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Abstract

Code comments play a vital role in the development, comprehension and maintenance of code-bases as
shown by many works before. Developers use code comments to explain various types of information
such as rationale, examples, future tasks, usage of a class or method and many more. In Pharo, a Smalltalk
based environment, code comments comprise up to 15% of the code. They are the main form of code
documentation in Pharo. However, developers find writing code comments a tedious and boring, or even
hard task. Therefore, code often lacks comments and makes the code hard to understand and follow.

Previous works have proposed to automatically generate comments to reduce the commenting efforts and to
support developers. Automatically generating comments helps developers spend less time on writing code
comments and writing uniform code comments. One of the more popular approaches to generate comments
automatically is based on stereotypes. A stereotype is a generalized idea or set of characteristics believed
to represent an object or person. In software development class or method stereotypes are often used to
classify the functionality of the methods or classes in broad strokes. We choose a similar stereotype-based
approach for Pharo code comments. Our work adapts heuristics of similar works, to allow us to generate
method and class stereotypes for classes in Pharo. With this in mind we created a tool that lets us generate
class comments automatically based on these class stereotypes. We illustrate our approach with the help of
a running example in Pharo.

Using the tool we created, we discovered that a total of roughly 32% of methods are accessor methods, 27
% are declared as collaborator methods and about 15 % of methods are declared as degenerate methods
in the Pharo base image. In relation to this we discovered that majority (41%) of the classes are Data
Provider classes, 22% are Boundary classes followed by Degenerate (8%) and Large (7%) classes.

A number of developers evaluated the generated output of our tool, and determined that our automatically
generated class comments are are understandable and readable, the information is adequate, and the
majority of comments do not contain unnecessary information.
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1
Introduction

Understanding the code base of a piece of software is a crucial and integral point in multiple stages of
the software development and maintenance. To achieve it, developers rely mostly on its code and docu-
mentation [2]. Code comments are one of the most-used forms of documentation for code comprehension
[6].

Depending on the type of language paradigm, various types of code comment can exist. For example,
object-oriented programming languages support comments at package, class and method levels. Class
comments help developers to get a high-level overview for classes [3] and understand complex programs
[26]. Programming languages vary in how they use specific notations to declare comments in their code
base [12] and how they embed different kinds of information in their comments [30, 38]. Such notations
are for example the tags like, @param and @author in Java or <summary> or <include> tags
in C#. As an example in Java, class comments give an overview of the high-level design of a program
e.g., purpose of a class, what a class does and what other classes it interacts with [26]. The Smalltalk
class comment in contrast contains high-level as well as low-level implementation information, e.g., the
application programming interfaces (APIs) the class provides, instance variables a class has and key
implementation features for a class. [29].

As on of the oldest object-oriented and dynamically-typed programming languages, Smalltalk is
still widely used in various software systems worldwide. It was released in the early 80s and has had a
separation of source code from class comments ever since Smalltalk-80 [13].
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CHAPTER 1. INTRODUCTION 2

Pharo is an integrated development environment (IDE) that is based on the Smalltalk programming
language. Just as its basis Smalltalk, Pharo is a pure object-oriented, dynamically typed and reflective
programming environment. Pharo is an open-source environment under the MIT license.1

The documentation process in Pharo is structured as such, that majority of the code documentation is
written in so called class comments. The Pharo class comment are presented in a separate pane, which
holds most information about a class. A class comment represents the main source of documentation for
Pharo developers. Usually class comments contain important information such as intent and responsibility
of a class. Class comments are written using complete sentences, and using the personal pronoun ”I” e.g.,
I represent a calculator.... To help give developers a common structure for writing class
comments, Pharo provides a default semi-structured class comment template as seen in Figure 1.1.

Even though, as Rani showed, there has been a rise in frequency of classes being commented or
adapted throughout the different versions of Pharo, Pharo’s commenting practice is still not as consistent
as desired. Many different programming languages show the same symptoms of code being commented
sparsely or not at all [29]. While commenting code is undeniably one of the most important tools to
understand, maintain and write code, developers do not always have the capabilities or simply do not
want to take the time to write or update code comments [32]. Lack of adding or updating comments can
lead to inconsistencies. Modernizing documentation often falls short, be it deliberately or by lack of time
or motivation. These inconsistencies accumulate over time and result in hard to understand code which
proves even harder to maintain [31]

Figure 1.1: A Pharo class comment template

Code commenting holds a big responsibility in code comprehension [4, 7, 21], with the lack of code
commenting or inconsistent ways of code commenting correspondingly representing a just as harmful
potential. To address these concerns, many researchers started investigating the aspect of code comments.

1https://pharo.org/about accessed July 11, 2021

https://pharo.org/about
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For instance, with how to summarize code [14], assess code comments to evaluate code quality [17], detect
bugs [34] and improve software quality in general [33], the numbers of studies concerning code comments
have been ever growing. In recent years there also has been an increased interest in investigating comment
characteristics such as commenting habits of developers [32] and quality of comments [16, 22], with one
work relating to analyzing class comments and commenting practices in the Pharo Smalltalk environment
[29].

With the ever growing research into analyzing comments and how they can be written automatically,
several approaches have been proposed to generate code comments automatically. These include methods,
such as mining questions and answers from large code referral websites [37], mining repositories for
similar code to use the code comments in said repositories for the other similar code segments [36], or
processing natural language in the code itself to generate comments [18]. Automatically summarizing code
[23, 40] has become a helpful tool for writing time consuming comments, reducing developer effort in
writing comments and maintaining expansive code comment bases. There are many tools in programming
languages, such as Javadocs2 for Java or Doxygen3 for C, Objective-C, C#, PHP and many more. One
of the popular stereotype-based approaches was defined by Moreno et al. in the Java environment [24].
They introduce definitions for class and method stereotypes as well as heuristics for identifying these
stereotypes. The stereotypes are used to classify the functionality, characteristics, and general idea of
classes and methods. A stereotype that was assigned to a class or method, in that way represented a
simplified intent and behavior of the class or method itself. However, their approach has not been tested on
many other programming languages.

In this thesis, we replicate their approach for Pharo, i.e., using a similar method and class stereotype
dependent approach, to create a similar tool for Pharo. We adapt their stereotypes for methods and classes
according to the Pharo environment, and thus generate a final class comment. This automatically generated
class comment should help novice developers, by giving them an easy entry point in the structure of a
class, as well as expert developers, by providing them with key information about a class. Additionally, the
generated class comment should enable faster work processes for developers, by giving them a structure
upon which to build their class comment.

The full process to install the tool is described in detail in section 7.1. To simply clone the repository
of the tool one can use the following command:

1 git clone git@yogi.inf.unibe.ch:thesis-bsc-lhess

The goal of this study is to automatically generate class comments for Pharo classes. In the first
stage, we mapped a set of heuristics proposed by Dragan et al. [9] to adapt method stereotypes for
Pharo. We, then, mapped methods of a class to the method stereotypes. A method inside a class could be
labeled as one or more of these stereotypes. In the second stage, we defined class stereotypes. Similarly
to method stereotypes, we mapped and adapted heuristics proposed by Dragan et al. [11] to find class

2https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html accessed July
11, 2021

3https://www.doxygen.nl/index.html accessed July 11, 2021

https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://www.doxygen.nl/index.html


CHAPTER 1. INTRODUCTION 4

stereotypes applicable to the Pharo environment. Lastly, we used class and method stereotypes to create
the class comment for a target class. By automatically generating the class comments, we want to provide
a framework to help experienced and novice Pharo developers. The approach can be leveraged with the
help of our tool. Having a tool that generates class comments automatically can prevent problems such as
inconsistencies or unavailability of comments, which in turn can prevent the long term problems associated
with these issues described above. We can help developers understand their code base more easily, by
giving them a rough layout of a class, as well as showing them key elements used inside the body of a class.
Additionally, we can provide developers with an idea about functionality of a class without them having to
scavenge through the code first. Further maintenance of a code base becomes easier for developers, as we
give them a crucial tool and basis for commenting their code. We used the method proposed by Moreno et

al. and Dragan et al. to create comments, which in turn leads to more comments being created in a fast
and uniform way, so that it is accessible for experienced as well as novice developers [9, 11, 25].

To evaluate the generated comments, we surveyed various experienced and novice Pharo developers.
We created four different online evaluation forms in which seven developers of different experience
levels were asked to analyze six classes each in the Pharo environment. In the survey, developers were
first asked to get familiarize with each class, and then assess the generated class comment for that class.
The participants were asked to evaluate the class comments based on their adequacy, conciseness and
comprehensibility. The evaluation showed some areas of our tool which still can be improved, but it also
showed that the majority of our generated class comments are adequate, mostly contain no unnecessary
information and are easily readable and understandable.

Research Questions. To generate comment automatically and build such a tool for the Pharo environ-
ment, we formulate the following research questions:

• RQ1: What kind of information is needed to create an adequate class comment in Pharo?
Rationale: With this RQ, we want to find out what what kind of information is needed to generate a
class comment in Pharo.

• RQ2: How can relevant data be extracted from source code?
Rationale: With this RQ, we investigate various approaches to generate the required information
types from code.

• RQ3: How can various information types be presented in the class comments?
Rationale: With this RQ, we investigate the ways to organize the generated information in the final
class comment.

