(m2 � λself. {b 7→
Φ1 b}) = {a 7→ 2}� {b 7→ Φ1}. So Φ2 b a = Φ1 a = 1. Here m1 is effectively closed, so merging it
with m2 has no effect on the binding of a.

Definition 11 keys: The set of keys of a module m is defined as:

κ m
def= κ (fix m)

Definition 12 hide: Given a module m : E → E? , a binding to the key a can be removed from its
interface using the hide operation:

hide a
def= λm. λself. m\a ({a 7→ (fix m) a}� self)

hide {x1, x2, . . . , xn}
def= (hide x1)(hide {x2, . . . , xn})
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Example. Hiding a binding of a module removes the entry from the module’s interface, but the
binding’s value is still accessible through other bindings. For example, for the two modules m1 =
λself. {a 7→ 1, b 7→ self} and m2 = λself. {a 7→ 2}, we have:

(fix (hide a)(m1)) a = ⊥
(fix (hide a)(m1)) b a = 1

Class Definition. Within a module, a value associated to a key represents a definition. If the calculus
is intended to express the semantics of a module system which is part of a procedural (or functional)
language, values of bindings describe functions [AZ98, Ler00]. In the rest of this section we will
focus only on expressing semantics of module systems for class-based object-oriented programming
languages. Definitions contained within a module describe classes. A class is represented as an
environment whose mappings define state and methods.

We define the following domains:

• The set of modules is represented by M.

• The set of class names by C. It represents keys of the mappings defining a module.

• The set of definitions defining the state and behavior of a class is denoted by D.

Example. For instance a module containing Point and PointFactory classes can be defined as:

GraphicsModule = λε. {
Point 7→ {

x 7→ 0,
y 7→ 0,

moveBy 7→λdx. λdy. λself. {
x 7→ self x + dx,
y 7→ self y + dy } � self},

PointFactory 7→ { newPoint 7→ λself. ε Point } }

Within our calculus, inheritance over classes is expressed by the extendClass operator, defined here-
after.

Definition 13 In a module m, a class c extends a superclass sup with a set of definitions d using the
extendClass operation defined as:

extendClass : M→ C → C → D →M
extendClass = λm. λsup. λc. λd. λε. m ε‖{c 7→ d � (m ε sup)}

Class members are denoted by d. When creating a new class, these simply override definitions pro-
vided by the superclass (m ε sup) by performing d � (m ε sup).

Example. The previously described GraphicsModule is refined into a ColoredGraphicsModule as:

ColoredGraphicsModule = extendClass GraphicsModule Point ColoredPoint ext
where ext = { color 7→ nil,

setColor 7→ λ newCol. λself. {color 7→ newCol} � self }
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The Calculus in Action. The following sections illustrate the calculus by expressing various module
system semantics. For each of these module systems a set of operators is provided to describe ele-
mentary relationships used to compose units of modularization together for a particular programming
language. Depending on the language under consideration, a module is a Java package, a C# name-
space, a selector namespace (Modular Smalltalk [WBW88]), a Ruby module [TH01], a virtual pattern
in gbeta [Ern99b], a MZScheme unit [FF98b], or a MixJuice module [IT02].

A typical operator is applied to a module mt with some arguments ms and some classnames c. We
make use of the following conventions: (i) each operator is expressed as a module generator (com-
bining two modules together yielding a new module), (ii) a t subscript (e.g. mt) refers to a template
module: the result of the operator is a modified copy of the template module, (iii) an s subscript (e.g.
ms) refers to the module provided as argument.

2.1.2 Java

Java [AG96] classes are grouped within packages. Packages can be “composed” with each other by
means of the import relationship. (In this section, we do not consider the use of fully qualified names
in Java or other languages, i.e. a class name preceded by the name of the package.) A package that
imports a class from another package simply references this class by its name. There are two levels of
granularity of the import relationship: (i) a package may import a single class from another package,
and (ii) a package may import all visible classes (i.e. public at the package level).

The semantics of Java packages is expressed using two different import operators (importClass and
importPackage) corresponding to the two granularity levels. Class privacy is expressed using the pri-
vate operation, which is described later.

Individual class import. A package mt that imports a class c defined in a package ms yields a copy
of mt augmented with a new mapping for the imported class.

importClass : M→M→ C →M
importClass = λmt. λms. λc. (hide c)(mt ‖ {c 7→ (fix ms) c})

A package that imports a class cannot re-export it. This is expressed by (hide c). According to
Definition Section 12, (hide c) is a function that takes a module as argument and returns a copy of it
where c is removed from its interface only. This class c is accessible to definitions in the importing
package, however it cannot be accessed from another package.

A conflict occurs when a defined and an imported class have the same name. The restriction on
key uniqueness is expressed by the ‖ operation, which does not allow a key to be added if already
present. A name that already refers to a defined class cannot be used to refer to an imported one and
vice-versa.

References between classes are static, this means that importing a class does not rebind the references.
Let’s suppose a package graphics contains a class PointFactory that refers to a class Point. Importing
the class PointFactory (in another package) does not impact the original references between PointFac-
tory and Point, even if in the importing package a class Point is present. This restriction is expressed
by (fix ms). An example of a graphics package is:
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package graphics;
public class Point {

int x = 0, y = 0;
void moveBy (int dx, int dy) {

x = x + dx; y = y + dy;
}

}
public class PointFactory {

static void newPoint () {
return new Point();

}
}

graphics = λ ε. {
Point 7→

{x 7→ 0,
y 7→ 0,
moveBy 7→ λ self. λ dx. λ dy.

{ x 7→ self x + dx,
y 7→ self y + dy} � self},

PointFactory =
{ newPoint 7→ ε Point }}

Importing the class PointFactory from graphics in a new package graphics2 where a class Point already
exists does not make PointFactory use Point of graphics2.

graphics2 = importClass λself. {Point 7→ {}} graphics PointFactory

Evaluating graphics2 PointFactory newPoint returns an environment containing the keys x, y, and
moveBy. However, evaluating graphics2 Point yields an environment with no mapping in it (accord-
ing to the definition of Point in graphics2.

Individual package import. Importing a whole package is equivalent to importing individually
each class defined in the imported module. In a Java program, this is expressed as package mt;
import ms.*;.

importPackage : M→M→M
importPackage = λmt. λms. (hide (κ ms))(λself. (mt ε) � (fix ms))

When importing a whole package, locally-defined classes mask the classes that are imported. For
instance, the following code is correct:

package p1;
public class A{}
public class B{}

package p2;
import p1.*;
public class A extends B{}

In the package p2, a class named A is locally defined, which masks the class A implicitly imported
from p1. The name A within p2 refers to the p2 implementation of A, whereas in p1 the name A refers
to the p1 implementation of A.

This is expressed by the � operator (which allows one mapping to be replaced by a new one) used in
importPackage.

Class privacy. Classes declared as private in a package cannot be imported in other packages.

private : M→ C →M
private = λm. λc. (hide c) m

Syntactically this is written package m; class C {...}. The class C is visible only within m
and not accessible from the outside.
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2.1.3 C#

In C# a unit of modularization is called a namespace. Classes defined in a namespace can be imported
under a different name (alias) in the importing namespace. C# provides a directive using to import
a class (aliased or not) to a namespace and to import a whole namespace.

We express the semantics of the using directive with the three operators usingClassAs, usingClass
and usingNamespace.

Using alias and class directives. An imported class can be aliased. This means that this class
is accessed within the importing namespace under a different name. This is expressed in C# as
namespace MT { using A = MS.C; }.

usingClassAs : M→M→ C → C →M
usingClassAs = λmt. λms. λa. λc. (hide a)(mt‖{a 7→ (fix ms)c})

The value a refers to the new name given to the class c. The need for (hide a) and (fix ms) is similar
to that in Java’s case: (hide a) restrains the imported class to be imported from another module,
and (fix ms) ties all classes contained in ms to their dependencies. Also, when importing c in mt,
dependencies of c are preserved.

Importing a class without renaming it is expressed as an import aliased to the class name. This is
expressed in C# as namespace MT { using MS.C;}.

usingClass : M→M→ C →M
usingClass = λmt. λms. λc. usingClassAs mt ms c c

Note that usingClass is equivalent to importClass previously described.

Using the namespace directive. As in Java, all the classes defined in a namespace can be imported
using a single directive. In a C# program, this would be expressed as namespace MT { using
MS; }.

usingNamespace = importPackage

The operator usingNamespace is equivalent to importPackage previously described.

2.1.4 Ruby

In Ruby, modules encapsulate functions, methods, classes, and constants. A module is a namespace
that can also be used as a mixin [Bra92] (i.e. class parametrized with its superclass).

Modules as namespaces. A module mt uses the code provided by another module ms by means of an
include directive. This directive takes as parameter the name of the module intended to be reused. In
the following example a module named MPoint defines a class Point containing a constructor. Another
module MColoredPoint imports the definitions of MPoint and defines a subclass ColoredPoint of Point.
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#Defined in a file MPoint.rb
module MPoint

class Point
def initialize(x, y)

@x = x
@y = y
end end end

#Defined in a file MColorPoint.rb
load ”MPoint.rb”
module MColoredPoint

include MPoint
class ColoredPoint < Point

# ...
end end

We define an includeModule operation that expresses the semantics of this include relationship be-
tween two modules. The resulting module of this operation is a merge between the two where (i) local
definitions hide those of the imported module, and (ii) references of classes contained in the provider
module are preserved.

includeModule : M→M→ C →M
includeModule = λmt. λms. λself. mt ε � (fix ms)

Definitions contained in the importing module mt have precedence over those of the imported mod-
ule ms in case of duplicate definitions. Before including a module, this one needs to be fixed because
references between classes in this module are preserved.

Modules as mixins. As defined by Bracha and Cook [BC90], a mixin is a subclass definition that may
be applied to different superclasses to create a related family of modified classes. In Ruby, a module
mixin is a set of methods intended to be used as part of class definitions. When a module mixin defines
only a set of functions, a module can be used as a mixin using an include operation stated within a
class. In that case all the functions defined in the module are methods applicable to any instance of
the class.

The following example shows the definition of a module mixin named MColor and a class Colored-
Point that uses it:

#Defined in a file MColor.rb
module MColor

def getColor()
@color

end
def setColor(col)

@color = col
end
def setToBlack()

self.setColor(”Black”)
end

end

load ”MColor.rb”
class ColoredPoint

include MColor
def initialize (x, y)

@x = x
@y = y
self.setToBlack()

end
def getX() @x end
def getY() @y end

end

The two methods getColor() and setColor(col) can be invoked on instances created by the class Col-
oredPoint. For example, the following code yields 5 and Black.

@p = ColoredPoint.new(2,3)
puts @p.getX() + @p.getY(); puts @p.getColor()
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Figure 2.1: The class Object is composed of three methods: two versions of printString and a
printOnStream: method

The semantics of the include operation which treats a module as a mixin can be expressed within the
calculus using the following operator:

newClassWithMixin : M→M→ C → D →M
newClassWithMixin = λmt. λmixin. λc. λd.

mt‖{c 7→ fix(λσ. d � mixin σ)}

The module mixin intended to be included in the class c is named mixin. The self-reference contained
in the module mixin is rebound to the class being created by the fix operator.

Use of mixin is specified when a class is created, therefore we could not create an operator include be-
cause the class creation and use of mixin are combined. We defined the newClassWithMixin operator
expressing the semantics of creating a new class composed of one mixin. In order to keep the model
concise, we do not handle situations (i) where a subclass includes some mixins and (ii) when a class
can be composed of several mixins. These can easily be expressed by an operator that would accept a
superclass and a set of mixins.

2.1.5 Selector Namespaces

It is a tradition for Smalltalk and Lisp-based programming languages to offer a mechanism for intro-
ducing class extensions [BDNW05]. A class extension is a method addition or a redefinition applied
to a class already present in a system (see Chapitre 1, Section 1.1). The result is an evolution of the
behavior defined by this class without creating any subclass. The intent of this mechanism is to enable
better distribution of responsibility among the involved classes.

This subsection focuses on selector namespace, a particular class extension mechanism offered by
Modular Smalltalk [WBW88] and Smallscript [Sim02]. A selector namespace is a namespace con-
taining class definitions and method extensions.

For instance, Figure 2.1 shows a class Object defined in a namespace English. This class contains a
method printOnStream: and two methods printString. A first implementation of printString is provided
by the selector namespace English, and the second one by German. In memory, the class Object
contains three entries in its dictionary of methods. Each method has its name preceded by the name
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Figure 2.2: Two class extensions occurs on the class String: two methods asUrl are added
by two different namespaces UrlNamespace and NetNamespace

of the selector namespace that implements it. At runtime, the lookup of methods is done according to
which the namespace messages are sent from.

Sending the message printOnStream: within the selector namespace German is performed according
to the following steps: (i) look up for German.printOnStream:, (ii) German.printOnStream: does not
exist, therefore, (iii) because German imports Object from English, the algorithm continues by look-
ing up System.printOnStream:. (iv) This method is found and invoked.

Selector namespaces are non reentrant. If within a selector namespace a particular method is not
found, then the lookup is pursued in the selector namespace from which the class is imported. How-
ever, a method implementation is always looked up according to the namespace where the message
is actually sent. For instance, invoking printOnStream: within the namespace German triggers the
method English.printOnStream:. This method triggers printString, also the implementation used is
English.printString because the call for it occurs in English. Even if called from within German, the
method English.printOnStream: cannot invokes German.printString. We qualify this lookup as non
reentrant.

Avoiding conflict between class extensions. The concept of selector namespaces was introduced first
with Modular Smalltalk [WBW88], and more recently with Smallscript [Sim02], a Smalltalk imple-
mentation for .Net. A selector namespace defines a namespace for methods and is used to manage
conflicting class extensions. Within such a namespace one can extend any class in the system without
producing conflict: another namespace can contain a class extension having the same name. This is
illustrated in Figure 2.2 where the class String is extended by two namespaces UrlNamespace and
NetPackage, each of them adding a method asUrl.

Importing and extending. Two operators can be performed on a selector namespace: (i) import and
extend a class (extend), or simply (ii) import (import) a class. Importing from a namespace ms and
extending a class c with a set of methods d is expressed with the extend operator:

extend : M→M→ C →M→M
extend = λmt. λms. λc. λd. mt‖{c 7→ (fix d) � ((fix ms) c)}

When a selector namespace extend a class, the extending methods need to keep a reference to the
scope that contains them. In order to keep this reference, a set of methods is a module (note that for
the above formula d ∈M) and it is fixed when used to extend a class (fix d).
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Figure 2.3: The outer class ColoredWidgets refines the class Point. Because classes are
looked up, points produced from a factory obtained from ColoredWidgets are colored

For instance, the namespace English that contains the class Object (Figure 2.1) is defined as:

English = extend λself. {} Object
λs. {printString 7→ λself. englishVersion},

printOnStream 7→ λself. (s � self) printString}

This class Object is extended with a German implementation of the printString method. The German
namespace is defined as:

German = extend λself. {} English Object
λs. {printString 7→ λself. germanVersion}

The second operator associated to selector namespace is the import. A namespace imports a class
without extending with:

import : M→M→ C →M
import = λmt. λms. λc. extend mt ms c λself. {}

2.1.6 Virtual Classes

The notion of virtual classes offered by gbeta [Ern01], Caesar [MO03] or Keris [Zen02a] allows class
names to be dynamically looked up (rather than statically, at compilation time). Virtual classes unify
the method and class lookup under a common lookup algorithm: as well as methods, class definitions
are looked up along the inheritance of encapsulating classes.

In gbeta, virtual classes are implemented as inner classes, and outer classes define the unit of modu-
larization. Class names are looked up in the same way that methods are looked up: inner classes can
be refined within subclasses of the outer class.

Figure 2.3 shows the case where a set of inner classes contained in an outer class Widgets is refined
in ColoredWidgets. The class Point defined in Widgets is subclassed into a new class Point in Col-
oredWidgets. The class PointFactory is visible into this last because it is inherited. When the method
newPoint() is triggered, the class Point is looked up according to the hierarchy of encapsulating classes.
If the factory is obtained from an instance of the outer class ColoredWidgets, then the points produced
are colored.

Two operators modeling inheritance are involved when handling virtual classes: (i) inheritance be-
tween outer classes and (ii) inheritance between inner classes. Within our calculus the semantics of
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Figure 2.4: Composing two units, widgets and widgetsFactory, into one compound, compound1.

these two operators are expressed with the operators extendEncapsulated and extendInner.

Elements in the subclass hide ones defined in the superclass. Inheritance between outer classes is
simply expressed using the operator �. The extendEncapsulated operator is defined as:

extendEncapsulated : M→M→M
extendEncapsulated = λmt. λms. mt � ms

Inheritance between inner classes is defined in a similar way than classical inheritance (Definition
Section 13). The extendInner operator is:

extendInner : M→ C → D →M
extendInner = λmt. λc. λd. λε. (mt\c) ε‖{c 7→ d � (mt ε c)}

For instance, assuming an outer class Widgets, ColoredWidgets is defined as:

ColoredWidgets = extendInner (extendEncapsulated λself. {} Widgets)
Point colorExtensions

where colorExtensions ={color 7→ black,
setColor 7→ λnewCol. λself.{color 7→ newCol} � self}

2.1.7 Units

MZScheme [FF98b] offers an advanced module system based on units. A program unit is an uneval-
uated fragment of code intended to be linked with other units in order to form executable programs.
There is no global namespace of units.

A unit describes its import requirements without specifying a particular unit that supplies those im-
ports. The actual linking of the unit is specified externally at a later stage. Unlike in ML, unit linking
is specified for groups of units with a graph of connections, which allows mutual recursion across unit
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Figure 2.5: The unit widgetsFactory is composed with a new unit coloredWidgets.

boundaries. Furthermore, the result of linking a collection of units is a new (compound) unit that is
available for further linking. One important point of this module system is that connections between
modules are specified separately from their definitions.

The link operation is defined as:

link : M→M→ C → C →M
link = λmt. λms. λa. λc. λε. mt ε‖{a 7→ ms ε c}

Applying a link combinator to units mt and ms makes the value associated to c in ms available in mt

under the alias a. For instance, Figure 2.4 shows a widgets unit defining two classes Point and Circle
and a widgetsFactory unit defining a class Factory. The corresponding expression is:

widgets = λε. {Point 7→ { x 7→ 0, y 7→ 0},
Circle 7→ {radius 7→ 0, center 7→ ε Point}}

widgetsFactory = λε. {Factory 7→ { newPoint 7→ ε Point},
newCircle 7→ ε Circle}}

To make widgetsFactory use the widgets a new compound compound1 is created using:

compound1 = link (link widgetsFactory widgets Point Point)
widgets Circle Circle

The unit compound1 is the result of linking classes Point and Circle defined in widgets under their
original names (Point and Circle) in the unit widgetsFactory. This compound is obtained by linking
the class Point obtained from widgets to the name Point in the unit widgetsFactory. Then, the class
Circle of widgets is linked to the name Circle in widgetsFactory.

As illustrated in Figure 2.5, the widget factory is used by colored widgets, without altering the original
definition of widgetsFactory. This is expressed with:

coloredWidgets = λε. {ColoredPoint 7→ { color 7→ blue, x 7→ 0, y 7→ 0},
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ColoredCircle 7→ {color 7→ blue, radius 7→ 0,
center 7→ ε Point}}

compound2 = link (link widgetsFactory coloredWidgets ColoredPoint Point)
coloredWidgets ColoredCircle Circle

The unit compound2 is the result of linking the class ColoredPoint and ColoredCircle obtained from
coloredWidgets to the unit widgetsFactory under the names Point and Circle.

2.1.8 MixJuice

MixJuice [IT02] is a module system for Java in which a module encapsulates the differences between
the original program and the extended program. The difference is a set of definitions of additions
and modifications of classes, fields and methods. Modules may inherit other modules. As will be
explained in Section 4.4.2, the difference with classboxes and virtual classes is that different versions
of a class cannot coexist at the same time in the same system. For instance, a module defining a point
is defined as:

module point {
define class Point {

define int x = 0;
define int y = 0;
define void moveBy (int dx, int dy) { x += dx; y+= dy;}
define String toString () { return ”point ”+x+”,”+y;}

}
}

The keyword define is used to define a new class member. Without this keyword, the class is refined.
Here the class Point is refined in a colored point:

module coloredPoint extends point {
class Point {

define Color c; // Variable addition
// Redefinition of the method toString()
String toString () { return ”colored point ”+x+”,”+y;}

}
}

The example above uses a single inheritance link. However, multiple inheritance is permitted. In
that case, all modules are linearized by topological sort (similar to the class linearization done in
CLOS [DG87]). The key point of the MixJuice module system is that an original and a modified
version of a set of classes cannot be present at the same time in the same system. This is the major
difference with classboxes apart from the import relationship being specified as inheritance between
modules (more explanation will be given further, in Section 4.4.2).

Within our calculus, semantics of MixJuice modules are expressed using two operators: extends to
express inheritance between modules, and refineClass to refine some part of a class using redefinition
of its class members.

Inheritance of modules is expressed as:

extend : M→M→M
extend = λmt. λms. mt � ms
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Figure 2.6: Taxonomy of different module systems

This operator is the same as that expressing inheritance between outer classes (extendEncapsulated)
for gbeta.

Classes are refined using refineClass:

refineClass : M→ C → D →M
refineClass = λmt. λc. λd. λε. (mt\c)ε ‖{c 7→ d � (mt ε c)}

For a given class, MixJuice does not allow multiple versions to be present at the same time in the same
running system. Therefore, a program can be composed either of colorless points (i.e. using the point
module) or of colored points (i.e. using the coloredPoint module). But a colorless point and a colored
point cannot coexist in the same system. Note that this restriction is not expressed in the operators
described above.

2.1.9 Module System Analysis

We present some of the key characteristics that the different module systems exhibit and that the
calculus helps to clearly identify. Figure 2.6 presents a classification of the module systems we have
discussed. The module systems are classified according to properties that enable extension.

Unextensible Classes. With Java or C#, classes can only be refined through subclassing. The defini-
tion of the imported class cannot be enlarged with a set of new definitions (method or field addition or
method change) from a package other than the package defining it. We refer to such imported classes
as unextensible. These extensions have to be defined on subclasses.

This restriction is expressed within the calculus by (i) fixing the module from which the imported
class comes from and (ii) not extending this class with � (override) or ‖ (extend). Basically, this is
identified by (i) the pattern (fix ms) c present in the import statement and by (ii) the absence of � or
‖.
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For instance, importing a class in Java (Section 2.1.2) is defined as:

importClass = λmt. λms. λc. (hide c)(mt ‖ {c 7→ (fix ms) c})

The new class c is defined as ((fix ms) c) which make it unextensible because it contains fix and no
overriding or extension operations.

Class Extensions. Some module systems allow new method definitions specified in a module to be
added to a class defined in another module. This mechanism complements subclassing. A class exten-
sion is the result of a separation between a definition of a class and definitions that compose this class
(i.e. method definitions). AspectJ [Asp] with the notion of inter-type declaration, MultiJava [MRC03]
with open-classes, HyperJ [TOHS99] with hyper-slices, Smalltalk, CLOS, and Objective-C offer such
a mechanism. Within such systems, there is a conceptual difference between a class definition and
its method definitions: a method definition is not physically included in a class definition but can be
defined externally to the class it belongs to.

