
Traits
Composing Classes from Behavioral Building Blocks

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Nathanael Sch ärli
von Zell (LU)

Leiter der Arbeit:
Prof. Dr. Stéphane Ducasse
Prof. Dr. Oscar Nierstrasz

Institut für Informatik und angewandte Mathematik

Traits
Composing Classes from Behavioral Building Blocks

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Nathanael Sch ärli
von Zell (LU)

Leiter der Arbeit:
Prof. Dr. Stéphane Ducasse
Prof. Dr. Oscar Nierstrasz

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 03.02.2005 Der Dekan:

Prof. P. Messerli

Abstract

Inheritance is well-known and accepted as a fundamental mechanism for reuse in object-oriented languages.
Unfortunately, the main variants — single inheritance, multiple inheritance, and mixin inheritance — all suffer
from conceptual and practical problems related to software reuse and robustness with respect to changes. In a
first part of this thesis, we identify and illustrate these problems.

To overcome these problems, we then presenttraits, a simple compositional model that extends single
inheritance. A trait is essentially a (parameterized) set of methods; it serves as a behavioral building block
for classes and is the primitive unit of code reuse. We develop a formal model of traits that establishes how
traits can be composed to form other traits or classes, and we describe how we implemented traits in Squeak
Smalltalk by bootstrapping a new language kernel.

We present our experimental validation in which we apply traits to refactor parts of the Smalltalk kernel and
library, and we develop a programming methodology around the usage of traits and the trait browser, the tool
that we implemented to take full advantage of the availability of traits in the Squeak programming environment.

i

Acknowledgments

First and foremost, I would like to express my gratitude to my advisors Oscar Nierstrasz and Stéphane Ducasse.
Oscar gave me the opportunity to work in his research group and provided me with tremendous professional
support and excellent advice throughout my studies. Stéph’s passion and energy are truly contagious. Our
countless discussions were invaluable in developing the concepts in this thesis. I also would like to thank Stéph
for introducing me to all of the great technology and people and for educating me in the “French way of life”.
Oscar and Stéph, it was a great pleasure to work with you during all these years.

I would also like to thank the other members of my Ph.D. committee, Andrew Black and Alan Kay. Andrew
invited me to work with his research group at OGI in Portland. Despite the geographic distance, he provided me
with continuous support during my Ph.D. I thank him for the valuable discussions, enjoyable pair programming
sessions, and for helping make my papers fit to read. Alan also gave me the opportunity to work with him
and his group in California. I especially appreciate that he was willing to share his fantastic knowledge and
experience with me as well as many interesting stories from the past. Andrew and Alan, thank you for accepting
to be part of my Ph.D. committee; I feel very lucky and honored.

Very special thanks go to my family. I thank my parents, Rosmarie and Toni, and my siblings, Andrea,
Matthias, and Petra, for their unending love and support and for the wonderful environment I grew up in. I
have had a truly magical time with you and I cannot express how happy it makes me to be part of our family.
Most importantly, I thank Rebecca — my love, my best friend and now also my wife — for being here and
sharing her life, her love, and her future with me. There is nothing that could make me happier. Thanks also to
Rebecca’s family for welcoming me into their lives.

I would also like to thank my friends for all the adventures and the good times we have experienced together
and for the support and advice you have given me. You know who you are, so I will not list you here. Just let
me say that good friends are invaluable and that I feel extremely fortunate to know and be friends with every
single one of you. You are the best.

Many thanks also to all the colleagues who have helped me and collaborated with me during my work
on traits. I especially thank Gilad Bracha for inspiring me with his dissertation and for kindly sharing with
me his knowledge about mixins and other aspects of programming language design. Thanks also to Andreas
Raab, who got me thinking about traits in the first place, Adrian Lienhard, who did a lot of work for the stable
implementation of traits in Squeak, Philip Quitslund, who developed traits for mini-Java and shared his office
with me during my visits to Portland, Stevan Little, who implemented traits in Perl, Matthias Zenger and Martin
Odersky, who discussed their implementation of traits in Scala with us, and Jean-Guy Schneider, who reviewed
some of our papers on traits.

Next I would like to thank all the former and current members of the Software Composition Group. It was
a pleasure to work with you: Franz Achermann, Gabriela Arevalo, Alexandre Bergel, Frank Buchli, Thomas
Bühler, Calogero Butera, Juan Carlos Cruz, Marcus Denker, Markus Gälli, Tudor Girba, Orla Greevy, Marc-
Philippe Horvath, Andreas Hosbach, Markus Kobel, Stefan Kneubühl, Adrian Kuhn, Michael Locher, Liang
Peng, Laura Ponisio, Lukas Renggli, Tamar Richner, Matthias Rieger, Andreas Schlapbach, Therese Schmid,
Mauricio Seeberger, Daniele Talerico, Sander Tichelaar, David Vogel, and Roel Wuyts.

I would also like to thank all the people that supported and hosted me during my travels and stays abroad.
In particular, I thank the Squeak Group at Disney (now at Viewpoints Research and HP Labs) for making my

ii

iii

internships and visits possible. The time I got to spend with you in California was truly unforgettable. Thanks
also to the team at OGI in Portland for making my visits so smooth and pleasant.

Finally, I would like to send my best to all the great people I have met and talked to at conferences, meetings,
workshops, online and elsewhere.

Nathanael Scḧarli
February 2005

iii

Contents

Abstract i

1 Introduction 1
1.1 Understanding the Problem . 1
1.2 Our Proposal: Traits . 2
1.3 Contributions . 3
1.4 Thesis Outline . 3

2 Problems with Inheritance 5
2.1 Composition and Decomposition Problems . 5

2.1.1 Decomposition Problems . 5
2.1.2 Composition problems . 7

2.2 Occurrences of these Problems in Real Languages . 9
2.2.1 Strongtalk and Jam . 9
2.2.2 C++ . 11
2.2.3 CLOS . 15

3 Traits 16
3.1 Traits – Composable Units of Behavior . 16

3.1.1 Classes and Methods . 17
3.1.2 Traits . 19
3.1.3 Composing Classes from Traits . 20
3.1.4 Composite Traits . 22
3.1.5 Conflict Resolution . 23
3.1.6 Well-definedness . 27
3.1.7 Refactoring, reachability and equivalence . 28

3.2 Evaluation . 31
3.2.1 Decomposition Problems . 31
3.2.2 Composition Problems . 31

3.3 Discussion . 32
3.3.1 Design Decisions . 33
3.3.2 C++ Revisited . 35

4 Implementation 39
4.1 Overview of the Smalltalk-80 Kernel Architecture . 39

4.1.1 Organization of Classes and Metaclasses . 39
4.1.2 The Kernel Classes . 40

4.2 Traits Design Rationale . 42
4.3 The New Language Kernel . 42

v

vi CONTENTS

4.3.1 The New Kernel Classes . 42
4.3.2 Decomposition into Traits . 46

4.4 Flattening Traits at Composition Time . 46
4.5 Conclusions . 47

5 Tools and Methodology 48
5.1 Traits and Tools: Analysis . 48
5.2 The Trait Browser . 49

5.2.1 Overview . 49
5.2.2 Virtual Categories . 50
5.2.3 Using the Browser With Traits . 52
5.2.4 Implementation . 54

5.3 Programming Methodology . 59
5.3.1 The Roles of Classes and Traits . 60
5.3.2 Uniform Protocols . 60
5.3.3 Uncovering Hidden Structure . 64
5.3.4 Traits and Agile Methodologies . 65

5.4 Interaction between Language, Tools and Methodology . 66

6 Case Study: Refactoring the Smalltalk Collection Classes 67
6.1 The Smalltalk Collection Classes . 67

6.1.1 The Varieties of Collection . 69
6.1.2 Streams . 71

6.2 Analysis of the Collection Classes . 71
6.2.1 Unnecessary Inheritance . 72
6.2.2 Code Duplication and Inappropriate Hierarchies . 73
6.2.3 Conceptual Shortcomings . 74

6.3 Refactoring Results . 75
6.3.1 The New Collection Hierarchy . 75
6.3.2 The New Stream Hierarchy . 79
6.3.3 Measurements of the Refactored Classes . 79
6.3.4 Assessment of the Refactored Classes . 84
6.3.5 Design Decisions . 85

6.4 Discussion . 85
6.4.1 Lessons Learned . 85
6.4.2 Comparison to Other Approaches . 86

6.5 Conclusions . 88

7 Case Study: Trait-based Composition of Class Properties 90
7.1 Motivation and Overview . 90
7.2 Representing Class Properties As Traits . 91

7.2.1 Singleton . 92
7.2.2 Modeling the Boolean Hierarchy . 93

7.3 A Framework of Class Properties . 95
7.3.1 Class Properties . 96
7.3.2 Advantages for the Programmer . 98

7.4 Evaluation . 99
7.4.1 Criteria for Class Property Composition . 99
7.4.2 Comparison to Other Approaches . 101
7.4.3 Discussion . 104

vi

CONTENTS vii

8 State of the Art 106
8.1 Traits in Other Languages . 106

8.1.1 Traits in Perl . 106
8.1.2 Traits in VisualWorks Smalltalk . 108
8.1.3 Traits in Scala . 108

8.2 Traits and Static Types . 110
8.2.1 Relationship between Traits and Types . 110
8.2.2 Typing Trait Methods . 110
8.2.3 Conclusions . 114

8.3 Other Related Work . 114

9 Conclusions 119
9.1 Contributions . 119
9.2 Future Work . 120

vii

List of Figures

2.1 Incorrect attempt to factor out a synchronization wrapper . 6
2.2 Lack of composition control in the composite classMyRectangle 8
2.3 Customizing the composition using two intermediate “glue mixins”. 10
2.4 The classSyncA in C++ . 12
2.5 The classSyncReadWrite implemented with two abstract methods 12
2.6 Code duplication in the classesSyncA andSyncB . 13
2.7 Synchronization expressed as a mixin . 14
2.8 The classMyDocument built from two mixins . 14

3.1 An example hierarchy . 18
3.2 The traitTReadStream with provided and required methods 21
3.3 The classReadStream composed from the traitTReadStream 22
3.4 Smalltalk implementation of the classReadStream and the traitTReadStream 23
3.5 TReadStream andTWriteStream as composite traits . 24
3.6 Implementation of the composite traitsTReadStream andTWriteStream 24
3.7 Compositions with aliases and conflicts . 25
3.8 Implementation of the traitsTSynchronize andTSyncReadStream 26
3.9 Code duplication in the SmalltalkStream hierarchy . 28
3.10 The SmalltalkStream hierarchy refactored using traits . 29
3.11 Using C++ templates to simulate mixin composition . 35
3.12 Using C++ templates and virtual base classes to simulate trait composition 36
3.13 ImplementingMyDocument as the composition of two “C++ traits” 36

4.1 Parallel class and metaclass hierarchies in Smalltalk . 40
4.2 Class hierarchy of the Smalltalk kernel . 41
4.3 Classes hierarchy of the new Smalltalk kernel supporting traits 43
4.4 Decomposition of the new kernel classes into traits . 45

5.1 The traditional Squeak (Smalltalk) system browser . 49
5.2 The trait browser . 51
5.3 The traitTCollEnumerationUI . 52
5.4 The composite traitTCollEnumerationI . 53
5.5 Pseudo-code for collecting the classes that self-send a given selector in a hierarchy 56
5.6 Pseudo-code for finding methods that self-send a given selector 57
5.7 The traitTRectangle . 61
5.8 The new classRectangularMorph immediately after its creation 62
5.9 The glue methodcorner in RectangularMorph . 63
5.10 The method= in RectangularMorph. 64

viii

LIST OF FIGURES ix

6.1 The collection classes in Squeak . 68
6.2 Some collection classes categorized by functionality . 69
6.3 Some collection classes categorized by implementation technique 70
6.4 Redefinition ofat:put: andadd: in the superclasses ofWeakValueDictionary 72
6.5 Duplicated methods and methods implemented “too high” in the stream hierarchy 73
6.6 The refactored collection hierarchy . 76
6.7 The hierarchy of traits corresponding to functional properties 77
6.8 Common implementation traits . 78
6.9 Specific implementation traits . 78
6.10 The refactoredStream hierarchy. 80
6.11 Traits used to build theStream classes. 80
6.12 Usage histogram of the functional traits in theCollection classes 81
6.13 Usage histogram of the implementation traits in theCollection classes 82
6.14 Usage histogram of the traits in theStream classes . 82

7.1 Application of class properties represented as traits . 91
7.2 Behavior andWebServer class built from the traitsTInstantiator andTSingleton 92
7.3 The metaclassWebServer class implemented using the property traitTSingleton 93
7.4 The refactoredBoolean hierarchy . 94
7.5 Implementation of the propertyTAbstract . 94
7.6 A fine-grained architecture of class properties based on traits 95
7.7 Implementation of the allocation, instantiation, and final class properties 96
7.8 Implementation of different instance creation class properties 97
7.9 Composing the conflicting propertiesTDefault andTRememberInstances 98
7.10 Upward and downward compatibility . 99
7.11 Property composition and property application . 100
7.12 Smalltalk metaclasses organized in a parallel hierarchy . 101
7.13 By default, a CLOS class and its subclasses are instances of the same metaclass 102
7.14 SOM guarantees upward but not downward compatibility. 102
7.15 Class property composition in NeoClasstalk. 103

8.1 The traitTSyncRead in Perl . 107
8.2 The classSyncA defined as a subclass ofA using the traitTSyncReadWrite 107
8.3 The traitTLinkable in the dynamically typed language Smalltalk 111
8.4 The generic traitTLinkable used in the classesLink andProcess 112
8.5 The traitTLinkable imlemented usingThisType . 113

ix

List of Tables

6.1 Per hierarchy summary of the refactoring . 83
6.2 Summary of the refactoring (totals) . 83

7.1 Comparison of the different approaches for class property composition 104

x

Chapter 1

Introduction

Inheritance is the fundamental reuse mechanism in object-oriented programming languages; it allows the pro-
grammer to derive new classes from existing ones [WEGN 88, TAIV 96]. Since single inheritance was first
introduced in Simula 67, researchers have developed more sophisticated variants of inheritance, such as var-
ious forms of multiple inheritance and mixin inheritance, and millions of programmers have learned to build
complex frameworks and applications using classes organized in inheritance hierarchies.

Despite this story of success, the position of inheritance-based reuse in current object-oriented program-
ming languages is unsatisfying. While single inheritance is not expressive enough to factor out common fea-
tures in a more complex scenario, neither multiple inheritance nor mixins have achieved wide acceptance
[TAIV 96]. Summarizing Alan Snyder’s contribution to the inheritance panel discussion at OOPSLA ’87, Steve
Cook wrote:

“Multiple inheritance is good, but there is no good way to do it.” [COOK 87]

Indeed, the trend seems to be away from multiple inheritance; the designers of recent languages such as
Java and C# decided that the complexities and problems introduced by multiple inheritance outweighed its
utility. For the programmer this means that the golden principle “say everything once and only once” remains
an ideal that cannot be reached in reality: even with a perfect design, it is often not possible to avoid code
duplication.

In this dissertation, we address this dilemma by introducing traits, a simple compositional model that allows
one to build classes from multiple parts while avoiding most of the complexity and problems known from
multiple inheritance and mixins. Before we give a brief overview of traits and present our thesis statement
(Section 1.2), we summarize the problems associated with the different variants of inheritance (Section 1.1).
We end this introductory chapter with a summary of the contributions (Section 1.3) and an outline of the rest
of this dissertation (Section 1.4).

1.1 Understanding the Problem

Single inheritance is the classic and most accepted form of inheritance. While it is conceptually simple and
well understood, it is inadequate for expressing classes that share features not inherited from their (unique)
common parent. The shared features must either be forced into the common parent (where they do not belong),
or they must be duplicated in the classes that should share them. To overcome this limitation, language de-
signers have proposed various forms of multiple inheritance [MEYE 88, KEEN 89, STRO 86], as well as other
mechanisms, such as mixins [MOON 86, BRAC 90, MENS 96, FLAT 98, ANCO 00], that allow classes to be
composed incrementally from sets of features.

Despite the passage of nearly twenty years, neither multiple inheritance nor mixins have achieved wide
acceptance [TAIV 96]. In case of multiple inheritance, the intuitive explanation for this situation has often been

1

2 CHAPTER 1. INTRODUCTION

that it is too complex and leads to code that is hard to understand. A more detailed assessment shows that
multiple inheritance not only poses serious implementation problems [DIXO 89, SWEE 99], it also introduces
serious conceptual problems.

Although multiple inheritance makes it possible to reuse any desired set of classes, a class is frequently
not the most appropriate element to reuse. This is because classes play two competing roles. A class is first
and foremost agenerator of instances. Therefore, most of the recent object-oriented programming languages
such as Java and C# make every class bundle together acompleteset of basic features by requiring it to be a
(direct or indirect) subclass of the classObject, which is the root of the inheritance hierarchy. A class doubles,
however, as aunit of reuse. It should therefore bundle aminimalset of features which can sensibly be reused
together.

Unfortunately these two roles conflict. Since classes must adopt a fixed position in the class hierarchy (i) it
can be difficult or impossible to factor out wrapper methods as reusable classes, (ii) conflicting features inher-
ited from different paths may cause semantic ambiguities (e.g., the “diamond problem” [SAKK 89, BRAC 90]),
and (iii) overridden features may be difficult to access.

Moon’s Flavors [MOON 86] were an early attempt to address these problems: Flavors are small, incomplete
implementations of classes, that can be “mixed in” at arbitrary places in the class hierarchy. More sophisti-
cated notions of mixins were subsequently developed by Bracha and Cook [BRAC 90], Mens and van Lim-
berghen [MENS 96], Flatt, Krishnamurthi and Felleisen [FLAT 98], and Ancona, Lagorio and Zucca [ANCO 00].

Mixins use the ordinary single inheritance operator to extend various parent classes with the same set
of features. Although this inheritance operator is well-suited for deriving new classes from existing ones, it
is not necessarily appropriate for composing reusable building blocks. Specifically, as mixin composition is
implemented using inheritance, mixins are composed linearly. This gives rise to several problems. First, a
suitable total ordering of features may be difficult to find, or may not even exist. Second, “glue code” that
exploits or adapts the linear composition may be dispersed throughout the class hierarchy. Third, the resulting
class hierarchies are often fragile with respect to change, so that conceptually simple changes may impact
many parts of the hierarchy. It is for these reasons, we believe that mixins have never achieved wide success in
mainstream object-oriented languages.

1.2 Our Proposal: Traits

Traits represent a simple solution to these various dilemmas. In a nutshell, traits are (parameterized)sets of
methodsthat serve as a behavioral building blocks of classes. Traits can be composed in arbitrary order as trait
composition is commutative and completely divorced from the inheritance hierarchy. Classes are organized in
a single inheritance hierarchy, and can make use of traits to specify the incremental difference in behavior with
respect to their superclasses. Traits have the following characteristics:

• Traits are simple software components that bothprovideandrequire methods (i.e., those that are used
by, but not implemented in a trait).

• Classes (and composite traits) are composed from traits, resolving any conflicts, and possibly providing
the required methods.

• Traits specify no state, so the only conflict that can arise when combining traits is a method conflict.
Such a conflict can be resolved by exclusion or overriding.

• Traits can be inlined or “flattened”, so their presence or absence does not affect the semantics of a class.

Thesis statement. The design of traits was guided by the attempt to unify the advantages of multiple in-
heritance and mixin inheritance while avoiding their disadvantages. As a consequence, traits provide a better
solution to the reuse problems in object-oriented languages than multiple inheritance and mixins.

2

1.3. CONTRIBUTIONS 3

Most difficulties experienced with multiple inheritance disappear with traits, because traits are purely be-
havioral and are (like mixins) divorced from the inheritance hierarchy, which makes it easy to factor out wrap-
per methods that can be applied to classes across the inheritance hierarchy and avoids most of the complexity
related to conflicting features. At the same time, most difficulties experienced with mixins also disappear,
because traits impose (like many multiple inheritance mechanisms) no linear composition order. As a conse-
quence, compositions based on traits are more robust with respect to changes, and the composite entity has
complete control over the composition and can resolve all conflicts explicitly, without use of linearization.

Unlike the semantics of single inheritance, multiple inheritance, and mixins, the semantics of trait compo-
sition adheres to the flattening property, which states that traits can be inlined (flattened) without changing the
semantics of the class that uses them, and with no change to any of the methods in the traits. This allows the
programmer to view and edit a class built from traits as if it were built using single inheritance alone. Especially
if they are fine-grained, compositions based on traits are therefore easier to understand than corresponding hi-
erarchies based on multiple inheritance or mixins. The flattening property, together with the fact that traits are
purely behavioral, also allows for an efficient implementation while avoiding many of the difficulties known
from multiple inheritance and mixin implementations.

1.3 Contributions

The main contributions of this thesis can be summarized as follows:

• A detailed illustration and analysis of the various composition and decomposition problems that are
associated with multiple inheritance and mixins.

• The development of traits, a composition mechanism that was specifically designed to address these
inheritance problems by allowing classes to be composed from behavioral building blocks.

• A formal model of traits.

• A description of the implementation of traits in the Smalltalk dialect Squeak [INGA 97], which we ac-
complished by bootstrapping a new language kernel using traits.

• The development of a programming methodology around the usage of traits and the trait browser, a
tool that we implemented to take full advantage of the availability of traits in the Squeak programming
environment.

• Two case studies, a refactoring of the Smalltalk collection classes and a trait-based approach to overcome
metaclass composition problems, which demonstrate the practical usefulness and applicability of traits.

• A comparison between traits as we have developed them and adaptations of traits designed for other
programming languages, and an overview of conceptual problems and possible solutions when applying
traits to statically typed languages.

1.4 Thesis Outline

This dissertation is structured as follows: In Chapter 2, we identify and illustrate the composition and decom-
position problems that are associated with different forms of inheritance. In Chapter 3, we then introduce traits
by means of a formal model, diagrams, and running examples, and we evaluate the traits mechanism against the
previously identified problems. In Chapter 4, we describe our implementation of traits in the Smalltalk dialect
Squeak. In Chapters 6 and 7, we present two case studies that illustrate how traits and their theoretic properties
pay off in realistic scenarios: a refactoring of the Smalltalk collection classes (Chapter 6) and a trait-based ap-
proach to overcome metaclass composition problems (Chapter 7). In Chapter 8, we give an overview of the trait

3

4 CHAPTER 1. INTRODUCTION

adaptations available in other programming languages, we analyze what it means to apply traits to statically
typed languages, and we compare traits to other related work. In Chapter 9, we conclude by summarizing how
the main results of our work support the statement of the thesis, and we look forward to future work related to
traits.

4

Chapter 2

Problems with Inheritance

While inheritance is widely considered to be one of the key features of object-oriented programming, it is
also saddled with many competing and contradictory definitions and interpretations [TAIV 96]. Over the years,
researchers have developed various forms of inheritance, including single inheritance, multiple inheritance, and
mixin inheritance. Each of these forms provides different answers to problems ofdecomposition— how one
decomposes a software base into suitable units of reuse — andcomposition— how one composes these units
to obtain a class hierarchy suitable for our application domain.

In this chapter, we analyze and illustrate how the key problems of decomposition and composition apply to
the different forms of inheritance. While Section 2.1 is kept on a more conceptual and general level, Section 2.2
focuses on occurrences of these problems in concrete programming languages.

Note that we focus on conceptual issues related to reuse. Other problems with inheritance such as im-
plementation difficulties [DIXO 89, SWEE 99] and conflicts between inheritance and subtyping [AMER 90,
BRUC 95, CAST 95, COOK 90, MADS 90, LALO 91] are outside the scope of this thesis.

2.1 Composition and Decomposition Problems

In this section, we give an overview of the key problems of decomposition and composition that occur in the
different forms of inheritance. For conciseness, this overview is kept on a conceptual and rather general level;
details about the occurrence of these problems in concrete programming languages are deferred to Section 2.2.

2.1.1 Decomposition Problems

Object-oriented programming allows the programmer to model arbitrary domains as hierarchies of classes that
are related by inheritance. However, the different forms of inheritance pose different restrictions and limitations
on what kind of decompositions can be expressed. As a result, the way in which we decompose our domain
concepts into classes is not necessarily the right way to decompose the implementations of these classes into
sets of features [LALO 89, HARR 93, TARR 99]. We will now consider three decomposition problems that we
have identified in this context.

Duplicated Features

Single inheritance is the simplest form of inheritance; it allows a class to inherit from (at most) one superclass
[COOK 89]. Although well-accepted, single inheritance is not expressive enough to factor out all the common
features shared by classes in a complex hierarchy. As a consequence, single inheritance does not provide the
means to avoid code duplication.

5

6 CHAPTER 2. PROBLEMS WITH INHERITANCE

SyncA

read
write:
acquireLock
releaseLock SyncA SyncB

read
 self acquireLock.
 result := super read.
 self releaseLock.
 ↑result

write: value
 self acquireLock.
 super write: value.
 self releaseLock

A

read
write:

SyncReadWrite

read
write:
acquireLock
releaseLock

A

read
write:

B

read
write:

Figure 2.1: Incorrect attempt to factor out a synchronization wrapper

As an example, consider the Smalltalk stream classesReadStream, WriteStream, andReadWriteStream.
As suggested by their names, the classReadWriteStream contains features provided by bothReadStream and
WriteStream. However, with single inheritance,ReadWriteStream can inherit from only one of these classes.
In Smalltalk,ReadWriteStream inherits fromWriteStream and then duplicates someReadStream methods (cf.
Figure 6.5).

Note that extension of single inheritance with interfaces, as promoted by Java and C#, addresses the issues
of subtyping and conceptual modeling, but does not provide any help with the problem of duplicated code.

Inappropriate Hierarchies

A common practice to avoid such code duplication is to implement certain methods “too high” in the hierarchy.
The idea is that instead of duplicating a method, it is moved to a superclass until it is available in all the
classes where it is actually required. In our example, this means that the programmer could implement all the
reading methods in the classPositionableStream, which is the lowest common superclass ofReadStream and
WriteStream. These methods would then be inherited by the classReadWriteStream, and hence, would not
need to be duplicated.

The tactic succeeds, but the price is high:PositionableStream is polluted by many methods that have nothing
to do with positioning, andWriteStream appears to implement many reading methods, although these methods
will fail or result in inconsistent behavior if they are ever used. (See Section 6.2.2 for a more detailed discussion
of the problems that occur in the Smalltalk stream hierarchy.)

Both multiple inheritance and mixins attempt to alleviate these problems by allowing a class to obtain
features from multiple sources, but, as we shall see, each gives rise to other problems.

Duplicated Wrappers

Multiple inheritance as provided by languages such as C++ and Eiffel enables a class to reuse features from
multiple parent classes, but it does not allow one to write a reusable entity that extends methods implemented
in as-yet unknown classes.

This limitation is illustrated in the UML class diagrams in Figure 2.1. Assume that classA contains methods
read andwrite: that provide unsynchronized access to some data. (If not otherwise indicated, all the code in this
thesis is written in Smalltalk. The traits model, however, is not specific to Smalltalk.) If it becomes necessary
to synchronize the access to this data, we can create a classSyncA that inherits fromA and wraps the methods
read andwrite:. That is,SyncA defines newread andwrite: methods that call the inherited methods under
control of a lock (cf. Figure 2.1 left).

Now suppose that classA is part of a framework that also contains another classB with read andwrite:
methods, and that we want to use the same technique to create a synchronized version ofB. Naturally, we

6

2.1. COMPOSITION AND DECOMPOSITION PROBLEMS 7

would like to factor out the synchronization code so that it can be reused in bothSyncA andSyncB.
With multiple inheritance, sharing code among different classes means inheriting from a common super-

class. This means that we should move the synchronization code into a classSyncReadWrite that will become
the superclass of bothSyncA andSyncB (cf. Figure 2.1 right). Unfortunately this does not work because super-
sends are statically resolved in most forms of multiple inheritance such as those of C++ and Eiffel. Therefore,
the super-sends in methods ofSyncReadWrite would referstatically to methods of its superclass, and not to
methods inA or B.

Workarounds are clumsy and just entail more duplicated code, for example, the super-sends inSyncRead-
Write could be replaced by calls to abstract methodsmyRead andmyWrite:, which are then implemented in
both SyncA andSyncB to call, respectively, theread andwrite: methods ofA andB. (See Section 2.2.2 for
more details.)

Mixins solve this particular problem by late-bindingsuper. A mixin is an abstract subclass specification
that may be applied to various parent classes to extend them with the same set of features [MOON 86, BRAC 90,
MENS 96, FLAT 98]. Instead of definingSyncReadWrite as a class, it is defined as a mixin. ThenSyncA and
SyncB will each apply the mixin to a different superclass, and obtain the desired wrapper behavior.

2.1.2 Composition problems

Although there is a clear progression in expressive power from single inheritance through multiple inheritance
to mixins, this expressiveness does not come without a cost. Both multiple inheritance and mixins pose numer-
ous problems when we consider how classes are composed from shared features.

Conflicting Features

One of the problems with multiple inheritance is the ambiguity that arises when conflicting features are inher-
ited along different paths [DUGG 01]. A particularly problematic situation is the “diamond problem” [BRAC 90]
(called “fork-join inheritance” by Sakkinen [SAKK 89]), which occurs when a class inherits from the same par-
ent class via multiple paths. Very often, the root of a class hierarchy (or a sub-hierarchy) consists of a class
that provides some common default behavior that may be overridden by subclasses (e.g., methods=, hash, and
asString). However, this is precisely what causes the conflicts when several of these classes are reused.

The features that conflict may be methods or attributes. Whereas method conflicts can be resolved relatively
easily (e.g., by overriding), conflicting attributes are more problematic. Even if the declarations are consistent,
it is not clear whether conflicting attributes should be inherited once or multiply [MEYE 88, SAKK 92]; neither
is it clear how these attributes should be initialized.

Single inheritance clearly does not suffer from this problem; nor do mixins that are based on single inheri-
tance. With mixin composition, a mixin is applied to a class to generate a new subclass in a single inheritance
hierarchy. Conflicts do not arise because the mixin features simply extend or override those of the class it is
applied to. However, mixins must be applied one at a time in a particular order, which leads to other problems,
as we shall shortly see.

Lack of Control and Dispersal of Glue Code

Mixin composition is linear: all the mixins used by a class must be inherited one at a time. Features defined in
mixins appearing later in the order overrideall the identically named features of earlier mixins. Where conflicts
should be resolved by selecting and combining features from different mixins, a suitable total order may not
exist. So, while avoiding the problem of ambiguous conflicts, mixins put feature composition into a straitjacket
from which it may be difficult to escape.

As a consequence, with mixins, the composite entity is not in full control of the way in which the mixins
are composed: instead, the way in which the individual features override and extend one another is dictated by
the total ordering imposed on the mixins. Obtaining the desired combination of features may necessitate the

7

8 CHAPTER 2. PROBLEMS WITH INHERITANCE

asString
 ↑super asString, ' ',
 self rgb asString

asString
 ↑super asString, ' ',
 self borderWidth asString

Rectangle

asString
serializeOn:

Rectangle + MColor

asString
serializeOn:

Rectangle + MColor + MBorder

asString
serializeOn:

MColor

asString
serializeOn:

MyRectangle

MBorder

asString
serializeOn:

inherits from
applies mixin

Figure 2.2: Lack of composition control in the composite class MyRectangle

introduction of glue code in new intermediate mixins, or even the modification of the used mixins. While mod-
ifying mixins is very problematic because it potentially breaks other classes using the same mixins, introducing
intermediate mixins causes the glue code to be scattered throughout the inheritance hierarchy, which makes the
composition hard to understand and adapt.

As an example, consider the class diagram shown in Figure 2.2, where a classMyRectangle uses two mixins
MColor andMBorder that each provide methodasString andserializeOn:. (We introduce anad hocextension to
UML to show where mixins are applied in the inheritance hierarchy, and we use class names such asRectangle
+ MColor for the anonymous intermediate classes that result when mixins are applied.) The implementations of
the methodasString in the mixins first call the implementation inherited from the superclass (using the keyword
super) and then extend the resulting string with a separation character followed by some specific information
about their own state. Similarly (but not shown in Figure 2.2), the implementations ofserializeOn: in the mixins
first call the superclass method and then append the mixin’s own state to the argument stream.

Suppose now that for compatibility reasons, we need to serialize our classMyRectangle so that thergb
value appears before theborderWith. Because mixin composition is linear, this means that the mixinMColor
has to be applied before the mixinMBorder. However, because of the total ordering ofall features provided by
the mixins, this also means that it changes the order of theasString methods and that the color attributes are
then printed before the border attributes, which may not be what we want.

The crux of the problem is that from within the composite entityMyRectangle, it is not possible to control
separately how the different features are composed. This is because inMyRectangle, we can only access the
mixedbehavior ofRectangle + MColor + MBorder, but not the original behavior ofMColor andRectangle.

Thus, if we need to customize how the features are composed — be it because we need a different serializa-
tion order or a another separation character between the two strings — we need to modify the involved mixins,
which is problematic as it potentially breaks all the other clients of these mixins. (See Section 2.2.1 for more
details.)

Note thatcomposite mixins[BRAC 92] do not provide any substantial advantage over regular mixins with
respect to limited control over a composition. Like mixins, composite mixins only provide a linear form of
composition where all the features of the involved mixins are totally ordered. This means that in the above
example, the exact same problem occurs if we were to combine the two mixinsMColor andMBorder to create
a composite mixinMColorAndBorder and then use this composite mixin to define our new classMyRectangle.

8

2.2. OCCURRENCES OF THESE PROBLEMS IN REAL LANGUAGES 9

The only difference is that now the problem manifests itself during the definition of the composite mixin rather
than the definition of the classMyRectangle.

Fragile Hierarchies

The total ordering of mixins can lead to a further problem, namely that the resulting inheritance hierarchies
will often be fragile with respect to changes. Adding a new method to one of the mixinsimplicitly overrides
all identically named methods of mixins that appear earlier in the superclass chain. It may furthermore be
impossible to reestablish the original behavior of the composite without having to add or change several mixins
in the chain. This is especially critical if one modifies a mixin that is used in many places across the class
hierarchy.

As an illustration, suppose that in the previous example the mixinMBorder does not initially define a method
asString. This means that the implementation ofasString in MyRectangle will be the one specified byMColor.
Suppose that, later, the methodasString is added to the mixinMBorder. Because of the total ordering of mixins,
this implicitly overrides the implementation provided byMColor. Worse, the original behavior of the composite
classMyRectangle cannot be reestablished without changing more of the mixins involved in the composition.
If we want to avoid the ripple effect caused by further changes to existing mixins, we have to introduce a new
“glue mixin” between the mixinsMColor andMBorder, which makes the methodasString provided byMColor
available under a new name such ascolorAsString, and then add another glue methodasString to the class
MyRectangle.

With many forms of multiple inheritance, we also observe a fragility problem with respect to changes.
Since identically named features can be inherited from different parent classes, a single keyword (e.g., super)
is not enough to access inherited methods unambiguously. For example, C++ [STRO 97] forces one to explicitly
name the base class to access an overridden method; recent versions of Eiffel [MEYE 97] adopt an analogous
technique1. Although explicitly naming the source of overridden features makes it possible to compose features
from multiple parent classes, embedding explicit class references in the source code makes the code fragile with
respect to changes in the class hierarchy.

2.2 Occurrences of these Problems in Real Languages

Since inheritance is the primary composition and decomposition mechanism in object-oriented programming
languages, it is not surprising that occurrences of these problems can be found, in one flavor or another, in most
of today’s object-oriented languages. In this section, we identify and illustrate such occurrences in some of the
most interesting languages with regard to their inheritance features: Strongtalk, Jam, C++, and CLOS.

2.2.1 Strongtalk and Jam

Strongtalk [BAK 02] and Jam [ANCO 00] are respectively extensions of Smalltalk and Java with mixins. Both
suffer from the limitations caused by the total ordering imposed by mixin composition. As an illustration,
consider the situation shown in Figure 2.2, and suppose again that for compatibility reasons, we need to serialize
our classMyRectangle so that thergb value appears on the stream before theborderWidth, which means that
the mixinMColor has to be applied before the mixinMBorder.

As pointed out before, this also means that the color attributes get printed before the border attributes and
that it is not possible to change this within the composite entityMyRectangle. Instead, getting the reversed
printing order without duplicating any code requires modifying the involved mixins.

1The ability to access an overridden method using the keywordPrecursor followed by an optional superclass name was added to Eiffel
in 1997 [MEYE 97]. In earlier versions of Eiffel, access to original methods required repeated inheritance of the same class [MEYE 92]

9

10 CHAPTER 2. PROBLEMS WITH INHERITANCE

rectAsString
 ↑super asString

colorAsString
 ↑super asString

asString
 ↑self rectAsString, ' ', super asString,
 ' ', self colorAsString

Rectangle

asString
serializeOn:

Rectangle + MGlue1

rectAsString

Rectangle + MGlue1
+ MColor

asString
serializeOn:

Rectangle + MGlue1
+ MColor + MGlue2

colorAsString

Rectangle + MGlue1 + MColor
+ MGlue2 + MBorder

asString
serializeOn:

MColor

asString
serializeOn:

MBorder

asString
serializeOn:

MGlue1

rectAsString

MGlue1

colorAsString

MyRectangle

asString
inherits from
applies mixin

Figure 2.3: Customizing the composition using two intermediate “glue mixins”.

Modifying these mixins could be avoided if they were written so that the methodasString included only the
mixin-specific printing behavior and not the part referring to the superclass implementation. In the Smalltalk-
based language Strongtalk, the corresponding code would look as follows:

MColor>>asString
↑ self color asString

MBorder>>asString
↑ self borderWidth asString

However, this does not solve the problem of inappropriate overrides caused by the linear application of
mixins. In fact, the methodsasString provided byMColor andRectangle are overridden by the implementation
of MBorder, and therefore, they are still not accessible from within the composite classMyRectangle. Hence,
this class cannot specify the necessary glue code that combines the threeasString methods in the desired order.

To fix this, we first need to interpose two additional “glue mixins”MGlue1 andMGlue2 into the hierarchy, as
shown in Figure 2.3.MGlue1 is inserted between the classRectangle and the mixinMColor, and it implements
the method

10

2.2. OCCURRENCES OF THESE PROBLEMS IN REAL LANGUAGES 11

MGlue1>>rectAsString
↑ super asString

to make the methodRectangle>>asString available under the namerectAsString. Similarly,MGlue2 is inserted
between the mixinsMColor andMBorder, and it implements the method

MGlue2>>colorAsString
↑ super asString

to make the methodMColor>>asString available under the namecolorAsString. Only now it is possible to write
the necessary glue methodasString in the combining classMyRectangle so that we obtain the desired printing
order:

MyRectangle>>asString
↑ self rectAsString, ’ ’, super asString, ’ ’, self colorAsString.

The problem with this approach is that interposing the two additional glue mixins makes the inheritance
hierarchy more complex and causes the glue code to be scattered over three different entities. This makes pro-
gram comprehension much more difficult. Even a programmer who is familiar with the classRectangle as well
as the mixinsMColor andMBorder will have to look at three different entities to understand the composition of
the mixins. And because the occurrence of super-sends makes the code in the mixinsMGlue1 andMGlue2 de-
pendent on their position in the inheritance hierarchy, understanding the composite classMyRectangle requires
analyzing the inter-dependencies of the complete hierarchy consisting of six entities.

Note that the even though the examples are presented in Strongtalk syntax, JAM suffers from exactly the
same problems as it facilitates the same kind of mixin mechanism.

2.2.2 C++

The language C++ [STRO 97] is quite unique for our perspective: it features native support for multiple inheri-
tance and also supports mixins by means of classes with a parameterized superclass (i.e., templates).

Multiple inheritance

A distinctive feature of multiple inheritance in C++ is that the programmer has a certain amount of control
over a diamond situation by declaring a base class asvirtual, which means that the base class is shared and its
attributes are inherited only once2. While this provides help for avoiding conflicts and ambiguities in a diamond
situation, it does not help to solve the problem of duplicated wrappers.

As an illustration, let us reconsider the example shown in Figure 2.1, where a classA implements two
methods for reading and writing and has a subclassSyncA that implements synchronized versions of these
methods. Figure 2.4 shows the implementation ofSyncA in C++.

With multiple inheritance, sharing code among different classes means (directly or indirectly) inheriting
from a common superclass that contains the code to be shared. Therefore, if we want to share the synchroniza-
tion code inSyncA to create another synchronized subclassSyncB of B, we need to factor this code into a new
classSyncReadWrite and then make it the superclass of bothSyncA andSyncB (cf. Figure 2.1 right).