In this thesis, we first review several research studies concerned with comment generation, to establish
what kind of information is needed to generate a class comment in Pharo. We orient ourselves mainly
towards the work of Rani et al. [29] and the default class comment template presented in Pharo. Once the
information types to generate are captured, we use the template-based approach proposed by Moreno et

al. and adapt the suggested heuristics to extract the needed information from the source code. We create
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a process which allows us to map a class and its methods to create relevant data. Finally, we bundle the
generated data into the final class comment. We structure the generated class comment to resemble the
Pharo class comment template in a similar manner.

With our work we created a tool that lets us automatically generate stereotype based class comments
for the Pharo environment. Extending our tool to use class stereotype heuristics allowed us to bundle
various types of information based on the class stereotype, to finally generate a cohesive class comment.
We present a way to display our final class comment, in that our final output resembles the CRC class
comment format in intent and rough structure.

In summary, this thesis makes the following contributions:

1. Replicate the previous work by Moreno et al. for Pharo and adapted their heuristics to identify
method and class stereotypes in the Pharo environment

2. A structure for displaying class stereotype based information

3. A tool to automatically generate class comments

The rest of this thesis is organized as follows. In chapter 2, we show the related work, in relation
to our tool. In chapter 3, we describe the methodology and steps needed to create the commenting tool.
This we do by showing what information is needed for the class comments (RQ1). Next, we extract the
relevant data (RQ2) with subsections for the definitions of method and class stereotype and their heuristics.
Additionally, in the result section of this chapter we provide a distribution of method stereotypes among
500 random classes, and a distribution for class stereotypes among 350 random classes. In the last part of
this chapter we show how we generated our final class comment (RQ3) and discuss the generated output.
In chapter 4 we show the process and results of the online evaluation we carried out. chapter 5 shows
possible threats to the validity of our work. In chapter 6 we provide a conclusion of our work and future
work to be done. Finally, chapter 7 concludes the thesis with a description and a manual of the tool we
created.



2
Related Work

2.1 Code summarization

Code summarization is the process in which one generates readable summaries based on source code.
It helps developers understand the functionality and character of source code more easily. Zhu et al.

systematically analyzed 41 code summarization studies, their techniques, and the evaluation used for each
study [40]. They gathered an overview of the state of the art techniques and evaluations to automatically
summarize code in three main steps. In the first step, they looked at how data was being extracted. The
second step focused on finding the ways natural language descriptions were generated and what kinds
of summaries can be automatically generated from summarizing source code. In a third step, Zhu et al.

analyzed what different kinds of evaluating procedures have been used to assess the results in each paper.

They found a total of five main data extraction methods, with Information Retrieval making up 41% of
the extraction methods, and 32% of the extraction methods being based on Machine Learning and Artificial

Neural Network. A total of 20% belonged to Stereotype Identification. Natural Language Processing

(17%) and External Description Usage (10%) made up the rest of the extraction methods.

In their second step they describe a total for four different methods of creating summarizations.
They found that Template Based summarization is one of the most common natural language summary
generation methods, with 46% using this method to generate summaries. A total of 29% can be accounted

6



CHAPTER 2. RELATED WORK 7

for by Machine Learning based techniques and 17% they found to be Term based generation of summaries.
The remaining 10% were allocated to External Description based techniques.

Finally they found a total of four general evaluation methods, Manual evaluation (56%) still being
the most used evaluation method to date and a fraction (10%) of the studies not using any evaluation

at all. Statistical Analysis is a close second method for evaluating code summaries with (39%). The
remaining roughly 30% are divided between Gold Standard Summary (17%) evaluations and Extrinsic

(12%) evaluations.

Another work on code summarization by Moreno et al. focuses on the state of the art methods of creat-
ing automatic software summarization [25]. In this work they categorize summarization techniques into
four categories: 1. Text-To-Text, 2. Code-To-Text, 3. Code-To-Code and 4. Mixed Artifact Summarization.
With this paper they lay a foundation to common definitions in automatic summarization and show ways
for the evolution of software summarization approaches.

2.2 Template based code summarization

Zhu et al. showed that template based code summarization is one of the most frequently used ways to
generate natural language summaries for code bases. Template based summarization contains a predefined
set of summary templates to be filled in by the target code segment and further information. [40]. This
way of summarizing source code allows numerous ways for templates to be used and filled in. Dawood
et al. [5] and Hammad et al. [15] for example all used processes where they simply filled in predefined
templates with the needed information, like program structure information. Wang et al. [35] on the other
hand used a natural language processing (NLP) approach to find actions, themes and secondary arguments,
that they then could fill into their template. Zhu et al. also discovered that one of the more prominent and
closely related methods for generating template based summarization information is based on stereotype
identification.

2.3 Stereotype identification based code summarization

A stereotype is a generalized idea or set of characteristics believed to represent an object or person. In
software development class or method stereotypes are often used to classify the functionality, intent
and behavior of classes or methods. A stereotype based summarization identifies such method or class
stereotypes to choose templates accordingly. There have been several works in recent years [18, 23]
using a stereotype based approach, such as Abid et al. who worked on using stereotypes in the automatic
generation of natural language summaries for C++ methods [1]. Nurwidyantoro et al. showed that Machine

Learning based approaches can be used to define class stereotypes [27]. We did not consider a machine
learning approach in this work, as there were not enough existing data sets and we decided to choose a
NLP approach instead. Moreno et al. defined a heuristics based approach for stereotypes, to identify code
and build comments structures for the Java environment [24]. They argued that to automatically create
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viable class comments one cannot just add all comments of the different methods together, as (i) classes
contain other information than just methods – they contain data that the methods operate on; (ii) bundling
all method descriptions would result in an enormous comment, which defeats the purpose of what they
set out to do ; (iii) some methods may just not be relevant for the behavior of a class. Faced with these
problems they generated an approach to automatically generate structured natural-language descriptions
for Java classes. Their methodology was based on the conjecture that the types and distribution of methods
inside a class are representative for the design and intent of a class. As such the summarization technique
they created first determines the stereotypes of a class and each one of its methods to then build an overall
class comment, which should encapsulate previously described internal structure and information details.
Our approach, though similar in nature, sets out to create a class comment that is based on the CRC class
comment template that is provided in the Pharo base image. The information we gather is based on class
and method stereotypes, but this only as a pre selection to then fill in more specific information in the
provided sections in the class comment template.

2.4 Pharo comment analysis

Though there has been an surge in analyzing various types of comments and summarizations for source
code, the topic has scarcely been researched in the Pharo Smalltalk environment. Rani et al. paved the
way by analyzing the structure of Pharo class comments and their adherence to the provided comment
template [29]. They analyzed the evolution of Pharo classes and their class comments over the years and
major releases of Pharo, from Pharo 1 to Pharo 7 (2008 to 2019). Gathering the various classes and class
comments allowed them to understand the distribution of the frequency of classes being commented and
how classes were being commented. Their work proved to be a substantial ground work, which we could
use to find the kind of information that was provided by developers, and what kind of information we
would have to write into our generated class comments. A major part of the information definitions was
inspired by their work.

They found the trend of commenting classes increased rapidly for initial Pharo versions, to then be
maintained in subsequent versions. Also they found that developers keep changing comments of old
classes so as to keep them up to date. Our tool was developed with the mindset to support commenting
classes more frequently.

They analyzed the commenting practices in Pharo across the different versions, and reported 23 kinds
of information found in class comments. They also analyzed if developers follow the class comment
template. They found it suggests writing seven different types of details, such as Intent, Responsibility,
Public API, Example, Instance Variable, Collaborators, and Internal details.



3
Comment Generation

3.1 Introduction

Code comments assist developers in understanding the associated code and in modifying the program.
Developers explain various types of information in them such as the rationale behind a code fragment,
examples to use the code, future tasks to do, or warnings in using the code. Previous studies highlight
various types of information developers embed in code comments. [28, 39] Rani et al. investigated code
comments in Pharo and found that class comments are one of the main sources of code documentation.
Code comments present high-level design information along with low-level implementation details.
Therefore, in order to generate them automatically, it is important to establish which type of information
should be included in the class comment, that can reduce developers effort in writing comments and
support them in having an overview of the class.

Haouari et al. describe code comments as being fair+ if “they are presenting the functionalities of the
related code, as well as other information” and as fair if “the functionality of the code being commented is
adequately described” [16]. There are many relationships which can be considered inside a code base and
many different ways of approaching them, to create such fair code comments. Rani et al. discovered 23
types of information in Pharo class comments, some of them occurring more frequently than others [29].
Moreno et al. on the other hand defined the information of their class summaries in four sections, namely
a general description, a structural description based on the class stereotype, a behavioral description of its

9



CHAPTER 3. COMMENT GENERATION 10

methods and a list of inner classes [24]. As our aim with this study is to support developers in reducing
their effort in writing comments while giving them an adequate information to understand the class, we
identify the information types that facilitate in achieving this aim. Therefore, we formulate the following
research question:
RQ1: What kind of information is needed to create an adequate class comment in Pharo?

To select the recurrent information types, we selected the seven types of information that are suggested
by the default class comment template and found to be frequent by the previous work in Pharo[29].
They also confirmed that developers follow the template in writing these information types. These seven
information types include Intent, Responsibility, Implementation Points, Public APIs, Examples, Instance

Variables, and Collaborators. Once the kind of information we needed to extract had been defined, the
question of how to find these types of information in the code. Generating information out of source code
can be done in various different ways, as seen in section: ”2.1 Code summarization”.