The ability of a module system to offer class extensions is expressed in performing an � or a ‖
operation on the imported class. For instance, ModularSmalltalk (Section 2.1.5) allows a class to
be extended by adding new definitions to it. This is illustrated in the extend operation for selector
namespaces (Section 2.1.5):

extend = λmt. λms. λc. λd. mt‖{c 7→ d � ((fix ms) c)}

The imported class c is the result of ((fix ms) c), i.e. the definition of the class c looked up in the fixed
(self-rebound) module. A set of new definitions is added to it by using d � . The class obtained from
the provider module ms is extended with a set of definitions d.

With virtual classes, class extensions and mixins, a part of the definitions composing a class can be
stated at a different location than the class declaration. Gbeta allows a class to be refined in another
unit of modularization (i.e. outer classes). With selector namespaces, part of the behavior can be
defined in a namespace different from the one where the class is declared.

Extension Responsibility. We defined a class extension as a method addition or redefinition for an
already existing class (Section 2.1.5). The responsibility of extending a class belongs to its users.
For instance, with selector namespaces, a class is imported, and then extended. This responsibility
belongs to the user of this class, and not to its creator.

The decision to use a mixin or not when creating a class is made by the creator of the class. This
is why, in Ruby, including a module mixin in the definition of a class is not a class extension in the
sense we defined previously. The choice of using a mixin is taken when the class is created. This is
expressed with the newClassWithMixin operator where the mixin to use is designated when the class
is created.

newClassWithMixin = λmt. λmixin. λc. λd.
mt‖{c 7→ fix(λσ. d � mixin σ)}
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Figure 2.7: In Modular Smalltalk, namespace selectors are not reentrant: invoking printOn()
from the German namespace does not invoke the German version of asString

Local Rebinding. The local rebinding property is provided by an extension mechanism such that
extensions are visible by and see former definitions of the code. A change defined by some class
extensions can use the former definitions, and former definitions can use the new extensions.

A module system offers a local rebinding property if within an import statement a fix operation is
not performed on the module from which a class is imported. The effect of this fixpoint is to make
the imported class use definitions of the importer module. In the studied module systems, gbeta, and
MixJuice have the local rebinding property but not selector namespaces.

For instance, in gbeta (Section 2.1.6), refinements over a set of inner classes are defined within a
subclass of the encapsulating class using the extendEncapsulated operation:

extendEncapsulated = λmt. λms. mt � ms

As no fix operation is involved, the class definition in the parent encapsulating class can introduce new
refinements.

Non reentrant. Selector namespaces (Section 2.1.5) allow a class to be imported and then extended
with new methods. These new methods can invoke the former methods. However, the other di-
rection is not possible: former methods cannot invoke redefined definitions. We call this property
non-reentrance. Selector namespaces do not support local rebinding because they are not reentrant.
For instance, in Smallscript [Sim02] a German translation could be defined as shown in Figure 2.7.
A namespace German extends the class Object with a German translation of asString. However, the
English version of this method belongs to the namespace English where printOn(aStream) is speci-
fied. Therefore, the English version of asString is always invoked by printOn(aStream) even if the
execution occurs from within the German namespace.

The extend operator used to express the class extension semantics with selectors namespace is:

extend = λmt. λms. λc. λd. mt‖{c 7→ d � ((fix ms) c)}

The module ms is fixed before taking the definition of the class c intended to be extended. The
definition obtained from ((fix ms) c) cannot call the extensions defined by d.

With virtual classes, on the other hand, a German translation would be printed whenever the printOn
(aStream) is invoked from within the package German. These two systems exhibit the local rebinding
property. Local rebinding is characterized by taking into account the calling context.
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Privacy in a Module. Module privacy is expressed using the hide operator. For example to declare a
class as private within a Java package, one may use:

private = λm. λc. (hide c) m

With Java and C#, an imported class may be referred to only within the importing package or name-
space. An imported class does not belong to the module’s interface, and so, cannot be imported from
that module by yet another module. This is expressed by the hide operator applied to the result of
the import operation. For instance, the C# usingClassAs operation (Section 2.1.3) expresses the class
import under an alias and it is defined as:

usingClassAs = λmt. λms. λa.λc. (hide a)(mt‖{a 7→ (fix ms) c})

The use of (hide a) prevents one from importing the class from another module.

Mixin Behavior. A Ruby module may define functions that are turned into methods whenever they
are used by a class (Section 2.1.4). We call this a module mixin. The module mixin is applied to the
environment representing the class being defined. This is expressed by the use of the fixpoint operator
fix within newClassWithMixin.

newClassWithMixin = λmt. λmixin. λc. λd.
mt‖{c 7→ fix(λσ. d � mixin σ)}

The expression mixin σ binds the class being defined σ to the module argument ε of mixin. This
mechanism is illustrated here with Ruby’s module mixin but it is also applicable to other mixin mech-
anisms like those of MzScheme [FKF98] or Jigsaw [Bra92].

Connections Separated from Module Definitions. The advantage of units over conventional module
and class languages is that connections between modules or classes are separately specified from their
definitions. Separating the definition of classes from their use in different modules makes it easy to
replace the original classes with new classes without modifying the client.

2.1.10 Other Formalisms

Considerable effort has been invested in studying theoretical foundations of module systems, but to
the best of our knowledge there is no work defining a calculus to compare existing object-oriented
module systems. We limit this section to summarizing work done in expressing module systems of
various object-oriented languages.

In their work on mixins operators Van Limberghen and Mens [MvL96] present the operator encaps
appropriated to deal with multiple inheritance problems, which is an alternative to the hide opera-
tor proposed by Bracha and Lindstrom [BL92]. They mainly focused on multi-inheritance mecha-
nisms.

Ancona and Zucca [AZ99] define a module calculus suitable for encoding various existing mechanism
for composing modules. They define a module as a set of imports, a set of exports, and a set of function
definitions, i.e. components. Modules are composed using a set of operators: sum, reduct, freeze,
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selection. The operator sum glues two modules together, and is roughly equivalent to our override (in
our calculus, import and export are not explicitly part of a module). The operator reduct is a form
of renaming; import and export components are separately renamed via two renamings. The freeze
operators binds input to output names. Finally, selection is used by clients of a module to access its
components. Their approach enables a large variety of existing mechanisms for combining software
components to be expressed (e.g. ML functions, mixin modules). However, no attempt has been made
to express module systems of mainstream object-oriented languages.

Bono et al., [BPS99], define some basic object-oriented constructs in a lambda-calculus with records.
While they focus on expressing mixin composition as the primary extension mechanism, they do not
address the notion of modules and composition operators.

Leroy [Ler00] presents an implementation of an SML-like module system. The SML module system
consists of three notions: a structure which is a set of named components, a signature which is an
interface for a structure, and a functor which is a function that maps a structure into a new structure.
A module is defined by a structure which can be associated with more than one signature. A module
can either be user-defined, or the result of applying a functor to another module. Leroy describes an
attempt at transferring thus module system to other languages such as core C and mini-ML which are
subsets of C and of ML, respectively.

Linking modules together by functor application prevents the definition of mutually recursive types or
procedures across modules boundaries [FF98b]. Objective Caml [OCa] provides an object-oriented
layer as well as an SML-like module system. We did not include this in our comparison because it
would be redundant with the study of MZScheme units.

2.1.11 Conclusion

We have defined a simple calculus in which modules and classes are combined using a set of basic
operators like hide and fix. Then, for various object-oriented programing languages, we expressed
their module systems (i.e. Java packages, C# namespaces, gbeta virtual classes, . . . ) by defining
operators like import or extend. The focus of this section is to express various packaging mechanisms
using a common foundation. Results of this analysis are summarized in the taxonomy presented in
Section 2.1.9. Even if only a very few languages are treated in this section compared to the number
of module systems proposed over the last decades, mainstream languages as well as representative
languages are studied.

When defining the representation of classes, we expressed inheritance with the extendClass operator.
However, we did not model the super reference. This would have brought some additional complexity
to the calculus that would have shifted the focus of this section. Furthermore, not all the of languages
we considered support super (e.g. gbeta).

Numerous formalisms have been developed in recent years to model new kinds of module systems
and their features. However, to our knowledge, ours is the first attempt to develop a general calculus
for modeling and comparing the diversity of module systems provided by various mainstream object-
oriented programming languages.
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2.2 Packaging and Deploying Static Changes

Over the last decade considerable research has focused on new ways to modularize or change a system.
Previous sections presented a comparison of various module systems according to their module oper-
ators. This section summarizes various approaches to packaging and deploying changes at compile or
development time (static changes).

The work presented in this section can be classified according to five families: (i) class extensibility
(class extensions, Unit, Jiazzi, open classes), (ii) module (MixJuice, MJ), (iii) alternative to inheritance
(mixins, virtual classes, nested and hierarchy inheritance), (iv) other approaches (AOP, namespaces).

Class Extensibility

Open classes. MultiJava [MRC03] is an extension of Java that supports open classes and multiple
method dispatch. An open class is a class to which new methods can be added. Method redefinitions
are not, however, allowed: an open class cannot have one of its existing methods refined.

Jiazzi. The unit system of MZScheme has been ported to Java. Jiazzi [MFH01] is an enhancement of
Java that adds support for encapsulated code modules as units. The main difference with MZScheme
is that Jiazzi enables the creation of open classes that can be enhanced with new methods and fields
without invasively modifying the original definitions or breaking their existing subclasses. This en-
ables a modularization of cross-cutting concerns [MH03]. Refinements occur with links between
units.

Parcels. VisualWorks Smalltalk has a sophisticated deployment mechanism named parcels [MLW05].
Parcels are an atomic deployment mechanism for objects and source code that supports shape chang-
ing of classes, method addition, method replacement, and partial loading. Parcels permit object and
source code transportation between and importation into systems. The system uses a binary format
supports extremely fast loading and its provision of method replacements and partial loading frees the
programmer from maintenance tasks required by less flexible technologies.

Lasagne/J. Lasagne/J allows dynamic application of software extensions by behavior modification
of a group of object. A wrapper can wrap any object with new variables and methods (addtion and
redefinition as well). The this pseudovariable refers always to the most encapsulating wrapper. When
a wrapper X is applied to a an object issued from a class C, there is a deep recursion over the graph of
object that changes any reference to C with X.

Summary. Change at the level of the class is done either by means of class extensions, open classes,
or use of mixins. The characteristics of these approaches are twofold:

• A single and unique version of a class can be present in the same system at the same time. This
is the consequence to forbid method redefinition (as with open classes) or to make a method
redefinition global (as with class extension).
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• Units use mixins to define refinement at the level of a class. New mixins can be defined to
extend a class, and are applied to a class by creating a subclass.

Modules

Mixjuice. Mixjuice [IT02] defines difference-based modules, in which a module can refine a class
defined in another module by adding new class members. A refined class constitutes a new version.
Mixjuice provides constructs to define “delta” modules intended to be applied to a “base” module.
This is achieved by creating multiple versions of a Java package. However, at runtime, only one par-
ticular version can be present in the system.

MJ. MJ [CBGM03] is a module system for Java that provides a high-level interface to abstract low-
level Java technical issues related to class loading. The focus of MJ is to support the deployment of
different versions of the same package. As such with MJ changes cannot be added to existing classes.
In MJ, a module contains the following information: (i) class definition, (ii) dependencies with classes
offered by other modules, (iii) access control for this module’s provided classes like class privacy and
restriction for the clients in subclassing provided classes, and (iv) some initialization code.

By removing some technical limitations of the dynamic class loading mechanism related to the use
of CLASSPATH, MJ allows multiple versions of a class to coexist at the same time within a sys-
tem. These versions are referenced by different namespaces (i.e. classloaders), therefore, they are
considered to be two different classes. New versions of a class cannot be propagated to formerly col-
laborating classes without modifying the original dependancies: modules are considered to be black
boxes in which contained classes cannot be modified.

Summary. By providing for a given module m a new version m′ of it:

• With Mixjuice, clients of m can instead collaborate with m′ if the new version m is not present
in the system.

• With MJ, clients of m cannot collaborate with m′ if both m and m′ are present in the same
system.

Current approaches to package changes by means of module operators have limitations regarding
collaborations between different version of a modules and its clients.

Alternatives to Inheritance

Virtual classes. Virtual classes were originally developed for the language BETA [KMMPN87], pri-
marily as a mechanism for generic programming rather than for extensibility [MMP89]. Keris [Zen02a],
Caesar [MO03], and gbeta [Ern99a] offer such a mechanism, where method and class lookup are uni-
fied under a common lookup algorithm. Virtual classes are not statically safe because they permit
types of method parameter to change covariantly with subtyping. In a similar way that a method is
looked up according to an instance, a class is looked up according to an instance (i.e. an encapsulating
class). With such a unification of method and class lookup, the role of a class is overloaded with
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semantics of packages and objects constructor.

Hierarchy Inheritance. Cook [Coo89] presents a use of inheritance as a derivation of modified hi-
erarchies or other graph structures. Links between nodes in a graph are interpreted as self-references
from within the graph to itself. By inheriting the graph and modifying individual nodes, any access
to the original nodes is redirected to the modified versions. For example, a complete class hierarchy
may be inherited, while new definitions are derived for some internal classes. The result of this in-
heritance is a modified class hierarchy with the same basic structure as the original, but in which the
behavior of all classes modified that depend upon the classes explicitly changed is modified. Hier-
archy inheritance is based on having a lookup of classes and on relationship between groups of classes.

Nested inheritance. The Jx programming language [NCM04] is an extension of Java where members
of an encapsulating class or package may be enhanced in a subclass or subpackage. Packages may
have a declared inheritance relationship. Nested classes in Jx are similar to virtual classes. Unlike
virtual classes, nested classes in Jx are attributes to their enclosing class, not attributes of instances of
their enclosing class.

Scala. Scala [sca] is a statically-typed object-oriented and functional programming language. Scala
introduces a new concept to solve the extensibility problem (3.1.2): views allow one to augment a
class with new members. Views follow some of the intuitions of Haskell’s type classes, translating
them into an object-oriented approach. The scope of a view can be controlled, and competing views
can coexist in different parts of one program. A view is statically applied by the compiler to satisfy
type constraints. For instance, if a variable anA is of type A, the compiler would translate an expres-
sion var aB: B = a, which declares a variable aB of type B and initializes it with a reference to anA, as
var aB: B = view(anA), where view is a method (or a function) provided by the programmer, taking an
argument of type A and returning an object of type B. A conversion is done by using type information
provided by the programmer.

Mixin Layers. A collaboration-based design [Hol92, VN96b] aims at supporting large-scale refine-
ments. A collaboration is a set of roles applied to a set of participant objects. Collaborations are
layered linearly to form an application. In mixin layers [SB02], Smaragdakis and Batory represent a
collaboration as a C++ template, a role as a mixin [BL91], and a participating object as a class. A
layered application that uses mixin layers is open to changes by adding new collaborations. However,
for an application that is not layered, mixin layers do not offer a satisfying solution to support unan-
ticipated changes.

Feature-oriented programming. Feature-Oriented Programming is the study of feature modularity
in product-lines [Pre97]. AHEAD [BLS03, LHBC05] is an approach to Feature-Oriented Program-
ming (FOP) where a base system is regarded as a constant and refinements intended to be added are
functions adding features to this base system. A refinement is a function that takes a program as input
and produces a refined program as output. FOP advocates program construction as a set of functions
applied to a base system. New changes are modeled as new functions.

Generic type. Torgersen [Tor04] uses generic type extensions of C# and Java to solve the extensibil-
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ity problem in a secure and type safe manner. His solutions rely on the use of F-bounds [CCH+89]
and wildcards in the declaration of type variable to make them type-safe when a system is extended
with new data-types and operators. However, use of generic type has to be foreseen prior to apply an
extension, as a consequence, this approach does not support unanticipated changes.

Summary. Triggering a class lookup for each class reference is an approach to define specialization
and enhancement of modules, in a similar way of class inheritance. Modules are composed using
inheritance links.

Other Approaches

Aspect-oriented programming. Hyper/J [OT00] is based on the notion of hyperspaces, and promotes
composition of independent concerns at different times. Hyperslices are building blocks containing
fragments of class definitions. They are intended to be composed to form larger building blocks (or
complete systems) called hypermodules. A hyperslice defines methods for classes that are not neces-
sarily defined in that hyperslice: class members are spread over several hyperslices. With its notion
of inter-type, AspectJ [Asp] allows class members to be separated from the class definition by being
defined in an aspect.

Sister namespaces. In Java, a class type is uniquely identified at runtime by the combination of a
class loader and a fully qualified class name. The same class loaded into two different class loaders
(i.e. namespaces) has two distinct types [SC05]. Let’s assume that two classloaders N1 and N2 load
the same class C. One instance of the class C in the classloader N1 cannot be regarded as an instance of
C in a second classloader N2 because they have different types. This is identified as the problem of the
version barrier. Sister namespaces [SC05] relax the version barrier between application components
by defining the notion of binary compatibility and extending the type checker. Sister namespaces
make the exchange of instance of different class versions possible across classloaders by relaxing the
type checker.

2.3 Dynamic Application of Crosscutting Changes

This chapter first presented a comparison of various module systems, then Section Section 2.2 was
about packaging and deploying static changes. This section presents the state of the Art in installing
and removing dynamic crosscutting changes.

Dynamic and crosscutting adaptation has been the source of various researches. We classify them
according to two different approaches: dynamic code adaptation and dynamic extension and replace-
ment of classes.

Dynamic Code Adaptation. With PROSE [PGA02] aspects can be woven and unwoven at run-time.
PROSE allows advices to be joined on a smaller number of join points such as accessing/modifying
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methods and entering/returning methods. However, it does not offer any feature related to class ex-
tension.

Guaraná [OB99] and MetaclassTalk [Bou00] define a reflective architecture based on metaobjects
supporting dynamic method switching. Even if they both support dynamic application changes, the
definition of the class itself is static: dynamic evolution is done at the metalevel. By providing true
delegation, Lava [Kni00] supports dynamic unanticipated changes using class wrappers.

The SELF prototype-based language [ABC+95] allows slots to be dynamically added: a prototype
can be freely extended at run-time with new variables or new methods. However, these slot additions
are global so they may override already existing slots which might affect any clients.

Dynamically Extending and Replacing Classes. In MultiJava [CLCM00] an open class is a class
that can have its behavior extended with new methods. However, redefining methods and adding new
instance variables are not permitted.

IguanaJ [RC02] supports dynamic adaptation of the behavior of arbitrary classes and objects in unan-
ticipated ways. Internal behavior of classes can be changed but it does not support modifications to
their external interfaces. No preprocessor and no source code or the base application are required.
However, it is not clear if a compiler is required or not.

Dynamic Classes [MPG+00] and HotSwap [Dmi01] allow Java programs to change class definitions
during their execution. Instances are updated according to the new class definition following the tradi-
tion of Smalltalk and Lisp which have been using such a technique for decades to support interactive
and incremental programming. However, Dynamic Classes and HotSwap do not provide higher level
mechanisms for applying cross-cutting changes to several classes.

2.4 Conclusion

This chapter analyses the current mechanisms to support unanticipated changes according to three
approaches: (i) module constructs to support extensibility, (ii) packaging and deployment of static
changes, and (iii) dynamic installation and removal of crosscutting changes.

By means of a simple calculus we expressed module systems of various object-oriented programing
languages in order to understand and compare them. The module calculus and the analysis of module
systems were presented in Section 2.1.

Section 2.2 describes various strategies to package and deploy static changes (i) by means of class
extensions, (ii) using dedicated module operators, (iii) defining a lookup for class references.

Section 2.3 presents various strategies to dynamically install and remove crosscutting changes using
two different approaches: (i) dynamic code adaptation using aspects and meta objects and (ii) dynamic
extension and replacement of classes by means replacing class definitions.



Chapter 3

Problems with Classical Module
Mechanisms

The extensibility problem [FF98b] is concerned with the issue of modular extensibility of structure typ-
ically found in application programs. Depending on the programming language and the organization
of the code, it is usually straightforward to add either new data types or new operations without chang-
ing the original program, but with the price that it is very hard to add the other kind [Tor04].

This chapter gives an illustration of the extensibility problem in the AWT and Swing, two very large
libraries written in Java (Section 3.1). The result of the analyses shows how important this extensi-
bility problem is and how deep it can be anchored into mainstream libraries. Then we identify four
properties that a packaging system for an object-oriented programming language should support and
illustrate these properties through a small link checker application (Section 3.2).

The current state of the art presented in the previous chapter focuses on three approaches to sup-
port changes: (i) language constructs to support extensibility, (ii) packaging and deployment of static
changes, and (iii) dynamic application of crosscutting changes. Section 3.3 shows three main prob-
lems with current approaches on this three domain. These will set up the program research of this
thesis.

3.1 Swing/AWT Anomalies: Illustration of the Extensibility Problem

Using subclassing to incorporate crosscutting changes often introduces serious drawbacks to support
maintainability and evolution such as duplicated code and mismatches between the original and the
extended class hierarchy. We illustrate these problems by analyzing Swing [Swi], the Java standard
framework for building GUIs. We first describe the Abstract Window Toolkit (AWT [AWT]) and its
relationships with the Swing framework. Then we show how inheritance is used to share properties
between classes. Finally we identify some important drawbacks of the Swing design.
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Figure 3.1: Swing is a GUI framework built on top of AWT. Fields and methods shown in
JFrame, JWindow and JComponent are duplicated code (gray portion). More than 43% of
JWindow is duplicated in JFrame

3.1.1 AWT and Swing History

In its first release launched in 1995, Java included AWT 1.0, a framework for building graphical user
interfaces. AWT evolved rapidly into version 1.1 to provide a better event handling mechanism. AWT
is close to the underlying operating system, therefore only a small number of widgets are supported
to make code easier to port. In its latest version AWT consists of 345 classes and contains more than
140,000 lines of code.

Release 1.2 of the Java Development Kit included a completely new GUI framework named Swing.
Swing contains 539 classes and more than 260,000 lines of code. This GUI framework is built on top
of AWT. It provides a “pluggable look and feel”, double buffering and more widgets. A small subset of
the core of AWT (Component, Container, Frame Window), and Swing is depicted in Figure 3.1.

In AWT, the root of the graphical widget hierarchy is Component. It provides the essential function-
alities of the GUI framework. JComponent is the base class for most of the Swing widgets. The core
of Swing is defined by subclassing the core classes of AWT. Each Swing widget can be a container for
other widgets, so JComponent inherits from Container. All the widgets except top-level containers
(like windows and frames) inherit from JComponent. The classes JFrame and JWindow inherit from
Frame and Window, respectively.

The AWT and Swing class hierarchies guarantee certain properties and behavior. In the AWT frame-
work (i) a widget is a component – every widget inherits from Component, (ii) a frame is a window
– Frame is a subclass of Window. On the other hand, the Swing framework has the following prop-
erties: (i) a Swing widget is not necessary a Swing component because not all of the Swing classes
inherit from JComponent, (ii) a Swing frame is an AWT frame and an AWT window: JFrame inherits
from Frame which has Window as its superclass, (iii) a Swing window is an AWT window: JWindow
inherits from Window.
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Figure 3.2: Two strategies (gray portions) to introduce changes without impacting existing
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3.1.2 Problem Analysis

Subclassing and refinement relationships are fundamentally different: the former results in a new
class containing the incremental changes to its parent class, whereas the latter results in the creation
of scope within which the original class is changed. As pointed out by Findler et al. [FF98a] and
Torgersen [Tor04] under the extensibility problem, subclassing does not solve the problem of adding
new operations to a class without having to modify or recompile the original program component and
its existing clients.

In Java, if we wish to extend the class Component by subclassing, without impacting existing clients,
we can use either of two strategies (see Figure 3.2): either we build a completely new hierarchy
derived from the root of the old hierarchy, duplicating old features in the new hierarchy, or we derive
new classes from the leaves of the original hierarchy, duplicating the new features.