Unfortunately, multiple inheritance alone is not expressive enough to do this. The problem is that the
calls to the superclass versions ofread and write are statically bound and can refer only to asuperclassof
SyncReadWrite. Therefore, the classSyncReadWrite cannot explicitly call the unsynchronized versions of the
methodsread andwrite provided by itssubclassesA andB.

As a workaround, one would have to modify the methodsread and write in SyncReadWrite so that the
explicit calls to the superclass methods are replaced by calls to abstract methodsdirectRead anddirectWrite

2In his description of C++ [STRO 97], Stroustrup uses the term “mixin” for classes overriding methods of a virtual base class. However,
this definition differs from the meaning of the term “mixin” used in this thesis and in most of the research literature.

11

12 CHAPTER 2. PROBLEMS WITH INHERITANCE

class SyncA : public A {
public:
virtual int read() {

acquireLock();
result = A::read();
releaseLock();
return result;

};
virtual void write(int n) {

acquireLock();
A::write(n);
releaseLock();

};

protected:
virtual void acquireLock() {

// acquire lock
};
virtual void releaseLock() {

// release lock
};

};

Figure 2.4: The class SyncA in C++

class SyncReadWrite {
public:
virtual int read() {

acquireLock();
result = directRead();
releaseLock();
return result;

};
virtual void write(int n) {

acquireLock();
directWrite(n);
releaseLock();

};

protected:
virtual void acquireLock() {

// acquire lock
};
virtual void releaseLock() {

// release lock
};

virtual int directRead() = 0;
virtual void directWrite(int n) = 0;

};

Figure 2.5: The class SyncReadWrite implemented with two abstract methods

12

2.2. OCCURRENCES OF THESE PROBLEMS IN REAL LANGUAGES 13

class SyncA : public A, SyncReadWrite { class SyncB : public A, SyncReadWrite {
public: public:
virtual int read() { virtual int read()

return SyncReadWrite::read(); return SyncReadWrite::read();
}; };
virtual void write(int n) { virtual void write(int n) {

SyncReadWrite::write(n); SyncReadWrite::write(n);
}; };

protected: protected:
virtual int directRead() { virtual int directRead() {

return A::read(); return B::read();
}; };
virtual void directWrite(n) { virtual int directWrite(n) {

A::write(n); B::write(n);
}; };

}; };

Figure 2.6: Code duplication in the classes SyncA and SyncB

(Figure 2.5) that will then be implemented by the subclassesSyncA andSyncB (Figure 2.6). However, this
solution is not optimal as it still requires duplication of four glue methods in each subclass. Furthermore,
avoiding name clashes between the synchronized and unsynchronized versions of theread andwrite methods
makes this approach rather clumsy, and one has to make sure that the unsynchronized methodsdirectRead are
not publicly available inSyncA andSyncB.

Template-based mixins

Unlike the generics mechanisms of most other languages such as Java and C#, the C++ template mechanism al-
lows the programmer to write classes with generic superclasses. As shown by VanHilst and Notkin [VANH 96a,
VANH 96b] as well as Smaragdakis and Batory [SMAR 98, SMAR 00], this allows the programmer to express
a mixin in C++ as a class with a generic superclass. Thus, in C++, the programmer can avoid the limitation
of multiple inheritance with regard to wrappers by using mixins instead. In the previous example, this means
that the synchronization code can be written as a generic classMSyncReadWrite. This generic class can then
be used to create the classesSyncA andSyncB by applying it to the superclassesA andB, respectively. The
corresponding code is shown in Figure 2.7.

Apart from the fact that C++ mixins are explicitly written as generic classes, this approach is identical to
ordinary mixins as discussed earlier. Therefore, it is not surprising that it solves our problem without any code
duplication. However, it also means that this approach suffers from the linearization problems pointed out
before as soon as multiple mixins are composed.

As an example, assume that we want to combine the mixinMSyncReadWrite with another wrapper mixin
MLogOpenClose to create a new classMyDocument, which differs from its superclassDocument in that it
synchronizes all the calls to the methodsread andwrite, and logs all the calls to the methodsopen andclose.
Unfortunately, this again requires the programmer to choose a total order for the two mixins. In the code
shown in Figure 2.8, we decided that the mixinMSyncReadWrite is applied last, which means that it overrides
all the features of the other mixinMLogOpenClose. This is not a problem as long as the two mixins do not
implement conflicting features. However, it makes the whole hierarchy fragile with respect to changes: if the
mixin MSyncReadWrite is changed so that it also provides a methodreset, this new methodimplicitly overrides
the implementation provided byMLogOpenClose and hence breaks our classMyDocument.

As illustrated in Section 2.2.1, the programmer can fix such conflicts by modifying existing mixins, which
is problematic if the changed mixins are used elsewhere, or by introducing new intermediate mixins, which
leads to dispersal of glue code. In addition, C++ offers a third option for resolving such conflicts. This option

13

14 CHAPTER 2. PROBLEMS WITH INHERITANCE

template <class Super>
class MSyncReadWrite : public Super {

public:
virtual int read() {

acquireLock();
result = Super::read();
releaseLock();
return result;

};
virtual void write(int n) {

acquireLock();
Super::Write(n);
releaseLock();

};

protected:
virtual void acquireLock() {

// acquire lock
};
virtual void releaseLock() {

// release lock
};

};

class SyncA : public MSyncReadWrite<A> {};

class SyncB : public MSyncReadWrite {};

Figure 2.7: Synchronization expressed as a mixin

template <class Super>
class MLogOpenClose : public Super {

public:
virtual void open() {

Super::open();
log(”Opened”);

};
virtual void close() {

Super::close();
log(”Closed”);

};
virtual void reset() {

// reset logger
};

protected:
virtual void log(char* s) {

// write to log
};

};

class MyDocument : public MSyncReadWrite<MLogOpenClose<Document>> {};

Figure 2.8: The class MyDocument built from two mixins

14

2.2. OCCURRENCES OF THESE PROBLEMS IN REAL LANGUAGES 15

is based on the fact that C++ allows a class to explicitly access features of its indirect superclasses by using
nested scope qualifiers.

In the previous example, this means that the classMyDocument can use the expression

MSyncReadWrite::MLogOpenClose::reset()

to refer to the methodreset in MLogOpenClose, while it can use the expression

MSyncReadWrite::MLogOpenClose::Document::reset()

to refer to the methodopen in Document.
Using such nested scope qualifiers, the programmer can write the glue code directly in the composite class

MyDocument. This avoids the dispersal of glue code caused by introducing intermediate mixins, but it intro-
duces other problems. Besides the fact that nested scope qualifiers make the code hard to read, understand and
maintain, they also make the code fragile with respect to changes in the hierarchy and can break encapsulation
[SNYD 86]. This is because a class using such code does not only depend on the entirety of features inherited
from its direct superclass, but can instead have explicit dependencies on the complete inheritance hierarchy
(e.g., the exact order of the applied mixins) and the implementation details of all itsindirect superclasses (e.g.,
whether a superclass implements or inherits a certain feature).

2.2.3 CLOS

Unlike C++ and Eiffel, the form of multiple inheritance featured by CLOS [LAWL 89, PAEP 93] imposes a
linear order on the superclasses. This has the advantage that a single keywordcall-next-method is enough
to unambiguously call a superclass method. As a consequence, CLOS avoids the fragility that is caused by
allowing the programmer to code explicit superclass references into the source code of arbitrary methods.
Another advantage of the CLOS approach is that super-sends are dynamically resolved, which means that
CLOS can express and apply generic wrappers without any code duplication.

On the downside, CLOS linearization often leads to unexpected behavior because it is not always clear
how a complex multiple inheritance hierarchy should be linearized [DUCO 92]. Furthermore, the automatic
linearization violates encapsulation because it may change the parent-child relationships among classes in the
inheritance hierarchy [SNYD 86, SNYD 87].

15

Chapter 3

Traits

As a solution to the identified problems we propose the traits mechanism [SCHÄ 03], which is a simple ex-
tension of single inheritance. In this chapter, we first introduce traits by means of a formal model, graphical
diagrams, and running examples (Section 3.1). Then, we evaluate the traits mechanism against the problems
identified in the previous chapter (Section 3.2). Finally, we discuss the important decisions in the design of
traits and analyze whether and how traits could be modeled in C++ (Section 3.3).

3.1 Traits – Composable Units of Behavior

The trait mechanism offers a simple solution to the problems outlined in Chapter 2.Traits are essentially sets
of methods (i.e. mappings from method names to method bodies) that serve as the behavioral building block of
classes and the primitive units of code reuse. Classes (and composite traits) are composed from a set of traits
by specifying glue code that connects the traits together and accesses the necessary state.

With this approach, classes retain their primary role as generators of instances, while traits are purely units
of reuse. As with mixins, classes are organized in a single inheritance hierarchy, thus avoiding the key problems
of multiple inheritance, but the incremental extensions that classes introduce to their superclasses are specified
using one or more traits.

Traits bear a superficial resemblance to mixins, with several important differences. Several traits can be
applied to a class in a single operation, whereas mixins must be applied one at a time. Trait composition is
unordered, thus avoiding problems due to linearization of mixins. Traits contain methods, but no state, so state
conflicts are avoided, but method conflicts may exist. A class is specified by composing a superclass with a
set of traits and someglue methods. Glue methods are defined in the class and they connect the traits together;
i.e., they implement required trait methods (possibly by accessing state), they adapt provided trait methods, and
they resolve method conflicts.

Trait composition respects the following three rules:

• Methods defined in the class take precedence over trait methods.This allows the glue methods defined
in a class to override methods with the same name provided by the used traits.

• Flattening property.A non-overridden method in a trait has the same semantics as if it were implemented
directly in the class using the trait.

• Composition order is irrelevant.All the traits have the same precedence, and hence conflicting trait
methods must be explicitly disambiguated.

A conflict arises if we combine two or more traits that provide identically named methods that do not
originate from the same trait. Conflicts are resolved by implementing a glue method at the level of the class

16

3.1. TRAITS – COMPOSABLE UNITS OF BEHAVIOR 17

that overrides the conflicting methods, or byexcludinga method from all but one trait. In addition traits allow
method aliasing; this makes it possible for the programmer to introduce an additional name for a method
provided by a trait. The new name is used to obtain access to a method that would otherwise be unreachable
because it has been overridden.

We shall first introduce our formal model by summarizing those aspects of classes that we need to capture.
We will then proceed to define traits, and show how traits are used to build classes and composite traits. We
will introduce a running example in Section 3.1.3 to illustrate various aspects of the formal model.

3.1.1 Classes and Methods

A key feature of traits is that, although classes may be built using traits, the way in which this is done does
not affect the semantics of classes. In effect, traits can be inlined, or flattened. For this reason, we start by
describing a model of classes without traits.

The primitive elements of our model are the following disjoint sets:

• N , a countable set of methodnames, and

• B, a countable set of methodbodies,

• A, a countable set ofattributenames (i.e., instance variables).

To express conflicts, we extend the set of method bodiesB to a flat latticeB?, with new elements⊥ and>
such that⊥ < m < >, for all m ∈ B, and in which all other elements are incomparable. We will use⊥ to
represent undefined and> to represent a method conflict. Thus, theleast upper boundor join operatort for
B? is as shown:

⊥��@@

m1
��

m2
@@

> t ⊥ m1 m2 >
⊥ ⊥ m1 m2 >
m1 m1 m1 > >
m2 m2 > m2 >
> > > > >

wherem1 6= m2

Definition 1 A methodis a partial function mapping a single method name to a particular method body. We
use the notation

a 7→ m

for the method that maps the namea ∈ N to the method bodym ∈ B.

Definition 2 A method dictionary, d ∈ D is a total function,d : N → B? that maps only a finite subset of
method names to bodies and has no conflicts,i.e., whered−1(B) is finite, andd−1(>) = ∅.

Note that a method dictionary represents a finite set of methods. For this reason we will always specify
them extensionally, listing only the mappings to elements inB. For example,

d = {a 7→ m1, b 7→ m2}

defines a method dictionaryd that maps method namea to bodym1 andb to m2, and all other method names
to⊥.

Definition 3 A class, c ∈ C, is either the empty class,nil, or a sequence〈α, d〉·c′, with attributesα ⊂ A,
method dictionaryd ∈ D, and superclassc′ ∈ C.

17

18 CHAPTER 3. TRAITS

B

a

C
i
a
b

a
 ↑self b

m1

a
 ↑super a
b
 ↑1

m3

m2

Figure 3.1: An example hierarchy

For the purpose of explaining traits, we do not need to detail the behavior of methods, however we do need
to keep track ofself andsuper calls. We therefore model:

• selfSends: B → 2N , the set of method names used in self-sends, and

• superSends: B → 2N , the set of method names used in super-sends.

Note that it is considered poor style for a method to perform a super-send to a different method [RIEL 96].
We would therefore expect that for a given methodl 7→ m, superSends(m) = ∅ or {l}. Since programming
languages do not enforce this practice, however, we allow for the more general case.

We extendselfSendsandsuperSendsto sets of methods in the obvious way:

• selfSends: 2B → 2N , selfSends(µ) def=
⋃

m∈µ selfSends(m)

• superSends: 2B → 2N , superSends(µ) def=
⋃

m∈µ superSends(m)

(We will later further extend these functions to traits and classes in a similar way, simply taking the union of
all self-sends or super-sends of the methods belonging to the trait or class.)

Example. Consider a classc defined as follows:

c = 〈{i}, {a 7→ m2, b 7→ m3}〉·〈∅, {a 7→ m1}〉·nil

Classc has attributei and methodsa 7→ m2 andb 7→ m3. Its superclass is〈∅, {a 7→ m1}〉·nil, whose
superclass in turn isnil. (For conciseness, we will in future omit the trailing·nil from all examples.) Note that
a 7→ m2 in c overridesa 7→ m1 in its superclass (cf. Figure 3.1). Suppose now that:

selfSends(m1) = {b} superSends(m1) = ∅
selfSends(m2) = ∅ superSends(m2) = {a}
selfSends(m3) = ∅ superSends(m3) = ∅

Since the superclass ofc requires, but does not implementb, we see that methodb is abstract. Furthermore,
a 7→ m2 not only overridesa 7→ m1, but it extends it by means of asuper call. As a consequence, we see
that knowledge of the superclass chain is essential to capturing the semantics of classes, since the meaning of
a 7→ m2 depends ona 7→ m1.

Shortly we will formalize what it means for a class to be abstract or concrete, and when two classes con-
structed in different ways are equivalent.

18

3.1. TRAITS – COMPOSABLE UNITS OF BEHAVIOR 19

3.1.2 Traits

We model traits as an extension of method dictionaries where some methods may conflict. Conflicts may arise
when traits are composed; the conflicts can be resolved when the composed trait is used in another class or trait.
A trait both provides methods (i.e., the methods implemented in the trait) and requires methods (i.e., those that
are invoked by self-sends and super-sends, but are not provided).

Definition 4 A trait, t ∈ T , is a function,t : N → B?, wheret−1(B) is finite.

Example. A trait, like a method dictionary, represents a finite set of methods. For example,

t1 = {a 7→ m1, b 7→ m2, c 7→ >}

defines a traitt that maps method namea to bodym1, b to m2, and for which method namec has a conflict.
(Assumem1 andm2 to be the same method bodies we saw in the previous example.)

Since traits are just finite mappings, two traits are equal when these mappings are equal, that is, when equal
names map to equal method bodies1.

By convention,selfSendsandsuperSendsof > and⊥ are all∅. We extendselfSendsandsuperSendsto
traits in the obvious way:

• selfSends: T → 2N , selfSends(t) def=
⋃

l∈N selfSends(l)

• superSends: T → 2N , superSends(t) def=
⋃

l∈N superSends(l)

In the example,selfSends(t1) = {b} andsuperSends(t1) = {a}.

Definition 5 Theconflicts: T → 2N , of a traitt are defined by:

conflicts(t) def= {l | t(l) = >}

In the example,conflicts(t1) = {c}.
Note that every method dictionary is, by definition, a trait, but traits with conflicts are not method dictio-

naries. In fact, a method dictionaryd ∈ D is just aconflict-freetrait, that is, a traitd such thatconflicts(d) = ∅.
We therefore consider thatD ⊂ T .

The provided names of a trait are the names of the methods that it provides. A trait may also require a set
of methods that parameterize the provided behavior.

Definition 6 Theprovidedmethod names,provided: T → 2N , of a traitt are:

provided(t) def= t−1(B)

i.e., the set of all names thatt does not map to⊥ or>. In the example,provided(t1) = {a, b}.

Definition 7 Therequirednames,required: T → 2N , of a traitt are:

required(t) def= selfSends(t) \ provided(t)

In the example,required(t1) = ∅, since{b} \ {a, b} = ∅. In contrast, if we have a traitt′ = {a 7→ m1}, then
required(t′) = {b} sinceb is sent toself in m1 but not provided.

Notice that the required names of a trait do not consider super-sends. This is because traits, like mixins,
do not bindsuper. When we compose a class from traits, however, we must take super-sends into account to
determine whether the class is well-founded (cf. Definition 19).

Since traits contain only methods, they cannot specify any state, nor access state directly. Trait methods
can access state indirectly, using required methods that are ultimately provided by accessors (getter and setter
methods) of the class using the trait.

1Our formalization does not define equality of method bodies. This is because equality of method bodies may be established in a variety
of ways,e.g., by the location of the source code, or by the syntactic equality or equivalence of source code.

19

20 CHAPTER 3. TRAITS

3.1.3 Composing Classes from Traits

Trait composition does not subsume single inheritance; trait composition and inheritance are complementary.
Whereas inheritance is used to derive one class from another, traits are used to achieve structure and reusability
within a class definition. We summarize this relationship with the equation

Class = Superclass + State + Traits + Glue methods

This means that a class is derived from a superclass by adding the necessary attributes (state variables),
using a set of traits, and implementing the glue methods that connect the traits together and serve as accessors
for the attributes. For a class to becomplete, all the requirements of the traits must be satisfied,i.e., methods
with the appropriate names must be provided. These methods can be implemented in the class itself, in a direct
or indirect superclass, or in another trait that is used by the class.

Whereas an ordinary class has the form〈α, d〉·c′, a class composed from traits has the form

〈α, d � t〉·c′

wheret is a trait, andd is a method dictionary that may extend and overridet. In general,t can be acomposition
clause, an expression that specifies the composition of several traits, and possibly aliases or excludes selected
methods. The glue we refer to consists precisely of the overriding, alias and exclusion operations.

Definition 8 Thesumof two traits is formed by taking the union of the non-conflicting methods and disabling
the conflicting methods. For traitst1 andt2, we define their sum(t1 + t2) : N → B? as follows:

(t1 + t2)(l)
def= t1(l) t t2(l)

For example:

{a 7→ m1, b 7→ m2, c 7→ m3}+ {a 7→ m1, b 7→ m4} = {a 7→ m1, b 7→ >, c 7→ m3}

Proposition 1 Trait sum is associative and commutative.

Proof Immediate from the definition, since thejoin operatort is associative and commutative.
Because trait sum is commutative, conflicts must be resolved explicitly (cf. Section 3.1.5). Note that equal

methods do not conflict, so in the previous example there is no conflict fora.

Definition 9 A method dictionaryd mayoverridesome of the methods in a traitt. We defined � t : N → B?

as follows:

(d � t)(l) def=
{

t(l) if d(l) = ⊥
d(l) otherwise

Overriding is the key mechanism for resolving conflicts. Note thatd � t is, in general a trait, not a method
dictionary. However, ift contains conflicts, we can always choosed so thatd � t will be conflict-free. For
example:

{b 7→ m2}� {a 7→ m1, b 7→ >, c 7→ m3} = {a 7→ m1, b 7→ m2, c 7→ m3}

In class definitions of the form〈α, d � t〉·c′, d will typically be used to resolve conflicts int, and to provide
any missing methods required byt. For the moment, we will assume that a class formed in this way iswell-
defined, and defer a discussion of what this means to Section 3.1.6.

20

3.1. TRAITS – COMPOSABLE UNITS OF BEHAVIOR 21

on:
atEnd
atStart
setToEnd
setToStart
nextPosition
maxPosition
minPosition
next

collection
collection:
position
position:

TReadStream

Figure 3.2: The trait TReadStream with provided and required methods

The flattening property. An important property follows from the way that classes are constructed from traits.
If c = 〈α, d � t〉·c′ is well-defined (cf. Section 3.1.6), and, in particular, ifd′ = d � t is conflict-free,i.e., d′ is
a method dictionary, thenc can clearly beflattenedto an equivalent definitionc = 〈α, d′〉·c′ that does not make
use of traits. In other words, in any class defined using traits, thetraits can be inlinedto give an equivalent
class definition that does not use traits.

As a consequence, traits and classes have the following properties:

• Methods defined in the class take precedence over trait methods.This follows from the fact that the
methods in the class’ method dictionaryd override those provided byt in d � t.

• Trait methods take precedence over superclass methods.This follows from the flattening property. Since,
〈α, d � t〉·c′ can beflattenedto 〈α, d′〉·c′, trait methods behave as if they were implemented in the class
itself.

• The keywordsuper is late bound in traits; it simply causes the method lookup to be started in the super-
class of the class thatusesthe trait.

Note that the flattening property expresses only that the use of traits can be flattened within a class speci-
fication. It doesnot state that inheritance between classes can be flattened. In general inheritance hierarchies
may berefactored, but not flattened. Later, in Section 3.1.7, we will consider when classes that have been
refactored using traits are equivalent.

Running Example

Suppose that we want to implement a library that provides streams which may be readable, writeable, both
readable and writeable, or synchronized. In the examples, trait names start with the letterT, and class names
do not. Weitalicize required methods andemboldenglue methods. Because traits have been implemented in
the Smalltalk dialect Squeak [INGA 97], we present the code in Smalltalk.

In our example, stream classes are built from elementary traits such asTReadStream, TWriteStream and
TSynchronize. We introduce a minor extension to UML to graphically present traits, as seen in Figure 3.2. The
left column lists the provided methods ofTReadStream and the right column lists the required methods. The
code implementing this trait is shown below. Required methods (shown initalics) are flagged by the use of the
method bodyself requirement.

As illustrated in Figure 3.3 and the corresponding Smalltalk code in Figure 3.4, we create the classRead-
Stream by using the traitTReadStream, which is parameterized by the required methodscollection, collection:,
position, andposition:. To be complete, the classReadStream has to fulfill these requirements by providing
corresponding glue methods. In the example, the methodscollection, position, andposition: are implemented
as accessors to two instance variablescollection andposition, while the methodcollection: ensures that when

21

22 CHAPTER 3. TRAITS

ReadStream
initialize
collection
collection:
position
position:

on:
atEnd
atStart
setToEnd
setToStart
nextPosition
maxPosition
minPosition
next

collection
collection:
position
position:

fulfilled byTReadStream

Figure 3.3: The class ReadStream composed from the trait TReadStream

a new collection is set, the stream is correctly positioned at the start of the collection. The classReadStream
also implements a methodinitialize for initializing the two instance variables.

3.1.4 Composite Traits

In the same way that classes are composed from traits, traits can be composed from other traits. Unlike classes,
most traits are not complete, which means that they do not define all the methods that are required by their
subtraits. Unsatisfied requirements of subtraits simply become required methods of the composite trait. Here
too, the composition order is not important, and methods defined in a composite trait take precedence over the
methods of its subtraits.

Definition 10 A composite traitis a trait expression of the formd � t, whered ∈ D andt is a composition
clause (trait expression) using only trait sum (+), alias (→) and exclusion (−) operators. (A formal definition
of aliasing and exclusion follows in Section 3.1.5.)

Even in case of multiple levels of composition, the flattening property remains valid. The semantics of a
method does not depend on whether it is defined in a trait or in entities that use this trait (cf. Section 3.1.3).

Example. Since the traitsTReadStream andTWriteStream contain several identical methods, we now factor
out the duplicated behavior into a new traitTPositionableStream, which provides all the functionality to manip-
ulate a position over a collection. As illustrated in Figure 3.5, the traitsTReadStream andTWriteStream can
then be expressed in terms of the traitTPositionableStream.

The implementation ofTPositionableStream is identical to the implementation ofTReadStream (cf. Fig-
ure 3.4) minus the methodsnext andon:. Figure 3.6 shows the implementation of the traitsTReadStream and
TWriteStream, which both use the traitTPositionableStream. The traitTReadStream overrides the methods
on: andnext, which position the stream to the beginning of the given collection and read the next element.
Similarly, the traitTWriteStream overrides the methodson: andnextPut:, which position the stream to the end
of the given collection and append an element.

Note that the unfulfilled requirements ofTPositionableStream are propagated to the traitsTReadStream and
TWriteStream, respectively. This means that the traitsTReadStream andTWriteStream are also parameterized
by the required methodscollection, collection:, position, andposition:.

22

3.1. TRAITS – COMPOSABLE UNITS OF BEHAVIOR 23

Trait named: #TReadStream uses: {}

atStart collection: aCollection
↑ self position = self minPosition. self requirement.

atEnd collection
↑ self position >= self maxPosition. self requirement.

setToEnd position: aNumber
self position: self maxPosition. self requirement.

setToStart position
self position: self minPosition. self requirement.

maxPosition minPosition
↑ self collection size. ↑ 0.

on: aCollection nextPosition
self collection: aCollection. self position: self position + 1.
self setToStart. ↑ self position.

next
↑ self atEnd

ifTrue: [nil]
ifFalse: [self collection at: self nextPosition].

Object subclass: #ReadStream
instanceVariableNames: ' position collection'
uses: TReadStream

initialize
self collection: String new

position position: aNumber
↑ position. position : = aNumber.

collection collection: aCollection
↑ collection collection : = aCollection.

Figure 3.4: Smalltalk implementation of the class ReadStream and the trait TReadStream

3.1.5 Conflict Resolution

A conflict arises if and only if we compose two traits that provide identically named methods with different
bodies2. In particular, this means that if thesamemethod is obtained more than once via different paths, there
is no conflict (cf. Definition 8). This issue is further discussed in Section 3.3.

Method conflicts must be explicitly resolved by defining an overriding method in the class or in the compos-
ite trait, or by means of exclusion in the composition clause. This guarantees that the conflict can be resolved
only on the level of the composite, but not by another subtrait that happens to provide a method with the same
name.

Oftentimes, conflicts are resolved by overriding the conflict with a new method that somehow combines
the conflicting alternatives (e.g., it invokes one conflicting method after the other). To do this without code
duplication, traits feature a mechanism calledaliasing. Aliases allow the programmer to make a trait method

2In the Squeak implementation bodies are considered to be different if they originate from different traits — other strategies could also
be adopted, such as comparing the source code, or the byte-code.

23

24 CHAPTER 3. TRAITS

next
on:

atEnd
collection
position

TReadStream

atEnd
atStart
setToEnd
setToStart
nextPosition
maxPosition
minPosition

collection
collection:
position
position:

flattened to

on:
atEnd
atStart
setToEnd
setToStart
nextPosition
maxPosition
minPosition
next

collection
collection:
position
position:

TReadStream

fulfilled by

nextPut:
on:

atEnd
collection
position

TWriteStream

atEnd
atStart
setToEnd
setToStart
nextPosition
maxPosition
minPosition

collection
collection:
position
position:

on:
atEnd
atStart
setToEnd
setToStart
nextPosition
maxPosition
minPosition
nextPut:

collection
collection:
position
position:

TWriteStream

fulfilled by

TPositionableStream TPositionableStream

Figure 3.5: TReadStream and TWriteStream as composite traits

Trait named: #TReadStream uses: TPositionableStream

on: aCollection
self collection: aCollection.
self setToStart.

next
↑ self atEnd

ifTrue: [nil]
ifFalse: [self collection at: self nextPosition].

Trait named: #TWriteStream uses: TPositionableStream

on: aCollection
self collection: aCollection.
self setToEnd.

nextPut: anElement
↑ self atEnd

ifTrue: [self error: ’no space’]
ifFalse: [self collection at: self nextPosition put: anElement].

Figure 3.6: Implementation of the composite traits TReadStream and TWriteStream

24

3.1. TRAITS – COMPOSABLE UNITS OF BEHAVIOR 25

fulfilled by

next readNext
acquireLock
releaseLock

TSyncReadStream
ReadWriteStream

collection:
collection
position
position:

TSynchronize
acquireLock
releaseLock
initialize

semaphore
semaphore:

on:
atEnd
atStart
setToEnd
setToStart
nextPosition
maxPosition
minPosition
next readNext

collection
collection:
position
position:

conflict

TReadStream

next
on:

collection
position

TReadStream

atEnd
atStart
setToEnd
setToStart
nextPosition
maxPosition
minPosition

TPositionableStream
collection
collection:
position
position:

nextPut:
on:

collection
position

TWriteStream

atEnd
atStart
setToEnd
setToStart
nextPosition
maxPosition
minPosition

TPositionableStream
collection
collection:
position
position:

fulfilled by

Figure 3.7: Compositions with aliases and conflicts

available under an additional name, which can then be used from any method in the composite entity.

Definition 11 Aliasing introduces an additional name for an existing method:

t[a→b](l) def=

 t(l) if l 6= a
t(b) if l = a andt(a) = ⊥
> otherwise

For example:

{a 7→ m1, b 7→ m2}[c→b] = {a 7→ m1, b 7→ m2, c 7→ m2}

Note that{a 7→ m1, b 7→ m2}[a→b] = {a 7→ >, b 7→ m2}, which shows that an attempt to alias an already
bound method name will introduce a conflict. Aliases are discussed further in Section 3.3.

In addition to overriding and aliasing, traits also supportexclusion, which allows one to avoid a conflict
before it occurs. The composition clause allows a programmer to exclude methods from a trait when it is
composed. This suppresses these methods and hence avoids conflicts with implementations provided by other
traits. Note that excluding a method does not necessarily turn the excluded method into a requirement. It causes
a requirement only if the name of the excluded method is self-sent by other methods of the trait.

25

26 CHAPTER 3. TRAITS

Definition 12 Exclusioncreates a trait in which a particular method is not defined:

(t− a)(l) def=
{
⊥ if a = l
t(l) otherwise

For example:
{a 7→ m1, b 7→ >} − b = {a 7→ m1}

Example. As a concrete example for the use of aliases, consider the traitTSyncReadStream in Figure 3.7
(left). This trait represents a synchronized read stream, and it is constructed as the composition of the traits
TSynchronize and TReadStream. To ensure that element access is properly synchronized, theTSyncRead-
Stream redefines thenext method provided by the traitTReadStream. Since this redefinition needs to invoke
the originalnext method provided by the traitTReadStream, we create an alias that makes the original method
TReadStream>>next available under the new namereadNext.

Trait named: #TSynchronize uses: {}

acquireLock semaphore
self semaphore wait. self requirement.

initialize semaphore: aSemaphore
self semaphore: Semaphore new. self requirement.
self releaseLock.

releaseLock
self semaphore signal.

Trait named: #TSyncReadStream uses: TSynchronize + (TReadStream @ {#readNext -> #next})

next
| read |
self acquireLock.
read : = self readNext.
self releaseLock.
↑ read.

Figure 3.8: Implementation of the traits TSynchronize and TSyncReadStream

Figure 3.8 shows the actual implementation of the traitsTSyncReadStream andTSynchronize. (The imple-
mentation ofTReadStream is shown in Figure 3.6.) The traitTSynchronize is implemented in a very straight
forward way; it provides the methodsacquireLock, releaseLock, and initialize, while it requires the methods
semaphore: andsemaphore.

The implementation of traitTSyncReadStream is more interesting. In the composition clause ofTSyn-
cReadStream, we first use the operator@ to create the aliasreadNext for the methodnext provided byTRead-
Stream, and then we use the operator+ to compose the aliased trait with the traitTSynchronize. The method
next is then overridden inTSyncReadStream so that it acquires a lock, calls the original method via the alias,
and then releases the lock. Note thatTSyncReadStream does not satisfy the requirements of the traitsTRead-
Stream andTSynchronize, which means that they are propagated toTSyncReadStream.

As an example of a conflict, consider the classReadWriteStream shown in Figure 3.7 (right). This class is
built from the two traitsTReadStream andTWriteStream, which each provide their own version of the method
on:. This results in a conflict that may be resolved by excluding one of the conflicting methods or by overriding
it in the composite class.

26

3.1. TRAITS – COMPOSABLE UNITS OF BEHAVIOR 27

In our example, we avoid the conflict by excluding the methodTReadStream>>on:, which means that the
methodTWriteStream>>on: will be included in the composite. The corresponding composition clause uses the
exclusion operator- and looks as follows:

Stream subclass: #ReadWriteStream
uses: (TReadStream - {#on:}) + TWriteStream

As shown in Figure 3.5, the traitsTReadStream andTWriteStream are both composed from the traitTPosi-
tionableStream. Thus, all methods originating fromTPositionableStream areidentical in both traits and do not
pose a conflict (cf. Definition 8).

3.1.6 Well-definedness

We have deferred a discussion of when a class built from traits is well-defined. We will now make that notion
precise. In particular, we will define what it means for a class to be valid and well-founded.

Definition 13 Thedictionaryof a classc, dict(c), is the� composition of the (flattened) method dictionaries
in its inheritance chain:

dict(c) def=
{
{} if c = nil
d � dict(c′) if c = 〈α, d〉·c′

Note that thedictionaryof a classc is not necessarily a (conflict-free)method dictionary: if c is composed
from traits, i.e., c = 〈α, d � t〉·c′, thend � t is not necessarily a (conflict-free) method dictionary inD, and
dict(c) might contain conflicts. We therefore need the following definition to tell us when a class composed
from traits isvalid:

Definition 14 A classc is valid if conflicts(dict(c)) = ∅.

Definition 15 Themethod lookup, c � a, of a method namea in a classc is:

c � a
def= dict(c)(a)

Definition 16 Theprovidednames,provided: C → 2N , of a classc are:

provided(c) def= {l ∈ N | c � l ∈ B}

i.e., the set of all names thatdict(c) does not map to⊥ or>.

Definition 17 The increment, delta(c), of a classc, is:

delta(c) def=
{
{} if c = nil
d if c = 〈α, d〉·c′

Definition 18 Thesuperclass, super(c), of c is:

super(c) def=
{

nil if c = nil
c′ if c = 〈α, d〉·c′

Definition 19 A classc is well-foundedif and only if all super-sends in its inheritance chain are bound,i.e., if
superSends(delta(c)) ⊆ provided(super(c)) andsuper(c) is well-founded.nil is well-founded by convention.

For a particular programming language, a class that is not well-founded may generate run-time errors, or
compile-time errors, depending on the philosophy of its designers.

27

28 CHAPTER 3. TRAITS

ReadWriteStream

next

ReadStream

next

WriteStream

nextPut:
position:

Stream

position
position:

duplicated

Figure 3.9: Code duplication in the Smalltalk Stream hierarchy

Definition 20 A classc is well-definedif c is valid and well-founded.

Now we can state theflattening propertymore precisely:

Proposition 2 Flattening property.If c = 〈α, d � t〉·c′ is well-defined andd′ = d � t, thenc = 〈α, d′〉·c′ is
an equivalent, flattened specification ofc.

Proof Follows trivially from Definitions 13 and 14, sincec is well-defined, it is valid, and henced′ � dict(c′)
is conflict-free, so〈α, d′〉·c′ is an equivalent, valid class specification.

3.1.7 Refactoring, reachability and equivalence

The flattening property helps us to ensure that the semantics of a class does not change when it is rewritten as
a composition of traits. However it is inadequate for reasoning about the equivalence of classes when an entire
class hierarchy is refactored. The reason for this is that flattening helps us reason about trait composition, but
not about inheritance. In particular, flattening says nothing about which methods are reachable through the
inheritance chain of the class by means of self-sends and super-sends.

Consider, for example, the class hierarchy in Figure 3.9. We can represent this formally as follows (eliding
the trailingnil):

Stream = 〈α, {position 7→ mposition, position: 7→ mposition:}〉
ReadStream = 〈β, {next 7→ mnext}〉·Stream
WriteStream = 〈γ, {nextPut: 7→ mnextPut:, position: 7→ mposition:′}〉·Stream

ReadWriteStream = 〈β, {next 7→ mnext}〉·WriteStream
selfSends(mnext) = {position}

selfSends(mnextPut:) = {position, position:}
selfSends(m) = {} for all other values ofm

superSends(mposition:′) = {position:}
superSends(m) = {} for all other values ofm

As illustrated in Figure 3.9, one problem with this hierarchy is that the methodnext 7→ mnext is duplicated:
it is implemented in both the classReadStream andReadWriteStream. We avoid this duplication by refactor-
ing this hierarchy with traits as shown in Figure 3.10. In the refactored hierarchy, the classesReadStream′,
WriteStream′, andReadWriteStream′ are direct subclasses of the classStream′, while the actual read and write
behavior is factored out into two traitsTReadStream andTWriteStream, respectively.

28

3.1. TRAITS – COMPOSABLE UNITS OF BEHAVIOR 29

ReadWriteStream'

 TWriteStream

TReadStream

ReadStream'

 TReadStream

WriteStream'

TWriteStream

Stream'

position
position:

Figure 3.10: The Smalltalk Stream hierarchy refactored using traits

Formally, the new hierarchy is expressed as:

TReadStream = {next 7→ mnext}
TWriteStream = {nextPut: 7→ mnextPut:, position: 7→ mposition:′}
ReadStream′ = 〈β, TReadStream〉·Stream
WriteStream′ = 〈γ, TWriteStream〉·Stream

ReadWriteStream′ = 〈β ∪ γ, TReadStream + TWriteStream〉·Stream

But how do we know that we have really preserved the semantics of these classes? In general, we must
consider not only the mapping from provided method names to method bodies, but also methods that may be
reached by super-sends from those method bodies, methods that may be reached by super-sends from those
methods, and so on. We therefore introduce the notationc↑a1a2...an = 〈m, c′〉 to mean that it is possible for
the method body bound toa1 in classc to perform a super-send toa2, and for the method body bound toa2 in
this context to perform a super-send, and so on, until eventuallyan can be super-sent. If this occurs, thenan

will be bound to method bodym obtained fromc′.

Definition 21 c↑ā, wherec ∈ C andā ∈ N+, is defined recursively, as follows:

nil↑a def= 〈⊥, nil〉

c↑a def=
{
〈m, c〉 if m = delta(c)(a) ∈ B
super(c)↑a otherwise

c↑āb
def=

{
super(c′)↑b if c↑ā = 〈m, c′〉 andb ∈ superSends(m)
〈⊥, nil〉 otherwise

For example,
ReadWriteStream↑position: = 〈mposition:′ , WriteStream〉

ReadWriteStream↑position: position: = 〈mposition:, Stream〉

For convenience, we also introduce the notationc�ā, which returns just the method body reachable byā
without its class.

Definition 22 A method bodym ∈ B is reachablefrom classc, if ∃ā ∈ N+ such thatm = c�ā, where

c�ā
def= m, where∃c′ such thatc↑ā = 〈m, c′〉

29

30 CHAPTER 3. TRAITS

For example:
ReadWriteStream�position: = mposition:′

ReadWriteStream�position: position: = mposition:

As expected, method bodies reachable without any super-sends correspond precisely to method lookups:

Proposition 3 For any classc and any single messagea, c�a = c � a

Proof By induction on the depth of the inheritance hierarchy.
For the base case,c = nil, we trivially have∀a, nil�a = ⊥ = nil � a.
Now considerc = 〈α, d〉·c′:
(a) Supposed(a) = m ∈ B. Thenc�a = m = c � a.
(b) Supposed(a) = ⊥. Then, by definition,c�a = c′�a. Similarly c � a = c′ � a. But by induction, we have
c′�a = c′ � a, hencec�a = c � a

Definition 23 The reachability set of a classc, is:

reachable(c) def= {〈ā, c�ā〉 | ā ∈ N+, c�ā 6= ⊥}

This precisely expresses which method bodies are reachable by means of self-sends and super-sends through
the public methods of a class. For example:

reachable(ReadStream) = { 〈position,mposition〉, 〈position:,mposition:〉,
〈next,mnext〉 }

reachable(ReadWriteStream) = { 〈position,mposition〉, 〈position:,mposition:′〉,
〈position:position:,mposition:〉,
〈next,mnext〉, 〈nextPut:,mnextPut:〉 }

Two classes are equivalent if exactly the same method bodies are reachable by the same super-send chains.

Definition 24 A classc is equivalentto a classc′, c ≡ c′, iff:

reachable(c) = reachable(c′)

(Note that≡ is trivially reflexive, symmetric and transitive, so is, in fact, an equivalence.)

Proposition 4 c ≡ c′ ⇒ provided(c) = provided(c′)

Proof a ∈ provided(c) ⇒ c � a ∈ B ⇒ c�a ∈ B ⇒ 〈a, c�a〉 ∈ reachable(c) ⇒ 〈a, c�a〉 ∈
reachable(c′) ⇒ . . . ⇒ a ∈ provided(c′) In the example, it is now straightforward to show thatReadStream ≡
ReadStream′, and so on.

