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Quand tu veux construire un bateau, ne commence pas

par rassembler du bois, couper des planches et distribuer

du travail, mais reveille au sein des hommes le desir de la

mer grande et large.

(When you want to build a ship, do not begin by

gathering wood, cutting boards, and distributing work,

but awaken within the heart of man the desire for the vast

and endless sea.)

Origin unknown. Possibly derived from a pas-
sage by Antoine de Saint-Exupéry in the Citadelle
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Abstract

Development tools are a prerequisite for crafting software. They offer the lenses
through which developers perceive and reason about their software systems. Generic
development tools, while having a wide range of applicability, ignore the contextual
nature of software systems and do not allow developers to directly reason in terms
of domain abstractions. Domain-specific development tools, tailored to particular
application domains, can address this problem. While it has clear advantages, incor-
porating domain abstractions into development tools is a challenging activity. The
wide range of domains and contextual tasks that development tools need to support
leads to costly or ad hoc mechanisms to incorporate and discover domain abstrac-
tions. Inherently, this limits developers from taking advantage of domain-specific
information during the development and maintenance of their systems.

To overcome this problem, we propose to embed domain abstractions into develop-
ment tools through the design of moldable tools that support the inexpensive creation
of domain-specific extensions capturing domain abstractions, and that automatically
select extensions based on the domain model and the developer’s interaction with
the domain model. This solution aims to reduce the cost of creating extensions. To-
wards this goal, it provides precise extension points together with internal DSLs for
configuring common types of extensions. This solution facilitates automatic discov-
ery by enabling extension creators to specify together with an extension an activation
predicate that captures the context in which that extension is applicable.

We validate the moldable tools approach by applying it, in the context of object-
oriented applications, to improve three development activities, namely: reasoning
about run-time objects, searching for domain-specific artifacts, and reasoning about
run-time behavior. For each activity we identify limitations of current tools, show
how redesigning those tools following the moldable tools approach addresses the
identified limitations, and discuss the cost for creating domain-specific extensions.
We demonstrate that moldable tools address an existing need by analyzing the in-
crease in domain-specific extensions after we integrated the moldable tools solving
the aforementioned tasks with an IDE. We also show what kinds of custom environ-
ments developers can create by continuously adapting their development tools.
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The conversion of an idea to an artifact, which engages both the designer

and the maker, is a complex and subtle process that will always be far closer

to art than to science.

Eugene S. Ferguson

1
Introduction

Software is expressed using programming languages and crafted with the aid of
tools. Programming languages are frameworks of communication for transferring
abstract models of the real world from the human mind to computers [Ingalls 1981].
They evolved to provide developers with a vocabulary that hides the details of the
computer, and strive to enable developers to create and to express software appli-
cations in terms of domain abstractions. This occurred since expressing software in
terms of domain abstractions rather than generic programming language constructs
has a positive impact on program comprehension [Littman et al. 1987; Rajlich and
Wilde 2002].

Nevertheless, software has no physical shape. Developers craft software exclusively
by interacting with development tools. Development tools provide the means for
transforming an abstract model of the real world from a human’s mind into a pro-
gram (i.e., executable model), within the design space of a programming language.
Hence, development tools have a direct impact on the thinking habits of developers,
affecting how they perceive, craft and reason about software [Dijkstra 1972]. Even
if developers can design a software application in terms of domain abstractions, to
take advantage of domain abstractions when creating and evolving that application
their development tools need to incorporate those domain abstractions.

1.1 Development Tools and Program Comprehension

Starting from basic code editors and compilers, software development tools evolved
to support specific tasks from all phases of the software development cycle. This
includes, but is not limited to, designing, writing, documenting, debugging and
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testing software. While addressing a specific task from the software development
cycle, to increase their range of applicability, many development tools do not make
any assumptions about the specific contexts in which developers use them. They
handle software applications written in one or more programming languages in
the same way, even if those applications model different domains. These types
of tools are referred to as generic. A generic source code editor for a programming
language for example handles all applications written in that language in an identical
manner.

Developers, nonetheless, formulate detailed and domain-specific questions related
to the applications they are developing and maintaining using abstractions from
those application domains. Generic programming tools focusing on generic pro-
gramming tasks and generic language constructs however are unaware of those
domain abstractions. Hence, they force developers to refine their domain-specific
questions into low-level generic ones and mentally piece together information from
various sources [Sillito et al. 2008]. This offers limited support for informed decision
making leading to an inefficient and error-prone effort during software develop-
ment and maintenance, as developers cannot directly reason in terms of domain
abstractions.

As opposed to a generic development tool, a domain-specific development tool tai-
lored to a particular application domain is aware of the abstractions from that domain
and can directly answer related questions. While it has clear advantages, adapting
development tools to particular domains is a costly and challenging activity. A wide
range of software development tools are not designed to support adaptations to spe-
cific domains, allow a limited set of adaptations or require a significant cost even for
simple changes. This limits the ability of developers to take advantage of domain
abstractions. By cost we refer to the effort in terms of time and lines of code, and the
expertise required to incorporate domain abstractions into development tools.

Problem Statement:

By relying on costly mechanisms to incorporate and discover domain abstrac-

tions, software development tools limit the ability of developers to reason directly

in terms of domain abstractions.

The more applications we want to support, the more domains the tools should take
into account. The more domains, the more abstractions the tool has to incorporate.
The more abstractions the tool has, the higher the effort for developing that tool. The
more the domains change, the higher the effort to keep the tool up-to-date.

Research Question:

How can we design development tools that reduce the cost for incorporating and

managing domain concepts given the wide range of domains and contextual

tasks that development tools need to support?

2



1.2 Making Development Tools Domain-aware

1.2 Making Development Tools Domain-aware

Current research proposes two diverging directions for making development tools
domain-aware: one focuses on adapting the language, the other on adapting the tool.
Before going any further we need to discuss these two directions and motivate our
choice, that of extending the tool rather than the language.

1.2.1 Generic Tools for Domain-specific Languages

High-level programming languages, such as C, Java or Python, referred to as general-
purpose programming languages, lack language constructs specialized for a particu-
lar application domain. Developers combine multiple language constructs to model
domain abstractions. Generic tools at the level of these languages are not aware
of any domain abstractions. To avoid this issue, concepts from an application do-
main can be directly encoded in a language by creating external domain-specific
languages or extending an existing language with new language constructs. Generic
development tools at the level of an external domain-specific language or language
extension can now directly work with domain abstractions encoded in the language.
Voelter promotes this through the approach Generic Tools, Specific Languages that aims
to “shift the focus from building and adapting tools [...] to building and adapting languages

to a domain” [Voelter 2014]. Renggli proposed HELVETIA [Renggli et al. 2010b] an
extensible system for embedding language extensions into an existing host language
by extending the syntax of the host language in a way that does not break develop-
ment tools. This direction embeds domain abstractions into development tools by
first embedding those abstractions into the language and then building development
tools that work at the level of abstraction of that language.

1.2.2 Domain-specific Tools for General-purpose Languages

Even if general-purpose programming languages do not provide language con-
structs that have a direct mapping to domain-specific abstractions, they provide
developers with mechanisms to construct domain abstractions. For example, object-
oriented programing enables developers to model a domain in terms of objects
and their interactions; functional programming relies instead on immutable data
structures and functional abstractions. Developers can also exploit the syntax of
their general-purpose programming language to create readable APIs (i.e., internal
domain-specific languages) focusing on particular problems of specific domains
[Fowler 2010]. Hence, domain abstractions do not have to always be encoded in
a software application through direct language constructs; they can be expressed
on top of general-purpose programming languages. Nevertheless, in this direction,
tools at the level of general-purpose languages remain agnostic of the application
domain. Developers need to explicitly incorporate their domain abstractions into
their development tools.
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Despite its pervasiveness, this way of modeling software applications is mainly pur-
sued using generic development tools. Part of current development tools do allow
developers to make domain-specific adaptations. However, when this is the case,
these development tools can require significant effort for creating and discovering
meaningful adaptations, or lack mechanisms for managing and evolving adapta-
tions alongside applications. To explore how to address these issues and facilitate
development using custom rather than generic tools, we selected the direction of
adapting the tool rather than the language as the focus for our dissertation.

1.3 Tool Building

When developers encounter new questions and problems not addressed by their cur-
rent tools they have the option to adapt their tools to directly handle those particular
situations. An investigation by Whittle et al. [Whittle et al. 2013] in the context of
model-driven engineering showed that many developers build their own tools or
make heavy adaptations to off-the-shelf tools. When studying homegrown tools in a
large software company, Smith et al. [Smith et al. 2015] also observed that developers
take the initiative to build tools to solve the problems they face, especially when
their organization’s culture promotes this activity. Dawson and Straub [Dawson and
Straub 2016] describe as a factor contributing to the success of GitHub1 the fact that
its developers had a direct focus on building their own development tools. This
shows that developers do build tools to help themselves in their work. However, an
important barrier towards creating new tools or adapting off-the-shelf tools is the
cost.

1.3.1 Meta-tooling

Research into meta-tooling environments (i.e., tools for building tools) has the po-
tential to address the aforementioned problem by allowing developers to quickly
and effectively customize development tools to their own application domains. One
type of meta-tooling environment illustrating the benefits of meta-tooling is that
of environments for software and data analysis. An example is Moose [Nierstrasz
et al. 2005]. Instead of anticipating all types of possible analyses, Moose offers a
number of meta-tools for building visualizations, parsers and data browsers that
can be adapted to a variety of needs. Other examples include Rascal [Klint et al.
2009], SPOOL [Robitaille et al. 2000], GSEE [Favre 2001], as well as more generic data
analysis environments like Wolfram Alpha2.

Another well known example of an environment that we can consider a meta-tooling
environment is the UNIX shell: it provides a set of default tools and focuses on en-
abling developers to easily create new tools by combining existing tools using an

1
http://github.com

2
http://www.wolframalpha.com/
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approach based on data streams and stream operators like pipes and filters [Ray-
mond 2003].

These meta-tooling environments favor the creation of new tools and analyses and
are suitable in situations where it is not possible to anticipate what kind of tools and
analyses will be needed. Furthermore, these tools and analyses are often built and
need to be used outside of a developer’s main development environment. How-
ever, when looking at software development and evolution developers use a range
of widely accepted tools that cover the software lifecycle, like code editors, compil-
ers, debuggers, profilers, search tools, version control tools, etc. While improving
software development by introducing new types of tools is a valid option, a differ-
ent approach consists in (i) allowing developers to customize existing development
tools to their particular needs and (ii) moving towards customizations that happen
directly in a developer’s main development environment. For this to work, tool
builders need to design extensible development tools.

1.3.2 Tool Extension

Extensible tools define points (i.e., extension points) that developers can use to adapt
the functionality of the tool. This approach provides a pattern that given a relevant
set of extension points for extending both the functionality and user interface of a
tool, can result in useful domain-specific development tools. The Eclipse Platform3

is a widespread example of this approach: by providing customization through a
flexible mechanism of extensions and extension points it can support the creation
of a wide range of development tools [Yang and Jiang 2007], including full-fledged
integrated development environments (IDEs) for generic, modeling4 and domain-
specific languages5.

Extensible development tools enable developers to adapt them to their own domains
through domain-specific extensions. However, they also come with a predicament
as, to take advantage of extensible tools, developers need to create, discover and
evolve extensions alongside their applications. Supporting these aspects through
ad-hoc solutions requires an expensive effort for incorporating domain abstractions
into tools, discouraging developers to pursue this activity.

Creating and evolving extensions

To benefit from an extensible development tool developers first need to create a
domain-specific extension for that tool. A wide range of development tools do sup-
port custom extensions. Nevertheless, even if a development tool supports custom
extensions, if developers cannot easily and effectively adapt the tool to their domains

3
http://www.eclipse.org

4
http://eclipse.org/modeling/emf

5
http://eclipse.org/Xtext
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they will most likely not do so, or only do it when the high effort can be justified. An
integrated development environment like Eclipse, for example, allows developers
to customize the environment and install new tools using plug-ins, but developing
a new plug-in is highly non-trivial. Software applications are also in a continuous
evolution to keep up with changes in requirements [Lehman 1980], leading to do-
main abstractions being added, modified or removed. As this happens, extensions
addressing those abstractions must also be detected and updated. This introduces a
new issue that an extension creator must take into account.

Discovering extensions

Creating and evolving extensions in an extensible tool is only one half of the problem.
The other half consists in facilitating the discovery of domain-specific extensions. De-
velopers cannot take advantage of existing extensions if they cannot easily determine
what extensions are applicable for their current task and domain. IDEs can contain
hundreds if not thousands of different tools and extensions. Finding the right one
for a particular task can be a difficult problem. For example, recent studies pointed
out that refactoring tools from IDEs [Murphy-Hill et al. 2009] as well as dedicated
comprehension tools [Roehm et al. 2012] are heavily underused. Recommender sys-
tems approach this problem by suggesting tools and extensions to a developer based
on what other developers used in similar situations. However, if other developers
do not know about and use an extension, a recommender system would not be able
to find it.

1.4 Our Approach: Tool Extension Through Moldable Tools

Thesis:

To reduce the cost for incorporating and managing domain abstractions, soft-

ware development tools need to support inexpensive creation of domain-specific

extensions, and automatically select extensions based on the domain model and

the developer’s interaction with the domain model.

We propose to embed domain abstractions into development tools through extensi-
ble development tools that approach the creation and evolution of extensions from
the perspective of meta-tooling: enable developers to quickly and effectively ex-
press domain-specific extensions for a development tool. To facilitate discovery we
propose that extension creators specify together with their extensions an activation

predicate that captures the context in which that extension is applicable.

We refer to software development tools that satisfy our thesis statement as moldable
tools. Hence, a moldable tool is a development tool aware of the current application domain
and previous interactions with the domain (i.e., development context) that enables rapid
customization to new development contexts. Customization is needed as one cannot
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Domain-specific 
Extension

Development Context Activation Predicate

Moldable Tool *

1

*

Figure 1.1: An overview of the Moldable Tools approach.

anticipate all relevant usage scenarios; awareness of the development context enables
the tool to automatically detect relevant extensions.

In this vision, illustrated in Figure 1.1 (p.7), tool builders first need to design moldable
development tools. We propose the following approach for the creation of moldable
tools:

Identify common types of extensions Different tools require different types of exten-
sions. We show how various research methods, like interviews, surveys and
analyses of related works, can be employed to identify extension opportunities
for development tools;

Optimize creation of common extension Moldable tools need to reduce the effort for
creating and evolving common types of extensions. We show that one effective
mechanism for achieving this goal is internal domain-specific languages (i.e.,
libraries with dedicated APIs);

Do not limit possible extensions Supporting only common extensions limits the ap-
plicability of a moldable tool. We show that this can be avoided by allowing
developers to create highly specialized extensions using general-purpose lan-
guages, at a higher cost.

Developers then adapt a moldable tool to a development context by (a) creating
domain-specific extensions for that tool capturing relevant domain abstractions and
(b) attaching to those extensions activation predicates that capture the development
contexts in which those extensions are applicable. Then, at run time, a moldable tool
automatically selects extensions applicable in the current development context.

This approach offers the following benefits:

Domain-specific comprehension Code reading is still a widely used solution for pro-
gram comprehension. One the one hand, code reading is highly contextual:
code indicates the exact behavior of an application. On the other hand, code
reading does not scale: simply reading one hundred thousand lines of code
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takes more than one man-month of work. By focusing on optimizing the cre-
ation of common types of extensions, moldable tools can enable developers
to create extensions capturing meaningful data with a low effort. Systematic
creation of extensions can improve program comprehension by reducing the
time needed to locate domain-specific information in development tools. This
can justify the effort for creating domain-specific extensions instead of relying
on code reading as a way to obtain the same information.

Integrated comprehension Separating tools for program comprehension and devel-
opment creates a gap between program comprehension and development,
two activities that are deeply intertwined. Moldable tools propose a novel ap-
proach to better integrate program comprehension tools into the development
environment. Providing domain-specific information directly in development
tools can reduce the reliance on external program comprehension tools. Hence,
developers do not have to manually integrate data provided by external pro-
gram comprehension tools into their current development tools.

Context awareness Extension users do not have to manually decide when an exten-
sion is appropriate. Extension creators help them by explicitly indicating when
an extension is appropriate. This makes it possible for a moldable tool to sug-
gest appropriate extensions for the current development context and minimize
manual work for locating applicable extensions.

1.5 Validating the Moldable Tools Approach

To validate the Moldable Tools approach and show that domain-abstractions can be
embedded into development tools with low costs we apply it in this dissertation to
tools for developing object-oriented applications. Object-oriented programming is a
good candidate for validating Moldable Tools: on the one hand, object-oriented pro-
gramming uses objects to capture and express a model of the application domain; on
the other hand, development tools and environments for object-oriented program-
ming focus only on object-oriented idioms and do not capture domain abstractions
constructed on top of object-oriented programming idioms.

To investigate the usefulness and practical applicability of Moldable Tools in the con-
text of object-oriented programming in this dissertation we focus on three activities
performed by developers during software development and maintenance, namely:
(i) reasoning about run-time objects, (ii) searching for domain-specific artifacts and
(iii) reasoning about run-time behavior. We selected them as they are pervasive,
challenging and time consuming activities during software development and main-
tenance. Next we discuss limitations of current tools in these areas and present
research questions that need to be addressed to overcome these limitations.

8



1.5 Validating the Moldable Tools Approach

Reasoning about run-time objects Understanding object-oriented applications entails
the comprehension of run-time objects. Object inspectors are an essential cate-
gory of tools that allow developers to perform this task. To better understand
what software developers expect from an object inspector, we performed an
exploratory investigation. We identified the need for object inspectors that
support different high-level ways to visualize and explore objects, depending
on both the object and the current developer need. Traditional object inspec-
tors however favor a generic view that focuses on the low-level details of the
state of single objects. While universally applicable, this approach does not
take into account the varying needs of developers that could benefit from tai-
lored views and exploration possibilities. Addressing this problem raises the
following research question:

How can an object inspector provide developers with a unified workflow

for exploring multiple objects using views tailored to their own contextual

needs?

Searching for domain-specific abstractions Software systems involve many different
kinds of domain-specific and interrelated software entities. Search tools aim
to support developers in rapidly identifying or locating those entities of inter-
est. Nevertheless, our analysis of mainstream IDEs and current exploration
approaches shows that they support searching through generic and discon-
nected search tools. This impedes search tasks over domain-specific entities,
as considerable effort is wasted by developers recovering and linking data
and concepts relevant to their application domains. Furthermore, this limits
discoverability as one has to be aware of a domain abstraction in order to know
what to look for. Improving the way searching is integrated in an IDE raises
the following research question:

How can an IDE enable direct searches through domain abstractions in-

stead of requiring developers to focus on manually recovering those abstrac-

tions?

Reasoning about run-time behavior Debuggers are essential for reasoning about the
run-time behavior of software systems. Nevertheless, traditional debuggers
rely on generic mechanisms to introspect and interact with the running sys-
tems (i.e., stack-based operations, line breakpoints), while developers reason
about and formulate domain-specific questions using concepts and abstrac-
tions from their application domains. This mismatch creates an abstraction
gap between the debugging needs and the debugging support leading to an
inefficient and error-prone debugging effort, since developers need to recover
concrete domain concepts using generic mechanisms. The following research
question arises:

How can a debugging infrastructure support developers in debugging their

applications at the level of abstraction of the underlying domain model?
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Contributions

The novelty of this dissertation resides in showing that relevant problems encoun-
tered by developers during software development and maintenance can be addressed
by designing development tools following the moldable tools approach. Towards this
goal the main contributions of this dissertation are:

1. The concept and specification of moldable tools, an approach for improving
decision making within development tools by incorporating domain abstrac-
tions into development tools though inexpensive domain-aware customiza-
tions [Chiş et al. 2015b; 2016a;c].

2. The application of moldable tools to address the research questions identified in
Section 1.5 (p.8). This shows the benefits of enabling developers to adapt devel-
opment tools to their own domains [Chiş et al. 2015a;c; 2016b] and validates
the usefulness of the Moldable Tools approach.

3. The implementation and extension to several domains of three development
tools (i.e., debugger, object inspector, search tool) following the moldable tools

approach [Chiş et al. 2015a;c; 2016b]. This demonstrates that the proposed
approach has practical applicability.

The following list details on the contributions of (2) and (3) addressing the research
questions identified in Section 1.5 (p.8), which serve as a validation for the moldable

tools approach:

Reasoning about run-time objects using the Moldable Inspector. Traditional object in-
spectors favor generic approaches to display and explore the state of arbitrary
objects, while developers could benefit from tailored views and exploration
possibilities. To address this gap we propose that object inspectors enable de-
velopers to adapt the inspection workflow to suit their immediate needs. We
show that this can be achieved if object inspectors make the inspection context
explicit, support multiple domain-specific views for each object and facilitate
the creation and integration of new views. Through the Moldable Inspector we
show how an inspector model providing these feature looks like.

We published this approach in a workshop [Chiş et al. 2014b], a tool demo [Chiş
et al. 2015d] and a conference publication [Chiş et al. 2015c]. We implemented
the Moldable Inspector model in Pharo6 as part of the Glamorous Toolkit
project7. Moldable Inspector is the default object inspector in the Pharo 4
(May 2015) and Pharo 5 (May 2016) releases.

Moldable, context-aware searching with Moldable Spotter. Generic search tools discon-
nected from each other impede search tasks over domain-specific entities. To
address this problem we propose that search tools directly enable developers

6
http://pharo.org

7
http://gtoolkit.org
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to discover and search through domain concepts by making it possible for de-
velopers to easily create custom searches for their domain objects and automat-
ically discover searches for domain objects as they are interacting with those
objects. We also show that by taking into account generic searches through
code we can provide a single entry point for embedding search support within
IDEs. Through Moldable Spotter we show how to design a search framework
following these ideas.

We published this approach in a poster paper [Syrel et al. 2015] and a confer-
ence paper [Chiş et al. 2016b]. We implemented Moldable Spotter in Pharo as
part of the Glamorous Toolkit project. Moldable Spotter is the default search
tool in the Pharo 4 and Pharo 5 releases.

Practical domain-specific debuggers using the Moldable Debugger. We propose to ad-
dress the abstraction gap between debugging needs and debugging support
by allowing developers to create domain-specific debuggers with little effort.
We show how this can be supported through amoldable debugger that is adapted
to a domain by creating and combining domain-specific debugging operations
with domain-specific debugging views, and adapts itself to a domain by se-
lecting, at run time, appropriate debugging operations and views.

We published this approach in a workshop [Chiş et al. 2013], a conference [Chiş
et al. 2014a] and a journal publication [Chiş et al. 2015a]. We implemented the
Moldable Debugger model in Pharo as part of the Glamorous Toolkit project.
Moldable Debugger is the default debugger in the Pharo 5 release.

1.6 Outline

This dissertation is structured as follows:

Chapter 2 – We discuss and compare previous research related to both extending
tools and languages, and demonstrate a gap related to approaches for improving
development tools that focus on both enabling inexpensive adaptations and behav-
ioral variation dependent on the current context.

Chapter 3 – Starting from the aforementioned analysis of related work we identify
requirements for improving tools supporting domain-specific extensions and intro-
duce the moldable tools approach for tool extension.

Chapter 4 – We investigate limitations of current object inspectors through inter-
views and an online survey, identify a need for object inspectors that focus on more
than the state of single objects and propose a model for object inspectors that can
adapt themselves to both the inspected objects and the immediate developer needs.
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Chapter 5 – We discuss requirements for making search tools domain-aware, explore
how they are supported in several exploration tools and propose a solution that al-
lows developers to inexpensively incorporate domain concepts in the search process
as well as to discover searches applicable for their own contexts.

Chapter 6 – We identify and motivate a set of requirements for enabling domain-
specific debugging, and propose a debugging framework that enables developers to
create domain-specific debuggers and switch between them at run-time.

Chapter 7 – Allowing developers to create and discover extensions for individual
tools creates a basis for improving program comprehension. However this raises
further issues related to integrating and evolving extensions for individual tools. In
this chapter we discuss how to integrate moldable tools into a coherent environment
and how to evolve them alongside applications.

Chapter 8 – We discuss further research directions and conclude this dissertation.
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[...] one of the most important aspects of any computing tool is its influence

on the thinking habits of those that try to use it, and [...] I have reasons

to believe that that influence is many times stronger than is commonly

assumed. [Dijkstra 1972]

Edsger W. Dijkstra

2
Enabling Customization

Tools play a prominent role in software development. Since their inception, re-
searchers explored directions for improving software development by improving
the tools developers use to craft software. One important direction, which is also
the focus of this dissertation, consists in enabling developers to adapt development
tools to their own problems and domains. To form a general image of related works,
in this chapter we survey and analyze the state of the art. First, we discuss three di-
mensions that form the foundation of the discussion. Second, we review approaches
for generating tools from language specifications that, while not the direct focus of
this dissertation, play an important role in this field of research. Third, we review
approaches that allow developers to adapt their development tools instead of the
language.

2.1 Discussion Dimensions

Researchers have proposed a wide and diverse set of approaches for enabling de-
velopers to incorporate domain concepts into their development tools. These ap-
proaches range from simple ones targeting adaptations for precise tasks and do-
mains (e.g., profiling object-oriented applications), to heterogeneous solutions that
spawn across tasks and domains (e.g., building custom analysis tools). Nevertheless,
they all share the same goal of allowing developers to create and work with more
than a single custom adaptation. Hence, we start by discussing different solutions
for integrating adaptations, and group related works starting from the mechanism
used to enable communication between domain-specific adaptations. Numerous
dimensions can be further used to evaluate and compare approaches within and
between groups. For the purpose of this dissertation we scope the discussion to
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three dimensions: (a) the architectural solution for incorporating new adaptations,
(b) the cost for creating a domain-specific adaptation (Section 2.1.2 (p.16)) and (c) a
tool’s ability to adapt its behavior based on the development context (Section 2.1.3
(p.18)). We selected them as they are paramount to incorporating and using domain
abstractions in development tools.

2.1.1 Types of Tool Integration

The first design decision a tool builder needs to take is what architectural solution to
select for incorporating new adaptations into the tool. This is commonly understood
as designing the tool as a framework and selecting a plug-in architecture; a plug-in,
or a combination of plug-ins, forms a domain-specific adaptation. Regardless of the
actual plug-in architecture a tool builder needs to ensure that plug-ins work together
to fully support the developer. Hence, plug-in integration becomes an issue. In the
more generic context of tool integration Wasserman [Wasserman 1990] and Thomas
& Nejmeh [Thomas and Nejmeh 1992] describe several types of tool integration:
platform integration, presentation integration, data integration, control integration
and process integration. Presentation integration, data integration and control inte-
gration are directly relevant also for development tools supporting customization
through plug-ins.

Data Integration

Integrating plug-ins requires that they share data and maintain relations between
data managed by individual plug-ins. One solution consists in relying on a shared
repository: any plug-in can access and modify data produced by any other plug-
in. This simplifies the problem of exchanging data between plug-ins, however, it
forces all plug-ins to conform to the same data representation. A second solution
consists in allowing plug-ins to exchange data through a common interface. This
allows for flexibility and enables each plug-in to have its own data representation.
The communication interfaces can range from simple character streams to complex
data structures. For example, in UNIX, tools take as input a character stream and
produce another character stream. While this puts no restriction on the exchanged
data, each tool needs to convert its internal data structures to streams of characters.
To reduce this effort, other approaches rely on interface description languages for
describing the data structures through which tools communicate at a higher level of
abstraction [Lamb 1987; Snodgrass and Shannon 1986]. These approaches support
plug-ins that use internal representations tailored to their needs and can exchange
structured data with other plug-ins, instead of communicating through character
streams or sharing the same data structures.
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(a) (b) (c)

Figure 2.1: Tool architectures for control integration of plug-ins: (a) Standardized
Backbone; (b) Components and Connectors; (c) Message Bus.

Control Integration

Tools that support multiple plug-ins need to enable plug-ins to communicate so they
can notify each other of events, or request services. As they communicate plug-ins
also need to share data. Hence, control integration also requires data integration:
data integration takes care of properly representing and storing data while control
integration is concerned with how plug-ins interact and request services from each
other. Plug-ins can use many mechanisms to communicate with other plug-ins.
One approach consists in having plug-ins that expose their services through explicit
interfaces; instead of using interfaces plug-ins can also communicate just by making
changes to shared data structures. Plug-ins can also only produce events and rely
on message buses to deliver those events to other plug-ins.

Presentation Integration

This direction states that plug-ins should share the same “look and feel” from a user’s
perspective and support similar interaction paradigms. Hence, presentation inte-
gration should minimize learning and usage interference so a developer that knows
how to use a plug-in can learn to use another plug-in without significant overhead.
This is usually addressed in development tools by having plug-ins running in the
same system window and using the same UI framework. For development tools,
presentation integration also implies control and data integration, unless completely
different tools run in the same window.
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2.1.2 Plug-in Architectures for Development Tools

The term “plug-in” is highly overloaded in today’s systems and there are numerous
solutions for instantiating frameworks using plug-ins [Fayad et al. 1999]. We build a
classification, illustrated in Figure 2.1 (p.15), based on how the lifecycle of an adapta-
tion and the interaction between adaptations are handled within an environment (i.e.,
control integration). The items in this classification are not mutually exclusive; the
tools that we will discuss in the remainder of this chapter combine them to various
degrees.

Standardized Backbone

One solution for enabling adaptations in development tools is to design plug-ins
that fit against a standardized tool-specific interface (i.e., standardized backbone).
In this solution the tool controls the entire lifecycle of a plug-in through dedicated
interfaces for initializing, running and stopping the plug-in. This mechanism is typ-
ically implemented by allowing plug-ins to provide callbacks that are then executed
when events of interest are reified by the encompassing tool (e.g., a file is opened
or deleted, code is changed, an error is raised). The tool can further provide a set
of common data structures (e.g., data structures for representing code elements like
classes, methods, annotations, abstract syntax trees), as well as standard interfaces
for manipulating data or adding visual components to the user interface of the tool
(e.g., buttons, menu entries).

This approach favors central control and can reduce data duplication by allowing
adaptations to share information; if needed plug-ins can still maintain their own
data. Nevertheless, this approach limits the scope of a plug-in only to a particular
tool making it difficult to reuse plug-ins between tools or environments. Constraints
imposed by the tool can also limit the types of possible adaptations, or make their
implementation difficult. Furthermore, a plug-in that acts incorrectly (e.g., fails,
requires too many resources) can leave the entire environment in an invalid state.

An example of a tool that uses this approach is MetaSpy [Ressia et al. 2012b], a frame-
work for creating domain-specific profilers. In MetaSpy developers create custom
profilers by subclassing a predefined class and overriding methods called when
certain events, like method calls or attribute access, occur in the profiled code. In
general, for object-oriented systems, inheritance and method overriding are common
mechanisms to implement a standardized backbone.

Components and connectors

Tools designed using a standardized backbone require plug-ins to conform to a
predefined life cycle and limit plug-in reuse in other tools. Instead of supporting
domain-specific adaptations by plugging in custom functionality into predefined
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interfaces, a different approach consists in enabling developers to create new custom
tools capturing domain-concepts by composing individual tools (i.e., components).
An individual tool defines interfaces for obtaining and providing services (i.e., in-
put and output ports; connectors). These tools follow ideas from component-based
software engineering in which software is built by gluing together prefabricated
components [Szyperski 2002]. This is also referred to as the toolkit approach [Snod-
grass and Shannon 1986]. Here there is no single major component that controls the
lifecycle of all adaptations. Each adaptation can have its own lifecycle depending
on how the underlying components are connected; components can be connected in
more than one way.

An example of this approach, discussed in Section 2.3.4 (p.27), is the UNIX Shell: de-
velopers create new commands by composing existing commands using pipes and
filters. Composing the same commands in a different order can result in different
tools.

Message bus

Creating custom adaptations by implementing hooks or by directly combining com-
ponents through connectors means that tools and plug-ins need to be aware of each
other. For example, a code editor can define an interface for plugging in a compiler
and a syntax highlighter. Even if the compiler and syntax highlighter can be changed
as long as the new ones implement the required interface, the code editor is still aware
that it needs these extensions. A different approach consists in using a middleware
that handles communication between plug-ins through message passing and keeps
individual plug-ins and tools unaware of each other.

This approach relies on a message bus that forwards events between plug-ins. When
added to the event bus, plug-ins can register interests in particular events. At run
time, plug-ins generate events that are passed to the subscribed plug-ins by the mes-
sage bus; depending on the message bus different types of messages like responses
or acknowledgements can be used. Developers customize a tool following these
approach by creating custom plug-ins and registering them with the message bus.
A message bus reduces coupling between plug-ins favoring reuse. Depending on its
design, it can also integrate plug-ins written in different languages. Nevertheless,
the message bus needs to provide the right level of granularity for messages and
avoid communication bottlenecks. Developers further have to take care of properly
orchestrating the communication between plug-ins.

Monto [Sloane et al. 2014] is an example of a code editor that uses a message bus.
Every time the developer edits the code, Monto sends a code-changed event. The
compiler is just a listener that responds to the event and sends back to the message
bus a response message containing the status of the compilation together with possi-
ble compilation errors. The editor then updates the UI based on that answer. Hence,
the code editor has no dependency to the compiler.
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2.1.3 The Cost of Custom Adaptations

A dimension in our discussion is the cost for creating a domain-specific adaptation.
The term costhas many overloaded meanings when applied to software development.
To disambiguate our comparison, we define cost starting from the definition used
by De Volder [De Volder 2006] as “the effort in terms of time and lines of code, and the

expertise required to incorporate a domain abstraction into a development tool.” By expertise
we refer to the knowledge required to understand and use the adaptation features
of a tool and not the domain knowledge necessary to extract abstractions from a
domain. We assume developers adapting a tool know their domain model.

Evaluating the precise cost of domain-specific extensions for all the tools that we will
discuss next is a challenging task. Hence, we rank existing tools and techniques by
looking at their focus on reducing the cost for creating domain-specific adaptations,
using a three-point scale (i.e., high, medium and low). Tools with the rank high

allow developers to create domain-specific adaptations, however, do not have as
main goal to reduce the effort and expertise required from a developer to create an
actual adaptation. Tools with the rank low are designed to reduce the cost of domain-
specific adaptations. Tools with the rank medium, while also designed to reduce the
cost of an adaptation, require a high expertise.

Our definition of cost includes lines of code (LOC). In general, lines of code must be
considered with caution when measuring complexity and development effort. The
metric does not necessarily indicate the time needed to write those lines and it can
vary significantly depending on the expressiveness of the programming language
used for creating adaptations. For example, we give a medium rank to tools that sup-
port the creation of adaptations through logical programming languages or formal
approaches (e.g., attribute grammars, BNF). While supporting powerful adaptations
with few lines of code, writing those lines requires a high expertise. Overall, despite
its disadvantages, LOC gives a good indication of the size of a domain-specific adap-
tation. We consider that a small size makes the construction cost affordable when
the expertise required to write those lines is also small.

2.1.4 Context-awareness in Development Tools

The second dimension in our comparison builds on context-oriented programming
(COP), a paradigm for the creation of context-aware systems that can dynamically
adapt behavior to their context of use and in reaction to changes in context [Hirschfeld
et al. 2008; Salvaneschi et al. 2012]. COP enables systems to take advantage of con-
textual information to provide deeply personalized functionality. This dimension
plays an important role in extensible development tools as depending on the devel-
opment context, different information and adaptations can be of interest. Requiring
a developer to be aware of all existing adaptations and to manually select relevant
ones as its context changes introduces a significant overhead in the comprehension
process.
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Acentral concept in the design of such a solution is the actual context. COP defines a
context in generic terms as “any information that can be used to characterize the situation of
an entity” [Dey 2001] or “any information which is computationally accessible” [Hirschfeld
et al. 2008]. For the purpose of our comparison we restrict the context to the actual

application domain and a developer’s previous interactions with the domain; we refer to this
information as forming a development context. Previous work on exploring how
developers comprehend software showed that interactions with a domain play an
important role in improving program comprehension [Ko et al. 2005; Murphy et al.
2005; Ko et al. 2006]. For example interaction recording tools, like Mylar [Kersten
and Murphy 2005] and DFlow [Minelli et al. 2015], provide support for automatically
building a context as developers interact with development tools and filtering visible
information based on that context [Minelli et al. 2016].