There have been various types of approaches used to extract information from source code, such as
Information Retrieval, Machine Learning and Artificial Neural Networks and Stereotype identification [40].
All of these have their individual advantages and disadvantages. For instance, Information retrieval proved
to be a too extensive effort for creating an automatic approach to generating comments [40]. Machine
learning or Artificial Neural Network approaches would have been more agreeable with automation of our
desired comment generation, but they often require a huge amount of pre labeled data sets. Due to the lack
of such data sets in Pharo, we decided not to pursue this direction for now. This lead us to the following
research question::
RQ2: How can relevant data be extracted from source code?

Another very popular and effective technique used in this direction is the stereotype based approach,
shown in “2.3 Stereotype identification based code summarization”. It has been successfully used in
software engineering to identify indicators of code smells [8], adding comprehension to unit test cases with
stereotype-based tagging [20] or to create signature descriptions for software systems based on method
stereotype distributions [10]. Based on the effectiveness of this technique and previous work, like the ones
done by Dragan et al. or Moreno et al., we decided to use a stereotype based approach as well [9, 11, 24].

Having defined the information we want to collect, and a method to generate said information, the final
step of our work consisted of creating a coherent class comment that presents all this information. With
this in mind we formulate our third research question:
RQ3: How can various information types be presented in the class comments?

Zhu et al. analyzed various studies related to comment and code generation [40]. We chose to analyze
this set of papers, as well as the predefined class comment template provided by Pharo itself. Based on
that we decided that our final output should closely resemble the template or at least provide us with a
similar variety of information as the Pharo template provides. As mentioned above, we focused on the
seven frequent information types defined by Rani et al. in the context of Pharo [29].
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3.2 Methodology

3.2.1 RQ1: Required information types for the generated class comment

Rani et al. showed frequent information types found in class comments. They found that the most
recent Pharo class comment template suggests writing seven different types of details, namely Intent,
Responsibility, Public API, Example, Instance Variable, Collaborators and Internal details. However, not
all of the data for each information type can be generated easily in an automatic fashion. For instance,
some of the information types as described by Rani et al., such as Intent and Responsibility, which are
rather crucial for class comments, are implicit by nature. This means the information type does not have an
explicit header or specific common keyword, or information is not separated by any formatting structure
(space, special symbols). Thus, it makes it hard to identify and extract some of these information types
automatically. In the following paragraph we describe the challenges faced in attempt to generate each
information type:

Intent of a class describes the purpose of the target class. In Pharo usually Intent is described by
developers in the first line of a comment using the pattern I represent ... Responsibility answers
the questions “what do I know?” and “what do I do?” and can mostly be found combined in the same
sentence as the intent of the class. Both of these information types were found to be the most prevalent
information type in comments according to Rani et al.. [29]

The role of such information types is quite crucial and important but also immensely difficult to create
by only parsing source code. Our approach thus tried to focus on these implicit information types as
well. This means we tried to declare information types such as Intent and Responsibility in a broader
and more implicit way as well. These kinds of information types would be represented through the
descriptions of their class stereotypes in the class comment. For example a class that was assigned the
Controller stereotype, will be controlling some kind of data flow and be made up of many controller
methods. Additionally, we combined this with a list of relevant keywords, to give a broad sense of what
the Intent and Responsibility of a class are. Internal details or Implementation Points, refer to the internal
representation of the objects, particular implementation logic, conditions about the object state, and settings
important to understand the class. For internal details we also adapted a broader approach, by displaying a
general overview for the internal details, without meticulously displaying every facet of them.

For less implicit types of information such as Public API, Examples, Instance Variables and Collabora-

tors, the information to be gathered was more straight forward and does not require as much consideration
in what more information we wanted to find for each information type. This is because less implicit (or
explicit) information types can be found in a quite explicit manner (due to the recurrent patterns in writing
them), and thus does not require the information to be put together from other data.

Public APIs are the key methods and public APIs (Application Programming Interfaces) of the target
class. In our work these have been separated in to two main categories, specifically: internal and external

method calls. Internal method calls are calls to methods from the target class itself to methods defined
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inside the target class. For example a method that filters a String needed in the target class. The helper
method that filters this string is defined in the target class and is used by the target class, as such it is used
internally. External method calls are calls from different classes to methods defined inside the target class,
such as getter or setter methods. For example the setter method of the target class, that is used by another
class to set the String from the previous example, for the target class. Such a method is defined as being
used externally. This allows us to better display how a class functions internally in comparison to how it is
used by other classes i.e., a class’ functionality externally. For example, the methods used in a class to
access its instance variables, i.e., getter and setter methods.

Examples are simple code fragments, showing how the source code or class is to be used and can be
instantiated. This helps give readers a better overview of the usage of a class.

Instance Variables being the variables generated whenever a new instance of the target class is created,
and which are available throughout the instance of said class, though Instance variables in Smalltalk are
private to the instance itself.1

With Collaborators being slightly more implicit, we decided to focus on simple relations between the
target class and other classes. Collaborators for a target class as such have been decidedly separated in
two categories, namely classes that use the target class and classes that are used by the target class. As an
example one can look at the class OrderedCollection in the Pharo base image. It is used by a total of 974
different classes for its functionality, but only uses 5 different classes, including the class Array to create
its functionality.

Implementations of how these information types have been found and displayed in the class comment
are further discussed in detail in subsection 3.2.2 and subsection 3.2.3.

1http://pharo.gforge.inria.fr/PBE1/PBE1ch6.html accessed May 29, 2021

http://pharo.gforge.inria.fr/PBE1/PBE1ch6.html
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3.2.2 RQ2: Approach to extract relevant data for the information types

With the stereotype based approach, we analyzed source code of a class, by using certain predefined
heuristics to define stereotypes for methods inside a class. For instance, if a method retrieves an instance
variable of a class it was assigned the Getter method stereotype. Based on the identified stereotypes of each
method, a class stereotype is decided by aggregating all method stereotypes. The list of various method
stereotypes can be seen in Table 3.1. The according list of class stereotypes can be found in Table 3.3. This
aggregation of method stereotypes was done by selecting the most used method stereotypes and the logic
visible in section: 3.2.2.2. The logic defined in this section is used to assign class stereotypes according to
the method stereotypes found in a class. Thus a class that has many Getter methods, and additionally only
Setter methods, is assigned the Data class stereotype. Once we generated the class stereotypes for a class,
we could extract the corresponding information that was important for a class stereotype and display this
information in the class comment.

Once the information types are identified and stereotypes are assigned to a class and its methods, we
can proceed to extract the relevant information from source code itself. As such our stereotype based
approach worked in three stages:

1. Identifying and assigning the method stereotypes for the a method of the target class

2. Identifying and assigning class stereotypes

3. Extracting relevant data for the corresponding class stereotypes

Pharo 
class

Class stereotypes

• Entity

• Minimal entity

• Data provider

• Commander

• Boundary

• Factory

• Empty

• Small
• Controller

• Pure controller

• Large

• Lazy

• Degenerate

• Data

Method stereotypes

• Accessors

• Getters

• Mutators

• Setters

• Factories

• Collaborators

• Controllers
• Degenerates

Method information

• Relevant 

Methods/API

• Usage externally

• Usage internally

Class information

• Dependent classes

• Classes used by the 

class

• Class stereotype

• Defining Keywords

Finished
class

comment

1.

2.
3.

Figure 3.1: Process of generating a class comment
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3.2.2.1 Identifying Method Stereotypes

As previously described, the first step in finding a class stereotype is based on finding different stereotypes
for the methods within a class. There are numerous approaches in which one can separate or define method
stereotypes, differentiating between minuscule differences and programming language specific distinctions
or declaring them in broad strokes, which has been described more in depth in section: ”2.3 Stereotype
identification based code summarization”. Working with Dragan et al. [9] as an inspiration allowed us
to find a common ground between the two extremes, and declare solid method stereotypes for the Pharo
environment. We used a total of five method stereotypes and three sub stereotypes, which represent the
main functionality of a method. Similarly to Dragan et al.’s work we worked with the five main method
stereotypes made up of Accesor, Mutator, Collaborator, Creator (also commonly referred to as Factory)
and Degenerate methods, as well as the three sub categories which they defined as Getter, Setter and
Controller methods [9]. Other method stereotypes mentioned by Dragan et al. were discarded as they were
not applicable to Pharo, such as void-accessor methods which return void, a value that is not available
in Pharo We discarded a total of three sub stereotypes, that they used to bundle specific functionality of
methods used in the Java environment, namely void-accessors, copy-constructors and destructors.

Method stereotype definitions. Each method stereotype has specific characteristics. In this paragraph
we show the rationale and responsibilities associated with the eight method stereotypes, on which we based
our approach. These definitions represent the ways the method stereotypes have been set and the ways in
which they were used. To help better understand the different stereotypes we provide some examples for
each of the definitions.
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Table 3.1: Description and Examples of method stereotypes

Method Stereotype Description Example Method
Accessor A method that accesses or retrieves data. It

can return boolean or primitive values.
#index in the RSShape class. It
retrieves the index value, with-
out mutating it.

Getter A sub stereotype of an Accessor method.
It can only return data members i.e., In-
stance variables. As such a getter method
only accesses a single value, which has to
be an instance variable for our purposes.
The small distinction between accessing
different value types and only instance vari-
ables is needed in a later stage for differen-
tiation in the class stereotyping process

#parent in the RSShape class. It
functions the same as an acces-
sor, but returns an instance vari-
able.

Mutator A method that controls changes to vari-
ables. It also includes methods that per-
form complex changes to the state of an
object.

#noPaint in the RSShape class.
It changes the variable paint to
nil.

Setter A sub stereotype of a Mutator method. It
allows the setting i.e., changing, of only
instance variables.