Finally, we would like to know which classes are abstract and which are concrete. To determine this, we
must establish the set of all self-sends in the reachable method bodies, and check if these methods are actually
provided. Those that are missing are required.

Definition 25 The set of self-sends,selfSends(c), of a classc is:

selfSends(c) def=
⋃
{selfSends(m) | ∃ā, 〈ā,m〉 ∈ reachable(c)}

For example,selfSends(ReadWriteStream) = {position, position:}.

Definition 26 The set ofrequirednames,required(c), of a classc is:

required(c) def= selfSends(c) \ provided(c)

30

3.2. EVALUATION 31

Definition 27 A class,c ∈ C, is concreteif required(c) = ∅. A class that is not concrete isabstract.

In particular,ReadWriteStream is concrete since

selfSends(ReadWriteStream) ⊂ provided(ReadWriteStream)

sorequired(ReadWriteStream) = ∅.
Note that a class that is built-up from traits need not be concrete to be well-defined, so it is also possible to

compose abstract classes from traits.

3.2 Evaluation

In Section 2.1 we identified a set of problems that are associated with various forms of inheritance. The design
of traits was significantly influenced by the desire to solve these problems. In the following, we present a point
by point evaluation of the results.

3.2.1 Decomposition Problems

Duplicated features Duplicated code can easily be factored out into unique traits, which may then be used
to compose arbitrary classes, independent of their position in the class hierarchy [BLAC 03].

Inappropriate hierarchies Trait composition allows behavior to be reused in a way that is complementary
to single inheritance: with trait composition being the primary mechanism for (fine-grained) code reuse, the
inheritance hierarchy is freed to capture conformance and conceptual relationships between classes. This means
that the programmer can avoid inappropriate inheritance hierarchies by moving reusable methods into traits and
apply them only to the classes where they are appropriate and actually needed.

This is illustrated in Figures 3.9 and 3.10, which show a part of the Smalltalk stream hierarchy constructed
using single inheritance and traits, respectively. The traditional hierarchy without traits (Figure 3.9) does not
correctly model the conceptual relationship between the stream classes: the classReadWriteStream is related
to WriteStream but not toReadStream. Furthermore, this hierarchy involves code duplication. Both of these
problems are avoided in the hierarchy based on traits (Figure 3.10). This hierarchy maximizes code reuse and
is conceptually consistent.

Duplicated wrappers

Generic wrappers, such as the synchronization wrappers discussed in Section 2.1.1, can be expressed easily
with traits. In fact, the solution shown at the right side of Figure 2.1 would work ifSyncReadWrite were a trait,
sincesuper in a trait refers to the superclass of the class that will actually use that trait. IfSyncA is defined to
be a subclass ofA andSyncB a subclass ofB, and both subclasses use the traitSyncReadWrite, the super-send
in the trait’s read andwrite: methods will be bound to the respective superclassesA andB when the classes
SyncA andSyncB are composed. Other kinds of generic wrappers can be defined in much the same way.

3.2.2 Composition Problems

Conflicting features Traits avoid state conflicts entirely, because traits cannot define state. Method conflicts
may be resolved either by explicitly excluding one of the conflicting methods from the composition, or by
overriding the conflict in the composite entity. Because traits are not required to be composed from a root trait
containing basic features, the programmer can largely avoid conflicts by using traits that are lean and focus on
small sets of collaborating features.

31

32 CHAPTER 3. TRAITS

Lack of control and dispersal of glue code One of the most significant differences between traits and mix-
ins is that trait sum is associative and commutative, so the ordering of the composition is irrelevant. As a
consequence, the composite entity is always in full control of the composition: for each conflicting feature, the
composite entity canindependentlychoose which trait should take precedence or how the available implemen-
tations should be composed. This avoids the need for intermediate “glue components” that are spread over the
inheritance hierarchy. Instead, the glue code is always located in the composing entity, reflecting the idea that
the composing entity is in complete control of plugging together the components that implement its aspects.
This property nicely separates the glue code from the code that implements the different aspects, and it makes
a class easy to understand, even if it is composed from many different parts.

As an illustration reconsider the example discussed in Section 2.2.1, where we want to create a new class
MyRectangle based on the classRectangle and two components adding color and a border. With traits, this is
done by putting the color and border behavior into two traitsTColor andTBorder and then defining the new
classMyRectangle as a subclass ofRectangle that uses the two traitsTColor andTBorder. Because the features
of these traits are unordered and fully accessible from within the composite classMyRectangle, all the glue
code that is necessary to resolve conflicts and obtain the intended behavior can be defined within the class
MyRectangle.

Note that although trait composition is unordered, it can be productively combined with inheritance to
obtain a large variety of different partially ordered compositions. The basic idea is that if we want a classC to
use two traitsT1 andT2 in that order, we first introduce a superclassC′ that usesT1, and then we defineC to
inherit fromC′ and useT2. This has the consequence that the methods inT2 override the methods inT1. This
strategy proved itself in practice when we refactored the Smalltalk collection hierarchy (see Chapter 6).

Fragile hierarchies Any hierarchical approach to composing software is bound to be fragile with respect to
certain kinds of change: if a feature that is used by many clients changes, the change will clearly affect all
the clients. The important questions are: how severely will the change affect the features and the correctness
of direct and indirect clients? Do we need to change implementations, or only glue code? Will there be a
ripple-effect throughout the hierarchy due to apparently innocuous changes? Are there changes that implicitly
change the behavior of direct or indirect clients in unexpected ways?

Adding methods provided by a trait may well affect clients by introducing a new conflict. However, due to
the design of trait composition (i.e., commutativity, explicit conflict resolution), such changes cannot lead to
implicit and unexpected changes in the behavior of direct or indirect clients. Furthermore, a direct client can
generally resolve a conflict without changing or introducing any other traits, and no ripple effect will occur (cf.
Section 3.3). For example, if a new method is added, a direct client can always reestablish its original behavior
by excluding the newly added method. Neither additional traits nor additional methods or changes to existing
methods are needed. In contrast, adding a new method to a mixin may require introducing new glue mixins as
well as glue methods in the composite entity in order to reestablish the original behavior (cf. Section 2.1.2).

Traits also avoid the fragility problem we identified in multiple inheritance languages such as C++ and
Eiffel, where methods get cluttered with navigational glue code because one must explicitly name the class that
provides a method to resolve an ambiguity. With traits, conflicting features are accessed by aliases, which are
defined in the composition clause and can be called like regular methods. This approach leads to hierarchies
that are more robust and easier to understand, because it avoids class references in the source code.

3.3 Discussion

In this section we discuss some decisions that significantly influenced the design of traits and the operations
on them, and we evaluate whether and how it is possible to express trait composition in C++ by combining
templates and multiple inheritance (with virtual base classes).

32

3.3. DISCUSSION 33

3.3.1 Design Decisions

Traits were designed with other models of classes and inheritance in mind: we tried to combine their advan-
tages, while avoiding their disadvantages. Here, we discuss the most important design decisions.

Untangling Reusability and Classes

Although they are inspired by mixins, traits are a new concept because they are composed using a set of distinct
composition operators rather than single inheritance and because they cannot define state. Like mixins, they
are finer-grained units of reuse than classes and are not tied to a specific place in the inheritance hierarchy.
We believe that these two properties improve code reuse and enable better conceptual modeling. Fine-grained
reuse is important because the gulf that lies between entire classes and individual methods is too wide.

Traits allow classes to be built by composing reusable behaviors rather than by implementing a large and un-
structured set of methods. But unlike mixins, trait composition is unordered and thus agrees with the unordered
characteristics of a class’ methods.

Single Inheritance and the Flattening Property

Instead of replacing single inheritance, we decided to keep this familiar concept and extend it with the concept
of trait composition. These two concepts are similar but complementary and work together nicely.

Single inheritance allows one to reuse all the features (i.e., methods and attributes) that are available in a
class. If a class can inherit from only a single superclass, inheriting state does not cause complications and a
simple keyword (e.g., super) is enough to access overridden methods. This form of access to inherited features
is very convenient, but it also assigns semantics to the place of a method in the inheritance hierarchy. Therefore,
it is generally not possible to understand a class hierarchy without knowing in which class a certain method is
implemented.

Traits operate at a finer granularity than inheritance; they are typically used to modularize the behavior
within a class. As such, traits are designed to capture behavior but not state. In addition, trait composition
attributes no semantic significance to the place where a method is defined, with the result that traits enjoy the
flattening property.

In combination with single inheritance, traits and the flattening property provide a smooth migration path
for single inheritance languages. Given appropriate tool support, a system based on traits not only allows one to
write and execute traditional single inheritance code, but even if there are hundreds of deeply composed traits,
the user can stillview and editthe classes in the same way as if the system were implemented without using
traits at all (see Chapter 5).

Aliasing

Many multiple inheritance implementations provide access to overridden features by requiring the programmer
to explicitly name the defining superclass in the source code. C++ provides the scope operator (::) [STRO 97],
whereas Eiffel provides the keywordPrecursor [M EYE 97]. With traits, we chose method aliasing in preference
to placing named trait references in method bodies to avoid the following problems:

• Named trait references contradict the flattening property, because they prevent the creation of a semanti-
cally consistent flattened view without adapting these references in the method bodies.

• Named trait references cause aspects of the trait structure to be hard-coded in the methods that use
them. This means that changing the trait structure, or simply moving methods from one trait to another,
potentially invalidates many methods.

• Named trait references would require an extension of the syntax of the underlying single inheritance
language.

33

34 CHAPTER 3. TRAITS

Method aliasing avoids all of these problems. It works with the flattening property because the flattening
process can simply introduce a new name for the aliased method body.

Although there are some similarities between aliasing and method renaming as provided by Eiffel, there
are also essential differences. Defining an aliasy for a methodx in the traitT just establishes an alternative
namey without affecting the original one. In particular, all references to the original namex in the used traitT
remain unchanged (i.e., they still refer to the original namex). In contrast, when a methodx is renamed toy in
an Eiffel classC, the original method namex becomes undefined, and all the references tox in the classC are
changed so that they conceptually refer to the new method namey.

While renaming violates the flattening property, it has the advantage that it completely frees the old name
x as if it were never used inC (see the discussion of unintended name clashed below). Furthermore, renaming
works well with recursive methods, where aliasing is not really adequate.

Unintended Name Clashes

With traits, as with any other name-based approach to composing software features, unintentional naming
conflicts may arise. For example, consider a Java class that should implement two interfaces, where each of
these interfaces specifies a method with precisely the same name (and signature), but with different semantics.
The same problem also appears in many mixin approaches such as Strongtalk [BAK 02] and JAM [ANCO 00]:
if two mixins provide or require two semantically different methods that happen to have the same name, they
cannot easily be composed.

At present, traits offer no real solution to this problem — when two traits are composed, it may be that each
requires a semantically different method that happens to have the same name. Unlike Eiffel’s renaming, aliases
alleviate the problem only to a small extent. In our view, a complete solution requires good refactoring tools,
or preferably a flexible encapsulation mechanism [SCHÄ 04a, SCHÄ 04b] (see Section 9.2).

Conflict Resolution Strategies

Although traits are based on single inheritance, a form of diamond problem may arise when features from
the same trait are obtained multiple times via different paths. For example, consider traitReadWriteStream
(Figure 3.7) that uses two traitsTWriteStream andTReadStream, which in turn both use the traitTPosition-
ableStream (Figure 3.5).

Since traits contain no state, the most nefarious diamond problem does not arise. Nevertheless, in our
example, a methodatEnd provided byTPositionableStream will be obtained byReadWriteStream twice. The
key language design question is: should this be considered a conflict?

As established in Definition 8, there is no conflict if thesamemethod is obtained more than once via
different paths. This “same-operation exception”, as it is called by Snyder [SNYD 86], has the advantage of
having a simple, intuitive semantics, but it can lead to surprises if the underlying traits are changed. Suppose
that traitTReadStream is re-implemented so that it no longer usesTPositionableStream but still supports the
same behavior (e.g., the methodTPositionableStream>>atEnd is copied to the traitTReadStream). This causes
a conflict because traitReadWriteStream now obtains twodifferent methodsatEnd. Thus, what may have
appeared to be a strictly internal change to traitTReadStream becomes visible to one of its clients.

Although it may seem that this situation will lead to fragile hierarchies, we argue that it does not. When
TReadStream re-implementsatEnd, it is changing what it provides to its clients in a way that is less severe,
but just as significant, as when it adds or removes methods. Any of these changes may introduce naming
conflicts. However, the resulting conflict is a purelylocal matter, that is, it can be corrected by thedirect clients
of TReadStream alone.ReadWriteStream can easily resolve the resulting conflict by suppressing oneatEnd or
the other.

Let us examine two alternatives to our current rule. One alternative is forReadWriteStream to “automat-
ically” obtain either oneatEnd or the other, as happens with linearly-ordered mixins. The problem with this

34

3.3. DISCUSSION 35

Document

MLogOpenClose<Document>

MSyncReadWrite<MLogOpenClose<Document>>

MyDocument

Figure 3.11: Using C++ templates to simulate mixin composition

is that the change toTReadStream would give the programmer no feedback, even though the semantics of
ReadWriteStream might have changed.

The alternative suggested by Snyder is to abandon the “same-operation exception”, and announce a conflict
even if the same method is obtained multiple times [SNYD 86]. In our example, this means that there would
already be a conflict in the original scenario, and that the programmer would have toarbitrarily decide which of
the twoatEnd methods should be available inReadWriteStream. We argue that this is more dangerous, because
a later change to theatEnd provided by eitherTWriteStream or TReadStream will not be signalled as having
a possible consequence onReadWriteStream. With the current approach, the conflict is signalled at precisely
the point in time when it arises, which is when the programmer is able to make an informed resolution.

3.3.2 C++ Revisited

In the discussion above, we pointed out that traits resulted from the attempt to design a composition mechanism
that combines the beneficial properties of both multiple inheritance and mixins. C++ is the only language we
are aware of that allows the programmer to express both of these composition mechanisms: it has native support
for multiple inheritance, and it also allows one to express mixins by using templates (see Section 2.2.2). This
poses the interesting question whether it is possible to express a form of composition similar to traits in C++
by combining multiple inheritance with templates.

Traits in C++

It turns out that this is indeed possible. The trick is that instead of expressing the reusable entities as generic
classes and composing them into a linear inheritance hierarchy by template instantiation as suggested by Van-
Hilst and Notkin [VANH 96a, VANH 96b] as well as Smaragdakis and Batory [SMAR 98, SMAR 00], we ex-
press them as classes with avirtual generic base class and then compose them into aparallel hierarchy using
multiple inheritance.

The conceptual difference between these two approaches is illustrated in Figures 3.11 and 3.12. Figure 3.11
shows how the classMyDocument is derived from the classDocument by a nested instantiation of the templates
MLogOpenClose and MSyncReadWrite, which leads to a linear hierarchy (cf. Section 2.2.2). In contrast,
Figure 3.11 shows howMyDocument is built from two templatesTLogOpenClose andTSyncReadWrite, which
are both applied to the classDocument and are then composed using multiple inheritance.

The implementation of the template-based traitsTSyncReadWrite andTLogOpenClose is shown in Fig-
ure 3.13. This figure does not show the method bodies because they are identical to the ones in the mixins
MSyncReadWrite (Figure 2.7) andMLogOpenClose (Figure 2.8) discussed in Section 2.2.2. In fact, the only

35

36 CHAPTER 3. TRAITS

Document

TLogOpenClose<Document> TSyncReadWrite<Document>

MyDocument

virtual virtual

Figure 3.12: Using C++ templates and virtual base classes to simulate trait composition

template <class Super>
class TLogOpenClose : virtual public Super {

public:
virtual void open() { . . . };
virtual void close() { . . . };
virtual void reset() { . . . };

protected:
virtual void log(String s) { . . . };

};

template <class Super>
class TSyncReadWrite : virtual public Super {

public:
virtual int read() { . . . };
virtual void write(int n) { . . . };
protected:
virtual void acquireLock() { . . . };
virtual void releaseLock() { . . . };

};

class MyDocument : public TLogOpenClose<Document>,
public TReadWriteSync<Document> {

. . . // glue methods
};

Figure 3.13: Implementing MyDocument as the composition of two “C++ traits”

36

3.3. DISCUSSION 37

difference between the mixins and the corresponding traits is that the traits declare their generic base classes to
be virtual.

Declaring the base class to be virtual is crucial as it would otherwise not be possible to correctly compose
the traits using multiple inheritance. This is because composing these two traits means instantiating them
with the samebase classDocument and then combining them using multiple inheritance. According to the
semantics of virtual base classes [STRO 97], the resulting diamond situation has the key properties known from
traits: the common base classDocument is only inherited once, and methods in the traitsTLogOpenClose and
TSyncReadWrite override methods inherited from the common base classDocument, while they are overridden
by methods in the common subclassMyDocument. Furthermore, methods that are implemented by both traits
TLogOpenClose andTSyncReadWrite result in a conflict that needs to be resolved in the subclassMyDocument.

C++ allows one to express composite traits by nesting the templates that are representing traits. As an
example, we can write a new traitTLogAndSync as a template class that is parameterized bysuper and inherits
from the virtual base classesTLogOpenClose andTReadWriteSync, which are both instantiated with the new
parametersuper.

template <class Super>
class TLogAndSync : virtual public TLogOpenClose<Super>,

virtual public TReadWriteSync<Super> {};

A difference between traits and their C++ approximation is the fact that C++ only supports one of the three
composition operators of traits: it can express trait sum (+) but not alias (→) and exclusion (−). Whereas
aliases can be simulated by disciplined use of the scope modifier::, this is not the case for exclusions. This
means that instead of excluding one or more conflicting methods from a composition, C++ requires the pro-
grammer to resolve every conflict by overriding the conflicting methods. While this may result in the same
runtime behavior, it is not equivalent from a compositional point of view. This is because in case of exclusions,
the occurrence of a new conflicting method always leads to a conflict that requires explicit resolution, for ex-
ample by excluding the new method. This is not the case for overrides as a newly occurring conflict method
gets implicitly overridden by the old conflict resolution code.

Discussion

Generalizing the above findings, we can say that C++ allows one to express trait-like composition by using
a combination of nested templates and multiple inheritance with virtual base classes. As a consequence, one
might jump to the conclusion that traits are not really new and therefore not scientifically relevant. However,
on closer examination, such conclusions are premature for several reasons.

We first observe that although C++ does not support the complete set of trait composition features, ex-
pressing traits in C++ can be achieved only by using a quite sophisticated combination of advanced language
mechanisms such as nested templates and virtual base classes. As a consequence, using traits in C++ not only
requires a deep understanding of these mechanisms, but it also requires a lot of coding discipline to achieve
the robustness benefits promised by the traits mechanism. As an example, the programmer has to avoid using
nested scope modifiers (e.g., Super::Super::reset()) to avoid fragility with respect to changes. Similarly, all
explicit calls to overridden trait methods have to be factored out into separate methods rather than scattering
them throughout other methods.

The intrinsic complexity may be part of the reasons why this particular combination of C++ mechanisms
was, to the best of our knowledge, not previously identified and suggested as a general composition pattern
in C++. This is similar to template-based mixins in C++, which were scientifically investigated and described
by VanHilst and Notkin [VANH 96b, VANH 96a] as well as by Smaragdakis and Batory [SMAR 98, SMAR 00]
only after mixins were proposed as a fundamental composition mechanism by Moon [MOON 86] and later
analyzed by Bracha and Cook [BRAC 90]. As noted by VanHilst [VANH 96b], templates were previously
used, for example in the C++ Standard Template Library (STL) [MUSS96], for genericity (i.e., writing data
structures such as collections that can be used in the context of different types), but not for role composition
using inheritance.

37

38 CHAPTER 3. TRAITS

Another reason for the relevance of traits as a general composition mechanism is the fact that this form of
composition cannot be expressed by any of the more recent object-oriented languages such as Java, Python, and
Ruby. Even C#, the C++ successor by Microsoft, cannot express traits because neither templates nor multiple
inheritance are supported. In fact, the designers of C# and Java came to the conclusion that it is better to reduce
the power of these complex and error-prone mechanisms so that they can be used only fortyping rather than
for composition. This means that multiple inheritance was replaced by conformance declarations to multiple
interfaces (i.e., types), whereas templates were replaced by a generics mechanism that enables the type system
to express generic data structures but which cannot express classes with a parameterized superclass3.

This is a strong indication that the C++ approach, which provides the programmer with an overwhelm-
ing and hard to understand variety of mechanisms for feature composition, is not the right way to go. The
main problem is that there is just too much of a risk that the average programmer uses and combines these
mechanisms in an non-optimal way that leads to code that is fragile, hard to understand and maintain.

In contrast, traits stand for asinglecomposition mechanism that guarantees certain composition properties.
By applying traits to a language such as Smalltalk, Java, or C#, we can therefore get most of the compositional
power known from C++ without its drawbacks.

3In Java, generics were added only with version 1.5

38

Chapter 4

Implementation

Traits as described in the previous chapter of this thesis are fully implemented in Squeak [INGA 97], an open-
source dialect of Smalltalk-80. Before we describe the traits implementation, we first give a brief overview of
the Smalltalk-80 kernel (Section 4.1), which facilitates the understanding of the rest of this chapter. Then we
present the design rationale for our implementation (Section 4.2). The actual description of our implementation
consists of two parts: the description of the new language kernel that allows us to express traits in Squeak
(Section 4.3), and the description of the compile-time flattening process that allows us to avoid any changes to
the virtual machine (Section 4.4). Note that a more detailed description of this implementation can be found in
Lienhard’s master thesis [LIEN 04].

4.1 Overview of the Smalltalk-80 Kernel Architecture

The beauty of pure object-oriented languages like Smalltalk lies in their conceptual simplicity, which can be
summarized as “everything is an object”. This means not only that primitive values such as integers are real
objects but also that language entities such as classes are represented as objects. Because each object is an
instance of a class, each class must consequently be an instance of another class, which is called ametaclass
[I NGA 76, COIN 87, KICZ 91, DANF 94, FORM 99]. This means that in the same way that classes define the
properties of ordinary objects, metaclasses define the properties of classes.

In this section, we give a brief overview of how classes and metaclasses are represented and organized
in the Smalltalk-80 kernel. For a more detailed description of the Smalltalk architecture, we recommend the
excellent book of Goldberg and Robson [GOLD 83].

4.1.1 Organization of Classes and Metaclasses

In Smalltalk, each class is a first-class object, an instance of a so-called metaclass. Smalltalk metaclasses
are implicit. This means that whenever a class is created, the system automatically and implicitly creates
a corresponding metaclass. All of those metaclasses are anonymous: instead of having a globally known
name, they can be accessed only by sending the pseudo-messageclass to the corresponding class object. As a
consequence, the metaclass of a class namedA is usually referred to asA class, which is also the convention
we use in this thesis.

As an illustration, suppose that the programmer defines a classPoint as a new subclass ofObject. In the
process of creating this new class, the Smalltalk system first creates a new metaclassPoint class as a subclass
of Object’s metaclassObject class. Only then can the classPoint be created as the sole instance of this new
metaclass.

An important property of this mechanism is that the resulting class and metaclass hierarchies are always
parallel. (See Chapter 7 for a discussion of the advantages and disadvantages of this design decision.) This

39

40 CHAPTER 4. IMPLEMENTATION

Object

Point

Vertex

Object class

Point class

Vertex class

Metaclass

Class

inherits from
instance of

Figure 4.1: Parallel class and metaclass hierarchies in Smalltalk

means that if a classB is a direct subclass ofA, thenB’s metaclassB class is a direct subclass ofA’s metaclass
A class.

This is illustrated in Figure 4.1, which shows the classesObject, Point, andVertex, and their corresponding
metaclasses. It also shows the role of the kernel classesClass andMetaclass. As indicated by their names, all
the metaclasses such asObject class andPoint class are instances of the classMetaclass. Similarly, all classes
such asObject andPoint are “sub-instances” of the classClass, which means that they are instances of (direct
or indirect) subclasses of the classClass.

4.1.2 The Kernel Classes

After getting an understanding of the organization of classes and metaclasses in Smalltalk, we now look at how
the corresponding classesClass andMetaclass are embedded into the language kernel. The class hierarchy of
the kernel is shown in Figure 4.2. At the bottom of this hierarchy, there are the two classesClass andMeta-
class. Because these two classes share many commonalities, they inherit from a common superclass called
ClassDescription. This class in turn inherits from the classBehavior, which is the root of the kernel hierarchy
(i.e., it is a direct subclass ofObject). The difference betweenBehavior andClassDescription is a conceptual
one: the concrete classBehavior is carefully designed so that it provides only the minimal functionality neces-
sary for creating usable instances; the abstract classClassDescription provides all the other functionality shared
betweenClass andMetaclass.

In the following, we give a brief overview of the responsibilities and the implementation of these kernel
classes.

Behavior . The concrete classBehavior provides the minimum facilities to create usable instances. This means
that it provides basic functionality for instance creation, compiling methods, and managing a method dictionary.
It also provides basic facilities for inheritance and class hierarchy management, which is important because
of the crucial role of inheritance in the method lookup mechanism. Note that unlike full-fledged classes,
behaviors (i.e., instances of the classBehavior) are anonymous (i.e., they have no name), and they can define
only anonymous slots and not named instance variables.

To fulfill these responsibilities, the classBehavior defines three instance variables:superclass to store
a reference to the superclass,methodDict to store the method dictionary, andformat to store a number that
encodes important structural information of a behavior’s instances (e.g., whether these instances are variable
(like arrays) or fixed in size, and if the latter how many slots they contain).

40

4.1. OVERVIEW OF THE SMALLTALK-80 KERNEL ARCHITECTURE 41

Behavior
superclass
methodDict
format

ClassDescription
instanceVariables
organization

Class
name
subclasses
environment
classPool
sharedPool

Metaclass
thisClass

Object

Figure 4.2: Class hierarchy of the Smalltalk kernel

ClassDescription . While the purpose of the concrete classBehavior is to allow a programmer to create “min-
imal classes”,ClassDescription is an abstract class with the sole purpose of defining the common functionality
of Class andMetaclass. As such,ClassDescription adds a number of concepts to the ones inherited from the
classBehavior: named instance variables, a category organization for methods (i.e., protocols), the notion of a
class name, a class comment, logging of changes, and a mechanism for filing the definition of the class in and
out.

For this purpose,ClassDescription declares two instance variables: the variableinstanceVariables holds an
array of instance variable names whileorganization stores the organization of the methods into named protocols.
Note thatClassDescription defers the instance variable holding the class name to its subclassClass. This is
because metaclasses are anonymous and only derive a “pseudo-name” from the name of the associated class.
Therefore, metaclasses do not (and should not) contain a variable for holding the class name, while classes do
have such an instance variable.

Class . As indicated by its name, the concrete classClass defines some common behavior of all Smalltalk
classes. (As illustrated in Figure 4.1, each class is a sub-instances of the classClass.)

The classClass adds more comprehensive programming support facilities to the basic attributes ofBehavior
and the descriptive facilities ofClassDescription. In particular, it concretizes its superclassClassDescripton by
providing five instance variables and accessors for the class name (name), the set of subclasses (subclasses),
the namespace where the class is stored (environment), and pool dictionaries (classPool andsharedPool). The
pool dictionaries are used to declare variables that are shared between sets of classes and their instances.

Metaclass . While all Smalltalk classes are sub-instances of the classClass, all metaclasses are instances of
the classMetaclass. This means thatMetaclass defines the behavior of all Smalltalk metaclasses.

Unlike Class, the classMetaclass does not define instance variables for name, subclasses, environment and

41

42 CHAPTER 4. IMPLEMENTATION

pools. Instead, this functionality is derived from the associated class. Thus, the classMetaclass declares only
a single instance variablethisClass to hold thebase-class(its singleton instance) that is associated with the
metaclass.

4.2 Traits Design Rationale

The task of adding traits to Squeak can be separated into two parts. First, we need to extend the kernel so that it
can represent traits and trait composition. Then we need to make sure that instances of classes composed from
traits exhibit the runtime behavior specified by our formal model of traits (cf. Section 3.1).

Following the structure of the existing kernel. For reasons of backward compatibility and understandabil-
ity, we decided that the new language kernel should follow the structure of the existing kernel [GOLD 83] as
closely as possible. On one hand, this means that we wanted to preserve the purpose, relationships and respon-
sibilities of the existing kernel classesBehavior, ClassDescription, Class, andMetaclass, but it also means that
the new classes that are necessary to represent traits should be structured in a similar way.

However, since single inheritance alone is not expressive enough to achieve these goals without code dupli-
cation, we decided to bootstrap our new kernel with traits. This means that the new kernel does not only allow
one to express traits but is itself built as a composition of traits.

Avoiding changes to the Squeak virtual machine. To avoid changing the Squeak virtual machine and to
minimize the runtime overhead of traits, our implementation flattens the trait structure at composition time.
This means that when a class is composed from traits, its method dictionary is changed to incorporate all the
relevant trait methods (i.e., the methods that are not overridden or excluded as well as the aliased methods).

Since compiled methods in traits do not usually depend on the location where they are used, the actual
method objects (i.e., the instances ofCompiledMethod that contain byte-code) can be shared between the trait
that defines the method and all the classes and traits that use it. Thus, for most methods this process requires
no byte-code to be duplicated. The only exception are the methods that contain super-sends, because they store
an explicit reference to the superclass in their literal frame. Duplication of source code is never necessary.

4.3 The New Language Kernel

The class hierarchy of the new language kernel with traits (Figure 4.3) clearly resembles the hierarchy known
from the traditional Squeak kernel. In fact, the traditional kernel hierarchy described in Section 4.1 is embedded
into the new hierarchy by making the classBehavior a subclass of the new root classPureBehavior. Also the
new part of the hierarchy that is used for representing traits (i.e., the classesTraitBehavior, TraitDescription, Trait
andClassTrait) has as its root the classPureBehavior and mimics the structure of the traditional kernel classes.

4.3.1 The New Kernel Classes

The responsibilities and the implementation of the new kernel classes are similar to their traditional counter-
parts. The main difference is that some of the responsibilities of the classBehavior were moved into the new
root classPureBehavior and that we introduced new responsibilities for dealing with traits. In the following, we
give a brief overview of the responsibilities and structure of the new kernel classes, while their decomposition
into traits is presented afterwards.

PureBehavior . The classPureBehavior is the new abstract root class of the kernel hierarchy, and it describes
the common facilities to represent behavior (but not state) in classes and traits. This means that it provides
the basic functionality for compiling methods, managing a method dictionary and trait composition. Note that

42

4.3. THE NEW LANGUAGE KERNEL 43

Behavior
superclass
methodDict
format
traitComposition
localSelectors

ClassDescription
instanceVariables
organization

Class
name
subclasses
environment
classPool
sharedPool

Metaclass
thisClass

PureBehavior

TraitBehavior
methodDict
traitComposition
localSelectors
users

TraitDescription
organization

Trait
name
environment
classTrait

ClassTrait
baseTrait

Object

Figure 4.3: Classes hierarchy of the new Smalltalk kernel supporting traits

the facilities for inheritance are provided by the subclassBehavior as inheritance is used for classes but not for
traits.

To implement these facilities, the implementation ofPureBehavior accesses three instance variables:method-
Dict to store the method dictionary,traitComposition to store the composition clause, andlocalSelectors to store
the local selectors (i.e., the selectors in the method dictionary that are actually implemented locally rather than
being obtained from subtraits as a result of the flattening). However, because the order of a class’ instance
variables is hard-coded in the virtual machine, and the instance variablesuperclass (which conceptually does
not belong toPureBehavior) must be first, the declaration of instance variables is deferred to the subclasses,
and they are accessed withinPureBehavior through abstract accessors.

Behavior . As in the traditional Squeak kernel, the concrete classBehavior provides the minimum facilities
to create usable instances. This means that in addition to the functionality inherited fromPureBehavior, it
provides for instance creation, inheritance, and basic class hierarchy management. Besides the three instance
variables that are deferred from the superclassPureBehavior, the classBehavior declares the two instance
variablessuperclass andformat to contain the superclass and the format of its instances.

TraitBehavior . In the same way asBehavior provides the minimum facilities for classes, the concrete class
TraitBehavior provides the minimum facilities for traits. In addition to the inherited functionality, it provides

43

44 CHAPTER 4. IMPLEMENTATION

the facility for keeping track of where a trait is used. This means that it declares an instance variableusers to
hold all the classes and traits that are composed from the current trait. LikeBehavior it also declares the three
instance variables deferred from the superclassPureBehavior.

ClassDescription . The new classClassDescription has the same responsibilities as in the traditional kernel.
Also the implementation is essentially the same as before, except that it takes into account that the class may
be built from traits. For example, the methods for adding new methods check whether there will be a conflict.

TraitDescription . The purpose and most of the implementation of the classTraitDescription is identical to
ClassDescription, with the main difference being thatTraitDescription is used for traits and does therefore
not provide the facilities for named instance variables. This means that this class adds categorization for
methods, the notion of a trait name, a trait comment, logging of changes, and a mechanism for file-in and
file-out to TraitBehavior. Note that we avoid duplicating the code that is shared betweenTraitDescription and
ClassDescription (as well as the code shared between the other kernel classes) by factoring it out into traits (see
Section 4.3.2).

Class . The purpose of the classClass is the same as in the traditional kernel;i.e., it defines the behavior of
all Smalltalk classes. The implementation ofClass is essentially the same as before and only differs in that it
takes into account that classes may be built from traits.

Trait . Each trait in the system is represented as an instance of the classTrait. Like Class, the classTrait
concretizes its superclass by providing instance variablesname andenvironment. Since traits do not define
variables, the classTrait does not provide facilities for pool variables. However,Trait declares an instance
variableclassTrait to hold the associatedclass-trait, which is an instance of the classClassTrait described
below.

Metaclass . The purpose of the classMetaclass is the same as in the original kernel. Regarding the implemen-
tation, the only change is that some of the new methods needed to be changed to reflect the presence of traits.
For example the methoddefinitionST80, which returns a textual representation of the metaclass’ definition, now
also contains the composition clause.

ClassTrait . While a class has an associated metaclass, a trait can have an associated class-trait, which is
an instance of the classClassTrait. To preserve metaclass compatibility [GRAU 89, BOUR 98, DUCA 05], the
associated class-trait (if there is one) is automatically applied to the metaclass, whenever the trait is applied to a
class. Consequently, a trait with an associated class-trait can only be applied to classes, whereas a trait without
a class-trait can be applied to both classes and metaclasses.

Like metaclasses, the classClassTrait declares only a single instance variable to hold the base-trait asso-
ciated with the class-trait. Since class-traits are anonymous, their name and the environment are then derived
from this base-trait.

Despite the conceptual similarity between metaclasses and class-traits, there are two crucial differences.
The first difference is that each class is a singleton instance of its associated metaclass, while each trait is an
instance of the classTrait rather than an instance of its associated class-trait. This difference is also the reason
why we chose the nameClassTrait rather thanMetaTrait: a class-trait is just a trait whose methods are applied
to the class-side rather than the instance-side. The second difference is that while each class has an associated
metaclass, a trait does not necessarily need to have an associated class-trait. If the methods provided by a trait
do not rely on any methods on the class-side, there is no need for a trait to have a class-trait.

See Chapter 7 for more information about class-traits, metaclasses, and metaclass compatibility issues.

44

4.3. THE NEW LANGUAGE KERNEL 45

PureBehavior

ClassDescription

ClassTrait

TCompilingBehavior
TBasicCompilingBehavior

TMethodDictionaryBehavior
TLocalSelectorsBehavior

TUpdateTraitsBehavior

TAccessingTraitComposition-
Behavior

TCopyingDescription

TBasicCategorizingDescription

TCompilingDescription

TAccessingMethodDict-
Description

TTraitsCategorizingDescription

TPrintingDescription

TCommentDescription

TFileOutDescription

TTestingDescription

TClassDescription
TClassHierarchyDescription

TInstanceVariablesDescription

TApplyingOnClassSide
Metaclass

TComposingDescription

TraitDescription

Class

TVariablesClass

TRemoveFromSystemClass

TFileInOutClass

composed from

Figure 4.4: Decomposition of the new kernel classes into traits

45

46 CHAPTER 4. IMPLEMENTATION

4.3.2 Decomposition into Traits

In the previous section we have described how the traditional kernel classes are embedded into the new kernel
hierarchy and how the sub-hierarchy for representing traits mimics the well-known hierarchy for classes. This
design has the advantage that it is backward compatible as well as easy to understand and extend. As an
example, the conceptual separation between the classesBehavior andClassDescription allows a programmer
to introduce another notion of classes with different properties (e.g., anonymous classes that organize their
instance variables and methods in a different way) by creating another subclass ofBehavior. Similarly, the
distinction betweenTraitDescription andTraitBehavior allows one to create another notion of trait by subclassing
TraitBehavior.

However, this hierarchy cannot be implemented with single inheritance without code duplication. This is
because some of the corresponding classes in the trait-part and the class-part of the hierarchy (e.g., ClassDe-
scription andTraitDescription) share a significant amount of code, but it is not possible to move this code into a
common superclass without sacrificing the conceptual distinction between the “behavior” and the “description”
of classes and traits.

This is precisely the kind of problem for which traits are designed, and it is only natural to decompose our
kernel classes into traits that can then be shared between the different branches of the hierarchy.

Figure 4.4 shows how the classes in the new kernel hierarchy are decomposed into traits. In total, the kernel
classes are composed from a total of 23 traits (including all subtraits). The most fine-grained decomposition
occurs in the classesClassDescription andTraitDescription, which are each composed from 10 traits, 9 of which
are shared between the two classes. Note that the classesBehavior, TraitBehavior, andTrait are not shown in the
figure as they do not use any traits.

4.4 Flattening Traits at Composition Time

In our implementation, we achieve the correct runtime behavior by flattening the traits structure at composition
time. According to the formal model presented in Section 3.1, this allows us to ignore the traits structure at
runtime and use the ordinary method lookup algorithm that takes only the (flattened) method dictionaries of
classes into account.

The flattening process affects the method dictionary of a classC that is composed from at least one trait as
follows (see Proposition 2 for a formal definition of flattening).

• The method dictionary ofC is extended with an entry for each provided trait method that is not excluded,
is not overridden inC, and does not conflict with another method.

• For each alias that does not conflict with another method, we add to the method dictionary ofC a second
entry that associates the new name with the aliased method.

• For each conflicting method, we add to the method dictionary ofC an entry that associates the method
selector with a special method representing a method conflict.

Since compiled methods in traits do not usually depend on the location where they are used, theCompiled-
Method objects (i.e., the byte-code) can be shared between the trait that defines the method and all the classes
and traits that use it. The only exception is the methods that use the keywordsuper because they store an
explicit reference to the superclass in their literal frame. Therefore, these methods need to be copied with the
entry for the superclass changed appropriately.

Since explicit references to the superclass in the literal table of a method are used only for performance
reasons, we do not take these literals into account when determining whether two methods are equal. Therefore,
the approach based on copying methods with superclass references does not affect conflict detection. Note that
copying of these methods could be avoided by modifying the virtual machine to computesuper when needed.

46

4.5. CONCLUSIONS 47

4.5 Conclusions

Because traits are simple and completely backwards compatible with single inheritance, implementing traits
in a reflective single inheritance language like Squeak proved to be quite easy. The fact that traits cannot
specify state is a major simplification. We were able to avoid most of the performance and space problems that
occur with multiple inheritance, because these problems are related to compiling methods without knowing the
offsets of the instance variables in the object [DIXO 89].

Our implementation never duplicates source code, and duplicates byte-code only if it includes sends to
super, which is not very common within trait methods. A program with traits therefore exhibits the same
performance as the corresponding single inheritance program in which all the methods provided by traits are
implemented directly in the classes that use those traits. This is especially remarkable because our implemen-
tation did not introduce any changes to the Squeak virtual machine. There may be a small performance penalty
resulting from the use of accessor methods, but such methods are in any case widely used because they improve
maintainability. JIT compilers routinely inline accessors, so we feel that requiring their use in conjunction with
traits is entirely justifiable.

Although the new language kernel is relatively small, the fact that we were able to cleanly bootstrap this core
part of the system with traits is a good indication for the practical applicability of the traits approach. Besides
the fact that traits allowed us to design the new kernel as a backward compatible extension of the traditional
one, the use of traits has other advantages for the programmer. For example, it facilitates experimentation with
the language because the different aspects of the kernel (e.g., the management of method dictionaries) are now
available as traits and can therefore be recomposed to create new kernel classes with different properties.