We distinguish between context-agnostic and context-aware tools:

Context-agnostic tools support no behavioral variation dependent on context. Their
behavior is fixed and changes in the context trigger no changes in behavior.

Context-aware tools enable new, modified, or removed behavior during use, de-
pending on how the contexts evolves. Hence, they can self-adapt their behav-
ior in reaction to changes in the context. They can also take only limited parts
of the context into account.

2.1.5 Summary

Figure 2.2 (p.20) summarizes these dimensions using a three-dimensional space. On
the x and y axes (Cost and Behavioral variations) tools are assigned a category. On the
z axis, denoting the tool architecture, tools can spawn over multiple categories. We
used these dimensions to discuss approaches where developers incorporate domain
concepts into their development tools by adapting the language or the tool.

2.2 Generating Tools from Language Specifications

One direction for embedding domain abstractions into development tools is to spec-
ify domain-specific languages capturing those abstractions and generate tools from
language specifications. In this case the main effort goes into designing the language.
Many different types of approaches have been proposed to simplify the creation
of custom languages including modular compilers, modeling languages, language
workbenches, etc. Voelter [Voelter 2014] and Renggli [Renggli et al. 2010b] provide
comprehensive reviews. In this section we give a brief overview by focusing on the
types of generated tools and on how language specifications are developed.
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Figure 2.2: Dimensions for discussing related works.

2.2.1 Projectional Editors

Early examples of development tools generated from language specifications con-
sisted in projectional editors (i.e., syntax-directed editors). The ALOEGEN [Medina-
Mora 1982] system for generating ALOE editors is one example. For each language
ALOEGEN takes as input a description of the abstract syntax (the language con-
structs and their relations), concrete syntax (representations for each language con-
struct) and a set of action routines. Adifferent solution is followed by the Synthesizer
Generator [Reps and Teitelbaum 1984], which uses attribute grammars as specifi-
cations for the syntax and semantics of a language. The Cornell Program Synthe-
sizer [Teitelbaum and Reps 1981] and Poe [Fischer et al. 1984] also rely on attribute
grammars as a specification mechanism.

Other tools use custom solutions for describing the language: MENTOR [Donzeau-
Gouge et al. 1980] provides an editor for structured data expressed as abstract syntax
trees using a custom formalism named METAL [Kahn et al. 1983]. Tenma et al. pro-
pose a system for generating language-oriented editors where features of the target
language are represented using object-oriented concepts [Tenma et al. 1988]. PSG
supports a hybrid editor which allows structure-oriented editing as well as text edit-
ing; the language is specified using a formal definition language, covering the whole
spectrum of a language’s syntax, context conditions, and dynamic semantics [Bahlke
and Snelting 1986].

These tools follow what can be called a monolithic approach where the developer
gives the language formalism to a black-box system, which in turn generates the
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editor. There is no direct focus on making the system extensible or supporting inter-
operability between editors for different languages.

2.2.2 Development Environments and Analysis Tools

As the generation of language editors spread, the focus moved towards generat-
ing more complete environments or other types of tools. The Gandalf project, for
example, extends ALOEGEN with version control with the goal of permitting environ-
ment designers to generate families of software development environments semiautomatically

without excessive cost [Habermann and Notkin 1986]. CENTAUR starts from a for-
mal specification of a particular programming language (including syntax specified
using METAL and semantics specified using ASF or TYPOL) and generates a struc-
tured editor, an interpreter, a debugger and other tools, all of which have graphic
interfaces [Borras et al. 1988]. PECAN complements editors with multiple graphical
views including expression trees, data type diagrams and flow graphs [Reiss 1985].
Pan targets not only editors for source code but also languages like design languages,
specification languages or structured documentation languages for creating other
software documents [Ballance et al. 1992]. LISA, apart from editors and debuggers,
generates a wide range of tools for visualizing program structures and animating
algorithms [Henriques et al. 2005].

Not only editing, debugging and visualizations tools can be generated. Devanbu
proposed GENOA, a system for generating code analyzers [Devanbu 1992]. An
analyzer is expressed by reasoning over abstract syntax trees using a specification
language independent of the actual programming language under test. A compan-
ion system generates interfaces between GENOA and existing languages. Aria is
a system built using GENOA that can generate testing and analysis tools based on
an abstract semantics graph representation for C and C++ programs [Devanbu et al.
1996]. This reduces the cost of creating testing and analysis tools as developers can
just focus on application-specific aspects without having to take into account the
generation and traversal of graphs representing their applications.

These approaches, while still favoring black-box systems for generating tools, moved
towards a central repository for storing an intermediate representation of the pro-
gram together with uniform interfaces for accessing data. This change made it pos-
sible to easily integrate generated tools into a cohesive environment. It also enabled
language builders to extend these systems with new tools that conformed to their
interfaces (i.e., standardized backbone).

2.2.3 Language Workbenches

With more and more systems supporting the generation of development tools, the
attention shifted towards improving the development process of language specifi-
cation and their interoperability. Klint proposed Meta-Environment, a system for
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developing formal language definitions based on the formalism ASF + SDF [Klint
1993]. Using these definitions Meta-Environment generates several tools like edi-
tors and debuggers [van den Brand et al. 2005]. The system also generates tools for
working with the language specification. The current version of Meta-Environment
follows a component-based approach: all tools from the environment are modeled as
components that communicate using a tool bus, separating coordination from com-
putation [Brand et al. 2001]. As long as components adhere to the communication
protocol of the tool bus they may be written in any language.

The Xtext1 project from Eclipse can generate complex text editors starting from an
EBNF-like language specification. While two different languages cannot be com-
bined developers can extend an existing language. MPS2 provides dedicated pro-
jectional editors for languages created using a dedicated modeling language. MPS
supports languages which are fully integrated with each other. IMP is a meta-tooling
platform intended to reduce the cost for creating and customizing language-specific
IDEs in Eclipse [Charles et al. 2007]. To reduce the cost needed for customization
IMP provides a combination of frameworks, templates, and generators.

These approaches shifted the focus towards extensibility and composition of lan-
guages. If in the past the main goal was to generate a comprehensive tool suite for a
language, current language workbenches have the added requirement of interoper-
ability between tools across different languages.

2.3 Adapting Tools to Specific Domains

As discussed in Section 1.2 (p.3) developers can directly express domain abstractions
using constructs provided by their general-purpose programming language, without
having to design dedicated languages. In this situation however, to take advantage
of those concepts within their development tools, developers need to explicitly adapt
their tools. In this section we analyze several tools that allow domain-specific adap-
tation based on the three dimensions discussed in Section 2.1 (p.13).

2.3.1 Overview

We group related tools based on the three types of plug-in architectures presented in
Section 2.1.2 (p.16). For each tool we highlight the plug-in architecture on top of which
it is built, classify the tool based on the cost for creating an adaptation and indicate
if the tool supports a mechanism for selecting adaptations based on a developer’s
context. Table 2.1 (p.24) gives an overview of this comparison. In the remainder of this
section we discuss the tools from each group and motivate our comparison. Given
the large number of development tools currently available, the presented set of tools

1
http://www.eclipse.org/Xtext/

2
https://www.jetbrains.com/mps/
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is not exhaustive; instead it focuses on a set of representative tools covering a wide
range of approaches and techniques.

2.3.2 Live Environments

The software development cycle requires developers to perform multiple activities
like writing code, reading code, testing, debugging, deployment, etc. Developers
benefit from short feedback loops when performing these activities. Short feed-
back loops are, however, not provided by all development tools. Some introduce
significant overhead, forcing developers to make many context switches between
different development activities. A classical example is the long feedback loop be-
tween writing and compiling C++ code. Live environments aim to provide shorter
feedback loops and give a sense of immediate feedback by enabling developers to
permanently interact with a running system.

Smalltalk-80 is an early example of a live environment [Goldberg 1984]. Developers
evolve a Smalltalk application by editing and manipulating objects in a running
system. Furthermore, within a Smalltalk system there is no distinction between the
application code and the code of the system (e.g., compiler, parser, IDE, development
tools). Developers can access and modify the code of the IDE in the same way as
they do their own application code. Because it is a running system any change in
the code of the IDE, for example, is immediately visible to the developer. Modern
environments based on Smalltalk-80, like Pharo and Squeak3, follow these ideas.

Another example of a live environment is Self [Ungar and Smith 1987]. Unlike
Smalltalk, which uses classes to create objects, Self is a prototype-based system: de-
velopers evolve an application by only interacting with objects. Like Smalltalk, Self
can be described as both a language and an environment that has no system-level
distinction between using an application and changing or programming it [Smith
et al. 1995]. Both actions are done by manipulating the state and behavior of objects.
For example, the entire user interface of Self is composed of uniform graphical ob-
jects [Maloney and Smith 1995]. Hence, the entire environment is available for direct
modification just by interacting with objects in a uniform way.

The Lively Kernel is a collaborative Wiki-like development environment applying
ideas from Smalltalk to the web [Ingalls et al. 2008]. The Lively Kernel runs in a web
browser and enables multiple users to share content by constructing and interacting
with objects. Users can also modify the system itself including the development
tools. To avoid situations in which a user makes changes to a tool that break the
whole system, the Lively Kernel models tools as scriptable objects that can easily be
cloned [Lincke and Hirschfeld 2013]. Developers can then change scripts and objects
directly in a cloned tool and avoid breaking the original tool. Lively Kernel supports
users in sharing and discovering scripts for creating custom tools.

3
http://www.squeak.org
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Type Tool Plug-in architecture Cost Context

Section 2.3.2
Live
Environments

Smalltalk   # z z z —

Self   # z z z —

Lively Kernel   # z z z —

Section 2.3.3
Pluggable
Frameworks

Eclipse   # z z z perspectives

EMACS   # z z modes

MetaSpy  # # z —

GSEE   # z —

Section 2.3.4
Composable
Tools

UNIX #  # z —

Vi #  # z —

Monto # #  z z —

FIELD # #  z z z —

Code Bubbles  #  z z z —

Section 2.3.5
Query-Based
Tools

JQuery  # # z z domain model

(Wuyts)   # z z —

SVT   # z z —

Section 2.3.6
Rule-Based
Transformations

ConTraCT   # z z preconditions

(Wrangler)   # z z preconditions

Section 2.3.7
Meta-Models

Glamour #  # z —

VIVIDE #  # z domain model

OmniBrowser   # z —

Table 2.1: Comparison between tools using the dimensions presented in Figure 2.2
(p.20): the plug-in architecture, the cost for creating an extension and their
context awareness.  relies on that architecture; # does not use that ar-
chitecture. z z z high cost for creating adaptations; z z medium cost; z low
cost. — if the tool does not provide a solution for selecting adaptations
based on the context; the name of the solution if this is not the case.
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Live environments while not directly supporting cheap and context-aware tooling,
provide a solid foundation for enabling tool building. They rely on plug-in archi-
tectures where developers can reuse available components and leverage predefined
interfaces; data is usually stored in a central location. For example, Smalltalk has a
prominent focus on development tools and on adapting those tools [Johnson et al.
1989] and uses the notion of an image as repository for storing objects. This focus
on tool building in live environments promotes a culture in which developers are
encouraged to adapt their tools. Many approaches discussed in the remainder of
this chapter build on this foundation to improve tool building, including moldable

tools.

2.3.3 Pluggable Frameworks

Many development tools rely on an abstract design that embodies how the tool
should work and provide hooks (i.e., predefined interfaces) developers can use to
inject their functionality through plug-ins; individual plug-ins can be created by
combining components provided by the tool. Data representing program elements
is maintained by the tool; plug-ins can also maintain their own data.

The Eclipse Platform is a previously mentioned example following these ideas. The
Eclipse Platform consists of a set of frameworks and common services that build
a basic runtime on which functionality is added by loading new plug-ins. Devel-
opment tools are designed as plug-ins that offer developers various customization
possibilities through dedicated extension points [Yang and Jiang 2007]. For example
there exist extension points for adding new context menu entries or shortcuts to the
code editor, or actions to the debugger. Creating a plugin requires a developer to
provide several files: a manifest file describing the plugin, an XML file expressing its
dependencies, a class providing callbacks called during the lifecycle of the plug-in,
etc.

To group views and commands related to a particular development task (e.g., coding,
debugging), Eclipse provides perspectives [Clayberg and Rubel 2008]. A perspective
is a mechanism that determines the visible actions, data and views (i.e., graphical
widgets) within a the tools, and provides a layout for arranging views. Plug-ins can
extend existing perspectives or can provide their own. Developers can manually
change between perspectives, or tools can suggest developers perspectives when
they detect certain events (e.g., the debugger suggests to developers switching to the
debug perspective when a breakpoint is reached at run-time). Other IDEs, like Visual
Studio4 and IntelliJ5, provide similar extension and grouping mechanisms [Nayyeri
2008; IntelliJSDK 2016].

A highly influential plug-in based system is Emacs, an extensible and customizable
text editor [Stallman 1981]. In Emacs the functionality of the editor is defined in

4
https://www.visualstudio.com

5
https://www.jetbrains.com/idea
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a library of commands. Each command has a name and is bound to a particular
keystroke. Users can freely change the key bindings of commands or add new com-
mands as the editor is running. Unlike in Eclipse, commands do not require a file
structure; a command can be expressed as a function bound to a keystroke. To facili-
tate management of commands and key bindings, both can be grouped using editing
modes. An editing mode groups specialized features for working with a particular
type of file or features that can be toggled during editing. Modes can change the
meanings of certain key bindings as well as add or remove key bindings and com-
mands. This provides a simple and flexible customization mechanism used in other
text editors like Sublime Text6 and Atom7.

Eclipse and Emacs provide an explicit approach for extending tools. This approach
however is generic and does not focus on reducing the cost of creating an exten-
sion. In both cases developers extend a tool by writing a plugin in the language
in which the tool is implemented using a generic API. This has the advantage that
developers to not have to learn a new language to extend the tool. These tools further
support grouping of commands and enable developers to find specific commands
using build-in textual search support. While search support is a step towards help-
ing developers locate commands, it does not enable tools to automatically detect
commands applicable for the current development context.

To reduce the cost of creating a plug-in, other approaches reduce their generality and
focus on addressing specific problems and tasks. For example, MetaSpy is a frame-
work for quickly prototyping new domain-specific profilers [Ressia et al. 2012b].
In MetaSpy a new profiler is created by subclassing an abstract Profiler class and
indicating how to extract domain-specific events from the model using a set of prede-
fined or custom instrumentation strategies. Another example is GSEE [Favre 2001],
an environment for exploring and visualizing software, in which developers specify
how to extract data from a system by implementing a set of predefined interfaces
(e.g., Successor for modeling a one-to-many relation). The framework uses these inter-
faces to extract and display a model using customizable visualizations. In both these
frameworks developers need to decide when to use a profiler or a visualization.

Tools for analyzing source code, like Checkstyle8, Findbugs [Ayewah et al. 2008] and
Pmd9, also follow these ideas and focus on reducing the cost of creating custom
analyses. Custom analyses are implemented as AST visitors using dedicated APIs.
Hence, developers do not have to deal with the issues of extracting and managing
ASTs; they can focus only on the implementation of their own analysis. Furthermore,
these tools can adapt their behavior based on the content of an XML configuration
file. The focus of these tools is not to automatically detect what analyses to apply in a
given context. It is rather on enabling developers to create and use custom analyses
for their projects and domains, instead of relying on generic analyses.

6
https://www.sublimetext.com

7
https://atom.io

8
http://checkstyle.sourceforge.net

9
http://pmd.github.io
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2.3.4 Composable Tools

Instead of providing hooks a plug-in can implement, other development tools and
environments support the creation of adaptations by connecting, using various mech-
anism, already available pieces of functionality. We distinguish between tools that
use components and connectors and tools that rely on a message bus.

By design these approaches support tool creation at two level of abstractions. On
the one hand, developers can create tools within the design space of the available
components solely by combining and customizing those components. Given a set
of components that covers the problem domain, this enables the creation of useful
tools with very low effort. Many tools optimize for this use case by focusing on
solutions to discover and share components. On the other hand, when the available
component set is not enough, developers can create new ones. This increases the
scope of the tool, however, it requires more effort than just combining components.

Directly Connecting Components

The UNIX shell is a highly influential environment that enables developers to create
programs by combining a set of existing commands using a pipes and filters pat-
tern [Raymond 2003]. For example, listing all files from a directory modified on
February 24 can be done by combining the ls command for displaying the the list
of files from a directory with the grep command searching for lines matching a reg-
ular expression: ls -l | grep ”Feb 24”. Pipes link commands only through a stream
of characters; while commands could also share data through the file system the
vast majority of UNIX commands communicate only through their input and out-
put streams. To find basic commands the UNIX shell relies on autocompletion and
textual searches. This simple architecture supports the creation of powerful tools as
small and concise snippets of code.

A different mechanism to compose commands following similar ideas is used in Vi,
an advanced text editor. Vi is built on the idea of command composability [Joy 1980]
and proposes a set of general-purpose commands that can be combined to form larger
commands. For example, to delete text, users need to combine the delete command
d with a command that moves the cursor over a portion of the text; that can be $

(move cursor to the end of current line), w (move cursor over one word), or any other
movement command. Emacs, on the other hand, provides specialized commands
for each of these actions (kill-word and kill-line) and in general favors monolithic
commands. Newer editors based on Vi, like Vim (Vi iMproved) [Oualline 2001],
follow the same ideas regarding composability of commands. Unlike UNIX, where
commands share data through streams, in Vi commands operate on a common data
structure modeling the current text.

Vi and UNIX significantly reduce the cost of crafting custom tools by combining
commands. For example to combine commands in Vi developers only need to switch
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to the command mode and type the letter representing the individual commands.
This low cost has the side effect that developers do not need to focus on saving
and managing custom tools if they can easily create those tools when needed. This
solution is however highly domain-specific and works well only for simple and rapid
ways to compose tools.

Middleware-connected Components

FIELD is an example of programming environment where all communication be-
tween tools is achieved using message sends to a common message server [Reiss
1990]. Each tool runs in a separate process and registers patterns describing the
messages it is interested in with the message server. The message server forwards
a message to all tools that registered a matching pattern. Messages can also have
associated replies, returned to the original sender by the message server. CodeBub-
bles [Bragdon et al. 2010a], a user interface based on collections of lightweight editable
fragments, called bubbles follows a similar idea. CodeBubbles was designed to be
embedded in an IDE, however, it does not directly depend on the IDE. Instead it
uses a message-based interface to communicate with the underlying IDE [Reiss
2012]. These solutions ensure separation between individual tools and favor reuse
of individual tools. Nevertheless, while enabling reuse and configurable tools, they
do not focus on reducing the cost of creating or configuring custom tools.

An environment that has as goal to reduce the effort for incorporating components
into a development tool is Monto [Sloane et al. 2014]. To achieve this Monto proposes
an architecture that distinguishes between sources that publish notifications when
changes to user-edited text occur, servers that provide functionality, and sinks that
consume products from servers. Components communicate via text messages across
an off-the-shelf messaging layer. Monto was used to create a basic editor for writing
and compiling Java code by linking the Sublime editor with a Java compiler in less
than 500 lines of Python and Scala code. While it reduces the effort for incorporating
tools, like the previously discussed tools, Monto has no support for modeling and
using a development context to select tools.

2.3.5 Query-based Tools

Developers need to repeatedly find information relevant for their tasks and do-
mains [LaToza and Myers 2010]. A wide range of tools that query a system based on
various criteria have been proposed, especially in the field of feature location [Dit
et al. 2012], to help them find relevant data. Part of these tools enable developers
to formulate their own custom queries using logical programming languages. De-
velopers create an adaptation by combining a custom query extracting data from a
system with widgets graphically displaying the query results. These tools rely on a
common repository (i.e., knowledge base) that is being queried by all adaptations.
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Atool for creating code browsers following this idea was proposed by Wuyts [Wuyts
1996]. Developers build an adaptation by formulating a query using a logical pro-
gramming language detecting structural information and constructing a user in-
terface using a reflective UI builder. The UI builder provides reusable graphical
components for which part of the domain knowledge has to be specified when the
component is used in an application. SVT applies a similar approach to a different
type of task: building software visualizations [Grant 1999]. Developers use queries
written in Prolog to extract data from both the code and the runtime. A set of map-
pings between data and views are then used to select one or more suitable views
for displaying a query result. Additional Prolog code can be dynamically loaded
that contains more view specifications and mappings. These and other tools focus
on solutions for enabling expressive customizations. They, however, do not provide
support for detecting relevant adaptations once the developer has finished building
them.

JQuery is a tool that has a direct focus on reducing the cost of building a code
browser [De Volder 2006]. Towards this goal JQuery limits the type of code browsers
that it supports to hierarchical code browsers having as an interface a tree-view
widget with collapsible and expandable nodes. Developers create a custom code
browsers by specifying a query executed over a source model (e.g., a database con-
taining facts about a program’s structure), and a list of attributes for organizing the
query results into a tree [Janzen and de Volder 2003]. To enable developers to dis-
cover browsers JQuery organizes them using context menus. Browsers displayed
in the context menu of a code entity are determined dynamically: each browser can
have in a configuration file a predicate that checks if the browser can be applied on
the selected code entity. However, this does not take into account other information
present in a development context like previous interactions with the environment.

The advantage of these tools is that they allow a developer familiar with the query
language to quickly build adaptations that only need to use available graphical wid-
gets. Tools are inherently extensible within the boundaries set by the underlying
language. Furthermore the query language can ease creation of certain types of
queries. For example the declarative logic programming language used by JQuery
is extended with predicates providing access to data about a program’s structure
(e.g., inheritance hierarchy, location and targets of method calls, field accesses). De-
velopers can further extend the query language with new predicates, an activity
that requires significantly more effort than just creating a browser using available
predicates. Nevertheless, the extensibility power of these tools also comes with
a predicament: developers unfamiliar with logical programming languages have
to leave their comfort zone and learn a new programming paradigm [Janzen and
de Volder 2003; Lozano et al. 2015; Caracciolo 2016].

We observe that tools in this category, like composable tools, distinguish between
two modes of creating adaptations. The first aims to reduce the effort for building
an adaptation as long as developers remain within the confines of the provided
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logical language and UI widgets. The second enables greater flexibility by allowing
developers to extend the language and add new types of widgets at a greater cost.

2.3.6 Rule-based Transformations

Another category of development tools support adaptation by enabling develop-
ers to compose transformations over the structure of a program, with the goal of
increasing programmer productivity by automating programming tasks. A basic
transformation rule in this case expresses a one-step transformation on a fragment
of a program [Visser 2005]. More complex tools are then created by composing basic
transformations following a component-based approach.

As it is difficult to cover all possible domain-specific refactorings, refactoring tools
often follow this approach. They provide developers with a set of basic refactorings
and allow them to compose larger refactorings from existing ones. Composition is
usually supported through dedicated languages built on formal foundations. This
enables highly expressive and short programs. For example, ContTraCT uses a dedi-
cated refactoring editor for a language providing two basic composition operations:
and and or [Kniesel and Koch 2004]. Li and Thompson on the other hand, discuss
how to compose refactorings using the concrete syntax of Erlang and a dedicated
API [Li and Thompson 2012]. RubyTL proposes an external domain-specific lan-
guage embedded in Ruby [Cuadrado et al. 2006].

One important aspect of rule-based transformations is that they should only be ap-
plied on precise program fragments. Hence, apart from a transformation, a rule also
needs to recognize the specific program fragment that it should transform. Recogni-
tion can be achieved by associating preconditions to rules that match the structure of
the program and possibly verify some semantic conditions [Visser 2005]. In the case
of refactorings, preconditions check if the required program elements are present in
the code and if the semantics of the refactored code can be preserved. This mecha-
nism provides an alternative to using a development context for determining what
rules can be applied on a given fragment of code.

2.3.7 Meta-models

A model is a simplification of a system built with an intended goal in mind [Bézivin
and Gerbé 2001]. Meta-models specify how to construct models for a class of sys-
tems [Seidewitz 2003]. Approaches applying this idea enable developers to leverage
a meta-model to specify a model of the tool and generate the concrete tool from the
model.

OmniBrowser [Bergel et al. 2008] is a tool builder exemplifying this approach. Om-
niBrowser supports the creations of browsers (i.e., applications with a GUI that are
used to navigate a graph of domain elements) based on an explicit meta-model. A
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domain model is described in a graph and the navigation in this graph is specified in
a metagraph. Nodes in the metagraph describe states the browser is in, while edges
express navigation possibilities between those states. OmniBrowser then dynam-
ically composes widgets such as list menus and text panes to build an interactive
browser that follows the navigation described in the metagraph. OmniBrowser uses
the programming language in which it is implemented (i.e., Pharo) as a modeling
language. OmniBrowser does not tackle the problem of when to use custom code
browsers. It leaves this decision solely to the developer.

Glamour is another tool for building data and code browsers where developers build
a model of their tool using a components and connectors architecture [Bunge 2009].
The model expresses the behavior of the tool and it is independent of any GUI frame-
work. Developers specify the model of a browser using an internal domain-specific
language. A renderer is responsible for generating from the model a tool for a concrete
platform. Glamour offers renderers for the Morphic GUI framework [Maloney and
Smith 1995] and Seaside web development framework [Ducasse et al. 2004]. Devel-
opers can create complex code browsers in a few hundred lines of code. However,
like OmniBrowser, Glamour cannot select code browsers based on a development
context.

Following ideas from UNIX, Taeumel et al. propose VIVIDE [Taeumel et al. 2012], a
tool following a data-driven approach to rapidly build graphical tools by modeling
graphical tools as multiple pipelines that transform and display data. The configu-
ration of a tool is based on scripts: developers use concise scripts as glue between
data and graphical views. Scripts are written using Squeak, the language in which
the tool is implemented. This approach is shown to reduce the cost of creating de-
velopment tools like debuggers and object inspectors [Taeumel et al. 2014]. VIVIDE
has a large focus on presentation integration. All tools are displayed in a single hori-
zontal unbounded tape that is embedded into a scrollable area. Different tools are
made available to developers depending on the types of data (i.e., objects) they are
interacting with (e.g., source code, run-time information). Hence the domain model
is used to determine appropriate domain-specific tools.

2.3.8 Summary

There exist a wide range of solutions for constructing development tools that support
domain-specific adaptations. This section grouped these approaches based on the
mechanism they use to support adaptations into the following categories:

Live Environments Allow developers to change and evolve both their applications
and the development environment in a uniform way.

Pluggable Frameworks Provide an abstract design that embodies how a tool should
work and give developers hooks they can use to customize the tool.
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Composable Tools Support the creation of custom tools by combining, using vari-
ous mechanisms, already available pieces of functionality. Enable individual
components to be reused in different contexts and between tools.

Query-based tools A tool is created by combining a custom query extracting data
from a system with widgets graphically displaying the query results.

Rule-based transformations Developers create custom tools by composing basic trans-
formations over the structure of a program.

Meta-models Allow developers to use a meta-model to specify a model of their tool
and generate the concrete tool from the model.

We further discussed tools in these groups based on two dimensions: their ability to
adapt to a development context and the cost of creating a domain-specific adaptation.
Table 2.1 (p.24) presented an overview of this analysis.

2.4 Conclusions

We observe that tools employ diverse mechanisms for reducing the cost of an adap-
tation including internal and external DSLs, logical programming languages, formal
specifications, component-based architectures, etc. Nevertheless, in spite of enabling
developers to create custom adaptations, many tools do not focus on supporting
behavior changes based on a development context, or only take parts of the context
into account. This indicates a lack of approaches for improving development tools
that focus on both enabling inexpensive adaptations and behavioral variation de-
pendent on the current context. In the next chapter we discuss moldable tools, our
solution for addressing this gap.
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We become what we behold.

We shape our tools, and thereafter our tools shape us.

John Culkin talking about Marshall McLuhan

3
Moldable Tools

In this chapter we introduce and discuss the moldable tools approach for adapting
development tools to specific domains through inexpensive and domain-aware ex-
tensions. Moldable tools provide hooks for precise customizations; extensions en-
capsulate the contexts in which they are applicable. We start by identifying a set
of design principles for moldable tools based on the analysis of related works from
Chapter 2. Then we present the moldable tools approach and show how to instantiate
moldable tools for supporting the development of object-oriented applications.

3.1 Design Principles for Moldable Tools

The first dimension discussed in Section 2.1 (p.13) is concerned with how plug-ins
communicate within a tool. The remaining two dimensions explore two complemen-
tary issues: the cost of a plug-in and context-awareness in development tools. These
two dimensions have a direct influence on how developers adapt development tools
to specific domains. Hence, in this section we discuss for each of these two dimen-
sions, a series of design principles for improving adaptation of development tools
to specific domains.

3.1.1 Enabling Inexpensive Creation of Custom Adaptations

Despite the diverse set of mechanisms used to support custom adaptations we have
observed a repetitive set of goals: tool builders want to reduce the cost of creat-
ing certain types of adaptation without limiting the space of allowed adaptations.
Component-based tools, query languages and rule-based tools directly follow this
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desideratum. They enable cheap creation of adaptations that use only available com-
ponents and language constructs, while supporting the creation of new components
and language constructs at a higher cost. Pluggable frameworks address this as-
pect by providing fine- and coarse-grained extension points together with default
extensions; this way developers can only customize the needed functionality.

Based on the aforementioned observation we identified the following as high-level
principles for designing development tools focusing on inexpensive adaptations:

DP1. Identify common types of tool-specific adaptations: Different development tools tar-
get different activities of the software development cycle. Hence, to simplify
the adaptation process tool builders should identify common types of tool-
specific adaptations developers need across multiple domains. For example,
debuggers should provide breakpoints at the level of the domain: breakpoints
in terms of events when working with event-based systems; breakpoints at
the level of a grammar when working with a parser. Code editors can em-
bed alternative ways to edit domain-specific entities: state diagrams for state
machines or mathematical notations for complex formulas.

DP 2. Simplify the creation of common adaptations: Simplifying the creation of all possi-
ble adaptations for a tool is not feasible due to the wide range of domains and
development tasks. For a given tool, tool builders can instead significantly
reduce the cost for creating common types of adaptations. For example, in a
debugger many domain-specific breakpoints, and other actions like logging
and invariant checking, can be created by using an instrumentation mecha-
nism to insert a code snippet at a given location; encapsulating how a code
snippet is inserted in the code allows developers to only focus on the domain-
specific aspect. A tool for visualizing domain entities can allow developers to
easily try out multiple common types of views (e.g., tree, lists, graphs, charts).

DP 3. Do not limit the types of possible adaptations only to common ones: While tool
builders can simplify the creation of a wide range of common types of adap-
tations, supporting only those adaptations limits the scope of a development
tool. Hence, tool builders should not hardcode possible types of adaptations
and allow unanticipated ones, even if they entail a higher cost: the extension
mechanism should be itself extensible. For example, JQuery, the tool discussed
in Section 2.3.5 (p.28), allows developers to both create browsers using a logical
programming language and extend the language with new predicates. Tools
for visualizing domain entities should not hardcode a predefined set of visu-
alizations, but allow developers to use any kind of graphical widget.

3.1.2 Context-aware Adaptations

Several frameworks and composable tools support mechanisms to group together
relevant adaptations, nevertheless, require developers to manually select the appro-
priate group for a task. IDEs can automatically suggest appropriate groups (e.g.,
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debug perspective in Eclipse); text editors offer different commands based on the
type of file being edited (e.g., modes in Emacs). These solutions however use ad
hoc mechanisms rather than modeling a development context, and work on groups
rather than individual adaptations. JQuery and VIVIDE can further filter relevant
queries based on properties of selected software entities.

Tools supporting adaptations through rule-based transformations rely on a differ-
ent approach: they come with preconditions that only enable developers to apply a
transformation if its associated preconditions hold. For example, refactorings should
only be applied if they preserve the semantics of the transformed code. This requires
precise formulation of preconditions based on AST nodes frequently done using
pattern matching. Nevertheless, this is a flexible and versatile idea that can be ap-
plied to select adaptations if one replaces preconditions over code structure with
preconditions over the development context. Based on this observation we propose
the following as design principles for enabling development tools that provide be-
haviour adaptations based on a development context:

DP 4. Attach activation predicates to adaptations: The adaptation mechanism should
enable developers creating an adaptation to specify together with their adapta-
tion an activation predicate (i.e., precondition) indicating when the adaptation
is appropriate (e.g., a domain-specific breakpoint should decide if it should be
displayed in the debugger or not). Activation predicates should be applied on
the current development context.

DP 5. Update adaptations based on a development context: Applicable adaptation can
change as a developer is using a tool. Development tools should react to
changes in a development context by detecting new suitable adaptations or
invalidating current ones that are no longer applicable. For example, a debug-
ger should update the set of applicable breakpoints as developers navigate
through the execution of their applications.

3.1.3 The Moldable Tools Approach

Development tools like code editors, compilers, debuggers, profilers, search tools,
etc., embody a design that addresses a certain activity from the software develop-
ment cycle. To support inexpensive adaptations in these tools while preserving their
intended design, moldable tools enable adaptations through precise extension points.
Developers create extensions for an extension point by configuring predefined com-
ponents or by creating new components that conform to an extension point’s inter-
face. This combines the standardized backbone and the components and connectors
approaches discussed in Section 2.1.1 (p.14). A moldable tool integrates all extension
into the same window (i.e., presentation integration). Furthermore, extensions share
the same data structures (i.e., data integration).

To enable behavioral variations based on the context, each extension has an attached
activation predicate, capturing the development contexts in which that extension is
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applicable. A moldable tool is aware of the current development context and uses
activation predicates to select extensions applicable in that context.

3.2 Moldable Tools for Object-oriented Programming

Moldable tools propose a high-level approach to improve program comprehension
through domain-specific adaptations. To validate the moldable tools approach and
show that it improves program comprehension we apply it in this dissertation to tools
for developing object-oriented applications and show that it can address the research
questions presented in Section 1.5 (p.8). In this section we discuss how to instantiate
moldable tools for supporting the development of object-oriented applications by
using object-oriented concepts.

3.2.1 Modeling Development Tools

Object-oriented programming expresses applications in terms of objects and object
interactions. Objects model domain entities and encapsulate the state of those entities
together with their behavior [Dahl and Nygaard 1966]. While objects should encap-
sulate all relevant behavior, in the context of business systems, Pawson observed
that many domain objects are behaviorally-weak [Riel 1996]: much of the function-
ality is implemented in ‘controller’ objects that sit on top of model objects, which
in turn provide only basic functionality. To address this Pawson proposed naked

objects as a way to move towards behaviorally-complete objects where user actions
consisting of viewing objects, and invoking behaviors are encapsulated in the actual
objects [Pawson 2004].

When developing object-oriented applications, developers interact with objects using
development tools. Development tools need to decide how to handle objects model-
ing different domain entities. One approach is to specify the logic for how to handle
an object in the development tools themselves. On the one hand, this decouples the
business logic from the logic used to handle objects in development tools. On the
other hand, this decoupling can result in duplicated functionality between tools or
the need to evolve objects and tools separately as requirements change. Another
approach consists in making objects responsible for deciding how they are handled
in development tools. This allows different tools to reuse the same behavior and
enables a closer evolution of objects and tools.

A common usage of the second approach is to visualize objects. In most object-
oriented languages it is the responsibility of an object to represent itself in a textual
way (e.g., toString in Java, printString in Smalltalk). Development tools that need
a textual representation of an object ask that object for its textual representation.
Objects can provide multiple representations supporting different goals. For ex-
ample the textual representation returned by printString in Smalltalk (__str__ in

36



3.2 Moldable Tools for Object-oriented Programming
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Figure 3.1: Domain-specific extensions are attached to objects. Activation
predicates filter extensions also based on an object’s state.

Python) summarizes an object, while storeString (__repr__ in Python) provides a
representation from which the receiver object can be reconstructed. Hirschfeld et

al. show how to explicitly change the representation of an object depending on the
context [Hirschfeld et al. 2008].