#path in the RSShape class. It
changes the instance variable
path to a specific value passed
to it.

Factory A method that provides an interface to
create objects, in object oriented program-
ming (OOP). As “everything is an object”
in Pharo, we defined Factory methods, as
methods that instantiate Objects and return
these objects.

#gtCanvasForInspector in the
RSShape class. Creates a new
RSCanvas object adds a copy of
self to it and then returns the
created RSCanvas.

Collaborator A method that represents the collabora-
tion between multiple objects. This in-
cludes working with other objects by pass-
ing them parameters or changing the state
of other objects.

#deepShapeFromeModel:result:
in the RSShape class. It com-
pares self with a different
object and adds self to its result
value if they are the same.

Controller a sub stereotype of a Collaborator method.
It controls changes in external objects, but
does not change the state of the target class
object itself.

#deepShapeFromeModel:result:
in the RSShape class. Takes
an event or eventClass and
changes its canvas and shape to
self canvas and self

Degenerate A method that is neither an Accessor, Mu-
tator, Factory nor Collaborator method.

#labled in the RSShape class.
As it does not have any function-
ality it doesn’t respond to any of
the other method stereotypes.

Rules for method stereotype identification. To find out if a method was assigned a certain method
stereotype, every method had to be reviewed individually for its functionality and if its actions represented
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one or multiple of the method stereotypes. We achieved this by finding each method of a class and then
iterating over each method’s source code. We did so by using certain heuristics for each method stereotype
as described in the following section. Each method of a class is mapped to the method stereotype. To
identify each method stereotype, Dragan et al. defined several heuristics, which we adapted to be usable in
the Pharo environment [9]. The heuristics defined by Dragan et al. had to be adapted in various ways to be
applicable to the Pharo environment. Many of them had to be simplified and especially be changed in such
ways that they allowed for Pharo specific handling of functionality. Especially specific return and method
types used in the Java environment had to be changed to fit the same functionality in Pharo. For example
there are no primitive types as in the Java environment, so the idea of primitives had to be adapted for the
Pharo environment.

Table 3.2: Heuristics to identify method stereotypes in Pharo

Method Stereotype Heuristics
Accessor

• The method returns an instance variable or primitive

Getter
• The method must be an Accessor already
• The method returns only instance variables

Mutator
• The method changes the state of an object
• There are no return types or only boolean returns

Setter
• The method must be a Mutator already
• The method changes only the state of an instance variable

Factory
• The method returns an object that it created

Collaborator
• At least one variable that is manipulated or passed in the method has

to be an object
• The object being handled cannot be a primitive

Controller
• The method only creates or manipulates external objects i.e., objects

that are created or manipulated are not of the same class as the target
class

Degenerate
• None of the other method stereotypes are fulfilled

Finding the information inside the source code of a class entailed multiple steps. The main way we
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mapped and monitored source code was by working with abstract syntax trees (AST). AST encodes the
syntax as a cascading tree structure, as seen in Figure 3.2 , which allowed us to visit different nodes in
compiled source code.

Figure 3.2: Cascading structure of different Nodes in an AST

These nodes have distinct characteristics, such as a RBMethodNode which displays a whole method,
RBReturnNodes which displays return values, or RBVariableNodes which represents a variable in the
source code. As such one can find a return variable in the RBVariableNode inside a RBReturnNode. To
actually access the information in these nodes, we used a visitor design pattern based approach in which a
specific type of visitor can visit a node. Using this approach, we could pinpoint the relevant portions of a
method and extract the important variables and information needed to decide method stereotypes.

Once we could access the required information, the heuristics defined in the section above allowed us
to simply check if a method fulfilled the prerequisites to be assigned a specific method stereotype or not.
Then we generated a Dictionary representing all the methods inside a class and the method stereotypes
they are assigned. Figure 3.4 presents the distributions of the method stereotypes and also shown in section
3.3.2.

3.2.2.2 Identifying Class Stereotypes

In a second step, as seen in Figure 3.1, we declared class stereotypes, based on the aggregation of the
available method stereotypes. Deciding which class fulfilled which class stereotype’s definition proved
to be a simpler process in terms of how we accessed the necessary information. Compared to the more
difficult accessing of information in a method, the declaration for a class stereotype included less profound
processing of source code via ASTs or the like. As defined beforehand, our approach to defining class
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stereotypes was based on the functionality of a class i.e., what kind of methods could be found inside
a class. Similarly to Dragan et al. we identified a total of 13 class stereotypes, with an additional class
stereotype of our own Empty stereotype, which helped us define or exempt certain data structures given in
Pharo [11]. The 14 class stereotypes and their descriptions can be seen in Table 3.3.
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Table 3.3: Table of class stereotypes for Pharo

Class Stereotype Description Example class

Boundary Communication points between other classes, as such they
are the boundary between multiple classes. They have many
collaborator methods but few controller and fewer factory
methods. Boundary classes often are also Data Provider
classes, when they access other class’s data or Commander
when they send data to other classes.

A good example for a Boundary class is
RSCamera in the Roassal3-Core package. In
contrast the RSCanvas class in the same pack-
age is a good representation of a class that
identifies as a Boundary class, as well as a
Data Provider.

Commander Contains mainly mutator methods and tries to encapsulate
behavior. A large part of the methods work to execute
changes to the state of an object. This may also include
changes to objects of different classes.

RSLocation class in the Roassal3-Layouts
package.

Controller Work for the most part outside of themselves. They process
data from other classes and access their functionalities. Con-
troller classes consist of a multitude of controller methods.

RSWrapStrategy in the Roassal3-Interaction
as it contains many controller methods.

Data Only contain getter and setter methods. They only store data
and do not operate on the data.

RSNiceStep in the Roassal3-Chart package,
which as necessary only contains getter and
setter methods.

Data Provider Consists mostly of accessor methods. It encapsulates data. RSChart in the Roassal3-Chart package. Most
of its methods are accessors.

Degenerate Contain mostly degenerate methods. Its methods mostly do
neither read nor write data or the object’s state.

The RSParallelAnimation in the package
Roassal-Animation is a degenerate class as
most of its methods are degenerate. Addition-
ally it matches the criteria to be declared as a
data provider.

Empty Mostly contains empty methods or no methods. For example
annotations or errors.

The class RSWorldMenu, in the Roassal3-
Menu package. It contains 94 lines of code
but no actual methods.

Entity Represent the entity of an object. They encapsulate data and
behavior. They have a variety of Accessors and Mutators,
more Collaborator methods than non-collaborator and fac-
tory are not null.

RBProtectVariableTransformation class in the
Refactoring2-Transformations package.

Factory Quite intuitive as they are made up mostly of factory meth-
ods. These kinds of classes are used to create objects.

The RSPharoMetricsProvider in Roassal3-
Shapes is a simple factory class that creates
an object and returns it.

Large These classes have quite a bit of functionality. They often
have many more lines of code (LOC) than other classes.
They incorporate many characteristics of various different
classes. They can usually be divided into more specific
classes, with clearer responsibilities. We declare a class not
only large if it has many LOC but also if it tries to combine
functionality of multiple class stereotypes in one.

FreeTypeFontProvider class in the FreeType
package. It contains 372 LOC and a multitude
of all the different method stereotypes.

Lazy A class with very little functionality. To quantify this they
are classes that contain getter and setter methods and a low
percentage of other methods. If the most part of methods
are degenerate methods a class may be declared as a lazy
class.

Minimal Entity Kind of an entity class, but they only contain getter, setter
and mutator methods. Can often be considered as lazy
classes, as they usually contain very trivial actions.

The RSDraggableForce. Quite representative
for a Minimal Entity as it is a Subclass of an
RSInteraction.

Pure Controller These classes are quite rare. All their methods are controller
and factory methods. They only work on other classes. They
function as a sort of God class. A god class can occur in
source code, when one class knows too much and does too
much. It bundles most of a systems actions and functionality
and relies on external data. The god class is one of the best
known examples of so called ”code smell”.

Small Contain little methods if not even any at all. The limit in our
work is up to two methods in a class.

Can be seen in RSChartSpineDecoration in the
Roassal3-Chart package.
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Class stereotype definitions. Table 3.3 describe the rationale and definitions we used for the individual
class stereotypes. We explain the role and responsibilities of a class with the corresponding class stereotype.
Additionally, we show an example or more to help better understand each class stereotype.

Heuristics for class stereotype identification. Keeping the definitions described above for various class
stereotypes, we proceed to map a class to one or multiple class stereotypes.

Similar to method stereotypes, Dragan et al. defined various heuristics to identify a class stereotype
[11]. To utilize the heuristics automatically, various metrics are defined and controlled based on preset
thresholds. However, not all of the heuristics fit to the Pharo context. For example, some thresholds have
been used such as frequencies, averages and standard deviations of method stereotypes as defined by Lanza
et al. [19]. Furthermore the boundary for a majority of a method stereotype A in a class, was set to 2/3 of
the method stereotypes counting towards stereotype A.

We’ll be using the following notations to display the heuristics used for the automatic class stereotype
identification:

• |A method stereotype| describes the size of the set of a specific method stereotype in the target class.
e.g., |Accessors| represents the size of the set of accessors in a target class.

• Methods represents the set of all methods in a class.

• The method stereotypes that have been used to decide class stereotypes are corresponding to the
ones defined in section 3.2.2.1. In addition to those we used a further set called NonCollaborators

which consists of all methods that are not included in Collaborators.
|NonCollaborators| = |Methods|- | Collaborators |

• Unless specified otherwise all the points for a class stereotype have to be met, so that a class fulfills
the stereotype’s condition and can be labeled as that class stereotype.