47

Chapter 5

Tools and Methodology

Adding a new language feature such as traits to an integrated programming environment such as Smalltalk
raises two important questions. One question is how the new features interact with the existing tools, and in
particular, whether and how these tools need to be modified or extended so that they allow the programmer
to take full advantage of the new features. The other question is how the new features affect and change the
programming process [BLAC 04].

In this chapter, we first focus on the question of programming tools: we analyze what tools are necessary
to allow the programmer to take full advantage of the theoretical properties offered by traits (Section 5.1), and
we then present thetrait browser— the tool that we developed based on this analysis (Section 5.2). Subse-
quently, we describe the programming methodology that we developed around the use of traits (Section 5.3),
and we give examples that illustrate the application of this methodology using the trait browser. Finally, we
conclude this chapter by highlighting the relationship between traits, the tools that are motivated by them, and
the programming methodology that we developed around the use of traits and these tools (Section 5.4).

5.1 Traits and Tools: Analysis

When Smalltalk was first introduced more than 20 years ago, the idea of a graphical programming environment
that tightly integrates the language with the corresponding tools was revolutionary. In the intervening years,
the concept of the “Integrated Development Environment (IDE)” — for that is what the Smalltalk environment
would now be called — has proved to be so successful that similar environments have been created for other
programming languages. For example, IBMs VisualAge for Java [JETL 99] was essentially a retargeting of
the Smalltalk IDE to Java; more recently the cross-language environment Eclipse [HOLZ 04] has made similar
tools available for many popular languages.

An important advantage of such IDEs has been achieved through their integration with the underlying
language and its characteristic features. As a result, modern IDEs more than offer the programmer purely
syntax-based features such as syntax highlighting. They are also aware of the fundamental language con-
structs, which allows them to display the dependencies between classes (e.g., inheritance hierarchies), group
and organize methods (e.g., sort the methods of a class or hide their bodies), and assist programmers with
message completion as they type.

In Smalltalk, the integration between the language and the corresponding tools is particularly tight. In fact,
much of the power and elegance of Smalltalk comes from its programming environment and tools, and it is
sometimes hard to draw the line between the tools and the actual language, especially for less experienced
Smalltalk programmers. As a consequence, adding a major new language construct such as traits to the lan-
guage immediately raises the question of how this affects the tools [BOBR 80]. In other words, what are the
requirements for the Smalltalk programming tools so that they allow the programmer not only to use traits but

48

5.2. THE TRAIT BROWSER 49

Figure 5.1: The traditional Squeak (Smalltalk) system browser

also to take full advantage of traits and their theoretic properties? An analysis of this situation, led us to the
following four requirements.

1. Defining and using traits.For traits to be at all useful, the Smalltalk tools must allow the programmer to
define new traits easily and use them to compose other traits and classes.

2. Multiple views.One of the motivations for traits is the idea that multiple views of a program are better
than one, but this idea can only be realized by a programming tool that lets the programmer switch from
one view to another without loosing context [BOBR 80].

3. Highlighting collaborations.The usage of traits leads to programs that are built as fine-grained compo-
sitions of classes and traits. In order to understand these compositions, it is important to have a tool that
shows the programmer at a glance how the different components collaborate.

4. Highlighting requirements.Traits suggest an incremental and iterative style of programming, and it is
therefore important to have a programming tool that allows the programmer to keep track of incomplete
compositions and indicates what needs to be done to make the program, or at least a part of it, complete.

5.2 The Trait Browser

The most important of the Smalltalk programming tools is the system browser, which allows the programmer
to examine, modify and extend the code of applications and of the system itself. In this section, we show how
we extended this browser to obtain thetrait browser, which meets all the requirements that we identified in the
previous section. We start by giving a brief overview of the traditional browser and our extensions.

5.2.1 Overview

The traditional system browser Figure 5.1 shows the Squeak system browser. The top half of the browser
is split into four panes. The leftmost list pane shows the different class categories, where we have selected the

49

50 CHAPTER 5. TOOLS AND METHODOLOGY

categoryCollections-Abstract, which contains the abstract collection classes that are consequently shown in
the next pane to the right. In this pane, we have selected the classSequenceableCollection. As a consequence,
the third pane shows the different method categories (i.e., protocols) that are available for this class, and the
fourth pane shows the corresponding methods. In the figure, we have selected the method category– all –, and
thus all the methods implemented in the classSequenceableCollection are shown in the method pane.

Because we have not selected any of these methods, the text pane in the bottom half of the browser shows the
definition of the selected classSequenceableCollection and allows the programmer to modify it. By selecting
one of the methods, the programmer could view and edit the implementation of the selected method in the
bottom pane. This text pane is also used for defining new classes: if the programmer chooses the “new class”
command from the context menu, a template for a new class appears and the programmer can fill in the details
such as the class name and the names of the instance variables.

Towards the trait browser. According to our list of requirements in Section 5.1, a fundamental requirement
for the new browser is that it must allow the programmer to define and use traits (requirement 1). We addressed
this by adding a new menu item “new trait” that corresponds to the item “new class” except that it shows the
template for a new trait (rather than the class template) in the bottom pane of the browser. We also made sure
that the class definitions shown in browser contain the composition clause, which allows the programmer to
define how classes are composed from traits by modifying this part of the class definition.

To give the programmer a visual understanding of composite entities, we modified the class pane so that it
displays how classes and traits are composed from other traits and allows the programmer to choose the most
appropriate view by flattening the nested trait structures at any level (2).

Another important feature of the new browser is that it automatically and interactively categorizes methods
into virtual categories, which present information that we identified as key to understand how classes and traits
collaborate with each other (3). In addition, these virtual categories show the programmer which components
and compositions are unfinished and what is necessary to complete them (4).

This information is valuable even when no traits are involved and the only relationship between classes is
inheritance [SCHÄ 04c]. However, as the number of components used to build a class increases, it becomes
increasingly important to know how these components collaborate with each other. It is therefore not surprising
that the presence of traits not only gives the virtual categories a more sophisticated meaning, but also calls for
additional categories. These additional categories result either from dividing existing categories into more
fine-grained subcategories, or from unique features of trait composition (e.g., conflicting methods).

In the following, we give more details about the distinctive features of the trait browser and their imple-
mentation. We first focus on the virtual categories and their meaning in a single inheritance setting. Then, we
show how the browser is used with traits and describe how this affects the meaning and diversity of the virtual
categories.

5.2.2 Virtual Categories

Figure 5.2 shows the trait browser. At first glance it looks like the standard system browser, but some extra
features help the programmer understand the relationships between components (i.e., classes and traits). Let
us start by summarizing the features that the browser supplies when it is used to examine standard Smalltalk
classes.

We have selected classSequenceableCollection in the second pane in the top half of the browser window.
The third pane, which in the standard browser contains a manual categorization of a class’s methods, now
contains in addition some automatically maintained virtual categories.

The category-requires-, which is colored blue, includes all of the messages that the classSequenceable-
Collection sends to itself but for which it does not define or inherit a method. If there were no such messages,
this category would not appear, butSequenceableCollection is abstract, and requires the methodadd:, which
is selected and is consequently displayed in the large pane at the bottom of the browser. The implementation
shown,self requirement, is a marker method generated by the browser to indicate thatadd: is an unsatisfied

50

5.2. THE TRAIT BROWSER 51

Figure 5.2: The trait browser

requirement. By grouping all the requirements, the requires category tells the programmer how a class is
parameterized, that is, which methods are necessary in order to make it complete.

The next virtual category,-supplies-, lists methods that arerequiredby some other class (or trait) in the hi-
erarchy andprovidedby SequenceableCollection. There are three methods in this category, namelyatRandom:,
do:, andremove:ifAbsent:. This tells the programmer thatSequenceableCollection’s superclass (Collection) is
parameterized by these three methods and shows the concrete implementations thatSequenceableCollection
supplies for these parameters.

The third virtual category,-overrides-, lists those methods provided bySequenceableCollection that over-
ride inherited methods. In our example, this virtual category includes methods such asasArray, collect:, and
select:. Inspecting these methods shows that the reason for overriding the inherited versions is that their func-
tionality can be implemented more efficiently for sequenced collections.

The -overrides-category is important for two reasons. First, it provides a view of the class as a “delta”;
the methods in this category characterize the parts of the behavior of the superclass that are changed by this
subclass. Second, the overriding methods, together with the supplied methods, are the most critical for un-
derstanding the classSequenceableCollection and for reasoning about its correctness. This is because inheri-
tance breaks encapsulation [SNYD 86]: subclasses typically collaborate with their superclasses through a much
broader interface than the public interface of the superclass. Taken together, overridden and supplied methods
represent the hooks through whichSequenceableCollection collaborates with its superclassCollection. In par-
ticular, this means that the behavior implemented in each of these methods ofSequenceableCollection needs to
conform to the specification implied byCollection, and that these are the methods inSequenceableCollection
that must be adapted if the specification implied byCollection is changed.

The fourth virtual category is called-sending super-; it contains all of the methods that perform super-sends.
This category is important because it tells the programmer which of the methods explicitly collaborate with
behavior from their parent class. Furthermore, all of these methods depend on their position in the inheritance
hierarchy, so special care has to be taken if they are moved during refactoring. This category is not shown in

51

52 CHAPTER 5. TOOLS AND METHODOLOGY

Figure 5.3: The trait TCollEnumerationUI

the figure because it is empty. In fact, each of the virtual categories is displayed by the browser only when it is
not empty.

Each of these generated categories has a characteristic emphasis: blue forrequires, green forsupplies, grey
for overrides, and underlined forsending super. Even when browsing methods using the ordinary, manually-
defined message categories, the names keep their characteristic emphasis. So a supplied method that sends to
super will always be shown in green and underlined. The blue color-coding is also applied to the name of the
class itself in the second pane whenever the set of required methods is not empty. This serves as a reminder
that the class is incomplete,e.g., it may be an abstract class, or the programmer may still be working on it.

As one uses the browser, even if one is not using traits, one becomes accustomed to the subtle hints provided
by these colors and to the instant availability of the virtual categories. They provide valuable reminders of work
that remains to be done and of dependencies between classes that would otherwise be invisible.

5.2.3 Using the Browser With Traits

The browser displays traits in much the same way as classes, and the virtual method categories described in
the previous section are also available for traits. In Figure 5.3 we see how the browser shows the traitTCol-
lEnumerationUI, which encapsulates the part of the enumeration protocol that contains only readonly methods
that do not require the underlying collection to be sequenced. (The lettersU andI in the suffix of the trait name
stand forunsequencedandimmutable, respectively. The Smalltalk enumeration protocol and its decomposition
into traits is further discussed in Sections 6.1.1 and 6.3.1).

Note that in order to distinguish traits from classes, the browser displays the trait name in green, whereas
a class name is either black (if the class is concrete) or blue (if it is abstract or incomplete). At a glance, the
browser shows us that the traitTCollEnumerationUI requiresonly the methodsdo:, emptyCopyOfSameSize and
errorNotFound: in order to implement all of the methods that it provides. This means thatTCollEnumerationUI
can be added to any class that provides these three methods. It does not matter whether or not the candidate
class is a subclass ofCollection.

Composite traits are a little more interesting because more features of the new browser are visible. Fig-
ure 5.4 shows the composite traitTCollEnumerationI, which represents the immutable part of the enumeration
protocol and also includes methods that require the underlying collection to be sequenced. When this trait is
first selected, the flattened view is shown, which means that all the method categories and methods available in
this trait — whether they are defined in the trait itself or obtained from a subtrait — are displayed in the two
rightmost panes of the browser.

52

5.2. THE TRAIT BROWSER 53

Figure 5.4: The composite trait TCollEnumerationI

In addition, the browser shows the compositional details of the selected trait in the class pane (second from
left), which consist of an entry named-own- and an entry corresponding to the name of each of the selected
trait’s subtraits. This not only shows the programmer the subtraits from which the selected trait is composed,
it also makes it possible to view this trait in different ways: selecting-own- shows only the methods defined in
the composite trait itself, while selecting a subtrait, such asTCollEnumerationUI, shows the methods obtained
from this subtrait together with the corresponding glue methods.

In our example shown in Figure 5.4, the information in the class pane of the browser tells us that the compos-
ite trait TCollEnumerationI contains a single subtrait calledTCollEnumerationI, and we could view the methods
obtained form this trait by selecting its name. Alternatively, we can view only the methods implemented in the
composite traitTCollEnumerationI by selecting the entry-own-.

Since multiple subtraits are composed with the commutative sum operation, not with inheritance, the cat-
egories-supplies-and-overrides-have a slightly different meaning for traits than for classes. The-supplies-
category contains the methods that are required by a subtrait and are provided by the currently selected compo-
nent. In Figure 5.4 we have selected-own-, and therefore the-supplies-category contains the methods required
by the subtraitTCollEnumerationUI and implemented byTCollEnumerationI itself. Similarly, when the com-
ponent-own- is selected, the category-overrides-shows the methods that are provided by a subtrait and then
overridden by an “own” method of the traitTCollEnumerationI.

In a class built using traits, the virtual category-overrides-may contain two kinds of methods: those that
override methods of the superclass and those that override methods of a subtrait. Similarly, the virtual category
-supplies-may contain methods that satisfy requirements originating from the superclass or from a subtrait.
To make this distinction visible to the programmer, these virtual categories of a composite class consists of
two subcategories: the subcategorysupercontains methods related to the superclass and the subcategorytraits
contains methods that related to subtraits. This is also the case for the other virtual categories.

In addition to the four virtual categories described in Section 5.2.2, there is also a fifth virtual category:
-conflicts-. This category applies only to entities composed from traits, and lists the methods defined by more
than one subtrait: these are conflicts that the programmer must resolve.

Thebutton barin the center of the browser is another feature that helps the programmer to understand and
navigate a composition. It shows the programmer all the available versions of a certain method, indicates the
version that takes precedence and the version that is on display, and allows the selection of another version. The
buttons are arranged from left to right according to the precedence that follows from the trait composition rules:

53

54 CHAPTER 5. TOOLS AND METHODOLOGY

“own” methods override methods from subtraits, which in turn override methods inherited from the superclass.
Our usual color scheme also applies to these buttons: blue buttons indicate required methods, green button
stand for methods that satisfy a requirement, and red buttons indicate a conflicting method. Thus, the leftmost
button that is active (i.e., that is not greyed out) corresponds to the currently applicable method.

In Figure 5.4, the button bar shows that there are twodo: methods that play a role in our composition: a
method that is required by the subtraitTCollEnumerationUI and an “own” method that satisfies this requirement.
The-super- button to right is grayed out, which indicates that there is nodo: method inherited from a superclass.
The black border on the-own- button in Figure 5.4 indicates thatTCollEnumerationUI’s “own” version ofdo: is
on display; clicking the buttonTCollEnumerationUI would switch the display to the version obtained from that
trait.

5.2.4 Implementation

The first1 version of the trait browser is implemented on top of the traditional Squeak system browser. The
most challenging aspect of this implementation is computing the contents of the virtual categories so that they
can be updated in real-time. Whereas this computation is fairly straightforward for most virtual categories, this
is not the case for the-required-category.

In this section, we therefore focus on an algorithm for computing therequires setof a class efficiently
enough for it to be displayed in real-time. For understandability, we do this in a single inheritance setting,
which means that we take only the requirements induced by the inheritance chain into account. However, once
this algorithm is understood, the more general situation can be solved by applying the same algorithm also to
the subtrait chains.

Self-Sends and Super-Sends

To compute the required methods of a class we must consider all of the class’sreachablemethods, that is,

1. all methods that are locally defined in the class,

2. all non-overridden methods defined in its superclasses, and

3. all methods that may be reached by super-sends from other reachable methods.

The requires set of a class contains all of the message selectors sent toself in one of the reachable methods,
minus the selectors of the methods provided by the class (including the ones inherited from its superclasses).
(The definition of reachable and required methods are formalized in Section 3.1.7.)

To compute this set, we must first identify the messages that are sent toself andsuper in any of the class’
method. Whereas the messages sent tosuper can be immediately retrieved from the byte-code, computing the
messages sent toself is more complicated, because they do not all emanate from a single syntactic construct.
Consider, for example, a methodfasten that is implemented as follows:

fasten
| anObject |
self hook.
anObject : = self.
anObject button.
self yourself clip.

From the byte-code of this method, it is immediately clear thathook is sent toself because the receiver is the
keywordself. What aboutbutton andclip? These messages are also sent toself (the methodObject>>yourself
simply returnsself), and so they are potential requirements too. However, detecting this requires a deeper
analysis of this method, as well as of the methodyourself.

1We are currently working on a new version of the trait browser.

54

5.2. THE TRAIT BROWSER 55

Our current implementation does not carry out such an analysis; the only requirements we detect are the
(syntactic) self-sends2. This means that in the above method,hook is the only requirement that we would
detect. We compensate for this deficiency by allowing the programmer to declareexplicit requirementsby
implementing a method with the bodyself explicitRequirement.

To compute the self-sends and super-sends of a method, we created a subclass of the classInstructionStream,
which provides the basic facilities to interpret the byte-encoded Smalltalk instruction set. When an instance of
this subclass is applied to aCompiledMethod object, it interprets the byte-codes without actually executing any
primitives or sending any messages. Instead, it scans for message send byte-codes and checks for each of them
whether the receiver, which is at this point the topmost element on the stack, isself. If this is the case, we first
identify the sent message selector, which is either stored in the literal frame of theCompiledMethod object or
is encoded into the byte-code (in case of very common selectors such as=, +, size, andat:). The byte-code also
tells us whether the message send is a self-send or a super-send. If it is the former, we add the selector to the
set to contain the self-sends of the method that is being examined; otherwise, we add it to the set to contain the
super-sends.

Even with this simplification, computing the requires set of entire classes in real-time is quite challenging.
The main problem is that a single change in a class may affect the requires set of all its subclasses, and that the
impact of the change is not limited to the selector that is being changed. Thus, a change inObject may mean
that we have to update the required methods of all the classes in the system. A naive implementation based on
the above definition would be far too slow to provide the programmer with useful feedback (see Section 5.2.4
for a performance comparison). Updating the requires set in real-time required an optimized algorithm that
caches critical data and takes advantage of the coherence of the inheritance hierarchy.

Caching Self-Sends and Super-Sends

When computing the required set of a class, looking for methods that self-send a particular selector is far more
common than looking for the selectors sent by a particular method. To avoid having to search all the methods of
a class whenever we check whether a certain selector is a potential requirement, we therefore maintain per-class
caches that associate the self-sent selectors with the methods where those sends occur.

Concretely, this means that for each classC we maintain a dictionary whose keys are the selectors that are
self-sent by the methods directly implemented inC, and whose values are the sets of selectors that name the
methods that perform those self-sends. For example, if the selectorx is self-sent by the local methods nameda
andb in C, looking upx returns the set{#a #b}.

Super-sends are critical for determining the set of reachable methods, so we also maintain a cache of the
super-sends that are issued by the local methods of each class; this cache is similarly indexed by the super-sent
selectors rather than by the selectors of the methods that perform the super-sends.

In the following, we assume that there are two functionslocalSelfSendCacheLookup andlocalSuperSend-
CacheLookup, which perform a lookup in these two caches, respectively. This means that the functionlocal-
SelfSendCacheLookup takes a classC and a selectorx as an argument, and returns a set containing the selectors
of all methods that are implemented inC and self-sendx. In the above example, the code

localSelfSendCacheLookup(C, x)

returns the set{#a #b}.

Using the coherence of the inheritance hierarchy

When a method is added, modified or removed, we need to check its class, and all its subclasses, to see whether
there is any effect on the requirements. The heart of this computation is checking whether a given selector is
self-sent in a given class. Especially in the case of large hierarchies, performing this check separately for each

2Note the subtle difference between “messages sent toself” and “self-sends”: the former means all messages that are sent to the current
receiver object, whereas the latter includes only the messages sent to the keywordself.

55

56 CHAPTER 5. TOOLS AND METHODOLOGY

getSelfSendingClasses(rootClass, sel) {
var result;

result : = new Set();
collectSelfSendingClasses(rootClass, sel, new Set(), result, new Dictionary());
return result;

}

collectSelfSendingClasses(class, sel, inheritedSelfSenders, result, globalSelfSendCache) {
var selfSenders, dummy;

selfSenders : = inheritedSelfSenders - class.selectors();
if selfSenders.isEmpty() then

(selfSenders, dummy) : = findSelfSenders(class, sel, new Set(), globalSelfSendCache);
if selfSenders.notEmpty() then result.add(class);
for each subclass in class.subclasses() do

collectSelfSendingClasses(subclass, sel, selfSenders, result, globalSelfSendCache);
}

Figure 5.5: Pseudo-code for collecting the classes that self-send a given selector in a hierarchy

subclass proved to be far too slow. Therefore, we developed a recursive algorithm that takes advantage of the
coherence that typically exists between neighbor classes in the inheritance hierarchy.

Pseudo-code of this algorithm is shown in Figures 5.5 and 5.6. The algorithm consists of three functions.
The functiongetSelfSendingClasses shown in Figure 5.5 is the one to be called from the outside: it takes
two argumentsrootClass andsel, and it returns the subset of the classesrootClass and all its subclasses that
self-send the selectorsel. This function relies on a second function calledcollectSelfSendingClasses, which
collects recursively the classes that self-send the given selectorsel, starting withrootClass and continuing with
all its subclasses. As this function proceeds down the inheritance hierarchy, it keeps track of a subset of the
methods that are known to self-sendsel. Unlessall of these methods are overridden in the next subclass, we
immediately know that the subclass also self-sendsself. Otherwise, the third function calledfindSelfSenders
(Figure 5.6) comes into play. As indicated by its name, this function recursively searches for methods that
contain self-sends tosel and are actually reachable from this subclass.

We now give a more detailed description of these three methods.

The function getSelfSendingClasses searches through the argument classrootClass and all its subclasses
and returns the subset of these classes that self-send the argument selectorsel. Because the purpose of this func-
tion is to provide a more convenient interface for the functioncollectSelfSendingClasses, its implementation
consists of only four lines. After we initialize the set to contain the result, we call the functioncollectSelfSend-
ingClasses, which populates the result set, and we return the result.

The function collectSelfSendingClasses takes five arguments:class, sel, inheritedSelfSenders, result, and
globalSelfSendCache. While class is the class to be searched for self-sends to the selectorsel, inheritedSelf-
Senders is a set containing selectors of inherited methods that are known to self-sendsel. The argumentresult
is the set into which the classes that self-sendsel are being collected, andglobalSelfSendCache is a temporary
cache holding “global” information about which methods in a class self-sendsel. This information is “global”
in the sense thatall methods (i.e., locally defined and inherited methods) of a class are considered. This means
thatglobalSelfSendCache is a dictionary of associations from a classC to a set containing the selectors of all
methods that are implemented or inherited inC and self-sendsel. The computation then proceeds as follows.

We first identify the subsetselfSenders of selectors ininheritedSelfSenders that are not overridden inclass.
If this subset is empty, we call the functionfindSelfSenders to search for methods that self-sendsel and are

56

5.2. THE TRAIT BROWSER 57

findSelfSenders(class, sel, unreachable, globalSelfSendCache) {
// This function returns a pair consisting of:
// - a subset of all methods that self-send’sel’ (empty set => no self-senders)
// - the complete set of all methods that self-send’sel’ or nil if this set has not been computed
var selfSenders, reachableSelfSenders, translations, allSelfSenders, allInheritedSelfSenders;

// 1. Check whether the set of all methods self-sending’sel’ in ’class’ are cached
if globalSelfSendCache.includesKey(class) then {

selfSenders : = globalSelfSendCache.at(class);
return pair(selfSenders - unreachable, selfSenders);

}

// 2. Check whether there are local methods that self-send’sel’ and are reachable
selfSenders : = localSelfSendCacheLookup(class, sel);
reachableSelfSenders : = selfSenders - unreachable;
if isNil(class.superclass()) then { // if this is root of the hierarchy, all methods are local!

globalSelfSendCache.add(class, selfSenders);
return pair(reachableSelfSenders, selfSenders);

}
if reachableSelfSenders.notEmpty() then return pair(reachableSelfSenders, nil);

// 3. Compute the set of unreachable superclass methods and perform recursive call
translations : = new Dictionary();
for each s in class.selectors() do {

superSenders : = localSuperSendCacheLookup(class, s) - unreachable;
if superSenders.isEmpty() then

unreachable.add(s);
else

translations.add(s, superSenders);
}
(reachableSelfSenders, allInheritedSelfSenders) : =

findSelfSenders(class.superclass(), sel, unreachable, globalSelfSendCache);

// 4. Replace selectors that are super-sent with the methods that issue the super-sends
for each s in translations.keys do {

if reachableSelfSenders.includes(s) then {
reachableSelfSenders.remove(s);
reachableSelfSenders.addAll(translations.at(s));

}
}
if isNil(allInheritedSelfSenders) then return pair(reachableSelfSenders, nil);

// 5. If the set of all self-senders in the superclass has been computed and cached,
// compute the set of all self-senders in this class and add it to the cache as well
allSelfSenders : = allInheritedSelfSenders - class.selectors() + selfSenders;
for each s in allInheritedSelfSenders do

allSelfSenders.addAll(localSuperSendCacheLookup(class, s));
globalSelfSendCache.add(class, allSelfSenders);
return pair(reachableSelfSenders, allSelfSenders);

}

Figure 5.6: Pseudo-code for finding methods that self-send a given selector

57

58 CHAPTER 5. TOOLS AND METHODOLOGY

reachable fromclass. The set containing the selectors of these methods (i.e., the first value of the pair returned
by findSelfSenders) is then assigned to the variableselfSenders. If any such selectors exist (i.e., selfSenders is
not empty),class is added to theresult set. Finally, we perform a recursive call for each of the direct subclasses
of class, passing the subclass,sel, selfSenders, result, andglobalSelfSendCache as parameters.

The function findSelfSenders takes the four argumentsclass, sel, unreachable, andglobalSelfSendCache,
and it searches recursively, inclass and all its superclasses, for methods that self-send the selectorsel and are
not in the setunreachable containing unreachable method selectors. It does this using a twofold strategy. The
primary strategy is to return as soon assomeof these methods are found. However, if this requires searching
all the classes up to the root of the inheritance hierarchy anyway, this function also computes, for each of the
searched classes,all local or inherited methods that self-sendsel and stores their selectors in the temporary
cacheglobalSelfSendCache. This is helpful because it avoids searching these classes again in the future (i.e.,
when a call tofindSelfSenders is performed for another subclass).

To accomplish both of these strategies, the functionfindSelfSenders returns a pair of values. The first value
is a set containing the selectors of some reachable methods that self-sendsel. Although this set does usually
not contain all such selectors, it is guaranteed to contain at least one of them if one exists. The second value
is eithernil or the set containing the selectors of all methods that are locally implemented or inherited inclass
and self-sendsel.

As indicated in Figure 5.6, the computation performed by the functionfindSelfSenders consists of the
following five steps:

1. First, we check whetherclass is in the cacheglobalSelfSendCache. If this is the case, we retrieve the
associated value, a set containing the selectors of all local or inherited methods inclass that self-sendsel,
and we return the reachable subset of these method selectors as the first value and the complete set as the
second value.

2. If class was not found in the cache, we check whether it contains local methods that issue a self-send to
sel and whose selectors are not in the set of unreachable selectors. This is done by calling the function
localSelfSendCacheLookup, which accesses the pre-computed cache and retrieves the set containing the
selectors of all local methods that self-sendsel. If this set is not empty, we return the reachable subset
of it as the first value and exit. Note that in this step, we also check whetherclass is the root of the
inheritance hierarchy. If this is the case,class only contains local methods, which means in particular
that the identified set of local selectors that self-sendsel actually containsall such selectors, and we
therefore return this set also as the second value.

3. Before we use recursion to search the superclass methods, we compute the set of unreachable superclass
selectors by adding tounreachable all the selectors for which methods are defined inclass (and therefore
potentially override superclass methods) and which are not super-sent by a reachable method inclass.
This is done by calling the functionlocalSuperSendCacheLookup, which accesses the pre-computed
super-send cache. Then, we perform the recursive call to search superclass methods and store the first
value of the resulting pair in the variablereachableSelfSenders and the second one inallInheritedSelf-
Senders.

4. For each selector in the setreachableSelfSenders, we check whether it is reachableonlyby a super-send.
If so, we replace it by the selectors of the local methods that perform the super-send. If the recursive invo-
cation did not compute all the methods that self-sendsel in the superclass (i.e., if allInheritedSelfSenders
is nil), we returnreachableSelfSenders as the first andnil as the second value and exit.

5. Otherwise, we useallInheritedSelfSenders to compute the setallSelfSenders containing the selectors of
all the methods that are implemented or inherited inclass and self-sendsel. Then, we this set to the cache
globalSelfSendCache and return it rather thannil as a second value.

58

5.3. PROGRAMMING METHODOLOGY 59

Evaluation of the Cache Design

We observe that the design of the pre-computed caches is well-suited to the algorithm. In step (2) of the
function findSelfSenders, we can find all the local methods that self-sendsel using a single lookup in the
self-send cache (localSelfSendCacheLookup). Similarly, in steps (3) and (5) of the same function, we are
able to check whether a selector is reachable via a super-send with a single lookup in the super-send cache
(localSuperSendCacheLookup).

The pre-computed caches can also be kept in a consistent state quite cheaply. This is mainly because these
caches contain only local data, that is, the caches for a particular class are independent of all the other classes
in the hierarchy. Thus, modifying a class requires updating at most the local cache for this class. Furthermore,
changing the place of a class in the hierarchy does not affect the caches at all.

In contrast, the per-class information that is kept in the dictionaryglobalSelfSendCache is global;i.e., the
information associated with a classC depends not only on the methods implemented locally inC but also on
C’s superclasses and their implementations. Nevertheless, this does not cause any cache maintenance problems
because this cache is used only during a single invocation of the functiongetSelfSendingClasses: it is built up
and accessed during the execution of this function and is discarded as soon as the function terminates.

Performance

Our first implementation of the browser cached the self-sends and super-sends of every method. However,
unlike the approach presented above, these caches were indexed by the selectors of the methods performing the
self-sends rather than by the selectors that were sent. Furthermore, our initial algorithm did not take advantage
of the coherence in the class hierarchy. This meant that the method for finding out whether a class self-sends
a certain selector was applied to each class separately. Using this implementation to find out which classes in
the system required the selector+ took several minutes (188 seconds)3, which made it impossible to provide
immediate feedback.

In a second version of the algorithm, we used the same caching strategy, but took advantage of the coher-
ence in the class hierarchy. Performance improved significantly, but the same computation still took over 9
seconds. Finally, using the caching strategy and the algorithms presented above, the same test takes less than
100 milliseconds and thus meets our requirement for instantaneous feedback.

We also experimented with lazy versions of the collection classes that are used to maintain the set of in-
herited self-senders and the set of self-senders that are computed and returned as the first value by the function
findSelfSenders. Unlike the regular collection classes, the operations implemented in these lazy versions com-
pute only limited results. This means for example that the intersection of the sets{#a #b #c #d} and{#a #b
#c #e} may return{#a #b} rather than{#a #b #c}. Because we used these lazy collections only to maintain
sets that do not need to be complete, this does not affect the correctness of our algorithm, but it leads to an
additional performance gain because typically, only few of these elements are actually used. Note however that
our experiments with these lazy collection classes were only preliminary; further experiments will have to be
done to get final answers for the detailed design of these classes and to quantify the performance gain.

5.3 Programming Methodology

There are hundreds of books that explain how to write object-oriented programs based on classes that are
organized in inheritance hierarchies and millions of programmers have ingrained this style of programming.
If such programmers start using traits, it is therefore important to tell them how traits affect the programming
process with which they are so familiar.

3All the performance data provided in this paper were measured in a Squeak 3.2 image consisting of 1860 classes, and were executed
on a Mobile Pentium III 1.2GHz with 512MB RAM.

59

60 CHAPTER 5. TOOLS AND METHODOLOGY

Based on our experience, both from designing traits and from using them together with other programmers
in several case studies (see Chapters 6 and 7), the conceptual difference between traits and classes leads to a
natural distinction regarding how and when these two concepts should be used.

In a nutshell, the practical role of traits is to capture the different variants of individual protocols, which can
then be composed to build composite protocols and finally classes. This frees the class hierarchy to be used for
the conceptual classification of objects.

In this section, we first give an overview of the different roles of classes and traits in an object-oriented
program. Then, we illustrate in more detail how traits change the programming process and how the trait
browser supports this new process.

5.3.1 The Roles of Classes and Traits

Most class-based languages overload the class concept with too many responsibilities. In his thesis, Bracha
lists no less than 11 distinct roles for classes [BRAC 92]. At a coarser granularity, we distinguish 5 roles for
classes that are relevant to the use of traits:

1. conceptual classification of objects,

2. definition of protocols (interfaces) for objects,

3. modularization — the grouping of related methods,

4. reuse (sharing) of implementation , and

5. incremental modification of an existing class.

It is often difficult, and sometimes impossible, to make a single class hierarchy play all of these roles.
Usually, it is the conceptual relationship between the class hierarchy and the domain that suffers, because
corrupting this relationship does not immediately break the program. In the case of the Smalltalk collection
classes, Cook [COOK 92] has shown how the inheritance hierarchy fails to capture the conceptual relationships
between the various collections: the conceptual hierarchy has been subverted to allow greater reuse. For
example, whereas dictionaries are conceptually a kind of updatable collection, the Smalltalk classDictionary is
implemented as a subclass ofSet. The problem with subverting the inheritance hierarchy in this way is that the
code no longer models the domain, and thus it is likely to be more difficult to understand, and harder to modify
in response to changes in the requirements or in the domain (cf. Chapter 6).

A trait-based programming methodology avoids this problem. Traits support modularization directly (role 3),
and methods encapsulated in a trait can be reused at any point in an inheritance hierarchy (4). In particular,
traits provide for incremental modification of an existing class and for the reuse of the “delta” (5).

Most importantly, traits concretize the important but otherwise abstract notion of protocol, and thus make it
much simpler for a number of classes to define the same interface, whether or not they are related by inheritance
(2). This allows the programmer to implement individual protocols, such as a rectangle protocol or different
variants of the enumeration protocols. Because trait composition allows one to combine multiple traits in a
commutative way, it is well-suited to combine such protocols, which are naturally unordered, to form composite
protocols and finally classes. This frees the class hierarchy to be used for conceptual classification of objects
(1).

5.3.2 Uniform Protocols

The notion of protocol, also known as interface, is crucial in all object-oriented programs, whether or not the
language in which they are written has a syntactic construct to capture it. Uniformity of protocol is encouraged
by inheritance, because by default the protocol of a subclass will be a superset of the protocol of its superclass.
But classes that are not related by inheritance should also, very often, share the same protocol.

More recent languages such as Java and C# address this issue with an interface construct that allows a
programmer to state that two classes should share a uniform protocol. However, they still do nothing to help

60

5.3. PROGRAMMING METHODOLOGY 61

Figure 5.7: The trait TRectangle

translate that desire into executable code, which means that inheritance remains the only tool available to
induce this uniformity. The problem is that if inheritance is used for another purpose, the programmer must
instead construct the protocols “by hand,” one method at a time. In addition to the dangers of code duplication,
protocols constructed by hand are unlikely to stay uniform: over time, one of the classes is likely to be extended
while the other is forgotten.

Traits solve this problem by making it possible to construct classes by trait (i.e., protocol) composition as
well as by inheritance. Given perfect foresight, any protocol that must eventually be supported by disparate
classes can be implemented in a trait, and re-used wherever it is needed. Unfortunately, mere mortals tend to
have difficulty applying methodologies that rely on perfect foresight. Instead, we allow programmers to build
classes in the conventional way, implementing protocols by placing methods directly in whichever class needs
them. If it becomes apparent that the same protocol needs to be supported in an additional (and unrelated)
class, the trait browser enables the programmer to extract the protocol into a trait, and then to use this trait as a
component of both the original and the additional class.

Illustration

As an illustration, consider the classRectangleMorph. RectangleMorph is a subclass ofMorph, the root of the
GUI hierarchy in Squeak. BecauseRectangleMorph lookslike a rectangle and also contains the state required
to be a rectangle, a user will reasonably expect it to understand the protocol of aRectangle. Paradoxically,
RectangleMorph does not understand the protocol of classRectangle. This is because inheritance is already
used to incorporate the GUI features intoRectangleMorph, and it is therefore not possible to include the 70
additional rectangle methods without code duplication.

With traits, we can easily overcome this problem by extracting the 70 rectangle methods from the class
Rectangle into a trait that can then be shared by all the classes supporting theRectangle protocol. In a first
step, we use the browser’s functionality to extract the rectangle methods from the classRectangle into a new
trait TRectangle. In this process, the browserabstractsthe references toRectangle’s two instance variables
(origin andcorner). The result is shown in Figure 5.7.

Notice the effect of theabstract variablerefactoring on the displayed method: whereas thetruncateTo:

61

62 CHAPTER 5. TOOLS AND METHODOLOGY

Figure 5.8: The new class RectangularMorph immediately after its creation

method in classRectangle accessed the instance variablesorigin andcorner directly, the version inTRectangle
sends the messagesself origin andself corner.

The -requires-virtual category ofTRectangle contains three methods:origin, corner andspecies. These
methods represent the places where the traitTRectangle must connect to any class in which it is used; they are
in effect parameters of the trait.

Continuing with the example, we now define a new classRectangularMorph, which is a subclass ofRect-
angleMorph and uses the newly created traitTRectangle. The state of the browser once this template has been
completed is show in Figure 5.8. However, the job is not yet done, which the browser indicates to the program-
mer by displaying the name of the newly created classRectangularMorph in blue. This means that the new
class is incomplete,i.e., that some of its requirements are unsatisfied.

We therefore select the newly created class in the browser and consequently see a list of its components,
which appears indented beneath it in the class pane. While the-own-pseudo-component is empty (we have not
yet written any methods forRectangularMorph), the componentTRectangle contains all of the methods that we
placed in the traitTRectagle in the previous step. The componentTRectangle too is blue, showing that it also
has unsatisfied requirements.

To view and edit the required methods, we can select the virtual category-requires-of the component
TRectangle. For example, we can define

corner
↑ self bounds corner

and similarly fororigin.
These newly defined methods populate the-own- component of the classRectangularMorph. This is be-

cause we defined the methods while browsingRectangularMorph; if instead we had been browsingTRectangle,
then the methods would have populated that trait.

Once a required method has been defined, the corresponding selector remains in the-requires-category of
the trait, but turns green because it is nowsuppliedby the class in which the trait is used (see Figure 5.9). It is
important that satisfied requirements remain visible: the list of required methods is a useful aid to understanding
the dependencies inside a class, whether or not they have been satisfied. However, once all of the requirements

62

5.3. PROGRAMMING METHODOLOGY 63

Figure 5.9: The glue method corner in RectangularMorph

have been satisfied, the classRectangularMorph and its componentTRectangle change from blue to black,
which indicates that the composition is now complete. Note that the required methodsspecies andperform:with:
were green from the first becauseRectangularMorph inherits an implementation for these methods fromObject.

To assure that the composition is also correct, we now examine the places where we have overridden
methods inherited fromRectangleMorph with methods from traitTRectangle. These methods are listed in the
-overrides-virtual category. The button bar in the browser (see Figure 5.10) lets the programmer view both the
superclass and the trait methods for the currently selected message. Using these buttons, the programmer can
easily view the various competing methods, and decide which is appropriate for the new class.

In theRectangularMorph example, most of the overrides provided by the trait are appropriate, but=, hash
and printOn: are not. A browser menu (see Figure 5.10) gives us a choice of two ways to exclude these
methods. “Set exclusion” modifies the composition clause ofRectangularMorph so that the selected method
(=) is excluded from the composition. If we were to use this menu item three times, for methods=, hash and
printOn:, the browser would modify the definition ofRectangularMorph to read as follows:

RectangleMorph subclass: #RectangularMorph
uses: TRectangle - {#=. #hash. #printOn:}
instanceVariableNames: ' '
classVariableNames: ' '
poolDictionaries: ' '
category: ' TraitsPaperExample'

In these three cases, the more appropriate action is toremove selector from trait TRectangle. That is, we
see that these methods should not be in the traitTRectangle at all: by removing them from the trait, they no
longer override the inherited methods inRectangularMorph.

Note that as pointed out in Section 5.2.3, the browser lets us view and edit our new class in two ways.
By selecting the nameRectangularMorph in the browser, we can view it as a conventional Smalltalk class.
Alternatively, by selecting its components-own- andTRectangle, we can view it as a composite entity. Editing
a method, in either view, changes just the classRectangularMorph: even if the method originally came from the
trait TRectangle, a modified version is created for the class. Deleting a trait method sets an exclusion, so that

63

64 CHAPTER 5. TOOLS AND METHODOLOGY

Figure 5.10: The method = in RectangularMorph.

the method is no longer part of the composite class. If instead the programmer wants to modify the component
trait, by editing or deleting one of its methods, the browser must first be focussed on the trait.