To reduce the distance between the code of an object and the code of a tool for
working with that object and to favor co-evolution of tools and objects, moldable
tools for object-oriented programming follow the second approach: they enable
objects to decide how to be handled in development tools. Hence, moldable tools
provide extension points that ask domain objects to indicate the desired behavior (Figure 3.1
(p.37)). This way objects become behaviorally-complete with regard to development
tools, not only to the business domain.

A side-effect of this decision is that all software entities based on which one wants to
customize a tool need to be modeled as objects. In the case of run-time objects this
is straightforward. Nevertheless, this also includes software entities like packages,
classes, methods, annotations, files, source code, bug reports, documentation, exam-
ples, repositories, configurations, etc. The live environments discussed in Section
2.3.2 (p.23) already show that is is possible as they model all entities available in the
environment as objects. Many other IDEs also provide object-oriented models for
representing code and project related data (e.g., JDT in Eclipse). Hence, we do not
consider this as a limitation that prevents the practical implementation of moldable
tools. Modeling all software entities as objects makes is possible to uniformly attach
extensions to run-time objects, source code entities and external resources.

3.2.2 Modeling Domain-specific Extensions

The second aspect related to applying moldable tools to object-oriented program-
ming consists in how to specify custom extensions. As explored in Section 2.3 (p.22),
developers can create extensions using internal DSLs, external DSLs, logical pro-
gramming languages or formal specifications. Following the same line of reasoning
as in the previous section, object-oriented programming already provides a modeling
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Figure 3.2: Associating extensions with objects: (a) extensions are defined in the same
class as the object; (b) extensions are defined in an external extensions
provider linked with the object; (c) a registry links extensions with objects.

language in terms of objects. Therefore, we propose that moldable tools for object-
oriented programming enable the creation of domain-specific extensions using the
underlying object-oriented language of the target application. Hence, developers do
not have to learn a new programming language to be able to extend their tools.

Moldable tools then model domain-specific extensions as objects that provide an
interface (i.e., API, internal DSLs) for configuring the extension. Developers specify
an extension by creating and configuring an object representing an extension using
the provided API. To reduce the cost of creating common domain-specific extensions
a moldable tool can provide predefined objects modeling custom extensions. Devel-
opers can create new types of extensions by creating new objects that adhere to an
extension’s API. This solution favors a design in which developers create custom
extensions by using custom snippets of code to configure predefined components.
Related work focusing on similar ideas indicate that using snippets of code to cus-
tomize tools reduces the cost of creating extensions [Ousterhout 1998; Taeumel et al.
2014].

3.2.3 Associating Extensions with Objects and Tools

Another aspect a builder of a moldable tool needs to take into account is how to
associate snippets that configure an extension for an object with both that object
and the tool. Regardless of the mechanism, for a moldable tool, there should be
a bidirectional relation between objects and extensions: an object should know its
extensions and an extension should know the object to which it is attached.

In object-oriented languages that use classes, a tool builder can associate the snippet
with the object by allowing developers to define in the class of the object a method
that contains the snippet (Figure 3.2a (p.38)). Alternatively, a tool builder can design a
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tool so that extensions are created in a different object (i.e., an extensions provider).
The domain object can then only contain a method that indicates the object respon-
sible for creating its extensions (Figure 3.2b (p.38)). Instead of a single extensions
provider for all tools, each tool can have its own provider.

These two solutions require that developers add methods to objects from other li-
braries or applications. Many languages provide mechanisms that support this use
case (e.g., extension methods in Smalltalk, partial classes in C#). If this is not possi-
ble, a tool builder can implement a registry that associates extensions with objects
(Figure 3.2c (p.38)). In object-oriented languages that do not have classes, tool builders
can associate extensions with objects by directly adding methods to those objects;
if this is not possible, a registry can be used. To associate extensions with tools, a
tool builder can rely on naming conventions or annotations. For example, all meth-
ods implementing a custom view for an object can have a predefined prefix (e.g.,
customView in Figure 3.2 (p.38)) or be marked with a predefined annotation.

When extensions are defined as methods in the class of an object, developers can
view and edit the code of the object and that of all extensions in the same editor.
This favors co-evolution of extensions and objects. If extensions are defined in other
classes, developers can still take advantage of this if the environment is designed
to hide this separation from the developer: for example the code editor can display
extensions together with the code of the objects. This solution however requires that
the entire environment is adapted to support moldable tools.

3.2.4 Context-aware Extensions

Domain objects provide one dimension for selecting domain-specific extensions: a
moldable tool first selects extensions for those domain objects currently investigated
in that tool. Each extension object further has an activation predicate specified when
the extension is created; the extension object should provide an interface for adding
and retrieving its activation predicate. Activation predicates are objects that express
a boolean condition applied on the current development context.

Section 2.1.4 (p.18) defined the development context as the actual application domain and

a developer’s previous interactions with the domain. For object oriented-applications, by
application domain we refer to the object associated with an extension, as well as
any other domain object accessible from the tool. By interactions with the domain
we refer to both interaction data generated as a developer is using the tool and data
explicitly added by a developer to the context. This requires a tool to provide a
solution for recording relevant interactions within that tool and for allowing devel-
opers to add explicit data to the context. Explicit data can consist of, for example, in
particular objects, annotations or external resources.

Activation predicates access the context to determine if an extension is applicable.
However, the same extension should be able to behave differently depending on the
context, if for example the extension is applicable in multiple contexts. To support
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this moldable tools also allow an extension to access the development context. One
solution for implementing this behavior is to model the development context as
an explicit object that is made available to the code that creates the extension. For
example, it can be stored as an attribute in the extension object or passed to the
method creating the extension.

3.3 Conclusion

Based on our previous analysis of related works, we identified a set of requirements
for building domain-aware tools. We then proposed moldable tools, a tool building
approach following those requirements that focuses on inexpensive creation of cus-
tom domain-specific extensions and selection of appropriate extensions based on
the development context. In this section we further explored how to apply moldable
tools to development tools for object-oriented software, by leveraging the fact that
object-oriented programming already provides a way to model a domain in terms
of objects and message sends.

Moldable tools propose a high-level approach to tool building. To validate the ap-
proach we need to apply it to concrete development tools. Next we set out to show
that moldable tools improve program comprehension by applying it to several tools
for developing object-oriented applications. Starting from limitations of current tools
in (i) reasoning about run-time objects, (ii) searching for domain-specific artifacts,
and (iii) reasoning about run-time behavior, we explore how designing tools follow-
ing the moldable tools approach can improve over the state of the art for performing
the aforementioned activities.
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Design and programming are human activities; forget that and all is lost.

Bjarne Stroustrup

4
Moldable Inspector

Object inspectors are an essential category of tools that allow developers to compre-
hend the run-time of object-oriented systems. Traditional object inspectors favor a
generic view that focuses on the low-level details of the state of single objects. Based
on 16 interviews with software developers and a follow-up survey with 62 respon-
dents we identified a need for object inspectors that support different high-level
mechanisms to visualize and explore objects, depending on both the object and the
current developer need. In this chapter we investigate how to design an object in-
spector that addresses these requirements following the moldable tools approach.

4.1 Introduction

Understanding the run-time behavior of object-oriented applications entails the com-
prehension of run-time objects. While debuggers reify the execution stack and allow
developers to reason about the control flow of an application, object inspectors give
developers direct access to the actual objects. To better understand what software
developers expect from an object inspector we performed an exploratory investiga-
tion consisting of a series of interviews with software developers and a follow-up
survey. We observed a need for object inspectors that:

• support multiple custom views for an object, not limited to text;

• allow developers to easily create new custom views for objects;

• allow developers to explore objects based on more than object state;

• maintain a working-set of inspected objects.
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Nevertheless, most of today’s object inspectors favor generic approaches to display
and explore the state of arbitrary objects. In most cases they represent objects using
tree or table views that only contain a textual representation for each object attribute.
While universally applicable, these approaches do not take into account the varying
needs of developers that could benefit from tailored views and exploration possibil-
ities. We refer to this as the current inspection problem.

For example, encountering during debugging objects like folders, files, parsers,
HTML/XML documents, database connections, compiled methods, users, accounts,
graphical components, etc., leads to a wide range of contextual questions. (e.g., What

files are contained in this folder? What does this graphical component look like? How does

this HTML object render in a browser?) Approaching these contextual questions using
generic object inspectors focusing on the state of individual objects leads to an ineffi-
cient inspection effort as the information of interest is not directly available or even
not accessible from within the inspector.

Mainstream IDEs such as Eclipse, NetBeans, VisualStudio, or IntelliJ allow develop-
ers to customize the textual representation of objects, or the layout used to display
the state of an object (e.g., show a dictionary as a list of key-value pairs). They fur-
ther allow developers to run custom code on objects during debugging to construct
custom views. The problem with this approach is that it is not reusable: developers
have to manually execute the code every time they want to see that view. Developers
also have to manually associate views with objects and keep track of the existing
views. jGRASP [Cross et al. 2009] improves the inspection process by allowing ob-
jects to have visual representations that are not limited to text, and by automatically
constructing custom views for objects based on the internal structure of objects (e.g.,
showing an object representing a tree using a tree view). Debugger Canvas [DeLine
et al. 2012] extends the navigation mechanism of traditional object inspectors by dis-
playing each object in a bubble and linking objects in an exploration session: hence,
developers can always reason about how they got to an object. Nevertheless, each
of these IDEs addresses only parts of the problem as they do not provide developers
with a unified workflow for exploring multiple objects using views tailored to their
own contextual needs.

To address the overall inspection problem we propose the Moldable Inspector, an
object inspector based on the moldable tools approach. The essence of the Mold-
able Inspector is that it enables developers to answer high-level, domain-specific
questions by allowing them to adapt (i.e., mold) the whole inspection process to
suit their immediate needs. To make this possible, instead of a single generic view
for an object, the Moldable Inspector provides multiple domain-specific views for
each object, makes the inspection context explicit, and uses the inspection context to
automatically find, at run-time, views appropriate for the current developer needs.
Furthermore, instead of focusing on individual objects, it supports a workflow that
does not hardcode the set of reachable objects and groups together multiple levels
of connected objects.

This chapter has the following contributions:
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• Presenting an exploratory study into how developers perceive and use object
inspectors resulting in four developer needs for object inspectors;

• Showing how the moldable tools approach can be applied to create the Mold-
able Inspector, an inspector model that takes into account the findings of the
previous exploratory study;

• Illustrating how the concepts of the Moldable Inspector map to a concrete
implementation and discussing various alternatives;

• Real-world examples illustrating the usage of the Moldable Inspector.

Structure of the Chapter

In Section 4.2 (p.43) we describe our investigation into what developers expect from an
object inspector. In Section 4.3 (p.49) we introduce the Moldable Inspector model and in
Section 4.4 (p.54) we propose a user interface for object inspectors following this model.
We illustrate custom workflows made possible by the Moldable Inspector in Section
4.5 (p.56). We discuss implementation aspects and the cost of custom extensions in
Section 4.6 (p.65). In Section 4.7 (p.71) we compare our approach with related works in
the field of object inspectors and conclude this chapter in Section 4.8 (p.74) by looking
at the Moldable Inspector from the point of view of moldable tools.

4.2 Exploratory Study

To better understand how object inspectors should support developer workflows we
performed an exploratory study. We designed this exploratory study with the goal
of eliciting requirements for improving object inspectors. One can imagine various
other approaches for inspecting the state of a program execution, for instance, by
visualizing the entire heap and using zoom to get to the object level [Aftandilian et al.
2010], or by writing queries against the state [Lencevicius et al. 1997; Martin et al.
2005]. These approaches complement, and do not replace, the object inspector.

We selected a sequential exploratory design [Creswell and Vicki 2006] approach for
conducting our study. This is a mixed research methods strategy consisting of a
qualitative investigation followed by a quantitative validation.

4.2.1 Qualitative Investigation

The aim of the qualitative investigation was to gain an understanding into what
software developers understand by an object inspector and the features they expect
from one.
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Experience How many years of experience with object-oriented program-
ming do you have and what object-oriented languages and IDEs
did you use?

Definition What is an object inspector for you?

Features What features do you need in an ideal object inspector?

Examples Can you give a few examples of objects that you inspected re-
cently or situations where you used an object inspector?

Table 4.1: Questions for structuring the inspector interviews.

Setup

We performed semi-structured interviews with software developers based on the
template questions presented in Table 4.1 (p.44). Based on a set of test runs we agreed
on short 10 minute interviews, as the first three questions required only short an-
swers. We also did not require any preparation from the interviewees.

We performed the interviews during the ESUG 2014 conference1. Sixteen software
developers attending the conference agreed to participate, on a voluntary basis. We
collected 2 hours of recordings with an interview lasting 7.6± 2.6(M± SD) min-
utes. Participants reported 17.8± 8.2(M ± SD) years of experience with object-
oriented programming. Participants also reported using 3.1± 1.9(M± SD) object-
oriented languages until now (i.e., Smalltalk — 100%, Java — 69%, C++ — 31%,
Objective C — 31%, and other languages). It is noteworthy that, given the venue,
participants were currently working with various Smalltalk dialects; nevertheless,
only three participants worked until now solely with Smalltalk dialects. Given the
exploratory nature of this phase, we view this as an advantage: in Smalltalk IDEs
the object inspector is both a standalone tool and an integral part of the debugger. In
other IDEs, for example Eclipse, the object inspector is just a view of the debugger,
often not perceived as a distinct tool.

Analysis

The first finding that became clear after a few interviews, and recurred through the
rest, was that while participants provided simple definitions for an object inspector
(e.g., “a tool that allows me to inspect the object” — P5, “a way to see inside an object” —

P9), they came up with complex features and usage scenarios when asked to give
concrete examples. This explains, to some degree, why mainstream IDEs have object
inspectors that focus only on the state of single objects: they conform to the perceived
definition of what an object inspector is (e.g. “see all the fields” — P7). All answers
are available in Appendix A (p.161).

1
http://www.esug.org/Conferences/2014
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We further proceeded to analyze the interviews using open coding [Miles and Huber-
man 1994]: we first transcribed the interviews, and then for each sentence, or groups
of sentences closely related to the same topic, attached a label that best described the
need or inspector feature mentioned by the developer. We then used the identified
concepts to infer a set of high-level developer needs for object inspectors. During the
analysis process we aimed to identify a set of developer needs that covered as many
of the individual features and examples as possible. We extracted four developer
needs detailed in the remainder of this section.

DN1 — I need different ways to view an object depending on my task. All participants
expressed, in various forms, the need of having dedicated views for certain types
of objects, like collections, dictionaries, tree maps, streams, caches, and graphical
elements (e.g., “If I inspect a color I see RGB values, which is completely unhelpful” — P14).
Six participants further gave examples that required task specific views:

“One thing I really like and I depend on is context sensitive presentations, such as choosing

base for numbers. In the VM [...] hexadecimal makes sense, it’s what’s embedded in the

instructions [...], decimal is too hard to parse.” — P15

“There is a method that is troublesome, so I inspect it, and the method is just a bunch of bytes.

First of all I need a view on the bytecode level [...]. Then I would like to have another view

that shows me the source code, then a view that shows me control flow structures.” — P5

DN2 - I need to easily extend the inspector with new views for objects. Given the large
diversity of objects from today’s applications a predefined set of views cannot cap-
ture all relevant aspect of all objects. Six participants reported that they actually
extended the inspector with custom views for various types of objects, in order to
better understand those objects:

“In the beginning I build a special inspector for collection which had a table view. I find it

quite useful.” — P2

“My thing is graphics, PDFs and especially charts and all my graphical artefacts have special

inspector views so that I can see them directly” — P14

“I made so many changes in the inspector to make my life easier so I do not know what a normal

object inspector looks like.” — P13

DN3 - I need to explore objects connected both explicitly through direct references and implic-

itly through code logic. Navigating objects solely by following objects attributes can
be a laborious process, especially when there is there is no connection between two
relevant objects. Six participants gave examples that required navigating to objects
not stored in an instance variable of an object already accessible from the inspector:

“It is very often that I expected a kind of way of just following the pointers: which objects point

to myself and reverse [...]. This object is well-formed but there is a crash: who uses it?” —

P12
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“I’ve written an interface to a storage system in the cloud and it would have been easy to

inspect my remote files from the inspector” — P11

DN4 - I need to keep track of the objects that I inspected while working on a given task.

Answering run-time questions requires developers to search for relevant objects.
Repetitively searching for the same object can cost significant time. Furthermore,
losing the history of how one got to an object forces developers to repeatedly retrace
their steps. Four participants expressed this concern:

“What costs time is that I usually look at the same objects repeatedly [...] and that I’m always

interested in one or two properties of those objects.” — P3

“I would like better navigation going to objects and back and remembering where I came from

[...]. I might want to mark points [objects] where I say ’this is an interesting point I might

want to go back there.” — P4

While these four developer needs were the result of analyzing the interviews, they
are not necessarily novel, if taken individually, as current object inspectors imple-
ment them to some degree. Nevertheless, current object inspectors focus on some
of these developer needs while neglecting others. For example, on the one hand,
DebuggerCanvas focuses on enabling an easy exploration of multiple objects, while
putting the ability to view objects through tailored presentations in the background.
On the other hand, the HTML inspector from Firebug2 allows each HTML element to
be viewed through multiple views (e.g., style, layout, DOM), while focusing less on
preserving the navigation history. We view the combination of these four developer
needs as a novel requirement for object inspectors.

4.2.2 Quantitative Investigation

Setup

To confirm on a larger scale the validity of the previously identified developer needs
for object inspectors we conducted a second quantitative investigation consisting
of an online survey3. We asked respondents to rate each requirement from full
disagreement to full agreement on a 5-point Likert scale. For each requirement, we
added an example illustrating that requirement and an optional text field where
respondents could give personal examples involving that requirement or indicate if
they did not understand the requirement. We asked five pre-survey questions about
respondents’ background.

We advertised the survey on mailing lists of interest for software developers4 and
through social media (i.e., voluntary sampling method). We collected 70 answers
over a period of one month from respondents who reported various jobs related

2
http://getfirebug.com

3
http://scg.unibe.ch/research/moldableinspector/survey

4
pharo.org and moosetechnology.org
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4.2 Exploratory Study

Professional experience Respondents Respondents’ current job

4 - 10 years 8 (12.9%) Software engineer

6 (9.7%) Software researcher

2 (3.2%) Other

> 10 years 9 (14.5%) Project manager

20 (32.3%) Software engineer

15 (24.2%) Software researcher

2 (3.2%) Other

Table 4.2: Background data about the survey respondents.

to software engineering (Table 4.2 (p.47) column 3). We discarded all answers from
students (7 answers) or from respondents reporting under 1 year of experience with
object-oriented programming (1 response), as we wanted to get feedback from re-
spondents with at least some experience in object-oriented programming. We further
discarded one answer for DN4 where the respondent indicated that she did not un-
derstand the requirement. This left 62 answers for DN1, DN1 and DN3, and 61
answers for DN4 from respondents whose practical knowledge with object-oriented
programming is shown in Table 4.2 (p.47). These respondents also reported using
4.5± 2.2(M± SD) object-oriented languages until now (i.e., Smalltalk – 89%, Java
– 79%, C++ – 45%, Python – 39%, Javascript – 27%, C# – 27%, Ruby – 21%, PHP –
18%). We only take these responses into account in the analysis.

Analysis

Table 4.3 (p.48) summarizes the results of the survey. Overall there was a strong ten-
dency towards the Strongly agree and Agree answers; no respondent chose the answer
Strongly disagree. While respondents considered multiple views to be an essential
need (100% of respondents agreed or strongly agreed withDN1) they considered that
easily adding views to an object inspector (DN2) is of less importance (72% agreed or
strongly agreed, 23% were neutral, while 5% disagree). 23 respondents further used
the optional text field ofDN1 to give concrete examples of objects for which they need
specific views: list/tree structures, matrices, dictionaries, UI elements, file objects,
SQL results, etc. The same tendency can be seen for the remaining two developer
needs: 90% of respondents agreed or strongly agreed that they need to keep track
of the inspected objects (DN4), while 77% of respondents agreed or strongly agreed
that they need to discover new objects during inspection based on something other
than an object’s state (DN3). Examples of objects for which respondents indicated
the need to explore dependencies based on more than object state included callbacks
on graphical widgets and pointers.
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DN1

DN2

DN3

DN4

Table 4.3: The results of the quantitative investigation.

4.2.3 Threats to Validity

Internal Validity

The semi-structured interviews were partially moderated by the interviewer. Fur-
thermore, the interviewer knew six interviewees from previous meetings or discus-
sions on mailing lists. While the interviewer did his best not to lead or influence the
interviewees we cannot exclude the existence of biased answers (e.g., a slight change
in the tone of voice of the interviewer can influence the answer of the interviewee).
To minimize the effects of this threat we only included in our analysis developer
needs that were explicitly mentioned by four different interviewees. In the survey
participants could choose to remain anonymous by not providing an email address
(31% of respondents chose to remain anonymous). Nevertheless, respondents had to
provide background information about their current job and their experience with
object-oriented programming.

External Validity

The software developers interviewed during the first phase were currently work-
ing with Smalltalk IDEs, however, just three interviewees had only worked with
Smalltalk. Overall, they had a great deal of experience with object-oriented pro-
gramming (17.8± 8.2(M± SD) years) and were exposed to several OO languages
(3.1± 1.9(M± SD)). 89% of the survey respondents marked Smalltalk as one of
the languages with which they worked until now, however, these respondents also
reported working with 4.6± 2.2(M± SD) different OO languages; all had more
than 4 years of programming experience. Given the vast experience with OO pro-
gramming of both interviewees and survey respondents, as well as the fact that just
three interviewees had only been exposed to Smalltalk, we consider that our find-
ings can apply to other object-oriented programming languages and IDEs rather
than only to Smalltalk. Nevertheless, we cannot exclude a bias towards Smalltalk.
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Object

View

Exploration 
Session

subject

*

 linked
Objects

inspected
Objects

Tag

Inspection 
Context

***

Activation 
Predicate

Figure 4.1: The structure of the Moldable Inspector model: an object can have mul-
tiple views grouped using tags, and filtered using activation predicates;
inspected objects are grouped in an exploration session; the inspection
context consists of multiple tags and an exploration session; the inspec-
tion context is used to filter views.

4.2.4 Summary

While developers define an object inspector in simple terms they actually expect a
lot from an object inspector. Based on 16 interviews with software developers we
have identified four developer needs regarding object inspectors. Through an online
survey we saw a level of agreement with these developer needs ranging from 72%
to 100%. This exploratory study indicates a need for object inspectors that better
support developers in reasoning about and exploring specific aspects of their own
domain objects.

4.3 The Moldable Inspector in a Nutshell

To address the aforementioned developer needs we propose the Moldable Inspector,
a model (Figure 4.1 (p.49)) for constructing object inspectors that can be adapted during
the inspection process to suit the immediate needs of developers. Following the
moldable tools approach this is achieved in two main steps:

(i) developers create custom extensions for viewing and exploring their do-
main objects;

(ii) at run time the Moldable Inspector selects extensions (i.e., views) appropri-
ate for the current objects and developer needs.
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4.3.1 Running Example

Consider that during debugging a developer has to interact with an object repre-
senting a widget (graphical component). A generic state view only showing object
attributes — size, bounds, visual properties, etc. — helps the developer reason about
the internal representation of that object. However, depending on her current needs
she could ask more specific questions like:

What does this widget look like?

What keyboard shortcuts are associated with this widget?

How to properly initialize and use this widget?

What objects hold a reference to this widget?

What other widgets are contained inside this widget?

Furthermore, depending on the context, a developer could need to explore other
objects useful in reasoning about that widget, not necessarily referred through an
attribute of that widget (e.g., canvas — the graphical surface on which the widget is
rendered, renderer — the object rendering the widget on a canvas).

4.3.2 Enabling Customization

The Moldable Inspector model enables custom extensions through two operators:

multiple views: allow each object to have multiple custom views;

flexible navigation: discover new objects by either direct or indirect object references.

Multiple Views

Most inspectors represent an object generically by displaying its state as a tree or a
table, but even in these cases there exists at least one custom string representation
that is left to the developer to specify (e.g., toString() in Java). However, given that
objects model domain concepts they can also have domain-specific representations.
DN1 further enforces the need for multiple views. To address this the Moldable
Inspector allows each object to have multiple custom views. For example, a widget
object can have views that directly show: its state (Figure 4.2a (p.51)), the code of its
class, its visual representation (Figure 4.2b (p.51)), its keyboard shortcuts, the other
graphical objects that it contains, or what objects hold a reference to it.
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(a) (b)

Figure 4.2: Two views for displaying a widget: (a) state; (b) visual representation.

Flexible Navigation

Developers need support for navigating through object models not only by following
object attributes but also by considering other types of dependencies (DN3). The
Moldable Inspector allows each view to specify a set of related objects, together
with the mechanism for navigating to those objects. For example, a view showing
the graphical representation of a widget can allow developers to navigate to any
sub-widget by clicking it. Furthermore, a view can allow developers to navigate to
new objects by either constructing or locating those objects using snippets of code
executed in the context of the displayed object (e.g., In Figure 4.3 (p.52) a developer
navigates from a widget to the context menu of that widget, by using a custom code
snippet — self getMenu: false — to create the menu).

4.3.3 Inspection Context

One problem is still not addressed: How does a developer select the right views for her

current needs? As argued in Section 1.4 (p.6), moldable tools should select extensions
based on the development context. We refer to the development context of an object
inspector as an inspection context. The Moldable Inspector explicitly models the cur-
rent inspection context and uses it to determine what views to show. This is achieved
using three operators:

tag: groups together views applicable for a development task;

exploration session: groups all objects inspected during an inspection session;

activation predicate: determines if a view is valid or not in the current context.
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(a) (b)

Figure 4.3: Navigating from a widget (a) to its context menu (b). The menu is not
stored in an instance variable of the widget. It can only be constructed by
invoking a method of the widget.

An inspection context consists of multiple tags and an exploration session. Hence,
the inspector context provides a dedicated mechanism to model the development
context for an object inspector: the exploration session contains interaction data; tags
are pieces of informations explicitly added by a developer to the context. Activation
predicates filter views based on the inspection context.

Tags

Depending on the current developer needs not all available views are of interest;
this is the main requirement captured by DN1. To help developers discover useful
views (and filter unneeded ones) the Moldable Inspector proposes the use of tags to
identify and group together views applicable for certain types of development tasks.
For example, when a developer is interested in the visual representation of a widget
she can select to see only those views tagged as showing visual representations, and
not those views that show more technical details about the widget (e.g., keyboard
shortcuts, pointers, code). When looking for example on how to use a widget she
can select the examples tag to only see views showing explicit usage examples. Given
that different types of development tasks can have overlapping needs the Moldable
Inspector allows each view to have multiple tags.

Exploration Session

Inspection sessions can be extensive and can involve many steps. In these situations,
developers need to keep track of and go back to previously inspected objects that
are relevant for their current development task (DN4). To support this use case the
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Moldable Inspector stores all inspected objects in an exploration session, together with
the order in which they were inspected and the type of views selected for each object.
This enables developers to determine how they got to the current object, and to go
back to any of the previously inspected objects and try alternative exploration paths.
If during an exploration a developer inspects by mistake objects not related to the
current task, they are kept in the session unless the developer removes them.

Activation Predicates

Tags offer a solution to filter views based on the development task. Nevertheless,
the state of the current object, as well as all the previously inspected objects can have
an impact on what views are appropriate for the current object. Consider an object
representing a file from disk. The same type of object is usually used to refer to files
representing text, pictures, HTML documents, executables, etc. A view showing a
visual representation of a file only applies to files that have a visual representation
(e.g., jpeg, png, gif); this view is not applicable to executables. To enable this use case,
the Moldable Inspector attaches to each view an activation predicate. As discussed in
Section 3.2.4 (p.39), an activation predicate captures a boolean condition applied on
the current inspection context. The Moldable Inspector used activation predicates to
decide whether to display a view. An activation predicate can filter views based on
the currently inspected object as well as based on the entire exploration session.

While this feature can make the interface less cluttered, it may also surprise the
programmer if she cannot easily tell why the Moldable Inspector decided (not) to
enable a particular view. Hence, while necessary for certain objects, this feature
should not be abused.

4.3.4 Addressing the Initial Developer Needs

In this section we indicate how the Moldable Inspector addresses the four developer
needs identified in Section 4.2.1 (p.43).

DN1: Every object can have multiple views; based on their task developers can filter
views using the inspection context. Displaying multiple views is discussed in
Section 4.4 (p.54).

DN2: The presented model enables developers to add any kind of view to an object.
The actual mechanism for constructing and adding views to objects directly
influences the ease of these activities. We investigate these aspects in details
inSection 4.6 (p.65).

DN3: Each view can offer an appropriate mechanism for navigating to the next
object (e.g., select an object attribute, execute code, write a query).
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Figure 4.4: The Object Pager user interface in a nutshell: each object is displayed in
a single column as a tabbed widget that groups together a set of views;
new objects are displayed to the right; an augmented scrollbar improves
navigation. Objects are displayed in columns of equal size and it is not
possible to reach a situation where a column is partially displayed, as the
sliding bar always repositions to show full columns.

DN4: Previously inspected objects are grouped into an exploration session. Sec-
tion 4.4 (p.54) discusses UI decisions concerning navigating and displaying an
exploration session.

4.4 Compact, Efficient Object Exploration

Aconcrete inspector requires a concrete user interface. The decisions taken to realize
that interface, such as how to show multiple views and how to navigate through
objects, can have a significant influence on the utility of the inspector. In this section,
we present the Object Pager, a user interface for object inspectors that implement the
Moldable Inspector model. The Object Pager proposes a compact means to explore a
space of run-time objects that aims to minimize screen real estate and reduce spatial
maintenance effort.

4.4.1 Displaying Multiple Views for an Object

Baldonado et al. introduced eight rules for the design of systems having multiple
views [Wang Baldonado et al. 2000]. The fifth rule, Space/Time Resource optimization,
comments that “it is easy to forget to account for the display and computation time required

to present multiple views side by side; likewise, it is easy to account for the time saved by

side-by-side views if the user’s goal is to compare views” [Wang Baldonado et al. 2000].

Considering how much information is displayed in current debuggers and IDEs,
screen real estate is a scarce resource. Furthermore, given that each view of an object
highlights a specific aspect, we do not consider that directly comparing two views
of the same object is an essential activity; what should rather be optimised is the
process of finding the right view. Taking into account these arguments, the Object
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(a) (b) (c)

Figure 4.5: Scrollbars for navigating through an exploration session: (a) standard
scrollbar with limited navigation support; (b) improved scrollbar with
overview support; (c) increasing/decreasing the number of visible objects
in the improved scrollbar.

Pager shows only one view for each object at a time and groups all available views
of an object using tabs (Figure 4.4 (p.54)).

4.4.2 Representing an Exploration Session

Approaches displaying complete exploration sessions (e.g., by using tree/graph-
based structures or matrices) can take considerable screen real estate and require
developers to explicitly remove paths that are no longer of interest. Consider Debug-
gerCanvas [DeLine et al. 2012], a debugger promoting a user interface based on the
CodeBubble paradigm [Bragdon et al. 2010b]. While DebuggerCanvas can display
complete exploration sessions it occupies the whole display of the IDE.

To minimize the usage of screen real estate and reduce interaction overhead, the
Object Pager displays only one exploration path at a time and automatically arranges
the inspected objects using Miller columns,5 a technique for navigating hierarchical
structures on a horizontal boundless tape, where multiple levels of the hierarchy can
be seen at once and each new level is opened in a new column to the right. Figure
4.4 (p.54) shows how several objects are displayed using this approach: the order in
which these objects were inspected is given by their positioning from left to right.

4.4.3 Navigating Through an Exploration Path

From a dedicated view of an object in one tab of a Miller column, one can navigate to
a view of another object in the next column by selecting a given object, or constructing
an object in the view. Whenever a developer selects an object in a dedicated view
from a Miller column all the columns to the right of that column are removed, and a
new column displaying the selected object is spanned to the right. This ensures that
only one exploration path is displayed at a time.

Given that exploration paths can entail a large number of objects [Minelli et al. 2014],
navigation back and forth through an exploration path becomes an explicit issue.
Simple scrollbars, while enabling fast movement between columns, have several

5
http://en.wikipedia.org/wiki/Miller_columns
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Figure 4.6: An exploration session involving multiple graphical components.

shortcomings [Alexander et al. 2009] when navigating through Miller columns. For
example, it is difficult to tell that the scrollbar from Figure 4.5a (p.55) supports navi-
gation through an exploration path containing seven objects, where two objects are
currently visible.

To address this problem Object Pager proposes an augmented scrollbar [Alexander
et al. 2009; Chimera 1992] (following the overview+detail approach [Plaisant et al.
1995]) that incorporates an icon for each object, highlights the icon of the currently
selected object, and enables the developer to change the number of visible objects
by expanding the sliding bar (Figure 4.5c (p.55)); the sliding bar indicates the visible
objects. Figure 4.5b (p.55) shows how this approach is used to navigate through the
same exploration path as in Figure 4.5a (p.55); now a developer can immediately see
that the path has seven objects and that two objects are currently visible.

4.5 Custom Workflows

The main goal of the Moldable Inspector is to support custom workflows. To show
that this is indeed the case, we present concrete cases of how the model together
with Object Pager user interface enables several such workflows, and how this is
accomplished by relying exclusively on the previously identified developer needs.
In doing this we show that the Moldable Inspector addresses DN1, DN3 and DN4.

4.5.1 Multiple Views for Every Object

The Moldable Inspector enables each object to have multiple views (DN1). We give
examples of views common to all objects and look in detail at views for two specific
objects.
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(a) (b)

Figure 4.7: Generic inspector views for every object: (a) the Raw view shows the
state of the object; (b) the Meta view gives developers access to the class
hierarchy of the inspected object. The inspected object in this example is
an announcer object used by the Pharo IDE to deliver internal events to
registered subscribers.

Generic Views

Every object has a Raw view (Figure 4.7a (p.57) — first object) that gives access to the
state of the object (i.e., object attributes). This view corresponds to what a traditional
inspector focusing only on object state offers. Besides state, an object also knows its
class. Thus, another generic view offers a source code editor of the corresponding
class (Meta view, Figure 4.7b (p.57)).

Multiple Views for Graphical Objects

As highlighted in Section 4.3 (p.49), several aspects of a widget can be of interest to a
developer depending on the task, such as:

• the state when examining the implementation;

• the visual representation when fixing a rendering bug.

As a concrete example we use Morphic [Maloney and Smith 1995] the main library for
creating user interfaces in Pharo, the target language for our current implementation.
In Morphic, graphical objects are instances of the class Morph and are referred to as
morphs. Amorph can further contain other morphs (referred to as submorphs) forming
a tree structure. The state of a morph can be accessed using the aforementioned Raw

view. To support the visual aspect we added two specific views to every morph object,
showing their visual representation (Morph view, Figure 4.6 (p.56)) and structure of
submorphs (Submorphs view, Figure 4.6 (p.56)).
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(a) (b)

(c) (d)

Figure 4.8: Domain-specific views for CompiledMethod objects: (a) Source code;
(b) Abstract syntax tree; (c) Intermediate representation; (d) Bytecode.

A visual representation for a morph is particularly useful when investigating ren-
dering bugs. Consider the following drawing glitch from an implementation of a
breadcrumb: (when there are multiple elements in the breadcrumb,
due to rounding errors in calculating the width of each element, there can be a one
pixel gap between some elements6). To investigate this bug a developer can inspect
the breadcrumb morph, use the Meta view to edit the code that computes the width,
and use the Morph view to check if the gap is still there.