Swing illustrates an example of this problem. Swing is built on top of AWT and uses subclassing to
extend AWT core classes with Swing functionalities. Since Java supports neither multiple inheritance
nor class extension, this design leads, however, to the following severe consequences:

Duplicated Code. Due to the absence of an inheritance link between JFrame and JWindow, features
defined in JWindow have to be duplicated in JFrame. In Swing, each widget can (i) describe itself (the
accessibleContext variable refers to a description of the component) and (ii) support double buffering
to provide smooth flicker-free animation (methods update(), setLayout(), . . . ). The source code of
JWindow is 551 lines, and JFrame is 829 lines. As a result, 241 lines of code are duplicated between
these two classes: 43% of JWindow reappears as 29% of JFrame.

Breaking Subtyping Inheritance. Whereas all AWT widgets are AWT components (because they
inherit from Component), widgets defined in Swing can either be AWT or Swing components. Fur-
thermore, the Swing design breaks the AWT inheritance relation: while a Window is a Component in
AWT, a JWindow is not a JComponent in Swing. While a Button is a Component and JButton is a
JComponent, a JButton is not a Button [LP91].

Explicit Type Checks and Casts. A Swing component is a container for other components. This is
a feature obtained from Container by inheritance (JComponent is subclass of Container). Therefore
types of subcomponents are Component, and not JComponent (the type of the collection of compo-
nents is Component[]). The following code typifies what happens in Swing components:
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public class Container extends Component {
int ncomponents;
Component components[] = new Component[0];
public Component add (Component comp) {

addImpl(comp, null, -1);
return comp;

}
protected void addImpl (Component comp,

Object constraints, int index) {
...
component[ncomponents++] = comp;
...

}
public Component getComponents(int index) {

return component[index];
}
}

public class JComponent extends Container {
public void paintChildren (Graphics g) {

...
for (; i > = 0 ; i--) {
Component comp = getComponent (i);
isJComponent = (comp instanceof JComponent);
...
((JComponent)comp).getBounds();
...
}
}
}

In the Swing framework numerous explicit type checks need to be performed to determine if a sub-
component is issued from Swing or from AWT. For instance, a JComponent needs to know if its
subcomponents use double buffering or not. 16 type checks (... instanceof JComponent) and 25 casts
to JComponent are performed in JComponent. In the whole Swing library, these numbers rise to 82
and 151, respectively.

Java packages do not provide any mechanism to support unanticipated changes. Once defined, a class
cannot be modified or extended without triggering a recompilation, and therefore a global impact on
all clients. The rest of this chapter is dedicated to a mechanism named class extension allowing new
class members to be packaged separately from the declaration of the class.

3.2 Key Requirements for Class Extensions

Let us first consider a typical scenario, which will enable us to establish some key requirements for
class extensions, while highlighting the main problems to be overcome.

A Link-Checker is an application whose purpose is to report a list of the dead links on a web-page at a
given URL. One natural way to implement a Link-Checker, depicted in Figure 3.3, is to download the
HTML page from the remote website, and parse it to get an abstract syntax tree of the page composed
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Figure 3.3: The conceptual decomposition of the deadlink checker: an HTML parser, an
abstract syntax tree for HTML documents, facility to get links from a page, and a network
library

of various elements representing the HTML tags. Then using a recursive call over the hierarchy, get
the list of the links referenced in the page. The liveness of each these link elements is checked by
pinging the associated host and trying to obtain the status of the linked page. When a timeout is
issued or if the HTTP reply corresponds to an error the link is declared dead.

Based on this example we can identify four properties that a packaging system for an object-oriented
programming language should support: class extensions allowing redefinition, locality of changes,
propagation of changes to collaborating clients, and resolution of conflicts.

Class extensions with redefinition. First, the different elements composing the solution should be
packaged so that they can be used in further applications. We can identify the following modules: an
HTML scanner and parser, an abstract syntax tree for the HTML elements, a recursive call over these
elements to get links contained in a page and some network facilities. One key point is that we have
to be able to group together the definitions of the getLinks methods in a module that is different from
that of the AST. This means that the GetLinks module has to be able to extend the class definitions of
the tree node elements.

Although languages such as CLOS, Smalltalk, MultiJava, and AspectJ offer some solutions, most
other languages (including Java), do not allow a class to be extended by a different module or package
than the one defining the class. Note that subclassing the tree node elements is not a general solution,
since clients that explicitly name the original class will not see the subclass extension.

In our development environment, the default Squeak distribution, the ping method used by the envi-
ronment does not raise an exception but opens a dialog box when a target host cannot be reached. We
therefore not only need the ability to add methods (for packaging the GetLinks module), but also to
redefine them (to patch existing methods). We therefore require a module system that supports class
extensions with redefinition.

Locality of changes. The second key aspect concerns the visibility of changes, i.e., which modules
see the extensions made by other modules. In most approaches that support them, class extensions
have a global visibility. All clients have a common view of any given class, and any extensions are
also seen by all clients. This may lead to unexpected behaviour for some clients.

In the case of the ping method, we only want our redefined version to be visible within the scope of our
application. Other applications may actually rely on the ad-hoc behavior provided by ping. Therefore
the extensions and changes to the system made by one module should not impact the system as a
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whole, but only the module introducing the changes and its client modules. Class extensions should
be confined to the module that introduces them.

Local rebindings. Even though class extensions should be visible only to the module that intro-
duces them, the actual effect from the perspective of that module should be as if the extension were
global.

The pingOnPort: method first adjusts the port (value kept in a variable) and then calls the ping method.
We want that any call to ping made by pingOnPort: triggers the definition brought by our LinkChecker
application, even if pingOnPort: is defined in a scope that also contains a previous definition of ping.
Class extensions visible within a module should propagate to collaborating clients.

Conflicts. Class extensions are useful when, for instance, a library needs to add a particular method to
a class provided by the system. Conflicts arise when an application relies on two modules that extend
the same method of the same class in different ways.

The ping method provided by Squeak is useful for pinging a remote host. Its default behavior is to
display the result in a popup window. The Link-Checker application redefines this method to make
it yield a value and to raise an exception if the host is not reachable. Conflicts can arise with other
modules that make changes to this method. As a concrete example, Squeak has a SocketICMP module
that implements the ICMP network protocol. Amongst other things, this implementation redefines the
ping method with an ICMP-based implementation. Using both the Link-Checker and the SocketICMP
module therefore leads to a conflict because both redefine the method ping.

There are several ways to handle this conflict: (1) the definition in Link-Checker overrides the defini-
tion in SocketICMP’s, (2) SocketICMP’s definition overrides Link-Checker’s, (3) a conflict is detected
at composition time and needs to be resolved, or (4) each extension is defined in a different namespace
from that of the class.

With Smalltalk, CLOS and Objective-C the result depends on which module is loaded/initialized last
which effectively impacts the system. On the other hand, Multijava and Hyper/J detect conflicting sit-
uations at compile time. Selector namespaces, Smallscript [Sim02] and ModularSmalltalk [WBW88]
define the extension in a particular namespace: conflicts are avoided and both extensions are applied
to the system within different scopes. Resolution of conflicting class extensions should take the context
of affected clients into account.

3.3 Class Extension to Support Unanticipated Change

During its life time, an application has to be patched with unforeseen modifications. We characterize
this kind of modification as an unanticipated change. Despite of their various nature, we focus in this
thesis on few kind of changes.

Refining a class. Class extensions provide a mechanism to support unanticipated changes in a static
setting where a class is refined with class member additions and redefinitions. We defined four prop-
erties that a package system should have in order to avoid shortcomings found in the Java library
analysis. These properties are:
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• Class extensions with redefinition. A class extension is a definition of class members that are
separated from the declaration of the related class. A class extension mechanism has to support
redefinition of class members.

• Locality of changes. Defining a system change as a set of class extensions does not have to
impact original clients of this system that rely on the original definition of it.

• Local rebindings. Former code and class extensions have to interact as if extensions were part
of the original code. Extensions have to be visible only to the module that introduces them,
from the perspective of that module (and other module that rely on the extended classes) have
to be as if the extensions were global.

• Avoiding conflicts. Applying different extensions on a system that live in different scopes does
not have to raise conflict because of the locality of changes.

Packaging crosscutting changes. Correcting a bug or adding a feature to a software system often
requires refinements to be applied to several classes. By means of a dedicated language, Aspect
Oriented Programming [Kic96] (AOP) allow for crosscutting changes. However, AOP technologies
are not suitable to cope with software architecture. AOP comes with its own domain application,
which is crosscutting changes, however aspects are not suitable to define architectural components
mainly because they lack composition operations.

As shown in Chapter 2, Java’s and C#’s module system allow for static definition of group of classes,
therefore no extension mechanism (as a module operation) is offered. The other module systems pre-
sented offer ways to define class extensions, however they do not cope with large refinements over
more than one classes.

Dynamic change load and unload. Current technologies to apply dynamic changes on a system
while it is running come with limitations regarding the kind of the granularity of changes.

Dynamic AOP enables an aspect to be applied on and removed from a base system while it is running.
However by supporting only a limited number of join points, aspects are limited in the kind of changes
that they represent. For instance, PROSE [PGA02] does not support class extension.

HotSwap and Dynamic class replacement [MPG+00, Dmi01] allow for class definition change dur-
ing their execution. A change application uses a grain level class. Large scale refinements are not
supported.

3.4 Conclusions

In this chapter, we presented an analysis of the Swing Java library. Our analysis reveals that library
contains duplicated code, broken subtype inheritance, and is strewed with explicit type checks and
casts. This is mainly a consequence of a gap in adequacy of the Java language to package properly
changes and extension that can be defined on a system. This illustrates the need of a class extension
mechanism while controlling visibility of changes.

We defined an unanticipated change as an unforeseen modification of a software, usually represented
by a “patch”. In this thesis, we limit the domain of unanticipated changes to 3 focuses:
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1. Refinement of a class in a static setting. Supporting class modifications as unanticipated changes
in a static setting necessitates for a class extension mechanism to support : (i) class extensions
with redefinition, (ii) locality of changes, (iii) local rebinding, and (iv) avoiding conflicts.

2. Crosscutting refinement. On the one hand, aspect oriented programming is an approach to define
crosscutting concerns, however it is not a means for defining architectural components. On
the other hand, module systems are made to support architectural components. While module
systems offer ways to define refinements of classes, they do not support change at the granularity
of the application, by means of crosscutting refinement.

3. Dynamic application and removal of change. Most of the current approaches to support appli-
cation and removal of software modifications highly limit the domain of the changes.

We restricted the domain of unanticipated changes to three focus. This defines the research program
of this thesis. Each point of this program is addressed in the coming chapters.



Chapter 4

Classboxes

In this chapter we present a mechanism to support unanticipated changes as a refinement of a class
in a static setting. Refining a class by adding or redefining class members is the key to address the
problems we have identified in the previous chapter. We propose as a solution the classbox model
[BDNW05]. Classboxes are a module mechanism supporting local class extension.

In Section 4.1, we introduce classboxes by means of graphical diagrams and running examples. Then
in Section 4.2, we evaluate the classbox model against the problems identified in the previous chapter
by proposing a refactoring of the Swing Java library based on the serious anomalies and inconsisten-
cies we revealed during our analysis. Section 4.3 presents a formalization of classbox semantics. And
finally, in Section 4.4 we revise the taxonomy presented earlier.

4.1 Classboxes in a Nutshell

A classbox is a module containing scoped definitions and import statements. Classboxes define
classes, methods and variables. Imported declarations may be extended, possibly redefining imported
methods. When a classbox is instantiated, it yields a namespace in which the directly defined, im-
ported and extended entities co-exist with the implicitly imported entities.

Scoped Definitions. A classbox defines classes, methods, or variables. Each class, method or variable
belongs to precisely one classbox, namely the one in which it is originally defined. Classes and vari-
ables defined in a classbox are globally accessible by all methods in the scope of that classbox.

Imports. A classbox may import classes and variables from other classboxes. Imported entities thus
become available within the scope of the importing classbox. An imported class may be extended with
new methods, or methods that redefine existing methods. The extended class is then visible within
the scope of the extending classbox, but not in the defining classbox of the extended class. Any class
visible within a classbox (i.e. imported or defined), can be imported from another classbox. The
import relationship is therefore transitive.
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Figure 4.1: The dead-link checker modularized with classboxes

4.1.1 Scope of Methods

A method defined on a class in a classbox CB is visible within that classbox, and within other class-
boxes that import this class from CB. In a given classbox all the methods defined along the chain of
import are visible within this classbox.

If several classboxes extend a class with a method with the same name but with different implemen-
tations, the implementation chosen during an invocation is the one that is reachable according to the
import chain.

A classbox CB that defines a method that already exists in the import chain hides its former definition
from this classbox CB and other classboxes that may import the extended class from CB.

4.1.2 The Link-Checker with Classboxes

This section shows how to use classboxes to modularize the Link-Checker example. Because class-
boxes have been fully implemented in the Squeak [IKM+97] environment, code fragments are pre-
sented in Smalltalk.

The architecture of the Link-Checker application is depicted in Figure 4.1. The classbox Squeak-
CB contains the network facility for checking the existence of a remote host (class Socket with class
method ping: host) and for fetching the content associated to a given URL (class HTTPSocket with
class method getHttp: url).

The classbox HtmlCB defines the HTML framework facilities. The class HTMLParser is used to
parse a text, yielding an abstract syntax tree (AST) composed of nodes such as HTMLEntity (the root
of the structure), HTMLBody, HTMLAnchor (representing a link), . . .

The classbox GetLinksCB implements the recursive algorithm intended to produce a collection of
all the links contained over the AST elements. It imports the relevant nodes from the classbox Html-
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Figure 4.2: The method ping is extended by two different classboxes. Conflict is avoided
because extensions are confined to their respective classboxes

CB and extends each of the classes representing HTML tag elements by defining the corresponding
getLinks methods.

The classbox LinkCheckerCB contains the actual link checker application. It defines the class
LinkChecker, containing one method (check: url) which is the entry point of the application. This
method first gets the raw content of a page designated by url using the class HTTPSocket). It then
parses the page using the class HTMLParser, obtaining an AST of the page. Then it invokes the
method getLinks on the root of that AST, obtaining a collection of all the links on the page. Finally
it checks the liveness of these links by pinging the hosts mentioned in each link. LinkCheckerCB
imports the complete classbox GetLinksCB, so all the extended classes (HTML nodes) are visible
within it. As a consequence, within the classbox LinkCheckerCB the AST generated by HTMLPar-
ser (class imported from HtmlCB) understands the extensions brought by GetLinksCB. To solve the
problem that the method ping: host in the classbox SqueakCB displays its results in a dialog box, the
classbox LinkCheckerCB redefines it to raise an exception instead.

4.1.3 Discussion

Locality of Changes. Although the method ping of class Socket is redefined, its visibility is confined
to the LinkCheckerCB classbox. Unrelated code in the system relying on the original definition of
this method is not affected. This illustrates both class extensions with redefinition and locality of
changes.

Local Rebinding. The classbox SqueakCB defines the class Socket with two methods: ping: host
onPort: number and ping: host. The first one calls the second one, and the latter posts a popup menu
to display the result of pinging a host. This implementation is not suitable for our application. The
classbox LinkCheckerCB imports the class Socket from SqueakCB and extends it by redefining the
method ping: host with an implementation that throws an exception when a host is not reachable.
Calling ping: host onPort: number within LinkCheckerCB triggers the new implementation of ping:
host. This illustrates the local rebinding property.

Conflict. The classbox LinkCheckerCB extends the class Socket by redefining the method ping. This
extension is local to the classbox. Figure 4.2 shows another classbox SocketIcmpCB that also imports
the class Socket and redefines the same method ping. This class extension is local to SocketIcmpCB.
Conflict is avoided because each extension is confined to the classbox that defines it.

4.2 Swing as a Classbox

Because the mechanism provided by Java to specialize code is inheritance, Swing is built on top of
AWT using subclassing. As already shown in 3.1 this extension of AWT is developed at a high cost:
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Figure 4.3: An ideal refactoring based on classboxes

(i) properties defined in AWT according to the inheritance property are not valid in Swing anymore
(i.e. in AWT a Frame is a Window, but in Swing a JFrame is not a JWindow. Not all Swing widgets
are JComponent), (ii) a serious amount of code is duplicated to emulate missing inheritance links in
Swing (i.e. 43% of JWindow is duplicated in 29% of JFrame), and (iii) Swing code is littered with
explicit type checks.

Figure 4.3 shows an ideal situation where Swing would be extending AWT using classboxes. Ob-
taining such a situation would be possible if Swing would have been implemented by following the
inheritance tree of AWT (i.e. introducing a JContainer class) or if we could afford to perform a com-
plete overhaul of Swing. Since Swing, however, is a large framework with complex logic we cannot
rewrite it totally to obtain the situation depicted. In order to illustrate how classboxes offer a working
solution, we refactored Swing as a classbox that refines AWT classes. In this section we first describe
the new architecture of Swing made out of classboxes, then we present the results obtained, and finally
we describe some issues that we encountered while refactoring.

4.2.1 Swing Refined from AWT Class

We focus on the refactoring of the core class JComponent, and then we describe how the classbox
SwingCB is defined.

Component refactored in two steps. The goal of refactoring JComponent is to make the Swing
version JComponent a refinement of the AWT version Component. As depicted in 3.1, the class
JComponent is a subclass of the AWT classes Container and Component. As Container is an inter-
mediate class between JComponent and Component, the refactoring of the class JComponent is done
in two steps, as illustrated in Figure 4.4:

1. Incorporating the class Container in JComponent. A Swing component has the ability to con-
tain other components. Features defined by Container have first to be included in JComponent.
Container defines 108 methods and 21 fields, however only a few of them have to be duplicated
(32 methods related to container management (e.g. add, remove) and events management, and
3 variables). We define this “enlarged” JComponent in the classbox SwingCB. This new class is
a subclass of Component, which is imported in the new classbox SwingCB. JComponent over-
rides 22 methods in Container and most of the overriding methods do not perform any super



4.2. SWING AS A CLASSBOX 43

call. For the methods in JComponent that perform a super call, the two implementations are
simply merged.

2. Making this new JComponent a refinement of Component The inheritance link between JCom-
ponent and the imported Component is replaced by a refinement link.

javax.swing

Component

java.awt

update()

JComponent
accessibleContext

add(Component)

Container
components

remove(Component)

SwingCB

update()

 Component
accessibleContext

add(Component)

components
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add(Component)

Container
components

remove(Component)

Window

Figure 4.4: The refactoring of the AWT class Component is performed in two steps: (i) the
intermediate class is merged to JComponent, then (ii) this merge becomes a refinement of
the AWT class Component

Swing as AWT refined. Figure 4.5 depicts the new architecture of Swing. Because the definition of
a Java package is a valid definition of a classbox, the package java.awt is immediately turned into the
AwtCB classbox: no modification is applied to AWT.

The classbox SwingCB imports the class Component, Window, Frame, and Button from AwtCB. These
classes are refined with the Swing features.

SwingCB

Component

Window

Button

Frame

Container

Button
Frame

AwtCB

Window

getAccessibleContext()
setLayout()
setRootPane()
setContentPane()
...

rootPane

update()

 Component
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add(Component)

components
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Figure 4.5: Swing refactored as a classbox
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4.2.2 Advantages with Classboxes

The Swing classes JComponent, JButton, JWindow and JFrame have been refactored as refinement
of their AWT counterpart classes. The amount of code refactored is about 6,500 lines of code spread
over these 4 classes. Designing Swing with classboxes has several advantages over the original im-
plementation.

Inheritance coherence. The inheritance link defined in the AwtCB is fully preserved in the SwingCB.
Therefore every Swing widgets, including frames and windows, are swing components. The relation
“a frame is a window” stated by AWT is true in SwingCB.

Removed duplicated code. JWindow and JFrame are refactored into refinements of Window and
Frame. As a result, Frame remains a subclass of Window in Swing and all the duplicated methods and
variables related to the layout, root pane and content pane in JFrame are removed. The size of refined
Frame is 29% less than the original JFrame.

Because JFrame and JWindow do not inherit from JComponent, the update() method defined by the
latter had to be duplicated in JFrame and JWindow. With Swing as a classbox, this duplication is
eliminated.

Explicit type checks avoided. Within the SwingCB classbox, a Swing component is a Component.
Therefore, all the explicit type-checks and casts used in the original Swing to check if a subcomponent
is a Component or a JComponent are useless.

Since the checks (... instanceof JComponent) are always true, downcasts from Component to JCom-
ponent are simply removed. The 16 type-checks (... instanceof JComponent) and 25 casts to JCom-
ponent were removed while refactoring the class JComponent (no such expressions are present in the
other refactored classes).

4.2.3 Issues and Limits

Now we discuss the results obtained and the impacts on the packages in terms of their visibility.

Refactoring super calls. Several methods related to the content management in JWindow like re-
move(Component) and setLayout( LayoutManager) override methods defined in Window. These meth-
ods perform a check on a property of the root pane, then call the original definition using a super call.
For instance, the definition of setLayout( LayoutManager manager) in JWindow is:

public void setLayout(LayoutManager manager) {
if (isRootPaneCheckingEnabled()) {

throw createRootPaneException(”setLayout”);
}
else {

super.setLayout(manager);
}

}
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The expression super.setLayout( manager) triggers the implementation defined in the AWT class Win-
dow. As this will be explained in Chapter 8, original is a key word part of the classbox system that
allows for a previous method to be invoked when it is redefined. Refactoring this overriding method
into a refinement of Window implies that the original keyword must be used to invoke the original
AWT definition. This scenario convinced us of the need to introduce the original() construct to the
classbox model.

Need to enlarge visibility of some Swing classes. Replacing the Swing class JComponent by a
refinement of Component enlarges the visibility of some classes that were in Swing. For instance,
JComponent references Swing classes like AncestorNotifier, which are private to the javax.swing
package. Swing classes that were private to Swing need to be visible outside their defining pack-
age.

Limitations of our refactoring. Unfortunately, removing the class JComponent would entail a major
overhaul of Swing. The reason is that each method of the class javax.swing.plaf.ComponentUI refers
to the name JComponent. Given our limited resources for this experiment, we confined this overhaul
to the classes JWindow, JFrame and JButton. As a consequence, our version of Swing does not con-
tain the pluggable look and feel.

Execution cost. With our current implementation of classboxes, the new method lookup semantics is
about 22 times slower than the normal one. This result is obtained from triggering 10000 times the
update() methods redefined in Component. This loop takes 1008 ms, whereas it is 45 ms for the same
method directly implemented in this class. As explained in the following section, our implementation
is rather naive. In our work with classboxes in Smalltalk [BDNW05], we were able to optimize the
implementation so that the cost of the redefined method lookup is only 1.1 times slower (compared to
22 times slower with the Java version).

4.3 The Classbox Model

In Chapter 2 we introduced a calculus for the purpose to model various module systems. For each
module system, semantics of operators were expressed. The emphasis of this calculus was on provid-
ing basic environment operators intended to be used to express high level module operators. Modeling
runtime execution was therefore not the focus. For instance, class hierarchies are flattened, class in-
stantiation was not explicitly modeled and the pseudo variable super was absent.

This section presents a set-theoretic model that precisely defines the static and runtime semantics of
classboxes. We abstract away from the operational details of statements and expressions of a given
object-oriented language, and instead focus on the key features that interact with classboxes. We start
by introducing a basic model of classes, objects and namespaces, where we capture instantiation,
message sending, and self- and super-calls.