Now RectangularMorph is complete, but our task is not yet finished, because we have duplicated all of the
methods that we extracted fromRectangle when we constructedTRectangle. We can now simply eliminate
this duplication by refactoring theRectangle class so that it usesTRectangle as well.

5.3.3 Uncovering Hidden Structure

One of the more difficult tasks of program maintenance is discovering the latent structure hidden in the old code.
The complete protocol of a class is usually the union of several smaller protocols, but programmers seldom
make these component protocols explicit. The standard system browser allows the programmer to categorize
methods into protocols, but this is mere documentation, and thus often wrong: getting the categorization right
has no immediate payoff. Java providesinterfaces and theimplements declaration, but their use is optional: it
is more common to program to the implicit interface of a whole class. The trait browser has proved to be a
powerful tool for modularizing a class into separate traits, each of which implements a coherent protocol.

The first major programming task that we undertook with the browser was the refactoring of the Smalltalk
collection classes into traits (cf. Chapter 6). This required us to discover the various protocols that were
understood by the existing collection classes. We developed a methodology that involved two copies of the
browser.

In the first browser we took a class from the existing hierarchy, say,Collection, and extracted a trait from
it, which we calledTempCollection, and which thus contained copies of all of the methods ofCollection. We
then moved (by dragging) the methods fromTempCollection into an appropriate trait in the second browser. If
an appropriate trait did not yet exist, we created one. For example, we might drag methods likecollect: into a
new trait calledTCollEnumeration. The methodsdo: andspecies would then immediately be colored blue and
appear in the-requires-virtual category.

The immediate updating of the-requires-category provided valuable feedback about the protocol that we
were constructing. For example, if the methodaddAll: were mistakenly dragged intoTCollEnumeration, then

64

5.3. PROGRAMMING METHODOLOGY 65

add: would immediately show up in the-requires-category, providing a strong clue that something was amiss.
If necessary, the menu item “local senders of . . .” let us see why a particular method was required.

Sometimes we would realize that what we had imagined as one trait was actually two, in which case we
would pause in our work while we split the trait. For example, we eventually splitTCollEnumeration into
two traits:TCollEnumerationUI, whose methods will work on unsequenced collections, andTCollEnumerationI,
which containsTCollEnumerationUI as a subtrait, but which also includes some methods (likefindFirst: and
from:to:do:) that require the collection to be sequenced, and which thus haveat: as a additional requirement.
Making -requires-visible enables the programmer to see this distinction.

The process of discovering the latent protocols embedded inCollection proceeded until there were no more
methods inTempCollection. At this point we could delete the temporary trait, confident that all of its methods
had found a home in some trait or other.

If the new traits that are constructed by this process are to be reusable, the semantics of each of the required
methods must be clear. The programmer can document these semantics by adding a comment describing
the required behavior to the marker methodsself requirement. The few cases in which we were unable to
understand the required semantics represented design flaws in the original code. For example, we have already
stated that several of the methods inTCollEnumerationUI requiredspecies. But so did= andhash! What is
going on here is thatspecies is actually playing two different roles. According to the “Blue Book” [GOLD 83],
the messagespecies should return the preferred class for reconstructing the receiver, and the expressionself
species new is therefore used within enumeration methods such ascollect: or select: that create new collections.
But according to LaLonde and Pugh [LALO 90], species also plays a critical role in equality comparisons: two
collections must be of the samespecies if they are to be considered equal (=).

These two roles are not always compatible. The classesInterval andHeap, for example, implementspecies
so that it returns the classArray, which means that intervals, heaps and arrays are considered equal if they
contain the same set of elements. At the same time, the classOrderedCollection implementsspecies to return
itself, which means that an instance ofOrderedCollection can never be equal to an instance ofArray. Thus, part
of our refactoring was to replace occurrences ofself species new (the first role) with a self-send of the new
messageemptyCopyOfSameSize.

5.3.4 Traits and Agile Methodologies

In recent years, agile methodologies, in particular Extreme Programming (XP) [BECK 00], have begun to
influence the software engineering process. Traits and the trait browser are compatible with several of the XP
practices such as continuous design, constant refactoring, and testing.

Continuous design. Extreme programming suggests that there is no up-front design phase. Instead, design
takes place incrementally throughout the development process: the design of a program is always subject to
change. Traits support this style of programming because they provide an additional way to adapt a program to
a design change. Specifically, in addition to refactoring the class hierarchy in the conventional way, traits allow
one to factor out an arbitrary set of methods and then reuse them wherever it seems most appropriate.

Traits even allow one to start implementing before any design exists. This is because traits enable a
behavior-basedor bottom up strategy that is appropriate when it is clear that a certain behavior is needed,
but not yet clear in what class it should be placed. The enumeration behavior already discussed is a typical
example. Traits let us forge ahead and define as a trait the coherent set of methods that captures the appropriate
behavior; we can defer the decision about where it should be placed in an inheritance hierarchy to best enable
reuse.

Of course, it is still possible to adopt aclass-basedor top-down strategy: when it is clear that some behavior
has to be in a class, we can still use all the familiar techniques of single-inheritance programming. We can just
implement a class, or a small hierarchy of classes, as if traits did not exist. Later, we can structure the classes
by dragging and dropping certain methods into traits. Perhaps this is just for documentation, but it can also

65

66 CHAPTER 5. TOOLS AND METHODOLOGY

be essential if we eventually see that one of the classes contains some reusable behavior that we would like to
share with an unrelated class.

Refactoring is the technology that makes continuous design feasible: “if you believe that the future is un-
certain,and that you can cheaply change your mind, then putting in functionality on speculation is crazy”
[BECK 00, page 57, our emphasis]. Refactoring is simplified by the presence of traits, because they enable us
to move a whole group of logically related methods from one class to another with a single edit. By putting
methods into traits, we keep our options open: if there later turns out to be an abstract superclass that is a
suitable home for such behavior, then that superclass can use the trait, and its subclasses can inherit the corre-
sponding behavior, without making it any harder for other, unrelated classes to also use the same behavior. This
flexibility seems to have no cost in understandability: indeed, we argue that traitsincreaseunderstandability.
This is because critical behavior can be made explicit and given a descriptive name.

Testing. Traits allow one to specify tests in a very fine-grained and reusable manner. This is because tests
can be associated with traits as well as with classes, and traits represent a smaller and more primitive unit of
functionality. Even for very simple traits such as equality, magnitude, or emptiness, tests can be written very
early, placed in the trait, and then applied to all of the classes that use the trait. Alternatively, the tests can be
placed into separate traits. These “test traits” can then be used to create test cases (i.e., subclasses of the class
TestCase) for all the classes to which the corresponding traits are applied.

5.4 Interaction between Language, Tools and Methodology

Our experience with traits confirmed the principle known from Smalltalk, which says that programming lan-
guage, tools and methodologies should be developed together: the best methodology is little more than pious
hope without appropriate language features and supporting tools, and powerful tools can be powerfully danger-
ous without a guiding methodology.

In theory, the difference between traits on one hand and mixins and multiple inheritance on the other
arise from the way in which we defined the composition operators on traits. These operators ensure that trait
composition is commutative, that conflict resolution is always explicit, and that a composite entity can always
be flattened into a simple, unstructured one.

However, our experience has shown that without appropriate tools the programmer cannot really take ad-
vantage of these theoretical advantages. For example, the programmer can only benefit from the flattening
property if there are tools that actually provide the different views (i.e., the flat class-based view and the struc-
tured trait-based views) and allow the programmer to switch between them. Similarly, the requirement for
explicit conflict resolution is rather painful if there are no tools that indicate all conflicts as soon as they occur.

Once we had implemented the trait browser, the tool that provided us with all these important features, we
also realized that it encouraged and helped the development of a sound methodology. While traits as a language
feature made it possible to factor out protocols as individual traits, it was the trait browser that actually helped us
identify and understand the hidden protocols, and that made it easy and pleasant to perform the corresponding
refactorings.

66

Chapter 6

Case Study: Refactoring the Smalltalk
Collection Classes

We performed two case studies to evaluate the practical benefits of traits in realistic scenarios. The first case
study, presented in this chapter, is a refactoring of the Smalltalk collection hierarchy. We identified this hi-
erarchy as particularly appropriate for such a case study because its classes can be categorized in so many
dimensions that the traditional implementation suffers from problems related to code reuse and conceptual
categorization [COOK 92]. These are exactly the kinds of problems for which traits are designed, and it is
therefore interesting to see whether and how they can solve these problems in practice.

We start by giving a brief overview of the design and organization of the Smalltalk collection classes (Sec-
tion 6.1). Then, we analyze the deficiencies of the traditional implementation (Section 6.2) and present our
refactored implementation that uses traits to avoid these deficiencies (Section 6.3). We discuss the lessons we
learned from this refactoring and elaborate on the differences between our refactoring and alternative refac-
torings based on approaches such as mixins and multiple inheritance (Section 6.4). Finally, we conclude this
chapter by summarizing and interpreting our results (Section 6.5)

6.1 The Smalltalk Collection Classes

The collection classes are a loosely defined group of general purpose subclasses ofCollection and Stream.
The group of classes that appears in the “Blue Book” [GOLD 83] contains 17 sub-classes of collection and
9 sub-classes of Stream, for a total of 28 classes, and had already been redesigned several times before the
Smalltalk-80 system was released. This group of classes is often considered to be a paradigmatic example of
object-oriented design.

In Squeak, the abstract classCollection has 98 subclasses, and the abstract classStream has 39 subclasses,
but many of these (likeBitmap, FileStream andCompiledMethod) are special purpose classes and hence not cat-
egorized as “collections” by the system organization. For the purposes of this study, we use the termcollection
hierarchyto meanCollection and its 37 subclasses that arealso in the system categoryCollections. We use the
termstream hierarchyto meanStream and its 10 subclasses that arealso in the system categoryCollections.

The full list of collection classes is shown in Figure 6.1. Indentation indicates subclassing. Abstract classes
areitalicized ; the classes that we refactored are named inbold . These 49 classes respond to 794 messages and
define a total of 1236 methods.

67

68 CHAPTER 6. CASE STUDY: REFACTORING THE SMALLTALK COLLECTION CLASSES

Page 1

Collection
Bag

IdentityBag
CharacterSet
SequenceableCollection

ArrayedCollection
Array

WeakArray
Array2D
ByteArray
ColorArray
FloatArray
IntegerArray
RunArray
String

Symbol
Text
WordArray

WordArrayForSegment
Heap
Interval
LinkedList
MappedCollection
OrderedCollection

SortedCollection
Set

Dictionary
IdentityDictionary
PluggableDictionary
WeakKeyDictionary

WeakIdentityKeyDictionary
WeakValueDictionary

IdentitySet
PluggableSet
WeakSet

SkipList
IdentitySkipList

WeakRegistry

Stream
AttributedTextStream
PositionableStream

ReadStream
WriteStream

LimitedWriteStream
ReadWriteStream

RWBinaryOrTextStream
Transcripter

TextStream
TranscriptStream

Figure 6.1: The collection classes in Squeak

68

6.1. THE SMALLTALK COLLECTION CLASSES 69

Sequenceable Not Sequenceable

Accessible by Index Not Indexable Accessible by Key Not Keyed

Interval
SortedCollection
Array
ByteArray
OrderedCollection
String
Symbol

LinkedList
SkipList

Dictionary
IdentityDictionary
PluggableDictionary

Set
IdentitySet
PluggableSet
Bag
IdentityBag

Arrayed
Implementation

Ordered
Implementation

Hashed
Implementation

Linked
Implementation

Interval
Implementation

Array
String
Symbol

OrderedCollection
SortedCollection
Text
Heap

Set
IdentitySet
PluggableSet
Bag
IdentityBag
Dictionary
IdentityDictionary
PluggableDictionary

LinkedList
SkipList

Interval

Figure 6.2: Some collection classes categorized by functionality

6.1.1 The Varieties of Collection

To understand the challenge of refactoring the collection hierarchy, the reader needs at least a superficial knowl-
edge of the wide variety of collections in these classes, their commonalities and their differences. Those familiar
with the Smalltalk collection classes may safely skip this section.

Programming with aggregates rather than individual elements is an important way of raising the level of
abstraction of a program. The Lisp functionmap, which applies an argument function to every element of a
list and returns a new list containing the results, is an early example of this style, but Smalltalk-80 adopted
aggregate-based programming as a central tenet. Modern functional programming languages such as ML and
Haskell have followed Smalltalk’s lead. So, why is this a good idea?

Suppose you have a data structure containing a collection of student records, and wish to perform some
action on all of the students that have a particular property. Programmers raised to use an imperative language
will immediately reach for a loop. But the Smalltalk programmer will write

students select: [:each | each gpa < threshold]

which evaluates to a new collection containing precisely those elements ofstudents for which the bracketed
function returnstrue1.

It is important to note that the messageselect: is understood byall collections in Smalltalk. There was no
need to find out if the student data structure was an array or a linked list: theselect: message is understood by
both. Note that this is quite different from using a loop, where one must know whetherstudents is an array or
a linked list before the loop can be set up.

In Smalltalk, when one speaks of a collection without being more specific about the kind of collection, one
means an object that supports well-defined protocols for testing membership and enumerating the elements.All
collections understand the testing messagesincludes:, isEmpty andoccurrencesOf:. All collections understand
the enumeration messagesdo:, select:, reject: (which is the opposite ofselect:), collect: (which is like Lisp’s
map), detect:ifNone:, inject:into: (which performs a left fold) and many more. It is the ubiquity of this protocol,
as well as its variety, that makes it so powerful.

Beyond this basic uniformity, there are many different kinds of collection. This is illustrated in Figure 6.2,
which shows a few collection classes and how they are categorized according to their functionality.Array and
LinkedList are examples of collections that are sequenceable, which means that an enumeration of the collection
starts from afirst element and proceeds in a well-defined order to alast element.

Array and many other collections are also indexable, that is,anArray at: n retrieves thenth element of
anArray, andanArray at: n put: v changes thenth element tov. However,LinkedList, although sequenceable, is
not indexable, that is, its instances understandfirst and last, but notat:. Of the non-sequenceable collections,
dictionaries can be accessed by an arbitrary key, such as a string, while sets and bags cannot.

1The expression in brackets can be thought of as aλ-expression defining an anonymous functionλx. x gpa < threshold.

69

70 CHAPTER 6. CASE STUDY: REFACTORING THE SMALLTALK COLLECTION CLASSES

Sequenceable Not Sequenceable

Accessible by Index Not Indexable Accessible by Key Not Keyed

Interval
SortedCollection
Array
ByteArray
OrderedCollection
String
Symbol

LinkedList
SkipList

Dictionary
IdentityDictionary
PluggableDictionary

Set
IdentitySet
PluggableSet
Bag
IdentityBag

Arrayed
Implementation

Ordered
Implementation

Hashed
Implementation

Linked
Implementation

Interval
Implementation

Array
String
Symbol

OrderedCollection
SortedCollection
Text
Heap

Set
IdentitySet
PluggableSet
Bag
IdentityBag
Dictionary
IdentityDictionary
PluggableDictionary

LinkedList
SkipList

Interval

Figure 6.3: Some collection classes categorized by implementation technique

The classOrderedCollection is more general thanArray; the size of anOrderedCollection grows on demand,
and it has methods foraddFirst: andaddLast: as well asat: andat:put:. An Interval is an immutable collection
defined by a computational rule when it is created. For example,5 to: 16 by: 2 is an interval that contains the
elements 5, 7, 9, 11, 13 and 15. It is indexable withat:, but cannot be changed withat:put:.

Functional Differences

The differences between the various kinds of sequenceable collection manifest themselves in several different
dimensions.

1. How is the order established? Sorted collections use a supplied total ordering function, intervals are
implicitly ordered, while arrays and ordered collections are ordered explicitly when elements are inserted.

2. Is the size fixed (intervals and arrays) or variable (sorted collections, ordered collections, and linked
lists)?

3. Is the collection immutable (intervals and symbols) or mutable (the others)?

4. Is the collection constrained to hold a particular kind of object, or is it completely general? For example,
LinkedLists are constrained to hold elements that conform to theLink protocol, whileCharacterArrays,
Strings andSymbols must contain characters.2

The non-sequenceable collections (sets, bags and dictionaries) can be categorized in a different set of di-
mensions.

1. Are duplicates allowed (dictionary and bag) or disallowed (set)?

2. Can the elements be accessed by a key (dictionaries), or not (sets and bags)?

3. How are the keys (in a dictionary) or the values (in a set or a bag) compared,e.g., what test is used to
ascertain whether two elements added to a set are “equal”? For example,Dictionary, Set andBag use
the = method provide by the elements; theIdentity variants of these classes use the= = method, which
tests whether the arguments are the same object, and thePluggable variants use an arbitrary equivalence
relation supplied by the creator of the collection.

Implementation Differences

These categorizations by functionality are not our only concern; as re-implementors of the collection hierarchy
we must also understand how the collection classes are implemented. As shown in Figure 6.3, five main
implementation techniques are employed.

2A Symbol is a unique instance of an immutable string, used heavily in the language implementation. The unique instance property
means that equality tests are particularly efficient.

70

6.2. ANALYSIS OF THE COLLECTION CLASSES 71

1. Arrays store their elements in the (indexable) instance variables of the collection object itself; as a conse-
quence, arrays must be of a fixed size, but can be created with a single memory allocation.

2. OrderedCollections andSortedCollections store their elements in an array that is referenced by one of the
instance variables of the collection. Consequently, the internal array can be replaced with a larger one if
the collection grows beyond its storage capacity.

3. The various kinds ofSet andDictionary also reference a subsidiary array for storage, but use the array as
a hash table.Bags use a subsidiaryDictionary, with the elements of the bag as keys and the number of
occurrences as values.

4. LinkedLists use a standard singly-linked representation.

5. Intervals are represented by three integers that record the bounds and the step size.

In addition to these classes, there are also “weak” variants ofArray, Set and of the various kinds of dictio-
nary. These collections hold onto their elements weakly,i.e., in a way that does not prevent the elements from
being garbage collected.

Readers interested in learning more about the Smalltalk collections are referred to LaLonde and Pugh’s
excellent book [LALO 90].

6.1.2 Streams

The collection protocol supports the storage, removal and enumeration of the elements of a collection, but
does not allow these operations to be intermingled. For example, if the elements of anOrderedCollection are
processed by ado: method, it is not possible to add or remove elements from inside the do block. Nor does
the collection protocol allow us to perform a merge sort by sequencing through twoOrderedCollections and
repeatedly removing the smallest first element. Procedures like these require that a traversal index or position
reference is maintained outside of the collection itself, as captured in the iterator pattern [GAMM 95]. Smalltalk
Streams perform exactly this function.

All stream objects are defined tostream oversome collection. For example:

r : = ReadStream on: (1 to: 10).
r next. ”evaluates to 1”
r next. ”evaluates to 2”
r atEnd. ”evaluates to false”

WriteStreams are analogous:

w : = WriteStream on: (String new: 5).
w nextPut: $a.
w nextPut: $b.
w contents. ”evaluates to ' ab' ”

It is also possible to createReadWriteStreams that support both the reading and the writing protocols;
defining such a class without code duplication is a challenge for single inheritance. Squeak chooses to make
ReadWriteStream a subclass ofWriteStream, as shown in Figure 6.1.

6.2 Analysis of the Collection Classes

This section presents the results of an analysis of the collection hierarchy as it existed before our refactor-
ing. We will see that the collection hierarchy contains unnecessary inheritance, duplicated code, and other
shortcomings.

Given the many dimensions in which the Smalltalk collection classes can be categorized, it is inevitable
that any attempt to organize them into a single inheritance hierarchy will run into severe difficulties. As Cook

71

72 CHAPTER 6. CASE STUDY: REFACTORING THE SMALLTALK COLLECTION CLASSES

Object

at:put:

WeakValueDictionary

add:
at:put:

Collection

add:

Set

add:

Dictionary

add:
at:put:

Figure 6.4: Redefinition of at:put: and add: in the superclasses of WeakValueDictionary

showed [COOK 92], the hierarchy attempts to maximize reuse at the expense of conceptual categorization,
with the consequence that, for example,Dictionary is a subclass ofSet because it shares much of the same
implementation, even though it presents a very different interface.

Another way that the designers of the hierarchy attempted to maximize reuse was to move methods high
up, so that all possible classes have a chance to inherit them. For example,collect: is implemented inCollec-
tion, but the implementation is appropriate only for those collections that understandadd:. Consequently, this
implementation is overridden by the abstract classSequenceableCollection in favor of an implementation using
at:put:. This second implementation is inherited by all of theArrayedCollections, but also byOrderedCollection
andSortedCollection, for which it is not appropriate, and which override it again. All told, there are 9 imple-
mentations ofcollect: in the collection hierarchy in Squeak 3.2, whereas the refactored hierarchy contains only
6 of them.

The following subsections examine these effects more systematically.

6.2.1 Unnecessary Inheritance

Inheritance is used quite heavily in the collection classes, mostly for sharing implementation, but also for
classification [COOK 92]. As a measure of the complexity of the inheritance relationships, we counted the
number of inheritance chains in which a method is defined three or more times. Figure 6.4 illustrates two
examples: the methodsat:put: andadd: in the inheritance chains terminating in the classWeakValueDictionary.
We found 79 such inheritance chains.

There is nothing intrinsically wrong with redefining a method inherited from one’s superclass. On the
contrary, the ability to usesuper to call the inherited definition from within the new method gives inheritance
much of its power, and many people consider that adding behavior before or after a super-send is the epitome
of inheritance-oriented programming.

However, for the most part, redefinition usingsuper is not what is going on here. A total of 258 methods
are involved in the 79 method redefinition chains mentioned above. Since 79 methods are at the top of a

72

6.2. ANALYSIS OF THE COLLECTION CLASSES 73

Stream

ReadWriteStream

next
...

PositionableStream
collection
position
readLimit
next:
next:into:
nextDelimited:
...

ReadStream

next
...

WriteStream
writeLimit
next
...

next
 self shouldNotImplement

duplicated

Figure 6.5: Duplicated methods and methods implemented “too high” in the stream hierarchy

chain, 258− 79= 179 methods have the opportunity of sending tosuper: only 15 actually do so. Neither are
these redefinitions examples of “hook” methods that are being used to parameterize the behavior of a template
method [ALPE 98]: all of the redefined methods are part of the functional interface. We deduce that for the
most part these redefinitions arecorrecting, rather than augmenting, the behavior of the inherited method so
that it is appropriate for the new subclass. In other words, we have identified 164 places where a method was
inherited unnecessarily.

What is the problem with unnecessary inheritance? The cost is not in execution time nor in code space but
in lost development time. The task of understanding a class that inherits several methods but does not use them
is more complicated than necessary. Inheritance is often considered to be an aid to understanding a complex
class, since the programmer can work down the inheritance chain, comprehending only thedifferencesbetween
a subclass and its superclass, rather than having to comprehend the entirety of the final subclass in a single
step. To the extent that methods are inherited unnecessarily, this process is made more difficult, and inheritance
begins to hinder rather than to assist us in understanding legacy code.

6.2.2 Code Duplication and Inappropriate Hierarchies

When a new subclassdoeswant to re-use a method from an existing class, it may nevertheless be unable to do
so because of the nature of single inheritance. For example,PluggableSet andPluggableDictionary share some
methods, but there is no place from which both classes could inherit them.PluggableDictionary is a subclass of
Dictionary, andPluggableSet is a subclass ofSet; there is no appropriate common superclass in which methods
shared by the two pluggable classes can be placed. There is aninappropriatesuperclass:Set. The programmer
is left with the choice of placing a method “too high” in the hierarchy (inSet), or duplicating it.

The stream classes provide a classic example of methods being implemented too high, which is illustrated in
Figure 6.5. Conceptually, the abstract classPositionableStream provides the facilities for accessing a sequence
of objects named by external indices (such as characters in a string or a file). Thepositionableprotocol includes
messages to set and reset the position of this index. However,PositionableStream is also the lowest common

73

74 CHAPTER 6. CASE STUDY: REFACTORING THE SMALLTALK COLLECTION CLASSES

superclass of bothReadStream and WriteStream. BecauseReadWriteStream is a subclass ofWriteStream,
many of the methods that support reading (for examplenext:, next:into: andnextDelimited:) are implemented
in PositionableStream rather than inReadStream. All these “reading methods” are defined in terms of the
methodnext, which is a requirement ofPositionableStream and is implemented in its subclassReadStream. In
the subclassWriteStream, the methodnext is explicitly disabled, and it is then re-enabled inReadWriteStream,
which implements a duplicate of the methodnext defined inReadStream.

The other reading methods (such asnextDelimited: andnext:into:) are directly implemented inPosition-
ableStream and arenotexplicitly disabled in WriteStream, which means that they are inherited byReadStream,
WriteStream, andReadWriteStream. Thus, to avoid code duplication, methods specific to reading are imple-
mented in the common superclass ofReadStream andWriteStream. The tactic succeeds (except in the case
of next), but the price is high:PositionableStream is polluted by many methods that have nothing to do with
positioning, andWriteStream appears to implement many reading methods, although these methods will fail if
they are ever used.

There is no easy way to ascertain how much duplication is caused by the fact that methods can be inherited
only from a superclass. We made a superficial check by looking for methods whose decompile strings were
identical. This check detected as duplicates methods those that differed only in formatting, comments, or the
names of temporary variables. We excluded from our count error marker methods such asself shouldNotImple-
ment, which is used to cancel an inherited method. Using this check we found 28 pairs of duplicated methods
and 3 triples in the collection classes.

In the majority of cases the duplication was of a method defined in another part of the class hierarchy,
which consequently could not be inherited, or of an unreachable method defined in an indirect superclass. For
example, the classesDictionary andCollection both implement the methodoccurrencesOf: identically, but even
thoughDictionary is a subclass ofCollection, there is an intervening definition ofoccurrencesOf: in the class
Set that preventsDictionary from reusing the method fromCollection.

However, these duplication counts are just the tip of the iceberg. Our primitive duplicate detection technique
certainly misses many methods that differ in structure but not in semantics. For example, if two methods
comparex andy for equality, but one expresses this asx = y while the other usesy = x, this duplication will
not be revealed by our search. During our refactoring of the collection classes we also noticed many deeper
examples of code duplication, where a method had clearly been copied from an established class into a newly
created class, and then a single crucial statement had been changed to obtain a different semantics. In addition,
there is also undoubtably duplication of collection code in classes outside of the collection hierarchy, which we
did not attempt to quantify.

6.2.3 Conceptual Shortcomings

In addition to the above implementation problems, the collection classes also suffer from some conceptual
shortcomings.

One of the reasons that there are so many collection classes is that the designers have attempted to compen-
sate for the fact that classes are hard to reuse by providing all possible combinations of features. For example,
sets, bags and dictionaries must compare elements (or keys) for equality. Thus, each structure needs three
variants: one that uses equality (=) between elements, one that uses identity (==), and one that uses an equality
function that is “plugged in” when the structure is created. Thus, we have the three classesSet, IdentitySet, and
PluggableSet; the same is true forDictionary andBag, except thatPluggableBag is missing. A similar situation
exists with the “weak” variants of the collection classes, which hold onto their elements weakly,i.e., in a way
that does not prevent them from being garbage collected.

It would be nice if these characteristics could be captured as reusable components, so that programmers
could combine pluggability with, say,SkipLists, so that they could build the data structure that suits their
application. This would simultaneously simplify the collection hierarchy (by eliminating the combinatorial
explosion of features)andgive the programmer the flexibility to choose from a wider range of collections.

Immutability is a “feature” not provided in the current hierarchy except in two special cases: symbols and

74

6.3. REFACTORING RESULTS 75

intervals. Nevertheless, immutable collections can be useful in many contexts. Strings are almost always used
as if they are immutable, as are literal arrays, but this cannot be captured by the current collection classes.

The stream classes also exhibit many orthogonal features, such as readvs. write, binaryvs. text, position-
able (seekable)vs. not-positionable. The more necessary combinations are implemented by duplicating code;
many other combinations are simply unavailable.

Another problem with the collection hierarchy, also observed by Cook, is that sometimes the interfaces of
the classes are not what one would expect: certain methods are missing. The classesString andText provided
an example.String adds 142 new methods to the protocol of its superclass (the abstract classArrayedCollec-
tion). Most of these methods are related to parsing, converting to HTML, searching for substrings and regular
expressions, and other operations specific to character strings, and so inevitably these methods must be defined
specifically for the classString. However, Squeak also defines a classText, for representing character strings
that have been attributed with font changes, hyperlining,etc. All 142 String messages ought to be understood
by Text objects, but in the standard Squeak system, only 15 of them actually are. The remaining 127 are miss-
ing. Why is this?Text is not a subclass ofString, so the “missing” methods cannot be inherited; the situation is
similar to the problem withRectangleMorph andRectangle described in Section 5.3.2. Fixing this problem in
Squeak would require either code duplication or 127 delegation methods.

Finally, we mention that collection-like behavior is often desired for objects that are not primarily collec-
tions. For example, the classPath is a subclass ofDisplayObject and thus not able to inherit fromCollection. A
Path represents an ordered sequence of points; arcs, curves, lines and splines are all implemented as subclasses
of Path. Path implements some of the more basic kinds of collection-like behavior; for example, it has methods
for at:, at:put:, andcollect:. But Path doesnot attempt to implement the full range of collection behavior. For
example,Path does not provide methods forselect: anddo:: there are simply too many such methods to make
it viable to re-implement them, and the existing implementation cannot be reused. Section 6.3.4 discusses how
traits make collection-like behavior available outside of the collection hierarchy.

6.3 Refactoring Results

In this section we explain how traits are used in the collection hierarchy that emerged from our refactoring
efforts. We start by describing how we distributed behavior from the pre-existing abstract and concrete classes
into traits, and how those traits are used to construct a new set of classes. We then analyze the new hierarchy
with respect to code duplication, possibilities for reuse, and other issues.

6.3.1 The New Collection Hierarchy

Figure 6.6 shows the new hierarchy for the 23 common concrete collection classes that we have re-implemented,
and 6 abstract superclasses. Classes with italicized names are abstract; below the class name we show the top-
level trait(s) from which the class is composed. Each of these traits is in turn composed from several subtraits,
as shown in Figures 6.7 and 6.8. The names of implementation traits end in “Impl”. Individual methods and
instance variables are not shown.

The classes in the refactored hierarchy are divided into three layers. At the top of the Figure 6.6 is the
abstract classCollection, which is composed from two traits, and provides a small amount of behavior for all
collections. Next we have a layer of 5 abstract classes that represent different combinations of the externally
visible properties of collections. We call these propertiesfunctional, to distinguish them from theimplemen-
tation properties, that is, properties that characterize the internal data structures used in the implementation
rather than the external behavior. Inheriting from the functional classes we have 23 concrete classes, each of
which also uses one or more traits that specifies its implementation. We now describe the functional and the
implementation traits in turn.

75

76 CHAPTER 6. CASE STUDY: REFACTORING THE SMALLTALK COLLECTION CLASSES

Collection
TCommon
TBasicImpl

Extensible-
Sequenced-

Explicitly
TExtensible-
Sequenced-
Explicitly

Extensible-
Unsequenced
TExtensible-
Unsequenced

Sequenced-
Immutable

TSequenced-
Immutable

Extensible-
Sequenced-

Implicitly
TExtensible-
Sequenced-
Implicitly

Sequenced-
Explicitly

TSequenced-
Explicitly

Heap
THeapImpl

Sorted-
Collection
TSortedImpl

Array
TArray
TArrayImpl

String
TString
TStringImpl

Text
TText
TTextImpl

Interval
TIntervalImpl

LinkedList
TLinkedImpl

Ordered-
Collection

TOrderedImpl

WeakArray

Bag
TExtensibleInstanceCreationImpl

IdentityBag

Dictionary
TDictionaryImpl

Set
THashedImpl

SkipList
TSkipListImpl

WeakSet IdentitySet
TIdentityAdaptor

PluggableSet
TPluggableAdaptor

Identity-
SkipList

PluggableDictionary
TPluggableAdaptor

IdentityDictionary
TIdentityAdaptor

WeakKeyDictionary

WeakIdentityKeyDictionary
TIdentityAdaptor

WeakValueDictionary

Figure 6.6: The refactored collection hierarchy

76

6.3. REFACTORING RESULTS 77

TCommon
TPrintingUI
TMissfitsUI
TRandomUI

TSequencedImmutable
TArithmeticI
 TArithmeticUI
TBasicI
 TBasicUI
TCopyingI
 TCopyingUI
TConversionI
 TConversionUI
TElementAccessSI
TEnumerationI
 TEnumerationUI
TErrorsI
 TErrorsUI

TUnsequenced
TArithmeticUI
TBasicUI
 TEmptiness
TCopyingUI
TConversionUI
TEnumerationUI
TErrorsUI
 TErrorsSizeIndependentUI

TString
TStringI
TStringM

TText
TTextI
 TStringI
TTextM
 TStringM

TSequencedImplicitly
TConversionSM

TSequencedExplicitly
TElementAccessSM

TExtensibleSequencedImplicitly
TExtensibleU

TExtensibleSequencedExplicitly
TElementAccessSM

TExtensibleUnsequenced
TExtensibleU

TArray

composed from

Figure 6.7: The hierarchy of traits corresponding to functional properties

The Functional Traits

Each kind of collection can be characterized by several functional properties such as being explicitly ordered
(e.g., Array), implicitly ordered (e.g., SortedCollection), unordered (e.g., Set), extensible (e.g., Bag), immutable
(e.g., Interval), or keyed (e.g., Dictionary); see Section 6.1.1 for more discussion. The various combinations of
these properties can be represented by combining the respective traits. All that is necessary is to create a trait
for each functional property and then combine them to build the abstract classes of Figure 6.6.

Figure 6.7 shows how the functional traits are built from each other and from more primitive traits. The
11 boxes represent the larger composite traits; subtrait relationships between them are shown by arrows. For
clarity, we do not show the primitive traits graphically. Instead we indicate their usage in the bottom part of the
rectangles representing the traits, and use indentation to indicate nested traits.

We use the following naming convention. Some names have a suffix consisting of letters from the sets{S,
U} and{M, I}. The letterS indicates that all of the methods in the trait require the collection to be sequenced,
whereasU means that none of the methods in the trait requires the collection to be sequenced. Similarly,
M means that all the methods require the collection to be mutable, andI means that no method requires the
collection to be mutable. If the suffix does not contain a letter from one of these sets, the trait contains some
methods with each characteristic.

As an example, the traitTEnumerationUI contains the part of the enumeration behavior that does not require
sequencing (U), whereasTEnumerationI — which usesTEnumerationUI as a subtrait — contains both methods
that require sequencing and methods that are indifferent to whether the collection is sequenced. Furthermore,
none of the methods in these traits treats the target object as mutable (I).

To allow maximal reuse, we made the combinations of property traits available in two forms: as composite
traits that can be reused outside of the collection hierarchy, and as superclasses that can be inherited within it.

77

78 CHAPTER 6. CASE STUDY: REFACTORING THE SMALLTALK COLLECTION CLASSES

TInstanceCreationImplTExtensibleInstanceCreationImpl

TArrayBasedImplTOrderedSortedCommonImpl

TBasicImpl

TSortBlockBasedImpl

TExtensibleImpl
TExtensibleSequencedImpl

TSequencedImpl

composed from

Figure 6.8: Common implementation traits

THeapImpl
TArrayBasedImpl
TExtensibleInstanceCreationImpl
TExtensibleSequencedImpl
TSortBlockBasedImpl

TOrderedImpl
TExtensibleInstanceCreationImpl
TExtensibleSequencedImpl
TOrderedSortedCommonImpl

TLinkedImpl
TExtensibleInstanceCreationImpl
TExtensibleImpl

TSortedImpl
TExtensibleInstanceCreationImpl
TExtensibleSequencedImpl
TOrderedSortedCommonImpl
TSortBlockBasedImpl

TSkipListImpl
TExtensibleImpl
TExtensibleInstanceCreationImpl
TSortBlockBasedImpl

TIntervalImpl
TSequencedImpl

THashedImpl
TArrayBasedImpl
TExtensibleImpl
TExtensibleInstanceCreationImpl

TArrayedImpl
TInstanceCreationImpl
TSequencedImpl

TDictionaryImpl TByteArrayImpl TStringImpl TTextImpl

composed from

Figure 6.9: Specific implementation traits

78

6.3. REFACTORING RESULTS 79

We modularized the primitive properties more finely than would have been necessary if our only goal were
to avoid code duplication. This results in a fine-grained structure that gives us, and future programmers, more
freedom to extend, modify and reuse parts of the new hierarchy. In addition, some of the property traits contain
many methods, and creating subtraits corresponding to individual sub-properties gives them internal structure
that makes them easier to understand. For example, the composite traitTUnsequenced is built from 7 sub-
properties such asTArithmeticUI, TCopyingUI, TConversionUI, andTEnumerationUI. Because of the flattening
property, there is no cost to this fine-grained structure: it is always possible to flatten it out and to work with
the code in a less structured view.

The Implementation Traits

Besides the functional properties, which are visible to a client, each collection class is also characterized by an
implementation, which is normally hidden from a client. The functional and implementation traits that capture
these properties are largely independent.

The refactored hierarchy separates the traits specifying the implementation of a collection from the traits
specifying the functional properties. This allows us to combine the different functional property traits (e.g.,
TExtensibleSequencedExplicitly and TExtensibleSequencedImplicitly) with any of the suitable implementa-
tions (e.g., linked and array-based). In one place we also extended the functionality of a concrete class: our
LinkedLists are indexable,i.e., they understandat:.

Figures 6.8 and 6.9 show the structure of the implementation traits. The 9 implementation traits shown
in Figure 6.8 are “common” in the sense that they are used as components for several of the specific traits
shown in Figure 6.9. As an example, the behavior for creating new instances (new, with:, withAll:, etc.) is
collected into the traitTInstanceCreationImpl, which is then used on the class-side ofTOrderedImpl and four
other implementation traits. Each of the 12 traits in Figure 6.9 captures the behavior of a specific concrete
class, and is built from a combination of local methods and the common implementation traits.

The traitTBasicImpl contains default implementations for methods likeincludes: andhash. These defaults
are written so as to be independent of the implementation of the underlying collection, but may be unnecessarily
slow for certain implementations. For example,includes: is implemented usinganySatisfy:; this is always
correct, but isO(n), whereas in hashed collectionsincludes: should beO(1). Instead of usingTBasicImpl as a
subtrait of all the specific implementation traits, we decided to use it in the root class of the collection hierarchy,
from where its methods are inherited (and possibly overridden) by the various implementations. For example,
THashedImpl andTIntervalImpl have their own implementations ofincludes:.

6.3.2 The New Stream Hierarchy

The refactored version of theStream hierarchy retains the abstract classPositionableStream from the standard
Squeak hierarchy, but uses it only to capture the notion of positionability, and not as a place to put methods just
so that they can be shared. Thus, the protocol ofPositionableStream is reduced from 84 messages to 29.Read-
WriteStream, which was formerly a subclass ofWriteStream, is now a direct subclass ofPositionableStream,
and shares traits with bothReadStream andWriteStream, as shown in Figure 6.10.

Seven traits are used to build the Stream classes; they have the simple structure shown in Figure 6.11.
TReadablePositionable and TWriteablePositionable actually adddifferent sets of methods toTReadable and
TWriteable because “positionability” means different things for readers and writers.

6.3.3 Measurements of the Refactored Classes

The refactored part of the collection class hierarchy shown in Figure 6.6 contains 23 concrete classes and 6
abstract classes. These classes are built from a total of 60 traits. The stream hierarchy shown in Figure 6.10
contains 7 concrete classes and 2 abstract classes, which are composed from 7 traits.

79

80 CHAPTER 6. CASE STUDY: REFACTORING THE SMALLTALK COLLECTION CLASSES

PositionableStream
TPositionable

Stream
TCommon

ReadStream
TReadablePositionable
 TReadable
TReadWriteCommon

ReadWriteStream
TReadablePositionable
 TReadable
TWriteablePositionable
 TWriteable
TReadWriteCommon

WriteStream
TWriteablePositionable
 TWriteable
TReadWriteCommon

HtmlTokenizer
TReadable

JPEGReadStream Transcripter LimitedWriteStream

Figure 6.10: The refactored Stream hierarchy.

TReadableTReadablePositionable

TWrieteableTWriteablePositionable

TCommon

TReadWriteCommon

TPositionable

composed from

Figure 6.11: Traits used to build the Stream classes.