Multiple Views for Compiled Code

Methods are represented in Pharo as instances of the CompiledMethod class and they
hold the corresponding bytecode needed by the virtual machine. A common task
when working with these objects (e.g., for developing tools like compilers or debug-
gers) is to understand how source code maps to bytecode and vice-versa. Bugs in this
kind of code can be particularly difficult to debug7without proper tool support, as

6
http://pharo.fogbugz.com/f/cases/15227
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the mapping involves several steps: parsing the source code into an abstract syntax
tree (AST), translating the AST into an intermediate representation (IR), performing
various optimizations at the level of the IR and finally translating the IR into the
actual bytecode. Inspecting just the attributes of a CompiledMethod object provides lit-
tle help as they only give details about the format in which bytecode is represented
(header, literals, trailer). To address this and improve the inspection of compiled
code we created, together with the developers of the Pharo compiler, four specific
views to CompiledMethod objects:

• Source code: the original source code from which the CompiledMethod object was
generated (Source view, Figure 4.8a (p.58));

• AST: the AST obtained by parsing the source code (AST view, Figure 4.8b (p.58));

• IR: the intermediate representation (IR) obtained from the AST (Ir view, Figure
4.8c (p.58));

• Bytecode: the bytecode instructions stored by the method object (Bytecode view,
Figure 4.8d (p.58)).

4.5.2 Navigating Through Connected Objects

Since navigation between objects based only on object state reduces the available
space to accessible objects the Moldable Inpector allows each view to specify its
own navigation mechanism (DN2). We show that developers can navigate to objects
not stored in the current object, use code to guide their navigation and track their
exploration history (DN4).

Browsing Indirectly Connected Objects

Each morph object can have a list of key bindings that map keyboard shortcuts to
anonymous functions to be executed when the associated shortcut is invoked and
the morph has the focus (e.g., pressing CMD+S in a text editor morph triggers an
action for saving the content from that editor).

Debugging bugs related to wrong key bindings requires developers to first determine
what key bindings are associated with a morph and what code gets executed when
a key binding is invoked. However, key bindings are not stored within the morph,
but within a global object managing all key bindings for all morphs. Hence, it is
often not trivial to determine the key bindings of a morph object as they cannot be
accessed using the state view8. To address this we added a dedicated view showing
a list of keyboard shortcuts associated with the morph (Keys view, Figure 4.9 (p.60)). By

7
pharo.fogbugz.com/f/cases/14606,
pharo.fogbugz.com/f/cases/12887,
pharo.fogbugz.com/f/cases/13260,
pharo.fogbugz.com/f/cases/15174
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selecting a shortcut in this view a developer navigates to the KMKeymap object that maps
the shortcut with the anonymous function executed when the shortcut is invoked;
this object has a Source code view showing and highlighting the source code of the
anonymous function (Figure 4.9 (p.60)).

Figure 4.9: Using specific views to browser the code that gets executed when a user
presses CMD+S.

Navigating to New Objects

While a CompiledMethod object has views showing its bytecodes and source code, ad-
dressing the bugs mentioned in Section 4.5.1 (p.58) further requires developers to
repeatedly determine what source code corresponds to what bytecode. Due to the
complexity of the compilation process this is not an easy task. To directly support
this task when a developer selects a bytecode in the Bytecode view, a SymbolicBytecode

object representing that bytecode is created and opened in a new view to the right;
each object representing a SymbolicBytecode has a view showing the entire source
code of the method and highlighting the part of the source code that corresponds to
that bytecode (Figure 4.12 (p.63)).

Using Code to Guide the Navigation Process

Constructing and previewing queries over relational databases is typically done in
dedicated database client tools that are far away from the development environment.
However, when working with relational data, querying is a common activity during
software development.

8
http://pharo.fogbugz.com/f/cases/14845/

http://forum.world.st/How-to-browse-a-given-keymap-category-td4803022.html
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In Pharo, Opening a connection to a Postgres9 database creates an object of type
PGConnection. Viewing this object in a traditional object inspector only shows details
about the state of the connection (e.g., location, port number, start time). Yet, a
typical use case is to interact with the content of the underlying database. To address
this, a PGConnection object has a dedicated view that allows developers to write and
execute SQL queries on that connection (SQL view, first object — Figure 4.10 (p.61)).
Developers can use the query result to continue navigation. At any time a developer
can reason about how she got to the current object, as all previously inspected objects
are available in the inspector.

Not only SQL queries can be used to guide navigation, but any other piece of code.
For example, in Figure 4.10 (p.61) after a developer executes a SQL query, she uses
a snippet of code to create a visual representation of the query result. The snippet
of code returns an object of type GET2DiagramBuilder which has a view showing a
graphical representation of the constructed visualization. This enables workflows
that can seamlessly incorporate custom visualizations.

4.5.3 Selecting Views Based on the Inspection Context

Not all views of an object are of interest all the time (DN1). The Moldable Inspector
filters views based on the inspection context. We show how each component of the
inspection context is used to filter views.

Selecting Views Using Activation Predicates

Viewing the internal representation of an object modeling a file or a folder from disk
does not provide any insight into the content of that file or folder. For example,
in Pharo, objects of type FileReference represent files and folders. The state of a

9
http://www.postgresql.org

Figure 4.10: Exploring the content of a database.

61

http://www.postgresql.org


Chapter 4 Moldable Inspector

Figure 4.11: Browsing the content of a folder.

FileReference object only gives information about the location of the file/folder; the
content is not accessible. To address this issue we attached a Content view to each
FileReference object that is not a directory displaying the content of that file in text
form. We further attach to objects of type FileReference that represent folders a view
that shows the list of files and folders from that folder and allows developers to
navigate to any of them. This turns the object inspector into a file browser (Figure
4.11 (p.62)).

While the Content view is applicable for all file types, it is not appropriate for all
file types (e.g., photos, mp3 or executable files). To overcome this limitation we
further added several views, each applicable to a FileReference object only if that
object has a particular extension. For example, a file object storing a picture (i.e., .png,
.gif, .jpg) has a view that shows the actual picture (Picture view, Figure 4.11 (p.62)), a
file object containing a Pharo script (i.e., .st) has a view that shows the script using
syntax highlighting, an archive object (i.e., .zip) has views that show the archived
files/folders and the compressed content in hexadecimal, etc. This is achieved by
relying on activation predicates that check the extension of the file object, and turns
the object inspector into a dedicated file browser. Activation predicates are modeled
as anonymous functions that return a boolean value.

Selecting Views Using Tags

The Raw and Meta views, showing object state and the source code of an object’s
class, get in the way if a developer is interested just in a domain-specific aspect of an
object, such as the files in a folder or the visual representation of a morph. The same
can be said if a developer is only interested in the object’s state: showing several
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Figure 4.12: Exploring how bytecode maps to source code. The object inspector only
contains the custom tag in the inspection context. Hence, it displays only
domain-specific views.

specific views can get in the way. To make it possible to dynamically select only
those views that are currently of interest we group them using tags.

By default, the Moldable Inspector comes with two tags: basic and custom. The basic

tag groups generic views applicable for all objects; currently these are the Raw and
Meta views. The custom tag groups domain-specific views. Developers can further
create and use their own custom tags instead of just relying on the basic and custom

tags. The Moldable Inspector only displays views that have at least a tag present in
the current inspection context. For example, the object inspector from Figure 4.17
(p.68) has only the basic tag in the current inspection context; the one from Figure 4.12
(p.63) only has the custom tag.

Using custom tags we can transform the object inspector into a tool addressing spe-

Figure 4.13: Exploring points-to relations between objects; only the tag pointers is in
the current inspection context.
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Figure 4.14: Browsing the examples of class.

cific kinds of development tasks. For example, when investigating memory leaks10,
tools that allow developers to track points-to relations between objects (i.e., what
objects point to a given objects) can provide valuable insight. We added a view to
all objects that shows all the objects holding a reference to the displayed object. As
this view is only useful in certain cases we assigned a dedicated tag to it (i.e., point-
ers). When only this tag is in the inspection context, the inspector becomes a tool for
exploring points-to relations. This can be seen in Figure 4.13 (p.63), where a developer
investigates what objects point to a given morph using only the Pointers view. Apart
from the pointers tag, the current set of extensions for the Moldable Inspector contains
one more custom tag: examples. This tag is attached to views that display examples
or the source code of an example (e.g., the views E.g. and E.g. source in Figure 4.14
(p.64)).

Selecting Views Based on the Exploration Session

Examples are useful for developers when looking for how to instantiate objects of a
certain type. Nevertheless, examples are not always easy to find.

To provide usage examples for a class we take advantage of the fact that in Pharo
classes are also objects and we add to every class a view that shows a list of examples
of how to instantiate that class. Developers can add examples as methods in the
class object (this corresponds to static methods in Java). When a developer selects an
example in the view, the associated method is executed and the constructed object
is displayed to the right. The developer can then inspect the state and any specific
aspect of the created object. However, in this case, the code that created the example

10
http://forum.world.st/Some-Memory-Leak-td4814779.html
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Figure 4.15: Inspecting an example ob-
ject in isolation.

Figure 4.16: Viewing a date object us-
ing a calendar widget.

is the most important part. To show it in the inspector, we add, to every object, a view
whose activation predicate checks if the previously inspected object in the current
exploration path is a class displayed using a view showing examples.

For example, in Figure 4.14 (p.64) a developer inspects the class RTMapBuilder providing
support for building visualizations containing maps. She then switches to the E.g.

view and clicks on the icon of an example. This executes that example and opens the
resulting object in a new column to the right. She can then select the E.g. source view
showing the source code that created that example. Inspecting the same object in
isolation will not show the E.g. code view as the object is not inspected in the context
of an example (Figure 4.15 (p.65)).

4.6 Discussion

In this section we explore aspects related to implementing the Moldable Inspector,
discuss the cost for creating a view in terms of lines of code, and analyze the types
of views currently used to render objects in Pharo.

4.6.1 Implementation Aspects

To validate the proposed approach and show that it has practical applicability, we
implemented the Moldable Inspector concept in Pharo as part of the Glamorous
Toolkit project. We also integrated the prototype implementation into the alpha ver-
sion of Pharo 4, replacing the previous object inspector, and we iteratively improved
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the implementation as we obtained feedback from developers relying on the alpha
version of Pharo 4 in their day-to-day activities. The Moldable Inspector became the
default object inspector in the Pharo 4 release. Initial feedback indicated that while
the Moldable Inspector can take some getting used to, as it has a different navigation
mechanism than previous inspectors from Pharo, it can significantly improve the
inspection process.

Constructing a Specific View for an Object

In the current implementation we aimed for an object inspector that allows devel-
opers to use any graphical object (i.e., morph) as a view. To this end we enable
developers to manually construct views using code snippets that return a view ob-
ject. Given that developers reported the need of easily extending the inspector, we
provide an internal domain-specific language (i.e., an API) that can be used to di-
rectly instantiate several types of basic views such as list, tree, table, text and code.
Each view is then modeled as an object. When creating a view developers first have
to indicate the type of the view and then configure its properties using anonymous
functions. The proposed DSL also makes it easy to integrate more elaborate views
created using a visualization library (Roassal [Araya et al. 2013]) and a data browser
library (Glamour [Bunge 2009]).

For example, lines 4-9 from Listing 4.1 (p.66) illustrate how to instantiate a tree view
showing the submorphs of a morph (Submorphs view, Figure 4.6 (p.56)). This view
should only be available if the morph has any submorphs. To check this the exten-
sion specifies an activation predicate using the #when: method (line 10). The actual
activation predicate consists in an anonymous method returning a boolean value.

Listing 4.1: Creating a view showing the structure of a graphical component.

1 Morph>>#gtInspectorDisplaySubmorphsOn: aCanvas

2 <gtInspectorPresentationOrder: 80>

3 <gtInspectorTag: #custom>

4 ↑ aCanvas tree

5 title: 'Submorphs';

6 rootsExpanded;

7 display: [ self ];

8 format: [:morph | morph printString];

9 children: [:morph | morph submorphs];

10 when: [:morph | morph submorphs notEmpty]

Apart from all these specialized types of views, developers can use any graphical
widget available in Pharo as a view. Consider a date object: Pharo provides a calendar
widget for selecting dates (i.e., CalendarMorph). We can reuse this widget and add a
view showing a preview using this calendar to date objects. Figure 4.15 (p.65) shows
the result. Lines 13–15 create this view by reusing the calendar widget.

66



4.6 Discussion

Listing 4.2: Creating a view displaying a date object using a calendar widget.

11 Date>>#gtInspectorPreviewIn: aCanvas

12 <gtInspectorPresentationOrder: 30>

13 ↑ aCanvas morph

14 title: 'Calendar';

15 morph: [ CalendarMorph on: self ]

Another use case supported by the Moldable Inspector is that of reusing views be-
tween objects. For example, Figure 4.9 (p.60) showed that when selecting a key binding
of a morph object, the inspector offers developers a view showing the source code
associated with that key binding. This view is attached to objects of type KMKeymap,
however, the source code associated with key binding is stored in a BlockClosure

object; objects of this type also define a view for displaying their source code. Hence,
the implementation of this view attached to key map objects, showed in Listing 4.3
(p.67), delegates the creation of the view to the corresponding BlockClosure object.

Listing 4.3: Creating a view displaying the source code attached to a key
binding by reusing the source view of a block closure object.

16 KMKeymap>>#gtInspectorSourceCodeIn: aCanvas

17 <gtInspectorPresentationOrder: 30>

18 ↑self action gtInspectorSourceCodeIn: aCanvas

Attaching Multiple Views to an Object

Following the discussion from Section 3.2.3 (p.38) we make an object responsible for
representing itself in multiple ways by defining methods that construct specific views
within its class. This keeps view code together with that of the objects. For example,
the extension defined in Listing 4.1 (p.66) is added to the class Morph, while the one
from Listing 4.2 (p.67) is added to the class Date. Given that the target language for our
implementation supports extension methods, this allows developers to add views
to any existing object while packaging them separately. These methods are marked
with a predefined parametrizable annotation (gtInspectorPresentationOrder: — line
2, Listing 4.1 (p.66); the annotation parameter is used to order views). The inspector
follows the superclass chain when searching for annotated methods.

A side effect of this design is that a developer can use the code editor view to modify
the inspector from within the inspector during inspection time. For example, Figure
4.17 (p.68) shows an editor opened on a method defining the Submorphs view of a Morph.
Changing the code in the editor refreshes the inspector and provides a live extension
mechanism. In fact, most extensions were created from within the inspector as doing
so provides fast feedback and enables quick iterations.
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Figure 4.17: Accessing an object’s source code. This also gives access to the source
code custom views for that object.

Supporting Tags

We defined tags using parametrized annotations: a view is added to a tag by marking
the method creating that view with the tag’s annotation (line 3 in Listing 4.1 (p.66)

specifies that the view is added to the tag labeled custom). This enables a view to
have multiple tags and maintains the mapping between tags and views, within the
view. Another approach consists of maintain this mapping independent of the view
definition (e.g., in a configuration file), however, this would require developers to
find and update the tag definition when adding/changing views.

Inspection Context

The Moldable Inspector models the inspection context as an object. Developers can
access the context by adding a second method parameter to the method constructing
the view. In line 19 in Listing 4.4 (p.69) this parameter is named aContext. The method
signatures for creating the previous two extensions (line 1, Listing 4.1 (p.66); line 11,
Listing 4.2 (p.67)) lack a second parameter, hence, those methods will not be able to
access the inspection context. The context stores the previously inspected objects in
the navigation (i.e., the exploration session) using a linked list; they can be accessed
by extensions using API calls on the context object.

As an example where accessing previously inspected objects is needed, consider
the E.g. source view from Figure 4.14 (p.64). This view shows the source code that
created the current object, and should only by available if in the previous step a
developer selected an object modeling an example; this limitation exists as only
example objects have the source code used to create those objects attached. To enforce
this, the extension can use an activation predicate, shown in lines 26 – 28. The
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activation predicate checks if a previous step exists (#hasPreviousStep) and if the
entity selected in that step is an example object. If indeed the selected object in the
previous step is an example the extension displays its source code.

Listing 4.4: Creating a view showing the source code of an example object.

19 Object>>#gtInspectorExampleSourceIn: aCanvas inContext: aContext

20 <gtInspectorPresentationOrder: 100>

21 ↑ aCanvas smalltalkCode

22 beForScripting;

23 title: 'Source';

24 display: [ aContext previousEntity ]

25 format: [ :anExample | anExample formattedScript ];

26 when: [

27 aContext hasPreviousStep and: [

28 aContext previousStep rawSelection isGTExample ] ]

The Moldable Inspector in Other Languages

The Moldable Inspector is a generic model that is not dependent on any particular
object-oriented programming language or IDE. The current version was developed
in Pharo. Features from Pharo, like the ability to directly ask an object for the values
of its attributes or a class for its defined attributes, simplify the internal implemen-
tation of the inspector. Nevertheless, following the discussion from this section, we
see no technical difficulties that would impede an implementation in other OO lan-
guages and IDEs (e.g., in Eclipse or IntelliJ for Java, or VisualStudio for C#). The lack
of extension methods however requires a different solution for attaching views to
objects (Section 3.2.3 (p.38)).

4.6.2 A Taxonomy of Views

To investigate how the Moldable Inspector is extended by developers, we analyze
131 views present in the Pharo IDE. These views cover 84 distinct types of objects
from more than 15 different applications, frameworks and libraries, including most
basic data types from the language (e.g., Integer, Character, Float, String, Collection,
Time, Date, Calendar). These views are further grouped using 4 tags: basic, custom,
pointers and examples. On average a type of object has 1.6± 1.1(M± SD) new views.
However, considering that an object is displayed using the views from both its class
and all its superclasses, an object has on average in all tags a total of 6.1± 1.5(M±
SD) views (the basic, pointers and examples tags add four views to every object). If we
only take into account the custom tag, an object has on average 2.1± 1.5(M± SD)
custom views. The object with the highest number of custom views is FileReference

(8 views).

To understand what types of views are needed for representing objects we classified
all 131 views into 8 types of views based on the API for creating views (i.e., list, tree,
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View type Example
Number

of views

List Pointers view, Figure 4.13 (p.63) 29

Tree Submorphs view, second object — Figure 4.6 (p.56) 9

Table Keys view, first object — Figure 4.9 (p.60) 26

Text SQL view, first object — Figure 4.10 (p.61) 13

Source code Source code view, second object — Figure 4.17 (p.68) 12

Morph Morph view, third object — Figure 4.6 (p.56) 10

Roassal view View view, Figure 4.15 (p.65) 18

Glamour view Raw view, first object — Figure 4.6 (p.56) 14

Table 4.4: Types of views used to display objects in the current implementation.

table, text, source code, morph, glamour and roassal). The first five categories reflect
simple textual views. TheGlamour andRoassal categories contain views created using
these libraries; the Morph category contains visual views directly created using the
Morphic framework. 67.9% of the views are textual (Table 4.4 (p.70)), with the list and
table views being used the most. The tree view has the lowest usage. We consider
this to be the case because with Object Pager new objects can be displayed to the
right, rather than discovered by expanding a tree. Visual views represent 21.3% of
all views.

4.6.3 The Cost of Creating a View

Creating a view requires an average of 9.2 ± 6.6(M ± SD) lines of code. This
measurement includes the signature of the method containing the view code, code
comments and annotations; it excludes empty lines. Figure 4.18 (p.71) shows the size
distribution of this extensions. We consider that these numbers attest to the fact that
building a custom view is indeed inexpensive. Combined with the ability of creating
these views live directly from within the inspector, the Moldable Inspector provides
a new workflow that makes custom inspection accessible. The low cost for creating
a view also addresses the second developer need identified in Section 4.2 (p.43).

In recent mailing list discussions, several developers confirmed a low learning curve
for creating custom views, as long as they had examples of how to use the API11.
Currently, we offer a browser for exploring all extensions present in the IDE, as well
as tutorials on how to extend the inspector12.

11
http://bit.ly/1FRfDed, http://bit.ly/1R4DToY,

http://bit.ly/1f1a0Fi, http://bit.ly/1dxEmxA
12Available at http://www.humane-assessment.com
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Figure 4.18: Size distribution in lines of code (LOC) for 131 custom views.

4.7 Related Work

There exists a wide body of research looking at how to improve development tools
by improving navigation and the representation of various software artefacts. We
further look just at approaches that focus on objects and data structures.

Self [Smith et al. 1995] allows objects to have a custom representation. However, in
Self, the focus is on having a unique view for each object so that developers can easily
identify objects. The Moldable Inspector promotes multiple tailored views. Smalltalk
X13 proposes an object inspector that allows objects to have multiple views and
groups them using tabs. The previous object inspector from Pharo (i.e., EyeInspector)
also supports multiple views for an object, grouped using a drop-down menu. These
approaches do not support workflows that group together multiple objects, nor do
they allow developers to filter views based on their current task.

The Eclipse IDE14 incorporates an object inspector that uses a tree view to show
object state and that enables developers to customize the representation of objects
throughDetail Formatters and Logical Structures. Each class can have aDetail Formatter
consisting of a snippet of code that constructs a custom string used to represent
instances of that class anywhere in the debugger. Each class can further have a
Logical Structure that can return an alternative list of key-value pairs to be displayed
in the inspector instead of the current object attributes (e.g., the Map$Entry class has a
logical structure that displays the key and value from the map instead of the actual
implementation). In Eclipse each class can have a single Detail Formatter and Logical

Structure. There is no possibility to have multipleDetail Formatters or Logical Structures

13
http://www.exept.de/en/products/smalltalk-x.html

14
http://eclipse.org/ide
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and dynamically select one based on a given property of an object. The Moldable
Inspector allows each object to have multiple views.

NetBeans15 offers the possibility to define multiple custom views for an object using
Variable Formatters. Nevertheless, only one variable formatter can be active at a time;
developers have to manually select which one by changing their order in the settings
page. IntelliJ16 also supports multiple custom views for an object using Data Type

Renderers. IntelliJ further allows developers to switch between renderers using a
context menu. Nevertheless, neither Eclipse, NetBeans nor IntelliJ allows views to
be selected automatically at run time based on properties of the inspected objects.
The Moldable Inspector enables this behavior through activation predicates.

Eclipse, NetBeans and IntelliJ rely on textual representations constructed using ei-
ther tree or table views. The Moldable Inspector supports graphical representations
not limited to trees or tables. While Eclipse and NetBeans allow only one object to
be inspected at a time through a tree view, IntelliJ makes it possible to open mul-
tiple objects in multiple inspector windows. Nevertheless, it does not provide an
explicit way to manage an exploration session, nor control the number of visible
objects. Visualizers from Visual Studio17 remove the limitation of textual representa-
tions, allowing objects to also have graphical views. However, like IntelliJ, they do
not provide an explicit way to manage an exploration session.

A different category of object inspector consists of those integrated in current web
browsers for inspecting the structure of web pages, like HTML tab in Firebug18 or
Elements tab in Chrome DevTools19. These inspectors allow developers to navigate
the structure of a page using a tree view. When an HTML element is selected in
the tree view a pane is spawned to the right displaying the element using multiple
views grouped together using tabs; these include views for CSS properties, graphical
layout, or the DOM object of the selected element. Nevertheless, these inspectors
limit the number of objects from an exploration session to two and do not provide
an easy way to customize the inspector with tailored views.

jGRASP is an integrated development environment providing object viewers that
automatically generates graphical views for objects based on their structure [Cross
et al. 2009]. jGRASP displays an object using the view that best matches its structure.
Unlike jGRASP the Moldable Inspector aims to support views that show more than
just the state of an object, and thus cannot be associated with an object only based
on its structure. Furthermore, the Moldable Inspector allows views to be grouped
based on their intent (i.e., using tags) and proposes a workflow that automatically
arranges the inspected objects.

DoodleDebug [Schwarz 2011] allows objects to have two custom representations
(a summary view and a detailed view). Vebugger [Rozenberg and Beschastnikh

15
http://netbeans.org

16
http://jetbrains.com/idea

17
http://visualstudio.com

18
http://getfirebug.com

19
http://developer.chrome.com/devtools
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4.7 Related Work

2014] allows developers to define templates that can create views for objects having
a certain type. Nevertheless, the template that will be used to represent an object
is discovered only based on the type of the object, without taking into account the
state of that object. Both these approaches also focus only on representing individual
objects.

Alsallakh et al. [Alsallakh et al. 2012] present an extension to the Eclipse IDE that
uses multiple types of views to display object representing arrays. The Moldable
Inspector is applicable to any type of object, not just to arrays.

Several approaches further propose the use of graphs to visualize various relations
between objects [Aftandilian et al. 2010; Savidis and Koutsopoulos 2011]. These
approaches scale well; they can even display the entire content of the heap. While
the Moldable Inspector supports navigation between objects we do not consider that
an inspection session can involve hundred of objects that need to be displayed all at
once. Hence, we proposed a user interface that displays objects using a list instead
of a tree, and is applicable for navigating a significantly smaller number of objects.

Debugger Canvas [DeLine et al. 2012] brings the Code Bubbles [Bragdon et al. 2010b]
idea to debugging. The approach shows related entities next to one another and al-
lows the developer to manipulate and store them in sessions. However, this approach
relies on single representations for each entity regardless of the context, and object
inspection is offered through a classic tree like view. The Code Bubbles interface also
requires the developer to organize the bubbles. Our user interface relies on a Miller
columns design that requires small space and little spatial maintenance effort.

Korn and Appel [Korn and Appel 1998] propose a technique called traversal-based

visualization in which the debugger traverses a data-structure and creates a visualiza-
tion based on a set of patterns given by a user indicating how to display particular
parts of the data structure. The Moldable Inspector uses activation predicates to
automatically select views based on object state; activation predicates do not directly
indicate how to display an object; they are used to decide if a view is applicable for
a given object.

LIVE [Campbell et al. 2003] creates visualizations for data structures automatically
from ASTs: a developer first enters a program; the program is then parsed by LIVE
into an AST; the AST is then used to create an animated visualization showing the
evolution of the data structure. LIVE provides live editing of the visualization in
the sense that users can make changes to the visualization (e.g., add a node in a data
structure representing a list) which are immediately reflected back to the code that
created that visualization. The current implementation of the Moldable Inspector
also incorporates this idea: developers can create views directly from within the
inspector; any time they save the view the inspector updates.
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4.8 Conclusions

Through an empirical study we observed a need for object inspectors that focus
on more than the state of single objects. We proposed the Moldable Inspector, a
model for object inspectors that can adapt to both the inspected objects and the
immediate developer needs. We further introduced the Object Pager, a user interface
for navigating through objects having multiple views.

We designed the Moldable Inspector by applying the designed principles for mold-
able tools targeting object-oriented development introduced in Section 3.1 (p.33) in the
following way:

DP 1. Identify common types of tool-specific adaptations: The Moldable Inspector en-
ables domain-specific adaptations by allowing developers to customize the
views through which they look at objects and the set of objects accessible from
within a view. The navigation mechanism itself is controlled through a dedi-
cated user interface (i.e., Object Pager).

DP 2. Simplify the creation of common adaptations: Developers customize the inspector
by attaching to objects methods returning custom views. To support inexpen-
sive creation of views, we applied the Moldable Inspector to more than 84
distinct types of objects and identified a set of common view types, detailed
in Table 4.4 (p.70). We model these views as objects and we provide an internal
DSL developers can use to directly configure the view in a few lines of code.

DP 3. Do not limit the types of possible adaptations only to common ones: The internal
DSL for creating views allows developers to also use any graphical widget
from the environment as a view. For example, we showed how to reuse a
calendar widget to create a custom view for a Date object.

DP 4. Attach activation predicates to adaptations: The Moldable Inspector maintains an
inspection context consisting of previously inspected objects and explicit data
(i.e., tags). Developers can then attach to each view an activation predicate that
can access the inspection context and decide whether the view is applicable in
that context. The activation context is set using the provided DSL.

DP 5. Update adaptations based on a development context: The Moldable Inspector
updates the set of visible views when developers add or remove tags from the
context. Currently, the inspector does not refresh the set of views for previous
objects when a new objects is added to the exploration session. We made this
decision to avoid situations in which the exploration path between objects is
lost because a view from the path is removed.

While simple, the Moldable Inspector enables a wide range of different workflows
and shows that an object inspector can be more than a simple tool for looking at
the state of single objects. An object inspector can instead be a central tool during
debugging that gives developers immediate access to contextual information. We
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showed that the Moldable Inspector can be used to understand various scenarios
such as manipulating graphical objects, understanding compiled code, following
pointers, exploring databases, navigating the file system, or browsing examples.

Some of these features are usually addressed within IDEs using dedicated tools,
without these tools being connected to the actual run-time objects. Developers have
to fragment their debugging activities, look for these tools elsewhere and then bring
the desired information back to the inspector and debugger. The Moldable Inspector
removes this gap. By adapting the displayed views to the current development needs
it immediately provides the desired data right in the inspector.

Our solution relies on developers constructing custom views. To be practical, the
cost associated with creating these views should be small. Through our concrete
implementation we showed that this is indeed achievable.
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The key to performance is elegance, not battalions of special cases.

Jon Bentley and Doug McIlroy

5
Moldable Spotter

Searching is a pervasive activity employed by developers during program compre-
hension to deal with the vast amount of data from today’s software systems. These
data often consist of many different kinds of domain-specific and interrelated soft-
ware entities. Nevertheless, most integrated development environments support
searching through generic and disconnected search tools. This impedes search tasks
over domain-specific entities, as considerable effort is wasted by developers locating
and linking data and concepts relevant to their application domains. To address this
problem, in this chapter we explore how a moldable tool can enable developers to
directly search through domain concepts.

5.1 Introduction

Program comprehension requires developers to reason about many kinds of inter-
connected software entities (e.g., code, annotations, packages/namespaces, docu-
mentation, configuration files, resource files, bugs, change sets, run-time data struc-
tures) [Sillito et al. 2008] often stored in different locations [Eichberg and Schäfer
2004]. Dealing with this reality prompts developers to form and maintain task con-
texts [Murphy et al. 2005] by continuously searching for relevant entities and nav-
igating their dependencies [Robillard et al. 2004; Ko et al. 2006; Fritz et al. 2014].
Cognitive task analyses describe this process as a foraging loop in which developers
seek, understand, and relate information [Pirolli and Card 2005].

Depending on the application domain, software entities are further assigned domain-
specific concepts. For example, an event-based system can use run-time objects to
model events, a server can rely on XML files to model descriptors for web services,
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and a parser can model grammars using methods. Hence, instead of reasoning
just in generic and low-level terms (e.g., What files named web.xml contain within a

<security-role> tag a<role-name> tag with the value ``manager''?), developers com-
monly formulate their queries using abstractions from their application domains
(e.g., What web applications use the security role “manager”?).

Nevertheless, although searching is pervasive in software development and main-
tenance tasks, it is supported in IDEs mainly by means of disconnected and generic
search tools. On the one hand, the lack of search tool integration forces developers to
manually locate and construct domain abstractions by piecing together information
from various sources (e.g., What XML tags represent security roles? In what files are they

defined?). On the other hand, it impedes discoverability: one has to be aware of a
domain abstraction to know what to look for. Nevertheless, given the size of today’s
systems, awareness of all domain abstractions is not feasible [Petrenko et al. 2008].
Hence, a generic and disconnected approach of integrating searching into IDEs leads
to information foraging loops where significant effort is wasted recovering concepts
instead of directly reasoning in terms of those concepts.

To address this problem and improve program comprehension during information
foraging loops we propose that search tools directly enable developers to discover
and search through domain concepts. This goal can be achieved if IDEs support
developers in creating and managing custom ways to search through their domains.
Towards this goal we propose Moldable Spotter, a moldable tool for enabling con-
textual domain-aware searching in IDEs by putting customization in the foreground
and enabling developers to:

(i) easily create custom searches for domain objects;

(ii) automatically discover searches for domain objects.

Moldable Spotter targets the foraging loop described by Beck et al. (i.e., Search and
Filter, Read and Extract, Follow Relations) [Beck et al. 2015] and leverages a simple
object-oriented model for expressing search tools by composing search processors.
First, a search processor is a run-time object that expresses an individual search
query. Second, every search processor is associated with a software entity from
an application (i.e., its target object). To achieve this, all software entities from an
application that can have an associated search processor are modeled as run-time
objects. Following the discussion from Section 3.2.1 (p.36) this covers domain objects,
source code entities and external resources. A developer creates new custom search
processors by configuring the following attributes of a processor object:

Provider: extracts the data on which the processor operates from the system(e.g., the
productions from a parser, the shapes from a visualization).

Preprocessor: alters, if needed, the user-supplied query (e.g., fixes typos, removes
white spaces, compiles a regular expression) or improves the query by follow-
ing various heuristics (e.g., based on natural language processing).
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Query engine: extracts a subset of elements from the data provider based on the
preprocessed query (e.g., substring matching, regular expressions, similarity
threshold).

Sorter (optional): can reorder the filtered results (e.g., based on the frequency of their
usage [Spasojević et al. 2014]).

Hence, a search processor is an object that knows how certain domain concepts re-
lated to its target object are reflected in an application and can restrict textual searches
to software entities appropriate for those domain concepts. However, a search pro-
cessor models just an individual query. To model a complete foraging loop, Moldable
Spotter relies on search steps and exploration sessions: a search step captures a step
in a foraging loop; an exploration session consists of a series of connected search steps.
Each step takes as input an object and loads all processors associated with that ob-
ject. When a user opens a step or enters a textual query all loaded search processors
are executed in parallel. For example, opening a search step on a web server loads
processors for searching through exposed services and security roles. Search results
are displayed using a user interface that follows the guidelines for improving search
tools proposed by Starke et al.: (i) skimming through search results, (ii) ranking and
grouping of results, and (iii) exploring result sets [Starke et al. 2009].

The contributions of this chapter are as follows:

• Extracting and motivating, based on previous related works and use-cases, a
set of requirements for enabling domain-aware searching within an IDE;

• Showing how the moldable tools approach can be applied to create Moldable
Spotter, a model for integrating domain-aware searching within an IDE;

• Discussing the practical applicability of Moldable Spotter in providing domain-
aware searching and improving foraging loops based on real-world examples;

• An analysis investigating the cost of creating custom extensions for Moldable
Spotter based on a pilot user study and a survey looking into how developers
perceive and use Moldable Spotter in practice.

Structure of the Chapter

In Section 5.2 (p.80) we motivate requirements for enabling domain-aware searching
in an IDE and explore how they are addressed in related works. In Section 5.3 (p.85)

we introduce the Moldable Spotter model, and in Section 5.4 (p.91) we show how it
improves information foraging loops. We discuss implementation aspects in Section
5.5 (p.96). We analyze in detail the cost of creating custom extensions in Section 5.6
(p.98) and we look at how developers use Moldable Spotter in practice in Section 5.7
(p.106). In Section 5.8 (p.108) we conclude this chapter and dissect how Moldable Spotter
instantiates the moldable tools approach.

79



Chapter 5 Moldable Spotter

5.2 Requirements

To illustrate how generic approaches lead to wasted effort during information forag-
ing loops, we start with two motivating examples. We then propose and motivate a
set of requirements for addressing this problem and discuss how they are currently
supported in related approaches.

5.2.1 Motivating Scenarios

Searching Through a Parser Grammar

PetitParser is a framework for creating parsers that makes it easy to dynamically
reuse, compose, transform and extend grammars [Renggli et al. 2010a]. Developers
create parsers by specifying a set of grammar productions in a class or in a class
hierarchy. To specify a grammar production a developer needs to: (i) create a method
that constructs and returns a parser object for that part of the grammar; (ii) define,
in the same class, an attribute having the same name as the method. Productions are
referred to in other productions by accessing object attributes. Developers can add
other helper methods and attributes to a parser class.

Finding a grammar production is a common task during the development of a parser.
As grammar productions have associated methods, one way to find a production
within a parser class is to use a generic search for methods. Nevertheless, this ap-
proach will find methods defined in that class that are not productions; developers
need to further check that an attribute with that exact name also exists. If the parser
is organized in a class hierarchy, developers are required to browse through the su-
perclass chain when a production is not found in the current class. Another task
that often arises when working with grammars is to locate those productions using
a given production. A developer can use a generic approach and start browsing all
methods that access an attribute, however, as in the previous situation, she will have
to check if the accessing methods are indeed grammar productions.