On top of this basic model, we then show how classboxes are defined as a mechanism for introducing
class extensions, and for controlling the visibility of class extensions in different namespaces. We
show how locality of changes and local rebinding arise as a consequence of the way that classboxes
are composed.
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4.3.1 Environments

We use the basic concept of an extensible environment as a mechanism for modeling classes, objects
and classboxes. Note that Definition 14 and Definition 15 were already presented in Chapter 2.

Definition 14 An environment ε : D → R?, is a mapping from some domain D to an extended range
R? = R ∪ {⊥}, such that the inverse image ε−1(R) is finite.

We represent environments as finite sets of bindings, for example: ε1 = {a 7→ x, b 7→ y} is an
environment that maps a to x and b to y. All other values in the domain of this environment (for
example, c) are mapped to ⊥.

We normally leave out unessential parentheses. Since an environment is a function, we simply invoke
it to look up a binding. In this case, ε1a = x, ε1b = y and ε1c = ⊥.

Definition 15 An environment ε : D → R? may override another environment ε′. We define ε � ε′ :
D → R? as follows:

(ε � ε′)x def=
{

ε′x if εx = ⊥
εx otherwise

For example, if ε2 = {b 7→ z, c 7→ w}, then (ε1 � ε2)a = x, (ε1 � ε2)b = y, and (ε1 � ε2)c = w. We
employ overriding both for method dictionaries and class namespaces.

4.3.2 Classes, Namespaces and Objects

The primitive elements of our model are the following disjoint sets: C, a countable set of class names,
M, a countable set of messages, and B, a countable set of method bodies.

Definition 16 A method dictionary, δ ∈ D is an environment, δ : M → B? that maps a finite set of
messages to bodies.

For example, δ = {m1 7→ b1,m2 7→ b2} defines a dictionary d that maps message m1 to body b1 and
m2 to b2, and all other messages to ⊥.

Note that, for the purpose of this chapter, we are not concerned with the implementation details of the
method bodies. We only consider which kinds of messages are sent in the bodies.

Definition 17 A class, c〈δ,B, ε〉 consists of a method dictionary δ, a superclass name B ∈ C ∪ {nil},
and an environment ε, called a class namespace, that binds class names to classes.

nil represents an empty class, from which the root of a class hierarchy inherits. By convention, every
class namespace is assumed to contain the binding nil 7→ c〈∅, nil, ∅〉, which we therefore do not list
explicitly.

Definition 18 An object o〈c, φ〉 consists of a class c and an environment φ, which is a class name-
space (obtained from c) extended with a binding for self.
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Note that, for the present purposes, we do not model attributes (instance variables) of objects, aside
from the pseudo-variables self and super.

We can send messages to classes and to objects. We use the notation x[m] to send the message m to
the class or object x.

Definition 19 We can instantiate an object by sending the message new to a class c = c〈δ,B, ε〉:

c[new] def= µσ.o〈c, {self 7→ σ}� ε〉

At this point we recursively bind self to the value of the object itself.

As usual, µx.E binds free occurrences of x in E to the value of the recursive expression itself, i.e.,
µx.E

def= E{µx.E/x}, where E{y/x} is the usual substitution operation, replacing free occurrences
of x in E by y while avoiding name clashes.

Although we do not model the internal details of method bodies here, we must take care to be precise
about the environment within which methods are evaluated. As we shall see when we define class-
boxes, it is precisely the way in which these environments are composed that determines the scope
within which class extensions are visible.

Definition 20 A method closure m〈b, φ〉 consists of a method body b and a class namespace φ that
additionally binds both self and super.

Note that super is bound by methods, not objects, since super-calls are relative to the class in which
a method is defined, not the class from which the object is instantiated.

Definition 21 We can send a message m to an object o〈c, φ〉, where c = c〈δ,B, ε〉 obtaining a method
closure:

o〈c, φ〉[m] def=


m〈δm, {super 7→ o〈εB, φ〉}� φ〉 if δm 6= ⊥
o〈εB, φ〉[m] else if B 6= nil
⊥ otherwise

This definition captures the basic method lookup algorithm of object-oriented programming lan-
guages. If the message sent does not correspond to a method defined in the class of the object, the
lookup continues in the parent class, and so on. If the method is not found, the message is reported
as not being understood (⊥). If a suitable method is found, it is evaluated in a context where super is
bound to the current object, but from the perspective of the method’s superclass. As we can clearly
see, super is an object, not a class. Note that according to Definition 17 the superclass B can be
nil.

Definition 22 A closure may be evaluated, in which case it may send various messages. Here we are
interested in self- and super-sends, and static class references.

m〈b, φ〉Jself mK def= (φ self)[m]

m〈b, φ〉Jsuper mK def= (φ super)[m]

m〈b, φ〉JC newK def= (φ Cφ)[new]



48 CHAPTER 4. CLASSBOXES

4.3.3 Classboxes

A classbox is an open entity that provides a number of classes, and which can be extended. When a
classbox is closed, it yields an ordinary class namespace (Definition 17).

The key point in modeling classboxes is that multiple versions of the same class may be implicitly
present within the same classbox. Suppose that we import the class LinkChecker from the class-
box LinkCheckerCB, and we locally define a class Socket. Even though LinkChecker collaborates
with Socket, ours is a different socket class that has nothing to do with the Socket class known to
LinkChecker. To capture this aspect we must refine the notion of class names to express the originat-
ing classbox to which a class belongs:

• C is the countable set of raw class names,

• X is the set of classbox names,

• C+ = {Cn|C ∈ C, n ∈ X} is the set of decorated class names.

The decorated class name simply encodes the classbox to which the class belongs, i.e., where it was
first defined. We call the superscript n of a decorated class name Cn its origin.

Definition 23 A raw class name C matches a decorated class name Bn if C = B:

C ∼ Bn iff C = B

For example, when we use the raw class name Socket, it may not be clear which Socket class we are
referring to. However the decorated class name SocketSqueakCB unambiguously identifies the Socket
class first introduced in the SqueakCB classbox.

Note that it is this same class that is extended in LinkCheckerCB, since there is no Socket class
defined there. There is no SocketLinkCheckerCB.

Definition 24 A classbox b〈n, α〉 consists of an identifier n ∈ X (i.e. classbox names) and a function
α from class namespaces to class namespaces.

The intuition here is that a classbox is open because it can always be extended with new class defi-
nitions, imports and extensions. As a consequence, we do not yet know the class namespace of the
classes it provides. However we can close a classbox, thereby fixing the class namespace of all the
provided classes.

Definition 25 A classbox b〈n, α〉 can be closed by sending it the close message, generating a fix-

point: b〈n, α〉[close] def= µε.αε

The resulting class namespace must be closed, i.e., all used class names must be defined. Since α is
a function from class namespaces to class namespaces, µε.αε represents a fixpoint in which all the
classes provided by the classbox are made visible to each other.

Definition 26 We may lookup the decorated class name Cn corresponding to a raw class name C in
a classbox b〈n, α〉:

Cα
def=

{
Cn if ∃!n ∈ X , (b〈n, α〉[close])Cn 6= ⊥
⊥ otherwise
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Suppose the LinkCheckerCB classbox is represented by b〈LinkCheckerCB, α〉. Then Socketα
yields SocketSqueakCB, since SqueakCB is the origin of Socket in the LinkCheckerCB classbox.

Definition 27 An empty classbox with identifier n is: empty(n) def= b〈n, λε → ∅〉. Note that
empty(n)[close] = ∅, i.e., closing an empty classbox yields an empty class namespace.

Definition 28 We can introduce to a classbox b〈n, α〉 a new class C that subclasses B (defined in a
classbox b〈m, β〉) with δ as method dictionary by sending it the message def subclasses with.

b〈n, α〉[def C subclasses Bm with δ]

def=
{

b〈n, λε.{Cn 7→ c〈δ,Bm, ε〉}� αε〉, if Cα = ⊥
⊥ otherwise

Note that the formal parameter ε represents the fixpoint we obtain when the classbox is finally closed.
We must therefore extend αε with the new subclass definition, obtaining {Cn 7→ · · · }�αε. We retain
ε as a formal parameter so that the classbox remains open (i.e., λε. · · · ). The side condition states
that it is an error to introduce a class that is already defined in the classbox. Within a classbox, only
decorated class names occur. The newly introduced class has the origin n. We also explicitly identify
the origin m of the superclass.

4.3.4 Importing Classes

Definition 29 A classbox b〈n, α〉 may import a raw named class from another, classbox b〈m,β〉, by
sending it the message import.

b〈n, α〉[import C from b〈m,β〉]

def=
{

b〈n, λε.{Cβ 7→ (µφ.β(ε � φ))Cβ}� αε〉, if Cα = ⊥
⊥ otherwise

Let us call the new classbox we obtain b〈n, α′〉. α′ extends α with the imported definition, but we
must also take care that the environment of the imported class is properly extended with any pertinent
definitions that occur in α′. As before, ε represents the class namespace that we obtain when we take
the fixpoint of α′. We therefore pass ε to α so it is available to all the existing class definitions in α.
We must also look up the correct decorated class name Cβ . Finally, we must bind this to the correct
definition from β, extended with any new definitions from α′.

Suppose we would simply use Cβ 7→ (µφ.βφ)Cβ . This would clearly be wrong, because the class we
obtain would only see other class definitions from β, and not any definitions that may have already
been extended in α. Instead, we create an intermediate namespace µφ.β(ε � φ). ε � φ represents
the environment of β extended with any new definitions from α′. We then pass this into β to make
it available to all class definitions in β. Finally we extract this definition, bind it to Cβ and use it to
extend αε.

Consider, for example, the import relationships in Figure 4.1. The classbox LinkCheckerCB imports
HTMLParser from HtmlCB and HTMLEntity and its subclasses from GetLinksCB. If HTMLParser
were naively imported from HtmlCB, it would not see the extensions imported from GetLinksCB.
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Instead, the import operation is defined so that when HTMLParser is imported, its environment (i.e.,
φ) is extended by all definitions in LinkCheckerCB (i.e., ε � φ). So when HTMLParser is imported,
it sees the extended versions of HTMLEntity and its subclasses. This is the local rebinding mechanism
of classboxes.

Note that it is critical that HTMLEntity imported from GetLinksCB has the same origin as that ex-
pected by HTMLParser. If LinkCheckerCB or GetLinksCB were to define a new class HTMLEnti-
ty, then this would have a different decorated class name from the HTMLEntity originally defined in
HtmlCB, and would therefore be invisible to HTMLParser.

4.3.5 Extending Imported Classes

Definition 30 A classbox b〈n, α〉may extend a raw class named class from another classbox b〈m,β〉,
by sending it the message extend with.

b〈n, α〉[extend C with δ′ from b〈m,β〉]

def=
{

b〈n, λε.{Cβ 7→ δ′ � (µφ.β(ε � φ))Cβ}� αε〉 if Cα = ⊥
⊥ otherwise

where
δ′ � c〈δ,B, ε〉 def= c〈δ � δ, B, ε〉

Extend works just like import, except that the imported class definition is extended with δ′.

As a consequence, importing a class is the same as extending it with a nil extension:

b〈n, α〉[import C from b〈m,β〉] ≡ b〈n, α〉[extend C with ∅ from b〈m,β〉]

As should be clear from the definition, class extensions are purely local to the classbox making the
extension. This guarantees locality of changes. Extensions become visible to other classboxes only
when they are explicitly imported, or implicitly made visible by the mechanism of local rebinding (as
seen in the HTMLParser example discussed above).

Method redefinition is supported since the δ′ introduced by a class extension can redefine methods
existing in the class being extended. For example, not only can the GetLinksCB classbox extend the
HTMLEntity and related classes with a new getLinks method, but the LinkCheckerCB classbox can
import Socket from the SqueakCB classbox and redefine the ping method.

4.3.6 Proving Classbox Properties

Proposition 1 A method defined in a classbox is visible within this classbox.

Proof. Because a method is defined either when a class is (i) defined or (ii) imported, this Proof is
divided in two parts.

(i) Methods defined at the same time than the class they refer to are visible within the classbox where
they are effectively defined. This first part of the proof consists in showing that defining a class C
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with a method m bound to a compiled method CM makes this method visible within the classbox (i.e.
invoking m on an instance of C triggers the expected method CM).

Without loss of generality, assume that C has no superclass (i.e. it inherits from nil).

b〈n, α〉[def C subclasses nil with {m 7→ CM}]

= b〈n, λε.{Cn 7→ c〈{m 7→ CM}, nil, ε〉}� αε〉 = b〈n, α′〉

Closing this classbox yields:

b〈n, α′〉[close] = µε.α′ε = ϕ = {Cn 7→ c〈{m 7→ CM}, nil, ϕ〉}� αϕ

Now the instance of this class Cn is obj = o〈ϕCn, {self 7→ obj}� ϕ〉. Sending a message m to it
yields:

obj[m] = m〈{m 7→ CM}m, {super 7→ c〈∅, nil, ∅〉}� ϕ〉

The implementation identified for the method m is the result of
{m 7→ CM}m = CM.

(ii) Methods defined when importing a class are visible within the importing classbox.

b〈n, α〉[extend C with {m 7→ CM} from b〈m,β〉]

= b〈n, λε.{Cn 7→ c〈{m 7→ CM}, nil, ε〉}� (µφ.β(ε � φ))Cβ}� αε〉

Assuming that Cβ = Cp closing this classbox yields:

b〈n, . . .〉[close] = ϕ = {Cp 7→ c〈{m 7→ CM}, nil, ϕ〉}

The rest of the proof follows what is already shown in (i).

Proposition 2 Importing a class makes its methods previously defined visible in the importing class-
box.

Proof. If b〈m,β〉Cβ = c〈{m 7→ CM, }, B〉ε then

b〈n, α〉[import C from b〈m,β〉]

= b〈n, λε.{Cβ 7→ (µφ.β(ε � φ))Cβ}� αε〉

Assuming that Cβ = Cp closing the resulting classbox yields:

b〈n, . . .〉[close] = ϕ = {Cp 7→ βCp} = {Cp 7→ c〈{m 7→ CM}, B, ϕ〉}� αϕ

Then as already shown in the first proof, sending a message m to an instance of ϕCp triggers the
execution of CM.
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Proposition 3 Within a classbox, a method redefinition takes precedence over its former implemen-
tation.

Proof. Within a classbox b〈m,β〉 a class C has in its method dictionary an entry m bound to a
first implementation CM1. This proof consists in showing that importing C in another classbox and
redefining m bound to CM2 hides the former implementation.

If b〈m, β〉Cβ = c〈{m 7→ CM1}, B, ε〉 then

b〈n, α〉[extend C with {m 7→ CM2} from b〈m,β〉]

= b〈n, λε.{Cβ 7→ {m 7→ CM2}� (µφ.β(ε � φ))Cβ}� αε〉

Assuming that Cβ = Cp closing the resulting classbox yields:

b〈n, . . .〉[close] = ϕ = {Cp 7→ {m 7→ CM2}� βCp} =

{Cp 7→ {m 7→ CM2}� b〈m 7→ CM1, B〉ϕ} =

{Cp 7→ c〈{m 7→ CM2}, B, ϕ〉}

The conclusion of this proof follows the end of the very first proof. Instantiating Cp and sending the
message m executes the new implementation CM2.

4.3.7 Resolving Diamond Conflicts

Conflicts are largely avoided. Classes that coincidentally have the same name but are introduced in
different classboxes do not conflict because they have separate origins. Contradictions arising from
attempts to import the same class from different classboxes of course cannot be resolved automatically.
However, an important class of indirect conflicts is automatically resolved by the nature of the local
rebinding mechanism.

Figure 4.6 illustrates a diamond pattern arising from two import chains with a common ancestor class.
Classbox CB1 defines a class A which provides a method foo returning the value 1. This class is
imported by CB2 where the method foo is redefined to return 2. CB2 also defines a subclass of
A named B. In a similar way, classbox CB3 imports A from CB1 and redefines foo to return 3. A
subclass of A named C is also defined. A fourth classbox CB4 imports B from CB2 and C from CB3.
CB4 does not explicitly import class A.

In the context of CB4 invoking foo on an instance of B yields the value 2, whereas invoking foo on
an instance of C yields 3. However, if CB4 would explicitly import A from any one of CB1, CB2
or CB3, then that version of A would be visible to both B and C. For example, if CB4 would import
A from CB1 and redefine foo to return 4, then both instances of B and C would return 4 when foo is
invoked.
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Figure 4.6: Resolving Diamond conflicts
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Figure 4.8: Inheritance is preserved

4.3.8 Interclass Relationship Preserved

A classbox is a namespace and defines a scope for contained definitions. Importing a class increases
visibility for a particular class to other classboxes. However, relationships between classes like asso-
ciation and inheritance are preserved while importing classes.

Preserving inter-class associations. As stated in Section 4.1.1, an imported class may be extended
with new methods, or methods that redefine existing methods. The extended class is then visible
within the scope of the extending classbox, but not in the defining classbox of the extended class. As
a consequence of the local rebinding facility, an extended version of a class is used in place of its
previous versions, even if some code that rely on a previous version are invoked.

However, a new class definition does not stand for a new version of another class. For instance,
Figure 4.7 describes a classbox CB1 containing two classes, Holder and HolderClient. Holder has
a method getValue returning 10, and HolderClient defines a method getValue that invokes getValue
on a holder. Performing the expression HolderClient new getValue within this classbox returns 10.
Another classbox, CB2, imports HolderClient from CB1 and defines a new class Holder. Because this
new Holder is a new class and not an extension of the original class provided by CB1, Holder is not
locally rebound in CB2. Performing the expression HolderClient new getValue within CB2 returns
10.

Preserving inheritance while importing. As described above, creating a class does not affect the
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Figure 4.9: Unintended class override: In GraphApp, the class Window cannot be instantiated
because of the new class Color

hierarchy of imported classes. Figure 4.8 shows a classbox CB1 defining a class Object and a subclass
Point. This class is imported into another classbox CB2. CB2 also defines a new class Object that
defines a getZ method. As creating a new class does not hide previous class definitions, inheritance of
the imported class is not impacted by local class definition.

Other alternative. One alternative to the lookup of version described above is to use a lookup of
class definitions. A reference to a class triggers a lookup of a class following import links. A new
class definition named C overrides previous definition (or extension) of classes that have the name C.
For instance, on Figure 4.7, instantiating a class HolderClient in the classbox CB2 triggers the method
initialize. This alternative class lookup makes the definition of Holder provided by CB2 used when
initialize of HolderClient is triggered.

In Figure 4.8 the new definition of Object in CB2 overrides the class with the same name in CB1. The
imported class Point has, therefore, the new Object class as superclass. On the example, Point new
getZ returns the value associated to z.

Using a lookup for class may lead to unintended class capture. Figure 4.9 illustrates this by defining
a classbox WidgetCB containing a class Component. This class has a method initialize that sets the
default color of a component. It gets an instance of the class Color by sending the message blue to
it. The classbox GraphAppCB imports the class Window and create a new class Color that does not
define the static method blue. As a consequence, instantiating Window within GraphAppCB leads to
an error because the initialize methods uses the local implementation of the class Color, therefore the
message blue is not understood. The class Color in GraphAppCB is an unintended override of the
previous definition.

4.3.9 Import Explicitly Stated

Classboxes allow a class to have multiple versions at the same time, therefore an object can have
different behaviors according to the context (defined by a classbox) in which it is used. In order to
send messages to an object, the class of this object has to be visible (i.e. imported or defined) in the
classbox in which it is used. For instance, if within a classbox, the message getX is sent to an instance
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Figure 4.12: Implicitly rebinding classes within classboxes

of the class Point, this class has to be visible. If Point is not visible, then a runtime error occurs when
sending a message to a point. This situation is illustrated in Figure 4.10. A new point is obtained from
executing PointFactory new newPoint, and sending the message getX raises an error because the class
Point is not visible within the classbox WidgetCB.

A correct version is shown in Figure 4.11. The class Point is now imported in AppCB, therefore the
expression PointFactory new newPoint getX returns the default value of x (note that the initialization
is not shown on the figure).

4.4 Classboxes in the Taxonomy

Classboxes [BDNW05, BDW03b] is a module system that supports local rebinding. It allows a class
defined in one particular classbox to be extended by means of method addition or redefinition in other
classboxes. Moreover, the changes made by a classbox are only visible to that classbox and class-
boxes that import it. However, when methods of this class are invoked from the extending classbox,
changes are visible from methods defined in the provider classbox (i.e. where the class is imported
from).

The following example illustrates a method extension with local rebinding [BDNW05]. Figure 4.12
depicts a classbox WidgetsClassbox that defines a class Morph, which is the root of the Squeak graphic
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element hierarchy, and a subclass Button. Morph contains a paint() method and a repaint() that calls
paint(). The classbox EnhWidgetsClassbox imports Morph and redefines the paint() method. It also
imports the subclass Button. In the context of WidgetsClassbox, invoking the repaint() method on
an instance of Button invokes the definition of paint() in Morph defined by this classbox. Within
EnhWidgetsClassbox, invoking repaint() triggers the new implementation of paint() defined in this
classbox.

Within our calculus the semantics of classboxes are expressed using the extend operation. Within a
classbox, it imports a class defined in another classbox and extends it with a set of definitions. This
operator is defined as:

extend : M→M→ C → D →M
extend = λmt. λms. λc. λd. λε. mt ε‖{cms 7→ d � (ms ε c)}

For instance, the extension between EnhWidgetsClassbox and WidgetsClassbox is stated:

EnhWidgetsClassbox = extend λself. {} WidgetsClassbox Morph {paint 7→ . . . }

The superscript (e.g. cms) is used to identify the originating classbox in which a class is first defined.
This makes it possible to distinguish classes that are defined from those that are imported and ex-
tended, even if they have the same name. Let’s suppose that classbox WidgetsClassbox defines two
classes Morph and Button, where Button makes use of Morph. If a classbox EnhWidgetsClassbox
imports Button from WidgetsClassbox and defines a new class Morph, then this new class has nothing
to do with the Morph originating in WidgetsClassbox and should not affect the imported Button class.
The superscript identifying the originating classbox ensures that no confusion will result. If, on the
other hand, EnhWidgetsClassbox imports and extends Morph from WidgetsClassbox, then this ex-
tended Morph will have the same originating classbox superscript, and will affect the imported Button
class.

In the same way, new classes are defined as

newClass : M→ C → C → D →M
newClass = λmt. λsup. λc. λd. λε. ms ε‖{cmt 7→ d � ε sup}

A shortcut to extend a class with an empty set of definition is stated as:

import : M→M→ C →M
import = λmt. λms. λc. extend mt ms c {}

4.4.1 Local Rebinding

The local rebinding property is provided by an extension mechanism when extensions are visible by
and see former definitions of the code. A change defined by some class extensions can use the former
definitions, and former definitions can use the new extensions.

Classboxes offer a local rebinding property because within the import statement a fix operation is not
performed on the classbox from which a class is imported. In gbeta and MixJuice, the extend operator
used to express the class extension with classboxes is:

extend = λmt. λms. λc. λd. λε. mt ε‖{cms 7→ d � (ms ε c)}
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Figure 4.13: Classboxes added to the taxonomy

The extended class is the value given by d � ms ε c. The extensions d override the definition of
c obtained from ms s (the module from which the class is obtained). Methods originally defined in
ms s c can call methods defined in d. As no fix operation is involved, the class definition in the parent
encapsulating class can introduce new refinements.

4.4.2 Multiple Class Versions at the Same Time

A class defined in a classbox can be refined in another classbox without conflicting with the original
definition. This is a result of allowing multiple versions of the same class to coexist in the same
system. Each version of a given class can have different collaborating classes present in the same
system.