80

6.3. REFACTORING RESULTS 81

0 1 2 3 4 5

TUnsequenced
TTextM
TTextI
TText

TStringM
TStringI
TString

TSequencedImplictly
TSequencedImmutable
TSequencedExplicitly

TRandomUI
TPrintingUI

TPluggableAdaptor
TMissfitsUI

TIdentityAdaptor
TGenericScanner

TExtensibleUnsequenced
TExtensibleU

TExtensibleSequencedImplicitly
TExtensibleSequencedExplicitl

TErrorsUI
TErrorsSizeIndependentUI

TErrorsI
TEnumerationUI
TEnumerationI
TEmptiness

TElementAccessSM
TElementAccessSI

TCopyingUI
TCopyingI

TConversionUI
TConversionSM
TConversionI
TCommon
TBasicUI
TBasicI
TArray

TArithmeticUI
TArithmeticI

Figure 6.12: Usage histogram of the functional traits in the Collection classes

The average number of traits used to build a class is more than 5; the maximum that we used in any one
class is 22. The average number of classes that use a certain trait is 2.8, which shows that a significant amount
of reuse that occurs in the refactored hierarchies is based on trait composition rather than inheritance.

The histograms in Figures 6.12, 6.13, and 6.14 illustrate for each trait the number of classes using it. Fig-
ure 6.12 shows the functional traits used in theCollection hierarchy. While there are traits such asTArithmeticUI
andTCopyingUI that are used by up to 5 different classes, there are also traits such asTCommon andTText that
are only used by a single class. While the latter traits do not currently contribute to code reuse, they make the
code more structured and facilitate future reuse.

The histogram shown in Figure 6.13 covers the implementation traits in theCollection hierarchy. It shows
that the traitTInstanceCreationImpl is used by 11 different classes, while many other implementation traits
such asTBasicImpl, THeapImpl, andTLinkedImpl are currently only used for a single class. Finally, Figure 6.14
shows the same data for the traits used in theStream hierarchy, where the maximum number of classes that use
a single trait is 3.

Further statistics are presented in Tables 6.1 and 6.2. BecauseString is something of an anomaly, contain-
ing many methods that do not appear elsewhere in the hierarchy (as explained in Section 6.2.3), we initially
excludedString andText from our measurements (see the first column of Tables 6.1 and 6.2). Most of the num-
bers are self-explanatory. “Methods saved” is the difference between the number of methods in the original

81

82 CHAPTER 6. CASE STUDY: REFACTORING THE SMALLTALK COLLECTION CLASSES

0 1 2 3 4 5 6 7 8 9 10 11

TTextImpl
TStringImpl
TSortedImpl

TSortBlockBasedImpl
TSkipListImpl

TSequencedImpl
TOrderedSortedCommonImpl

TOrderedImpl
TLinkedImpl
TIntervalImpl

TInstanceCreationImpl
THeapImpl

THashedImpl
TExtensibleSequencedImpl

TExtensibleInstanceCreationImpl
TExtensibleImpl
TDictionaryImpl
TByteArrayImpl

TBasicImpl
TArrayImpl

TArrayBasedImpl

Figure 6.13: Usage histogram of the implementation traits in the Collection classes

0 1 2 3

TWriteablePositionable
TWriteable

TReadWriteCommon
TReadablePositionabl

TReadable
TPositionable
TCommon

Figure 6.14: Usage histogram of the traits in the Stream classes

and the trait versions of the subject code. “Source code saved” is the difference in the size of the two versions,
measured in bytes, and computed by decompiling the methods. This excludes comments and automatically
adjusts for differences in formatting, naming of variables, and so on.

The phenomenon of methods being implemented “too high” was mentioned briefly in Section 6.2.2. Sup-
pose that one needs to use a method in two classesA andB that are not in a subclass relationship. In a single
inheritance language, the only way to do this (other than duplicating the code) is to promote the method to the
common superclass ofA andB. Thus, each instance of a method being implemented “too high” represents a
method thatwould have had to be duplicatedif it were implemented in the logically correct place. In fact, some
of these methods would have to be duplicated several times. Thus, the “Total savings” row in Tables 6.1 and
6.2 is simply the sum of the number of methods that were found to be implemented too high, and the number
that were duplicated.

Although the evils of duplication are well-known, the problem with implementing methods too high may
not be so obvious. Implementing methods too high means that inherited behavior is inappropriate and must be
canceled. For example, in the part of the collection hierarchy that we refactored, 15 messages are explicitly
disabled in subclasses (typically by defining them asself shouldNotImplement). More problematic are the other
40 methods that areimplicitly disabled because they directly or indirectly call explicitly disabled methods.

Implementing methods too high may be better than code duplication, but it nevertheless makes the whole
hierarchy very much harder to understand. For example, the methodaddAll: in Collection sendsself add: for
each element of the argument. Consequently, itappearsthat every collection understandsaddAll:, although an

82

6.3. REFACTORING RESULTS 83

Collection Collection Stream
Classeswithout Classeswith Classes

String & Text String & Text
Number of concrete classes 21 23 7
Number of methods in original version 635 1 044 208
Number of methods in trait version 567 840 190
Methods saved (m) 68 204 18
Methods saved (ratio) 10.7% 19.5% 8.7%
Source code saved (in bytes) 9 527 14 586 1 307
Source code saved (ratio) 11.9% 10.4% 4.4%
Methods “too high” in original (h) 55 55 76
Methods “too high” as percentage of original 8.7% 5.3% 36.5%
Methods “too high” not explicitly disabled 40 40 66
Total methods saved (m + h) 123 259 94
Total methods saved (ratio) 19.4% 24.8% 45.2%

Table 6.1: Per hierarchy summary of the refactoring

Totals
without with

String & Text String & Text
Number of concrete classes 28 30
Number of methods in original version 843 1 252
Number of methods in trait version 757 1 030
Methods saved (m) 86 222
Methods saved (ratio) 10.2% 17.7%
Source code saved (in bytes) 10 834 15 893
Source code saved (ratio) 9.9% 9.4%
Methods “too high” in original (h) 131 131
Methods “too high” as percentage of original 15.5% 10.5%
Methods “too high” not explicitly disabled 106 106
Total methods saved (m + h) 217 353
Total methods saved (ratio) 25.7% 28.2%

Table 6.2: Summary of the refactoring (totals)

83

84 CHAPTER 6. CASE STUDY: REFACTORING THE SMALLTALK COLLECTION CLASSES

attempt to use this method on, say, anArray, will always cause a runtime error. In the trait implementation,
there is no need to resort to this tactic: each method is present in exactly the classes that need it, and in no
others. This makes the classes much easier for a programmer to understand: browsing the protocol of a class
tells one exactly which methods can be used.

The second column of the table includes the refactoredString andText classes. The comparison is between
the refactored classes and a version of the collection hierarchy containing an augmentedText class that defines
all of the methods found inString but missing from the standardText class. Because regularity of the interfaces
of objects is so important to object-oriented programming, we argue that this augmentedText class is the one
that really ought to be provided by standard Squeak — if it were feasible to do so with existing technology.
The refactored version uses traits to provideText with all the methods ofString, and thus achieves the same
interfaces with far fewer methods.

The third column shows the situation with the stream classes. Note that in this hierarchy there were fewer
duplicated methods, and so the reduction in the number of methods achieved with traits is slightly lower.
However, the reason that there was less duplication is that an enormous number of methods were implemented
“too high”, precisely so that they could be shared. Moreover, many of these methods were not explicitly
disabled. This makes the Stream classes hard to understand, because it appears that these methods ought to
work, but in fact they will break when they call another method thatis explicitly disabled.

The final two columns present the totals for Collections and Streams, excluding and including theString
andText classes.

6.3.4 Assessment of the Refactored Classes

Besides the quantitative improvements in the refactored part of the collection classes noted above, the trait
implementation has other advantages that will have impact both inside and outside the collection hierarchy.

We undertook the refactoring in two phases. In the first phase we refactored 13 concrete collection classes,
and none of the Stream classes. This phase set up the basic structure of the functional traits and the implemen-
tation traits; we developed 46 traits in all. We did not need to use exclusion or aliasing, because we were free to
split any trait that was too large for our needs. As we continued our refactoring of the collection hierarchy, we
found anincreasingpercentage reduction in code size as we applied the same reusable traits to remove code
from more and more classes.

Returning to the refactoring three months later, we found that we were able to reuse many of our traits when
we extended our refactoring to other parts of the hierarchy. Some of the traits were split into smaller pieces, but
since these could be recombined without any change in semantics, the classes that had already been refactored
were not affected. In some places we used exclusion to avoid disturbing an existing trait.

The traits that we have written will also allow us to construct new kinds of collection in the future, simply
by composing the necessary traits and implementing a few glue methods. For example, we can build a class
PluggableBag by using the traitTPluggableAdaptor in a subclass ofBag, and we can create immutable variants
of collections by omitting the mutable interface traits. In addition, the availability of these traits frees the
implementors of the collections framework from the need to ship pre-built collection classes for rarely used
special cases. Instead, the main responsibilities of the implementor become the provision of (1) a basic class
hierarchy that contains the more common collection classes and (2) a set of well-designed set of traits that can
be composed with these classes. Using this basis, another programmer can then easily recompose the traits in
order to build special-purpose collections.

Another advantage of the new framework is that some of the traits can be usedoutsideof the collection
classes. As an example, the traitTEmptiness, which requiressize and providesisEmpty, notEmpty, ifEmpty:,
isEmptyOrNil ifEmpty: and ifNotEmpty:, can be used inany class that definessize. Similarly, the traitTEnu-
merationUI can be used to provide a class with 24 methods from the enumeration protocol, provided that it
implementsdo:, emptyCopyOfSameSize, anderrorNotFound.

Why is this important? We believe that much of the power of the object-oriented paradigm comes from
having manydifferentobjects understand thesameprotocol in corresponding ways. For example, it can be

84

6.4. DISCUSSION 85

quite frustrating to find that aSoundBuffer, although it understandssize and isEmpty, doesnot understand
ifEmpty:. The availability of fine-grained traits at last makes it possible to make protocols more uniform across
all of the classes in the system, with no cost in code size or maintainability, and with areductionin the effort
required to find one’s way around the system.

6.3.5 Design Decisions

The availability of both trait composition and single inheritance gave us a lot of freedom in designing the
new collection classes. Why did we choose the particular combination of trait reuse and inheritance described
above? An alternative approach would have been to use trait composition exclusively and to minimize — or
eliminate — the use of inheritance. If we had done this, all the concrete collection classes would have been
built using trait composition alone, and every collection class would be a direct subclass ofObject (or of an
empty common superclassCollection).

We decided against this approach primarily for reasons of familiarity. Using both inheritance and trait
composition in the new hierarchy makes it easier for programmers who are familiar with single inheritance
code, and especially for programmers who know the old collection classes, to understand and extend the new
ones. Indeed, a flattened view of the new collection classes exhibits a structure quite similar to the old ones,
although the abstract superclasses do not correspond one-to-one.

The combination of single-inheritance and trait composition also turns out to be well-suited for explicitly
representing a functional property layer with abstract classes and an implementation layer with concrete classes.
This is particularly true because the separation between functional methods and implementation methods is
not always very clear. For example, it is sometimes the case that a particular implementation trait defines a
optimized variant of a method that is generically defined in a functional trait. Because the concrete classes are
composedfrom the implementation traits butinherit from superclasses built from the functional traits, we can
be sure that in these situations the implementation methods override the functional methods.

6.4 Discussion

In this section we first discuss some of the things we learned about traits during our refactoring. Then we
examine some places where the theoretical benefits of traits were of practical importance, and argue that a
similarly fine-grained decomposition would be much harder to accomplish with mixins or multiple inheritance.

6.4.1 Lessons Learned

During this refactoring we learned a number of things about traits and our programming tools, and also some
more general things about refactoring. All of these findings confirmed our expectations about the importance
of tool support and corresponding programming methodology described in Chapter 5.

Traits simplify refactoring. Using traits, refactoring a major hierarchy such as the Smalltalk collections is
not as hard a task as one might think. We are not wizards; when we started refactoring we did not have a
very clear plan of where we would end up. We just started pair programming, doing the simplest thing that
could possibly work, until we found that it didn’t work — at which point we did something just slightly more
sophisticated.

When we started dragging methods out of existing classes and dropping them into traits, it was quite easy to
identity the necessary traits. We had a superficial familiarity with the Smalltalk collection classes, and had re-
read Cook’s 1992 study [COOK 92]. So we expected to find traits related to the five different implementations
and the major categories of functionality described in Section 6.1.1. When we found a method that did not
seem to fit into one of the traits that we had already defined, we simply created a new trait. Often, the hardest

85

86 CHAPTER 6. CASE STUDY: REFACTORING THE SMALLTALK COLLECTION CLASSES

part was finding appropriate names for the traits. Naming is important and difficult; the naming scheme used
in this chapter can surely be improved upon, even though it represents our third or fourth attempt.

Tools are important During the refactoring project, both the standard Smalltalk programming tools (which
allow one to look at not just classes but also all the implementors of and senders of a particular message) and
the trait specific tools described in Section 5.2 turned out to be an enormous help. It was particularly useful to
know that a layer of subtraits could be introduced or eliminated without changing the semantics of any of the
methods.

Thus, we could consider our refactoring task as simply grouping the existing collection behavior into co-
herent traits. For each of the newly constructed traits, therequirescategory in the browser always showed us
which methods were missing in order to make the trait complete. Naturally, some of these missing methods be-
longed most logically in other traits; we simply continued adding methods to the trait untilall of the unsatisfied
requirements belonged in other traits.

Use fine-grained components. As our refactoring progressed, we realized that the methods in the collection
hierarchy could be grouped into traits at a much finer granularity than we had initially thought. Given good
tools, traits do not impose any cost for the finer-grained structure: we didn’t have to make the trade-off between
the elegance of the implementation and the understandability and usability of the functional interface that
characterizes both mixins and multiple inheritance.

Defer the design of the class hierarchy. Getting a class hierarchy “right” is known to be hard. The problem
is that one is usually forced to make decisions too early, before enough is known about the implementation.
Our response was to put off making decisions for as long as possible, which turned out to be almost to the end
of the first phase of the refactoring.

The theoretical properties of traits made us confident that things would turn out well in the end, provided
that we collected behavior into logically coherent traits. Whether these traits would eventually be combined
into complete classes or be used to build a deep hierarchy of abstract and concrete classes did not matter,
because we knew that trait composition and inheritance could be freely combined. Once we had built the first
few implementation and interface traits, it became obvious how to combine them. The more we combined
traits, the more important the flattening property became.

6.4.2 Comparison to Other Approaches

In arguing that traits are a valuable contribution to the language designer’s arsenal, we must address the question
of whether we could not have obtained equally impressive results using mixins or multiple inheritance. We are
convinced that the answer is “no”, and in this section will attempt to explain why.

In the previous chapters of this thesis, we have presented theoretical arguments for the superiority of traits
over mixins and multiple inheritance. Here we will focus on experience rather than theory.

Mixins

It is clear that also mixins could be used to tackle the identified problems in the Smalltalk collection classes.
However, we found that because of the conceptual problems associated with mixins, achieving an equally
fine-grained refactoring would be significantly more problematic with mixins than it is with traits.

Each of our refactored collection classes directly uses up to 22 traits. Counting also the traits inherited
from the superclasses, our collection classes are built from a total of up to 35 traits (e.g., OrderedCollection and
Text). This is feasible because the sum operation lets us build a subclass from a group of traits in parallel, and
the flattening property allows us to flatten the nested trait structure at any level. In particular, the programmer
can work with each class as if it were built without any traits at all.

86

6.4. DISCUSSION 87

In contrast, mixins must be applied one at a time, using the ordinary single inheritance operator. This would
result in huge and hard to understand inheritance chains with up to 35 levels. This is especially problematic
because mixin composition does not adhere to the flattening property: whereas a class composed of a total of
35 traits can be consistently viewed and edited in a flat way (i.e., as if only single inheritance were used), this
is not possible with mixins, because mixins are composed using the inheritance operation in the first place, and
because the semantics of super-calls depends on the exact occurrence of the call in the inheritance chain.

In our refactored hierarchy, there are also situations where several components are composed, but there is
no total order that leads to the appropriate behavior. This is because sometimes there aremultipleconflicts that
need to be resolved by combining the conflicting methods or by excluding the methods that are not relevant.

With traits, this does not pose a problem because trait sum is commutative, and the composite entity can
for each conflictindependentlydecide how it should be resolved by using exclusions and aliasing. Mixins, in
contrast, need to be totally ordered and do not support exclusions and aliasing. Thus, the only way to resolve
such conflicts is to introduce additional glue mixins, which make such compositions more complex and harder
to understand (see Section 2.2.1).

One example of this is the traitTSortedImpl where we had two conflicts:at:ifAbsent: andcollect:, but no
single subtrait that takes precedence for both of them. This is exactly the situation exclusion is designed for,
and we obtained the desired behavior by excludingat:ifAbsent: from the subtraitTExtensibleSequencedImpl
andcollect: from TOrderedSortedCommonImpl.

Using mixins, the solution would be to either modifyTExtensibleSequencedImpl, or to introduce a new
intermediate mixin corresponding toTExtensibleSequencedImpl - {at:ifAbsent:}. Neither choice is desirable.
Modifying the components is bad because it may break other places where these components are used. In-
troducing intermediate “glue mixins” makes the inheritance chains even longer and harder to understand (cf.
Sections 2.1.2 and 2.2.1).

While composite mixins [BRAC 92] allow the programmer to improve the comprehension of such complex
hierarchies by structuring the involved mixins, they do not solve the conceptual problems related to mixins (cf.
Section 2.1.2). This is because composite mixins are based on the same linear form of composition as mixins,
and they therefore suffer from the same problems such as fragility with respect to changes and dispersal of glue
code. In practice, this means that composite mixins would allow us to structure the 21 mixins used to build
SequencedImmutable into a handful of composite mixins. However, it also means that the identified problems
(e.g., fragility with respect to changes) can then occur bothwithin andbetweenthese composite mixins.

In the process of our refactoring work, we also encountered many situations where adding a new method
to a component caused a conflict with another component in distant code. Thanks to the commutativity of
trait sum and the requirement of explicit conflict resolution, all of these places were immediately detected, and
we were able to re-establish the correct semantics by making an appropriate adjustment to the relevant trait
composition clause. It was never necessary to modify other components, so we never found ourselves in a
situation where resolving one conflict created two more.

With mixins, this would not have been the case. First, we would not have detected conflicting methods so
easily because the order of the mixinsimplicitly “resolves” each conflict, although not necessarily in the way
that the programmer intends! Second, even if we had noticed that a conflict had been resolved in an incorrect
way, it would have been much harder to actually re-establish the correct behavior.

A comparison of our refactored collection classes to the mixin-based collection framework of Strong-
talk [BRAC 93] provides more data on the effectiveness of mixins and traits. Both frameworks are based
on Smalltalk-80 and are therefore quite comparable. Strongtalk has more collection classes, but uses only 10
different mixins, compared to 67 traits in our hierarchy. In particular, Strongtalk does not factor out charac-
teristics such as extensible, implicitly sequenced, and explicitly sequenced; neither does it make aspects like
enumeration reusable outside of the collection framework.

Of course, the fact that the designers of Strongtalk decided not to pursue a fine-grained decomposition
into mixins does not mean that doing so would be impossible. However, it is an indication that the Strongtalk
designers decided that the disadvantages of a finer structure outweighed the advantages. In contrast, we have
found that with traits the fine-grained decomposition has only advantages.

87

88 CHAPTER 6. CASE STUDY: REFACTORING THE SMALLTALK COLLECTION CLASSES

Multiple Inheritance

Multiple inheritance would also have solved many of the problems that we identified in the single inheritance
version of the Smalltalk collection classes. However, like mixins, multiple inheritance alone would not be
expressive enough to achieve a fine-grained refactoring of the collection hierarchy.

For example, our refactored hierarchy uses several adaptor traits such asTIdentityAdaptor, which is used to
turn collection classes likeSet, WeakSet, andDictionary into new classes that compare elements based on their
identity rather than equality. But as described in Sections 2.1.1 and 2.2.2, multiple inheritance alone cannot
express such adaptors without code duplication.

6.5 Conclusions

We undertook this refactoring primarily to obtain some practical experience with the use of traits. We believed
that the theoretical properties that we had given to traits — especially flattening, but also the retention of explicit
conflicts in the sum operation — were the right ones. But programming languages are tools, and theoretical
elegance is no substitute for usability. Only extensive use on a realistic codebase could validate these beliefs.

It did. Although we had designed them, we were surprised how well the trait mechanism and the corre-
sponding tools worked in practice. The theoretical characteristics do really seem to give the tools desirable
practical properties.

However wonderful a language technology may be to those who use it, new language features can be a real
obstacle to those who have not previously met them. One of the pleasant properties of traits is that they do
not change the method-level syntax of Smalltalk at all. Thus, an ordinary Smalltalk programmer can open an
ordinary Smalltalk system browser on our new hierarchy and understand everything that she sees. All of the
concrete classes will be there, with all of their methods. Trait methods will appear to be defined directly in a
subclass or inherited from a superclass exactly as in ordinary Smalltalk, and the semantics will be exactly the
same. If the programmer modifies a method in a conventional class view, and the method is actually defined in
a shared trait, then the effect will be to define a customized (unshared) version of the method local to the class.
Again, this is exactly the semantics of ordinary Smalltalk.

This property is critically important, because we believe that one of the reasons that previous technologies
such as mixins and multiple inheritance have not become popular is because of the complexity that they force
on every programmer. For example, the rules for linearizing multiple inheritance chains must be understood by
every programmer who looks at or modifies a multiple inheritance hierarchy.

This refactoring also confirmed that working with traits is compatible with an agile style of development
(cf. Section 5.3): it does not require one to do all of the design “up front”, when nothing is known about
the system, but lets one start by identifying related methods and putting them into traits. The shape of the
inheritance hierarchy can emerge later.

Good tool support proved to be critical: the availability of the trait browser (cf. Section 5.2) had a tremen-
dous impact on the efficiency of the refactoring task. It is hard to imagine undertaking this refactoring with
an ordinary Smalltalk system browser that does not show virtual categories and does not support the abstract
instance variable refactoring. Performing the same task with a file-based tool such as emacs is inconceivable to
us. The incremental nature of the Smalltalk environment played an important role, because the current state of
the composition was instantly visible at all times.

To summarize: we have successfully refactored a significant subset of the Smalltalk collections classes. In
the process we:

• removed code duplication;

• increased uniformity;

• improved understandability;

88

6.5. CONCLUSIONS 89

• provided reusable traits that make it easier to write new collection classes; and

• made it possible to reuse collection codeoutsideof the collection hierarchy.

The third claim, improved understandability, is necessarily subjective. However, we argue that threeob-
jectivefeatures of the refactored hierarchy support it. First, there is no discrepancy between the apparent and
actual interfaces of a class. In other words, we never needed to resort to implementing a method “too high”
in the hierarchy just to enable reuse. As a consequence, when browsing the hierarchy, “what you see is what
you get”: all of the public methods in a class are actually available. Second, the structured view (with fine
grained traits) provides a lot of insight about the functional properties of the methods: which mutate the object,
which require sequenceability, which do enumeration, and so on. Since the structured view containing this
extra information is optional, there is no tradeoff to be made in supplying it: programmers who do not find
it useful can simply not use it. Third, we have reduced the code size of the hierarchy, which also facilitates
understandability.

89

Chapter 7

Case Study: Trait-based Composition of
Class Properties

As we discussed in Chapter 4, Smalltalk classes are objects as well: they are the singleton instances of classes
called metaclasses. However, the Smalltalk metaclass architecture is not expressive enough to share class
properties such assingletonand final between metaclasses [BOUR 98]. In the case study presented in this
chapter, we investigate whether we can overcome this deficiency by applying the trait mechanism to metaclasses
[DUCA 05].

We will start with an overview of the purpose and problems of metaclasses, which directly leads us to
the motivation for this case study (Section 7.1). Then we show how class properties are represented as traits
and how they are composed and applied to metaclasses (Section 7.2). We also develop a small framework of
composable class properties and show how it is applied in realistic situations (Section 7.3). We end this chapter
with an evaluation that compares our approach to other forms of class property composition (Section 7.4).

7.1 Motivation and Overview

In class-based object-oriented programming, classes are used as instance generators and to implement the be-
havior of objects. In object-oriented languages such as CLOS, Smalltalk and Ruby, classes themselves are first-
class objects, being instances of so-calledmetaclasses[I NGA 76, COIN 87, KICZ 91, DANF 94, FORM 99]. In
the same way that classes (likeString) define the properties of their instances (like’Hello’), metaclasses (like
String class) define the properties of their instances (String). Examples of class properties aresingleton, final,
abstract, etc. [L EDO 96].

Treating classes as first-class objects (and thus treating metaclasses as first-class classes) is important for
two primary reasons.

• Uniformity and Control.Metaclasses are the natural place tospecifyandcontrol class behavior such as
object creation and subclassing.

• Reuse of Class Behavior.If a metaclass is like any other class, class behavior can be reused by apply-
ing conventional reuse and decomposition techniques to the metaclasses [LEDO 96]. Hence the same
techniques that are available for base classes (inheritance and overriding of methods, for example) are
applicable at the meta level.

When a language has metaclasses, those metaclasses can beimplicit or explicit. The difference is that ex-
plicit metaclasses give the programmer full control over which metaclass should be used for a certain class
[I NGA 76, COIN 87, KICZ 91, DANF 94], whereas implicit metaclasses are, as indicated by their name, auto-
matically and implicitly defined for each class [GOLD 89]. While the programmer can modify, add, and remove

90

7.2. REPRESENTING CLASS PROPERTIES AS TRAITS 91

Meta A

TClassProperty1

A

Meta B

TClassProperty2

B
inherits from
instance of

Figure 7.1: Application of class properties represented as traits

methods of such implicit metaclasses, it is not possible to change their superclasses nor is it possible to assign
them to other classes.

As a consequence, implicit metaclasses successfully address the goal of “uniformity and control”, but
they usually fall short of achieving “reuse of class behavior” because the programmer cannot write reusable
metaclasses (such asAbstract andSingleton) that can be shared between more than one class. Instead, every
time one needs an abstract or singleton class, the same code needs to be implemented in the class’ implicit
metaclass.

Explicit metaclasses avoid this limitation because the programmer can explicitly define the metaclass of
each class. As an example, the singleton behavior can be factored out to aSingleton metaclass, which can then
be used for all singleton classes.

However languages with explicit metaclasses suffer from the fact that composition can beunsafe[COIN 87,
GRAU 89] and are often based onnon-uniformmechanisms;i.e. the meta-programmer cannot apply to the
meta level the same reuse mechanisms that are available at the base level. This non-uniformity does not only
require the meta-programmer to learn a set of specialized composition mechanisms, but it also contradicts the
motivation for introducing metaclasses in the first place: the desire for uniformity.

In the case study described in this chapter, we addressed these problems by modeling class properties as
traits and using trait composition to safely combine and reuse these properties in metaclasses. This allows
us to achieve the benefits of explicit metaclasses without sacrificing the safety and simplicity associated with
implicit metaclasses. By using a single, uniform mechanism for both the base and the meta level, this form of
class composition enjoys all the conceptual benefits of the trait composition model. In particular, composition
conflicts that occur when composing two properties that do not quite fit together are detected automatically,
and the conflict resolution isexplicit and under the control of the composing entity.

7.2 Representing Class Properties As Traits

In Squeak (as in Smalltalk), metaclasses areimplicit and createdautomaticallywhenever a class is created
[GOLD 89]. The new class is then the sole instance of this implicitly created metaclass. The process of creating
the classes and metaclasses is designed so that the class and metaclass hierarchies are always parallel: if a class
B is defined as a new subclass ofA, thenB’s metaclass is implicitly defined to be a subclass ofA’s metaclass.
This is illustrated in Figure 4.1, which shows the class hierarchy consisting ofObject, Point, andVertex as well
as the parallel metaclass hierarchy.

As we will discuss in detail in Section 7.4.1, this guarantees that the architecture is safe in the sense that
compatibility problems between the base and the meta level can never occur. However, this design is so
restrictive that it completely prevents reuse of class properties between classes that are not directly related by
inheritance. As an illustration, consider the Smalltalk classesTrue andUndefinedObject, both of which have
only a single instance (true andnil). Although these two classes are both singleton, it is not possible to share

91

92 CHAPTER 7. CASE STUDY: TRAIT-BASED COMPOSITION OF CLASS PROPERTIES

uniqueInstance
uniqueInstance:

WebServer class

TSingleton
new
default
reset

Behavior

error:
basicNew
uniqueInstance
uniqueInstance:

TInstantiator
new
basicNew

Object
error
error:
...

inherits from
ultimately inherits from

fulfilled by

Figure 7.2: Behavior and WebServer class built from the traits TInstantiator and TSingleton

the corresponding implementation between their metaclassesTrue class andUndefinedObject class. This is
because the only common superclass of these two metaclasses isObject class, which is not an appropriate place
to implement the singleton behavior:Object is not singleton and has many subclasses that are not singleton.

Figure 7.1 illustrates how we avoid this limitation by representing class properties as traits that can then be
composed and applied to arbitrary metaclasses. Because this does not affect the traditional parallel inheritance
scheme of Smalltalk, our approach is still safe (cf. Section 7.4.1), but it allows composition and reuse of class
properties using trait composition.

7.2.1 Singleton

As a simple example, we show how our approach allows us to define the singleton property and apply it to the
metaclassWebServer class to declare the classWebServer as singleton. This is illustrated in Figure 7.2, with
the corresponding Smalltalk code shown in Figure 7.3.

We first create a traitTSingleton, which represents the singleton property. This trait provides the methods
default, which returns the singleton instance (after creating it if necessary),new, which raises an error, andreset,
which resets the class by clearing the variable holding the current singleton instance. It requires the methods
basicNew, which returns a newly created instance, as well as the methodsuniqueInstance anduniqueInstance:,
the accessors for the unique instance.

To declare the classWebServer as singleton, we now add the traitTSingleton to the metaclassWebServer
class. We satisfy the open requirements by defining the state needed to maintain the singleton instance and
generating the corresponding accessor methodsuniqueInstance anduniqueInstance:. Note that the required

92

7.2. REPRESENTING CLASS PROPERTIES AS TRAITS 93

Trait named: #TSingleton uses: {}

default
self uniqueInstance isNil

ifTrue: [self uniqueInstance: self basicNew].
↑ self uniqueInstance.

new
self error: ’You should use default’.

reset
self uniqueInstance: nil.

error:
self requirement.

basicNew
self requirement.

uniqueInstance
self requirement.

uniqueInstance
self requirement.

WebServer class
uses: TSingleton
instanceVariableNames: ' uniqueInstance'

uniqueInstance
↑ uniqueInstance.

uniqueInstance: aWebServer
uniqueInstance : = aWebServer.

Figure 7.3: The metaclass WebServer class implemented using the property trait TSingleton

methodbasicNew1 is provided by the classBehavior, which is an indirect superclass ofWebServer class (and
any other metaclass). Figure 7.2 also shows thatBehavior is built from traits. In particular, the methodsnew
andbasicNew are provided by the traitTInstantiator.

7.2.2 Modeling the Boolean Hierarchy

As a more realistic example, we will now show how we used traits to refactor the SmalltalkBoolean hierarchy,
which consists of the abstract classBoolean and its two singleton subclassesTrue andFalse. In the traditional
hierarchy, the necessary behavior for makingBoolean abstract and its subclasses singleton is implemented in an
ad hocmanner,i.e., by overriding the methods of the instance creation protocol in each of these classes. Besides
the fact that this leads to code duplication, it has the disadvantage that a programmer cannot immediately see
that these classes use the abstract and singleton patterns.

Figure 7.4 shows how we avoided these problems by applying the new traitTAbstract to the classBoolean
and applying the traitTSingleton introduced above to the subclassesTrue andFalse.

1basicNew is the name of the instance allocation primitive in Smalltalk (see Section 7.3).

93

94 CHAPTER 7. CASE STUDY: TRAIT-BASED COMPOSITION OF CLASS PROPERTIES

Boolean class

TAbstract

Boolean

False class

TSingleton

False

True class

TSingleton

True
inherits from
instance of

Figure 7.4: The refactored Boolean hierarchy

Trait named: #TAbstract uses: {}

new
self error: ' Abstract class cannot have instances.' .

new: size
self error: ' Abstract class cannot have instances.' .

error:
self requirement.

Figure 7.5: Implementation of the property TAbstract

94

7.3. A FRAMEWORK OF CLASS PROPERTIES 95

TAllocator
basicNew

TInstantiator
new

TInitInstantiator
new initialize

TRememberInstances
new
rememberInstance
instances
reset

basicInstances
basicInstances:

TSharedInstance
reset
instance

basicInstance
basicInstance:

TDefault TSingleton
new error:

TAbstract
new error:

TFinal
subclass: error:

sharedNew new defaultNew new

default instance
uniqueInstance instance

composed from

Figure 7.6: A fine-grained architecture of class properties based on traits

TAbstract . The implementation of the traitTAbstract is shown in Figure 7.5. It provides the two methodsnew
andnew:, which yield an error whenever they are called to create a new instance.TAbstract requires only the
methoderror:.

Boolean class . The metaclassBoolean class is built using the traitTAbstract. Note that we did not have to
implement any glue methods because the required methoderror: is inherited from the classObject.

False class and True class . The metaclassesFalse class andTrue class are composed from the traitTS-
ingleton (Figure 7.3), which requires the methodsbasicNew, uniqueInstance, anduniqueInstance:. Thus, the
metaclassesFalse class andTrue class declare an instance variableuniqueInstance as well as the correspond-
ing accessor methodsuniqueInstance anduniqueInstance:. The required methodbasicNew does not have to be
implemented inFalse class andTrue class as it is inherited from the classBehavior.

7.3 A Framework of Class Properties

We have so far presented some simple examples that show how class properties can be represented as traits
that can then be combined or applied to arbitrary classes. In this section, we present a framework of the most
common Smalltalk class properties, which we identified by collecting the different properties that are implicitly
coded into the Squeak metaclasses.

Since many of these properties are related to instance creation, we first clarify the basic instance creation
idiom of Smalltalk. Creation of a new instance involves two different methods, namelybasicNew andnew2.
The methodbasicNew is a low-level primitive that allocates a new instance of the receiver class and is by
convention neither called from the outside of a class nor overridden in a subclass [ALPE 98]. The methodnew
stands at a conceptually higher level; its purpose is to return a properly initialized instance of the receiver class.

2Note that there are also the methodsbasicNew: andnew:, which are used to create variable sized objects with indexed fields (i.e.,
arrays). For the sake of simplicity and conciseness, we do not take these methods into account here.

95

96 CHAPTER 7. CASE STUDY: TRAIT-BASED COMPOSITION OF CLASS PROPERTIES

Trait named: #TAllocator uses: {}

basicNew
<primitive>

Trait named: #TInstantiator uses: TAllocator

new
↑ self basicNew.

Trait named: #TInitInstantiator uses: TAllocator

new
↑ self basicNew initialize.

Trait named: #TFinal uses: {}

subclass
self error: ' Cannot create subclasses of a final class.' .

Figure 7.7: Implementation of the allocation, instantiation, and final class properties

For most classes,new therefore callsbasicNew to obtain a new instance and then initializes it with reasonable
default values.

7.3.1 Class Properties

Figure 7.6 gives an overview of the class properties we identified, and how they are arranged in a trait hierarchy.
The corresponding Smalltalk code is shown in Figures 7.7 and 7.8 with the exception of the traitTAbstract,
which was already shown in Figure 7.5. Glue methods are emboldened as usual. However, for conciseness
we show the required methods only in the conceptual diagram (Figure 7.6) but not in the corresponding code
(Figures 7.7 and 7.8).

Allocation. As indicated by its name, the traitTAllocator provides the behavior to allocate new instances. It
provides a single method, which is the standardbasicNew primitive.

Instantiation. The traitsTInstantiator andTInitInstantiator are two other class properties for instance creation.
The trait TInstantiator uses the traitTAllocator and implements the methodnew in the traditional Smalltalk
manner, which means that it does not initialize the newly created instance. The traitTInitInstantiator is based on
TAllocator, but it also initializes the newly created instance by calling the methodinitialize before the instance
is returned.

Note that the methodinitialize is called on the new instance, which means that the requirement forinitialize
in the traitTInitInstantiatior is actually a requirement for the instance side.

Remembering Instances. The traitTRememberInstances represents an instance creation property that re-
members all the instances created by a class. It uses the traitTInitInstantiator and aliases the methodnew of
the traitTInitInstantiator to make it available under the new namedefaultNew. This allows one to access the
original new method of the traitTInitInstantiator even though it is overridden inTRememberInstances.

96

7.3. A FRAMEWORK OF CLASS PROPERTIES 97

Trait named: #TRememberInstances uses: TInitInstantiator @ {#defaultNew -> #new}

new
↑ self rememberInstance: self defaultNew.

rememberInstance: anObject
↑ self instances add: anObject.

instances
self basicInstances isNil

ifTrue: [self reset].
↑ self basicInstances.

reset
self basicInstances: IdentitySet new.

Trait named: #TSharedInstance uses: TInitInstantiator @ {#sharedNew -> #new}

reset
self basicInstance: self sharedNew.

instance
self basicInstance isNil

ifTrue: [self reset].
↑ self basicInstance.

Trait named: #TSingleton uses: TSharedInstance @ {#uniqueInstance -> #instance}

new
self error: ' Cannot create new instances of a singleton class.

Use uniqueInstance instead.' .

Trait named: #TDefault uses: TSharedInstance @ {#default -> #instance}

”no methods”

Figure 7.8: Implementation of different instance creation class properties

The traitTRememberInstances provides the methodsnew, rememberInstance:, instances, andreset. The
methodreset initializes and resets the collection containing the remembered instances. The methodinstances
serves as accessor of the collection containing the instances: it resets the collection if it is not yet initialized
and the returns it. The methodnew overrides the version obtained from the traitTInitInstantiator. It first uses
the aliasdefaultNew to create a new instance and then calls the methodrememberInstance, which adds the new
instance to the collection of remembered instances.

The traitTRememberInstances requires only the methodsrememberedInstances andrememberedInstances:,
which access a collection containing the created instances. Alternatively, one could define the methodsreset
andrememberedInstances: as requirements. This would allow the metaclasses that use the trait to specify other
implementations for keeping track of the created instances.

Default and Singleton. The traitsTDefault andTSingleton implement the class properties corresponding to
the default instanceand singletondesign patterns [ALPE 98]. Whereas a singleton can have only a single
instance, a class adhering to the default instance pattern has one default instance but can also have an arbitrary
number of other instances.

97

98 CHAPTER 7. CASE STUDY: TRAIT-BASED COMPOSITION OF CLASS PROPERTIES

Trait named: #TDefaultAndRememberInstances
uses: TDefault @ {#defaultReset → #reset} +

TRememberInstances @ {#storeNew → #new. #storeReset → #reset} - {#new}

sharedNew
↑ self storeNew.

reset
self storeReset.
self defaultReset.

Figure 7.9: Composing the conflicting properties TDefault and TRememberInstances

Since these two properties are similar, we factored out the common code into the traitTSharedInstance.
To get the basic instantiation behavior, this trait uses the propertyTInitInstantiator and again applies an alias
to ensure that the methodnew is available under the namesharedNew. It provides the methodsreset and
sharedInstance. While reset creates a new instance and stores it for later retrieval, the methodsharedInstance
is an accessor that creates a shared instance if necessary and then returns it.

The propertyTDefault is then defined as an extension of the traitTSharedInstance that introduces the alias
default for the methodsharedInstance. Similarly, the propertyTSingleton is defined by introducing the alias
uniqueInstance for the sharedInstance method. Furthermore,TSingleton overrides the methodnew so that it
cannot be used to create additional instances.

Final. Another class property, which has been popularized by Java, is the propertyTFinal which ensures that
a class cannot have subclasses. In Smalltalk, this is achieved by overriding the messagesubclass:3. Note that
unlike all the other properties presented in this section,TFinal is not concerned with instance creation, and it is
therefore entirely independent of the other properties.

7.3.2 Advantages for the Programmer

Having a framework of class properties has many advantages for a programmer. Whenever a new class needs
to be created, the programmer can choose how instance are created and whether or not the class should be final
by composing the corresponding class properties. Besides the obvious advantage of avoiding code duplication,
this also makes the design more explicit and hence improves understandability of the class.