These issues can be directly addressed with the help of two domain-specific searches
that allow developers to dis- cover and search through productions in a parser and
through productions using a given production. For example, a search through the
productions of a PetitParser parser can be instantiated as follows using a search
processor:

Provider: extracts from a parser class those methods that are grammar produc-
tions (i.e., methods where there exists an attribute with the same name as the
method);

Preprocessor: parses and compiles the query supplied by the user into a regular
expression;
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Query engine: extracts those productions whose name matches the regular
expression;

Sorter: orders productions based on the frequency of their usage within the
current grammar.

The results of using this processor to search for productions containing the string
“hex” in a parser for Java code is displayed in Figure 5.1a (p.85). The presented scenario
is not unique to PetitParser. Similar situations arise every time code elements (e.g.,
methods, classes, annotations) have a domain specific semantic, since generic search
tools cannot filter out unrelated entities.

Searching Through a Visualization

Roassal is an engine for building visualizations defined in terms of objects and their
relations [Araya et al. 2013]. Developers create a new visualization starting from a
set of domain objects by (i) mapping different types of shapes and relations to those
objects, (ii) choosing a layout algorithm, and (iii) specifying how properties of shapes
and of the layout are computed from the domain objects.

When reasoning about how a model object is rendered, a common task consists
in locating the parts of a visualization responsible for rendering that model object.
A visualization in Roassal is a run-time object consisting of a composite (i.e., tree)
of shape objects. Answering the previous question requires a developer to search
through the composite and locate shapes that render that object. As a visualization
is an object, one way to address this question is to navigate through object state
using a generic object inspector. Nevertheless, Roassal visualizations are complex
objects containing many other attributes, unrelated to the task at hand, leading to a
significant effort just for navigating through the object graph.

Providing a domain-specific search that enables developers to directly determine
what shapes render a domain object can reduce navigation overhead. This search
can be instantiated using a search processor as follows:

Provider: extracts, from a Roassal visualization, all graphical objects that render
the target object associated with the processor;

Preprocessor: parses and compiles the query supplied by the user into a regular
expression;

Query engine: extracts those graphical objects whose class name matches the
regular expression;

Sorter: orders graphical objects alphabetically based on their class name.

Figure 5.5b (p.95) shows an example for this search processor. Such types of searches
are not limited to Roassal; they are common when domain objects of interest for a
developer are spread across an object graph.
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5.2.2 Requirements Discussion

The scenarios presented in Section 5.2.1 (p.80) cover different types of developer ques-
tions that can be efficiently addressed through custom domain-specific searches. For
this approach to be possible, IDEs should enable developers to create and work with
domain-specific searches. Starting from the presented scenarios we propose the fol-
lowing as a set of minimum requirements towards this goal: inexpensive creation of

search processors, support for multiple data sources and context-aware searches.

Inexpensive Creation of Search Processors (REQ1)

Given the wide rage of development tasks and applications, foreseeing all usage
contexts of a tool is not possible [Sillito et al. 2008]. A fixed set of searches limits
the applicability of a search tool. Enabling developers to create custom searches for
their domain entities addresses this problem. Nevertheless, the difficulty of creating
a custom search directly influences the usability of such an approach. On the one
hand, a domain-specific language for creating custom searches can significantly
reduce the cost for certain types of extensions. On the other hand, supporting custom
searches through a general-purpose programming language allows for any type
of extension. To provide a quick entry point and not limit the types of possible
extensions, an infrastructure for domain-specific searching should support inexpensive

creation of common types of searches, while allowing developers to fall back to a general-

purpose programming language when advanced extensions are needed.

Multiple Data-sources Support (REQ2)

The two questions discussed in the previous section require information from two
different data sources: source code and runtime. External data (e.g., files) is another
form of data source also frequently encountered in developer questions. Given the
wide range of heterogenous data used in software applications, enabling successful
domain-specific searching requires to integrate and present data from multiple sources to

developers.

Context-aware Searches (REQ3)

The questions discussed in Section 5.2.1 (p.80) are sometimes addressed in IDEs through
standalone search tools (e.g., tools for query-based debugging, dedicated tools for
working with parsers). To take advantage of them, developers have to be aware of
their presence and know when they are applicable. An infrastructure encouraging
developers to create and work with custom searches should support this by enabling

developers to automatically find custom searches applicable for a domain entity, based on the

entity, the task at hand, and the developer’s task context.
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Tool Data model Extension language
Requirement

RQ1 RQ2 RQ3

JQuery logic database TyRuBa X* — X*

SEXTANT XML database XQuery X* — X*

Ferret sphere model algebra ? X X*

Sando text-based files internal DSL X — —

SPOOL OO model internal DSL X — —

Moldable Spotter
reuses the
IDE model

internal DSL X X X

— no support, Xfull support, X* partial support, ? unknown

Table 5.1: Feature comparison for tools enabling custom extensions for searching.

5.2.3 Current Approaches

There exists a wide range of software tools focusing on improving program com-
prehension by combining and integrating multiple search tools and techniques. In
this section we present and discuss several tools that support custom extensions for
searching through a software system:

a) JQuery is a code browsing tool that combines the advantages of query-based and
hierarchical browser tools [Janzen and de Volder 2003]. JQuery relies on a knowledge
database generated dynamically using the Eclipse API and queried using TyRuBa,
a logical programming language augmented with a library of helper predicates for
searching through source code.

b) SEXTANT is a software exploration tool that leverages a custom graph-based
model [Schafer et al. 2006]. In SEXTANT all sources of a project are transformed to
XML, stored in a database and queried using XQuery.

c) Ferret is a tool for answering conceptual queries that integrates different sources
of information, referred to as spheres, into a queryable knowledge-base [de Alwis
and Murphy 2008]. Each sphere performs its queries using a component/plugin of
the Eclipse IDE (e.g., static Java searches are executed using JDT).

d) Sando is code search tool and framework that embodies a general and extensible
local code search model [Shepherd et al. 2012]. Sando focuses on enabling researches
to easily implement and compare approaches for local code search.

e) SPOOL is a reverse engineering environment combining searching and brows-
ing. SPOOL has at its core a repository that stores source code models and provides
a query mechanism through which a user can query the model [Robitaille et al. 2000].
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Customization

JQuery and SEXTANT address customization by selecting a language that best fits the
model they use to represent the queried data. Nevertheless, this requires developers
to write queries for object-oriented programs using a language based on a different
paradigm (i.e., logical programming, functional programming). The query language
used in JQuery, while allowing for expressive queries, makes the creation of complex
queries difficult even for advanced users. Sando and SPOOLuse a different approach:
developers create custom extensions by implementing a predefined interface and
writing code in the host language (i.e., Java, C#) leveraging a given API. This does
not require developers to become familiar with another language. Sando shows that
with this approach complex searches can be implemented in less than 100 lines of
code. We were unable to find a discussion regarding the ease of creating conceptual
queries for Ferret.

Data-sources

Ferret is the only one of the five selected tools that fully addresses REQ2 by taking
source code, dynamic and historical data into account; SEXTANT, JQuery, Sando and
SPOOL are targeted towards the analysis of source code artifacts and do not take the
run-time into account. Apart from the discussed tools, many other approaches from
the area of feature location combine multiple types of information to improve their
results but do not focus on customization [Dit et al. 2012]. Search tools from current
IDEs also allow developers to search through multiple data. For example, Global
Search in IntelliJ makes it possible for developers to search through files, methods,
preferences, tools, menus, etc.

Context-aware Searches

SPOOL only allows custom searches to be selected based on the type of an entity (e.g.,
method, file). SEXTANT, JQuery and Ferret go one step further and attach searches
to software entities; applicable searches can than be dynamically selected based on
various properties of those entities. They however do not attempt to model the
development context and select searches also by taking into that context. A different
approach is taken by recommender systems which aim to suggest to developers
useful tools by recording and mining usage histories of software tools [Murphy-Hill
et al. 2012]; this however requires usage history information.

Summary

The requirements identified in Section 5.2.2 (p.82) are addressed to various degrees
in current approaches that focus on integrating searches over multiple data types.
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(a) Searching for productions within a grammar

(b) Searching through the users of a production.

Figure 5.1: Exploring a PetitParser grammar for Java code.

This indicates a need for a search framework that focuses on unifying search support
within an IDE by addressing all three requirements.

5.3 Moldable Spotter in a Nutshell

In this section we show how Moldable Spotter addresses the foraging loop described
by Beck et al., we introduce a user interface to support the presented model, and we
discuss how Moldable Spotter models a search context.

5.3.1 Search Context

As discussed in Section 5.2.2 (p.82), developers need support for automatically select-
ing searches relevant for their current needs. In Chapter 4, Section 4.3.3 (p.51), in the
context of domain-specific object inspection, we introduced a solution for modeling
a development context based on tags and exploration sessions; extensions were filtered
using activation predicates. We propose reusing the same approach for enabling Mold-
able Spotter to automatically select relevant search processors. For completeness,
we briefly present these operators and show how they apply to Moldable Spotter.
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Tags identify and group together processors applicable for a development task or ap-
plication domain. For example, the processors related to PetitParser have the parsing
tag. Generic processors are grouped using the default tag. Only processors that have
a tag currently present in the search context are made available to developers. An
exploration session stores the objects found by a developer using Moldable Spotter,
together with the order in which they were searched for and the search processors
used to find those objects. Each search processor can then have an activation predicate

applied by Moldable Spotter on the current search context before loading that proces-
sor. For example, the search processor for searching through production in a parser
class described in Section 5.2.1 (p.80), should only be available if the developer opened
Moldable Spotter on a class that represents a PetitParser parser; this processor needs
an activation predicate that checks the type of the class.

5.3.2 Supporting an Information Foraging Loop

Starting from the foraging loop for intelligence analysis proposed by Pirolli and
Card [Pirolli and Card 2005], Beck et al. describe a foraging loop for feature loca-
tion [Beck et al. 2015] having three main activities: search and filter, read and extract

and follow relations. We show next how Moldable Spotter supports these activities.

Search and Filter

To support this activity, Moldable Spotter uses search steps. A step encapsulates
a search on an object in a given context. Each step takes a target object as input
and loads all processors that apply to objects of that type in the current context.
For example, a search step opened on a method (i.e., on a method object) can load
processors for searching through both the callers and the callees of that method. A
step opened on a class representing a PetitParser parser in a context that contains
the parsing tag loads specific processors related to PetitParser (e.g., a search through
grammar productions — Figure 5.1a (p.85)). If the default tag is also in the current
context, then generic processors related to classes are loaded (e.g., searches through
subclasses, superclasses or instances when the runtime is available).

When a developer opens a step on an object all data providers from the loaded
processors are executed and their results are presented to the user according to the
order defined by the sorter. For example, when a developer enters the query “hex”

in Figure 5.1a (p.85), all loaded processors receive the query and update their results.
This is the search phase of the foraging loop; developers do not have to select a priori
what processors they want to execute. To implement the filter phase, each time the
developer provides a textual query, the query engines are used to filter the presented
data in each processor.
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(a) The developer starts by opening Moldable Spotter, searching for “spotter”, locating the Pragmas

processor and selecting the first result.

(b) She then dives into the selected annotation (spotterOrder:) by clicking on the arrow to the right
of that annotation. This creates a new step allowing her to search through methods having that
annotation and methods calling a method with that name.

Figure 5.2: Locating a method having the spotterOrder: annotation (in Pharo anno-
tations are referred to as pragmas)

Read and Extract

Developers can extract initial information by reading a short textual description of
each element present in the results list. As this only gives a limited amount of infor-
mation, Moldable Spotter supports a contextual preview for each type of result (e.g.,
source code for a method, graphical representation for a graphical object or a png file).
Hence, developers can choose to view each element using the preview. For example
when searching for a production in a parser (Figure 5.1a (p.85)) the preview of each
shape shows the source code of that production. If the preview is not enough, devel-
oper can open a result in another tool from the IDE; these tools are selected based
on the type of the result entity: code editor for methods/classes, object inspector for
objects, etc.
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(a) Continuing the navigation from Figure 5.2 (p.87) the developer expands the Pragmas processor
and filters results using the “items” query.

(b) She finishes by opening a method in a new step which loads processors for searching through
senders of that method, as well as other methods with that name (Implementors).

Figure 5.3: Exploring callers of methods having the spotterOrder: annotation.

Follow Relations

From a search step a developer can choose to continue navigation by selecting a
search result. This adds the selected element to the search session and opens a new
search step on the selected result. The creation of a new search step is exemplified in
Figure 5.1 (p.85): initially the developer searched for productions containing the text
“hex” and selected the production hexNumeral (Figure 5.1a (p.85)). Then the developer
dived into the hexNumeral production, creating a new search step (Figure 5.1b (p.85)); in
the new search step she can search for productions using the hexNumeral production.
The search session preserves the navigation history through multiple search steps,
and allows developers to reason about how they got to the current step, as well as to
go back to previous steps and try alternative searches. Furthermore, processors in
the current step can also be filtered based on objects from the previous search steps,
not only based on the current object.
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5.3.3 A User Interface for the Moldable Spotter Model

While the Moldable Spotter model can express a wide range of searches, the user
interface (UI) plays a crucial role in the usability of a search tool. Hence, in this
section we introduce and discuss a UI design for Moldable Spotter based on the
three guidelines proposed by Starke et al.: (i) group and rank results, (ii) support
rapid skimming through result sets, and (iii) enable in-depth exploration of result
sets [Starke et al. 2009]. To illustrate the UI we use a running example in which a
developer is interested in exploring callers of methods having a certain annotation
(Figures 5.2 and 5.3).

Grouping and Ranking Results

Running all search processors loaded in a step is at the core of the Moldable Spotter
model. This raises the need of displaying multiple heterogenous result sets at once.
We address this by displaying result sets using one level trees: the roots of the trees
are the processors that return results and the children are the actual results; results
are presented in the order retuned by the processor (Figure 5.2a (p.87)).

Skimming Through Result Sets

Given that processors can produce a large number of results, for each processor we
display the first n results; n is customizable per processor (Figure 5.2a (p.87)) and root
nodes are expanded automatically. The label of each result set includes the number
of displayed results and the total number of results from that result set. To help
developers reason about why a result is displayed, the querying engine can embed
visual cues when displaying results (e.g., highlight the text matching the query).

Exploring Result Sets

Once a developer has found one or more interesting entities she can investigate them
in more detail. Moldable Spotter supports this through two mechanisms:

Preview pane Developers can obtain more information about a result by opening
the contextual preview associated with the current selected result in a pane to the
right of the search pane (Figure 5.2b (p.87) and Figure 5.3b (p.88)).

Navigation Navigation is supported using a simple visual language that consists
of two main commands:

Dive in: adds the selected object to the search session and creates a new step having
that object as target entity. A developer can invoke this action after selecting
an element using a keyboard shortcut or the arrow to the right of the selected
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element ( ). For example, after selecting the annotation spotterOrder: in Fig-
ure 5.2a (p.87), the developer executes the dive in action by pressing the arrow;
this creates a new search step (Figure 5.2b (p.87)). The new search step has as tar-
get entity the selected annotation and allows the developer to search through
methods having that annotation.

Expand: creates a new search step containing a single processor for searching only
through the selected result set. This processors shows the entire result set. A
developer can invoke this action after selecting a result from a result set using
a keyboard shortcut or the arrow next to the label of a result set. For example,
after diving into the spotterOrder: annotation (Figure 5.2b (p.87)), the developer
decides she is only interested in what methods have that annotation. Hence,
she expands the result set returned by the Pragmas processor (Figure 5.2b (p.87)).
In the next search step (Figure 5.3a (p.88)) she can see all methods having that
annotation, explore them in more details and refine her search.

Figure 5.2b (p.87) illustrates the final step of the exploration. The developer created
this step by diving in a method having the spotterOrder: annotation. In this step
she can search through data related to that method, like callers or methods with
the same name from other classes. To maintain orientation a breadcrumb shows
previous steps.

UIs for Feature Location and Exploration Tools

For completeness, we present here a comparison with UIs used in other feature
location and exploration tools.

Apatite, a tool for searching and navigating through five levels of an API’s hierarchy
(packages, classes, methods, actions (methods containing verbs) and properties (get-
ters and setters)) [Eisenberg et al. 2010] relies on a similar interface for displaying the
results of a search step: the first 5 results from each category are automatically pre-
sented and developers can see more results on demand. The same UI is also used by
Global Search from IntelliJ. Nevertheless, Apatite relies on Miller columns to display a
navigation session which takes considerably more screen-real estate than the UI used
by Moldable Spotter; Global Search does not provide any navigation mechanism.

Ferret relies on a tree view where users need to manually expand each node to see
the actual result. JQuery and SEXTANT allow users to discover available searches
through a context menu and display the result in a tree or graph.

UIs for feature location focus on allowing users to reason about why a result is dis-
played. For example, I3, a novel user interface for feature location providing searches
through methods, highlights query terms in the code editor and uses visualizations
to convey the similarity of a result with the query as well as show co-change pat-
terns [Beck et al. 2015]. The Moldable Spotter UI highlights the text matching the
query and uses a contextual preview to convey more information about a result.
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Global

1) What {method, class, annotation, package, project} names match
a regular expression?

2) What methods {call a method, access an attribute} whose name
match a regular expression?

3) What {files, folders} are in the {current working directory, a se-
lected file/folder}?

Packages, classes and methods

4) What packages have changes that need to be committed?
5) What are this package’s {classes, extension methods, tags}?
6) What are this class’ {methods, attributes, static method, static

attributes, superclass methods, subclass methods}?
7) What are this class’ siblings, super-classes, sub-classes?
8) What classes implement a method with the same name?
9) What attributes/fields does this method access?
10) What methods does this method call?
11) What methods call this method?
12) What methods reference this class by name?
13) What methods have this annotation?

History

14) What are the previous versions of this method, package?
15) Who edited this method before?

Run-time

16) What are the fields of this object?
17) What are the elements of this collection object?
18) What are the keys of this dictionary object?

Table 5.2: Generic searches supported by Moldable Spotter.

5.4 Improving Information Foraging Loops

Moldable Spotter aims at enabling direct searches through domain-specific concepts
during information foraging loops. In this section we show that Moldable Spotter
addresses this aspect by applying it to the motivating examples discussed in Section
5.2.1 (p.80) and we highlight how the presented model supports this goal. Generic code
related searches are still an integral part of an IDE (e.g., What methods call this method?,
What are the attributes of this class?). Not taking them into account would require
developers to decide between Moldable Spotter and a generic tool when they need
to perform a search. To avoid this we also extended Moldable Spotter with support
for generic searches (Table 5.2 (p.91)) based on previous literature, common searches
from IDEs and our own developer experience. An example was presented in Figures
5.2 and 5.3 where to determine the senders of a method having a certain annotation
the developer (i) started by searching for the desired annotation, (ii) continued by
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searching through methods having that annotation, and (iii) finished by exploring the
senders of one of those methods. This enables foraging loops that combine generic
with domain specific searches (Section 5.4.4 (p.94)).

5.4.1 Starting Moldable Spotter

To perform a search the developer has to first open Moldable Spotter on a target
object. When an explicit target object is missing, Moldable Spotter selects the cur-
rent workspace as target object. This loads global processors for searching through
software entities within the current workspace, including processors for searching
through classes, methods, pragmas, history, files, folders, etc. Moldable Spotter reg-
isters shortcuts and menu options for performing this action. For example, in Figure
5.2a (p.87) the developer opened Moldable Spotter this way and entered the query text
‘spotter’. To allow developers to specify an explicit target object, Moldable Spotter
further registers shortcuts and menus with other tools from the IDE. For example,
a developer can open Moldable Spotter on any object available in the debugger or
the object inspector; this way Moldable Spotter gets access to run-time state. The
code editor makes it possible to open Moldable Spotter on code entities (e.g., classes,
annotations).

5.4.2 Finding Productions Within a Parser

Moldable Spotter supports the two developer questions related to PetitParser dis-
cussed in Section 5.2.1 (p.80) through two processors. The first enables searches through
the productions of a parser and has the structure described in Section 5.2.1 (p.80). As Pe-
titParser parsers are specified using classes, this processor is associated with classes,
and has an activation predicate that checks whether the target class is a PetitParser
parser (i.e., The class must have PPCompositeParser in the superclass chain). Figure
5.1a (p.85) shows a scenario in which a developer has opened Moldable Spotter on a
PetitParser parser for Java code and searched for productions containing the word
“hex” in their name. The preview gives direct access to the source code of the produc-
tion.

Searching through the uses of a production is achieved using a processor attached
to methods valid when the target method is a PetitParser production. Developers
can use this processor by opening Moldable Spotter on a production or adding a
production to the current search session. Figure 5.1b (p.85) shows the latter situation
where, after searching for a production, a developer uses the dive-in feature to add
the selected production to the current search session. The preview pane shows the
source code of a selected production.
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(a) Searching for a Roassal builder for sunburst visualizations.

(b) Searching for examples showing how to visualize files using a sunburst visualization.

(c) As model objects are files and folders the preview shows the content of the selected file or folder.

(d) Selecting a graphical shape shows highlights it in the preview with red.

Figure 5.4: Finding an example of how to use a sunburst visualization to display files
and folders.
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5.4.3 Searching Within a Visualization

To improve the user experience when developing Roassal visualizations, we created
together with the developers of the Roassal framework, two dedicated processors
for searching through visualization objects (i.e., objects of type RTView). The first
processor (Model objects, Figure 5.5a (p.95)) enables a search through model objects
used by graphical elements; the preview pane shows the state of the model object.
The second (Shapes, Figure 5.5a (p.95)) targets the actual shape objects used in the
visualization. As a concrete example, Figure 5.5 (p.95) shows Moldable Spotter opened
on a visualization for comparing two metrics about population in several US states
using a horizontal double bar chart.

To determine what graphical shapes are used to render a model object a developer
can dive in and add the model object to the search session. Doing this loads a proces-
sor showing the list of shapes used to render that object. This processor is attached to
all objects and has an activation predicate that checks whether the previous object in
a search session is a Roassal visualization; if so, the provider locates the shapes in that
visualization that have the current object as a model. Hence, this processor would
not be available when opening Moldable Spotter on the same object in isolation. In
Figure 5.5b (p.95) a developer can see that there are three shapes that render the state
Arizona: two RTBoxes and a RTLabel.

5.4.4 Finding Examples

Roassal comes with a large number of examples. They are organized in classes
linked with the graphical classes for which they provide examples. Hence, for each
graphical class, if it has an example class, we can provide a processor that displays
and searches through its examples. A developer can find and execute an example by
(i) opening Moldable Spotter on the current workspace and searching for the desired
Roassal class and (ii) diving into the class and locating the Examples processor (Figure
5.4b (p.93)). The preview of an example shows the source code of that example. To get
to the actual visualization a developer can then execute the example and dive into the
result. As this is a visualization object the developer can continue her investigation
using the custom processors presented in Section 5.4.3 (p.94) (Figure 5.4c (p.93)).

5.4.5 Summary

Apart from the presented examples we also added Moldable Spotter support to
other applications from the Pharo ecosystem: GUI libraries (Glamour, Spec, Mor-
phic), Opal compiler, MongoDB bindings for Pharo, Metacello package management
system, Monticello versioning system, etc. We further added IDE related searches for
preferences, menus, help topics, shortcuts, clipboard history, and files and folders.
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(a) A visualization has processors for searching through model elements (Model ob-

jects) and graphical components (Shapes).

(b) Diving into a model object from a step opened on a visualization shows what
shapes use that object.

Figure 5.5: Exploring an object modeling a Roassal visualization.

As we aim to support custom searches through domain concepts, providing an ex-
haustive list of searches is not feasible. Instead, Moldable Spotter enables domain-
specific adaptations. This section showed that the proposed model can support
searches through relevant concepts from different domains that spawn over source
code and run-time objects.

By providing both domain-specific and generic searches Moldable Spotter offers
a unified interface for embedding search support within an IDE: developers open
Moldable Spotter on a selected entity and can immediately discover available searches.
By using the search session they can further perform targeted explorations that build
on previous search results.
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5.5 Implementation

To determine the extent to which Moldable Spotter can enable domain-aware search-
ing we have implemented it in Pharo, as part of the GToolkit project. We developed
the first version of Moldable Spotter over three months and integrated it in the alpha
version of Pharo 4, replacing Spotlight, a previous search tool for finding methods
and classes. We then continued to develop Moldable Spotter based on developer
feedback (Section 5.7 (p.106)) in one-month iterations.

5.5.1 Constructing Custom Search Processors

Moldable Spotter supports the creation of custom search processors through an in-
ternal DSL (i.e., API). Developers can configure the predefined blocks of a processor
object (Section 5.2.1 (p.80)) using anonymous functions or provide a custom imple-
mentation for the processor. When creating processors we started by configuring
the predefined blocks and switched to a custom stream-based implementation when
performance became an issue. For example, lines 32–40 in Listing 5.1 (p.96) show the
code snippet for creating a search processor for PetitParser productions. An acti-
vation predicate ensures that this processor is only available to parser classes (i.e.,
classes that inherit from PPCompositeParser — lines 39–40).

Listing 5.1: Search processor for PetitParser productions.

29 spotterForProductionsFor: aStep

30 <spotterOrder: 10>

31 <spotterTag: #PetitParser>

32 aStep listProcessor

33 title: 'Productions';

34 allCandidates: [ self productionMethods ];

35 candidatesLimit: 5;

36 itemName: [:aProduction | aProduction selector];

37 filter: GTFilterRegex;

38 itemFilterName: [:aProduction| aProduction selector];

39 when: [ :aClass |

40 aClass inheritsFrom: PPCompositeParser ];

Line 34 configures the provider; this component of the search processor is expressed
using an anonymous function. Lines 37 and 38 configure the query engine (e.g., filter
productions based on their names using regular expressions). The query engine is
responsible for filtering the elements returned by the provider based on the user sup-
plied query. Query engines are modeled as classes that extend a predefined class (i.e.,
GTFilter). Currently Moldable Spotter provides filters for matching elements with
a user query based on: substring matching, regular expressions, and approximate
matching using thresholds; currently these filters do not support indexing of search
results. The filter includes the preprocessor.
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When the numbers of items that need to be filtered is large, separating the provider
from the query engine can cause performance problems. To account for this, Mold-
able Spotter also supports searches based on streams that combine the provider and
the query engine. For example, lines 43–51 from Listing 5.2 (p.97) show the proces-
sor for searching through files, which uses the API method filter:item: that provides
stream-based searching for a filter. Currently 13 processors use this optimization.

Listing 5.2: Search processor for finding files within a folder.

41 spotterForFilesFor: aStep

42 <spotterOrder: 40>

43 aStep listProcessor

44 title: 'Files';

45 itemFilterName: [:aReference| aReference basename ];

46 filter: GTFilterFileReference item: [ :filter :context |

47 self

48 fileReferencesBy: #files

49 inContext: context

50 usingFilter: filter ];

51 when: [ :aReference | aReference isDirectory ];

Like in the case of the Moldable Inspector (Section 4.6.1 (p.65)), an extension (i.e., a
search processor) is attached to an object by defining in the class of the object a
method constructing the extension. The Moldable Spotter uses the annotation spot-

terOrder (lines 30 and 42). The annotation parameter is used to sort processors in a
search step. Moldable Spotter also implements tags using annotations: processors
are added to tags using the annotation spotterTag: (e.g., in line 31 the Productions

processor is added to the tag PetitParser).

5.5.2 Exploration Sessions and Activation Predicates

An exploration session is modeled as a linked list of step objects. The code of a
processor can access the exploration session using the method parameter of its con-
taining method (aStep, line 52). This parameter gives access to the current step object.
Developers can use it to access previous steps. This solution differs from the one
used in the Moldable Inspector where developers needed to add an extra parameter
to the method. We made this change as it does not require developers to decide in
advance if the extension would need access to the context.

For example, Figure 5.5b (p.95) contains a search processor named Shapes that is only
available when the previous step contains a Roassal visualization. If this is the case,
the processor extracts all graphical shapes from that visualization that render the
object loaded in the current step. In Figure 5.5b (p.95) we can see that three graphical
shapes render the current object. To check if the previous object is a Roassal visu-
alization the processor from Listing 5.3 (p.98) relies on an activation predicate (lines
63-65): using the current step object the activation predicate can access the previous
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step, if present. The provider can also access the previous objects (i.e., the Roassal
visualization) to extract the relevant graphical shapes.

Listing 5.3: Search processor for finding graphical shapes rendering the ob-
ject loaded by the current step.

52 spotterForRenderingShapesFor: aStep

53 <spotterOrder: 5>

55 aStep listProcessor

56 title: 'Shapes';

57 candidatesLimit: 5;

58 allCandidates: [ aStep previousStep origin

59 elements select: [ :each | each model = self ] ];

60 itemName: [ :each | each gtDisplayString ];

61 filter: GTFilterSubstring;

62 wantsToDisplayOnEmptyQuery: true ];

63 when: [

64 aStep hasPreviousStep and: [

65 aStep previousStep origin isKindOf: RTView ] ]

5.5.3 Spotter in Other Languages

Currently Moldable Spotter is developed in Pharo and uses several querying facilities
present in Pharo related to code and objects. This includes the ability to directly query
code objects for relations (e.g., ask for the methods of a class or for the subclasses of a
class) and any object for its attributes. Pharo also provides support for determining
relations between methods (e.g., callers/callees of a method). While this simplifies
the implementation of Moldable Spotter there is no conceptual limitation that ties
Spotter to Pharo and prevents its implementation in other IDEs for object-oriented
languages. For example, to integrate Moldable Spotter within IntelliJ, one can start
from the Global Search tool that already provides the possibility to execute multiple
searches in parallel and extend it with the notion of search context and search session.
The AST model can then be used to implement queries over code entities.

5.6 The Cost of Custom Search Processors

Moldable Spotter enables developers to improve information foraging loops by cre-
ating domain-specific searches. To investigate the cost of creating a custom search
we analyze the current search processors present in Pharo based on their size and
searched data. We then discuss a user study with software developers and PhD
students looking into how difficult it is to create extensions for Moldable Spotter.

98



5.6 The Cost of Custom Search Processors

Figure 5.6: Size distribution in lines of code (LOC) for 124 search processors.

5.6.1 Analyzing Existing Extensions

Based on 124 search processors present in the Pharo IDE, the average cost of creating
a processor in lines of code is 9.2. This includes the entire source code of the method
defining a processor, as well as the source code of helper methods created together
with the processor; this does not include methods called from within the processor
that existed in the target class before adding the processor. As can be seen in Figure
5.6 (p.99), a large number of extensions require 7 or 8 lines of code. These extensions
follow the same pattern as the one from lines 32–40, where the class already provides
a way to get the required data and the extension just uses available methods and
overrides default values from the processor. When this is not the case, the size of an
extension is significantly larger.

5.6.2 A Taxonomy of Moldable Spotter Searches

In Table 5.3 (p.100) we classify all 124 search processors whose cost was analyzed
in Section 5.6.1 (p.99), based on the type of searched data. Search processors in the
Global category correspond to global searches through code entities and files/folders
mentioned in Table 5.2 (p.91). Search processors from the category Code entities address
developers questions from the Packages, classes and methods group from Table 5.2
(p.91). Methods (containment) groups searches through methods contained by a class
(e.g., instance methods, class/static methods, methods from subclasses); Methods

(relations) covers searches involving relations between methods (e.g., callers/callees).
Code critiques are warnings about code returned by the Quality Assistant tool from
Pharo. The IDE category contains searches though data more related to the IDE like:
settings, help topics, plug-ins or external projects that can be loaded into the IDE,
and URLs to repositories. Search processors in the Project category cover searches for
the Metacello package management system and the Monticello versioning system.
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Category Data Count

Global

Packages 1
Classes 1
Annotations 1
Methods 5
Global variables 1
Files/folders 2

Code entities

Packages 5
Classes 10
Traits 4
Annotations 1
Methods (containment) 9
Methods (relations) 7
Attributes/variables 8
Code critiques (QA) 3

IDE

Settings 2
Help 2
Menus 3
Plug-ins/Projects (Catalog) 1
Repositories 3

Project
Configurations (Metacello) 6
Versioning (Monticello) 7

Domain objects

Collection objects 3
Graphical objects 5
XML objects 2
Examples 6
Parser objects 3
Bytecode 1
Moose models [Nierstrasz et al. 2005] 6
Files 5

Other

Code/text 3
Extensions 2
History 4
Dynamic 2

Table 5.3: Search processors ground based on the type of searched data. Count indi-
cates the number of search processors for a data type.

Domain objects groups searches through specific objects like graphical widgets, parsers,
XML documents, files, etc. Dynamic in the Other category covers searches where the
results are generated from the query string; this includes a calculator for arithmetic
expressions and a processor that given an URL pointing to a Shared Workspace1

loads the code stored in that workspace. Extensions offer developers the possibil-
ity of searching through all Moldable Spotter processors as well as domain-specific
extensions for other tools.

1http://ws.stfx.eu/
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Figure 5.7: Searching for help topics related to regular expressions using a custom
processor. Each HelpTopic object has a custom preview showing its con-
tent.

As indicated in Section 5.5 (p.96), developers attach extensions to an object’s class.
64 extensions are attached to objects that represent code entities or to the object
that models the current workspace (e.g., all global processors). The remaining 60
extensions are attached to 32 different types of objects. On average an object has
1.85± 1.5(M± SD) search processors.

5.6.3 User Study Design

To investigate the creation of custom searches for Moldable Spotter in more detail,
we designed and performed a pilot user study. Our main goal was to test the ex-
tension mechanism and not the knowledge of a particular application domain or
the usability of Moldable Spotter. Towards this goal we decided to focus on simple
domain models. In doing this we assume that developers working on an application
know their domain model well. Through the evaluation of this study we aimed to
better understand how developers behave when creating custom searches. Hence,
we structured the evaluation based on the following research questions:

RQ1 How much time does it take to create a custom extension for developers who
did not extend Moldable Spotter before?

RQ2 Does previous experience in extending Moldable Spotter reduce the effort
required to create a new extension?

RQ3 How do developers approach the task of creating a custom extension for
Moldable Spotter?

The user study consisted in implementing two custom searches for Moldable Spotter
detailed below. We selected these searches as, while covering small domain models,
they give a chance for the creation of relevant search extensions.

Task 1 – Help Topics Extend Moldable Spotter with a custom global extension for search-

ing through all help topics from the system by their title using a textual search. Searches
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through documentation and other textual data are common tasks during develop-
ment. With this task we aimed to see if developers can create such searches using
Moldable Spotter. We selected the Pharo help as a data source for the search, given
that it is a familiar data source for Pharo developers. While searches through help
topics are not themselves novel, as they are a common presence in IDEs, they are
well understood and provide a good baseline for testing if developers understand
the extension mechanism from Moldable Spotter. In the case of Pharo the entire help
is organized as a tree of HelpTopic objects. A HelpTopic has a title, a content and a
list of children topics. Participants needed to create a global search extension that
extracted all available help topics, filter them using one of the available filters based
on their title and open a selected help topic in the Pharo Help Browser. Our default
implementation of this extension is presented in Listing 5.4 (p.102). Areal-world search
using this extension is shown in Figure 5.7 (p.101).

Listing 5.4: Search processor for locating help topics.

66 spotterForHelpTopicFor: aStep

67 <spotterOrder: 200>

68 aStep listProcessor

69 title: 'Help topics';

70 allCandidates: [ SystemHelp asHelpTopic allSubtopics ];

71 candidatesLimit: 5;

72 itemName: [:helpTopic | helpTopic title ];

73 itemIcon: [:helpTopic | helpTopic topicIcon ];

74 actLogic: [:helpTopic | HelpBrowser openOn: helpTopic];

75 filter: GTFilterSubstring;

76 wantsToDisplayOnEmptyQuery: true

Task 2 - Morph Shortcuts Extend Spotter with a custom textual search for searching

through the shortcuts of a morph. Morphs are the main graphical components from
Pharo. A morph object uses a dispatcher object to store its shortcuts. The dispatcher
object is stored in a dictionary together with other properties of a morph. A dis-
patcher object stores shortcuts as a set of keymap objects. Participants needed to
create an extension that extracted all shortcuts from the dispatcher and supported
a search based on the text of the shortcut (e.g., ‘ctrl+shift+s’). Unlike the previous
extension, this is a specialized one that, to our knowledge, is not present in other
development tools and IDEs. What we find in other IDEs are global searches through
documentation that also take shortcuts into account. We selected this extension to
observe how developers apply Moldable Spotter in a domain-specific context. List-
ing 5.5 (p.103) illustrates our default implementation; Figure 5.8 (p.103) shows a usage
example.