MixJuice offers the possibility of extending a system by defining differential modules. Such modules
are then composed to form a executable system. However, one strong constraint is that only one
particular version of a class can be present in a system. Therefore, a particular combination of modules
may lead to some unexpected results because some modifications might be propagated to clients that
rely on the original version only.

One current limitation of our formalism is that the restriction of having only one particular version of
a class present in a system is not reflected by the operators described above. The notion of executable
system is not defined, therefore no restriction related to the execution can be formulated.
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4.4.3 Identity of the Extended Classes

Refining a class by subclassing it does not preserve class identity: the original and refined definitions
are implemented by two distinct classes. With virtual classes (Section 2.1.6), a class is refined by
creating a new class that substitutes the first one when a class lookup is performed. As a consequence,
an instance of a class is not an instance of the refined class.

With classboxes, new methods can be added or redefined on an imported class. The new methods
are part of the class behavior but they are only visible from the context of the classbox that defines
them. As a consequence, these methods are only accessible in this classbox and in other classboxes
that import the class from the extending classbox. The identity of the class is preserved. As a conse-
quence, the set of methods understandable by an instance of a class created by a classbox CB1 may
be enlarged if this instance is referenced by some code in a classbox CB2. This is expressed in our
calculus by making the originating classbox explicit by means of a superscript (e.g. cms).

4.5 Conclusion

This chapter outlines the classbox system. Properties of this module system are first informally de-
scribed using an example and then formalized using a simple calculus. Subsequently, this module
system is applied to refactoring Swing. The benefits of classboxes are multiple: duplicated code and
broken extended hierarchy present in the original Swing are removed. Chapter 2 describes a classifi-
cation of various module systems presented in a taxonomy. We extended this taxonomy with a new
discriminating property (“keeping identity when extending”) and where the classbox model is then
inserted.

In the next chapter, we present an efficient implementation of classboxes in a dynamically typed
environment.



Chapter 5

Implementation

Classboxes are a new language construct offering powerful capabilities to package class extensions.
The precedent chapter presented a model of the classbox and discussed its properties. Inserting class-
boxes into a programming environment implies (i) the need for development tools to be classbox
aware and (ii) the execution layer to behave in accordance with the classbox semantics. This chap-
ter focuses on the latter point, and shows an implementation of classboxes in a dynamically typed
language.

The local rebinding property (Section 4.4.1) fully describes the dynamic behavior of classboxes. But
to implement this property a new semantics of the method lookup has to be defined. Section 5.1
provides a description of the new method lookup algorithm. An important property of this algorithm
is that import takes precedence over inheritance. This is illustrated in Section 5.2.

Concretely, there are two different strategies to modify the method lookup: either the virtual machine
has to be modified, or reflective facilities have to be used (bytecode manipulation and message passing
control):

• Classboxes can be implemented by changing the method lookup algorithm of the virtual ma-
chine. This strategy is explained in Section 5.3. We adapted the method lookup and compiled a
new virtual machine that is classbox-aware.

• Section 5.4 describes the second strategy to implement classboxes using bytecode manipulation
and some reflective features of Smalltalk such as a reification of the method call stack.

We evaluate the impact of this extended method lookup algorithm on performance.

5.1 Method Lookup Overview

To achieve a classbox-aware semantics for method lookup we must define a new method lookup
algorithm which is triggered for each message send. Prior to looking up the method over inheritance
and multiple class versions, the classbox path, a set of all the involved classboxes in the computation at
a given time, has to be determined. Subsequently, this path is provided to the method lookup algorithm
to select the proper method according to the message sent.

59
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Figure 5.1: Diamond scheme where two classboxes extend the same class

Classbox path. The classbox path represents the set of classboxes involved in the current computation
and it is obtained from the method call stack. In Figure 5.1 evaluating the expression B new foo in
the classbox CB4 generates a path (CB4, CB2), and evaluating C new foo generates (CB4, CB3).
This path is computed from the method call stack using reflective features of Squeak.

Method lookup. Figure 5.2 describes the lookup algorithm we implemented that ensures the local re-
binding property. The proposed method lookup implementation requires three extra arguments (added
to the method name and the receiver’s class) to search over the graph of classboxes. The selector ar-
gument refers to the method name as a symbol; cls refers to the receiver’s class; startbox refers to
the first classbox where the initial expression is evaluated; currentbox is initialized with startbox
when the algorithm is triggered and is used to keep a reference over recursive call of the algorithm;
and finally path contains the chain of import for a given method call and its value is computed prior
starting the algorithm.

The algorithm first checks whether the class in the current classbox implements the selector we are
looking for (lines 5 to 9). If it is found, the lookup is successful and we return the found method
(line 9). If it is not found, we recurse. The algorithm gives precedence to imports over inheritance,
meaning that first the import chain is traversed (in lines 12 to 18) before considering the inheritance
chain (in lines 19 to 30). This last part is the difficult part of the algorithm, since we need to find the
classbox where the superclass is defined that is closest to the classbox we started the lookup from.
Therefore the algorithm remembers the path while traversing the import chain (line 12), and uses this
when determining the classbox for the superclass (line 21).

5.2 Import Takes Precedence Over Inheritance

Figure 5.2, lines 11-12 shows that if a class is imported (parentBox is not nil) then the lookup is
pursued in the provider classbox (i.e. the classbox from where the class is imported from). If this
class is not imported (parentBox is nil), as shown at the line 19, then the lookup continues in the
superclass.

The lookup in a superclass is done only if it is stated that a class does not provide any implementation
for a given message. Within the classbox model this implies that we have to run over the chain of
imports to make sure that a classbox does not extend this class with the corresponding method.

Figure 5.3 illustrates this property of the algorithm by depicting an example. It shows four classboxes:
GraphicCB, RoundedWindowCB, DoubleBufferCB and DoubleBufferAndRoundedCB. Each of these
classes either defines extensions or simply imports classes to combine some of the extensions.
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1 lookup: selector class: cls
2 startBox: startbox currentBox: currentbox classboxPath: path
3
4 | parentBox theSuper togoBox newPath |
5 self
6 lookup: selector
7 ofClass: cls
8 inClassbox: currentbox
9 ifPresentDo: [:method | ˆ method].

10 parentBox := currentbox providerOf: cls name.
11 ˆ parentBox
12 ifNotNil: [path addLast: parentBox.
13 self
14 lookup: selector
15 class: cls
16 startBox: startbox
17 currentBox: parentBox
18 classboxPath: path]
19 ifNil: [theSuper := cls superclass.
20 theSuper ifNil: [ˆ cls method: selector notFoundIn: cls].
21 togoBox:=path detect: [:box| box scopeContains: theSuper].
22 newPath := togoBox = startbox
23 ifTrue: [OrderedCollection with: startbox]
24 ifFalse: [path].
25 self
26 lookup: selector
27 class: theSuper
28 startBox: startbox
29 currentBox: togoBox
30 classboxPath: newPath]

Figure 5.2: The lookup algorithm that provides the local rebinding

GraphicCB defines a hierarchy composed of three classes: Component provides the methods update
and paint, and Window and Frame both override the method paint. Window and Frame are imported in
RoundedWindowCB. This first class is extended with a new implementation of paint to make corners
of windows smooth by rounding them. DoubleBufferCB extends Component, which is imported from
GraphicCB, and simply imports Frame from this same classbox. Component is extended with a
redefinition of paint to use double buffering. Finally, DoubleBufferAndRoundedCB combines the two
characteristics by importing Component from DoubleBufferAndRoundedCB and by importing Frame
from RoundedWindowCB.

In RoundedWindowCB the new implementation of paint does a super paint which executes the paint
method in GraphicCB. Evaluating Frame new update in RoundedWindowCB triggers the update
method contained in Component and the local definition of paint is executed, the one provided by
RoundedWindowCB.

DoubleBufferAndRoundedCB combines the double buffer and the rounded facilities by importing
Component from DoubleBufferCB and Frame from RoundedWindowCB. Evaluating Frame new up-
date in DoubleBufferAndRoundedCB triggers update defined in GraphicCB which send the message
paint. The implementation taken is the one provided by RoundedWindowCB because Frame is im-
ported from it. This implementation does a super paint, which executes the paint method defined in
DoubleBufferCB.
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Figure 5.3: Import takes precedence over inheritance

5.3 Method Lookup Performance by Modifying the Virtual Machine

As can be expected, introducing the classbox-aware method lookup mechanism introduces some run-
time overhead.

Table 5.1 shows the results for some benchmarks that we performed to compare the regular method
lookup performance vs. the classbox-aware lookup performance:

Benchmark Regular lookup Classbox lookup Overhead
direct call (method addition) 5439 6824 25%
looked up call (method addition) 5453 6940 27%
direct call (method redefinition) 5438 6824 25%
looked up call (method redefinition) 5453 6941 27%
opening and closing a web browser 332 548 65%
opening and closing a mailreader 536 760 41%
call through 1 classboxes - 10234 -
call through 2 classboxes - 10357 -
call through 3 classboxes - 10554 -
call through 6 classboxes - 10654 -

Table 5.1: Benchmarks results from Squeak comparing the regular method lookup mecha-
nism with the classbox-aware virtual machine (units are in milliseconds)

• Sending a message defined in the class of the instance (10 million times), and sending a message
defined in a super class hierarchy (10 million times). We measured two sets of method calls
regarding if a method is added or redefined. This distinction will be useful for comparing this
approach to an alternative implementation strategy presented in Section 5.4.

• Measuring launching and closing of two applications implemented in Squeak (a web browser
and an e-mail client) within the same classbox (average over 10 times).

• Performing a method call through a chain formed by classboxes extending a class.

The table shows that the time performance penalty for the new lookup scheme by itself is roughly 25
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percent, where the real-world applications run about 60 percent slower. We think that this difference
is due to the fact that we did not adapt the method cache in the virtual machine. Note that this
particular current implementation is straightforward and does not incorporate any optimisations yet.
We are however considering changing the structure of the method cache in order to take classboxes
into account.

5.4 Method Lookup Performance by Manipulating Bytecode

To increase the performance problem from the simple approach shown in Section 5.3, we did a second
implementation of classboxes. With this new implementation, there is no need to modify the VM (due
to the message passing control mechanism [Duc99] offered by Squeak) and the cost of the new method
lookup greatly reduced (thanks to a cache mechanism).

With classboxes several versions of a method can coexist simultaneously. Depending on where this
method is called from (i.e. from which classbox) the right method implementation is selected ac-
cording to the method lookup algorithm described previously. When a classbox extends a class it
can either be a method addition or a method redefinition. With this implementation, calling a method
that has been simply added by a classbox does not impose any overhead. However calling a method
that has been redefined has an extra cost: the lookup algorithm is performed. However, this result
is cached. Our cache mechanism is based on the following basic assumption: a redefined method is
often called by the same object within the same classbox. This cache uses a reification of the method
call stack (using the pseudo variable thisContext in Smalltalk). The byte-code of an extended method
is transformed to include 5 byte-codes that check if the caller for this method is the one that has been
previously cached.

This cache mechanism is illustrated on the following example. Lets assume a method foo that simply
returns the value 10:

foo
ˆ10

20 pushConstant: 10
7C returnTop

This method foo is encoded with 2 byte-codes. For method addition there is no need to use a cache
because there is only one version of the method present in the system. If this method is redefined, a
cache mechanism has to be involved to speed-up the method lookup. After a first call, the bytecode
for the method foo is redefined as follows:

foo
(thisContext sender == methodContextSenderCache)

ifTrue: [ ˆ 10]
ifFalse: [ dispatcherCache recreateMethodForClassbox.

ˆ self foo]

The first line checks if the the reification of the stack frame of the current call (using thisContext) is
the one that is cached (in the value methodContextSenderCache). The byte-code corresponding to
this method is:

89 pushThisContext:
D4 send: sender
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25 pushConstant: methodContextSenderCache
C6 send: ==
99 jumpFalse: 36
23 pushConstant: 10
7C returnTop
21 pushConstant: dispatcherCache
D0 send: recreateMethodForClassbox
87 pop
70 self
D2 send: foo
7C returnTop

The original method body is bolded. 5 extra byte-codes are added in front corresponding to the
check.

Benchmark Regular lookup Classbox lookup Overhead
direct call (method addition) 5435 5435 0%
looked up call (method addition) 5452 5453 0%
direct call (method redefinition) 5438 12553 130%
looked up call (method redefinition) 5453 12567 130%
opening and closing a web browser 332 333 0%
opening and closing a mailreader 536 535 0%
call through 1 classboxes - 12553 -
call through 2 classboxes - 12561 -
call through 3 classboxes - 12550 -
call through 6 classboxes - 12553 -

Table 5.2: Benchmark results from Squeak comparing the regular method lookup mecha-
nism with the classbox-aware method lookup (units are in milliseconds)

As in Section 5.3, Table 5.2 illustrates the cost of the method lookup according to three bench-
marks:

• Sending 10 million time a message to an object in four different situations: (i) direct invocation
of a non redefined method, (ii) invocation of a non redefined method in a superclass, (iii) direct
invocation of a redefined method, and (iv) invocation of a redefined method in one superclass.

• Measurement of two applications that does not contain any method redefinition.

• Call through a chain of classboxes.

Invoking a method that has been simply added without being redefined does not have any overhead.
This is due to the cache mechanism which is involved in only for method redefinitions. This is
illustrated in the third and fourth row of Table 5.2. The overhead is about 130% compared to classical
method call. This is due to the cache mechanism. Note that these figures represent the worst case,
where the overhead is maximal: the original method is 2 bytecodes long, and when instrumented with
the cache it is 13 bytecodes long.

Because the virtual machine is left untouched, using applications that do not redefine methods does
not have any cost.
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“Call through classboxes” measures the cost of calling a redefined method (i.e. instrumented with a
cache) through a chain of classboxes. It shows that there is a constant overhead that does not depend
on the graph of import. Note that these benchmarks only focus on the worst-case, i.e. when a method
is extended as the cost of executing normal methods is not changed.

5.5 Discussion

We briefly discuss the two implementation strategies.

Virtual machine modification. Modifying the virtual machine has the advantage of hiding all the
machinery of classboxes from the programmer. Even by using the reflective features of Smalltalk
the user cannot access to a description of the method lookup, which is valuable for security reasons.
However the maintenance of particularized virtual machine is high and debugging is hampered by the
lack of good debugging support. This explains why our runtime performance was not optimal (64%
of slowdown for a normal use).

Controlling send of messages. By keeping the virtual machine untouched, the development time and
the maintenance is highly improved. All the classical development tools are available and the new
method lookup algorithm can be debugged using the available debugging facilities of the Smalltalk
environment. However, the classbox machinery can be easily exposed using reflective Smalltalk fea-
tures. As only the redefined methods trigger the new method lookup, the performance of this approach
is reduced to only when it is necessary.

5.6 Conclusion

This chapter presented two different implementations of classboxes namely, one that modifies the
virtual machine to take the new semantics of the method lookup into account, and the second approach
that involves performing bytecode manipulation and is based on control of message passing.

In practice, keeping the virtual machine unmodified to benefit from classboxes has the big advantage
to not have to update the modified VM whenever some enhancements to the original VM are released.
Also, modifying the VM requires significant efforts to reach a stable level.
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Chapter 6

Runtime Adaptation with Dynamic
Classboxes

While it is possible to design an application to be adaptable in specific ways, by using approaches
such as the Strategy design pattern [GHJV95], it is difficult, if not impossible, to anticipate all the
ways in which applications may need to be adapted while a system is running.

Whereas Chapter 4 treated unanticipated changes in a static setting by means of class extensions, this
chapter focuses on a second kind of unanticipated changes, dynamic system adaptation.

6.1 Introduction

Dynamically adapting a running application means changing its behavior without stopping and restart-
ing it [PAG03, RC02, PGA02, OB99, MPG+00, Dmi01, CLCM00]. Mobile devices and embedded
systems often require dynamic adaptation [Sar04]. Static AOP aims at modifying the control flow to
an application [Kic96]. However this has to be specified statically, at compile time. Recently, there
has been a growing interest in using dynamic aspect-oriented techniques [PGA02], class replacement
[MPG+00, Dmi01] and class extension [CLCM00] to support dynamic adaptation. However, existing
implementations either limit the kinds of changes that can be applied, or require a modified virtual
machine.

Without a scoping mechanism, composing several aspects that extend a class is delicate (especially
when these aspects overlap each other) and requires a dedicated language (Hyper/J [OT00]). As-
similating an aspect as a scope that bounds the visibility of its extension makes composition easier:
aspects that conflict with each other can be used at the same time because their definitions are visible
in different scopes.

Summary. Our approach to dynamically applying changes is based on classboxes. This chapter
describes an extension to classboxes (i) to support addition of instance variables and (ii) to make them
fully dynamic: they can be dynamically and atomically loaded and unloaded.

Within a classbox, classes are defined or imported from other classboxes. Imported classes can then
be extended. These extensions consist of adding new instance variables, and adding and redefining

67



68 CHAPTER 6. RUNTIME ADAPTATION WITH DYNAMIC CLASSBOXES

methods. However, such extensions have bounded visibility: variables and methods defined on a class
are visible only visible from the perspective of this classbox.

Contributions. The contributions of this chapter are:

• Import relationships between classboxes can be dynamically modified and added on the fly.

• Classboxes can dynamically be replaced by a new classbox or a set of classboxes.

Structure of the chapter. In this chapter we motivate dynamic adaptation (Section 6.2). Then the
classbox model is described by showing how it solves the adaptation problem (Section 6.3). Finally,
some implementation issues are described (Section 6.4).

6.2 Dynamic Adaptation Needs

We motivate the need for dynamic adaptation and show how traditional approaches do not offer satis-
factory solutions.

6.2.1 A Motivating Example

While the primary function of a cellphone is to make phone calls, nowadays all cellphones provide nu-
merous advanced display facilities (i.e. colors, aliasing, 3D, animations . . . ). Such advanced features
are considered to be non-essential and in case of particular situations such as device overheating or
battery power shortage can be disabled to preserve the primary cellphone behavior [Sar04]. During a
phone call, disabling non-essential features to spare the battery must not interrupt the communication.
Under these conditions systems such as a cellphone cannot tolerate being halted to be recompiled:
they have to be adapted on the fly.

Figure 6.1 depicts the parts of a mobile cell phone related to its display capabilities. Many current
cellphones offer two LCD screens: an internal one only usable when the phone is open, and an external
one displaying information about incoming calls. The external screen usually has fewer capabilities
than the internal one. The cellphone’s operating system provides an abstraction of the hardware to the
application environment. It contains several modules related to fault management, power management
and resource management.

The application environment contains (i) the user interface defined by the navigation application (Na-
vigation), (ii) a controller for the internal screen and (iii) another controller for the external screen, (iv)
graphical user interface widgets like scroll bars, menus, progress bars (2DWidget) using (v) a lower-
level set of graphical elements used by the widgets such as texts, lines or rectangles (GraphicalElement).

6.2.2 Dynamic Adaptation

A typical scenario of dynamic adaptation occurs when the fault manager receives a low battery event
triggered by the hardware. The power consumption has to be reduced, so the power manager asks
the resource manager to reduce its needs by downgrading some non-essential facilities like the dis-
play [Sar04]. When the battery is full and the power consumption is not restricted, the display uses
advanced animations and 3D rendering to display widgets to give a more attractive display to the
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Figure 6.1: The application environment contains 5 parts: Navigation defining the main ap-
plication, two controllers related to the internal and external screen (InternalScreenController
and ExternalScreenController), 2DWidget offering some graphical user interfaces widgets and
GraphicalElements containing low-level graphical facilities

end-user. Reducing the display facility in case of power shortage (less than 20% of the battery left)
consists in keeping the internal screen fully active but removing the animation and using a colored
two dimensional rendering on the external screen. When the lower threshold of 8% approaches, 3D is
removed from the internal screen and the external screen becomes colorless.

Applying changes to a hierarchy. Switching from 3D rendering to 2D rendering is done by changing
the set of methods defined on the widgets. However, if the graphical elements have to be colorless,
the color concern applied to the hierarchy has to be removed from the existing hierarchy. This mod-
ification consists in removing an instance variable and a method setColor: color from a class root of
the hierarchy, and providing a draw method for each of the graphical elements (subclasses of Graphi-
calElement). These new draw methods do not use the color variable.

Figure 6.2 presents a typical problem of extension. It describes the changes applied to a hierarchy
consisting in adding or removing a color concern. Adding the concern means adding an instance
variable color and a method setColor: color to the abstract class GraphicalElement. Also, each of the
subclasses are extended with draw and aliasing methods that use the color variable. Removing this
concern means removing the aliasing method, replacing the colored draw method by the colorless one
(that does not use the color variable), and removing this variable.

Key problems. Dynamic adaptation of an application consists in changing the definition of the appli-
cation to have a proper configuration according to its context and environment at a given moment in
time. As illustrated by the above example the following points have to be addressed:

• Dynamicity. These changes have to be applied dynamically: a cellphone cannot be interrupted,
stopped and then restarted. For instance changing the display configuration during a phone call
should not be perceived by the user. Changes have to be loaded when they are necessary and
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Figure 6.2: Adding and removing a color concern throughout a hierarchy of classes (bold
elements indicate variation)

unloaded at runtime to spare memory and battery consumption [Sar04].

• Small runtime. The runtime system has to be kept small and simple. This means that a com-
piler should not be part of the runtime. Changes should be done without requiring any source
code.

• Changes crosscut several classes. Adapting a part of a system requires some dynamic changes,
such as adding or removing state (instance variable) or fragment of behavior (set of methods),
that have to be applied to a set of classes.

6.2.3 Scoped Changes

Due to space limitations, redundancies in the system have to be avoided. Even if one screen is colored
and the other not, there should be only one hierarchy of graphical elements used by the widgets. This
is achieved by scoping the changes applied to the application. Only some particular changes, like a
color concern, applied to a set of classes are accessible within one part of the system (e.g. internal
screen) whereas these extensions might not be visible within another part (e.g. external screen).

Key problems. Changes required by different parts of a system have to be scoped separately to avoid
conflicts when applying different changes at the same time and to limit the visibility of the changes to
the part of the system that actually needs them.

6.2.4 Limitation of Traditional Approaches

Extending a class by creating a subclass imposes some constraints on clients of the extended classes
[FF98a, BDW03b]: references contained in a client have to be updated. Extending a hierarchy using
subclassing also leads to code duplication and static type issues. Figure 6.3 shows how the base system
containing the graphical hierarchy could be extended based on subclassing with a color concern. It
is assumed that we only consider single inheritance here. Each graphical element adds the instance
variable color, redefines the method draw (to take the color into account), and adds the methods
setColor: color and scale: factor.
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Figure 6.3: Extensions by subclassing

This leads to several drawbacks:

• Duplication of code. The color variable and the setColor: color method are duplicated as many
times as there are graphical elements. The consequence is that maintenance becomes harder and
more error-prone. For instance a future evolution that makes the color concern evolve would
also need to be duplicated.

• Clients need to be adapted. The reuse of existing classes (originally intended to be used with
the first version of the library) implies some adaptations because these classes refer to original
classes (Rectangle, Line, . . . ) and not the subclasses representing the extensions (CRectangle,
CLine, . . . ).

• Statically typed languages. In Figure 6.3 each of the nodes is subclassed, leading to a great
deal of type casts in order to be type safe. For instance the aliasing method can be used only
through the type of the extension (CRectangle, CLine, and CText) and not from the type de-
fined by GraphicalElement. By using single inheritance, subclassing the class GraphicalEle-
ment define a new hierarchy with ExtendedGraphicalElement at the top, duplicate the classes
Rectangle, Line, and Text.