• Class Stereotypes is the set of all stereotypes that match a class.

In order to satisfy a particular stereotype for a class, the class has to fulfill various criteria. Closely
related to the work by Dragan et al. [11] and adapted for Pharo, we describe the criteria for each stereotype
in the following.

For a class to identify as the class stereotype of Boundary the class has to fulfill the following points:

• The class needs more collaborators than noncollabortors.
|Collaborators| > |NonCollaborators|

• Factory methods make up less than half of the methods.
|Factory| < (|Methods|/2)

• The class has even less controller methods.
|Controllers| < (|Methods|/3)
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For a class to identify as the class stereotype of Commander the class has to fulfill the following points:

• The class contains at least twice as many Mutators as Accessors.
|Mutators| > 2×|Accessors|

• The class has low control over other classes. Controllers and factory methods combined can only be
less than half the size of Mutators.
|Mutators| > 2×(|Controllers| + |Factory|)

For a class to identify as the class stereotype of Controller the class has to fulfill the following points:

• Controller and Factory methods make up the majority of the methods.
|Controllers| + |Factory| > 2/3 ×|Accessors|

• There are also methods available that do not only work on external objects i.e., Accessors OR
Mutators are available.
|Accessors| 6= 0 || |Mutators| 6= 0

For a class to identify as the class stereotype of Data the class has to fulfill the following point:

• The class contains only Getter and/or Setter methods.
(|Getters| + |Setters|) 6= 0 && |Methods| - (|Getters| + |Setters|) = 0

For a class to identify as the class stereotype of Data Provider the class has to fulfill the following
points:

• The class contains at least twice as many Accesors as Mutators
|Accessors| > 2×|Mutators|

• The class has low control over other classes. Controllers and factory methods combined can only be
less than half the size of Accessors.
|Accessors| > 2×(|Controllers| + |Factory|)

For a class to identify as the class stereotype of Degenerate the class has to fulfill the following points:

• It can not be Empty.
|Methods| 6= 0

• The majority of methods are Degenerate methods.
|Degenerates| > 2/3×|Methods|

For a class to identify as the class stereotype of Empty the class has to fulfill the following points:

• A class contains no methods OR the methods are empty.
|Methods| = 0

For a class to identify as the class stereotype of Entity the class has to fulfill the following points:
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• Entity classes have to have other Accessors than Getters.
(|Accessors| - |Getters|) 6= 0

• Entity classes have to have other Mutators than Setters.
(|Mutators| - |Setters|) 6= 0

• There are twice as many Collaborators than NonCollaborators.
(|Collaborators|÷|NonCollaborators|) = 2 ± 0.1 (This equals a margin of 5%)

• No Controller methods are available.
|Controllers| = 0

For a class to identify as the class stereotype of Factory the class has to fulfill the following point:

• The majority of methods are Factory methods.
|Factory| > 2/3×|Methods|

For a class to identify as the class stereotype of Large the class has to fulfill the following points:

• Neither Accessors, Mutators, Factory nor Controllers can be empty.
|Accessors| 6= 0 && |Mutators| 6= 0 && |Factory| 6= 0 && |Controllers| 6= 0

• Accessors and Mutators are a big part of the methods but not the majority

1/5×|Methods|< |Accessors|+ |Mutators| < 2/3×|Methods|

• AND Factory and Controllers are a big part of the methods but not the majority.
&& 1/5×|Methods|< |Factory|+ |Controllers| < 2/3×|Methods|

For a class to identify as the class stereotype of Lazy the class has to fulfill the following points:

• The class needs to either have Getter or Setter methods.
(|Getters| + |Setters|) 6= 0

• At least 1/3 of the methods are Degenerate.
(|Degenerate| > 1/3×|Methods|

• There are relatively little method stereotypes, other than Getter, Setter and Degenerate.
|Methods| - (|Getters| + |Setters| + |Degenerate|) <= 1/5

For a class to identify as the class stereotype of Minimal Entity the class has to fulfill the following
points:

• The only method stereotypes available are Getter, Setter and Mutators.
|Methods| - (|Getters| + |Setters| + |Mutators|) = 0

• There are twice as many Collaborators than NonCollaborators.
(|Collaborators|÷|NonCollaborators|) = 2 ± 0.1 (This equals a margin of 5%)
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For a class to identify as the class stereotype of Pure Controller the class has to fulfill the following
points:

• Controllers needs at least one method.
|Controllers| 6= 0

• Controllers and Creators together can not be empty.
|Controllers| |Creators| 6= 0

• No Accessors, Mutators or Collaborators are available.
(|Accessor| + |Mutators| + |Controllers|) = 0

For a class to identify as the class stereotype of Small the class has to fulfill the following point:

• The class contains less than 3 methods in total.
|Methods| < 3

3.2.2.3 Extracting relevant data

Lastly, having assigned stereotypes to the methods and finding stereotypes for the target class, we extracted
the relevant information based on the class stereotypes. Each class stereotype has methods that are more
relevant or less relevant for its architecture. With that in mind relevant method stereotypes are the method
stereotypes, which are essential for the definition of a specific class stereotype. For example the relevant
information in a Data Provider class will mostly be based in its Accessor and Getter methods, as these
comprise the class stereotypes root characteristics. Thus Accessor and Getter are the relevant method
stereotypes for a Data Provider class. As such we only selected methods, that had been tagged with the
relevant method stereotypes, discarding the rest. If a class contained more than one class stereotype,
all methods relevant for each stereotype would be collected in the relevant set of methods. Extending
our previous example a class receives the stereotypes Data Provider and Degenerate, then the Accessor

and Getter methods as well as the Degenerate methods of a class would be added to its pool of relevant
methods.

Once the relevant methods for a class in accordance with its stereotype have been found, we ranked
them and displayed the five most used methods per class. We restricted the output to the five most used
methods, so as not to clutter up the class comment and display only the most relevant methods. This we
did by separating methods into internal and external usage of a class’ methods, internal meaning used
by the class itself, external meaning used by other classes. By comparing how often a method is called
internally we could rank the methods accordingly to their relative importance and display them in a more
manageable way. The same strategy was used for calls to the methods from objects which do are created
from other classes than the target class.
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3.2.3 RQ3: How can various information types be presented in the class com-
ments?

Based on the information we decided on in section 3.2.1, we looked at the seven information types that
Rani et al. found to be present in the class comment template of Pharo. As a reminder the class comment
template contains the information types Intent, Responsibility, Public API, Example, Instance Variable,
Collaborators and Internal details. Now with the stereotypes we gathered in section 3.2.2, we could
narrow down the abundant information inside a class to display only the stereotype relevant information.
Using the CRC comment template as a basis we structured our generated output in a similar manner. A
final automatically generated class comment can be seen in the figure below.

Figure 3.3: Automatically generated class comment for the class RSShape
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At the top of the document we declare the name of the target class. Following the name of the target
class, we display the different class stereotypes a class is assigned. Additionally under each stereotype
there is a small description of said stereotype, to help understand the rough structure and intent of what
this class represents in a very broad sense.

After the class stereotypes there is a list of up to five of the classes that are most used by the target
class, and a note of how many other classes the target class uses, if there are more than five.

Following the used classes, we have a list of up to five classes that most often use the target class, and
a note of how many other classes the target class is used by, if there are more than five.

The following section displays all the relevant public methods of the target class in respect to its class
stereotype. These are separated into two categories and ordered by how often they are called:

• External usage of a method i.e., other classes that call this method

• Internal usage of a method i.e., the target class itself calls the method

Then there is a list of the instance variables of the class.

And for a final addition we created a list of the most common found keywords in a target class. This
allows us to get a general feeling and understanding of the language used in the source code of a class, and
can give a quick impression of the structure of a class.

3.3 Results

3.3.1 RQ1 What kind of information is needed to create an adequate class com-
ment in Pharo?

Considering the importance of what makes a fair or fair+ code comment according to Haouari et al. and
the fundamental structures of the Pharo commenting style, we focus on the few prevalent information types
which are also suggested by the Pharo class comment template [16]. This means the types of information
we want to gather include: Intent, Responsibility, Internal Details or Implementation Points, Public APIs,
Examples, Instance Variables and Collaborators.

3.3.2 RQ2 How can relevant data be extracted from source code?

Inspired by stereotyping approaches like [9, 11, 24] we created a process, that lets us discern eight different
method stereotypes as seen in Table 3.1. Working with these method stereotypes, and the heuristics that
we defined in section 3.2.2.2, we could expand our process and find the relevant class stereotypes as seen
in Table 3.3. These two extensive processes allowed us to understand the class structures and target class
functions in a more simple but also in depth way. Knowing a target class’ stereotype we then could define
what information we wanted to extract and find, as the class and method stereotyping allowed us to see
which functionality appeared to be relevant for a class.
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Distributions of stereotypes. In this section we display method and class stereotype distributions across
the systems. We took a total of 500 random classes from the Pharo base image and analyzed their methods
distribution and correspondingly the class stereotype distributions for 350 random classes.