In addition, factoring out the properties in such a fine-grained way gives the programmer a simple yet
powerful way to control crucial aspects of the system. In the framework presented above, we have for example
decided to use the traitTInitInstantiator as the basis for all the other instance creation properties. However, if we
later decided to comply to the Smalltalk standard and create uninitialized instances by default, we could still
make this change without modifying any of the methods. Instead, we would just need to modify the composition
clause of the traitsTRememberInstances andTSharedInstance so that they use the traitTInstantiator instead of
TInitInstantiator.

Another advantage is that the programmer can use the provided framework as a basis to build more special-
ized class properties. As a concrete example, imagine that we want to combine the class propertiesTDefault
andTRememberInstances to get a new property that allows both a default instance and also remembers all its
instances. Using our trait-based framework, we do this by creating a new traitTDefaultAndRememberInstances
which usesTRememberInstances andTDefault and is shown in Figure 7.9.

Note that both traitsTRememberInstances andTDefault provide a methodnew, and that we avoid a conflict
by excluding the version ofnew defined byTRememberInstances when it is composed. As a consequence

3In reality, the method to create a subclass takes more arguments.

98

7.4. EVALUATION 99

Upward Compatibility

c-foo
 ↑self new i-bar

Meta A
c-bar

A
i-foo

Meta B

B

i-foo
 ↑self class c-bar

? Meta A
c-foo

A
i-bar

Meta B

B?
Downward Compatibilityinherits from

instance of

Figure 7.10: Upward and downward compatibility

the composite trait contains thenew method provided byTDefault, which usessharedNew to create a new
instance. Since we want to make sure that each new instance is also stored, we overridesharedNew so that it
callsstoreNew, which is an alias for the excludednew method ofTRememberInstances.

The methodreset is also provided by both traits, and we use aliasing to make sure that we can access
both conflicting methods. We then resolve the conflict by overriding the methodreset so that it first removes
the stored instances (by callingstoreReset) and then creates a new default instance (by callingdefaultReset).
Note that the newly created instance will be remembered as the default instance and will also be stored in the
collection with all the instances of the class.

7.4 Evaluation

So far, we have shown how the trait mechanism can be used to represent, compose and apply class properties.
We have also given realistic examples of how such class properties can be used in a Smalltalk system, and how
this makes the design more explicit and reduces code duplication.

In this section, we further evaluate the proposed mechanism by comparing it to other approaches for class
property composition. We start by presenting the set of criteria that serves as the basis for our comparison.

7.4.1 Criteria for Class Property Composition

Offering explicit control over metaclasses allows the programmer to reuse class properties but also opens the
door formetaclass compatibility problems[GRAU 89]. This section defines criteria for characterizing and dis-
tinguishing different approaches for metaclass composition. The first three criteria were identified by Bouraqadi
et al. [BOUR 98] (upward compatibility, downward compatibilityandnon-propagating class properties) and
are related to compatibility between the base and the meta level as well as propagation of class properties in
the inheritance hierarchy. The other criteria qualify the mechanisms that are used to compose class properties
and apply them to the metaclasses.

Upward compatibility. The fact that classes are instances of other classes which define their behavior intro-
duces hidden dependencies in the inheritance relationships between the classes and their metaclasses. Careless
inheritance at one level (be it the base or meta level), can break inter-level communication. Bouraqadiet
al. [BOUR 98] partitioned these metaclass compatibility problems into two cases, namedupwardanddown-
ward compatibility. The criteria for upward compatibility is defined as follows:

LetB be a subclass ofA, MetaB the metaclass ofB, and MetaA the metaclass ofA. Upward compatibility is
ensured forMetaB andMetaA iff every possible message that does not lead to an error for any instance ofA,
will not lead to an error for any instance ofB.

99

100 CHAPTER 7. CASE STUDY: TRAIT-BASED COMPOSITION OF CLASS PROPERTIES

Final Singleton

FinalSingleton

MetaA

Class Property
Composition

Class Property
Application

Instantiation

A

Figure 7.11: Property composition and property application

This is illustrated in the left part of Figure 7.10. When an instance ofB receives the messagei-foo, the
messagec-bar is sent toB. The composition ofA andB is upward compatible, ifB understands the message
c-bar, i.e. MetaB should implement it or somehow inherit it fromMetaA.

Downward compatibility. Downward compatibility is defined in an analogous way:
Let MetaB be a subclass of the metaclassMetaA. Downward compatibility is ensured for two classesB, an

instance ofMetaB andA, an instance ofMetaA iff every possible message that does not lead to an error forA,
will not lead to an error forB.

Downward compatibility is illustrated on the right of Figure 7.10. WhenB receives the messagec-foo, the
messagei-bar is sent to a newly created instance ofB. The composition ofMetaA andMetaB is downward
compatible, if that new instance ofB understands the messagei-bar, i.e. B should implement it or somehow
inherit it from A.

Based on the definition of upward and downward compatibility, we can now define what it means for
metaclass composition to besafe: Metaclass composition is safe if it guarantees downward and upward com-
patibility.

Non-propagating class properties. A class property assigned to a class is non-propagating iff it is not auto-
matically propagated to its subclasses. With a mechanism that supports non-propagating class properties, it is
for example possible to define a class as abstract while keeping its subclasses concrete without having to apply
a class property at the subclasses level.

Class property composition. One of the motivations for having explicit class properties is to combine them.
For example, one might want to compose the singleton property with the final property in order to get a new
property that makes a class both singleton and final. Hence a mechanism is needed that supports such property
composition. This can be a general-purpose language mechanism such as multiple inheritance [KICZ 91,
DANF 94], mixin composition [BOUR 04], chain of responsibility [MULE 95], or anad hocmechanism such
as generation of new classes and methods [BOUR 98].

Class property application. Property application is the mechanism by which simple or composed class
properties are applied to metaclasses. Note that we make a conceptual distinction between thecompositionof
class properties and theapplicationof a class property to a specific class because some approaches employ
different techniques for these two purposes. This distinction is illustrated in Figure 7.11, where two properties

100

7.4. EVALUATION 101

c-foo
 ↑self new i-bar

Meta A
c-bar
c-foo

A
i-foo
i-bar

Meta B

B

i-foo
 ↑self class c-bar

inherits from
instance of

Figure 7.12: Smalltalk metaclasses organized in a parallel hierarchy

Final andSingleton are first composed to a new propertyFinalSingleton, which is in turn applied to the metaclass
MetaA.

Explicit or implicit control. The mechanism used to apply and combine class properties can beimplicit or
explicit. We call these mechanismsimplicit if the system automatically combines or applies class properties
and resolves conflicts using an implicit strategy that may or may not lead to the desired result. We call such
mechanismsexplicit if the system gives the programmer explicit control over how class properties are combined
and applied. In particular, the programmer must haveexplicit controlover how conflicts are resolved.

7.4.2 Comparison to Other Approaches

In this section, we use the criteria presented above to compare trait-based class property composition to other
systems and approaches that feature explicit metaclasses or class properties. We also discuss the solution
offered by Smalltalk (although it has implicit metaclasses and does not support class property composition)
since it forms the basis for NeoClasstalk and our own approach. Table 7.1 summarizes and compares these
approaches.

Smalltalk

In Smalltalk and more recently in Ruby, metaclasses areimplicit and createdautomaticallywhenever a class is
created [GOLD 89]. The new class is then the sole instance of this implicitly created metaclass. As explained
in Section 7.2 and illustrated in Figure 7.12, this causes the class and the metaclass hierarchy to be parallel,
which in turn guarantees upward and downward compatibility. However, this approach prevents the reuse of
class properties between inheritance hierarchies.

Trait-based Composition of Class Properties

Because our approach is based on the parallel inheritance hierarchies known from Smalltalk, it guarantees both
upward and downward compatibility. Since class properties are represented as traits, trait composition is used
for both property composition and application. This makes the model completely uniform: programming on
the meta-level is based on the same language features as programming on the base level. The use of traits also
ensures that composition and application of class properties is explicit and that the programmer has full control
over how possible conflicts are resolved. The only limitation is that trait-based class properties are always
propagated: if a trait is applied to a metaclass, it is automatically inherited by each of its subclasses.

101

102 CHAPTER 7. CASE STUDY: TRAIT-BASED COMPOSITION OF CLASS PROPERTIES

Meta A
c-bar
c-foo

A
i-foo

B

c-foo
 ↑self new i-bar

i-foo
 ↑self class c-bar

inherits from
instance of

Figure 7.13: By default, a CLOS class and its subclasses are instances of the same metaclass

Meta A
c-bar

A
i-foo

Derived

B

i-foo
 ↑self class c-bar

Meta B

SOM Automatic
Upward Compatibility

SomClass

SomObject

Meta A
c-foo

A
i-bar

Meta B

B

c-foo
 ↑self new i-bar

SOM Downward
 Compatibility Failure

inherits from
instance of

Figure 7.14: SOM guarantees upward but not downward compatibility.

CLOS

CLOS’s approach could be summarized as “do it yourself”. By default, a CLOS class and its subclasses must
be instances of the same metaclass (cf. Figure 7.13), prohibiting classes in the same hierarchy from having
different class properties. However, since CLOS has explicit metaclasses, multiple inheritance can be used to
compose class properties. As illustrated in Figure 7.11, it is for example possible to use multiple inheritance
to combine the two CLOS metaclasses representing the propertiesFinal andSingleton into a new metaclass
FinalSingleton. Note, however, that this form of composition using multiple inheritance suffers from the same
linearization problems as the application of multiple inheritance at the base level (cf. Section 2.2.3).

The general CLOS rule that a class and its subclasses must be instances of the same metaclass can be cir-
cumvented using CLOS’s metaobject protocol (MOP). Indeed, the generic functionvalidate-superclass offers
a meta-programmer the possibility to specify that a class and its subclasses can be instances of different classes
[K ICZ 91]. However, this comes at a very high price because the CLOS MOP does not provide predefined
strategies for avoiding compatibility problems or for dealing with possible conflicts.

Summary. By default CLOS is upward and downward compatible but it prevents usage of different meta-
classes within an inheritance hierarchy and reuse of class properties. Both the composition of class properties
and the application of properties are based on multiple inheritance. The control of the composition is explicit,
because the user has to use multiple inheritance to create a new metaclass. However, since multiple inheritance
in CLOS uses implicit linearization, the well-known problems associated with this form of conflict resolution
also apply to the meta level.

102

7.4. EVALUATION 103

compatibility
metaclasses

property
metaclasses

Meta A
c-bar
c-foo

i-foo
 ↑self class c-bar

A
i-foo
i-bar

B

Meta B

c-foo
 ↑self new i-bar

Property
Metaclass

Property m

Property n

Property n
+ Meta A

Property m
+ Meta B

inherits from
instance of
generated from

Figure 7.15: Class property composition in NeoClasstalk.

SOM

The solution proposed by SOM (System Object Model) [FORM 99] is based on the automatic generation of
derived metaclasses, which inherit multiply from the metaclasses to be composed. When a class is specified to
be an instance of a certain metaclass, SOM automatically determines whether upward compatibility is ensured
and if necessary creates a derived metaclass. This process is illustrated on the left side of Figure 7.14, where
the classB (originally an instance ofMetaB), inheriting from classA (instance ofMetaA) finally becomes
an instance of a derived metaclass inheriting fromMetaA and MetaB. Note that SOM ensures that in case
of multiple inheritance ambiguities, the existing metaclassMetaB takes precedence overMetaA (sinceB is a
subclass ofA).

While SOM guarantees upward compatibility, it does not guarantee downward compatibility [BOUR 98],
which is illustrated on the right side of Figure 7.14: when the classB receives thec-foo message, a run-time
error will occur because its instances do not understand thei-bar message.
Summary. In SOM, the composition of class properties is based on multiple inheritance, while the application
of class properties is based on a combination of multiple inheritance and automatic class generation. This
happens at compile-time, and the programmer has no explicit control over how possible conflicts are resolved.
SOM guarantees upward but not downward compatibility.

NeoClasstalk

NeoClasstalk enables class property reuse by generalizing the parallel inheritance approach of Smalltalk. This
approach is interesting because it guarantees downward and upward compatibility while it also enables class
property reuse between different hierarchies [RIVA 97, BOUR 98, DUCA 99]. This is accomplished using two
main techniques: composition of metaclasses usingcode generationanddynamic switchingof a class’ meta-
class.

To illustrate how NeoClasstalk applies class properties, suppose that there is a classB that inherits from a
classA and is an instance of the classMeta B. If we now assign a propertym to Meta B, the system automatically
creates a new metaclassProperty m + Meta B (called aproperty metaclass), which inherits from the metaclass

103

104 CHAPTER 7. CASE STUDY: TRAIT-BASED COMPOSITION OF CLASS PROPERTIES

up down non-propagating composition application control
Smalltalk yes yes no no no no
CLOS yes yes no multiple inheritance multiple inheritance multiple inheritance

linearization
SOM yes no no multiple inheritance multiple inheritance + implicit

code generation
NeoClasstalk yes yes yes code generation + code generation + implicit

chain of responsibility metaclass switching
MetaclassTalk yes yes yes mixin composition mixin inheritance mixin linearization
Traits yes yes no trait composition trait composition explicit

Table 7.1: Comparison of the different approaches for class property composition

Meta B and defines the property code. It thenchanges the classof B to be that newly created metaclass.
Similarly, the metaclassProperty n + Meta A is generated automatically when a new propertyn is assigned to
the metaclassMeta A. The resulting hierarchy is illustrated in Figure 7.15.

To reuse class properties, NeoClasstalk stores them in strings on methods of so-calledmeta-metaclasses.
The actual metaclasses are then generated from these strings. This is illustrated in Figure 7.15, where the light
gray area represents the meta level, and the dark gray area is the meta-meta level — the realm of the class
properties.

While NeoClasstalk supports non-propagating class properties, it suffers from its intrinsic complexity and
the fact that it does not give explicit control over metaclass composition, which is based on code generation.
This means for example that potential conflicts are resolved implicitly. The NeoClasstalk model is also not
uniform: programming at the meta-meta level is based on manipulating the strings that represent bodies of
metaclass methods, which means that it is conceptually different from programming on the meta level and the
base level. This is because the relation between the meta-metaclasses and metaclasses is code generation, and
not instantiation, as one would expect.
Summary. NeoClasstalk provides both downward and upward compatibility, and it allows one to express non-
propagating class properties. Property composition is based on code generation and chain of responsibility,
while property application is based on code generation and dynamic switching of a class’ metaclass. The
NeoClasstalk model is not uniform, and it implicitly resolves conflicts that may occur when metaclasses are
composed.

MetaclassTalk

MetaclassTalk follows the architecture of NeoClasstalk by offering compatibility and property metaclasses.
But unlike NeoClasstalk, MetaclassTalk uses mixin composition to compose metaclass properties [BOUR 04].
This makes MetaclassTalk the closest model to our own approach as it guarantees both downward and upward
compatibility while allowing the reuse of class properties using a uniform language mechanism. However, by
using mixins for composing class properties, this approach suffers from the mixin-related problems that we
have described in the problem section of this thesis (cf. Sections 2.1 and 2.2.1).

7.4.3 Discussion

As shown in Table 7.1, the only limitation of the trait-based approach is that it does not support non-propagating
class properties, a feature that is supported only by NeoClasstalk and MetaclassTalk and comes at the cost of
additional complexity, such as the need for a meta-meta level in NeoClasstalk. At the same time, the trait-based
approach is the only one that is fully uniform and gives the programmer explicit control over every aspect of
class property composition and application.

This explicit control proved to be crucial while developing and applying our class property framework.
The main reason for this is that our framework provides several different properties related to instance creation
behavior. As a consequence, different class properties define different variants of the same methods (such as

104

7.4. EVALUATION 105

new), which often leads to conflicts when they are composed. But these conflicts can be resolved in aseman-
tically correct manner only if the programmer has explicit control over the composition. If class properties
are represented as traits, this is ensured in the same way as on the base level: by allowing partially ordered
compositions, exclusions, and aliases (see Section 7.3.2).

105

Chapter 8

State of the Art

Our publications on traits have triggered a variety of related research as well as implementations and adapta-
tions of traits to other programming languages. In this chapter, we give an overview of this work in general
(Section 8.1) and traits in statically typed languages in particular (Section 8.2). We also give an overview of
related work that lies outside the borders of the “traits land” (Section 8.3) and briefly compare it to traits.

8.1 Traits in Other Languages

Besides our own implementation of traits in the Smalltalk dialect Squeak, there are other languages that fea-
ture the traits mechanism presented in this thesis or a variation of it. For example, there are trait imple-
mentations available for Perl 5 [WALL 00] and VisualWorks (Cincom) Smalltalk [CINC], while the language
Scala [ODER 04] contains traits as a built-in language mechanism.

In this section, we give a brief description of these trait variations, and we compare them to traits and their
Squeak implementation described in Chapters 3 and 4. We also outline current plans for integrating traits into
Perl 6.

8.1.1 Traits in Perl

Our publications on traits led to an implementation of traits in Perl 5 as well as firm plans for using a trait-like
feature called “roles” as a built-in language element of the upcoming Perl 6.

Implementation of Traits in Perl 5

Inspired by our initial publication on traits [SCHÄ 03], Stevan Little ported traits to Perl 5. His implementa-
tion closely conforms to the description of traits given in this thesis. In particular, it supports all three trait
composition operators (sum, alias, exclusion), it allows one to express required methods, and it requires one to
explicitly resolve all method conflicts.

Unlike the purely object-based language Smalltalk, Perl 5 is not fundamentally object-oriented. Instead,
Perl models objects as references that know what class they belong to. Classes are expressed as packages, and
methods are subroutines that expect an object reference to the receiver as the first argument.

Following these principles, Perl traits are also expressed as packages. As an example consider Figure 8.1,
which shows the Perl implementation of the traitTSyncReadWrite (cf. Section 2.2.2). On the first line, we
begin the trait definition by declaring the package where the trait resides (i.e., the name of the trait). The
second line declares this package to be a trait by using the packagebase from the moduleClass::Trait. This is
necessary in order to be able to properly resolve all method calls. After declaring the requirements, the trait
implements the synchronized versions of the methodsread andwrite.

106

8.1. TRAITS IN OTHER LANGUAGES 107

package TSyncReadWrite;

use Class::Trait ’base’;

our @REQUIRES = qw(read write);

sub read {
my ($self) = @ ;
$self->acquireLock();
my $result = $self->SUPER::read();
$self->releaseLock();
return $result;

}

sub write {
my ($self, $n) = @ ;
$self->acquireLock();
$self->SUPER::write($n);
$self->releaseLock();

}

sub acquireLock() { . . . };

sub releaseLock() { . . . };

Figure 8.1: The trait TSyncRead in Perl

package SyncA;

use base (”A”);

use Class::Trait (”TSyncReadWrite”);

Figure 8.2: The class SyncA defined as a subclass of A using the trait TSyncReadWrite

Using this trait the synchronized classSyncA can be derived from the base classA as shown in Figure 8.2.
(See Figure 2.7 for the corresponding implementation using C++ templates.) Again, the first line starts the
class definition by declaring a new package that is named after the class. Then, we declare that the new class
SyncA inherits from the base classA using the traitTSyncReadWrite.

The fundamental differences between Perl and Smalltalk is reflected in the actual implementation of traits
in these two languages. A detailed description of the Perl implementation is outside the scope of this thesis.
We note only that like the Smalltalk implementation, the Perl implementation is also based on flattening the
trait structure at compile-time:i.e., for each relevant trait method, the class’ symbol table is extended with an
entry that refers to the original trait method.

Traits as a Language Element of Perl 6

In his series about the unfolding of the Perl 6 design [WALL 04], the creator of Perl gives a description of
roles1, the variation of traits that is planned as a fundamental language element of Perl 6.

One of the main difference between roles and traits is that roles can also contain state, which means that
they can define attributes. Another difference is that a role does not only provide some implementation but also

1The name “roles” is used because Perl already uses the term “trait” for a language element that modifies the metadata of the classes it
is applied to.

107

108 CHAPTER 8. STATE OF THE ART

defines an interface, which contains the signatures of the role’s provided and required (i.e., abstract) methods.
Because roles define interfaces, they are also types.

The composition rules of roles are essentially the same as for traits. Composition is unordered, class
methods take precedence over role methods, which in turn take precedence over superclass methods. As with
traits, method conflicts must be resolved explicitly. However, roles do not support aliases and exclusions.
Instead they allow the programmer to access a hidden role method by explicitly using the role name as a
scope qualifier (e.g., Role::method). Interestingly, the proposal does not specify how conflicting attributes are
handled, for example in a diamond situation.

While the Perl 6 design document states that roles are primarily designed to be used at compile-time, they
can also be attached to individual objects at runtime.

8.1.2 Traits in VisualWorks Smalltalk

VW Traits is an implementation of traits for VisualWorks [CINC] by Terry Raymond. Although VisualWorks
is like Squeak a dialect of Smalltalk, there are essential differences between VW Traits and our Squeak based
implementation of traits. A major difference is that VW Traits can include state, which means that they can
specify instance variables, class instance variables, and shared variables. When a trait is used in a class, the
variables defined in the trait will be added to the ones defined in the class. However, unlike with methods,
identically named variables are unified and do not cause conflicts. If a classC uses two traitsT1 andT2 that
both specify a variablex, only one variablex is added to the class, and all references tox in methods ofT1 and
T2 are bound to this variable. Similarly, ifC defines or inherits a variablex and uses a trait that defines another
variablex, these two variables are unified.

While unification of variables makes the use of traits defining variables very straightforward, it is some-
what problematic because it can easily lead to unexpected behavior when a class uses two traits that provide
identically named variables that are used for different purposes. Because the variables are unified rather than
causing a conflict, this problem may not be detected at composition time.

Another distinctive feature of VW Traits is that they support “policy objects” that determine what action
to take when particular composition situations occur. By defining additional policies, the programmer can for
example specify how to resolve certain conflicts. A drawback of VW Traits is that they do not support the alias
operator, which makes it had to implement certain glue methods without code duplication.

Regarding the implementation, the biggest difference between VW Traits and traits in Squeak is that VW
Traits do not reuseCompiledMethod objects. Instead, the source code of a trait method is copied to each client
class and recompiled in the class when the trait is installed. This means that both the source code and the byte-
code of trait methods are duplicated when the trait is applied to a class. The reason for this implementation
strategy is twofold. First, the VisualWorks virtual machine does not permit one to execute a method that has
not been compiled specifically for the class of the receiver. Second, because methods in a VW Trait can contain
instance variable references, they need to be recompiled to update the instance variable offsets.

VW Traits are merged into client classes using a “trait specification”. Unlike our composition clause, which
is part of the class definition, this trait specification is a “pragma method” that identifies the trait to be merged
and the package that is to contain the merged methods. The trait specification allows the programmer to exclude
certain trait methods by adding them to the list of excluded methods.

8.1.3 Traits in Scala

Traits are a built-in language mechanism of the language Scala [ODER 04], a modern multi-paradigm pro-
gramming language designed to express common programming patterns in a concise, elegant, and type-safe
way. The traits adaptation of Scala is particularly interesting as Scala is a statically typed language with a type
system similar to the ones of Java and C#.

108

8.1. TRAITS IN OTHER LANGUAGES 109

Declaring and Composing Traits

Scala traits are modeled as abstract classes that do not encapsulate state, neither in the form of variable defini-
tions nor by providing a constructor with parameters. Consequently, trait declarations have the same form as
class declarations except that the keywordclass is replaced by the keywordtrait. As an example, consider the
definition of a traitEmptiness providing a methodisEmpty, which is defined in terms of an abstract method
size:

trait Emptiness {
def isEmpty: Boolean = size == 0;
def size: int;

}

In order to apply a number of traits to a class, Scala offers the optionalwith declaration that follows the
class name and an optionalextends declaration specifying the class’ superclass. As an illustration, consider the
definition of a classIntSet that inherits fromScalaObject and uses the two traitsEmptiness andTesting:

class IntSet extends ScalaObject with Emptiness with Testing {
. . .

}

The semantics ofwith T1 with T2 is the same as that ofuses T1 + T2 defined in Chapter 3: the composition
is symmetric (i.e., the order of the traits does not matter) and conflicts need to be resolved explicitly. Note,
however, that conflict resolution is less flexible in Scala because it does not feature exclusion and aliasing.

An interesting feature of Scala is that traits cannot only be composed but can also be inherited, which is a
consequence of the fact that Scala traits are just special classes. This means that both classes and traits can be
defined as an extension of other traits. For example, Scala allows one to define a traitB that inherits from a trait
A and uses the two traitsU andV:

trait B extends A with U with V {
. . .

}

The semantics of this construct is the same as ifA andB were classes: local methods inB override methods
in U andV, which in turn override methods inherited fromA. This form of trait inheritance allows the program-
mer to establish partially ordered compositions of traits: features of traitB override all equally named features
of trait A. It also allows the programmer to use the keywordsuper in the traitB to access (overridden) methods
defined inA, which somewhat compensates for the missing alias operator.

In this context, it is important to note that in Scala, a super-sendsuper.foo() that occurs in a traitB is only
valid if B inherits from another traitA that implements (or inherits) the methodfoo. If the methodfoo inherited
from A is abstract, the super-sendsuper.foo() in B has the semantics known from super-sends in our traits: it
will refer to the methodfoo in the superclass of the class to whichB will eventually be applied.

Integration into the Type System

The most interesting aspect of the Scala adaptation of traits is the fact that they are fully integrated into Scala’s
static type system. Because Scala traits are modeled as a abstract classes, each trait, like each class, also defines
a type. This is important because it means that in Scala, traits without any concrete methods play the roles of
interfaces, and Scala therefore does not have a separate notion of interfaces.

The Scala type system supports generics in a very similar but even more expressive way than Java 1.5. This
is important for the integration of traits, because it allows the programmer to express generic traits without
having to introduce any trait-specific additions to the type system. Instead, generic traits are written in exactly
the same way as are generic classes. As an example, consider the fully abstract traitSet, which is parameterized
with a type parameterT that corresponds to the type of the set’s elements:

109

110 CHAPTER 8. STATE OF THE ART

trait Set[T] {
def includes(x: T): Boolean;
def add(x: T): Set[T];
. . .

}

8.2 Traits and Static Types

We are currently working on a port of traits to C#/Rotor, the shared source implementation of the .NET Com-
mon Language Infrastructure (CLI). Given our background of implementing traits in dynamically typed lan-
guages, the biggest challenge is dealing with C#’s static type system.

Although the integration of traits in Scala, the static type system for traits developed by Fisher and Reppy
[FISH 03], and the extension of Featherweight Java [IGAR 99] with traits developed by Liquori and Spi-
wack [LIQU 04] provide valuable insights, we want to explore in a more fundamental way the conceptual
design decisions that occur when traits are integrated into a statically typed language. In particular, we want to
investigate whether and how the language and its type system need to be extended in order to achieve (most of)
the expressiveness known from dynamically typed traits.

In this section, we give an overview of important conceptual design decisions and trade-offs related to traits
and static types, and we briefly outline how they can be addressed.

8.2.1 Relationship between Traits and Types

When integrating traits into a static type system, we must ask ourselves what is the relationship between traits
and types. In particular, should each trait define a type? At first glance, this sounds reasonable, especially
because in most statically typed languages, classes also define types and the inheritance hierarchy determines
the corresponding subtype relation. This corresponds to the design decision taken by Scala (cf. Section 8.1.3),
where each trait (and each class) defines a type, and the subtype relation is defined based on both inheritance
and trait composition.

However, making each trait be a type also blurs the important conceptual distinction between implementa-
tion and interfaces, which leads to two kinds of problem. First, it does not address the fact that in the same way
as subclassing does not necessarily imply subtyping [COOK 90], a trait may be composed from another trait
without really being a subtype of it. Second, in a nominal type system, we end up with multiple identical types
if there are multiple traits (or classes) providing different implementations of the same conceptual interface
(e.g., TRectangle andTOptimizedRectangle).

With traits, such problems appear more frequently than in purely inheritance-based systems because the
availability of traits naturally leads to more components and finer-grained compositions. Furthermore, because
traits feature the aliasing and exclusion operators, such trait-based types can make no guarantee of signature
conformance [QUIT 04]. One solution to this problem would be to restrict the subtype relation so that it does not
apply to trait compositions that involve exclusions. Alternatively, one could adopt the solution of Scala, which
simply does not allow exclusions and aliasing and therefore avoids the problem in the first place. However, this
also means that the programmer’s ability to resolve conflicts is limited.

8.2.2 Typing Trait Methods

Another issue that arises when traits are implemented in a statically typed language is that it may not always
be clear how their methods should be typed. This is especially the case if the type system does not feature
parametric polymorphism (e.g., Java prior to version 1.5).

As an illustration, consider the traitTLinkable that bundles together the behavior of an element in a linked
list and is used in classes such asLink andProcess2. Besides others, this trait provides the methodsincludes:,

2Smalltalk processes are links so that the scheduler can keep them in linked lists.

110

8.2. TRAITS AND STATIC TYPES 111

Trait named: #TLinkable

includes: other
| tail |
self == other ifTrue: [↑ true].
tail : = self getNext.
tail ifNil: [↑ false].
↑ tail includes: other

checkAndSetNext: other
(other includes: self) ifTrue: [↑ false].
self setNext: other.
↑ true.

reverse
| result list temp |
result : = nil.
list : = self.
[list notNil] whileTrue: [

temp : = list getNext.
list setNext: result.
result : = list.
list : = temp.

] .
↑ result.

getNext
self requirement

setNext: other
self requirement

Figure 8.3: The trait TLinkable in the dynamically typed language Smalltalk

checkAndSetNext: and reverse. While includes: checks whether the argument link is included in the linked
list starting at the receiver, the methodcheckAndSetNext: sets thenext field of the receiver to the link that is
passed as an argument, but only if this does not cause a cycle. Finally, the methodreverse reverses the linked
list. Figure 8.3 shows the implementation of this trait in Smalltalk.

Because Smalltalk is dynamically typed, the traitTLinkable can be immediately used in the classLink, the
classProcess, and any other class that is linkable. The only condition is that these classes provide the two
required methodsgetNext andsetNext:, which get and set the next element of the list.

Now assume that we would like to write the same trait in a statically typed language such as Java. This
immediately raises the question of what type should be used for the arguments, the return values, and the
temporary variables of the methods defined in the traitTLinkable so that this trait can be used for bothLink and
Process as well as any other class that is linkable.

Using interfaces. Regarding the argument type ofincludes:, a possible answer could be that the chosen type
should allow every linkable object to be passed as an argument. In a language like Scala, where every trait also
defines its own type and trait composition establishes a subtype relationship, one might for example use the
typeTLinkable as the argument type.

Alternatively, in a language where traits do not define types, one could define a separate interfaceILinkable,
that would then need to be implemented by all linkable classes. In case of a nominal type system, this requires a
certain amount of coding discipline and foresight, but it has the advantage that the typing concern is completely

111

112 CHAPTER 8. STATE OF THE ART

trait TLinkable<T> implements ILinkable {

public boolean includes(ILinkable other) {
if (this == other) return true;
T tail = list.getNext();
if (tail == null) return false;
return tail.includes(other);

}

public boolean checkAndSet(T other) {
if (other.includes(this)) return false;
setNext(other);
return true;

}

public T reverse() {
T result = null;
T list = this;
while (list != null) {

T temp = list.getNext();
list.setNext(result);
result = list;
list = temp;

}
return result;

}

public abstract T getNext();
public abstract void setNext(T other);

}

class Link uses TLinkable<Link> {
. . .

}

class Process uses TLinkable<Process> {
. . .

}

Figure 8.4: The generic trait TLinkable used in the classes Link and Process

separated from the implementation concern. As a consequence, classes that are not built from the traitTLinkable
because they follow a different implementation strategy can still be passed as an argument to this method as
long as they implement theILinkable interface.

Using generics. When it comes to the other types, things are more problematic. As an example, consider the
return type of the methodsreverse andgetNext. Assuming thatTLinkable is used only for homogeneous lists,
the methodsreverse andgetNext should return an instance of whatever class they are called on. In particular,
this means that an instance ofLink (Process) should be returned when these methods are called on aLink
(Process).

What makes this situation difficult is that the return types of these methods are in fact parametric;i.e.,
they depend on the class to which the traitTLinkable is finally applied. Therefore, using an interface such as
ILinkable as the return type does not solve our problem because it would only allow a common subset of all the
methods inLink andProcess to be called on the return values.

112

8.2. TRAITS AND STATIC TYPES 113

trait TLinkable implements ILinkable {

public boolean includes(ILinkable other) {
if (this == other) return true;
if (getNext() != null) return getNext().includes(other);
return false;

}

public boolean checkAndSet(ThisType other) {
if (other.includes(this)) return false;
setNext(other);
return true;

}

public ThisType reverse() {
ThisType result = null;
ThisType list = this;
while (list != null) {

ThisType temp = list.getNext();
list.setNext(result);
result = list;
list = temp;

}
return result;

}

public abstract ThisType getNext();
public abstract void setNext(ThisType other);

}

Figure 8.5: The trait TLinkable imlemented using ThisType

The same problem also applies to the argument of the methodssetNext: andcheckAndSetNext: as well as
to the temporary variables used in the methodreverse. If we for example declared the type of these temporary
variables to beILinkable, the type of the list elements would be changed when the list is reversed.

The problem can be addressed using parametric polymorphism as provided by the generics mechanism
introduced in Java 1.5 (or the generics mechanisms available in C# and Scala), because it allows us to write the
trait TLinkable with a type parameter that is then used for the return values, the arguments, and the temporary
variables of these methods. Whenever the traitTLinkable is applied to a class such asLink andProcess, we can
then use the corresponding type as the concrete parameter. The code for this approach is shown in Figure 8.4.
Note that it uses the Java 1.5 syntax extended with the keywordstrait anduses, which are used to declare a trait
and to apply a trait, respectively.

Reifying the class that uses a trait. While such a parameterized implementation ofTLinkable solves the
problem of correctly typing the trait methods, it also adds quite a bit of complexity. In traits-mini-java
(TMJ) [QUIT 04], an implementation of traits based on a subset of Java, Quitslund therefore proposes to ad-
dress this problem by reifying the class that actually uses the trait. This means that TMJ features a new keyword
ThisType, which can be used in a trait to refer to the class where the trait will eventually be used. Using this
feature, TMJ allows one to write the traitTLinkable without the explicit use of generics (see Figure 8.5).

Compared to the version based on Java generics, this has the advantage that both the traitTLinkable and the
classes (and traits) using this trait can be written in a way that is simpler and more concise because it does not
require an explicit parameter for the class type. Furthermore, the keywordThisType is, unlike type parameters,
fully equivalent to the (name of the) class it refers to; in particular, it can be used to construct new instances of
the current class, which is for example useful for traits that need to construct a new object of the same class as

113

114 CHAPTER 8. STATE OF THE ART

the receiver. (In Java and in Scala, it is not permitted to instantiate type parameters since the actual type may
correspond to an interface or an abstract class, which can not have instances.)

At the same time, the approach based onThisType is less expressive than generic types and can therefore
not in general replace them. As an example, generics are still needed if one would like to write a trait (or a
class) that implements a collection or an iterator that can deal with different element types without having to
use explicit down-casts.

8.2.3 Conclusions

The considerations in this sections have shown that integrating traits into a statically typed language requires
one to take design decisions that do not arise in a dynamically typed environment. This is mainly because traits
are designed to be applied to a variety of different classes that are usually not known when the traits are written,
while static type systems tend to require the programmer to make early assumptions about the types of classes
to which a trait can be applied.

This dilemma is not really new. In fact, the same problems arise when mixins are used in a statically
typed environment. As shown by Scala, most of these problems are successfully addressed by a notion of
generic types. This is particularly encouraging because it means that given a type system with parametric
polymorphism, an adequately expressive integration of traits can be naturally achieved without adding any
traits-specific features to the type system. Using the Scala approach, it should therefore also be possible to add
traits to statically typed languages such as Java 1.5 or C#.

Nevertheless, there remain some trait constructs that can be expressed straightforwardly in a dynamically
typed language, but not in a statically typed language featuring Java-like generics. Future research has to show
whether it is worth introducing trait-specific features to a static type system to address at least some of these
issues.

8.3 Other Related Work

In Chapter 2, we have shown how multiple inheritance and different forms of mixins attempt to promote code
reuse, and the problems that beset these generalizations of inheritance. In this section we compare traits to
some other approaches for structuring complex artifacts.

Other Reuse Constructs Called “Traits”

Several other systems have used entities called “traits” to share and reuse implementation in ways that are
related to the composition mechanism introduced in this dissertation. One of them is the prototype-based
language Self [UNGA 87]. In Self, there is no notion of class; each object conceptually defines its own format,
methods, and inheritance relations. Objects are derived from other objects by cloning and modification. Objects
can have one or more parent objects; messages that are not found in the object are looked for and delegated to
a parent object. The order in which these parent objects are searched is not defined3, and it is an error for a
selector to be found in more than one parent. In Self, explicit sends to such parent objects are calledresendsand
there are two different kinds of them:directed resendslook in a specific parent object, while regularresends
traverse all parent objects.

While Self does not feature classes, it uses so-calledtrait objectsto factor out common features [UNGA 91].
Similar to the notion of traits presented in this thesis, these trait objects are essentially groups of methods.
However, unlike our traits, Self’s trait objects do not support specific composition operators; instead, they are
used as ordinary parent objects.

3In some older versions, Self featured sophisticated mechanisms to influence the search order.

114

8.3. OTHER RELATED WORK 115

Also the software for the Xerox Star workstation was implemented using entities called traits [CURR 82].
Traits were primitive entities used to build up more complex objects. They were implemented as coding conven-
tions in the Mesa programming language. This approach has more in common with other multiple inheritance
approaches than with traits as presented in this thesis. In particular, the Star traits differ from ours in their se-
mantics for inheritance, their provision for conflict resolution capabilities, their ability to carry state, and their
multiple implementations for a single method.

The Larch Shared Language [GUTT 85] is also based on a construct called a trait; the relationship turns
out to be more than name deep. Larch traits are fragments of specifications that can be freely reused at fine
granularity. For example, it is possible to define a Larch trait such asIsEmpty that adds a single operation to
an existing container datatype specification. But there are also significant differences between Larch traits and
the traits presented in this thesis. For example, our traits are not intended to be used to prove properties of
programs, and adding a trait to a class does not formally constrain the behavior of existing methods.

PIE

The Personal Information Environment (PIE) is a programming environment that supports the design, devel-
opment, and documentation of Smalltalk programs [GOLD 80a, GOLD 80b]. The PIE environment is based on
a network of nodes that describe different types of entities — from small pieces such as a single procedure to
much larger conceptual entities such as categories of classes or configurations of the system — in a uniform
way. PIE features a wide variety of innovations such as context-sensitive descriptions (i.e., properties with
different associated values depending on the current context), meta-nodes containing a meta-description of the
associated node, and a mechanism for unique identification of objects across an entire computing community
[BOBR 80, GOLD 80a, GOLD 80b].

In addition, PIE features a form of multiple inheritance based on a notion of multiple perspectives, which
reflects the idea that a certain node may have different characteristics depending on the point of view from which
it is considered. Hence, PIE allows the programmer to assign an arbitrary number of different perspective (with
independent superclasses) to a certain node. In a first version, the state of the object was represented entirely
in the node, and the perspectives carried no state: they supplied method definitions only. Although this early
form of perspectives bears a certain resemblance to traits, there are important conceptual differences. The most
critical one is that unlike with traits, the methods provided by perspectives are not merged into the node where
the perspectives are applied. This means that a node does not directly understand the messages implemented
by its perspectives, and that a programmer therefore has to use a message pattern that explicitly states the class
of the perspective providing the sent message.

While this design has the advantage that equally named methods of different perspectives never conflict,
it also means that external clients depend on the structure of a node, and that perspectives are heavyweight
entities that do not provide for fine-grained modularization of a node’s methods. These conceptual differences
between traits and perspectives are even more significant in the second and most recent version of PIE, where
each perspectives also carries its own state. Note that the notion of perspectives in PIE is based on very
similar notions in FRL [GOLD 77] and KRL [BOBR 77], and that it is related to the approach employed by
ThingLab [BORN 81], a multiple inheritance constraint satisfaction system.

Template-based Approaches

There are several C++ template libraries such as the Standard Template Library (STL) [MUSS96] and the
Boost Lambda Library [J̈ARV 03], which implement a variety of parameterized data structures and functions
such as collections and iterators. Whereas these parameterized data structures facilitate reuse because they are
applicable in the context of different types, they are not directly related to the kind of feature composition traits
are aiming for.