6.3 Supporting Dynamic Adaptations With Classboxes

6.3.1 Dynamic Application of Classboxes

We extend classboxes to enable them to adapt to an application while it is running. This extension
consists in making a classbox installable and removable at runtime. There is no need to stop and
restart a running system. No source code is required. A classbox can be dynamically swapped by a
new classbox or a set of new classboxes: the new classbox(es) must provide at least the same set of
classes.

When the amount of energy left in the battery enters a different range, connections between the class-
boxes are modified and classboxes that are not used anymore are unloaded. For instance with less
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than 8% of the battery the internal screen uses colored 2D widgets and the external one colorless
2D widgets: the 3D facility becomes unnecessary. Classboxes are then rearranged (Figure 6.4) to
make the internal screen use colored 2D widgets and the external one use colorless 2D widgets: Ex-
ternalScreenCB imports colorless graphical elements from GraphicalElementsCB, InternalScreenCB
now imports the widgets from 2DWidgetCB. The classbox 3DWidgetCB becomes unnecessary and is
unloaded from the memory to save some energy.

6.4 Implementation

Our current implementation is made in Squeak [IKM+97], an open-source Smalltalk implementa-
tion, and uses the bytecode manipulation technics (i.e. the second strategy described in the previous
chapter). In this section we discuss some central implementation points and give some performance
results.

On-the-fly Method Switching. If a method is replaced while it is activated, then previous calls
continue with the former definition while any new call triggers the new definition. This is an approach
similar to Java [Dmi01] where all invocations of old methods are allowed to complete, whereas all
method calls initiated after class redefinition go to the new method. This is also true if a method calls
itself after being changed. The call invokes the new method definition, and then continues with to the
old definition.

Updating Instances. When adding new instance variables to a class the natural question regards
existing instances of the modified class [Riv97, Ser99] . These need to be adapted by having their
size updated to the number of new variables added. New variables are initialized with an empty value
(nil). Extending the state of a class is done atomically no thread or external signal can interrupt this
operation. This is necessary to preserve the consistency of the running system.

Adapting Bytecodes. With the usual set of bytecodes used with virtual machines, accessing an in-
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stance variable of an object is done using an offset. For instance the method scale: factor in the
class Rectangle accesses the pt1 instance variable by referring to it through the first field of the ob-
ject.

Adding a color instance variable in GraphicalElement triggers an adaptation process of the scale:
factor method because the first field now corresponds to the color instance variable. Offset references
remain consistent to the variable they refer to by computing a new offset for instance variables defined
in subclasses.

The variable color has to be placed at the first offset in the class GraphicalElement because it reduces
overhead when performing the necessary linearization when creating instances.

This is done by manipulating the bytecodes of a method and adapting the bytecodes that represent
accesses (read and write) to instance variables.

Performance. With our current implementation, the cost of installing and uninstalling a classbox that
extends 100 classes with 500 methods is about 16 seconds. Note that this result is just a preliminary
result and is obtained with our development. We are confident that the initial performance figures
for installing and uninstalling classboxes can be significantly improved by more careful coding of the
dynamic engine, by using an optimized compiler and by removing all the development tools that are
unnecessary for an end-user application.

Having added dynamicity to classboxes did not bring any runtime cost when invoking an added
method. Calling a normal method (result of a method addition) does not cost any overhead. However,
there is an overhead of about 50 % when calling a redefined method. This overhead is due to the
local rebinding facility: when sending a message, a computation based on the method call stack is
performed in order to take the expected method implementation when invoked. Instantiating a class
has no overhead.

This has to be put in contrast with other dynamic adaptation of behavior mechanism. IguanaJ [RC02]
is 24 times slower then a normal JVM to call a method and return from it. Object creation is 25
times slower than a classical Java VM. Most of the other runtime reflective architecture like PROSE
[PGA02] or Guaraná [OB99] indicate delays of the same order.

6.5 Conclusion

Few solutions exist to support dynamic adaptation and dynamic application of changes. Classboxes
allow a module to add or refine methods, and to add state to classes defined in other modules. In
this chapter we extended classboxes to be dynamically replaced by a new classbox or by a set of
classboxes.

A classbox offers a uniform and powerful mechanism to support a simple and structural kind of aspect.
Classboxes do not offer the possibility to define joint-points like before or after. However, classboxes
unify the notion of modules with that of aspects. In addition classboxes dynamicity supports dy-
namic adaptation by allowing changes to be installed and removed dynamically. As such, classboxes
represent a important step in our quest for the minimal mechanisms that support aspect-oriented pro-
gramming.
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Chapter 7

Crosscutting Extensions with Traits and
Classboxes

Classboxes allow classes to be extended with methods addition and redefinitions. This kind of exten-
sion is nominative, in the sense that an extension is applied to a single class. By combining classboxes
with traits [DNS+05], this chapter proposes an enhancement of classboxes to make a set of meth-
ods a crosscutting extension i.e. applicable to different classes. This correspond to the third kind of
unanticipated changes presented in Chapter 3.

Traits define groups of methods that can be arbitrary used by classes if some requirements are ful-
filled [DNS+05]. This chapter proposes a symbiosis of classboxes with traits. As a result, class
extensions defined in a classbox as a trait can be applied to any class.

7.1 Introduction

By importing and extending the root of a class hierarchy, an extension is propagated to all subclasses
because of class inheritance. The same extension cannot be applied to multiple classes without form-
ing a class hierarchy. The reason for this is that a class extension is nominative, i.e. it is applied to a
designated class.

Making a class extension applicable to various classes requires to define a set of methods (i.e. a class
extension) separately from the class to which these methods should extend. A group of methods can
therefore be later on applied to a class, resulting in a class extension.

Within the spirit of mixins, traits [DNS+05] offer a simple compositional model for structuring object-
oriented programs. A trait is essentially a group of methods that serves as a building block for classes
and is a primitive unit of code reuse. With traits, classes are composed from a set of traits by specifying
glue code that connects the traits together and accesses the necessary state.

Summary. This chapter describes the combination of traits and classboxes resulting in a system where
classes can be extended with crosscutting changes in a safe manner: several traits can be applied to
collaborating classes, and existing clients of the classes do not get impacted by the changes that can
be brought dynamically. Concretely, we first present an enhancement of classboxes that supports the
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local use of a trait by a class. Then we present an application of the model to express collaborations
useful to define a layered software architecture.

Contributions. The contributions of this chapter are:

• It describes an approach supporting unanticipated crosscutting changes based on a symbiosis
between traits and classboxes.

• The notion of class extension offered by classboxes has been enhanced by allowing a class to
locally use a trait.

• Extensions modeled as traits are applicable multiple times (i.e. to different classes), as in the
original version of classboxes.

• This combination between traits and classboxes can be applied to express a collaborative archi-
tecture where a classbox defines a collaboration and a trait defines a role.

Structure of the chapter. In this chapter, Section 7.2 describes traits and illustrates them with an
example based on modeling geometrical objects. Section 7.3 presents the symbiosis of these two
models. Then Section 7.4 summarizes the idea behind collaborations and illustrates the symbiosis
of traits and classboxes by structuring an application of graph traversal. Finally, an evaluation is
presented in Section 7.5, and Section 7.6 summarizes the chapter.

7.2 Traits

Traits are essentially sets of methods that serve as the behavioral building blocks of classes and the
primitive units of code reuse [DNS+05]. Classes (and composite traits) are composed from a set of
traits by specifying glue code that connects the traits together and accesses the necessary state. With
this approach, classes retain their primary role as generators of instances, while traits are purely units
of reuse. As with mixins, classes are organized in a single inheritance hierarchy, thus avoiding the
key problems of multiple inheritance, but the incremental extensions that classes introduce to their
superclasses are specified using one or more traits.

Several traits can be applied to a class in a single operation: trait composition is unordered. Traits
contain method definitions and method requirements. While composing traits, method conflicts may
arise. A class is specified by composing a superclass with a set of traits and some glue methods. Glue
methods are defined in the class and they connect the traits together; i.e. they implement required trait
methods (possibly by accessing state), they adapt provided trait methods, and they resolve method
conflicts.

Trait composition respects the following three rules:

• Methods defined in the class take precedence over trait methods. This allows the glue methods
defined in a class to override methods with the same name provided by the used traits.

• Flattening property. A non-overridden method in a trait has the same semantics as if it were
implemented directly in the class using the trait.

• Composition order is irrelevant. All the traits have the same precedence, and hence conflicting
trait methods must be explicitly disambiguated.
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Figure 7.1: The class Circle is composed of three traits TColor, TCircle and TDrawing. A trait
consists of a name, a list of defined methods (left-hand pane) and a list of required methods
(right-hand pane). A conflict is resolved by redefining the methods hash and =

A conflict arises if we combine two or more traits that provide identically named methods that do
not originate from the same trait. Conflicts are resolved by implementing a glue method at the level
of the class that overrides the conflicting methods, or by excluding a method from all but one trait.
In addition traits allow method aliasing; this makes it possible for the programmer to introduce an
additional name for a method provided by a trait. The new name is used to obtain access to a method
that would otherwise be unreachable because it has been overridden [DNS+05].

Example: geometrical objects. A graphical object (circle, rectangle, . . . ) can be decomposed into
three reusable pieces of behavior: managing its color, its shape, and its rendering. Figure 7.1 illustrates
this principle for a circle1.

The shape of a circle is expressed by the TCircle trait, color management by the TColor trait and the
rendering by TDrawing. Graphically, a trait is depicted by a box having three distinct parts. The
upper part contains the name of the trait, the left part contains the methods defined, and the right
part declares the list of required methods. TCircle requires four methods: center, center:, radius, and
radius: and provides methods such as draw, refresh, and refreshOn:. The TColor trait requires rgb and
rgb: and provides red, green, blue and some comparison methods. Finally TDrawing requires bounds
and drawOn: to offer a rendering.

The Circle class is a subclass of Object. It defines three instance variables (center, radius, rgb) and
their accessors. Circle is composed of the three traits previously described. Because both TCircle
with TColor define the hash and = methods, the composition of these two traits needs to resolve the
conflicts that occur with hash and =. This is done by removing the entry of hash and = in both traits

1The implementations of traits and classboxes are in Squeak therefore the source code presented in this chapter uses a
Smalltalk syntax.
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and creating new entries (colorHash, circleHash, . . . ) corresponding to the deleted ones.

Traits are composed explicitly at class creation time with the uses: keyword. For instance, the class
Circle is defined as:

Object subclass: #Circle
instanceVariableNames: ’center radius rgb’
uses: { TDrawing +

TCircle @ {#circleHash → #hash . #circleEqual: → #=} +
TColor @ {#colorHash → #hash . #colorEqual: → #=} }

The + operator yields a union of two traits, - removes one entry from a trait (not used in the previous
example), and → copies an entry under a new name, the aliasing (for instance, m1 → m2 defines m1
as a new name for the m2 method).

Conflict is explicitly resolved by (re)defining methods hash and = at the level of the class. Since
methods at the class level take precedence over methods provided by the traits, the conflict is resolved.
Note that these methods are implemented by using the new alias obtained from the traits composition
(colorHash, circleHash, . . . ).

Circle�hash
↑self circleHash

bitXor: self colorHash

Circle�= anObject
↑(self circleEqual: anObject)

and: [self colorEqual: anObject]

Use of traits has to be foreseen. A trait composition is specified when a class is created and belongs
to the definition of this class. Even if Smalltalk allows classes to be recompiled at any-time, only
one version of a class is present. Trait composition is invasive: all instances of the class to which
the composition is applied are affected. As a consequence, traits do not help applying unanticipated
changes.

7.3 A Traits and Classboxes Symbiosis

In this section, we present a symbiosis between traits and classboxes. Classboxes are refined with the
ability for a class to be extended by locally using a trait. Within a well-delimited scope, a set of traits
can be used by a set of classes without being specified in the definitions of these classes. The goal
of this symbiosis is to offer better support for the introduction of unanticipated changes, in particular
crosscutting collaborations involving multiple classes.

We enhanced the notion of class extension with two new constructs: import of traits (Section 7.3.1)
and extending a class by making it use a trait (Section 7.3.2). Finally, Section 7.3.3 is dedicated to the
scope of class extension visibility.

7.3.1 Import of Traits

A trait, like a class, belongs to one and only one classbox. A classbox defines a namespace where no
more than one trait or class can be bound to any name. Several traits with the same name cannot be
simultaneously visible in a given classbox, but can live in different classboxes, just like classes.



7.3. A TRAITS AND CLASSBOXES SYMBIOSIS 79

There can be an import relationship between two classboxes. Syntactically, an import is described
as ColoredWidgetsCB import: #TColor from: ColorCB meaning that the classbox ColoredWidgetsCB
imports the trait TColor from the classbox ColorCB. This operation makes TColor visible in Colored-
WidgetsCB: TColor can be used by any classes defined or imported within ColoredWidgetsCB. Note
that classes, as well as traits, can be imported. Classes that are imported or defined can be extended
by applying traits, which are themselves defined or imported.

7.3.2 Class Extension

We refine the notion of class extension by adding the possibility of applying a trait. Figure 7.2 shows a
situation where a class Circle imported from a classbox WidgetsCB by a classbox ColoredWidgetsCB
is visible within ColoredWidgetsCB. Because Circle is visible within ColoredWidgetsCB, Circle can
be extended in this classbox with variable additions, methods additions/redefinitions, and trait uses.
An imported class can be extended by: (i) adding new methods, (ii) redefining some of its imported
methods, (iii) adding new instance variables, and (iv) using one or more traits.
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Figure 7.2: The class Circle is imported in ColoredWidgetsCB and extended by using the
imported trait TColor

The class Circle is defined within the classbox WidgetsCB and the trait TColor is defined within Col-
orCB. The classbox ColoredWidgetsCB imports Circle from WidgetsCB and TColor from ColorCB.
Circle is extended with a new variable color and two methods rgb and rgb: that access color. Circle
uses the imported trait. Instances of Circle understand the methods defined in TColor within Col-
oredWidgetsCB and other classboxes that import Circle from ColoredWidgetsCB (not shown on the
figure).

The use of TColor by Circle is possible because Circle defines the two methods rgb and rgb: required
by TColor. The classbox ColoredWidgetsCB is defined as follows:

Classbox named: #ColoredWidgetsCB.
ColoredWidgetsCB import: #Circle from: WidgetsCB.
ColoredWidgetsCB addVariableNamed: #color to: #Circle.

Circle>>rgb
↑color

Circle>>rgb: aColor
color := aColor

”Import the trait TColor”
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ColoredWidgetsCB import: #TColor from: ColorCB.
Circle use: {TColor}.

The classbox ColorCB defines the trait TColor as follows:

Classbox named: #ColorCB.
Trait named: #TColor.
TColor>>red

...
TColor>>rgb

self requirement
TColor>>rgb: aNumber

self requirement

Traits have a visibility limited (i) to the scope of the classbox ColoredWidgetsCB that establishes this
use relationship between a class and a trait, and (ii) to classboxes that import the class Circle from
ColoredWidgetsCB.

7.3.3 Visibility of Extensions

Classboxes allow the visibility of definitions to be bound to a particular scope. Contrary to the global
visibility of extensions in AspectJ [KHH+01] (with inter-type) and Multijava [CLCM00, MRC03]
(with open-class), with classboxes extensions are local to the classbox that defines them and to other
classboxes that import the extended classes. By making the relationship between a class and trait an
extension, the visibility of using a trait is bound to the classbox that applied the trait.

ColoredWidgetsCBWidgetsCB

Circle

ColorCB

TColor

Circle

TColor

OldClient

Circle

Circles are 
colorless

NewClient

Circle

Circles are 
colored

Figure 7.3: Two versions of Circle coexist at the same time. From the point of view of OldClient
circles are colorless, and from the point of view of NewClient they are colored

Figure 7.3 shows an example of two clients relying on two different versions of the class Circle. Within
the classbox OldClient, circles are colorless. Within NewClient however, circles are colored because
in this classbox the class Circle uses the trait TColor.

A base system can be modified by a set of classboxes. By combining traits with classboxes, class
extensions can be applied several times (i.e. to different classes) via traits. This combination allows
unanticipated changes to be applied to several places in the system without impacting clients that rely
on the original version of the system. This combination allows us to model an architecture based on
collaboration [Hol92] without the limitations of current implementations.
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7.4 Cross-cutting Collaborations and Unanticipated Modifications

Collaborations have been introduced to describe functionalities that cross-cut several classes [Hol92,
SB98]. In a collaboration, a role is a set of features intended to be applied to a class and a collaboration
is a set of roles. In this section we show how a collaboration can be expressed with a combination of
traits and classboxes by regarding a role as a trait and a collaboration as a classbox.

7.4.1 Example of Architecture in Collaboration

To stress the expressive power of the traits and classboxes combination, we implemented a graph
traversal application. This application was initially presented by Holland [Hol92], and then in several
others like in VanHilst and Notkin [VN96a] and Smaragdakis [SB98]). This graph traversal applica-
tion is the canonical example to illustrate a collaboration-based achitecture.

Holland’s example defines three operators (i.e. algorithms) applied to an undirected graph, based
on a depth-first traversal. These operators are: (i) vertex numbering numbers all nodes in the graph
in depth-first order, (ii) cycle checking examines whether the graph is cyclic, and (iii) Connected
Regions classifies graph nodes into connected graph regions. The application itself consists of three
classes: Graph defines a graph as a container of nodes, Vertex defines some properties of a node,
and Workspace contains some global variables specific to each graph operation. For instance, the
workspace object for a vertex numbering operation holds the value of the last number assigned to a
vertex.

This application is decomposed into five distinct collaborations: (i) undirected graph encapsulates
properties of an undirected graph, (ii) depth-first traversal encapsulates the features of depth first
traversals and provides an interface for extending traversals, (iii) vertex numbering numbers the set of
nodes, (iv) cycle checking checks whether cycles in the graph are present, and (v) connected region
classifies nodes into distinct connected graph regions.

7.4.2 Expressing Collaborations with Traits and Classboxes

A collaboration is represented by a classbox, and a role by a trait. Figure 7.4 depicts the graph traversal
application expressed with collaborations based on traits and classboxes. This application consists of
five classboxes representing collaborations, each of these defining traits representing roles. These
traits are used by imported or defined classes. For the sake of keeping the figure clear, Figure 7.4
shows class and trait definitions and class imports only.

The first classbox UndirectedGraphCB defines classes Graph and Vertex. It defines properties of undi-
rected graphs. These properties are implemented in the traits TUGraph and TVertexWithAdjacencies.
The former is used by the class Graph and the latter by the class Vertex. The second classbox Depth-
FirstTraversalCB defines a deep-first traversal algorithm with the two traits TGraphDFT and TVer-
texDFT. The two classes Graph and Vertex are imported from UndirectedGraphCB and extended by
using these two traits. The classbox VertexNumberingCB imports the two classes extended by the pre-
vious classboxes and defines a class Workspace, and the traits TVertexNumber and TWorkspaceNum-
ber used by Vertex and Workspace, respectively. The collaboration VertexNumbering does not define
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any role for the class Graph, therefore it is imported without being extended. The two other classboxes
CycleCheckingCB and ConnectedRegionsCB are built in a similar way.
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Figure 7.5: Definition of the collaboration VertexNumbering

Figure 7.5 shows refinements defined by the collaboration VertexNumbering on DepthFirstTraversal.
The role VertexNumber, modeled by the trait TVertexNumber, is used by the imported class Vertex.
This class is extended with two instance variables number and workspace and fours methods repre-
senting the variable’s accessors and mutators. The trait TVertexNumber defines a method compute:
and some accessors to these variables are needed.

The version of Vertex from DepthFirstTraversalCB contains a method compute:. Within VertexNum-
beringCB this method has to be redefined by the trait TVertexNumber. As shown below, the previ-
ous implementation provided by DepthFirstTraversalCB has to be accessible to VertexNumberingCB.
Therefore the method compute: provided by DepthFirstTraversalCB is renamed as dftCompute: then
the entry compute: is removed before performing an union with the trait TVertexNumber.

Trait applications are incrementally defined: each classbox can make an imported class use a new
trait. To make this possible, a trait composition of a class has to be obtained to be incrementally
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modified. This is achieved using the variable PreviousComposition. PreviousComposition in a trait
composition clause refers to the composition of the imported class. The alias mechanism of traits
(@ { #dftCompute: -> #compute:}) makes the compute: method defined by TVertexDFT accessible
through a new name dftCompute:. Then - { #compute: } removes the entry from the composition in
oder to not raise conflicts with + TVertexNumber.

The method compute: defined by TVertexNumber refers to method dftCompute: which corresponds
to the renamed compute: of TVertexDFT:

TVertexNumber�compute: aBlock
number := workspace value. “A new number to the Vertex”
workspace incCounter. “The counter is incremented”
self dftCompute: aBlock “Call of the previous implementation of compute:”

The classbox VertexNumberingCB defines the class Workspace which contains an instance variable
value and two accessors value and value:. This class uses the traits TWorkspaceNumber defined
within this classbox, specifying a trivial composition. TWorkspaceNumber requires the mutator and
accessor of value.

TWorkspaceNumber�getCounter
self value ifNil: [ self value: 0 ].
↑self value

TWorkspaceNumber�incCounter
self value: (self value + 1)

7.4.3 Advantages of Coupling the Traits and Classboxes

Identity of participant preserved. A mixin application creates a subclass [BC90]. Using subclass-
ing, an unanticipated change cannot be applied without modifying former clients [FF98a] because the
clients have to reference subclasses to benefit from extensions. Using traits and classboxes allows one
to define extensions while preserving the identity of the extended classes. As a result, applying a role
to a class is done without subclassing, therefore the identity is preserved.

A collaboration as an unanticipated change. Mixins fit well for an architecture that is well-defined
in advance. However, they do not help in refining an application with changes that were not initially
planned. With our approach, a new collaboration layer can be added to an existing application by
preserving former clients from being impacted. As a result, a collaboration defines an unanticipated
changes. Moreover such a collaboration (defined as a classbox) can apply a role (defined as a trait) to
several classes.

Bounded visibility of extension. Because some of the clients rely on the original version of a system,
not all of the clients have to be impacted when a change is applied to a system. This is why it is nec-
essary to control the propagation of a change when applied to a system. With classboxes, extensions
are bound to a scope limited to the classbox that defines these extensions and to other classboxes that
import the extended classes.

Coherence is achieved by trait method requirements. Having a coherent architecture of various
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collaborations is a crucial problem already tackled by Batory [BG97] and Steyaert [SCD+93]. Batory
et al. suggested to define properties that are propagated along the collaboration architecture. The
coherence of a particular collaboration is achieved with the presence of certain properties. Steyaert
et al. propose to use a constraint system to control the construction of inheritance hierarchies. By
combining traits and classboxes, no extra mechanism needs to be added in order to achieve coherence.
Coherence is achieved with the required methods that need to be fulfilled when traits are used by a
class.

7.5 Discussion and Evaluation

Link class-trait separated from the class definition. In the original traits, the use relationship be-
tween a class and the traits it uses is specified within the definition of the class [DNS+05] at class
creation time. With the combination of traits and classboxes, the responsibility of using a trait is not
only offered to the class creator but also to any programmer needing to extend the class. Hence it is
possible to dynamically change the classes and the traits they use.

Supporting incremental changes. A class can be incrementally extended by a chain of classboxes.
This class is then imported and refined in each classbox. In a classbox, extending a class by making
use of a trait has to be the result of a composition with this trait and the previous composition obtained
from the provider classbox (i.e. the classbox where the class is imported from).