Figure 3.4: Distribution of method stereotypes for 500 random classes

Table 3.4: Summary of method stereotype distribution

Method Stereotype Occurences %
Accessor 28481 32.12
Getter 3438 3.88
Mutator 8510 9.60
Setter 3345 3.77
Factory 3592 4.05
Collaborator 24446 27.57
Controller 3544 4.00
Degenerate 13314 15.01

The first graph, seen in Figure 3.4, shows the distribution of method stereotypes for 500 random
classes.2 As one can see, methods most often are declared as accessor methods, closely followed by the
collaborator stereotype. Almost half the accessor methods are represented by the degenerate stereotype,
meaning there are half as many methods that do not fulfill any of the other stereotypes as there are methods
that fulfill the prerequisites for being accesor methods. Mutator methods make up roughly a quarter of the
sum of accessor methods, with about a quarter of the total mutator methods being more specific Setter
methods. Compared to that Getter methods only represent about a tenth of all accessor methods. Factory

2Folder “RP-Automatic-comment-generation/Results/RQ2” in the Replication package
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and controller methods similarly to the getter and setter methods are declared about ten times less in
relation to accessor methods.

Figure 3.5: Distribution of Class stereotypes for 350 random classes

Table 3.5: Summary of class stereotype distribution

Class Stereotype Occurences %
Boundary 93 22.63
Commander 17 4.14
Controller 7 1.70
Data 6 1.46
Data Provider 171 41.61
Degenerate 36 8.76
Entity 6 1.46
Empty 9 2.19
Factory 6 1.46
Large 28 6.81
Lazy 4 0.97
Minimal Entity 5 1.21
Pure Controller 0 0.00
Small 23 5.60

In accordance with the method stereotype distribution one can see in Figure 3.5 that the Data Provider
stereotype is declared the most often with an incredible frequency of more than two out of five classes
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receiving the Data Provider stereotype.3 A little more than half as many classes are assigned the Boundary
stereotype. In contrast to the method stereotype distribution, Degenerate classes only make up half as
many stereotypes in the class stereotype distribution relative to their occurrence in the method stereotype
distribution. Roughly seven percent of classes are declared as Large classes and a little less than 6 percent
are made up of Small classes, making about an eighth of all classes either exceptionally large or small. A
little more than every 25th class receives the class stereotype commander. The Empty class stereotype
makes up roughly two percent of all class stereotypes declared. Many of the other class stereotypes such
as Controller, Data, Entity, Factory, Lazy and Minimal Entity are not selected more than two percent of the
time. Lastly we did not find any Pure Controllers in the 350 random classes used for this distribution.

3.3.2.1 Implication and Discussion

As seen in Table 3.4 and Table 3.5 above, all of the method stereotypes and almost all of the class
stereotypes could be found in the Pharo base image. Even though we could find a variety of the stereotypes,
there still seems to be room for improvement. Our approach made use of many method stereotype
heuristics defined by Dragan et al. and then adapted these to function in the Pharo environment, as such
there have been some method heuristics, which have been broken down or generalized to work for the
Pharo environment [9]. Thus we propose revisiting method stereotypes in a manner which redefines the
heuristics in Table 3.2 only in minor ways. A sensible approach would be to revisit the way Collaborator
and Controller methods work. Since Collaborator and Controller methods, per Dragan et al.’s definition,
handle objects, problems might arise in what sense we define objects, because Pharo runs on the principle
that everything is an object. We propose to only reference to objects if they are not of the primitive type,
such as Characters, Strings, Numbers and Booleans. With this we won’t to assure that only specific objects
will be investigated.

Further we propose to look for alternatives in how the information is gathered, to decide which method
stereotype is applicable to a method. Though ASTs are an immensely useful tool and allow for a simple
overview of a method, they also bring some disadvantages with them. Analyzing ASTs is quite heavy in
calculating costs with bigger methods. Additionally it requires the handling of many specific exceptions.
They have to be declared individually for most of the nodes and their substructures seen in Figure 3.2. If
the AST structure does not lead to the desired variable or node there might be loss of information that
might be important for the method and subsequently class stereotype declaration. We propose to maybe
revisit Machine Learning and Artificial Intelligence approaches, that were discarded in the beginning of
this work. They might allow for a more profound analysis of code. The more precisely we can analyze the
code itself and find the relevant key variables and objects, the better we can clearly identify stereotypes.

Class stereotyping shows a bigger discrepancy in the distributions of stereotypes compared to method
stereotypes, as seen in Figure 3.5. The class stereotype definitions seem to hold up overall, as there are
barely eight percent of classes that only receive a degenerate class stereotype. Many of those usually
receive further class stereotypes, meaning they are not only filled with unidentifiable methods. With this in
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mind, we would recommend to revise the class stereotype heuristics in 3.2.2.2, to be more lax for some
stereotypes. Especially the stereotypes that appear to not be selected often, merit to be adapted in a way
that makes them more accessible. For example defining the majority as > 1/2 instead of >2/3. In general
more fluent borders and threshold values promise to be a good candidate to relax restrictions on the class
stereotype selection.

Additionally we would recommend investing further efforts in declaring more specific class stereotypes,
which are represented in the Pharo environment. There are some structures such as Models, Views, Facades
and many more, which might allow us to interpret the source code in a more specific way. With further
class stereotypes there are more possibilities to identify classes in more specific ways, which in turn allows
us to write clearer and more specific class comments.

3.3.3 RQ3 How can various information types be presented in the class comments?

To find out if our automatically generated class comments are accurate we compared them to the information
that was suggested in the CRC class comment template, to see if we wrote a similarly helpful comment as
proposed by the template. Comparing our automatically generated class comment, one can quickly see
that there are no explicit sections where we declare intention or responsibility in the way we described
them in section 3.2.1. As we showed in that section, these types of information are extremely difficult to
extract and write automatically. Because of that we try to give a broad sense in what the intention of a
class might be by showing what the intentions and responsibilities of the class stereotypes assigned to it
are. Public APIs are covered under the section where we display public methods. Explicit examples are
not available in our generated class comments. The list of instance variables covers the corresponding
section in the CRC template. The sections describing classes that the target class uses and that use the
target class represent the collaborators in the class comment. As with intent and responsibility we do not
have an explicit description of the internal details, though we try to emulate and reduce this information
into a list of keywords. All in all we manage to express three of the information types in a explicit way and
another three of the seven information types in a more indirect way, to produce a broader sense of the class.

To further find out how accurate and helpful the comments are, we created an online evaluation, where
multiple developers assessed our class comments for their completeness, conciseness and comprehensibility.
The process and results of this evaluation are described in more detail in the next chapter.

3.3.3.1 Implication and Discussion

In order to support developers with our generated comments, we developed a tool in Pharo. The tool can
help developers understand source code in a more simple and faster way. With that in mind our process
also laid focus on not creating a tool which would take away the responsibilities of a developer to write
documentation. It should aid developers in writing documentation but still oblige them to insert their
own intentions and implementations in the comments. By no means should this tool be used to spare
developers from writing comments, but rather encourage and enable them to write comments more easily
and consistently.
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As shown multiple times though, we are trying to automatically create a comment which resembles
and functions in the same manner as the CRC template provided by Pharo. In the template there are a few
implicit information types, which we have not been fully able to create. Though the idea of the tool we
created was never to write full natural language summaries, which contain all the details of a class, there
still remains a potential to improve these types of information.

Intent and responsibilities might be improved by building upon the keyword list provided and using
pre generated templates for each stereotype specifically, and then finding the required keywords to fill in
the blanks in said template. A different approach might rely on similar methods as described in 2.2 where
Machine Learning and AI based processes try to compile a coherent class comment, or other stereotype
based methods like described in 2.3. Additionally we propose to implement a few minor improvements in
how the class comments are displayed, for example adding hyperlinks to classes and methods referenced
in the class comment.

The missing examples proved to be more challenging than expected. As simple as it would seem to
extract examples, we quickly discovered that there are a number of different ways in which to extract
examples from source code. Many of those ways rely on the fact that there already have been some kind of
examples written, be it as an inline comment or the instantiation of a test case. Based on this an extended
analysis of the ASTs might be a possible approach to find code examples by looking for their tags, as well
as finding corresponding tests that can work as examples for the usage of a class.

All in all we managed to generate a tool which provides a variety of information for developers. The
extent to which a developer wants to solely rely on the generated comment lies with themselves, though we
always recommend writing and reading documentation to a certain degree. This helps prevent confusion
and allows for more implicit information to be adjusted more easily.



4
Evaluation

4.1 Evaluation

To assess the approach we took with our work, we analyzed the distribution of class stereotypes for 350
randomly selected classes and method stereotypes for 500 randomly selected classes as can be seen in
section 3.3.2. This kind of evaluation allowed us to gather insights into the distributions and workings
of the script we created. We randomly picked the classes and manually validated their generated class
comments.

To gather further qualitative feedback, we chose a second evaluation process, in which we let various
developers assess the generated class comments. This evaluation was devised to gather observations
regarding the adequacy, conciseness and expressiveness of the generated class comments. We conducted
this evaluation through an online questionnaire by which developers could anonymously share their
opinion.

4.2 Evaluation subjects

We attempted to keep our evaluation study design as close as possible to Moreno et al.’s work [25]. As a
form of evaluating our method, we chose to let developers of different levels of experience look at the
output we generated and have them appraise certain aspects of the automatically generated class comments.

31
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We asked a total of twelve developers with varying experience in programming within the Pharo
Smalltalk environment to fill out the online-forms. Four of the developers had been working on various
projects such as Roassal or GToolkit in Pharo beforehand. In addition we had two moderately experienced
developers in Pharo, with the rest of the participants being made up of multiple doctoral students and
multiple undergraduate and graduate students of the University Bern with various experience levels in
Pharo.