Indeed, VanHilst [VANH 96b] and Notkin noted that C++ templates can be used for two conceptually
different kinds of parametrization: forgenericity(e.g., a generic classSet with a parameterized element type)

115

116 CHAPTER 8. STATE OF THE ART

and forcomposition(e.g., a classColor with a parameterized superclass)4. The conceptual difference between
these two purposes of templates become especially apparent in a language like Smalltalk. Because Smalltalk
is dynamically typed, templates are not necessary for writing the kind of generic data structures implemented
in the STL, and because Smalltalk’s built-in blocks are anonymous functions (i.e., lambda abstractions), there
is no need for the abstractions proposed by the Boost Lambda Library. But at the same time, Smalltalk lacks a
flexible composition mechanism, which is why we extended the language with traits.

The RESOLVE discipline [SITA 94, OGDE 94, EDWA 94, HOLL 94] for component-based software engi-
neering is a set of software engineering design principles introduced by Hollingsworth in his doctoral disserta-
tion [HOLL 92]. While the RESOLVE discipline is language independent, Sitaraman and Weide also developed
specialized versions such as a version for C++ known as RESOLVE/C++ [BUCC 94]. Although the RESOLVE
discipline covers many different kinds of software engineering principles such as avoiding aliasing problems
by consistently using swapping and not assignment as the basic data movement mechanism, its main focus lies
on component-based design,i.e., the RESOLVE framework.

A key concept of the RESOLVE framework is the distinction betweenabstract components(specifications)
andconcrete components(implementations). The distinction between these two kinds of components allows
each abstract component to be realized using any of several concrete components that correctly achieve the in-
tended functionality but may for example differ in performance characteristics. RESOLVE components are also
parameterized. In Resolve/C++, parametrization is achieved by making each component a C++ template with
two kind of parameters:conceptual parametersfor generic components such as a set that deals with elements
of a parameterized type, andrealization parametersthat avoid concrete-to-concrete component coupling.

These realization parameters make the RESOLVE components similar to traits (and mixins), as they allow
a programmer to apply and compose RESOLVE components in very flexible ways. Apart from this similarity,
there are also significant differences between traits and RESOLVE. The traits mechanism is designed as a
simple and lightweight extension of single inheritance that allows one to build classes from a fine-grained
composition of traits rather than an unstructured collection of individual methods. This is reflected by the fact
that traits are implicitly parameterized and are composed in a way that is quite limited but in return guarantees
certain properties, such as the flattening property, which are important for the understandability of such fine-
grained structures.

In contrast, RESOLVE components are explicitly parameterized and are then composed and applied by (full
or partial) instantiation rather than inheritance. Together with the distinction between abstract and concrete
components, this makes the RESOLVE approach more complex and heavyweight — Edwards et al. describe
the RESOLVE specification language as “rich and fairly complex” [EDWA 94] — but in return offers a wide
variety of different kinds of compositions and conformance guarantees.

Mixin-related Approaches

GenVoca is a design methodology for creating application families and architecturally extensible software,
i.e., software that is customizable via module additions and removals [BATO 92]. With GenVoca, class re-
finements are modeled as functions that take a program (i.e., a GenVoca constant) as input and produce a
feature-augmented program as output. While traits are purely behavioral, a GenVoca class refinement can not
only introduce or override methods, but can also add new data members and constructors to a target class.
A more fundamental difference between traits and GenVoca is that the focus of traits lies on its composition
operators that guarantee important properties for making the resulting classes easy to understand (e.g., the flat-
tening property) and robust with respect to changes (e.g., commutativity and explicit conflict resolution). In
contrast, GenVoca’s main innovations are the layering and scaling of refinements that allow one to generate
high-performance systems for a target domain. Indeed, the actual implementation of GenVoca refinements is
based on existing mechanisms such as mixins [BATO 03].

4Note that generics in most other languages such as C# and Java cannot express classes with parameterized superclasses. Therefore,
they cannot be used to express mixin-like feature composition.

116

8.3. OTHER RELATED WORK 117

Mixin layers [SMAR 98] are a technique for implementing layered object-oriented designs (e.g., collabo-
ration-based designs). Mixin layers are similar to mixins but scaled to a multiple-class granularity. Mixin layers
address the scalability problems that can appear in role-based designs [VANH 96a, VANH 96b], but they still
suffer from the fragility problems we identified for mixins (such as fragility with respect to changes) because
they are based on mixins as the fundamental composition mechanism.

Smaragdakis also showed how one can develop layered software using common Unix (Linux and Solaris)
dynamic libraries [SMAR 02]. The idea is that, from an object-oriented design standpoint, dynamic libraries
are analogous to components in a mixin-based object system. This enables one to use libraries in a layered
fashion, mixing and matching different libraries, while ensuring that the result remains consistent. However,
as for all the other mixin-based approaches, composition is linear and the composition order is crucial for the
semantics of the composition. As a consequence, this form of dynamic library composition also suffers from
the mixin-related problems that we have addressed with our work on traits (cf. Chapter 2)

Aspect-oriented Programming (AOP)

Aspect-oriented programming [KICZ 97] allows the programmer to encapsulate concerns that cross-cut class
boundaries in a construct called an aspect. Both aspects and traits can add new methods to existing classes.
Aspects can also weave code before or after the execution of a method, an effect traits achieve using method
overriding and explicit calls tosuper. In addition, most implementations of aspect-oriented programming such
as AspectJ [KICZ 01] support weaving code at more fine-grained join points such as field accesses, which is
not supported by traits.

Despite the fact that traits and aspects can be used for similar purposes, there are fundamental differences
between the two approaches. By definition, aspects are concerns that cannot be cleanly encapsulated in a
generalized procedure (i.e., object, method, mixin). This means that in contrast to traits, aspects are neither
designed nor used to build classes and components from scratch, but rather to alter the performance or semantics
of the components in systemic ways. A single aspect can also be designed to modify the behavior of methods
spread across the object-oriented decomposition,i.e., in many classes. A trait cannot do this.

Other Modularity and Composition Models

Delegation (also known as “object-based inheritance”) is another form of composition that side-steps many
of the problems related to class-based inheritance [KNIE 99]. In contrast to traits, delegation is designed to
supportdynamiccomponent adaptation.

The Jigsaw modularity framework, developed by Bracha in his doctoral dissertation [BRAC 92], defines
module composition operators such as merge, rename and restrict that are strikingly similar to our trait sum,
alias and exclusion operators. For example, Bracha’s merge, like our sum operator, is commutative. Although
there are differences in the details of the definitions (for example, in how conflicts are handled), the more
significant differences are in motivation and setting. Jigsaw is intended as a complete framework for module
manipulation in the large, and makes assumptions appropriate to that setting: namespaces, declared types
and requirements, full renaming, and semantically meaningful nesting. Traits are intended to supplement
existing languages by promoting reuse in the small, and consequently do not define namespaces, do not declare
types, infer their requirements, do not allow renaming, and do not give a meaning to nesting. The Jigsaw
operation set also aims for completeness, whereas in the design of traits we explicitly gave up completeness for
simplicity. Nevertheless, the similarity of the core operation sets is encouraging, given that they were defined
independently.

Caesar’s collaboration interfaces are similar to traits in that they include the declaration ofexpectedmeth-
ods, i.e., those that classes must provide when bound to an interface [MEZI 02]. Thus, Caesar’s interface
concept can simulate traits by binding an interface to a class and then combining it with a specific implemen-
tation. However, Caesar has no special compositional construct for dealing with conflicts. Instead, Caesar is
designed to use one of the conflict resolution strategies known from multiple inheritance languages such as

117

118 CHAPTER 8. STATE OF THE ART

C++, leading to problems similar to those described in Chapter 2. Moreover, Caesar is based on explicit wrap-
pers, which can be costly at runtime, while the semantics of traits is compatible with single inheritance and
does not cause a run-time penalty.

Mezini also proposed an approach to behavior composition in a class-based environment that is based on
the encapsulated object model of class-based inheritance, but introduces an explicit combination layer between
objects and classes [MEZI 97]. The definition of the behavior of an evolving object is divided between a class
that provides the standard behavior of the object and a set of mixin-like software modules, called adjustments.
One of the main differences from traits is that Mezini’s approach is more dynamic and complex. In fact, a
combiner-metaobject is associated with each evolving object, and is responsible for the compositional aspects
of the object’s behavior. This means that the combiner-metaobject uses the adjustments to define the environ-
ment where the messages sent to the object are evaluated.

Logtalk [MOUR 03] is an open source object-oriented extension to the Prolog programming language. It
supports both prototypes and classes. In addition, it supports component-based programming using a mech-
anism called categories that is designed to share code between classes. Despite a superficial resemblance
between Logtalk categories and traits, there are many differences between the two mechanisms. Logtalk does
not support aliasing and exclusions, it uses a depth-first lookup toimplicitly resolve any conflicts, and it suffers
from scalability problems as categories cannot be composed from other categories.

118

Chapter 9

Conclusions

In the introduction to this dissertation (Section 1.2), we made the claim that traits provide a better solution to
the reuse problems in object-oriented languages than multiple inheritance and mixins. In this final chapter, we
first summarize how the contributions presented in this thesis support this statement (Section 9.1). Then, we
mention open issues and limitations of traits, which lead us to directions for future work (Section 9.2).

9.1 Contributions

In Chapter 2 of this dissertation, we have given a detailed description of composition and decomposition prob-
lems that arise with existing forms of inheritance — single inheritance, multiple inheritance and mixin inheri-
tance — in object oriented programming languages.

To overcome these problems, we presented traits (Chapter 3), a simple compositional mechanism for build-
ing and structuring object-oriented programs. Based on a formal model, graphical diagrams and a running ex-
amples, we showed how traits are composed using a set of composition operators — symmetric combination,
exclusion, and alias — that are carefully designed so that they allow a fair amount of composition flexibility
without being subject to the problems and limitations that we have identified. In particular, we illustrate and
discuss how traits allow us to combine multiple wrappers without the fragility problems that we identified
for mixins or the need for duplication of glue methods that arises with most forms of multiple inheritance
(Sections 3.2 and 3.3).

The formal model shows that trait composition adheres to the flattening property (Sections 3.1.3 and 3.1.6),
which says that a non-overridden method in a trait has the same semantics as if it were implemented directly
in the class using the trait. This is an important contribution because it indicates that even extensive use of
traits never does any harm: the flattening property guarantees that the resulting code is not less understandable
than the original, because it is always possible to both view and edit the code as if it were written using single
inheritance alone. Because of this property, we believe that traits are an ideal extension for single inheritance
languages.

The description of our traits implementation in Squeak Smalltalk shows that traits can be implemented very
efficiently while avoiding many of the difficulties known from multiple inheritance and mixin implementations
(Chapter 4). This is because the absence of variables in traits and the flattening property allow us to perform all
the additional computations when traits are composed, which means that there is almost no performance penalty
at runtime; the only penalty is due to the use of accessor methods, but such methods are widely used even
without traits because they improve maintainability. This is especially remarkable since our implementation
did not require any changes to the Squeak virtual machine, does not duplicate any source code and duplicates
the byte-code of a method only if it contains sends tosuper.

Our experience has shown that without appropriate tools the programmer cannot really benefit from the

119

120 CHAPTER 9. CONCLUSIONS

theoretical advantages of traits (Section 5.1). In our Squeak-based implementation, we therefore introduced
the trait browser, which addresses the requirements that we identified as critical for programming with traits:
it allows the programmer to switch seamlessly between the different views, it supports the programmer in
understanding composite entities by emphasizing the glue methods that define how the classes and traits are
connected, and it facilitates incremental and iterative programming by keeping track of incomplete composi-
tions and by indicating what needs to be done to make the program or at least a part of it complete (Section 5.2).
The trait browser has proven to be crucial for giving the programmer the maximum benefit from traits. For ex-
ample, the programmer can only benefit from the flattening property if there are tools that actually provide the
different views (i.e., the flat class-based view and the structured trait-based views) and allow the programmer
to switch between them.

Based on our experience in programming with traits and the trait browser, we developed a methodology
around the usage of traits (Section 5.3). This is a valuable contribution because a new language construct is
only useful if the programmers actually understand how to (and how not to) use it. If programmers start using
traits, it is therefore important to tell them how traits affect the programming process.

Being guided by this methodology, we performed two case studies: the refactoring of the Smalltalk collec-
tion classes (Chapter 6) and the development of a trait-based approach to composing class properties (Chap-
ter 7). These case studies and their results not only confirm the practical usefulness of our programming tools
and the soundness of our methodology, they are also a strong indication that traits can be used for realistic
problems. In particular, the case studies showed that traits are suitable for modularizing classes that are al-
ready built, and that they raise the level of abstraction when building new classes. As we worked with the
refactored collection hierarchy, we were especially impressed with the practical usefulness of the flattening
property, which made understanding classes that are built from composite traits quite a simple matter.

The various approaches for typing traits and the adaptations of traits that were implemented in other pro-
gramming languages (Chapter 8) show that traits have had significant impact in the programming languages
community. In the end, this is another indication for the scientific and practical relevance of the work presented
in this dissertation.

9.2 Future Work

In this section we present several ideas that have not yet been realized or implemented, largely due to a lack of
time and human resources.

Traits and types. Although existing implementations of traits in languages such as Scala show that traits can
be applied to statically typed languages, there remain several open questions that arise when traits are integrated
into a statically typed language. For example:

• should traits, like classes, also define corresponding types?

• if traits define types, what should be the impact of the different composition operators on the subtype
relationships?

• what does an ideal generics mechanism for traits look like?

In this thesis, we gave an overview of such conceptual questions, the associated trade-offs, and possible
solutions, but more research is necessary to give final answers.

Traits and encapsulation. A critical limitation of trait is that they offer no real solution to the problem of
unintended name clashes: when two traits are composed, it may be that each requires a semantically different
method that happens to have the same name. While this may at first look like a trait-related problem, we
believe that it is in fact a reflection of a more general problem: insufficient encapsulation support in most
object-oriented programming languages [SCHÄ 04a, SCHÄ 04b]. Indeed, a closer look shows that the same

120

9.2. FUTURE WORK 121

kind of problem also arises in languages like Smalltalk and Java, where unintended name clashes can occur
when classes inherit from each other, or when a class implements two interfaces that each specify a method
with precisely the same signature but with different semantics.

We therefore suggest that these problems should be solved with a uniform encapsulation mechanism such as
our mechanism based on encapsulation policies [SCHÄ 04a, SCHÄ 04b]. While this mechanism was designed
with traits in mind, we have so far only applied it to traditional single inheritance languages like Smalltalk;
future work has to show whether it leads to the expected results when applied to traits.

Traits and classboxes. Bergelet al. developed classboxes, a module system for object-oriented programming
languages that supports method addition and replacement [BERG 03]. In addition, classboxes feature local
rebinding, which means that changes made within a classbox are local and do not affect other classboxes. This
is achieved using class extensions. A class extension is defined in a class box and it specifies methods that are
added to the definition of a class when it is imported from another classbox.

Although traits and classboxes address different kind of modularity problems, we believe that combining
them could lead to interesting synergies. For example, it would be interesting to see whether and how class
extensions could be modeled as traits.

And more. . . Other interesting areas for future work include investigating the consequences of allowing traits
to specify state variables, extending trait composition so that it can replace inheritance, and evaluating the use
of traits to modify the behavior of individual instances at run-time.

121

Bibliography

[A LPE 98] S. R. Alpert, K. Brown, and B. Woolf. The Design Patterns Smalltalk Companion. Addison
Wesley, 1998. (pp 73, 95, 97)

[A MER 90] P. America and F. van der Linden.A Parallel Object-Oriented Language with Inheritance and
Subtyping. In Proceedings OOPSLA/ECOOP ’90, pages 161–168. ACM Press, October 1990.
(p 5)

[A NCO 00] D. Ancona, G. Lagorio, and E. Zucca.Jam — a Smooth Extension of Java with Mixins. In
Proceedings ECOOP 2000, pages 145–178. Springer Verlag, 2000.(pp 1, 2, 9, 34)

[BAK 02] L. Bak, G. Bracha, S. Grarup, R. Griesemer, D. Griswold, and U. Hölzle. Mixins in Strongtalk.
In Proceedings ECOOP 2002 Workshop on Inheritance, June 2002.(pp 9, 34)

[BATO 92] D. Batory and S. O’Malley.The Design and Implementation of Hierarchical Software Systems
With Reusable Components. ACM Transactions on Software Engineering and Methodology,
October 1992. (p 116)

[BATO 03] D. Batory, J. N. Sarvela, and A. Rauschmayer.Scaling Step-wise Refinement. In Proceedings
ICSE 2003, pages 187–197. IEEE Computer Society Press, 2003.(p 116)

[BECK 00] K. Beck. Extreme Programming Explained: Embrace Change. Addison Wesley, 2000.(pp 65,
66)

[BERG 03] A. Bergel, S. Ducasse, and R. Wuyts.Classboxes: A Minimal Module Model Supporting Local
Rebinding. In Proceedings JMLC 2003 (Joint Modular Languages Conference), pages 122–131.
Springer Verlag, 2003. (p 121)

[BLAC 03] A. P. Black, N. Scḧarli, and S. Ducasse.Applying Traits to the Smalltalk Collection Hierarchy.
In Proceedings OOPSLA 2003, pages 47–64. ACM Press, October 2003.(p 31)

[BLAC 04] A. P. Black and N. Scḧarli. Traits: Tools and Methodology. In Proceedings ICSE 2004, pages
676–686. ACM Press, Mai 2004.(p 48)

[BOBR 77] D. G. Bobrow and T. Winograd.An Overview of KRL, a Knowledge Representation Language.
Cognitive Science, vol. 1, no. 1, pages 3–46, 1977.(p 115)

[BOBR 80] D. G. Bobrow and I. P. Goldstein.Representing Design Alternatives. In Proceedings of the
Conference on Artificial Intelligence and the Simulation of Behavior, July 1980.(pp 48, 49,
115)

[BORN 81] A. Borning.The Programming Language Aspects of ThingLab, a Constraint-Oriented Simulation
Laboratory. ACM Transactions on Programming Languages and Systems, vol. 3, no. 4, pages
353–387, October 1981. (p 115)

122

BIBLIOGRAPHY 123

[BOUR 98] N. M. N. Bouraqadi-Saadani, T. Ledoux, and F. Rivard.Safe Metaclass Programming. In Pro-
ceedings OOPSLA ’98, pages 84–96. ACM Press, 1998.(pp 44, 90, 99, 100, 103)

[BOUR 04] N. Bouraqadi. Safe Metaclass Composition Using Mixin-Based Inheritance. Elsevier Journal
of Computer Languages, Systems and Structures, vol. 30, no. 1–2, pages 49–61, April 2004.
(pp 100, 104)

[BRAC 90] G. Bracha and W. Cook.Mixin-based Inheritance. In Proceedings OOPSLA/ECOOP ’90, pages
303–311, October 1990. (pp 1, 2, 7, 37)

[BRAC 92] G. Bracha.The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheritance.
PhD thesis, Dept. of Computer Science, University of Utah, March 1992.(pp 8, 60, 87, 117)

[BRAC 93] G. Bracha and D. Griswold.Strongtalk: Typechecking Smalltalk in a Production Environment.
In Proceedings OOPSLA ’93, pages 215–230. ACM Press, October 1993.(p 87)

[BRUC 95] K. B. Bruce, L. Cardelli, G. Castagna, T. H. O. Group, G. T. Leavens, and B. Pierce.On Binary
Methods. Theory and Practice of Object Systems, vol. 1, no. 3, pages 221–242, 1995.(p 5)

[BUCC 94] P. Bucci, J. E. Hollingsworth, J. Krone, and B. W. Weide.Part III: Implementing Components
in RESOLVE. ACM SIGSOFT Software Engineering Notes, vol. 19, no. 4, pages 40–51, 1994.
(p 116)

[CAST 95] G. Castagna.Covariance and Contravariance: Conflict Without a Cause. ACM Transactions on
Programming Languages and Systems, vol. 17, no. 3, pages 431–447, 1995.(p 5)

[CINC] Cincom. VisualWorks Smalltalk. http://www.cincom.com/scripts/smalltalk.dll/.(pp 106, 108)

[COIN 87] P. Cointe.Metaclasses are First Class: the ObjVlisp Model. In Proceedings OOPSLA ’87, pages
156–167. ACM Press, December 1987.(pp 39, 90, 91)

[COOK 87] S. Cook. OOPSLA ’87 Panel P2: Varieties of Inheritance. In Addendum to the Proceedings
OOPSLA ’87, pages 35–40. ACM Press, October 1987.(p 1)

[COOK 89] W. Cook and J. Palsberg.A Denotational Semantics of Inheritance and its Correctness. In
Proceedings OOPSLA ’89, pages 433–443. ACM Press, October 1989.(p 5)

[COOK 90] W. Cook, W. Hill, and P. Canning.Inheritance is not Subtyping. In Proceedings POPL ’90, pages
125–135. ACM Press, January 1990.(pp 5, 110)

[COOK 92] W. R. Cook.Interfaces and Specifications for the Smalltalk-80 Collection Classes. In Proceed-
ings OOPSLA ’92, pages 1–15. ACM Press, October 1992.(pp 60, 67, 72, 85)

[CURR 82] G. Curry, L. Baer, D. Lipkie, and B. Lee.TRAITS: an Approach to Multiple Inheritance Sub-
classing. In Proceedings of the ACM SIGOA conference on Office Information Systems, pages
1–9, June 1982. (p 115)

[DANF 94] S. Danforth and I. R. Forman.Derived Metaclass in SOM. In Proceedings of TOOLS EUROPE
’94, pages 63–73. Prentice Hall Press, 1994.(pp 39, 90, 100)

[D IXO 89] R. Dixon, T. McKee, M. Vaughan, and P. Schweizer.A Fast Method Dispatcher for Compiled
Languages with Multiple Inheritance. In Proceedings OOPSLA ’89, pages 211–214. ACM Press,
October 1989. (pp 2, 5, 47)

[DUCA 99] S. Ducasse.Evaluating Message Passing Control Techniques in Smalltalk. Journal of Object-
Oriented Programming (JOOP), vol. 12, no. 6, pages 39–44, June 1999.(p 103)

123

124 BIBLIOGRAPHY

[DUCA 05] S. Ducasse, N. Schaerli, and R. Wuyts.Uniform and Safe Metaclass Composition. Elsevier
Journal of Computer Languages, Systems and Structures, 2005.(pp 44, 90)

[DUCO 92] R. Ducournau, M. Habib, M. Huchard, and M. Mugnier.Monotonic Conflict Resolution Mech-
anisms for Inheritance. In Proceedings OOPSLA ’92, pages 16–24. ACM Press, October 1992.
(p 15)

[DUGG 01] D. Duggan and C.-C. Techaubol.Modular Mixin-Based Inheritance for Application Frameworks.
In Proceedings OOPSLA 2001, pages 223–240. ACM Press, October 2001.(p 7)

[EDWA 94] S. H. Edwards, W. D. Heym, T. J. Long, M. Sitaraman, and B. W. Weide.Part II: specifying
components in RESOLVE. ACM SIGSOFT Software Engineering Notes, vol. 19, no. 4, pages
29–39, 1994. (p 116)

[FISH 03] K. Fisher and J. Reppy.Statically Typed Traits. Technical Report TR-2003-13, University of
Chicago, Department of Computer Science, December 2003.(p 110)

[FLAT 98] M. Flatt, S. Krishnamurthi, and M. Felleisen.Classes and Mixins. In Proceedings POPL ’98,
pages 171–183. ACM Press, 1998.(pp 1, 2, 7)

[FORM 99] I. R. Forman and S. Danforth. Putting Metaclasses to Work: A New Dimension in Object-
Oriented Programming. Addison-Wesley, 1999.(pp 39, 90, 103)

[GAMM 95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, 1995.(p 71)

[GOLD 77] I. P. Goldstein and R. B. Roberts.NUDGE, a Knowledge-Based Scheduling Program. In Pro-
ceedings of the Fifth International Joint Conference on Artifical Intelligence, pages 257–263,
1977. (p 115)

[GOLD 80a] I. P. Goldstein and D. G. Bobrow.Extending Object-Oriented Programming in Smalltalk. In
Proceedings of the Lisp Conference, pages 75–81, August 1980.(p 115)

[GOLD 80b] I. P. Goldstein and D. G. Bobrow.Descriptions for a Programming Environment. In Proceedings
of the First Annual Conference of the National Association for Artificial Intelligence, August
1980. (p 115)

[GOLD 83] A. Goldberg and D. Robson. Smalltalk 80: the Language and its Implementation. Addison
Wesley, Mai 1983. (pp 39, 42, 65, 67)

[GOLD 89] A. Goldberg and D. Robson. Smalltalk-80: the Language. Addison Wesley, 1989.(pp 90, 91,
101)

[GRAU 89] N. Graube. Metaclass Compatibility. In Proceedings OOPSLA ’89, pages 305–316, October
1989. (pp 44, 91, 99)

[GUTT 85] J. V. Guttag, J. J. Horning, and J. M. Wing.The Larch Family of Specification Languages. IEEE
Transactions on Software Engineering, vol. 2, no. 5, pages 24–36, September 1985.(p 115)

[HARR 93] W. Harrison and H. Ossher.Subject-Oriented Programming (A Critique of Pure Objects). In
Proceedings OOPSLA ’93, pages 411–428, October 1993.(p 5)

[HOLL 92] J. E. Hollingsworth.Software Component Design-for-Reuse: A Language Independent Disci-
pline Applied to Ada. PhD thesis, Dept. of Computer & Information Science, The Ohio State
University, Columbus, OH, 1992. (p 116)

124

BIBLIOGRAPHY 125

[HOLL 94] J. E. Hollingsworth, S. Sreerama, B. W. Weide, and S. Zhupanov.Part IV: RESOLVE components
in Ada and C++. ACM SIGSOFT Software Engineering Notes, vol. 19, no. 4, pages 52–63, 1994.
(p 116)

[HOLZ 04] S. Holzner. Eclipse. O’Reilly, Mai 2004. (p 48)

[I GAR 99] A. Igarashi, B. C. Pierce, and P. Wadler.Featherweight Java: a Minimal Core Calculus for Java
and GJ. In Proceedings OOPSLA ’99, pages 132–146. ACM Press, November 1999.(p 110)

[I NGA 76] D. Ingalls. The Smalltalk-76 Programming System Design and Implementation. In Proceedings
POPL ’76, pages 9–16. ACM Press, 1976.(pp 39, 90)

[I NGA 97] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.Back to the Future: The Story of
Squeak, a Practical Smalltalk Written in Itself. In Proceedings OOPSLA ’97, pages 318–326.
ACM Press, November 1997.(pp 3, 21, 39)

[JÄRV 03] J. J̈arvi, G. Powell, and A. Lumsdaine.The Lambda Library: Unnamed Functions in C++.
Software – Practice and Experience, vol. 33, no. 3, pages 259–291, 2003.(p 115)

[JETL 99] N. Jetly. VisualAge for Java 2.0. Java Developer’s Journal, vol. 4, no. 4, pages 48–49, April
1999. (p 48)

[K EEN 89] S. E. Keene. Object-Oriented Programming in Common-Lisp. Addison Wesley, 1989.(p 1)

[K ICZ 91] G. Kiczales, J. des Rivières, and D. G. Bobrow. The Art of the Metaobject Protocol. MIT Press,
1991. (pp 39, 90, 100, 102)

[K ICZ 97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In Proceedings ECOOP ’97, pages 220–242. Springer Verlag,
June 1997. (p 117)

[K ICZ 01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.An Overview of
AspectJ. In Proceeding ECOOP 2001. Springer Verlag, 2001.(p 117)

[K NIE 99] G. Kniesel.Type-Safe Delegation for Run-Time Component Adaptation. In Proceedings ECOOP
’99, pages 351–366. Springer Verlag, June 1999.(p 117)

[L ALO 89] W. R. LaLonde. Designing Families of Data Types Using Exemplars. ACM Transactions on
Programming Languages and Systems, vol. 11, no. 2, pages 212–248, April 1989.(p 5)

[L ALO 90] W. LaLonde and J. Pugh. Inside Smalltalk: Volume 1. Prentice Hall, 1990.(pp 65, 71)

[L ALO 91] W. LaLonde and J. Pugh.Subclassing6= Subtyping6= Is-a. Journal of Object-Oriented Program-
ming (JOOP), vol. 3, no. 5, pages 57–62, January 1991.(p 5)

[L AWL 89] J. A. Lawless and M. M. Milner. Understanding Clos the Common Lisp Object System. Digital
Press, 1989. (p 15)

[L EDO 96] T. Ledoux and P. Cointe.Explicit Metaclasses as a Tool for Improving the Design of Class
Libraries. In Proceedings ISOTAS ’96, pages 38–55, March 1996.(p 90)

[L IEN 04] A. Lienhard. Bootstrapping Traits. Master’s thesis, University of Bern, 2004.(p 39)

[L IQU 04] L. Liquori and A. Spiwack. Adding Multiple Inheritance to Featherweight Java. 2004.(p 110)

[M ADS 90] O. L. Madsen, B. Magnusson, and B. Moller-Pedersen.Strong Typing of Object-Oriented Lan-
guages Revisited. In Proceedings OOPSLA/ECOOP ’90, pages 140–150, October 1990.(p 5)

125

126 BIBLIOGRAPHY

[M ENS 96] T. Mens and M. van Limberghen.Encapsulation and Composition as Orthogonal Operators on
Mixins: a Solution to Multiple Inheritance Problems. Object Oriented Systems, vol. 3, no. 1,
pages 1–30, 1996. (pp 1, 2, 7)

[M EYE 88] B. Meyer. Object-oriented Software Construction. Prentice-Hall, 1988.(pp 1, 7)

[M EYE 92] B. Meyer. Eiffel: The Language. Prentice-Hall, 1992.(p 9)

[M EYE 97] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, Second edition, 1997.(pp 9,
33)

[M EZI 97] M. Mezini. Dynamic Object Evolution without Name Collisions. In Proceedings ECOOP ’97,
pages 190–219. Springer Verlag, June 1997.(p 118)

[M EZI 02] M. Mezini and K. Ostermann.Integrating Independent Components with On-Demand Remodu-
larization. In Proceedings OOPSLA 2002, pages 52–67. ACM Press, November 2002.(p 117)

[M OON 86] D. A. Moon. Object-Oriented Programming with Flavors. In Proceedings OOPSLA ’86, pages
1–8. ACM Press, November 1986.(pp 1, 2, 7, 37)

[M OUR 03] P. Moura.Logtalk. PhD thesis, Universidade da Beira Interior, 2003.(p 118)

[M ULE 95] P. Mulet, J. Malenfant, and P. Cointe.Towards a Methodology for Explicit Composition of
MetaObjects. In Proceedings OOPSLA ’95, pages 316–330. ACM Press, October 1995.(p 100)

[M USS96] D. R. Musser and A. Saini. STL Tutorial and Reference Guide. Addison Wesley, 1996.(pp 37,
115)

[ODER 04] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. M. andNikolay Mihaylov, M. Schinz,
E. Stenman, and M. Zenger.An Overview of the Scala Programming Language. Technical Re-
port 64,École Polytechnique F́ed́erale de Lausanne, 1015 Lausanne, Switzerland, 2004.(pp 106,
108)

[OGDE 94] W. F. Ogden, M. Sitaraman, B. W. Weide, and S. H. Zweben.Part I: the RESOLVE Framework
and Discipline: a Research Synopsis. ACM SIGSOFT Software Engineering Notes, vol. 19,
no. 4, pages 23–28, 1994.(p 116)

[PAEP 93] A. Paepcke.User-Level Language Crafting. In Object-Oriented Programming: the CLOS per-
spective, pages 66–99. MIT Press, 1993.(p 15)

[QUIT 04] P. J. Quitslund.Java Traits — Improving Opportunities for Reuse. Technical Report CSE-04-005,
OGI School of Science & Engineering, Beaverton, Oregon, USA, September 2004.(pp 110,
113)

[RIEL 96] A. J. Riel. Object-Oriented Design Heuristics. Addison Wesley, 1996.(p 18)

[RIVA 97] F. Rivard. Évolution du comportement des objets dans les langagesà classes ŕeflexifs. PhD
thesis, Ecole des Mines de Nantes, Université de Nantes, France, 1997.(p 103)

[SAKK 89] M. Sakkinen. Disciplined Inheritance. In Proceedings ECOOP ’89, pages 39–56. Cambridge
University Press, July 1989. (pp 2, 7)

[SAKK 92] M. Sakkinen.The Darker Side of C++ Revisited. Structured Programming, vol. 13, no. 4, pages
155–177, 1992. (p 7)

[SCHÄ 03] N. Scḧarli, S. Ducasse, O. Nierstrasz, and A. Black.Traits: Composable Units of Behavior. In
Proceedings ECOOP 2003, pages 248–274. Springer Verlag, July 2003.(pp 16, 106)

126

BIBLIOGRAPHY 127

[SCHÄ 04a] N. Scḧarli, S. Ducasse, O. Nierstrasz, and R. Wuyts.Composable Encapsulation Policies. In
Proceedings ECOOP 2004, pages 26–50. Springer Verlag, June 2004.(pp 34, 120, 121)

[SCHÄ 04b] N. Scḧarli, A. P. Black, and S. Ducasse.Object-oriented Encapsulation for Dynamically Typed
Languages. In Proceedings OOPSLA 2004, pages 130–149. ACM Press, October 2004.

[SCHÄ 04c] N. Scḧarli and A. P. Black.A Browser for Incremental Programming. Elsevier Computer Lan-
guages, Systems and Structures, vol. 30, pages 79–95, 2004.(p 50)

[SITA 94] M. Sitaraman and B. Weide.Component-based software using RESOLVE. ACM SIGSOFT
Software Engineering Notes, vol. 19, no. 4, pages 21–22, 1994.(p 116)

[SMAR 98] Y. Smaragdakis and D. Batory.Implementing Layered Design with Mixin Layers. In Proceedings
ECOOP ’98, pages 550–570. Springer Verlag, July 1998.(pp 13, 35, 37, 117)

[SMAR 00] Y. Smaragdakis and D. Batory.Mixin-Based Programming in C++. In 2nd Symposium on
Generative and Component-Based Software Engineering (GCSE 2000), 2000.(pp 13, 35, 37)

[SMAR 02] Y. Smaragdakis.Layered Development with (Unix) Dynamic Libraries. In Proceedings ICSR
2002, pages 33–45. Springer Verlag, 2002.(p 117)

[SNYD 86] A. Snyder. Encapsulation and Inheritance in Object-Oriented Programming Languages. In
Proceedings OOPSLA ’86, pages 38–45, November 1986.(pp 15, 34, 35, 51)

[SNYD 87] A. Snyder. Inheritance and the Development of Encapsulated Software Systems. In Research
Directions in Object-Oriented Programming, pages 165–188. MIT Press, 1987.(p 15)

[STRO 86] B. Stroustrup. The C++ Programming Language. Addison Wesley, 1986.(p 1)

[STRO 97] B. Stroustrup. The C++ Programming Language. Addison Wesley, Third edition, 1997.(pp 9,
11, 33, 37)

[SWEE 99] P. F. Sweeney and J. Y. Gil.Space and Time-efficient Memory Layout for Multiple Inheritance.
In Proceedings OOPSLA ’99, pages 256–275. ACM Press, 1999.(pp 2, 5)

[TAIV 96] A. Taivalsaari.On the Notion of Inheritance. ACM Computing Surveys, vol. 28, no. 3, pages
438–479, September 1996.(pp 1, 5)

[TARR 99] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr.N Degrees of Separation: Multi-dimensional
Separation of Concerns. In Proceedings of ICSE ’99, pages 107–119, 1999.(p 5)

[UNGA 87] D. Ungar and R. B. Smith.Self: The Power of Simplicity. In Proceedings OOPSLA ’87, pages
227–242. ACM Press, December 1987.(p 114)

[UNGA 91] D. Ungar, C. Chambers, B.-W. Chang, and U. Holzle.Organizing Programs without Classes.
LISP and SYMBOLIC COMPUTATION: An international journal, vol. 4, no. 3, 1991.(p 114)

[VANH 96a] M. VanHilst and D. Notkin.Using C++ Templates to Implement Role-Based Designs. In JSSST
International Symposium on Object Technologies for Advanced Software, pages 22–37. Springer
Verlag, 1996. (pp 13, 35, 37, 117)

[VANH 96b] M. VanHilst and D. Notkin.Using Role Components to Implement Collaboration-Based Designs.
In Proceedings OOPSLA ’96, pages 359–369. ACM Press, 1996.(pp 13, 35, 37, 115, 117)

[WALL 00] L. Wall, T. Christiansen, and J. Orwant. Programming Perl. O’Reilly & Associates, Inc., 3rd
edition, 2000. (p 106)

127

128 BIBLIOGRAPHY

[WALL 04] L. Wall. Apocalypse 12, April 2004. http://www.perl.com/pub/a/2004/04/16/a12.html.(p 107)

[WEGN 88] P. Wegner and S. B. Zdonik.Inheritance as an Incremental Modification Mechanism or What
Like Is and Isn’t Like. In Proceedings ECOOP ’88, pages 55–77. Springer Verlag, August 1988.
(p 1)

128

Curriculum Vitae

Personal Information

Name Nathanael Scḧarli

Citizenship Zell/LU, Switzerland

Date of Birth August 10, 1976

Place of Birth Solothurn, Switzerland

Education

Nov 2001 – Feb 2005 Ph.D. in Computer Science at the Software Composition Group, University of
Berne, Switzerland

Oct 1999 – Oct 2001 Master of Computer Science at the Software Composition Group, University
of Berne, Switzerland

Oct 1996 – Sep 1999 Undergraduate Degree in Computer Science at the University of Berne,
Switzerland. Minors in Mathematics and Physics

Aug 1991 – Feb 1996 Gymnasium (Typus C) at the Kantonsschule Solothurn, Switzerland

Professional Experience

Jun 2001 – Aug 2001 Intern at Walt Disney Imagineering, Los Angeles, California

May 2000 – Sep 2000 Intern at Walt Disney Imagineering, Los Angeles, California

Feb 1999 – Jul 1999 Software Engineer at Sherpa’x AG, Solothurn, Switzerland

Aug 1997 – Aug 1998 Software Engineer at Ascom Infrasys AG, Solothurn, Switzerland

Mar 1996 – Aug 1996 Intern at Ascom Infrasys AG, Solothurn, Switzerland

129

	Abstract
	Introduction
	Understanding the Problem
	Our Proposal: Traits
	Contributions
	Thesis Outline

	Problems with Inheritance
	Composition and Decomposition Problems
	Decomposition Problems
	Composition problems

	Occurrences of these Problems in Real Languages
	Strongtalk and Jam
	C++
	CLOS

	Traits
	Traits -- Composable Units of Behavior
	Classes and Methods
	Traits
	Composing Classes from Traits
	Composite Traits
	Conflict Resolution
	Well-definedness
	Refactoring, reachability and equivalence

	Evaluation
	Decomposition Problems
	Composition Problems

	Discussion
	Design Decisions
	C++ Revisited

	Implementation
	Overview of the Smalltalk-80 Kernel Architecture
	Organization of Classes and Metaclasses
	The Kernel Classes

	Traits Design Rationale
	The New Language Kernel
	The New Kernel Classes
	Decomposition into Traits

	Flattening Traits at Composition Time
	Conclusions

	Tools and Methodology
	Traits and Tools: Analysis
	The Trait Browser
	Overview
	Virtual Categories
	Using the Browser With Traits
	Implementation

	Programming Methodology
	The Roles of Classes and Traits
	Uniform Protocols
	Uncovering Hidden Structure
	Traits and Agile Methodologies

	Interaction between Language, Tools and Methodology

	Case Study: Refactoring the Smalltalk Collection Classes
	The Smalltalk Collection Classes
	The Varieties of Collection
	Streams

	Analysis of the Collection Classes
	Unnecessary Inheritance
	Code Duplication and Inappropriate Hierarchies
	Conceptual Shortcomings

	Refactoring Results
	The New Collection Hierarchy
	The New Stream Hierarchy
	Measurements of the Refactored Classes
	Assessment of the Refactored Classes
	Design Decisions

	Discussion
	Lessons Learned
	Comparison to Other Approaches

	Conclusions

	Case Study: Trait-based Composition of Class Properties
	Motivation and Overview
	Representing Class Properties As Traits
	Singleton
	Modeling the Boolean Hierarchy

	A Framework of Class Properties
	Class Properties
	Advantages for the Programmer

	Evaluation
	Criteria for Class Property Composition
	Comparison to Other Approaches
	Discussion

	State of the Art
	Traits in Other Languages
	Traits in Perl
	Traits in VisualWorks Smalltalk
	Traits in Scala

	Traits and Static Types
	Relationship between Traits and Types
	Typing Trait Methods
	Conclusions

	Other Related Work

	Conclusions
	Contributions
	Future Work