In order for a class to be incrementally refined by using new traits in classboxes, the trait composition
visible in the provider classboxes has to be obtained while extending a class. We added therefore a
new variable PreviousComposition that refers to the trait composition stated in the provider classbox.
The use of this variable is illustrated in Figure 7.5.

Use of traits as a class extensions. Originally, the purpose of a trait was to factor out a set of method
definitions that would be reused by several classes that do not belong to the same hierarchy. Our ap-
proach extends the range of application for traits. With our approach, traits can also be used to define
extensions (i.e. group of methods) that can be applied to different classes.

Coherent collaborative architecture. By importing and extending several classes, a classbox defines
a cross-cutting change. To apply a trait to a class, the class has to provide the methods required by
the trait. The required method mechanism ensures that collaborations are sorted according to the de-
pendencies among them. For instance, in Figure 7.4, the collaboration VertexNumberingCB cannot be
misplaced: it has to be based on DepthFirstTraversalCB because this last one defines the method com-
pute: needed by the trait TVertexNumber (compute: is specified in the trait composition rule as shown
in Figure 7.5). This method has to be provided by the class before applying TVertexNumber. Declar-
ing required methods forces the collaborative architecture to be coherent. However, our approach
does not offer any guarantee that traits that are intended to collaborate with each other will behave
as expected once applied. For instance, let’s assume a classbox ObserverPattern defines two traits
TObserver and TObservable. Applying such a collaboration to an architecture does not guarantee that
an “observer” object will collaborate only with “observable” objects.
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7.6 Conclusion

We describe an approach supporting crosscutting changes based on a symbiosis between traits and
classboxes. The notion of class extension offered by classboxes has been enhanced by allowing a class
to locally use a trait. This is the result of separating class definition from the trait composition. Several
classes can be extended with the same group of methods (i.e. trait). Extensions modeled as traits are
applicable multiple times (i.e. to different classes), as in the original version of classboxes. Since
traits are stateless, they cannot be reused to add the same instance variables to several classes.

This chapter shows how this combination between traits and classboxes can be applied to express a
collaborative architecture where a classbox defines a collaboration. Each collaboration contains a set
of roles that are modeled with traits.

In conclusion, traits and classboxes are two extensions of the class model that are simple and ex-
pressive. Their combination offers an elegant approach supporting crosscutting changes where class
extensions can be reused for different classes within a well-defined scope.
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Chapter 8

Classboxes in a Statically Typed
Environment

Chapter 5 describes an implementation of classboxes in the context of Smalltalk, a dynamically
typed programming language. This chapter presents classboxes for one of the mainstream languages,
Java.

8.1 Introduction

Summary. In this chapter we demonstrate how classboxes can be implemented in statically-typed
languages like Java while minimizing the extension of the hosting language. We also describe the
implementation of Classbox/J as a proof-of-concept. It is freely downloadable for MacOSX on www-
.iam.unibe.ch/∼scg/Downloads/CBJ/CBJ.zip

Contributions. The contributions of this chapter are:

• A proof-of-concept implementation of classboxes for statically typed languages. Classbox/J
consists of a minimal extension of Java: (i) package import clauses are made transitive, and (ii)
packages are able to refine imported classes and export these classes to other packages.

• The original classbox model is extended with a mechanism enabling refinements to access prior
definitions. The Swing refactoring towards classboxes motivates the need to invoke original
methods from their redefined bodies.

Structure of the chapter. In Section 8.2 we present the model of classboxes for Java. In Sec-
tion 8.3 we present an example illustrating how classboxes support the implementation of cross-
cutting changes. In Section 8.4 we describe our Java implementation of classboxes. In Section 8.5 we
conclude by summarizing the work presented in this chapter.

87
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8.2 Classbox/J

In Java, a package can define new classes and it may refer to classes defined in other packages using an
import clause. After importing a class, a package can either subclass it or reference it in a declaration.
In pure Java, import statements are not transitive: a package p2 cannot import a class C from a package
p1 if C was imported rather than defined in p1. In contrast to MultiJava [MRC03], Hyper/J [OT00],
CLOS [DG87] and Smalltalk [GR89], a Java package cannot add methods to a class defined in another
package. Therefore a package can be adapted only by subclassing its member classes.

Classbox/J addresses these shortcomings by offering a means to refine classes within a well-defined
scope.

8.2.1 Classbox/J in a Nutshell

Classbox/J is a module system for Java allowing classes to be refined with new class members, such
as fields, methods and inner classes. A classbox in Classbox/J is essentially a Java package with the
following three important differences: (i) imported classes can be refined by adding or redefining
class members using the refine keyword, (ii) a class defined or imported within a classbox p can be
imported by another classbox. This allows the import clause to be transitive, and (iii) a refined method
can access its original behavior using the original keyword.

We illustrate Classbox/J with a small example based on the Swing case study.

Refining classes. Figure 8.1 illustrates two classboxes WidgetsCB and EnhWidgetsCB. WidgetsCB
defines two classes Component and Button. EnhWidgetsCB imports them, refining Component with
a new instance variable lookAndFeel and redefining the paint() method. These classboxes are imple-
mented as follows:
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package WidgetsCB;
public class Component {

public void update () { this.paint(); }
public void paint () { /* Old Code */ }

}
public class Button extends Component {

public Button (String name) { ... }
}

package EnhWidgetsCB;
import WidgetsCB.Component;
import WidgetsCB.Button;
refine Component {

private ComponentUI lookAndFeel;
public void paint () { /* New code using lookAndFeel */ }

}

Refining a class conceptually defines a new version of it. In the previous example, two versions of
Component coexist at the same time within the system in different scopes. The original version is
accessible through WidgetsCB and the new version through EnhWidgetsCB. Class members refining
an imported class are local to the refining classbox and to other classboxes that may import the refined
class.

Transitive import. A class imported by a classbox can be transitively imported by other classboxes,
whether this class is refined or not. For instance, a client of the new version of the widgets can be
defined as:

package NewAppCB;
import EnhWidgetsCB.Button;
public class App {

public static void main(String[] argv) {
... new Button().paint(); ...
}

}
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8.2.2 New Method Lookup Semantics

As required by classboxes, class refinements have bounded visibility. Moreover, redefinitions have
precedence over imported definitions. This behavior is obtained by a new semantics for method
lookup. We illustrate this operationally.

Import over inheritance. Import statements between packages have to be taken into account when
looking up a message. The main point is that the import clause has precedence over inheritance:
before looking a method up in the superclass, the chain of imports has to be considered first.

Figure 8.2 illustrates the lookup of messages update() and paint(). When the message update() is sent
to an instance of Button in the classbox NewAppCB, the lookup algorithm first searches for the im-
plementation of update() in the classbox NewAppCB (1). This method is not defined in this classbox,
therefore the lookup follows the chain of import (2). In EnhWidgetsCB, update() is not defined, so the
lookup continues in WidgetsCB (3). In this classbox, the class Button is not imported anymore but de-
fined in it. Therefore, update() is looked up in the superclass Component but starting from the source
classbox (NewAppCB, in step 4). Because Component is not visible within NewAppCB and Button is
imported from EnhWidgetsCB, the lookup continues to EnhWidgetsCB (5). The class Component is
visible, but the method update() is not implemented. Finally the method is found in WidgetsCB. The
method update() triggers the message paint(). In a similar way, the method paint() is looked up as in
steps 1 through 5.

Note that defining new semantics for the method lookup algorithm does not necessarily mean that the
virtual machine (VM) must be modified. As described in Section 8.4, the desired behavior can be
obtained by inserting some code that performs dynamic run-time stack introspection where a method
redefinition occurs.

Multiple imports. As illustrated in Figure 8.3, a diamond graph of imports may imply the use of
different class refinements defined by several classboxes. In the classbox AppCB, sending the paint()
message to an instance of LabelButton invokes the implementation of paint() on Component defined
by WidgetSetCB. In a similar way, sending this message to an instance of Button triggers the imple-
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mentation brought by NewWidgetSetCB on Component.

Accessing the original method. When a method is redefined, the original method is accessible using
the construct original().

For instance, in the classbox EnhWidgetsCB the extension of Component could be:

refine Component {
private ComponentUI lookAndFeel;
public void paint () {

if (lookAndFeel == nil) { original();}
else { /* use lookAndFeel */ }

}
}

The original() construct invokes the first method (e.g. WidgetsCB.Button.paint() in Figure 8.4) in the
import chain that was redefined by the method containing the expression original() (e.g. EnhWid-
getsCB.Button.paint()). Note that in particular super invocation in the original methods takes into
account potential changes introduced by the classbox containing the original() invocation, preserving
that way the method lookup semantics of classbox. In Figure 8.4, new Button().paint() displays a
button having a MacOSX look since, first the method WidgetsCB.Button.paint() is executed and the
super invocation invokes EnhWidgetsCB.Component.paint().

It is precisely this kind of scenario, which arises frequently in the Swing case study, that has motivated
the addition of the original mechanism into the classbox model.

8.2.3 Properties of the Model

The model of classboxes defined in Chapter 4 exhibits several properties related to the visibility of
refinements.

Locality of Changes. MultiJava [MRC03] with its open-classes and Aspect/J [Asp] with its inter-
types allow class members to be defined separately from the class they are related to. Class members
are not, however, contained in a unit of scope, therefore redefinition is not allowed and composi-
tion has to be explicitly stated. With classboxes, refinements of an imported class are visible to
the refining classbox and to other classboxes that import this refined class. The refined class is a
new version of the original class that co-exists in the same system. Figure 8.1 shows two clients
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OldAppCB and NewAppCB using the old and new version of the widget framework. Any refinement
introduced to WidgetsCB by EnhWidgetsCB does not impact OldAppCB. This is because changes
are confined to EnhWidgetsCB and to other classboxes that may imported the classes it refines (e.g.
NewAppCB).

Precedence of redefinition. Redefined class members have precedence over the imported definition.
EnhWidgetsCB redefines the method paint() for Component, thus hiding the previous definition. From
this classbox and other classboxes that may import Component or its subclasses, the original definition
of paint() is no longer accessible. Within the classbox EnhWidgetsCB or NewAppCB, sending the
message update() or paint() to an instance of Button will trigger the new definition of paint().

Refinements along a chain of import. With classboxes, imports are transitive: a new version of an
imported class can be re-imported. Figure 8.1 shows the class Button defined in WidgetsCB that is
imported in EnhWidgetsCB and from this last, are imported in NewAppCB. From the point of view
of an importing classbox, there is no distinction between a class that is defined or imported in the
provider classbox (i.e. classbox where the class is imported from). An imported class can always be
refined and then re-imported, even multiple times over a chain of imports.

8.3 Cross-cutting Changes

Refining a class is superficially similar to subclassing: a classbox can add new interfaces, fields, meth-
ods, static fields, inner classes and constructors as well as redefine methods of an imported class. The
key difference is that the changes are applied to the original class, not a subclass, but only within
a well-defined scope. It is this feature that supports the introduction of cross-cutting changes. The
following example shows how a look and feel feature is added to the root of a class hierarchy with-
out breaking former clients, while propagating the refinements to collaborating classes. As shown
in Figure 8.5, two classboxes WidgetsCB and FactoryCB define a base system which clients rely on.
Since modifying these base classes would break these clients, changes cannot be directly applied to
the classboxes WidgetsCB and FactoryCB, but are introduced in classbox LookAndFeelCB and used
by a new client in AppCB. The rest of this section shows how classboxes allow one to incorporate
these changes without having to modify WidgetsCB and FactoryCB.

The following example shows some refinements defined with classboxes on a base system that (1)
does not break clients that rely on the original definitions of this system, and that (2) propagate these
refinements to collaborating classes defined in other classboxes.

Base system. The classbox WidgetsCB defines three classes: an abstract class Component and two
subclasses Button and Window. The source code of this classbox is:

package WidgetsCB;
public abstract class Component {

public abstract void paint();
}
public class Button extends Component {

public Button () { }
public void paint() {

System.out.println(”Button”);
}

}
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public class Window extends Component {
int x1, y1, x2, y2;
public Window () { x1 = 50; y1 = 50; x2= 200; y2=200;}
public void paint() {

System.out.println(”Window”);
}

}

New widgets are created using a factory. This factory is implemented in a separate classbox Facto-
ryCB. When it was designed, the implementor of Factory relied on the version of the widgets obtained
from WidgetsCB without any look and feel. The widget factory is defined as:

package FactoryCB;
import WidgetsCB.*;
public class Factory {

public Button newButton () { return new Button(); }
public Window newWindow () { return new Window(); }

}

Refinement of the base system. To introduce the changes that add a “look and feel” to the widgets,
two new classboxes are added: LookAndFeelCB, which effectively defines the changes, and AppCB,
which is a new client of the resulting system. In LookAndFeelCB the root class Component is refined
with a lookAndFeel variable. In order for classes Button and Window to use this new variable added to
their superclass, their constructor and paint() are redefined. These refinements are defined as:

package LookAndFeelCB;
import WidgetsCB.Component;
import WidgetsCB.Button;
import WidgetsCB.Window;
public class LookAndFeel {
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...
}
refine Component {

LookAndFeel lookAndFeel; // Variable added to Component
}
refine Button {

public Button() { // Constructor redefined
lookAndFeel = new LookAndFeel(”ButtonMacOSX”);
original(); // Original constructor called

}
public void paint() { // Method paint redefined

System.out.println(lookAndFeel.getName());
}

}
refine Window {

public Window() { // Constructor redefined
lookAndFeel = new LookAndFeel(”WindowMacOSX”);
original(); // Original constructor called

}
public void paint() { // Method paint redefined

System.out.println(lookAndFeel.getName());
}

}

A small application is built in the classbox AppCB. This classbox imports the class Factory from Fac-
toryCB and the widgets having a look and feel from LookAndFeelCB. Now when the new application
uses the factory to create widgets, it gets widgets with the look and feel as defined in the LookAnd-
FeelCB classbox, whereas the clients of the original code defined in WidgetsCB are not impacted, i.e.
get widgets without look and feel. As AppCB imports the version of Window and Button with a look
and feel, from the perspective of AppCB, this version of the widgets takes precedence over the one
present in FactoryCB.

package AppCB;
import FactoryCB.*;
import LookAndFeelCB.*;
public class App {

public static void main (String[] argv) {
Factory f = new Factory();
Window w = f.newWindow();
Button b = f.newButton();
//Display ”WindowMacOSX” and ”ButtonMacOSX”
w.paint();
b.paint();

}
}

8.4 Implementation

We implemented a preprocessor that translates classbox definitions into pure Java files, which are then
compiled using a classical compiler. While producing Java source files, classboxes are compiled away
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by producing a Java package for each classbox. Our implementation is freely available at www.iam-
.unibe.ch/∼scg/Research/Classboxes. It offers an executable cbj compiler similar to the javac
compiler, where argument files are classbox-aware. Please note that this implementation is naive and
serves only as a proof-of-concept for Java.

Our implementation handles three different ways of refining an imported class: (i) a new class member
is added (i.e. not redefined), (ii) a class member other than a method is redefined, and (iii) a method
is redefined. The following sections examine each of these cases. We drew a distinction between
redefined methods and other redefined class members because the former are dynamically looked up
when messages are sent, but not the latter (which are statically bound). We then describe how the
new method lookup semantics is implemented using dynamic introspection of the method call stack
(Section 8.4.4). And finally we show how the transitivity of imports is handled (Section 8.4.5) and we
present some limitations and possible improvements (Section 8.4.6).

8.4.1 Pure Class Member Addition

Class members that are new additions (not redefinitions) are inserted into the Java class without being
modified. For instance, a classbox WidgetsCB defines an empty class Component, that is refined in a
classbox EnhWidgetsCB.

//Classbox WidgetsCB
package WidgetsCB;
public class Component {
}

//Classbox EnhWidgetsCB
package EnhWidgetsCB;
import WidgetsCB.Component;
refine Component {

private int color;
public int color () {

return color;
}

}

When passed to our cbj preprocessor, the resulting Java package used to generate pure java bytecodes
is:

package WidgetsCB;
public class Component {

private int color;
public int color () {

return color;
}

}

8.4.2 Redefinition of Class Members Other Than Methods

For class members that are not looked up (i.e. variables, static fields, static initializations) a renaming
is performed while compiling a classbox away. Classbox WidgetsCB defines a class Component that
contains a variable color accessed by a method color1() and an inner class Color. This class is refined
in a classbox EnhWidgetsCB with a new variable color, a method color2() and a new inner class
Color.

http://www.iam.unibe.ch/~scg/Research/Classboxes
http://www.iam.unibe.ch/~scg/Research/Classboxes
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//Classbox WidgetsCB
package WidgetsCB;
public class Component {

Color color;
public Color color1() {

return color;
}
class Color {}

}

//Classbox EnhWidgetsCB
package EnhWidgetsCB;
import WidgetsCB.Component;
refine Component {

Color color;
public Color color2() {

return color;
}

class Color {}
}

The resulted Java code gathers all the class members:

package WidgetsCB;
public class Component {

WidgetsCBColor WidgetsCBcolor;
EnhWidgetsCBColor EnhWidgetsCBcolor;
public WidgetsCBColor foo() {

return WidgetsCBcolor;
}
public EnhWidgetsCBColor bar() {

return EnhWidgetsCBcolor;
}
class WidgetsCBColor { }
class EnhWidgetsCBColor { }

}

8.4.3 Method Redefinition

Looking up methods that are redefined requires a new method lookup semantics (Section 8.2.2). When
producing Java source code, method redefinitions are compiled into one method where each redefini-
tion is contained in a if statement used to trigger the right definition according to the current position
in the execution flow of the program (cf. following section). The method paint() contained in the class
Component is redefined in EnhWidgetsCB

//Classbox WidgetsCB
package WidgetsCB;
public class Component {

public void update() {
paint();

}
public void paint() {

//Original paint
}

}

//Classbox EnhWidgetsCB
package EnhWidgetsCB;
import WidgetsCB.Component;
refine Component {

public void paint() {
//Enhanced paint

}
}

The pure Java source code produced contains only one paint() method that gathers the two implemen-
tations of the method.

package WidgetsCB;
public class Component {

public void update() {
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paint();
}
public void paint() {

if ( ClassboxInfo.methodVisible (
”EnhWidgetsCB”, ”Component”, ”paint”)) {

//Enhanced paint
}
if ( ClassboxInfo.methodVisible (

”WidgetsCB”, ”Component”, ”paint”)) {
//Original paint

}
}

}

ClassboxInfo is a generated class that (i) gathers some informations about the composition of class-
boxes needed at runtime like a description of the classboxes that were used to produce the Java code,
and (ii) offers some methods useful to introspect the method calls stack. At runtime, when the up-
date() method is invoked, one of the two implementations is executed according to the structure of
classboxes inferred from the method calls stack.

8.4.4 Dynamic Introspection of the Method Call Stack

Whenever a redefined method is invoked, the method call stack is reified (by using the exception
handling mechanism of Java, i.e. Exception.getStrackTrace()) to build the structure of the class-
boxes.

//Classbox OldAppCB
package OldAppCB;
import WidgetsCB.Component;
public class OldApp {

public static void main (String[] argv) {
// Original paint method invoked
new Component().update();

}
}

When the main(...) method of the OldApp is invoked, before entering the paint() method the corre-
sponding method call stack given by Java is:

WidgetsCB.Component.update() //Top of the stack
OldAppCB.OldApp.main() //Bottom of the stack

Using this stack reification and the information about the structure of classboxes kept in ClassboxInfo,
the static method ClassboxInfo.methodVisible (“EnhWidgetsCB”, “Component”, “paint”) yields false,
whereas ClassboxInfo.methodVisible (“WidgetsCB”, “Component”, “paint”) returns true.

NewAppCB is a client of the refined Component:

//Classbox NewAppCB
package NewAppCB;
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import EnhWidgetsCB.Component;
public class NewApp {

public static void main (String[] argv) {
// Enhanced paint method invoked
new Component().update();

}
}

In a similar way, before entering the paint() method, the method call stack is:

WidgetsCB.Component.update() //Top of the stack
NewAppCB.NewApp.main() //Bottom of the stack

Because the paint() method is redefined in the classbox NewAppCB, the new implementation has to be
used: the static method ClassboxInfo.methodVisible (“EnhWidgetsCB”, “Component”, “paint”) yields
true, whereas ClassboxInfo.methodVisible (“WidgetsCB”, “Component”, “paint”) return false.

8.4.5 Adapting Classbox Import to Package Import

Since class imports are transitive in Classbox/J, but not in plain Java, all transitive imports must be
compiled away. In the resulting Java source code, each import statement must refer to the original
package that defines this class.

For example, while producing the package corresponding to the classbox NewAppCB the import state-
ment import EnhWidgetsCB. Component is translated into import WidgetsCB.Component because the
class Component is defined in WidgetsCB.

8.4.6 Limitations and Possible Improvements

Since the current implementation is only intended to serve as a proof of concept, we feel it is impor-
tant to raise a few points concerning the limitations of this prototype.

Native methods. A native method is a function written in a language other than Java. Only the
signature of the method is declared within the Java class. Because such methods do not contain any
Java code, they cannot be rewritten using the mechanism described above. As a consequence, native
methods cannot be redefined.

Super call in a constructor. Constructors can be redefined as well as methods. Constructor redefi-
nitions are compiled into one single constructor following the mechanism described in Section 8.4.3.
This approach is, however, limited when a constructor performs a super call. Java enforces the con-
structor of the superclass to be executed before the constructor of the subclass: the super call has to
be the first statement of the constructor. Therefore the body of a constructor cannot be embedded in a
if statement.
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Debugging facilities. Even with our current approach where classboxes are compiled away, infor-
mation about classboxes needed to structure the system is available (class ClassboxInfo). This infor-
mation is accessible with a debugger, however it is tedious to manually retrieve the defining classbox
for a given class member. Development with classboxes would be more comfortable with a classbox-
aware debugger.

Modifying the VM. Prior to this work, we implemented two versions of the classbox model in
Smalltalk: (i) by implementing a new method lookup algorithm within the VM [BDW03b], and (ii) by
using bytecode transformation and method context reification on a normal VM [BDNW05]. The cost
of the former strategy is about 1.1 times slower and the latter is about 1.25 times slower (these figures
were obtained by comparing the execution times of a normal Smalltalk application in a classbox and
a plain environment ).

The Java VM does not provide a bytecode that reifies the context of a method call. Therefore, the
latter strategy cannot be implemented in Java. By modifying the Java VM to implement a new method
lookup algorithm [BDW03b], we expect to achieve a similar speedup. Whereas with this approach
we would need to modify the VM (which can be tedious), the advantage is that classboxes would be
transparent in term of run-time cost.

8.5 Conclusion

In this chapter, we presented the Java implementation of classboxes by adding a few additional lan-
guage constructs to Java. A classbox is a Java package where imported classes can be refined with
new class members and imported classes that are refined or not to be re-imported in other classboxes.
Having a Java version of the model shows that classboxes can be applied to a statically-type language
like Java.
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Chapter 9

Conclusions

In this chapter we summarize the contributions made in this dissertation, discuss the benefits of our
approach, and point to directions for future work.

9.1 Contributions of the Dissertation

Chapter 2. This chapter presents a simple calculus in which classes and module systems of various
OOP languages are expressed using a set of basic operators like hide and fix. The goal is to express
these different models using a common formalism in order to show different semantics of modules
operators. The result is a classification of various semantics, presented within a taxonomy.

Chapter 3. Problems with module systems is presented in Chapter 3. These problems are illustrated
on 2 concrete cases. The study of a large Java library is first described. It reveals a significant amont
of code duplication, broken subtype inheritance and explicit type checks and cast. A second example
is intended to exhibit the requirement for a module system to support unanticipated changes.