The study had three parts. In the first part we gave participants a short introduc-
tion about how to use Moldable Spotter. The second part consisted in solving the
two tasks and the third part in a survey for collecting impressions about the study
and background data. During the introduction phase we only showed participants
how to attach a custom search to a domain object. We did not go into any other
details about how to extend Moldable Spotter. Instead we pointed participants to
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Figure 5.8: Processor for searching through the key bindings of a morph object. In
this example the morph objects is a text editor for Pharo code, and the
developer is searching for key bindings that use the Ctrl key. Each key
binding has a custom preview that shows the code that will be executed
when the key binding is pressed.

three places where they could get more data: (i) the Moldable Spotter documenta-
tion available in Pharo explaining Moldable Spotter the extension process in details;
(ii) the class GTSpotterCandidatesListProcessor containing the main API for creating
custom search processors; (iii) a tool for exploring all Moldable Spotter extensions
available in the Pharo IDE.

During the second phase we captured both screen and audio recordings and asked
participants to use a think-aloud strategy as they coded. For each task we provided
participants with a description of the domain model presenting the main classes
and methods. We provided these data to reduce the time needed for participants
to learn the domain model. Participants first read the description of the task and of
the domain and only afterwards started the coding phase. We only take the coding
phase into account in our analysis. We did not impose any time limit for reading
the provided material and implementing the task. A task was considered completed
when the participant decided that it was good enough. The two tasks followed in
immediate succession.

Listing 5.5: Search processor for searching through the key bindings of a morph.

77 Morph>>#spotterForKeysFor: aStep

78 <spotterOrder: 15>

79 aStep listProcessor

80 title: 'Keys';

81 allCandidates: [ self kmDispatcher

82 allKeymaps asOrderedCollection ];

83 candidatesLimit: 5;

84 itemName:[:aKeymap| aKeymap shortcut printString];

85 filter: GTFilterSubstrings

Six participants took part in this user study. Three PhD students, having between 2
and 4 years of experience with Pharo and three software developers, having between
1 and 3 years of experience with Pharo. All knew how to use Moldable Spotter, how-
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ever, they had no knowledge of its extension mechanism. Two developers reported
interacting briefly with the domain model used in the second task in the past.

5.6.4 User Study Results

We first determined the correctness of the extensions. All but one participant created
extensions that correctly implemented the given tasks. One participant (P2) did
not add the functionality for opening the help topics and the shortcut objects in the
required tools. In the third phase he reported that he forgot about that part of the task.
We also included this participant in our analysis as the implemented parts of the
extensions were correct. In analyzing the coding phase of the study we distinguished
between three types of activities: (i) understanding and implementing a Moldable
Spotter extension; (ii) understanding the domain model; (iii) clarifying the task. We
split each coding session into 30 second intervals and assigned them to one of the
aforementioned categories; we inferred the category of an interval based on what
code or object the participant was looking at and the think-aloud data.

RQ1 – Effort for creating a first extension Participants took, on average, 16 min-
utes to implement the first task (Table 5.4 (p.105) – Total time). Participants spent most
of their time during this task (84%) on learning how to implement a Moldable Spotter
extension. Participant P5 was the exception: he decided to implement a different
solution for obtaining all help topics than the one presented during the first phase.
There was a large difference between participants in the completion time: partici-
pant P2 took 24 minutes while participant P6 took only 9 minutes. Regarding the
size of an extension we obtained similar results to the discussion from Section 5.6.1
(p.99): on average, the size of extension was 8.6 LOC (Table 5.4 (p.105) – Extension size).
Differences in size were due to extra features added by participants (e.g., Partici-
pant P3 added shortcuts and icons to each extension) and different ways to extract
the required data. Given that this was the very first extension implemented by our
participants, we consider the cost and the time to be low.

RQ2 – Effort for creating a second extension We explored our second research
question by asking participants to create a second extension immediately after the
first one for a more complex domain model. We noticed two changes from the first
task. On the one hand, participants spent more time understanding the domain
model (30% of the total time as opposed to 13% for the first task). On the other hand,
the total time for solving this task improved on average by 37%; if we take only the
extension implementation time into account the average individual improvement is
48%. There were nevertheless significant differences between individual participants:
participant P2 improved by 15 minutes 30 seconds while participant P6 only by
30 seconds. In terms of lines of code, participants were consistent with the first
extension. Based on this evidence we conclude that previous experience in extending
Moldable Spotter reduces the time needed for creating new extensions.
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P1
Task 1 12m30s (89%) 1m30s (11%) 0 (0%) 14m00s 6 LOC

Task 2 7m30s (63%) 4m30s (37%) 0 12m00s 7 LOC

P2
Task 1 22m30s (94%) 0 1m30s (6%) 24m00s 6 LOC

Task 2 5m00s (59%) 3m30s (41%) 0 8m30s 6 LOC

P3
Task 1 17m00s (83%) 3m:00s (14%) 0m30s (3%) 21m00s 11 LOC

Task 2 6m00s (80%) 1m30s (20%) 0 7m30s 10 LOC

P4
Task 1 16m00s (86%) 1m30s (5%) 1m00s (9%) 18m30s 11 LOC

Task 2 11m30s (70%) 4m00s (24%) 1m00s (6%) 16m30s 12 LOC

P5
Task 1 8m00s (66%) 4m00s (34%) 0 12m00s 9 LOC

Task 2 2m30s (62%) 1m30s (38%) 0 4m00s 7 LOC

P6
Task 1 8m00s (88%) 1m00s (12%) 0 9m00s 9 LOC

Task 2 7m00s (82%) 1m30s (18%) 0 8m30s 10 LOC

Table 5.4: User study results for each participant and task.

RQ3 – Approaching the creation of extensions To understand the differences ob-
served between participants and tasks we analyzed the strategies used by partici-
pants to implementing the given tasks. The first observation that holds for all par-
ticipants is that they started to implement the required extensions by modifying an
already existing extension. In the first part of the coding session (first 2-3 minutes)
all participants looked through existing examples to understand the extension mech-
anism and selected an extension that they later modified. No participant started
by reading documentation, however, later in the task if they got stuck, participants
decided to either read documentation (P2, P4), browse Moldable Spotter classes (P3)
or look at more examples (all participants did this to different extents).

The factor that contributed the most to high reduction in completion times between
the first and the second task (participants P2 and P3) was the example selected as
a starting point in the first task. To exemplify, participant P2 selected to start by
modifying the global search for methods available in Pharo. Currently this search is
an optimized search using streams that combine the provider and the query engine.
As discussed in Section 5.5 (p.96), Moldable Spotter currently does not optimize the
rapid creation of these kinds of searches. After having problems with the extension,
participant P2 chose to look at three more examples which happen to also also be
searches based on streams. In the end participant P2 moved to reading documen-
tation and found a different way to create an extension (using the API from lines
32–40). At the opposite end participant P6 started with an example similar to the
solution required for the first task. He adapted this example to the first task with
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ease.

This study revealed that the examples used by participants to learn how to extend
Moldable Spotter had an impact on their efficiency. For this study we used all ex-
tensions currently available in the Pharo IDE as examples . These examples had no
associated documentation giving insight into why they are implemented that way.
These made participants choose to start from examples that were not necessarily
suited for their requirements. We consider addressing these aspect by providing a
collection of curated extensions, better search for examples and better documentation
for extensions.

Threats to validity During the coding phase participants needed to think-aloud
and were also observed by the person conducting the study; five participants knew
the person conducting the study. We cannot exclude that this may have caused
changes in the way they approached the tasks. The task also focused on simple
domain models that may not reflect the reality of complex software applications.

5.7 Spotter in Practice

Section 5.6 (p.98) explored the cost of extending Moldable Spotter. This gives no in-
sight into how developers use Moldable Spotter in practice. To address this we
collected and analyzed usage data and mailing-list discussions and performed an
online survey.

5.7.1 Usage Data and Mailing-list Discussions

Moldable Spotter was integrated into the alpha version of Pharo 4 in December
2014. Six months after the initial integration we analysed usage data recorded over
a period of two months (April 2014 - May 2015) using a visual language [Kubelka
et al. 2015]. To summarize, we noticed that developers did not discover and use
the navigation features of Moldable Spotter to their fullest potential. For example,
only half of the recorded developers used the dive-in feature at least once. Regarding
search data, although we observed developers using 51 search processors, more than
74% of the time developers only used Moldable Spotter to search through classes and
implementors of methods. One explanation for this observation is that Moldable
Spotter exposes information that is not apparent and users need to be explicitly
informed about this.

In the same period we also gathered feedback from discussion on several Pharo
mailing-lists. Most feedback gathered from mailing-lists is related to the discover-
ability of features in the UI, as Moldable Spotter proposes a UI different from other
tools in the Pharo IDE. Based on this feedback we added the possibility to select
processors directly from the query (e.g., entering the “spotter #pragma” in Figure 5.3a
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FT1 7 (20%) 7 (20%) 13 (37.2%) 2 (5.7%) 1 (2.8%) 1 (2.8%) 4 (11.4%)

FT2 9 (25.7%) 9 (25.7%) 5 (14.3%) 3 (8.6%) 0 (0%) 1 (2.8%) 8 (22.9%)

FT3 8 (22.9%) 8 (22.9%) 5 (14.3%) 2 (5.7%) 0 (0%) 3 (8.6%) 9 (25.7%)

FT4 7 (20%) 6 (17.4%) 9 (25.7%) 0 (0%) 1 (2.8%) 1 (2.8%) 11 (31.4%)
Moldable
Spotter

14 (40%) 12 (34.3%) 8 (22.9%) 0 (0%) 0 (0%) 1 (2.8%) —

Table 5.5: Survey results related to how respondents perceive Moldable Spotter and
its features.

(p.88) only shows the Pragmas processor; # filters processors by name) and selection
of common processors using keyboard shortcuts.

5.7.2 Survey

To further explore how developers perceive and use Moldable Spotter, one year
after the release of Pharo 4, we performed an online survey during March 2016. We
advertised the survey on Pharo related mailing-lists and collected 35 answers from
software developers (17 responses – 48.6%), software researchers (12 responses –
34.3%), students (5 responses – 14.3%) and others (1 response – 2.8%). Regarding
their programming experience with object-oriented languages, 5 respondents (14.3%)
reported between 1 and 3 years, 10 respondents (28.6%) between 4 and 10 years and
20 respondents (57.1%) more than 10 years. Respondents used Moldable Spotter until
the survey during different lengths of time: 5 respondents (14.3%) less than 3 months,
20 respondents (57.1%) between 4 and 12 months and 10 respondents (28.6%) more
than 12 months. When asked how often they used Moldable Spotter 25 respondents
(71.4%) answered that during development they use Moldable Spotter at least several
times a day; 9 respondents (25.7%) only used Moldable Spotter sometimes; one
respondent stopped using Moldable Spotter. Out of the 35 respondents, 8 (22.9%)
also extended Moldable Spotter with a custom search until the survey.

Next, respondents were asked to rate how useful they find Moldable Spotter as well
as four individual features using a six point scale ranging from very useful to very

irrelevant. The four features were: dive-in a search result (FT1), show all results (FT2),
filter search processor using # (FT3) and preview for the selected element (FT4). For each
individual feature, respondents could also indicate that they did not know about
that feature. Table 5.5 (p.107) shows an overview of the results. The vast majority of
respondents found Moldable Spotter to be at least sometimes useful: 40% very useful,
34.3% useful and 22.9% sometimes useful. Regarding the individual features, for
each there were respondents that did not know about that feature. Most respondents
did not know about FT2, FT3 and FT4. This indicates the need to further improve
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the user interface of Moldable Spotter to help users discover features. Answers for
the individual features followed a similar pattern: most participants found them to
be at least sometimes useful, with a few finding them irrelevant.

We also asked respondents to rate the statements below on a 5-point Likert scale:

Spotter reduced the number of tools I used for searching in the Pharo IDE. This statement
received the following responses: 2 (5.7%) strongly agree, 13 (37.2%) agree, 7 (20%)
neutral, 11 (31.4%) disagree, 2 (5.7%) strongly disagree. This indicates that some
respondents use Moldable Spotter alongside the other search tools from the IDE.

Spotter reduced the time I need to perform searches in the Pharo IDE. This statement re-
ceived the following responses: 10 (28.6%) strongly agree, 12 (34.3%) agree, 8 (22.9%)
neutral, 3 (8.6%) disagree, 2 (5.7%) strongly disagree. We observe that more respon-
dents agree than in the case of the previous statement. This suggests that respondents
perform queries faster using Moldable Spotter than with other search tools from the
Pharo IDE. This aspect still needs to be further investigated.

Threats to validity This survey is prone to both internal and external threats to va-
lidity. Respondents could chose to remain anonymous; 17 respondents (48.6%) did
so by choosing to not provide an email address; this was observed mostly in respon-
dents giving negative feedback.

5.8 Conclusions

Domain concepts play an important role in program comprehension. Relying only
on generic search tools during information foraging loops requires developers to
focus on searching for domain concepts instead of reasoning in terms of those con-
cepts. This can be addressed if search tools enable developers to directly search
through domain concepts. To support this, we proposed Moldable Spotter, a mold-
able tool that allows developers to inexpensively incorporate domain concepts in
the search process as well as discover searches applicable for their own contexts. We
designed the Moldable Spotter by applying the designed principles for moldable
tools introduced in Section 3.1 (p.33) in the following way:

DP 1. Identify common types of tool-specific adaptations: The Moldable Spotter enables
domain-specific adaptations by allowing developers to create custom searches
for their domain objects. Like the Moldable Inspector, the Moldable Spotter
proposes a dedicated user interface for browsing search results and navigating
through search processors.

DP 2. Simplify the creation of common adaptations: To support inexpensive creation
of custom search processors, Moldable Spotter models search processors as
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objects and provides an internal DSL developers can use to configure the pro-
cessors in a few lines of code. We showed that this reduces the cost of custom
searches for objects modeling different kinds of information.

DP 3. Do not limit the types of possible adaptations only to common ones: The inexpensive
approach for creating a search processor optimizes for the case where indexing
and obtaining the searched data using streams is not required. When these
are needed developers can replace the Query engine and Provider components
of a search processor with custom components that provide those services.

DP 4. Attach activation predicates to adaptations: The Moldable Spotter maintains
a search context consisting of previously searched objects and explicit data,
using the same approach as the Moldable Inspector. Each search processor can
have an activation predicate that decides, depending on the search context,
whether the processor is applicable or not.

DP 5. Update adaptations based on a development context: Every time the developer
opens Moldable Spotter, updates the query text or creates a new search step,
Moldable Spotter updates the search contexts and only takes into account
processors valid in that context.

Through usage scenarios we showed that Moldable Spotter can address a wide range
of domain-specific questions from various domains (e.g., parsing, GUIs, event-bases
systems, profilers, compilers, HTTP servers). Apilot user study further revealed that
developers who did not extend Moldable Spotter before can create custom searches
with a low effort. We also showed that Moldable Spotter can be extended to also sup-
port generic searches through code, classes, methods, bug reports, run-time objects,
etc. By doing this, Moldable Spotter can provide a single entry point for embedding
search support within IDEs.
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As soon as we started programming, we found to our surprise that it wasn’t as

easy to get programs right as we had thought. Debugging had to be discovered.

I can remember the exact instant when I realized that a large part of my life from

then on was going to be spent in finding mistakes in my own programs.

Maurice Wilkes

6
Moldable Debugger

Debuggers are an essential category of tools for reasoning about the dynamic be-
havior of software systems. Nevertheless, traditional debuggers rely on generic
mechanisms to introspect and interact with the running systems, while developers
reason about and formulate domain-specific questions using concepts and abstrac-
tions from their application domains. This mismatch creates an abstraction gap
between the debugging needs and the debugging support leading to an inefficient
and error-prone debugging effort. To reduce this gap and to increase the efficiency
of the debugging process, we explore in this chapter how to provide debugging
support at the level of abstraction of an application through a moldable tool.

6.1 Introduction

Debugging is an integral activity of the software development process, consisting in
localizing, understanding and fixing software bugs, with the goal of making software
systems behave as expected. Nevertheless, despite its importance, debugging is a
laborious, costly and time-consuming activity [Vessey 1986; Tassey 2002]. Given the
difficulty and pervasiveness of debugging, numerous debugging techniques have
been proposed (e.g., remote debugging, omniscient debugging [Pothier et al. 2007],
post-mortem debugging [Yuan et al. 2010; Han et al. 2012], delta debugging [Zeller
1999] – to name a few), each with its own constraints and benefits. These techniques
rely on a wide set of tools to locate, extract and analyze data about the run-time
behavior of software systems.
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Among the multitude of debugging tools, debuggers are an essential category. If
loggers1 or profilers [Ressia et al. 2012b] record run-time data presented to devel-
opers post-mortem, debuggers enable developers to directly observe the run-time
behavior of software [Roehm et al. 2012; Murphy et al. 2006]. In test-driven develop-
ment the debugger is used as a development tool given that it provides direct access
to the running system [Beck 2002]. This makes the debugger a crucial tool in any
programming environment.

Nevertheless, classical debuggers focusing on generic stack-based operations, line
breakpoints and generic user interfaces do not allow developers to rely on domain
concepts when debugging object-oriented applications. For example, when devel-
oping a parser, one common action is to step through the execution until parsing
reaches a certain position in the input stream. However, as it has no knowledge
of parsing and stream manipulation, a classical generic debugger requires develop-
ers to manipulate low-level concepts like message sends or variable accesses. This
abstraction gap leads to an ineffective and error-prone effort [Sillito et al. 2008].

Furthermore, classical debuggers are less useful when the bug is far away from
its manifestation [Zeller 2005]. Raising the level of abstraction of a debugger by
offering object-oriented debugging idioms [Ressia et al. 2012a] solves only part of
the problem, as these debuggers cannot capture domain concepts constructed on
top of object-oriented programming idioms. Other approaches raise the level of
abstraction in different ways: back-in-time debugging, for example, allows one to
inspect previous program states and step backwards in the control flow [Lienhard
et al. 2008].

When looking at a debugger, there exist two main approaches to address, at the
application level, the gap between the debugging needs and debugging support:

• Enable developers to create domain-specific debugging operations for step-
ping through the execution, setting breakpoints, checking invariants [Olsson
et al. 1991; Marceau et al. 2007; Khoo et al. 2013] and querying stack-related
information [Lencevicius et al. 1997; Potanin et al. 2004; Martin et al. 2005;
Ducasse et al. 2006];

• Allow domain-specific debuggers to have domain-specific user interfaces that
do not have the same fixed content or layout [DeLine et al. 2012]. This is needed
as, depending on the domain, different information can be of interest. For
example, a domain-specific debugger for a parser needs to show information
about grammar productions.

Each of these approaches addresses individual debugging problems (i.e., interacting
with the runtime at the right level of abstraction and displaying data relevant for the
application domain), however, until now there does not exist one comprehensive
approach to tackle the overall debugging puzzle. We propose an approach that incor-
porates both of these directions in one coherent model. We start from the realization

1
http://logging.apache.org/log4j
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that the most basic feature of a debugger model is to enable the customization of
all aspects, and we design a debugging model around this principle. We call our
approach the Moldable Debugger.

The Moldable Debugger decomposes a domain-specific debugger into a domain-

specific extension and an activation predicate. The domain-specific extension customizes
the user interface and the operations of the debugger, while the activation predicate
captures the state of the running program in which that domain-specific extension
is applicable. In a nutshell, the Moldable Debugger model follows the moldable
tools approach and allows developers to mold the functionality of the debugger to
their own domains by creating domain-specific extensions. Then, at run time, the
Moldable Debugger adapts to the current domain by using activation predicates to
select appropriate extensions.

A domain-specific extension consists of (i) a set of domain-specific debugging opera-
tions and (ii) a domain-specific debugging view, both built on top of (iii) a debugging

session. The debugging session abstracts the low-level details of a domain. Domain-
specific operations reify debugging operations as objects that control the execution
of a program by creating and combining debugging events. We model debugging
events as objects that encapsulate a predicate over the state of the running program (e.g.,
method call, attribute mutation) [Auguston et al. 2002]. Adomain-specific debugging
view consists of a set of graphical widgets offering debugging information. Each
widget locates and loads, at run-time, relevant domain-specific operations using
an annotation-based approach. The Moldable Debugger incorporates the Moldable
Inspector as a widget in the user interface.

The contributions of this chapter are as follows:

• Proposing four requirements that an infrastructure for developing domain-
specific debuggers should support;

• Showing how the moldable tools approach can be applied to create the Mold-
able Debugger, a model for developing domain-specific debuggers following
the four proposed requirements that integrates domain-specific debugging
operations with domain-specific user interfaces;

• Illustrating, through usage examples, the advantages of the Moldable Debug-
ger model over generic debuggers;

• A prototype of the Moldable Debugger model together with a discussion of
three different approaches for implementing domain-specific debugging op-
erations and an in-depth analysis of their performance.

Structure of the Chapter

In Section 6.2 (p.114) we introduce and discuss requirements for working with domain-
specific debuggers. In Section 6.3 (p.117) we present the Moldable Debugger, a debug-
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ging model following those requirements, and we show, in Section 6.4 (p.120), how to
address domain-specific debugging problems by adapting the debugger to specific
domains. We analyze implementation aspects in Section 6.5 (p.129), and in Section 6.6
(p.134) we discuss the cost of domain-specific debugger and the limits of the Moldable
Debugger. In Section 6.7 (p.136) we explore related works and we conclude in Sec-
tion 6.8 (p.140) by looking at how the Moldable Debugger applies the moldable tools
approach.

6.2 Requirements for Domain-specific Debuggers

Debuggers are comprehension tools. Despite their importance, most debuggers only
provide low-level operations that do not capture user intent, and standard user inter-
faces that only display generic information. These issues can be addressed if devel-
opers are able to create domain-specific debuggers adapted to their domain concepts.
Domain-specific debuggers can provide features at a higher level of abstraction that
match the domain model of software applications. In this section we propose four re-
quirements that an infrastructure for developing domain-specific debuggers should
support, namely: domain-specific user interfaces, domain-specific debugging operations,
automatic discovery and dynamic switching.

6.2.1 Domain-specific User Interfaces

User interfaces of software development tools tend to provide large quantities of
information, especially as the size of systems increases. This, in turn, increases the
navigation effort of identifying the information relevant for a given task [Ko et al.
2006]. Consider a unit test with a failing equality assertion. In this case, the only
information required by the developer is the difference between the expected and
the actual value. However, finding the exact difference in non-trivial values can be
daunting and can require multiple interactions such as finding the place in the stack
where both variables are accessible, and opening separate inspectors for each value.
Abetter approach, if a developer opens a debugger when a test fails, is to show a diff
view on the two values directly in the debugger when such an assertion exception
occurs, without requiring any further action.

This shows that user interfaces that extract and highlight domain-specific informa-
tion have the power to reduce the overall effort of code understanding [Kersten and
Murphy 2005]. However, today’s debuggers tend to provide generic user interfaces
that cannot emphasize what is important in application domains. To address this
concern, an infrastructure for developing domain-specific debuggers should:

• Allow domain-specific debuggers to have domain-specific user interfaces display-
ing information relevant for their particular domains;

• Support the fast prototyping of domain-specific user interfaces for debugging.
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While other approaches, like deet [Hanson and Korn 1997] and Debugger Canvas [De-
Line et al. 2012], support domain-specific user interfaces for different domains, they
do not offer an easy and rapid way to develop such domain-specific user interfaces.

6.2.2 Domain-specific Debugging Operations

Debugging can be a laborious activity requiring much manual and repetitive work.
On the one hand, debuggers support language-level operations, while developers
think in terms of domain abstractions. As a consequence, developers need to men-
tally construct high-level abstractions on top of language constructs, which can be
time-consuming. On the other hand, debuggers rarely provide support for identi-
fying and navigating through those high-level abstractions. This leads to repetitive
tasks that increase debugging time.

Consider a framework for synchronous message passing. One common use case
in applications using it is the delivery of a message to a list of subscribers. When
debugging this use case, a developer might need to step to when the current message is

delivered to the next subscriber. One solution is to manually step through the execution
until the desired code location is reached. Another consists in identifying the code
location beforehand, setting a breakpoint there and resuming execution. In both
cases the developer has to manually perform a series of actions each time she wants
to execute this high-level operation.

A predefined set of debugging operations cannot anticipate and capture all relevant
situations. Furthermore, depending on the domain, different debugging operations
are of interest. Thus, an infrastructure for developing domain-specific debuggers
should:

• Support the creation of domain-specific debugging operations that allow de-
velopers to express and automate high-level abstractions from application do-
mains (e.g., creating domain-specific breakpoints, building and checking in-
variants, altering the state of the running system). Since developers view
debugging as an event-oriented process, the underlying mechanism should
allow developers to treat the running program as a generator of events, where
an event corresponds to the occurrence of a particular action during the pro-
gram’s execution, like: method entry, attribute access, attribute write or mem-
ory access.

• Group together those debugging operations that are relevant for a domain and
only make them available to developers when they encounter that domain.

This idea of having customizable or programmable debugging operations that view
debugging as an event-oriented activity has been supported in related works [Olsson
et al. 1991; Marceau et al. 2007; Khoo et al. 2013; Hanson and Korn 1997]. Mainstream
debuggers like GDB2 have, to some extent, also incorporated it. We also consider

2
http://www.gnu.org/software/gdb
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that debugging operations should be grouped based on the domain and only usable
when working with that domain.

6.2.3 Automatic Discovery

Consider an environment that offers a domain-specific debugger for parsers and one
for events. If, while stepping through the execution of a program, a developer reaches
a parser, the environment should facilitate the developer to discover that a suitable
domain-specific debugger is available; if later the execution of the parser completes
and the program continues with the propagation of an event, the environment should
inform the developer that the current debugger extension is no longer useful and that
a better one exists. Hence, infrastructures for developing domain-specific debuggers
should help developers to discover domain-specific debuggers during debugging. This way,
the burden of finding appropriate domain-specific debuggers and determining when
they are applicable does not fall on developers.

6.2.4 Dynamic Switching

Even with just two different types of debuggers, DeLine et al. noticed that users
needed to switch between them at run time [DeLine et al. 2012]. This happened
as users did not know in advance in what situation they would find themselves in
during debugging. Thus, they often did not start with the appropriate one.

Furthermore, even if one starts with the right domain-specific debugger, during
debugging situations can arise requiring a different one. For example, the following
scenario can occur: (i) while investigating how an event is propagated through the
application (ii) a developer discovers that it is used to trigger a script constructing
a GUI, and later learns that (iii) the script uses a parser to read the content of a file
and populate the GUI. At each step a different domain-specific debugger can be
used. For this to be feasible, domain-specific debuggers should be switchable at debug time
without having to restart the application.

6.2.5 Summary

Generic debuggers focusing on low-level programming constructs, while universally
applicable, cannot efficiently answer domain-specific questions, as they make it dif-
ficult for developers to take advantage of domain concepts. Domain-specific debug-
gers aware of the application domain can provide direct answers. We advocate that
a debugging infrastructure for developing domain-specific debuggers should sup-
port the four aforementioned requirements (domain-specific user interfaces, domain-
specific debugging operations, automatic discovery and dynamic switching). Next
we show that a debugging infrastructure following this set of requirements supports
developers in creating and working with relevant domain-specific debuggers.
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Figure 6.1: The structure of a domain-specific extension.

6.3 A Closer Look at the Moldable Debugger Model

The Moldable Debugger enables domain-specific debuggers that can express and
answer questions at the application level. A domain-specific debugger consists of a
domain-specific extension encapsulating the functionality and an activation predi-
cate encapsulating the situations in which the extension is applicable. This model
directly follows the moldable tools idea and makes it possible for multiple domain-
specific debuggers to coexist at the same time.

To exemplify the ideas behind the proposed solution we will instantiate a domain-
specific debugger for working with synchronous events3. Event-based programming
poses debugging challenges as it favors a control flow based on events not supported
well by conventional stack-based debuggers.

6.3.1 Modeling Domain-specific Extensions

A domain-specific extension defines the functionality of a domain-specific debugger
using multiple debugging operations and a debugging view. Debugging operations
rely on debugging predicates to implement high-level abstractions (e.g., domain-
specific breakpoints); the debugging view highlights contextual information. To
decouple these components from the low-level details of a domain they are built on
top of a debugging session.

A debugging session encapsulates the logic for working with processes and execution
contexts (i.e., stack frames). It further implements common stack-based operations
like: step into, step over, resume/restart process, etc. Domain-specific debuggers can
extend the debugging session to extract and store custom information from the run-
time, or provide fine-grained debugging operations. For example, our event-based
debugger extends the debugging session to extract and store the current event to-
gether with the sender of that event, the receiver of that event, and the announcer
that propagated that event.

3This section briefly describes this debugger. More details are given in Section 6.4.2 (p.122).
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Attribute read detects when a field of any object of a certain type is accessed

Attribute write detects when a field of any object of a certain type is mutated

Method call detects when a given method is called on any object of a certain
type

Message send detects when a specified method is invoked from a given method

State check checks a generic condition on the state of the running program
(e.g., the identity of an object).

Table 6.1: Primitive debugging predicates capturing basic events.

Debugging predicates detect run-time events. Basic run-time events (e.g., method call,
attribute access) are detected using a set of primitive predicates, detailed in Table 6.1
(p.118). More complex run-time events are detected using high-level predicates that
combine both primitive predicates and other high-level predicates (Figure 6.1 (p.117)). Both
of these types of debugging predicates are modeled as objects whose state does not
change after creation. Debugging predicates are related to coupling invariants from
data refinement, as coupling invariants are traditionally defined as logical formulas
that relate concrete variables to abstract variables [Roever and Engelhardt 2008].
Hence, they can detect specific conditions during the execution of a program.

Consider our event-based debugger. This debugger can provide high-level predi-
cates to detect when a sender initiates the delivery of an event, or when the middle-
ware delivers the event to a receiver.

Debugging operations can execute the program until a debugging predicate is satisfied
or can perform an action every time a debugging predicate is satisfied. They are
modeled as objects that can accumulate state. They can implement breakpoints, log
data, watch fields, change the program’s state, detect violations of invariants, etc. In
the previous example a debugging operation can be used to stop the execution when
an event is delivered to a receiver. Another debugging operation can log all events
delivered to a particular receiver without stopping the execution.

At each point during the execution of a program only a single debugging operation
can be active. Thus, debugging operations have to be run sequentially. For example,
in the event debugger one cannot activate, at the same time, two debugging opera-
tions, each detecting when an event of a certain type is sent to a receiver. One can,
however, create a single debugging operation that detects when an event of either
type is sent to a receiver. This design decision simplifies the implementation of the
model, given that two conflicting operations cannot run at the same time. Hence, no
conflict resolution mechanism is required.

The Moldable Debugger models a debugging view as a collection of graphical widgets
(e.g., stack, code editor, object inspector) arranged using a particular layout. At
run time, each widget loads a subset of debugging operations. Determining what
operations are loaded by which widgets is done at run time via a lookup mechanism
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of operation declarations (implemented in practice using annotations). This way,
widgets do not depend upon debugging operations, and are able to reload debugging
operations dynamically during execution.

Our event-based debugger provides dedicated widgets that display an event to-
gether with the sender and the receiver of that event. These widgets load and dis-
play the debugging operations for working with synchronous events, like logging
all events or placing a breakpoint when an event is delivered to a receiver.

Developers can create domain-specific extensions by:

1. Extending the debugging session with additional functionality;

2. Creating domain-specific debugging predicates and operations;

3. Specifying a domain-specific debugging view;

4. Linking debugging operations to graphical widgets.

6.3.2 Combining Predicates

We support two boolean operators for combining debugging predicates:

and(predicate1, predicate2, ..., predicateN): creates a new predicate that detects a run-
time event when all given predicates have detected a run-time event at the
same time. This only allows for combining attribute read, attribute write, method
call and message send with one or more state check predicates. For example,
detecting when a method is called on an a given object is done by using a
method call predicate together with a state check predicate verifying the identify
of the receiver object.

or(predicate1, predicate2, ..., predicateN): creates a new predicate that detects a run-
time event when any one of the given predicates have detected a run-time
event. For example, detecting when any message is sent from a given method
is done by using a message send predicate for every message send from the
given method.

Given the definition of the and predicate, detecting high-level events that only hap-
pen when a sequence of events is detected is not possible. For example, one cannot
detect, just by combing debugging predicates, a sequence of method calls on a given
object. This operation requires persistent state and can be implemented by a debug-
ging action.
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6.3.3 Dynamic Integration

The Moldable Debugger model enables each domain-specific debugger to decide
if it can handle a debugging situation by defining an activation predicate over the
current debugging context. The debugging context captures a development context
relevant for debugging. In the case of the Moldable Debugger, the debugging con-
text consists in the execution stack; currently, unlike the Moldable Inspector and
Moldable Spotter, the Moldable Debugger does not reify and use interaction data
for selecting extensions.

Activation predicates capture the state of the running program in which a domain-
specific debugger is applicable. While debugging predicates are applied on an exe-
cution context, activation predicates are applied on the entire execution stack. For
example, the activation predicate of our event-based debugger will check if the exe-
cution stack contains an execution context involving an event. This way, developers
do not have to be aware of applicable debuggers a priori. At any point during debug-
ging they can see what domain-specific debuggers are applicable (i.e., their activation
predicate matches the current debugging context) and can switch to any of them.

When a domain-specific debugger is no longer appropriate, we do not automatically
switch to another one. Instead, all domain-specific widgets and operations are dis-
abled. This avoids confronting users with unexpected changes in the user interface if
the new debugging view has a radically different layout. Nevertheless, for complex
user interfaces where many widgets need to be disabled this solution can still lead
to unexpected changes, though this is not as radical as replacing the user interface
with a different one. Designing the disabled widgets in a way that does not confuse
users could alleviate part of this issue (e.g., by showing a grayed out version of the
widget with no interaction possibilities).

To further improve working with multiple domain-specific debuggers we provide
two additional concepts:

A debugger-oriented breakpoint is a breakpoint that when reached opens the domain-
specific debugger best suited for the current situation. If more than one view
is available the developer is asked to choose one.

Debugger-oriented steps are debugging operations that resume execution until a given
domain-specific debugger is applicable. They are useful when a developer
knows a domain-specific debugger will be used at some point in the future,
but is not sure when or where.

6.4 Addressing Domain-specific Debugging Problems

To demonstrate that the Moldable Debugger addresses the requirements identified in
Section 6.2 (p.114), we have instantiated it for six different domains: testing, synchronous
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1

Figure 6.2: A domain-specific debugger for SUnit: (1) diff between the textual repre-
sentation of the expected and obtained value.

events, parsing, internal DSLs, profiling and bytecode interpretation. In this section we
detail these instantiations.

6.4.1 Testing with SUnit

SUnit is a framework for creating unit tests [Beck 1999]. The framework provides
an assertion to check if a computation results in an expected value. If the assertion
fails the developer is presented with a debugger that can be used to compare the
obtained value with the expected one. If these values are complex, identifying the
difference may be time consuming. A solution is needed to facilitate comparison.

To address this, we developed a domain-specific debugger having the following
components:

Session: extracts the expected and the obtained value from the runtime;

View: displays a diff between the textual representation of the two values. The
diff view depends on the domain of the data being compared. Figure 6.2 (p.121)

shows how it can be used to compare two HTTP headers;

Activation predicate: verifies whether the execution stack contains a failing equality
assertion.
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4. Stack

2. Subscriptions

1. Receiver

3. Sender

Figure 6.3: A domain-specific debugger for announcements: (1) the receiver and (3)
the sender of an announcement; (2) subscriptions triggered by the current
announcement. The run-time stack (4) highlights the stack frames that
correspond to the sender and receiver, and grays out those stack frames
internal to the announcements framework.