We contacted various expert developers in Pharo and got response from the expert developers of the
Roassal system. We designed one questionnaire’s classes (selected randomly) specifically from the Roassal

system. The reminder of the Pharo classes selected randomly, are sorted based on their stereotypes and
their quality in representing specific class stereotypes. As such we selected 24 classes to be evaluated
in total, accumulating two classes per class stereotype. We wanted each class stereotype to be evaluated
by at least two different developers, and preferably by three. Sadly five of the invited developers did not
complete our evaluation, so we managed to get results from seven developers in total. This led to a total
of 24 classes being evaluated in 4 different evaluation forms by a total of seven developers. The various
different forms1 are stored online. The used Pharo version from which the classes where selected, was
Pharo 92.

4.3 Structure of the evaluation

We used the google online survey tool for the evaluation. With this approach we could i) easily provide the
participants with the online questionnaires, ii) let the participants fill out their forms without bias of a so
called Hawthorne effect3, iii) collect the responses of the participants in a simple manner.

The participants filled out their questionnaires independently with no time restrictions. Participants
were allowed to fill out the form in whatever environment they wanted to. They could spend as much or
as little time on the different classes as they wanted. The Pharo environment we recommended was the
newest version of Pharo 9.

In the first section of the survey form, we gathered the background demographics information about
the developers such as their experience with Pharo, or country they live in. The second section focuses on
the kind of information they write and look for in a class comment. The purpose is to partly reflect on the
information types we selected in RQ1. In this section, we asked them the questions depicted in Table 4.3

Each participant received a questionnaire with a total of 6 classes. The classes they were presented all
represented different class stereotypes. The distribution of the classes had been done beforehand, to allow
for each participants to have an even distribution of classes and class stereotypes to evaluate. Classes were
distributed in a manner that each questionnaire roughly contained the same amount of methods, so that the
effort to evaluate one questionnaire was not significantly bigger than another. One of the questionnaires

1https://drive.google.com/drive/folders/1PQlN0qeBJPpwYFH21Dg4-7a5jm8rpGb6?usp=sharing
2https://pharo.org/download.html
3A type of reactivity in which individuals modify an aspect of their behavior in response to their awareness of being observed

https://drive.google.com/drive/folders/1PQlN0qeBJPpwYFH21Dg4-7a5jm8rpGb6?usp=sharing
https://pharo.org/download.html
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was specifically filled with only Roassal classes to incorporate the expertise for certain developers, which
were core developers in Roassal.

As developers had many different levels of experience with the selected classes, we wanted to ensure
that the developers evaluating the comments understood the class they were being asked to evaluate. In a
first step we asked participants to familiarize themselves with the major functionality and structure of the
systems by reading brief descriptions of a class and, if needed, by executing the system. Following this,
we asked participants to study and understand the entire class. This they could do in whatever manner they
chose to. They were allowed to look at existing class comments, if there were any. After having understood
the class we asked them to write their own description for the class. With these steps establishing a certain
baseline of knowledge about the target class, participants were asked to evaluate their understanding based
on the CRC design and the template. To evaluate their understanding, we asked various questions found in
Table 4.1, expecting no predefined answers as before.

Table 4.1: Questions to ascertain the understanding of a class

Question
How many years of experience do you have in programming the class specific domain?

What is the intent of the class?

What are the responsibilities of this class?

Who are the collaborators (other classes that this class uses in order to fulfil its responsibilities) of this class?

What are the important methods (Key messages and Public APIs) of this class?

What are the instance variables of this class?

How are objects of this class created?

Any other details you feel important for other developers to understand this class?

Once their own evaluation of the target class had been done, we presented them with the automatically
generated class comment of that class, generated by our tool. We asked them various questions shown in
Table 4.2 with the provided answers.
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Table 4.2: Questions and possible answers to evaluate adequacy, conciseness and expressiveness of the
generated class comments

Question Possible Answers
Do you think the comment is complete?

• It is not missing any important information
• It is missing some information but the missing

information is not necessary to understand the
class

• It is missing some very important information
that can hinder the understanding of the class

Do you think the comment is concise?
• It is has no unnecessary information
• It is has some unnecessary information
• It is has a lot of unnecessary information

Do you think the comment is understandable?
• It is easy to read and understand
• It is somewhat readable and understandable
• It is hard to read and understand
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Table 4.3: Questions and possible answers regarding what kind of information developers write and look
for

Question Possible Answers

How often do you write class comments for your projects?
• Never

• Rarely

• Sometimes

• Fairly Often

• Always

• Others... (Personal input of participant)

Which code comments do you find useful to understand a class?
• Class comments

• Method comments

• Inline comments in methods

• Others... (Personal input of participant)

What kind of information do you look for in the class comment?
• Intent of the class

• Responsibility of the class

• Collaborators of the class

• Example to instantiate the class

• Code examples to use the class and its methods

• Implementation of specific details

• Warnings related to the class

• Description of instance variables

• Description of Key or Public APIs, their parameters and usage

• Contracts of the methods or class

• Dependencies of the class

• Recommendations about the class

• Subclasses explanation

• How to extend the class

• License

• ToDo

• Bug information related to the class

• Coding Guidelines

• Exceptions

• Others... (Personal input of participant)

What kind of information do you write in the class comment?
• Same answers as to the previous question

Do you follow or adhere to the class comment template to write class

comments?
• Never

• Rarely

• Sometimes

• Fairly Often

• Always

• Others... (Personal input of participant)

Does your team follow any other style guideline to write comments like

the way you should structure your comment, use English, Grammar,

Tone?

• Yes

• No

• Others... (Personal input of participant)

What do your style guidelines cover?
• What content to write in the comments

• How to structure the text

• Formatting details

• Grammar

• Tone

• Others... (Personal input of participant)
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4.4 Results

4.4.1 Demographics

Our participants all hailed from a software developer or engineer background. Most of our participants
were male, with just one female participant. Roughly 29% had between one and four years of experience
in Smalltalk and also 29% claimed to have between one and four years of experience in Pharo. One
participant stated to have between four and seven years of experience in Smalltalk, where as two claimed
they had that amount of experience in Pharo. Another participant claimed to have between seven and ten
years of experience in Smalltalk, yet none of the participants had that amount of experience in Pharo. A
total of 43% of the participants stated that they had more than ten years of experience in Smalltalk, as well
as in Pharo.

4.4.2 What do developers write and look for in class comments

Before we analyzed the feedback on the generated class comments we assessed the information about what
the participants write and look for in the class comments. As seen in Table 4.4 most participants find class
comments to be useful to understand a class. Many of the participants also find comments for methods
or inside of methods helpful to understand the class. One participant claimed, that comments about the
package of a class and its architecture help to understand a class. Another participant emphasized that
class comments of superclasses help further understand a subclass.

Table 4.4: Results to ”Which code comments do you find useful to understand a class?”

Answer Percentage of participants
Class comments 85.7%
Method comments 71.5%
Inline comments in Methods 71.5%
Package level / Architecture documentation 14.3%
Comments of superclass 14.3%
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Figure 4.1: Results to ”How often do you write class comments for your projects?”

In answer to how often do they do write class comments, many of the participants claimed they write
class comments Fairly often or at least Sometimes. None of the participants claim they do not write any
documentation at all or just rarely. That said no participant claimed to write documentation at all times, as
seen in Figure 4.1.4

4Folder “RP-Automatic-comment-generation/Dataset/Online evaluation” in the Replication package
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Figure 4.2: Results to ”What do you look for in class comments?”

The distribution in Figure 4.2 shows that the three major information types looked for in the class
comment are the intent of a class, examples to instantiate the class and code examples to use the class
and its methods.5 As one can see most of the relevant information types mentioned by Rani et al. are
represented by what developers look for in class comments [29]. Information types available in our class
comment, such as Responsibility, Collaborators, Intent, Public APIs and Dependencies, can be found as
well in the list of most looked for information types in a class comment. The only information type we
generate that not many of our participants look for in a class comments are the Instance variables of a class.
Only one participant claimed that they look for the Instance variables in a class comment. Roughly 40%
of the participants stated that they look for information about warnings, dependencies, recommendations
concerning the class and how to extend the class. Furthermore an approximate 30% expressed that they
look for implementation examples of specific details or contracts of methods for the class. One participant
indicated that they look for subclass explanations or coding guidelines. In addition one participant stated
that they look for the context of a class, in the case that a class is not ’standalone’ or has a public entry
point, specifically discerning the mentioned context from the simple ’collaborators’ context.

5Folder “RP-Automatic-comment-generation/Dataset/Online evaluation” in the Replication package
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Figure 4.3: Results to ”What kind of information do you write in the class comment?”

Many of the participants confirmed the main information they look for in class comments, by stating
that they also write the corresponding information in class comments. In Figure 4.3 we can see that even
more of the participants write information about the intent and responsibility of a class (∼86%) than
look for it in a class comment (∼71% and ∼57%).6 In addition to that also more of our participants,
roughly 57%, claim to write descriptions of public APIs and their parameters or implementations of
specific details, where as only 43% claimed to look for information about public APIs and barely 29%
looked for implementations of specific details. Differences also appear in that less of our participants
write examples to instantiate the class or examples to use the class and its methods, than are looking for
this information in a class comment. The biggest difference in this can be seen, when comparing the
expectancy of information about dependencies of a class and warnings related to a class, to their frequency
of being written in a class comment. In both cases, roughly 43% of participants stated that they look for
these kinds of information types in a class comment, with no participant claiming that they write about
dependencies of a class and only one participant claiming that they write about warnings related to a class.