Chapter 4. Classboxes address the problem that classical module systems do not offer the ability
to add or replace a method in a class that is not defined in that module. Classboxes offer a minimal
module system for object-oriented languages in which extensions (method addition and replacement)
to imported classes are locally visible. Essentially, a classbox defines a scope within which cer-
tain entities, i.e., classes, methods and variables, are defined. A classbox may import entities from
other classboxes, and optionally extend them without impacting the originating classbox. Concretely,
classes may be imported, and methods may be added or redefined, without affecting clients of that
class in other classboxes. Local rebinding strictly limits the impact of changes to clients of the extend-
ing classbox, leading to better control over changes, while giving the illusion from a local perspective
that changes are global.

By refactoring the Swing Java library, we stress-tested the classbox model by applying it to a large
case study. Our new version of Swing removes (i) the incoherence in the original Swing hierarchy and
(ii) the code duplication that was introduced due to the limitations of the Swing inheritance hierarchy.
Moreover, while refactoring, we found the need to extend the classbox model with a new construct
that allows a previous definition of a redefined method to be accessed.

101
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We then give a formalism of classboxes by modeling classes, objects and namespaces, and we provide
operations for instantiation, message sending, self- and super-calls. We used this formalism to prove
properties of classboxes.

Finally, the taxonomy presented in the state of the art is revisited to take classboxes into account.

Chapter 5. To implement the classbox local rebinding property, a new semantics of the method
lookup has to be defined. This can be implemented in two different ways: either by modifying the
virtual machine, or by using bytecode manipulation and reflective features of Smalltalk. The first
implementation has the advantage to completely hide the classbox machinery from a programmer.
Classbox-specific dynamic operations are implemented within the virtual machine itself. The latter
implementation leaves the virtual machine untouched. Development of classboxes benefits from the
classical tools offered by the Smalltalk environment (inspector, debugger, ...). However, classboxes
engineering can be unraveled from the programmer by using reflection. These two proof-of-concept
implementation shows that classboxes can be seriously used for an industrial activity.

Chapter 6. As a first extension, classboxes are used to define dynamically scoped changes. This
implies that import relationships between classboxes can be dynamically modified and added on the
fly. Also, classboxes can dynamically be replaced by a new classbox or a set of classboxes. The result
of this extension is the ability for a classbox to offer a uniform and powerful mechanism to support a
simple and structural kind of aspect made from class extensions.

Chapter 7. As a second extension, the notion of class extension is extended with the local use of
traits. Modeled as a trait, an extension defined in a classbox can be applied multiple times to different
classes. This combination between traits and classboxes can be applied to express a collaborative
architecture where a classbox defines a collaboration.

Chapter 8. As a third extension, classboxes are applied to Java, a statically dynamic language. Con-
cretely, Java is extended with a very small number of language constructs: (i) the import relationship
is transitive. (ii) A new keyword refine is added, adding new class members to imported classes, and
(iii) a second new keyword original is used to access a previous method definition. A Java package is
therefore regarded as a classbox.

9.2 Impact of Classboxes

The impact of classboxes can be put in two different perspectives: collaborations with other univer-
sity/people and new research topics triggered.

9.2.1 Collaborations

Aspects and classboxes. Work is currently in progress to make aspects be scoped within a class-
box. People from the PROG group, at the Vrije Universiteit Brussel and in the DoCoMo Euro-Labs
(Germany) are interested in combining aspects and classboxes.

Classboxes and LogicAJ. Developed at the University of Bonn (Germany), LogicAJ [KRH04, KR05]
tackles the lack of support for aspect genericity. It defines genericity to be the ability of concisely ex-
pressing aspect effects that vary depending on the context of a join point known at weave-time.
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The implementation of classbox/J is based on an analysis of the method call stack. Using the aspect
terminology, the machinery used is a cflow pointcut [Asp]. One idea is to use LogicAJ instead of
the preprocessor described in Section 8.4. The expected results are a faster runtime execution (class-
box/j uses a naive implementation), and a richer notion of pointcuts (classboxes support addition and
redefinition of class members).

Classboxes and traits. Chapter 7 is an extended version of a paper [MBCD05] done in collaboration
with the Ecole des Mines de Nantes (France).

9.2.2 New Research Topics

Aspect composition using explicit context. Work with classboxes yielded a new notion of context
applied to aspect. This project is currently lead by the Center for Web Research, DCC, University of
Chile, Santiago (Chile).

Changeboxes. We plan to enhance the notion of refinement in order to enable the use of class-
boxes as a way to express general changes that can be applied to a system (and not just additions
or redefinitions of class members). Some work is currently in progress at the University of Lugano
(Switzerland).

Explicit context to model extension. Lumpe and Schneider have been working on using explicit
contexts to express composition of general abstraction [LS05]. They illustrate their intention by for-
malizing classboxes in LambdaF based on first-class namespaces.

9.3 Future Work

Typed module calculus. The presented calculus in Chapter 2 is untyped. As a future work we plan to
explore typing rules for this calculus in order to express, for instance, which compositions of modules
are type safe. Virtual classes (like in Eiffel) represent an unchecked use of covariance, which is not
type-safe [BOW98], whereas the gbeta approach was always based on checking for covariance (which
is possible because, in contrast to Eiffel, covariance is always explicitly declared).

We plan to explore typing rules for this calculus in order to express, for instance, which composi-
tions of modules are type safe. Virtual classes (like in Eiffel) represent an unchecked use of covari-
ance, which is not type-safe [BOW98], whereas the gbeta approach was always based on checking
for covariance (which is possible because, in contrast to Eiffel, covariance is always explicitly de-
clared).

Our main focus in this Chapter was expressing import and extend relationship. Our future work is to
apply our approach to other systems such as Modula-3 [CDG+92], ModularJava [CBGM03], Java-
Mod [AZ01] and Nested Inheritance [NCM04] as they offer the notion of explicit interface.

Module systems and evolution. The taxonomy presented in Chapter 2 classify different semantics of
module operators. A really exciting extension of this formalism is to apply it to modeling evolution.
We believe that inter-module operator semantics have a great impact on software evolution.
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Appendix A

Implementation of the Module
Calculus

This chapter contains one possible implementation in the Scheme programming language of the mod-
ule calculus presented in Chapter 2.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Module Calculus
;;; (C) Alexandre Bergel
;;; (C) SCG, University of Bern
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Testing framework
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define *counter* 0)
; If not (equals? value expected), then raise an error.
(define (assert value expected)
(let ((failed #f))
(set! *counter* (+ 1 *counter*))
(display (string-append "Test " (number->string *counter*)))
(if (not (equal? value expected))

(set! failed #t))
(display (if failed " failed" " passed"))
(newline)
(if failed "Error, test failed!")))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Environment
;;; An environment is a of bindings (key value)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define empty-env ’())

; (select f L) returns a list of elements l that
; belongs to L and for which (f l) is true.
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(define (select f L)
(cond ((null? L) L)

((f (car L))(cons (car L) (select f (cdr L))))
(else (select f (cdr L)))))

; Return keys of an environment e
(define (keys e) (map (lambda (el) (car el)) e))

; e1 override e2
(define (override e1 e2) (append e1 e2))

; Return a value associated to a name in an environment
(define (get env name) (cadr (assoc name env)))

; Extend an environment with a list of element
; We make sure that there is no duplicata.
(define (extend env el)
(let ((name (car el)))
(if (not (assoc name env))

(override (list el) env)
(error "Already existing element" el env))))

; Remove a binding from an env.
(define (exclude env name)
(cond ((null? env) env)

((eqv? name (caar env)) (exclude (cdr env) name))
(else (cons (car env) (exclude (cdr env) name)))))

(assert (keys (extend (extend empty ’(a 1)) ’(b 2)))
’(b a))

(assert (exclude (extend (extend empty ’(a 1)) ’(b 2)) ’b)
(extend empty ’(a 1)))

(assert (get (override ’((a x)(b y)) ’((b z) (c w))) ’a)
’x)

(assert (get (override ’((a x)(b y)) ’((b z) (c w))) ’c)
’w)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Modules
;; Example of a module:
;;(define m (lambda (e) (add ’(a 1) (add ’(b 2) empty))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (mextend m el) (lambda (e) (extend (m e) el)))
(define (moverride m1 m2) (lambda (e) (override (m1 e) (m2 e))))
(define (mexclude m name) (lambda (e) (exclude (m e) name)))

; Return a function that accepts a module and return a new module
; that does not contain a binding.
(define (hide a)
(lambda (m)
(lambda (e)
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((mexclude m a) (override ‘((,a ,(get (fix m) a))) e)))))

; Same than hide, but get a list of keys as argument
(define (hide2 L)
(if (null? (cdr L))

(hide (car L))
(lambda (f) ((hide (car L)) ((hide2 (cdr L)) f)))))

(define (mkeys m) (keys (fix m)))

;; Trick to simulate a fix point
;(define (fix m) (m (m (m (m (m (m (m (m (m (m m)))))))))))
(define (fix m) (m (m m)))

(assert (get (fix (lambda (e) ‘((a x)(b y)))) ’a)
’x)

(assert (let ((m1 (lambda (e) ‘((a 1) (b ,e))))
(m2 (lambda (e) ‘((a 2)))))

(get (get (fix (moverride m2 m1)) ’b) ’a))
2)

(assert (let*((m1 (lambda (e) ‘((a 1) (b ,e))))
(m2 (lambda (e) ‘((a 2))))
(m3 (lambda (e) ‘((b ,(get (fix m1) ’b))))))

(get (get (fix (moverride m2 m3)) ’b) ’a))
1)

(assert (let*((m1 (lambda (e) ‘((a 1) (b ,e)))))
(keys (fix ((hide ’a) m1))))

’(b))

(assert (let*((m1 (lambda (e) ‘((a 1) (b ,e)))))
(get (get (fix ((hide ’a) m1)) ’b) ’a))

1)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Classes
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define GraphicsModule
(lambda (e)
‘((Point ((x 0)

(y 0)
(moveBy ,(lambda (dx)

(lambda (dy)
(lambda (self)
(override
(list (list ’x (+ (get self ’x) dx))

(list ’y (+ (get self ’y) dy)))
self)))))))
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(PointFactory ((newPoint ,(lambda (self) (get e ’Point))))))))

(assert (let ((o (get (fix GraphicsModule) ’Point)))
(+ (get o ’y) (get o ’x)))

0)
(assert (let ((o (get (fix GraphicsModule) ’Point)))

(set! o ((((get o ’moveBy) 2) 3) o))
(get o ’x))

2)
(assert (let ((o (get (fix GraphicsModule) ’Point)))

(set! o ((((get o ’moveBy) 2) 3) o))
(set! o ((((get o ’moveBy) 2) 3) o))
(+ (get o ’x) (get o ’y)))

10)
(assert (let* ((f (get (fix GraphicsModule) ’PointFactory))

(p ((get f ’newPoint) ’notUsed)))
(set! p ((((get p ’moveBy) 2) 3) p))
(set! p ((((get p ’moveBy) 2) 3) p))
(+ (get p ’x) (get p ’y)))

10)

(define extendClass
(lambda (m)
(lambda (sup)

(lambda (c)
(lambda (d)
(lambda (e)
(extend (m e)

(list c
(override d

(get (m e) sup))))))))))

(define colorExtensions
‘((color ())
(setColor ,(lambda (newCol)

(lambda (self)
(override
(list (list ’color newCol))
self))))))

(define ColoredGraphicsModule
((((extendClass GraphicsModule) ’Point)
’ColoredPoint) colorExtensions))

(assert (let* ((f (get (fix ColoredGraphicsModule) ’PointFactory))
(p ((get f ’newPoint) ’notUsed)))

(set! p ((((get p ’moveBy) 2) 3) p))
(set! p ((((get p ’moveBy) 2) 3) p))
(+ (get p ’x) (get p ’y)))

10)
(assert (let* ((p (get (fix ColoredGraphicsModule) ’ColoredPoint)))

(set! p ((((get p ’moveBy) 2) 3) p))
(set! p ((((get p ’moveBy) 2) 3) p))
(null? (get p ’color)))
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#t)
(assert (let* ((p (get (fix ColoredGraphicsModule) ’ColoredPoint)))

(set! p ((((get p ’moveBy) 2) 3) p))
(set! p ((((get p ’moveBy) 2) 3) p))
(set! p (((get p ’setColor) ’blue) p))
(get p ’color))

’blue)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Java
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define importClass
(lambda (mt)
(lambda (ms)

(lambda (c)
((hide c) (mextend mt (list c (get (fix ms) c))))))))

(define graphics
(lambda (e)
‘((Point ((x 0)

(y 0)
(moveBy ,(lambda (dx)

(lambda (dy)
(lambda (self)
(override
(list (list ’x (+ (get self ’x) dx))

(list ’y (+ (get self ’y) dy)))
self)))))))

(PointFactory ((newPoint ,(lambda (self) (get e ’Point))))))))

(define graphics2
(((importClass (lambda (e)

‘((Point empty)
(App ((main ,(lambda (self)

(get e ’PointFactory))))))))
graphics) ’PointFactory))

(assert (let* ((a (get (fix graphics2) ’App))
(f ((get a ’main) ’notUsed))
(p ((get f ’newPoint) ’notUsed)))

(set! p ((((get p ’moveBy) 2) 3) p))
(set! p ((((get p ’moveBy) 2) 3) p))
(+ (get p ’x) (get p ’y)))

10)

(define importPackage
(lambda (mt)
(lambda (ms)

((hide2 (mkeys ms))
(lambda (e) (override (mt e) (fix ms)))))))

(define graphics2
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((importPackage
(lambda (e) ‘((Point empty)

(App ((main ,(lambda (self)
(get e ’PointFactory))))))))

graphics))

(assert (let* ((a (get (fix graphics2) ’App))
(f ((get a ’main) ’notUsed))
(p ((get f ’newPoint) ’notUsed)))

(set! p ((((get p ’moveBy) 2) 3) p))
(set! p ((((get p ’moveBy) 2) 3) p))
(+ (get p ’x) (get p ’y)))

10)

(define private (lambda (m) (lambda (c) ((hide c) m))))

(define graphics2
(((importClass

(lambda (e) ‘((Point empty)
(App ((main ,(lambda (self)

(get e ’PointFactory))))))))
graphics)
’PointFactory))

(assert (mkeys ((private graphics2) ’Point))
’(App))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; C#
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define usingClassAs
(lambda (mt)
(lambda (ms)

(lambda (a)
(lambda (c)
((hide a) (mextend mt (list a (get (fix ms) c)))))))))

(define graphics
(lambda (e)
‘((Point ((x 0)

(y 0)
(moveBy ,(lambda (dx)

(lambda (dy)
(lambda (self)
(override
(list (list ’x (+ (get self ’x) dx))

(list ’y (+ (get self ’y) dy)))
self)))))))

(PointFactory ((newPoint ,(lambda (self) (get e ’Point))))))))

(define graphics2
((((usingClassAs (lambda (e)



111

‘((App ((main ,(lambda (self) (get e ’PF))))))))
graphics) ’PF) ’PointFactory))

(assert (let* ((a (get (fix graphics2) ’App))
(f ((get a ’main) ’notUsed))
(p ((get f ’newPoint) ’notUsed)))

(set! p ((((get p ’moveBy) 2) 3) p))
(set! p ((((get p ’moveBy) 2) 3) p))
(+ (get p ’x) (get p ’y)))

10)

(define usingClass (lambda (mt)
(lambda (ms)
(lambda (c)

((((usingClassAs mt) ms) c) c)))))

(define graphics2
(((usingClass

(lambda (e)
‘((App ((main ,(lambda (self) (get e ’PointFactory))))))))

graphics)
’PointFactory))

(assert (let* ((a (get (fix graphics2) ’App))
(f ((get a ’main) ’notUsed))
(p ((get f ’newPoint) ’notUsed)))

(set! p ((((get p ’moveBy) 2) 3) p))
(set! p ((((get p ’moveBy) 2) 3) p))
(+ (get p ’x) (get p ’y)))

10)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Ruby
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define newClassWithMixin
(lambda (mt)
(lambda (mixin)

(lambda (c)
(lambda (d)
(mextend mt ‘(,c ,(fix

(lambda (s)
(override d (mixin s)))))))))))

(define colorMixin (lambda (e) colorExtensions))
(define graphics
((((newClassWithMixin (lambda (x) empty)) colorMixin) ’Point)
‘((x 0) (y 0)

(moveBy ,(lambda (dx)
(lambda (dy)
(lambda (self)
(override
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(list (list ’x (+ (get self ’x) dx))
(list ’y (+ (get self ’y) dy)))

self))))))))

(assert (let* ((p (get (fix graphics) ’Point)))
(set! p ((((get p ’moveBy) 2) 3) p))
(set! p ((((get p ’moveBy) 2) 3) p))
(+ (get p ’x) (get p ’y)))

10)

(assert (let* ((p (get (fix graphics) ’Point)))
(set! p (((get p ’setColor) ’blue) p))
(get p ’color))

’blue)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Selector Namespace
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define snextend
(lambda (mt)
(lambda (ms)

(lambda (c)
(lambda (d)
(mextend mt ‘(,c ,(override (fix d)

(get (fix ms) c)))))))))

(define import (lambda (mt)
(lambda (ms)
(lambda (c)
(extend mt ms c empty)))))

(define english ((((snextend (lambda (x) empty))
(lambda (e)‘((Object ’()))))
’Object)

(lambda (s) (list (list ’printString ’englishVersion)
(list ’printOnStream

(lambda (self)
(get (override s self)

’printString)))))))

(define german ((((snextend (lambda (p) empty)) english) ’Object)
(lambda (s)
‘((printString ,(lambda (self) ’germanVersion))))))

(assert ((get (get (fix german) ’Object) ’printString) ’notUsed)
’germanVersion)

(assert (let ((o (get (fix english) ’Object)))
((get o ’printOnStream) o))

’englishVersion)

(assert (let ((o (get (fix german) ’Object)))
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((get o ’printOnStream) o))
’englishVersion)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Virtual Classes
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define extendEncapsulated
(lambda (mt) (lambda (ms) (moverride mt ms))))

(define extendInner
(lambda (mt)
(lambda (c)
(lambda (d)
(lambda (e)
(extend ((mexclude mt c) e)

‘(,c ,(override d (get (mt e) c)))))))))

(define Graphics
(lambda (e)
‘((Point ((x 0)

(y 0)
(moveBy ,(lambda (dx)

(lambda (dy)
(lambda (self)
(override
(list (list ’x (+ (get self ’x) dx))

(list ’y (+ (get self ’y) dy)))
self)))))))

(PointFactory ((newPoint ,(lambda (self) (get e ’Point))))))))

(define ColoredGraphics
(((extendInner ((extendEncapsulated (lambda (x) empty))

Graphics)) ’Point) colorExtensions))

(assert (let* ((f (get (fix Graphics) ’PointFactory))
(p ((get f ’newPoint) ’notUsed)))

(set! p ((((get p ’moveBy) 2) 3) p))
(set! p ((((get p ’moveBy) 2) 3) p))
(+ (get p ’x) (get p ’y)))

10)

(assert (let* ((f (get (fix Graphics) ’PointFactory))
(p ((get f ’newPoint) ’notUsed)))

(keys p))
’(x y moveBy))

(assert (let* ((f (get (fix ColoredGraphics) ’PointFactory))
(p ((get f ’newPoint) ’notUsed)))

(keys p))
’(color setColor x y moveBy))
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Classboxes
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define cbextend
(lambda (mt)
(lambda (ms)
(lambda (c)
(lambda (d)
(lambda (e)
(extend (mt e)

‘(,c ,(override d (get (ms e) c))))))))))

(define WidgetsClassbox
((((extendClass

(lambda (e)
‘((Morph ((paint old-paint)

(repaint ,(lambda (self) (get self ’paint))))))))
’Morph) ’Button) ()))

(define EnhWidgetsClassbox
((((extendClass ((((cbextend (lambda (x) empty))

WidgetsClassbox) ’Morph)
’((paint new-paint)))) ’Morph) ’Button) ’()))

(assert (let ((b (get (fix WidgetsClassbox) ’Button)))
’old-paint (get b ’paint))

’old-paint)
(assert (let ((b (get (fix WidgetsClassbox) ’Button)))

((get b ’repaint) b))
’old-paint)

(assert (let ((b (get (fix EnhWidgetsClassbox) ’Morph)))
((get b ’repaint) b))

’new-paint)
(assert (let ((b (get (fix EnhWidgetsClassbox) ’Button)))

((get b ’repaint) b))
’new-paint)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Units
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define link
(lambda (mt)
(lambda (ms)

(lambda (a)
(lambda (c)
(lambda (e) (extend (mt e) ‘(,a ,(get (ms e) c)))))))))

(define widgets
(lambda (e)
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‘((Point ((x 0) (y 0)))
(Circle ((radius 0) (center 0))))))

(define widgetsFactory
(lambda (e)
‘((Factory ((newPoint ,(lambda (self) (get e ’Point)))

(newCircle ,(lambda (self) (get e ’Circle))))))))

(define compound1 ((((link ((((link widgetsFactory) widgets)
’Point)

’Point))
widgets)
’Circle) ’Circle))

(assert (let ((p (get (fix compound1) ’Point))
(c (get (fix compound1) ’Circle)))

(get p ’x))
0)

(assert (let* ((f (get (fix compound1) ’Factory))
(p ((get f ’newPoint) ’notUsed)))

(get p ’x))
0)

(define coloredWidgets
(lambda (e)
‘((ColoredPoint ((color ’blue) (x 0) (y 0)))

(ColoredCircle ((color ’blue) (radius 0) (center 0))))))

(define compound2 ((((link ((((link widgetsFactory) coloredWidgets)
’Point)

’ColoredPoint))
coloredWidgets) ’Circle) ’ColoredCircle))

(assert (let ((p (get (fix compound2) ’Point))
(c (get (fix compound2) ’Circle)))

(keys p))
’(color x y))

(assert (let* ((f (get (fix compound2) ’Factory))
(p ((get f ’newPoint) ’notUsed)))

(keys p))
’(color x y))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; MixJuice
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define mjextends (lambda (mt) (lambda (ms) (moverride mt ms))))
(define refineClass
(lambda (mt)
(lambda (c)
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(lambda (d)
(lambda (e)
(extend ((mexclude mt c) e)

‘(,c ,(override d (get (mt e) c)))))))))

(define mjpoint
(lambda (e)
‘((Point ((x 0)

(y 0)
(moveBy ,(lambda (dx)

(lambda (dy)
(lambda (self)
(override
(list (list ’x (+ dx (get self ’x)))

(list ’y (+ dy (get self ’y))))
self)))))

(toString ,(lambda (self)
(string-append
"point "
(number->string (get self ’x))
", "
(number->string (get self ’y))))))))))

(define mjcoloredPoint
(((refineClass ((mjextends (lambda (x) empty)) mjpoint)) ’Point)
‘((color ’blue)
(toString ,(lambda (self)

(string-append "colored point "
(number->string (get self ’x)) ", "
(number->string (get self ’y))))))))

(assert (let* ((p (get (fix mjpoint) ’Point)))
((get p ’toString) p))

"point 0, 0")

(assert (let* ((p (get (fix mjcoloredPoint) ’Point)))
((get p ’toString) p))

"colored point 0, 0")
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[BD05b] Alexandre Bergel and Stéphane Ducasse. Supporting unanticipated changes with Traits and
Classboxes. In Proceedings of Net.ObjectDays (NODE’05), pages 61–75, Erfurt, Germany,
September 2005.
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thesis, Ecole des Mines de Nantes, Université de Nantes, France, 1997.
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