6.4.2 An Announcement-centric Debugger

TheAnnouncements framework from Pharo provides a synchronous notification mech-
anism between objects based on a registration mechanism and first class announce-
ments (i.e., objects storing all information relevant to particular occurrences of events).
Since the control flow for announcements is event-based, it does not match well the
stack-based paradigm used by conventional debuggers. For example, Section 6.2.2
(p.115) describes a high-level action for delivering an announcement to a list of subscribers.
Furthermore, when debugging announcements it is useful to see at the same time
both the sender and the receiver of an announcement; most debuggers only show the
receiver.

To address these problems we have created a domain-specific debugger, shown in
Figure 6.3 (p.122). A previous work discusses the need for such a debugger in more
detail and looks more closely at the runtime support needed to make the debugger
possible [Chiş et al. 2013]. This debugger is instantiated as follows:

Session: extracts from the runtime the announcement, the sender, the receiver and
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all the other subscriptions triggered by the current announcement;

Predicates:

Detect when the framework initiates the delivery of a subscription: message
send(deliver: in SubscriptionRegistry>>deliver:to:startingAt:);

Detect when the framework delivers a subscription to an object: method

call(aSubscription action selector) on the class of the object, state check
verifying the identity of the target object and state check verifying that the
message was sent from the announcer holding the given subscription;

Operations:

Step to the delivery of the next subscription;

Step to the delivery of a selected subscription;

View: shows both the sender and the receiver of an announcement, together with
all subscriptions served as a result of that announcement;

Activation predicate: verifies whether the execution stack contains an execution con-
text initiating the delivery of an announcement.

6.4.3 A Debugger for PetitParser

PetitParser is a framework for creating parsers, written in Pharo, introduced in Sec-
tion 5.2.1 (p.80). Whereas most parser generators instantiate a parser by generating
code, when PetitParser instantiates a parser the grammar productions are used to
create a tree of primitive parsers (e.g., choice, sequence, negation); this tree is then
used to parse the input. Nevertheless, the same issues arise as with conventional
parser generators: generic debuggers do not provide debugging operations at the
level of the input (e.g., set a breakpoint when a certain part of the input is parsed)
and of the grammar (e.g., set a breakpoint when a grammar production is exercised).
In addition, generic debuggers do not display the source code of grammar produc-
tions nor do they provide easy access to the input being parsed. To overcome these
issues, other tools for working with parser generators provide dedicated domain-
specific debuggers. For example, ANTLR Studio, an IDE for the ANTLR4 parser
generator [Parr and Quong 1995] provides both breakpoints and views at the level
of the grammar5. Rebernak et al. also give an example of a dedicated debugger for
ANTLR [Rebernak et al. 2009].

In the case of PetitParser we have developed a domain-specific debugger by config-
uring the Moldable Debugger as follows:

Session: extracts the parser and the input being parsed from the runtime;

4
http://www.antlr.org/

5
http://www.placidsystems.com/articles/article-debugging/usingdebugger.htm
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3. Object inspector

1. Stack

4. Input
2. Source code

5. Production 
structure

2.1 4.11.1

1.2

Figure 6.4: A domain-specific debugger for PetitParser. The debugging view dis-
plays relevant information for debugging parsers ((4) Input, (5) Produc-
tion structure). Each widget loads relevant debugging operations (1.1,
1.2, 2.1, 4.1).

Predicates:

Detect the usage of any type of parser: method call(parseOn:) predicates com-
bined using or on all subclasses of PPParser that are not abstract and
override the method parseOn:;

Detect the usage of any type of production: method call(PPDelegateParser>>
parseOn:);

Detect the usage of a specific primitive parser: method call(parseOn:) predicates
combined using or on all subclasses of PPParser that represent a primitive
parser (e.g., PPRepeatingParser);

Detect the usage of a specific production: method call(PPDelegateParser>>
parseOn:) and state check verifying that the receiver object is a parser for
the given grammar production;

Detect when a parser fails to match the input: method call(PPFailure class>>

message:context:), or method call(PPFailure class>>message:context:at:);

Detect when the position of the input stream changes: attribute write(#position
from PPStream) and state check verifying that the attribute value changed;
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Detect when the position of the input stream reaches a given value: attribute
write(#position from PPStream) and state check verifying that the attribute
value is set to a given value;

Operations: Navigating through the execution at a higher level of abstraction is
supported through the following debugging operations:

Next parser: step until a primitive parser of any type is reached;

Next production: step until a production is reached;

Primitive parser(aPrimitiveParserClass): step until a parser having the given
class is reached;

Production(aProduction): step until the given production is reached;

Next failure: step until a parser fails to match the input;

Stream position change: step until the stream position changes (it either in-
creases, if a character was parsed, or decreases if the parser backtracks);

Stream position(anInteger): step until the stream reaches a given position;

View: The debugging view of the resulting debugger is shown in Figure 6.4 (p.124).
We can see that now the input being parsed is incorporated into the user inter-
face; to know how much parsing has advanced, the portion that has already
been parsed is highlighted. Tabs are used to group six widgets showing dif-
ferent types of data about the current production, like: source code, structure,
position in the whole graph of parsers, an example that can be parsed with
the production, etc. The structure of the parser (e.g., the Graph view in Figure
6.4 (p.124)), for example, is generated from the object graph of a parser and can
allow developers to navigate a production by clicking on it. The execution
stack further highlights those execution contexts that represent a grammar
production;

Activation predicate: verifies whether the execution stack contains an execution con-
text created when using a parser.

6.4.4 A Debugger for Glamour

Glamour is an engine for scripting browsers based on a components and connectors
architecture [Bunge 2009]. New browsers are created by using an internal domain-
specific language (DSL) to specify a set of presentations (graphical widgets) along
with a set of transmissions between those presentations, encoding the information
flow. Users can attach various conditions to transmissions and alter the information
that they propagate. Presentations and transmissions form a model that is then used
to generate the actual browser.
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Figure 6.5: A domain-specific debugger for Glamour showing the model of the
browser currently constructed.

The Moldable Debugger relies on Glamour for creating domain-specific views. Thus,
during the development of the framework we created a domain-specific debugger
to help us understand the creation of a browser:

Session: extracts from the runtime the model of the browser;

Predicates:

Detect the creation of a presentation:
message send(glamourValue: in GLMPresentStrategy>>presentations);

Detect when a transmission alters the value that it propagates:
message send(glamourValue: in GLMTransmission>>value);

Detect when the condition of a transmission is checked:
message send(glamourValue: in GLMTransmission>>meetsCondition);

Operations:

Step to presentation creation;

Step to transmission transformation;

Step to transmission condition;
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View: displays the structure of the model in an interactive visualization that is
updated as the construction of the model advances (Figure 6.5 (p.126));

Activation predicate: verifies whether the execution stack contains an execution con-
text that triggers the construction of a browser.

6.4.5 Profiler Framework

Spy is a framework for building custom profilers [Bergel et al. 2011]. Profiling infor-
mation is obtained by executing dedicated code before or after method executions.
Code is inserted into a method by replacing the target method with a new method
(i.e., method wrapper [Brant et al. 1998]) that executes the code of the profiler before
and after calling the target method. Hence, if a developer needs to debug profiled
code, she has to manually skip over the code introduced by the profiler. To address
this issue, we created a domain-specific debugger together with the developers of
S2py [S2py accessed June 3, 2016], the second version of the Spy framework, that
does not expose developers to profiler code when debugging methods are being
profiled:

Session: no changes in the default debugging session are required;

Predicates:

Detect when Spy finished executing profiling code for a method
message send(valueWithReceiver:arguments: in S2Method>>run:with:in:)

Operations:

Step into method call ignoring profiled code: debugging action that when
stepping into a method containing profiling code, automatically steps
over the profiling code and into the code of the original method.

View: has the same widgets as the user interface of the default debugger. However,
the stack widget removes all stack frames internal to the Spy framework.

Activation predicate: verifies whether the execution stack contains an execution con-
text that starts a Spy profiler.

6.4.6 Stepping Through Bytecodes

While normally programs are debugged at the source level, building tools like com-
pilers and interpreters requires developers to understand the execution of a program
at the bytecode level. However, all debugging actions presented in this section skip
over multiple bytecode instructions. For example, step into message send, a debugging
action present in most debuggers, skips over the bytecode instructions that push
method parameters onto the stack. The ability to debug at the bytecode level is espe-
cially important when generating or manipulating bytecode directly with bytecode
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Figure 6.6: A domain-specific debugger for stepping through the execution of a pro-
gram at the bytecode level.

transformation tools. In many cases the resulting bytecode cannot be de-compiled
to a textual representation. To address this, we developed a debugger for stepping
through the execution of a program one bytecode instruction at a time:

Session: customizes the default debugging session to not step over multiple byte-
code instructions when performing various initializations;

Predicates: no predicates are required

Operations:

Step over one bytecode instruction;

Step into a bytecode instruction representing a message send;

View: shows the method that is currently executed both as a list of bytecodes and
a textual representation; embeds an object inspector that shows the internal
stack of the current execution context (Figure 6.6 (p.128));

Activation predicate: uses an activation predicate that always returns true.
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6.4.7 Summary

PetitParser, Glamour, SUnit, Spy, Announcements framework and bytecode inter-
pretation cover six distinct domains. For each one we instantiated a domain-specific
debugger having a contextual debugging view and/or a set of debugging opera-
tions capturing abstractions from that domain. This shows the Moldable Debugger
framework addresses the first two requirements, domain-specific user interfaces and
domain-specific debugging operations.

The two remaining requirements, automatic discovery and dynamic switching, are
also addressed. At each point during debugging developers can obtain a list of
all domain-specific debuggers applicable to their current context. This does not
require them either to know in advance all available debuggers, or to know when
those debuggers are applicable. Once the right debugger was found developers can
switch to it and continue debugging without having to restart the application. For
example, one can perform the scenario presented in Section 6.2.4 (p.116). The cost of
creating these debuggers is discussed in Section 6.6.1 (p.134).

6.5 Implementation Aspects

While the Moldable Debugger model can capture a wide range of debugging prob-
lems, the actual mechanism for detecting run-time events has a significant impact
on the performance and usability of a debugger. In this section we present three
approaches for detecting run-time events in the execution of a debugged program
based on debugging predicates:

1. step-by-step execution;

2. code-centric instrumentation;

3. object-centric instrumentation.

This section discusses these approaches by looking at their usability. We further
performed a detailed investigation into the performance penalty incurred by each
of these mechanisms. This investigation is presented in Appendix B.

6.5.1 Controlling the Execution

When an event is detected, a breakpoint is triggered, stopping the execution of the de-
bugged program. The breakpoint notifies the active debugging action (i.e., the action
that installed the predicate). The debugging action can then perform an operation,
resume the execution or wait for a user action.

We use the following debugging actions from the PetitParser debugger as examples
in this section:
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• Production(aProduction): step until the given grammar production is reached;

• Stream position(anInteger): step until parsing reaches a given position in the
input stream.

Step-by-step execution

Approach Interpret the debugged program one bytecode instruction at a time (i.e.,
step-by-step execution) and check, after each bytecode instruction, if a debugging
predicate matches the current execution context (i.e., stack frame). This approach
matches the while-step construct proposed by Crawford et al. [Crawford et al. 1995].

Implementation Each debugging predicate is transformed to a boolean condition
that is applied to the current execution context (i.e., stack frame).

Examples

• Production(aProduction): (i) check if the current bytecode instruction is the ini-
tial instruction of a method; (ii) check if the currently executing method is
PPDelegateParser>>parseOn:; (iii) check if the receiver PPDelegateParser object is
a parser for the given grammar production;

• Stream position(anInteger): (i) check if the current bytecode instruction pushes
a value into an object attribute; (ii) check if the attribute is named #stream and
it belongs to an instance of PPStream; (iii) check if the value that will be pushed
into the attribute is equal to the given value.

Code-centric instrumentation

Approach Use basic debugging predicates (i.e., attribute access, attribute write,method
call and message send) to insert instrumentations into the code of the debugged pro-
gram. State check predicates can then ensure that a breakpoint is triggered only if
further conditions hold when the instrumentation is reached (e.g., the target object
is equal to a given one). This approach resembles dynamic aspects [Bonér 2004] and
conditional breakpoints.

Implementation We rely on two different mechanisms for handling predicates for
attributes and methods.

We implement attribute access and attribute write predicates using slots [Verwaest et al.
2011]. Slots model instance variables as first-class objects that can generate the code
for reading and writting instance variables. We rely on a custom slot that can wrap
any existing slot and insert code for triggering a breakpoint before the attribute is
read or written in all methods of a given class.
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We implementmethod call andmessage send by adding meta-links toAST nodes [Denker
et al. 2007]: when compiling an AST node to bytecode, if that AST node has an at-
tached meta-link, that meta-link can generate code to be executed before, after or
instead of the code represented by the AST node. We rely on a custom meta-link that
inserts code for triggering a breakpoint before the execution of an AST node. We
then implement these types of predicates as follows:

• message send: locate in the body of a method all AST nodes that represent a call
to the target method; add the custom meta-link only to these AST nodes;

• method call: add the custom meta-link on the root AST node of the target
method.

A different strategy for implementing code-centric instrumentations consists in in-
jecting the debugged concern directly into an existing bytecode version of the code
using a bytecode engineering library [Tanter et al. 2002]. The meta-links used have
similar properties: code instrumentation happens at runtime and the original code
remains unchanged. Direct bytecode manipulation would give a more fined-grained
control on the position where and how code inserted into the debugged code. This
flexibility is not needed for our debugger and it would come with the cost of having
to deal with the complexity of bytecode.

Examples

• Production(aProduction): instrument the root AST node of PPDelegateParser>>
parseOn: to check if the receiver object is a parser for the given grammar pro-
duction;

• Stream position(anInteger): add instrumentations before all write instructions
of the attribute #stream from class PPStream to check if the new value of the
attribute is equal with a given value.

Object-centric instrumentation

Approach Combine a basic predicate (i.e., attribute access, attribute write, method call
or message send) with a state check predicate verifying the identity of the receiver
object against a given object (i.e., identity check predicate). Then insert into the de-
bugged program instrumentations only visible to the given object. Thus, a break-
point is triggered only when the event captured by the basic predicate has taken
place on the given instance. This approach matches the object-centric debugging
approach [Ressia et al. 2012a], where debugging actions are specified at the object
level (e.g., stop execution when the specified object receives a particular message).

Implementation We insert an instrumentation visible to only a single target object
as follows:
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• create an anonymous subclass of the target object’s class; the anonymous sub-
class is created dynamically, at debug time, when the underlying dynamic
action is executed;

• apply code-centric instrumentation to insert the basic debugging event into
the anonymous class; code-centric instrumentation is inserted through code
generation and recompilation of the anonymous class at debug time;

• change the class of the target object to the new anonymous class.

As access to a run-time object is necessary, this approach can only be used once a
debugger is present; it cannot be used to open the initial debugger.

Examples

• Production(aProduction): (i) locate the PPDelegateParser object that represents
the given grammar production; (ii) replace the class of that object with an
anonymous one where the method parseOn: has amethod call predicate inserted
using a code-centric instrumentation (i.e., meta-link);

• Stream position(anInteger): (i) locate the PPStream object holding the input that
is being parsed; (ii) replace the class of that object with an anonymous one
where the attribute #position: has an attribute access predicate inserted using a
code-centric instrumentation (i.e., slot).

6.5.2 Usability

In this section we discuss usability aspects for each of the three aforementioned
mechanisms for detecting run-time events.

Step-by-step execution The main advantage of this approach is that it is simple to
understand and implement, and it does not alter the source of the debugged program.
However, it can slow down the debugged program considerably to the point where
it is no longer usable. Despite this shortcoming it can be useful for debugging actions
that need to skip over a small number of bytecode instructions. For example, we use
this approach to implement the action Step to next subscription in the Announcements
debugger: we only need to skip over several hundred bytecode instructions internal
to the Announcements framework.

Code-centric instrumentation This approach has a much lower performance over-
head than step-by-step execution that makes it practically applicable in most sit-
uations. While the current overhead is low, it can still prove inconvenient when
using complex predicates or when stepping over code that already takes a signifi-
cant amount of time. For example, we do not use this solution in theAnnouncements
debugger as the Announcements framework is heavily used by the Pharo IDE, and
any overhead will apply to the entire IDE.
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Step-by-step
execution

Code-centric
instrumentations

Object-centric
instrumentations

Announcements X X X
Petit Parser X X X
Glamour X X
Spy X
Bytecode X

Table 6.2: Feasible approaches for implementing debugging actions for the example
debuggers from Section 6.4 (p.120).

Object-centric instrumentation While it imposes no performance overhead, this
approach does not work for code that depends on the actual class of the instrumented
object. It further requires access to an object beforehand, which is not always possible.
We use this solution in the Announcements and PetitParser debuggers; however, in
both cases we only instrument objects internal to these frameworks.

Discussion Even if not practically applicable in most situations we used debugging
actions based on step-by-step execution to implement the initial version of all our
domain-specific debuggers. This allowed us to quickly prototype and refine the
interface and the functionality of those debuggers. Later on, whenever performance
became a problem we moved to actions based on code-centric instrumentation. We
then only changed these actions to object-centric instrumentation in very specific
situations where we could take advantage of particular aspects of a framework (e.g.,
PetitParser uses a single PPContext object that is passed to all the parse methods;
the Announcements framework creates an internal subscription object each time a
subscriber registers with an announcer).

Depending on the particular aspects of a domain, not all three approaches are ap-
plicable. Table 6.2 (p.133) indicates which approaches can be used for the example
debuggers from Section 6.4 (p.120) (Glamour is a prototype-based framework that
relies on copying objects; Spy already instruments the debugged code).

Note that the performance penalty is present only when using the custom debugger,
and not when using the regular one.

6.5.3 The Moldable Debugger in Other Languages

The current prototype of the Moldable Debugger is implemented in Pharo. Pharo
made it easy to integrate the Moldable Debugger due to its powerful introspection
support. For example, the entire run-time stack can be reified on demand and the
class of an object can be changed dynamically at run time. Pharo further incorporates
support for slots and behavior reflection through AST annotations. Nevertheless,
the Moldable Debugger can be ported to other languages as long as:

133



Chapter 6 Moldable Debugger

Session Operations View Total

Base model 800 700 - 1500

Default Debugger - 100 400 500

Announcements 200 50 200 450

Petit Parser 100 300 200 600

Glamour 150 100 50 300

SUnit 100 - 50 150

Spy - 30 30 60

Bytecode 20 50 130 200

Table 6.3: Size of extensions in lines of code (LOC).

• they provide a debugging infrastructure that supports custom extensions/
plugins for controlling the execution of a target program;

• there exists a way to rapidly construct user interfaces for debuggers, either
through domain-specific languages or UI builders.

For example, one could implement the framework in Java. Domain-specific debug-
ging operations can be implemented on top of the Java Debugging Interface (JDI)
or by using aspects. JDI is a good candidate as it provides explicit control over the
execution of a virtual machine and introspective access to its state. Aspect-Oriented
Programming [Kiczales et al. 1997] can implement debugging actions by instrument-
ing only the code locations of interest. Dynamic aspects (e.g., AspectWerkz [Bonér
2004]) can further scope code instrumentation at the debugger level. Last but not
least, domain-specific views can be obtained by leveraging the functionality of IDEs,
like perspectives in the Eclipse IDE.

6.6 Discussion

6.6.1 The Cost of Creating New Debuggers

The four presented domain-specific debuggers were created starting from a model
consisting of 1500 lines of code. Table 6.3 (p.134) shows, for each debugger, how many
lines of code were needed for the debugging view, the debugging actions, and the
debugging session. Regarding the view column, custom debuggers extend and
customize the view of the default debugger; hence, the view of the default debugger
is twice the size of any other view, as it provides the common functionality needed
in a debugging interface.

In general lines of code (LOC) must be considered with caution when measuring
complexity and development effort (Section 2.1.3 (p.18)). Nevertheless, it gives a good
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indication of the small size of these domain-specific debuggers. This small size makes
the construction cost affordable. Similar conclusions can be derived from the work of
Kosar et al. that shows that with the right setup it is possible to construct a domain-
specific debugger for a modeling language with relatively low costs [Kosar et al.
2014]. Hanson and Korn further show that a useful debugger for C can be written
in under 2500 lines of code, one order of magnitude smaller than gdb [Hanson and
Korn 1997].

Nevertheless, depending on the application domain and the actual debugger a de-
veloper wants to build, deeper knowledge about program execution may be needed.
Hence, depending on the requirements, creating a domain-specific debugger is not
an activity suitable for developers lacking this kind of knowledge. This differs from
from the Moldable Inspector and Moldable Spotter where less knowledge about how
the tool works are required to create an adaptation.

6.6.2 Applicability

Section 6.4 (p.120) shows that the Moldable Debugger can cover a wide range of ap-
plication domains. While Section 6.4 (p.120) gives particular examples, we consider
the Moldable Debugger to be applicable for most types of application domains that
build upon an object-oriented model. For example, one could apply the proposed
solution to AmbientTalk [Cutsem et al. 2014], an actor-based distributed program-
ming language, by extending the Moldable Debugger with support for actor-based
concurrency.

The applicability of the Moldable Debugger, nevertheless, has its limits. An edge
case is Monaco, a domain-specific language for reactive systems with imperative
programming notation [Prähofer et al. 2013]. While Monaco has a model based on
hierarchical components that could be accommodated by the Moldable Debugger,
the main goal of Monaco is to develop programs for control systems. As running
and debugging programs on live control systems is not a feasible option, simulators,
rather then debuggers, provide better support for reasoning about theses types of
program. A case where the Moldable Debugger would not be applicable is SymGrid-
Par2, a language for parallel symbolic computation on a large number of cores [Maier
et al. 2014]. On the one hand, SymGridPar2 features a functional programming style.
On the other hand, it is designed for programs that will run in parallel on tens of
thousands of cores. The run-time overhead added by a debugger can significantly
influence the behavior of the code. Logging frameworks provide better alternatives
as they allow developers to collect information at run time with a very low overhead
and analyze it postmortem with more costly analyses.
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6.7 Related Work

There exists a wide body of research addressing debugging from various perspec-
tives. In this section we give an overview of several perspectives related to the
Moldable Debugger model.

6.7.1 Software Logging

While debuggers support a direct interaction with the run-time state of an appli-
cation, logging frameworks record dynamic information about the execution of a
program. One challenge with logging frameworks, related to the current work, is
how to capture the right information about the run-time [Oliner et al. 2012]. Given
the large diversity of data that could be relevant about a running application, like
the Moldable Debugger, many frameworks for logging run-time information allow
developers to customize the logging infrastructure to fit their needs [Gülcü and Stark
2003; Erlingsson et al. 2011; Ressia et al. 2012b]. MetaSpy, for example, makes it pos-
sible to easily create domain specific-profilers [Ressia et al. 2012b]. In the context of
wireless sensor networks, Cao et al. propose declarative tracepoints, a debugging
system that allows users to insert action-associated checkpoints using a SQL-like lan-
guage. Like activation predicates it allows users to detect and log run-time events
using condition predicates over the state of the program [Cao et al. 2008].

6.7.2 Specifying Domain-specific Operations

There is a wide body of research in programmable and scriptable debugging al-
lowing developers to automate debugging tasks by creating high-level abstractions.
MzTake [Marceau et al. 2007] is a scriptable debugger enabling developers to auto-
mate debugging tasks, inspired by functional reactive programming. MzTake treats a
running program as a stream of run-time events that can be analyzed using opera-
tors like map and filter; streams can be combined to form new streams. For example,
one can create a stream in which a new value is added every time a selected method
is called from the debugged program. Selecting only method calls performed on
objects that are in a certain state is achieved using the filter operator; this operator
creates a new stream that contains only the method call events that matched the
filter’s condition. Unlike MzTake we propose an approach for detecting run-time
events based on object-oriented constructs: run-time events are specified by combin-
ing predicate objects, instead of combining streams. A debugging action can then
use a predicate to detect a run-time event (e.g., method call on a given object) and
put the event in a stream.

Coca [Ducassé 1999] is an automated debugger for C using Prolog predicates to search
for events of interest over program state. Events capture various language constructs
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(e.g., function, return, break, continue, goto) and are modeled as C structures; a se-
quence of events is grouped in a trace. Developers write, using Prolog, queries that
search for an event matching a pattern in a trace. To perform a query a developer
has to provide an event pattern and call a primitive operation for performing the
actual search. An event pattern consists of any combination of 3-tuples of the form
‘<attributename> <operation> <attribute-value>’ connected with and, or or not. In our ap-
proach we express high-level run-time events by combining objects (i.e., debugging
predicates) instead of combining tuples. We further use predicates as a specification
of run-time events and employ different implementations to detect those events at
run-time.

Dalek [Olsson et al. 1991] is a C debugger employing a dataflow approach for de-
bugging sequential programs: developers create high-level events by combining
primitive events and other high-level events. Developers enter breakpoints into the
debugged code to generate primitive events. Ahigh-level event is created by specify-
ing, in the definition of that event, what events activate that event; when an event is
triggered all other events that depend on it are also triggered. High-level events can
maintain state and execute code when triggered (e.g., print, test invariants). Thus,
high-level events map to debugging actions in our approach. However, we do not
require developers to explicitly trigger primitive events from the debugged code;
developers provide a specification of the run-time event using debugging predicates,
outside of the debugged program’s code.

Auguston et al. present a framework that uses declarative specifications of debug-
ging actions over event traces to monitor the execution of a program [Auguston
et al. 2002]. Several types of run-time events, corresponding to various actions en-
countered in the debugged program, are generated directly by the virtual machine.
Events are grouped together in traces that conform to an event grammar, defining
the valid traces of events. An execution monitor loads a target program, executes it,
obtains a trace of run-time events from the program and performs various computa-
tions over the event trace (e.g., check invariants, profile). We do not have an explicit
concept of monitor in our approach and do not directly provide operations for ma-
nipulating event traces. Our model only associates run-time events (predicates) with
various operations. Event traces can be implemented on top of this model, by having
debugging actions that store and manipulate events.

Expositor [Khoo et al. 2013] is a scriptable time-travel debugger that can check tem-
poral properties of an execution: it views program traces as immutable lists of time-
annotated program state snapshots and uses an efficient data structure to manage
them. Acid [Winterbottom 1994] makes it possible to write debugging operations,
like breakpoints and step instructions, in a language designed for debugging that
reifies program state as variables.

The aforementioned approaches focus on improving debugging by enabling devel-
opers to create commands, breakpoints or queries at a higher level of abstraction.
Nevertheless, while they encapsulate high-level abstractions into scripts, programs
or files, developers have to manually find proper high-level abstractions for a given
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debugging context. We propose an approach for automatically detecting relevant
high-level abstractions (e.g., debugging actions) based on the current debugging con-
text. Furthermore, only some of the aforementioned approaches incorporate at least
ad hoc possibilities of visually exploring data by using features from the host plat-
form. We propose a domain-specific view for each domain-specific debugger that
displays and groups relevant widgets for the current debugging context.

Object-centric debugging [Ressia et al. 2012a] proposes a new way to perform debug-
ging operations by focusing on objects instead of the execution stack; while it in-
creases the level of abstraction of debugging actions to object-oriented idioms, the
approach does not enable developers to create and combine debugging actions to
capture domain concepts instead of just object-oriented idioms. Reverse watchpoints
use the concept of position to automatically find the last time a target variable was
written and move control flow to that point [Maruyama and Terada 2003]. Whyline

is a debugging tool that allows developer to ask and answer Why and Why Not ques-
tions about program behavior [Ko and Myers 2008]. Query-based debugging facilitates
the creation of queries over program execution and state using high-level languages
[Lencevicius et al. 1997; Potanin et al. 2004; Martin et al. 2005; Ducasse et al. 2006].
Duel [Golan and Hanson 1993] is a high-level language on top of GDB for writing
state exploration queries. These approaches are complementary to our approach as
they can be used to create other types of debugging operations.

Omniscient debugging provides a way to navigate backwards in time within a pro-
gram’s execution trace [Pothier et al. 2007]. Bousse et al. introduce an omniscient
debugger targeting an executable Domain-Specific Modeling Language (xDSML)
[Bousse et al. 2015] that, while still partially generic, can generate domain-specific
traces tuned to the actual xDSML. This debugger is partially generic as it treats
all xDSMLs in a uniform way. Like our approach this debugger is based on an
object-oriented model and aims to improve the debugging process by presenting
domain-specific information to the user. The Moldable Debugger, however, is not
omniscient but allows developers to fine-tune the debugger to the particular aspects
of a domain-specific language or application.

Lee et al. propose a debugger model for composing portable mixed-environment
debuggers [Lee et al. 2009]. Their current implementation, Blink, is a full-featured
debugger for both Java and C. While the Moldable Debugger model does not de-
pend on a particular object-oriented language, we do not provide an approach for
cross-language debugging (e.g., between an object-oriented and a non object-oriented
language).

6.7.3 User Interfaces for Debugging

Another category of approaches looks at how to improve the user interface of debug-
gers instead of their actions. Debugger Canvas [DeLine et al. 2012] proposes a novel
type of user interface for debuggers based on the Code Bubbles [Bragdon et al. 2010b]
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paradigm. Rather than starting from a user interface having a predefined struc-
ture, developers start from an empty one, on which they add bubbles as they step
through the execution of the program. Our approach requires developers to create
custom user interfaces (views) beforehand. The Data Display Debugger (DDD) [Zeller
and Lütkehaus 1996] is a graphical user interface for GDB providing a graphical
display for representing complex data structures as graphs that can be explored in-
crementally and interactively. jGRASP supports the visualization of various data
structure by means of dynamic viewers and a structure identifier that automatically
select suitable views for data structures [Cross et al. 2009]. xDIVA is a 3-D debugging
visualization system where complex visualization metaphors are assembled from
individual ones, each of which is independently replaceable [Cheng et al. 2008].

Each of these approaches introduces different improvements in the user interface
of a debugger. To take advantage of this, our approach does not hardcode the user
interface of the debugger: each domain-specific debugger can have a dedicated user
interface. Given that domain-specific debuggers are switchable at run time, when
multiple debuggers are applicable a developer can select the one whose user interface
she finds appropriate. By focusing only on the user interface, these approaches do not
provide support for adding custom debugging operations. Our approach addresses
both aspects.

6.7.4 Unifying Approaches

deet [Hanson and Korn 1997] is a debugger for ANSI C written in tksh6 that, like our
approach, promotes simple debuggers having few lines of code, and allows devel-
opers to extend the user interface and add new commands by writing code in a high-
level language (i.e., tksh). Commands are directly embedded in the user interface.
Our approach decouples debugging actions from user-interface components (i.e.,
widgets): each widget dynamically loads at run time debugging actions that have a
predefined annotation. If in deet run-time events are detected by attaching tksh code
to conditional breakpoints, we provide a finer model based on combining debugging
predicates. Last but not least, we propose modeling the customization of a debugger
(i.e., debugging actions and user interface) through explicit domain-specific exten-
sions and provide support for automatically detecting appropriate extensions at run
time. In deet, developers have to manually select appropriate debuggers.

TIDE is a debugging framework focusing on the instantiation of debuggers for formal
languages (ASF+ SDF, in particular) [van den Brand et al. 2005]; developers can im-
plement high-level debugging actions like breakpoints and watchpoints, extend the
user interface by modifying the Java implementation of TIDE, and use debugging rules
to state which debugging actions are available at which logical breakpoints. LISA
is a grammar-based compiler generator that can automatically generate debuggers,

6An extension of Korn shell including the graphical support for Tcl/Tk.
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inspectors and visualizers for DSLs that have a formal language specification [Hen-
riques et al. 2005]. Debuggers are obtained by constructing, from the grammar,
transformations mapping code from the DSL to the generated GPL code. Wu et al.

present a grammar-driven technique for automatically generating debuggers for
DSLs implemented using source-to-source translation (a line of code from a DSL
is translated into multiple consecutive lines of GPL code); this makes it possible to
reuse an existing GPLdebugger [Wu et al. 2008]. Other language workbenches [Faith
et al. 1997; Lindeman et al. 2011; Pavletic et al. 2015] for developing DSLs or language
extensions follow similar ideas: they enable the creator of a DSL or language exten-
sion to provide extra specifications during the development of the DSL or language
extension that are then used to generate a specialized debugger. Our approach tar-
gets object-oriented applications where a formal specification is missing and not
programs written in domain-specific languages that have a grammar or another for-
mal specification. Furthermore, if domain concepts are built on top of a DSL, then
DSLdebuggers suffer from the same limitations as generic debuggers. Our approach
directly supports debuggers aware of application domains.

6.7.5 Debugging in Domain-specific Modeling

Domain-specific modeling (DSM) enables domain-experts to directly work with fa-
miliar concepts instead of manually mapping concepts from the problem domain to
the solution domain. Debuggers that work at a lower level of abstraction than that of
the model limit the ability of a domain-expert to properly debug a model. To address
this, the goal of domain-specific modeling is to automatically generate debuggers
from a meta-model. While most meta-modeling tools do not automatically generate
debuggers, several approaches target this goal. Mannadiar and Vangheluwe pro-
pose a conceptual mapping between debugging concepts from the programming
languages (e.g., breakpoints, assertions) and concepts from domain-specific model-
ing languages that use rule-based approaches for model transformations [Mannadiar
and Vangheluwe 2011]. Kosar et al. discuss debugging facilities for a modeling en-
vironment for measurement systems [Kosar et al. 2014]. Kolomvatsos et al. present
a debugger architecture for a domain-specific language used to model autonomous
mobile nodes [Kolomvatsos et al. 2012]. These approaches take advantage of, and
integrate with meta-modeling tools. The approach proposed in this paper is for
object-oriented applications where the model consists of objects and relations be-
tween them. This model is created by application developers using idioms provided
directly by object-oriented programming without the use of a meta-modeling tool.

6.8 Conclusions

Developers encounter domain-specific questions. Traditional debuggers relying on
generic mechanisms, while universally applicable, are less suitable to handle domain-
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specific questions. To address this contradiction we identified four requirements
that need to be supported by debuggers. We then proposed the Moldable Debugger,
a debugging framework following those requirements that allows developers to
create, with little effort, domain-specific debuggers that enable custom debugging
actions through custom user interfaces. We designed the Moldable Debugger by
applying the designed principles for moldable tools introduced in Section 3.1 (p.33) in
the following way:

DP 1. Identify common types of tool-specific adaptations: The Moldable Debugger en-
ables domain-specific adaptations by allowing developers to customize the
user interface and provide debugging actions like domain-specific breakpoints.
Unlike the previous two tools, the Moldable Debugger does not force all cus-
tom adaptations to conform to the same user interface. This is because debug-
gers can vary significantly between domains.

DP 2. Simplify the creation of common adaptations: To support inexpensive creation
of custom debuggers, the Moldable Debugger provides a model for the user
interface and the run-time that developers can reuse in their debuggers. As
a validation, we implemented the Moldable Debugger model and created six
different debuggers in fewer than 600 lines of code each. In this case the cost
of an adaptation is greater than in the previous two tools as the scope of an
adaptation is larger (i.e., the entire debugger).

DP 3. Do not limit the types of possible adaptations only to common ones: Developers can
reuse the provided model as well as the three provided strategies for control-
ling the execution. Nevertheless, developers can create new user interfaces
from scratch or provide their own instrumentation strategies.

DP 4. Attach activation predicates to adaptations: Each domain-specific debugger can
have an activation predicate indicating in what debugging contexts it is appli-
cable. When we talk about debugging context we refer to the run-time stack
of the process being debugged. Unlike the previous two tools, currently the
Moldable Debugger does not use interaction data to select adaptations.

DP 5. Update adaptations based on a development context: Every time the developer
performs a debugging action, the Moldable Debugger verifies if the current
domain-specific debugger is still applicable and if there exist any other applica-
ble domain-specific debuggers. If the current debugger is no longer applicable,
developers need to explicitly switch to another one.

Given the large costs associated with debugging activities, improving the workflow
and reducing the cognitive load of debugging can have a significant practical impact.
Through the Moldable Debugger we showed that developers can create their own
debuggers to address recurring problems, and thus, reduce the abstraction gap be-
tween the debugging needs and debugging support leading to a more efficient and
less error-prone debugging effort.
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There are two ways of constructing a software design: One way is to make it so simple

that there are obviously no deficiencies, and the other way is to make it so complicated

that there are no obvious deficiencies. The first method is far more difficult. It

demands the same skill, devotion, insight, and even inspiration as the discovery of

the simple physical laws which underlie the complex phenomena of nature.

C.A.R. Hoare

7
Moldable Development

The previous chapters introduced the moldable tools approach and discussed the
design and implementation of three moldable tools. The value of these tools, and
hence of the moldable tools approach, comes from developers extending moldable
tools to address their own contextual problems. This has the potential to reduce
code reading and improve program comprehension as tailored tools can directly
provide developers with domain-specific information that they would otherwise
need to find by reading and exploring source code or using external tools. This
vision, however, requires that developers see an advantage in extending moldable
tools. In this chapter we explore this aspect by looking at the evolution of extensions
for moldable tools in Pharo. We then exemplify how, by continuously adapting
their development tools, developers can create custom environments to support
them in their work. We conclude by giving guidelines, based on our experience, for
improving the creation and adoption of moldable tools.

7.1 The Evolution of Domain-specific Extensions

We integrated the Moldable Inspector in the alpha version of Pharo 4. The previous
inspector from Pharo 3 provided a basic extension possibility, and the Pharo image
shipped with 8 such extensions. The Pharo 4 release, however, shipped with 138
extensions for the Moldable Inspector, built together with the development team of
Pharo. One year later, the Pharo 5 release contained 165 extensions for the Moldable
Inspector. This does not include extensions from external projects. For example,
the Moose 6.0 project, which is based on Pharo 5, contains a total of 227 extensions.
Similar observations can be made about the Moldable Spotter: it was integrated in
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Figure 7.1: Spread of classes having at least an extension for Moldable Inspector or
Moldable Spotter within packages from the Pharo 5 release. Classes are
grouped per package; packages and classes are arranged using a circular
tree layout. A class is highlighted in red if it has at least one domain-
specific extensions.The size of a class is given by its number of methods.

the alpha version of Pharo 4, and the Pharo 4 release shipped with 92 extensions. In
the Pharo 5 release there were 122 extensions.

Furthermore, out of a total of 298 packages present in Pharo 5 that are not test pack-
ages or packages holding Monticello configurations1, 47 packages (15.8%) contained
a class having an extension for Moldable Inspector or Moldable Spotter. To commu-
nicate the spread of extensions among packages, Figure 7.1 (p.144) shows the classes
from the aforementioned packages grouped by package, highlighting in red those
classes that have at least one extension and in gray classes having no extensions. This
increase in the number and spread of extensions for both Moldable Inspector and
Moldable Spotter indicates that there was an explicit need to have such extensions,
and that these tools address this need. This provides one axis for validating the
moldable tools approach.

1The convention in Pharo is to put each Monticello configuration in a separate package that only
contains the configuration.
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Regarding the Moldable Debugger, the Pharo 5 release integrates two out of the six
domain-specific extensions discussed in Section 6.4 (p.120): the bytecode and the SUnit
extensions. Currently, apart from these extensions, two other projects built using
Pharo started to build domain-specific debuggers. Unlike extensions for Moldable
Inspector and Moldable Spotter, the cost of a debugger is measured in hundreds
of lines of code. Also the granularity of an extension is larger as it encompases the
entire debugger. Hence, we did not expect to see as many debugger extensions as in
the case of the previous two moldable tools.

7.2 Exemplifying Moldable Development

Instead of focusing on the spread of extensions through multiple domains, another
axis for validating the moldable tools approach consists in focusing on applying it to
specific application domains. This can show what custom environments developers
can create when continuously adapting and evolving moldable tools to take their
application domains into account . We refer to this consistent creation of extensions
during the development and evolution of an application as moldable development. In
this section we exemplify it using the Opal compiler and Petit Parser. We previ-
ously used these frameworks to show various features of the three moldable tools
discussed in this dissertation. Now we bring these examples together; we only give
an overview of the already presented features and discuss in detail aspects that were
not already introduced.

7.2.1 Opal Compiler

Opal2 is a compiler infrastructure focusing on customizability that has been part of
Pharo since the Pharo 3 release (May 2014)3. Initially Opal was developed using
the standard development tools of Pharo. Developing a compiler is, however, a
challenging activity due to the interplay between source code, ASTs, intermediate
representations and bytecode. Section 4.5 (p.56) and Section 6.4.6 (p.127) explored these
issues in details. To improve the development of Opal we extended the three mold-
able tools detailed in this dissertation together with the Opal team while Opal itself
was being developed.

Moldable Inspector Extensions

To improve the inspection of compiled bytecode we gradually attached several cus-
tom views to CompiledMethod and SymbolicBytecode objects, detailed in Section 4.5 (p.56).
These include views for displaying a human-friendly representation of the bytecode

2
http://www.smalltalkhub.com/#!/~Pharo/Opal

3
http://pharo.org/news/pharo-3.0-released
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(a) (b)

(c)

Figure 7.2: Using the Moldable Inspector to visualize compiled code: (a) The Raw

view shows the actual structure of the CompiledMethod object; (b) The AST

view shows the AST from which the code was compiled; (c) The mapping
between bytecode and source code can be explored by selecting bytecodes
in the Bytecode view.

(Figure 7.2c (p.146), left side), the source code of the method, theAST (Figure 7.2b (p.146)),
and the IR. Figure 7.2 (p.146) summarizes these views. As an example of a workflow
that becomes possible with these views consider Figure 7.2a (p.146) where we can see
that the inspected method has 4 literals, and the second bytecode stored at index 22
has the code 112; this provides no insight into what the actual bytecode does. Using
the bytecode view, the developer can see that the bytecode at index 22 corresponds
to pushing self

4 onto the top of the stack.

4
self represents the object that received the current message; this in Java.
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(a) (b)

(c)

Figure 7.3: Searching through bytecode using Moldable Spotter: (a) searching for
instructions that access the value nil; (b) searching for instructions access-
ing temporary variables; (c) When selecting a bytecode the mapping with
the source code is shown.

Moldable Spotter Extensions

Apart from inspecting compiled code, especially when compiling long methods,
common tasks consist in locating certain types of bytecode instructions (e.g., pop,
return), message sends (e.g., send: printString), or accesses to literal values (pushLit:
Object). To support these tasks we attached to CompiledMethod objects a custom search
through a human-friendly representation of bytecode. This extension supports all
the aforementioned searches as well as others, such as looking for when a constant is
pushed to the stack (Figure 7.3a (p.147)) or finding all instructions that access temporary
variables (local variables and method parameters; Figure 7.3b (p.147)). After finding
a bytecode the developer can open it in the inspector or directly spawn the view
showing the mapping to source code in the search tool (Figure 7.3c (p.147)).
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Moldable Debugger Extensions

One cannot easily use source-level debuggers to reason about bytecode. To address
this we developed an extension to the Moldable Debugger that gives direct access
to the bytecode and supports stepping through the execution of a program one
bytecode instruction at a time. This extension is covered in Section 6.4.6 (p.127).

7.2.2 Petit Parser

PetitParser is a framework for creating parsers presented in Section 5.2.1 (p.80) and
Section 6.4.3 (p.123). PetitParser is meant to be used by developers other than just its
creators to specify parsers. To ease the creation of parsers the PetitParser developers
initially built a custom code editor that allowed the creators of a parser to work in
terms of grammar productions instead of attributes and methods. This only covers
part of the problem. To further improve the development and debugging of parsers
we created, together with the current maintainers of PetitParser, extensions for sev-
eral other development tools. These development tools were built after the release
of PetitParser, during its maintenance cycles.

Moldable Inspector Extensions

As previously mentioned, actual parsers are instantiated as objects. Viewing these
objects using a generic object inspector only shows how they are implemented and
gives no immediate insight into the structure of the parser. For example in Figure 7.4a
(p.149), showing the attributes of a parser for arithmetic expressions, the structure of
the underlying grammar is not clearly evident from the inspected objects. To provide
this information directly in the inspector we attached to parser objects views that
show the tree structure of the grammar using other representations. Figure 7.4b (p.149)

contains a view showing the structure of the grammar using a tree list.

Moldable Spotter Extensions

Parser classes can also contain other methods and attributes apart from those used
to model grammar productions. Following the motivating example from Section
5.2.1 (p.80), when using a method or attribute search to look for a production these
extra methods and attributes can return unrelated results. To avoid this we extended
the search infrastructure from Pharo by attaching searches that work at the level of
grammar productions to classes representing parsers (Section 5.4.2 (p.92)).
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(a) (b)

Figure 7.4: Using the Moldable Inspector to visualize a parser object: (a) The Raw

view shows how the parser is implemented; (b) The Named tree view
shows only the structure of the grammar using a tree view.

Moldable Debugger Extensions

Debugging a parser using a generic debugger also poses challenges. On the one hand,
generic debuggers only provide debugging actions and breakpoints at the level of
source-code instructions (e.g., step over instruction). On the other hand, they neither
display the source code of grammar productions nor do they provide easy access
to the input being parsed. To overcome these challenges we developed a custom
extension for the debugger (Section 6.4.3 (p.123)) that offers debugging operations at
the level of the input (e.g., setting a breakpoint when a certain part of the input is
parsed) and a dedicated user interface that presents information about the grammar
and the input being parsed.

7.3 The Path to Successful Moldable Development

The previous two sections discussed existing extensions to validate the practical
applicability of moldable tools. Nevertheless, this gives no insight into the factors
that facilitate the creation of extensions and of moldable tools. To address this, based
on our experience in developing moldable tools and observing how developers adapt
moldable tools within the Pharo community, we present several guidelines that
facilitate these activities.

7.3.1 Discover Extensions by Identifying Repetitive Tasks

Once a developer has started using a moldable tool, to take advantage of that tool,
she needs to decide what domain-specific extensions to create. This is not a straight-
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forward activity even when the domain model entities are well defined, as it might
not be clear what information is relevant. We observed that an approach that works
well is to identify repetitive tasks during development and maintenance and to auto-
mate them using domain-specific extensions. For example, when introducing a new
text editor in Glamour, a library previously discussed, there were several problems
related to wrong key mappings in the editor. While addressing those bugs we ob-
served that we repeatedly needed to inspect the key bindings of a text editor. Hence,
we extended the Moldable Inspector (Figure 4.9 (p.60)) and Moldable Spotter with
appropriate extensions for displaying the key bindings of graphical objects.

7.3.2 Enable Precise and Inexpensive Extensions

When the aspect that needs to be customized in a moldable tool is clear and the
creation of an extension takes only a few lines of code we observed that developers
create many extensions. This is evident in the case of the Moldable Inspector where
developers can customize the visual representation of an object with few lines of
code using an internal DSL. This led to the creation of a large number of extensions.
The same observation can also be made for the Moldable Spotter.

To reduce the cost of a domain-specific extension in terms of lines of code, we de-
signed internal DSLs where developers first select a predefined type of extension,
modeled as an object, and then configure its properties by sending messages to the
extension object. Messages are sent to the extension object through cascading; the
extension object can provide default values for properties. All code examples from
Chapter 4 and Chapter 5 follow this approach. For example, the code from Listing 4.1
(p.66) shows that the developer selected a tree view and then configured several of
its properties through direct message sends. To improve the learnability of the API,
each tool uses the same message names to configure similar properties in extensions.
In the case of the Moldable Inspector, for example, the message display: is used in
all extensions to set the objects or group of objects rendered by the extension and
when: to set the activation predicate.

In the case of the Moldable Debugger, however, the unit of extension is the entire de-
bugger. This allows for more types of extensions. Nevertheless, this also increases the
cost of creating a full domain-specific debugger. For example, the domain-specific
debuggers presented in Section 6.4 (p.120) took between 60 and 600 lines of code to
build. Creating an extension for the Moldable Inspector requires, on average, only 9
lines of code. Hence, we saw a much smaller number of extensions for the Moldable
Debugger than for the other two moldable tools.

7.3.3 Reduce the Entry Barrier for Creating Extensions

We further observed that not only the cost of a domain-specific extension is important,
but also the entry barrier for creating an extension. For example, the previous object
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inspector from Pharo 3 also allowed developers to create domain-specific extensions.
The cost of an extension was also low: 19 lines of code, on average. However, each
extension required a dedicated class. With the Moldable Inspector we removed
this requirement and allowed developers to create extensions by directly adding
methods in the class of an object. For the Moldable Debugger we kept the need for
a dedicated class for creating a domain-specific debugger. We took this decision as
there are multiple aspects that need to be customized in a debugger. Nevertheless,
this might also have influenced the small number of extensions that we observed for
the Moldable Debugger. A future research direction can look into removing the need
for a dedicated class for a domain-specific debugger and observing its effects.

Another factor that influences the barrier for creating an extension is the language
used to specify the extension. For the three moldable tools discussed in this thesis
we selected to rely on the general-purpose programming language of the IDE, and
optimize extension creation through internal DSLs. This solution does not require
developers to learn a new language for creating extensions. However, we did not
explore how this solution works for heterogenous applications written in more than
one programming language.

7.3.4 Build Workflows Using Extensions

To increase the value of a domain-specific extension in the Moldable Inspector and
Moldable Spotter, domain-specific extensions are not used in isolation. Due to the
design of these tools, developers can combine extensions to form custom workflows.
For example, as exemplified in Figure 7.2c (p.146), by adding a custom extension to the
classes CompileMethod and SymbolicBytecode, developers can obtain a custom browser
for viewing how bytecode maps to source code. We observed that many extensions
were created to support such workflow, rather than to be used in isolation.

7.3.5 Bootstrap Using Initial Examples

For all tree moldable tools we observed from discussions over the Pharo mailing
list that developers started to create new extensions by exploring already available
extensions from the system. This observation was confirmed for Moldable Spotter
in the user study presented in Section 5.6.3 (p.101). There, all participants decided
to create a new extension for Moldable Spotter by modifying an existing extension,
instead of starting from scratch. This indicates that providing a good set of sample
extensions helps developers to learn how to extend a moldable tool.
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7.4 Summary

In this chapter we looked at how moldable tools were applied within Pharo. We ex-
plored the evolution of domain-specific extensions and showed what kind of domain-
specific environments are created when developers extend the three moldable tools
discussed in this thesis. To improve the adoption of moldable tools we presented
several guidelines based on our experience. These guidelines indicate that a low cost
for creating precise extensions, together with the ability to use extensions to build
custom workflows and examples showing how to create extensions, have a positive
impact on the adoption and usage of a moldable tool.
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Perfection is finally attained not when there is no longer anything to add, but

when there is no longer anything to take away.

Antoine de Saint-Exupéry

8
Conclusions

Evolving software requires developers to continuously understand the state of their
software systems and change them according to new requirements. Through this
work we explored how to better support developers in performing this activity. Our
solution consists in enabling developers to craft their own domain-aware develop-
ment tools, as these tools can directly answer relevant domain-specific questions. In
this chapter we summarize the contributions made by this dissertation for support-
ing this activity and discuss future research directions.

8.1 Contributions

In this dissertation we argued that supporting inexpensive adaptations and context-
awareness are crucial aspects for enabling domain-aware development tools. As a
validation of this thesis statement we made several contributions that improve the
state of the art in the field of tool building:

1. We proposed and motivated the moldable tools approach for tool building. This
approach describes how to incorporate domain concepts into development
tools through inexpensive adaptations.

2. We demonstrated the practical applicability of the moldable tools approach
by applying it to solve three existing problems in the development of object-
oriented applications:

• Traditional object inspectors give developers access to the state of run-
time objects. Through an empirical investigation we observed a need
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for object inspectors that support a unified workflow for exploring mul-
tiple objects using views tailored to their own contextual needs. We
addressed this research problem by designing, following the moldable
tools approach, the Moldable Inspector, an inspector that allows develop-
ers to customize the views through which they look at objects and the
set of objects accessible from within a view.

• Searching, while a pervasive activity during software development, is
mainly supported in IDEs through generic and disconnected search tools.
Finding relevant domain concepts often requires developers to use multi-
ple generic tools and manually link their results. We addressed this prob-
lem by applying the moldable tools approach to design Moldable Spotter,
a search infrastructure allowing developers to create custom searches for
their domain objects and automatically discover appropriate searches.

• Traditional debuggers do not allow developers to debug their applica-
tions directly in terms of domain concepts; instead they provide stack-
based operations, line breakpoints, and generic user interfaces. To ad-
dress this problem we investigated solutions that enable developers to
create their own domain-specific debuggers. We designed and imple-
mented Moldable Debugger a framework that makes is possible for devel-
opers to customize the user interface and provide debugging actions like
domain-specific breakpoints.

The availability of a moldable infrastructure opens new possibilities:

1. The developers of a library or a framework can create and ship dedicated ex-
tensions for moldable tools together with the code, to help users work with
and better reason about that framework or library. This can have a practical
impact due to the reuse of the library or the framework in many applications.
For example, the developers of PetitParser, Glamour, Opal and Roassal built
themselves custom extensions for the moldable tools discussed in this disser-
tation and shipped them together with the frameworks;

2. Developers can extend moldable tools for their own applications, during the
development process, to help them solve bugs or better understand the ap-
plication. This can make considerable economical sense when working on a
long-lived system.

8.2 Future Research Directions

Having introduced the moldable tools approach and showed how it can be applied
to address relevant issues in current development tools, we identify scope of further
work in this area. We split future work in the following three parts: the first part
addresses how to further improve the creation of moldable tools, the second part
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looks at how to group moldable tools into a moldable environment and the third
section introduces wider questions in this research field.

8.2.1 Improving and Evolving Moldable Tools

Keeping extensions and objects synchronized Properties and responsibilities of con-
cepts from a domain can change as the software system evolves; this leads
to changes in the code that implements those domain concepts. Given that
we propose a manual approach for constructing domain-specific extensions,
one needs to make sure that new changes in an application do not break as-
sumptions made when developing an extension. Currently, for each object
that provides an extension we require that extension builders also provide
code that constructs an instance of that type. During testing we can then ver-
ify if there is an error while creating an extension on that instance. This gives
a minimum safety-net for detecting changes that break an extension. We also
see automatic test generation based on more meta-information attached to
extensions as a possible solution.

Characterizing changes based on how they impact extensions As software systems un-
dergo changes, domain-specific extensions written for those systems must also
evolve. Nevertheless, not all changes from an application can directly impact
the extensions created for that application. For example, adding a new object
attribute would not break existing domain-specific views for an object. Intro-
ducing code instrumentation or data accesses with side effects (as in a stream),
however, can lead to significant changes in an existing domain-specific debug-
ger. To support updating extensions as the code changes, a future research
direction could look into classifying code changes based on how they affect
domain-specific extensions. This could help detect changes that break domain-
specific extensions and notify developers of this fact.

Automatic and semi-automatic generation of extensions Currently moldable tools rely
on manual creation of extensions using a dedicated API. An alternative con-
sists in automatically, or semi-automatically, generating extensions. Referring
to the Moldable Inspector, this was shown to work well when generating views
based only on the internal representation of an object [Cross et al. 2009]. For
example, a tree view can be used to represent all objects whose internal struc-
ture matches a tree. Nevertheless, not all the views supported by the Moldable
Inspector follow this approach. Some, like the Bytecode view of a compiled
method object display information that is not clear how to extract automati-
cally. Others, like the Picture view (Figure 4.13 (p.63)) of a graphical object are
not related directly to the structure of an object. To enable automatic genera-
tion of extensions in moldable tools a future research direction needs to look
in more detail at what kind of extensions can be created automatically.
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Application characteristics that simplify extension creation In the field of software test-
ing, high coupling makes the creation of unit tests difficult (by increasing the
number of dependencies that need to be taken into account) and thus decreases
the testability of a software system. The same idea can also be applied to the
creation of domain-specific extensions. Hence, a future research direction can
investigate what characteristics of an application ease, or exacerbate the cre-
ation of domain-specific extensions for moldable tools.

Live development of extensions Live programming aims to give developers immedi-
ate feedback, ideally, after every change to the code. To move towards live
programming, moldable tools should enable developers to extend a tool di-
rectly from within that tool and show a live preview of the extension. Cur-
rently only the Moldable Inspector supports this: developers can extend the
inspector from within the inspector at run time by creating an extension for
an object directly in the inspector, and getting a live preview of the resulting
extension whenever they save the extension. Nevertheless, even in this case
to get the preview the developer has to make sure the extension is valid when-
ever saving it. A future research direction can look at how to better support
live development of extensions for moldable tools so that developers always
have a working extension as they develop that extension. This would enable
developers to get live feedback after every change and do not get in a situation
where they have an invalid extension.

8.2.2 Towards a Moldable Environment

Developers often complain about loose integration of tools that forces them to look
for relevant information in multiple places [Maalej 2009]. To avoid this problem
the three aforementioned moldable tools are integrated into Pharo and essentially
replace the previous tools. Nevertheless, Pharo contains many other tools that need
to interact and work together. As more tools offer the possibility to create extensions,
these extensions will need to be synchronized. This raises the need for a moldable

environment that can adapt tools to domains in a uniform and consistent way. Below
are two main research directions for supporting such an environment.

Unified model of a development context Each of the three aforementioned moldable
tools maintains its own development context. Adding more moldable tools,
each maintaining its own context, could result in duplicated functionality be-
tween tools and introduce confusion when creating extensions, if develop-
ment contexts are modeled in different ways. To address this, a moldable
environment can provide a global development context where tools can add
interaction and explicit data. This would enable activation predicates to filter
extensions within a tool based on developer interactions from another tool, a
feature currently not supported.
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Collaborative development and sharing of extensions In the examples presented in this
dissertation, developers create custom extensions which they can share to-
gether with their applications. This solution works well if all developers that
want to create extensions can add them to the target application. This is how-
ever not the case with frameworks or libraries, where external developers may
have difficulties in integrating their extensions. To address this an infrastruc-
ture for moldable tools can further provide a complementary mechanism for
developers to share and discover extensions.

8.2.3 Wider Research Questions

Application of moldable tools to other domains This dissertation exemplifies the mold-
able tools approach by applying it to several application domains including
parsers, compilers, profilers, event-based systems, UI frameworks, etc. This
still only covers a small range of existing application domains, and does not
take into account applications from other research fields like biology, physics,
astronomy, to name a few. Future work is needed to explore how moldable
tools can be applied to applications from these and other domains.

Empirical investigations into the impact of tool building on program comprehension
Moldable tools promote domain-specific tool building as a solution for im-
proving program comprehension: if developers incorporate domain-specific
information into their tools they will need to read less code to extract the in-
formation of interest and perform fewer repetitive tasks. Based on our interac-
tion with the Pharo community we observed that indeed developers extended
moldable tools to improve how they reason about their systems. Nevertheless,
an empirical investigation assessing the impact of adapting moldable tools on
program comprehension is currently missing. One direction for performing
this evaluation is by comparing the effort required to build an extension for
solving a domain-specific task with the effort required to solve that task with
existing tools. This, however, only applies if an extension is thrown away after
use. A more extensive study should further look into how consistent adapta-
tion of tools in development teams, combined with extension reuse during the
evolution of a software application, affects comprehension.

Extensions as program comprehension aids More often than not domain-specific de-
velopment tools are designed as black boxes, or make it difficult for developers
to understand the domain-specific inner workings of the tools. With moldable
tools, domain-specific extensions are explicit. Hence, if a developer would
want to know the meaning of a custom extension, she has the opportunity
to do so by browsing the code of that extension. The small size associated
with custom extensions further makes understanding the inner workings of
the extension affordable. This could be leveraged to support program com-
prehension: developers could reason about an application by studying the
domain-specific extensions available for an application. As an analogy, while
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initially designed to verify the correctness of applications, tests are now often
employed as a mechanism to understand how to use a library or an API.

8.3 Summary

Development tools are a prerequisite for crafting software and represent the lens
through which developers perceive software. If this lens is generic and does not
allow developers to reason about their applications in terms of domain concepts, de-
velopers will repeatedly waste time and effort manually recovering those concepts
from the code. To address this problem we proposed that developers continuously
incorporate domain abstractions into their development tools through inexpensive
extensions. For this activity to be feasible, development tools need to be designed to
support inexpensive domain-specific extensions. To show that this is indeed achiev-
able we introduced the moldable tools approach for designing development tools.
We then showed how tool builders can apply it to enable adaptations that solve
relevant problems in several types of development tools.

8.4 Closing Words

Software is contextual by design. Stakeholders, developers, technology and the
randomness of everyday life make each software system unique. Yet, when crafting
software our tools act as if all software systems are the same.

This entire work is about showing that this does not have to be the case. Tools are
the means to an end. We should shape them, they should not shape us.

August 29, 2016

Andrei Chiş
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A
What is an Object Inspector?

Answers provided by the interview participants to the question: What is an object

inspector for you? Two participants did not provide an answer.

Participant Answer

P1 —

P2 A tool to look inside an object

P3 Something to get a good idea about what the state of the object is

P4 Something that allows me to take a look at an object

P5 A tool that allows me to inspect the object

P6 A tool that allows me to inspect objects

P7 See all the fields

P8 A tool that helps you to inspect data at runtime

P9 A way to see inside an object

P10 A tool to understand which are the components/status/relations of
an object

P11 The tool where I can inspect live objects and I can dive and inspect
the state

P12 A reflective tool that allows me to see all the structure of an object
and change it

P13 I can see the state in which an object is

P14 A tool showing the state of an object which is logged in memory

P15 —

P16 An easy way to see and manipulate what’s inside an object at its
most fundamental level
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B
Performance Overhead of Detecting

Run-time Events

Section 6.5 (p.129) presented three mechanisms for detecting run-time events: step-
by-step execution, code-centric instrumentation and object-centric instrumentation.
The performance overhead of these mechanisms plays an important role when a de-
velopers needs to decide which one to use. To investigate the performance overhead
of these mechanisms we performed a series of micro-benchmarks. We performed
these benchmarks using the implementation of the Moldable Debugger1 in Pharo,
on an Apple MacBook Pro, 2.7 GHz Intel Core i7 in Pharo 4 with the jitted Pharo
VM2. We ran each benchmark 5 times and present the average time of these runs in
milliseconds. All presented times exclude garbage collection time.

Step-by-step execution

Basic benchmarks We performed, for each basic predicate, a benchmark check-
ing for an event (i.e., method call, message send, attribute access, attribute/condi-
tion over the state) not present in the measured code. Given that a predicate never
matches a point in the execution, the boolean condition will be checked for every
bytecode instruction, giving us the worst-case overhead of these predicates on the
measured code. The measured code (lines 89–90)3 consists of ten million calls to the
method Counter>>#increment (lines 86–87). We selected this method as it has only one
message send, attribute access and attribute write, making it possible to use it for all
predicates (for method call we instrument the call to increment).

86 Counter>>#increment

87 counter ← counter + 1

88 targetObject ← Counter new.

89 10000000 timesRepeat: [

90 targetObject increment]

1The version of the Moldable Debugger used to perform the measurements, including the code of
the benchmarks, can be found at http://scg.unibe.ch/download/moldabledebugger/moldabledebugger.zip

2
http://files.pharo.org/vm/pharo

3In all code snippets showing code on which we performed a measurement, only the underlined line
is the one that is actually being measured; the other lines represent just the setup and are not taken into
account in the measurement.
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Appendix B Performance Overhead of Detecting Run-time Events

Predicate
Normal
execution

Step-by-step
execution

Overhead

attribute access (#counter)

11 ms

13473 ms 1225×
attribute write (#counter) 13530 ms 1230×
method call (#increment) 14137 ms 1285×
message send (+) 14302 ms 1300×
identity check 12771 ms 1161×
empty state check 12627 ms 1148×

Table B.1: Performance measurements for step-by-step execution on basic examples.

Benchmark
Normal
execution

Step-by-step
execution

Overhead

factorial 1094 ms 2716 ms 2.6×
merge sort 4 ms 4530 ms 1120×
parser initialization 192 ms 5881 ms 37×
parser execution 18 ms 10334 ms 613×
announcement delivery 19 ms 16419 ms 864×

Table B.2: Performance measurements done on real-world examples for step-by-step
execution.

As expected, this approach introduces a significant overhead of more than three
orders of magnitude for all predicates, when the event of interest is not detected
(Table B.1 (p.164)). The high overhead is due to the step-by-step execution rather than
to the actual condition being checked: verifying the identity of an object using a state

check predicate (Table B.1 (p.164) – identity check ) has almost the same overhead as a
state check predicate that performs no check (Table B.1 (p.164) – empty state check).

Advanced benchmarks To determine if this high overhead is present when dealing
with real-world code, rather than a constructed example, we performed five more
benchmarks presented in Listings B.1 – B.5. In each benchmark we used a method

call predicate detecting the execution of a method not called in the measured code.
Like in the previous benchmarks this gives us the maximal performance impact for
this predicate. We only use one type of basic predicate given that all types of basic
predicates exhibit a similar overhead.

Listing B.1: Factorial.

91 25000 factorial

Listing B.2: Merge sort.

92 collection ← 2000 factorial asString.

93 collection sorted

Listing B.3: Parser initialization: initialize a PetitParser parser for Java code.

94 PPJavaParser new

164



Listing B.4: Parser execution: parse the source code of the interface Stack

from Java 6 using a parser for java code.

95 parser ← PPJavaParser new.

96 parserContext ← PPContext new.

97 parserContext stream: self getStackJava.

98 parser parseWithContext: parserContext

Listing B.5: Announcement delivery.

99 announcer ← Announcer new.

100 10000 timesRepeat: [

101 announcer

102 when: Announcement

103 send: #execute:

104 to: AnnouncementTarget new ].

105 announcer announce: Announcement

We obtained different results (Table B.2 (p.164)) than in the previous set of benchmarks
ranging from an overhead of only 2.6× to an overhead of 1120×. These diverging
results can be explained by looking at one particular aspect of the measured code: the
time spent in method calls that are implemented directly by the VM (i.e., primitive
operations) and thus cannot by executed in a step-by-step manner by a bytecode
interpreter. For example, on the one hand, when computing factorial most time is
spent doing additions, an operation implemented directly by the VM. Merge sort,
on the other hand, spends little time in primitives, thus exhibits similar worst-case
overhead to the example code from the previous benchmarks.

Code-centric instrumentation

This approach does not introduce any runtime overhead when using basic predicates
to detect attribute reads/writes, message sends and method calls. The overhead
comes from combining these predicates with state check predicates, and from the
actual implementation mechanism used to check the condition. Given that we use
two approaches for instrumenting code (i.e., slots, AST annotations) we performed
measurements that combine attribute access and method call predicates with state check

predicates.

Basic benchmarks We first combine the aforementioned predicates with an identity

check predicate. For each situation we perform a benchmark on only the operation
we are interested in (i.e., attribute write – lines 106-107, method call to returnOne –
lines 108-109) and on the #increment method used in the previous section. We execute
each method ten million times on one object and use an identity check predicate that
never detects an event in the measured code (i.e., checks for another object).

106 Counter>>#initializeWithOne

107 counter ← 1

108 Counter>>#returnOne

109 ↑ 1
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Instrumented
method

Predicate
Normal
execution

Instrumented
execution

Overhead
one check

Overhead
three checks

#initializeWithOne
attribute
write

81 ms 1317 ms 16× 17×

#returnOne
method
call

83 ms 7664 ms 95× 98×

#increment
attribute
write

103 ms 1350 ms 13× 14×

#increment
method
call

103 ms 7560 ms 75× 77×

#initializeWithOne
attribute
mutation

81 ms 645 ms 8× -

#increment
attribute
mutation

103 ms 652 ms 6× -

Table B.3: Performance measurements done on simple examples for code-centric in-
strumentation.

As seen from Table B.3 (p.166) the overhead is significantly lower than the one intro-
duced by step-by-step execution. Regardless of the predicate, the highest overhead
is obtained for the methods initializeWithOne and returnOne where, given that the
methods have almost no functionality, any extra instrumentation increases execution
time significantly. The overhead for the increment method is lower as this method
performs more operations than the previous two. Nevertheless, the method call pred-
icate has an overhead six times higher than attribute write predicate. While for both
implementations we reify the current stack frame before checking any associated con-
dition, Reflectivity, the framework used for code instrumentation, has an expensive
mechanism for detecting recursive calls from meta-links (i.e., detect when a meta-
link is added in code called from the meta-link). Repeating these measurements
when the basic predicates are combined with five identity check predicates results
in only slightly higher overheads for all benchmarks. This indicates that most of the
overhead comes from reifying the execution context every time a condition needs to
be checked.

Based on the previous observation a further improvement can be done when com-
bining an attribute access/attribute write predicate with a state check predicate that
only accesses the new and old value of the instance variable: given that we use slots
for instrumenting attributes accesses/writes we can directly get the new and old
values of the attribute from the slot without reifying the current stack frame. This
leads to a performance overhead just x8 when monitoring changes in the value of
an attribute.

A further improvement in performance can be achieved by removing altogether the
need for reifying the current stack frame. A method call predicate combined with an
identity check predicate can directly insert a condition comparing self (this in Java)
with a given object in the code of the target method. Our current prototype does not
support these kinds of instrumentations. Nevertheless, the performance overhead
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Debugging action
Normal
execution

Step-by-step
execution

Overhead

Production(aProduction) 486ms 56ms 8.5×
Parser(aParser) 1553ms 56 27.7×
Stream position(anInteger) 92ms 56ms 1.65×
Subscription(aSubscription) 225ms 968ms 4.2×

Table B.4: Performance measurements done on real-world examples for code-centric
instrumentation.

required to reify the stack frame is small enough to have practical applicability. This
approach further allows developers to test any kind of property of the stack frame
(e.g., the position of the program counter).

Advanced benchmarks We performed four benchmarks on the following domain-
specific actions presented in Section 6.4 (p.120): Production(aProduction), Stream posi-

tion(anInteger), Parser(aParserClass) and Subscription(aSubscription). For the first three
we used the code from Listing B.4 (p.165), while for the last one we used the code from
Listing B.5 (p.165). For each debugging action we look for an event not present in the
measured code (e.g., a production not present in the parser).

For all debugging actions, we get a runtime overhead lower than the one from the
basic benchmarks ranging from 1.6x to 27.7x (Table B.4 (p.167)). This is expected be-
cause in this case the event that triggers a breakpoint is encountered far less often.
The debugging action Parser(aParserClass) has the largest overhead as it introduces a
high number of instrumentations.

Object-centric instrumentation

Using this approach there is no longer any runtime overhead in detecting when
an attribute read/write, message send or method call happens on a given object.
Runtime overhead is introduced by adding conditions that need to be checked when
the target event is detected. For example, checking if a method is called on a target
object that satisfies an extra condition only incurs runtime overhead for checking the
extra condition every time the method is called on the target object.

Basic benchmarks Given that we use code-centric instrumentations to insert those
checks into the unique anonymous class of the target object, the performance over-
head will always be lower than or equal to the overhead of just code-centric instru-
mentations. Consider the two situations below:
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110 targetObject ← Counter new.

111 10000000 timesRepeat: [

112 targetObject initializeWithOne]

113 targetObjects ← OrderedCollection

114 new: 10000000.

115 10000000 timesRepeat: [

116 targetObjects addLast: Counter new].

117 targetObjects do: [:aCounter|

118 aCounter initializeWithOne]

In the code on the left, detecting when targetObject is initialized with value 2 has the
same overhead as using code-centric instrumentations given that the condition must
be checked on every write of the counter attribute (as seen in the previous section
verifying the identity of one or more objects incurs a similar overhead, given that
what takes the most time is reifying the execution context).

In the code on the right, the runtime overhead when checking that one object from
the collection is initialized with 2 is negligible, as the condition is checked only once.
Installing the predicate on every object will lead to a similar runtime overhead as in
the previous case, given that the condition will be checked ten million times.

Advanced benchmarks The same observations from Basic benchmarks apply. On
the one hand, in the action Stream position(anInteger), detecting when the stream
has reached a certain position using an object-centric instrumentation has the same
overhead as a code-centric instrumentation given that there is a single stream object
shared by all the parsers. On the other hand, applying the action Subscription(aSub-

scription) on the code from Listing B.5 has a negligible overhead as each announce-
ment is delivered to a different object.
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