6Folder “RP-Automatic-comment-generation/Dataset/Online evaluation” in the Replication package
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Figure 4.4: Results to ”Do you follow or adhere to the class comment template to write class comments?”

Roughly 28.5% of participants stated that they follow the class comment template sometimes, none
follow it fairly often or always and the remaining 72.5% follow it rarely or never. Only one participant
said they follow a different style guideline than the class comment template, the rest do not follow any
other style guideline. In the case of the one participant, they declared that their style guide focused on
’what content to write in the comments’ and on what grammar to use.7

4.4.3 Generated class comments

This section shows the results of the evaluation concerning the classes in the online forms. It shows the
bundled answers for the questions in Table 4.2, for each generated class comment. After all we received
a total of 42 evaluations for the 24 class comments we generated. Before analyzing the contents of the
evaluation for the generated class comments, the author analyzed the summaries written by the participants.
Each summary was assessed to see if participants understood the intent of a class. The assessment of these
summaries, showed that one class, namely the SpMorphicTreeTableCellBuilder was deprecated in the
Pharo 9 image. Other than that there appeared to be one participant who had trouble understanding the
GrafPort class and stated so in a comment as well. Though he did not say what specifically he did not
understand. This helped us get a more balanced opinion of participants who understood classes and who
did not. With this in mind we set out to received somewhat informed information about the classes by the
participants. Thus we decided to display the generated data in two versions. The values that are displayed
normally, do not include these three cases, whereas the values in brackets include the three cases. The
adjustment of these three cases did not significantly change the evaluations outcome.

The results for each category, namely adequacy, conciseness and comprehensibility of our generated
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class comments can be seen in Table 4.5 to Table 4.7.8 The specific distributions of results for each class
stereotype can be seen in Table 4.8. 9 In all tables the values in brackets signify the results including
the cleaned up variables, where the three cases stated before had been ignored. These values are only
displayed if they are changed in comparison to before ignoring these three cases. Overall, the results are
decent , with a majority of the responses being positive, though only marginally sometimes. We can say
that the majority of automatically generated class comments are are understandable and readable, the
information is somewhat adequate, though we sometimes miss important information, and the majority
of comments only have some or no unnecessary information. With that said we have to acknowledge
that the distributions for the adequacy and especially the conciseness of the generated class comments
have potential for improvement. We present a more thorough assessment for the different criteria in the
following sections.

Table 4.5: Distribution of participants’ responses to adequacy of generated class comments

Adequacy
Answer Percentage
• It is not missing any important information 20% (19%)
• It is missing some information but the missing information is not
necessary to understand the class

36% (34%)

• It is missing some very important information 44% (47%)

The adequacy of the class comment’s content is the most crucial point for our evaluation, as it represents
if the selection process to define class stereotypes and extracting the according relevant information of our
tool did a good job. Over all a total of 56% of the class comments we generated miss only some or no
relevant information. As one can see in Table 4.8 classes with the class stereotypes Controller, Empty,
Commander and Minimal Entity prove to be the most adequate class comments, with 75% to 100% of the
class comments having no or only little missing information. Classes with the stereotypes Degenerate, are
considered by a majority of participants to be missing important information. This was to be expected, as
they contain mostly empty or degenerate methods and some getters and setters. Entity classes were found
to be missing information by three out of four participants. The participants noted that most of the missing
information included the integration of the class inside the package architecture. Large classes proved to
have missing information. This was to be expected to a certain degree, as large classes contain quite a lot
of different functionality. Most participants commented on the code flow of these classes not being visible
or easily understandable from the class comments.

The majority of remarks on missing information in the class comments, focused upon two points
which can be used to improve our technique. The first point is that, the generated class comments describe
structure, architecture and integration of the target class in too little detail. Participants remarked that the
placement of a class inside the workflow of a package or script was hard to understand. They mentioned

8Folder “RP-Automatic-comment-generation/Dataset/Online evaluation” in the Replication package
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especially that cases like for example tests, utility classes, abstract classes or errors should be marked as
such. The second point is that, some participants remarked upon missing methods. The missing methods
appear to occur because of the selection process based on the class stereotype. This leads to irrelevant
methods for a class stereotype being missing in the class comments, though they seem important to the
functionality of a class. For example, Data Provider classes tend to display mostly accessors as they are
relevant for this class stereotype, though this proved to lead to some missing information about relevant
methods in the class comment. This is a problem we plan to address in the further work.

The adequacy of our generated class comments is the most relevant criteria. It proved to be lacking in
some areas, but it also showed that the majority of our generated class comments does not miss any or
only some, important information of a class. It showed as well that if important information is missing,
it proved to be one of two categories of missing information, which can certainly be improved upon in
further versions.

Table 4.6: Distribution of participants’ responses to conciseness of generated class comments

Conciseness
Answer Percentage
• It has no unnecessary information 28% (29%)
• It has some unnecessary information 26% (24%)
• It has a lot of unnecessary information 46% (47%)

Regarding the Conciseness attribute, a total of 54% of evaluated class comments contain no or just
some unnecessary information. Classes with the stereotypes Commander, Controller, Data Provider,
Empty and Minimal Entity contain 75% to 100% no unnecessary information. The Data classes were
evaluated to contained too much information by all participants. This stems from the fact, that they usually
only contain getter and setter methods and do not hold much functionality, considering that, they do
not need a lot of information. Classes tagged with the Large stereotype were remarked by 3 out of 4
participants to contain too much information. Contrary to the way in which Data classes do not hold much
functionality, Large classes contain a lot of functionality. As such participants commented on the overflow
of information, especially concerning the large lists of classes that are used or do use the target class, that
only showed how many of these collaborators are related to a class, but do not display all of them.

Some methods mentioned in class comments were marked as being unnecessary. This proved to come
from a combination with the previous problems for adequacy. Participants remarked missing methods
and in turn unnecessary methods being described in the class comment. As previously stated, this should
be adopted by reviewing the process in which we decide which methods are representative of a class
stereotype. We plan to improve this process to include more relevant information.
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Table 4.7: Distribution of participants’ responses to comprehensibility of generated class comments

Comprehensibility
Answer Percentage
• It is easy to read and understand 46% (45%)
• It is somewhat readable and understandable 41% (38%)
• It is hard to read and understand 13% (17%)

The expressiveness or comprehensibility of our generated class comments is by far the best evaluated
characteristic. A total of 87% of the class comments were either easy to read and understand or at least
somewhat readable and understandable. Many class stereotypes were evaluated as having no difficult
to understand or hard to read structure. Only the class stereotypes of Boundary, Degenerate, Entity,
Factory and Small were declared as being hard to understand or read. These class stereotypes though were
evaluated to be hard to read by a maximum of 33% of the participants.

Most of these class stereotypes have been remarked upon in either one of the previous two sections.
This shows that the heuristics for these class stereotypes have to be re-evaluated to generate more accurate
class comments i.e., it hold more adequate and concise class information, which in turn allows us to
generate easier to understand class comments. Additionally, there might be some easier ways of presenting
collaborators and APIs by creating hyperlinks to their source, to enable developers to find relevant methods
and collaborators in a faster and traceable ways.

The fact that the evaluation for the comprehensibility of our class comments turned out in such a
positive manner reflects that our tool can produce expressive natural language phrases that work with the
Pharo commenting practices. Furthermore, we can say that the structure and way in which we present the
generated data is good in a global sense.

In comparison to the work of Moreno et al. our tool is barely not as adequate or concise as the process
they use for their work. Their tool though is only more adequate in about 13% of the cases. On the other
hand they do have much less, about 43%, unnecessary information than we include in our output. There is
still quite some potential for improvement, as they can be seen in comparison with their work. In contrast
to that though, we can say that only 9% more of our comments were considered hard to read, and as such
show a first benchmark, where we arrived at a comparable level.
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Table 4.8: Distribution of participants’ responses for each class stereotype

Class
stereotype

Adequacy Conciseness Comprehensibility
No
missing
info

Some
info is
missing

A lot of
info is
missing

No
unnec-
essary
info

Some
unnec-
essary
info

Unnec-
essary
info

Easy to
under-
stand

Some-
what
under-
stand-
able

Hard to
under-
stand

Boundary 33.33%
(25.00%)

33.33%
(25.00%)

33.33%
(50.00%)

33.33%
(50.00%)

- 66.66%
(50.00%)

33.33%
(50.00%)

33.33%
(25.00%)

33.33%
(25.00%)

Commander - 75.00% 25.00% - 75.00% 25.00% 50.00% 50.00% -
Controller 66.66% 33.33% - 66.66% 33.33% - 100.00%
Data 50.00%

(25.00%)
- 50.00%

(75.00%)
- - 100.00% 100.00%

(50.00%)
- (50.00%)

Data
Provider

- 66.66% 33.33% 33.33% - 66.66% 33.33% 33.33% 33.33%

Degenerate - 33.33% 66.66% 33.33% - 66.66% 66.66% 33.33%
Empty 50.00% 25.00% 25.00% 25.00% 50.00% 25.00% 50.00% 50.00% -
Entity - 25.00% 75.00% - 25.00% 75.00% 25.00% 50.00% 25.00%
Factory - 33.33% 66.66% 33.33% - 66.66% - 66.66% 33.33%
Large - 25.00% 75.00% - 25.00% 75.00% - 100.00% -
Minimal En-
tity

33.33% 66.66% - 66.66% 33.33% - 100.00% - -

Small 33.33% - 66.66 33.33% - 66.66% 33.33% 33.33% 33.33%



5
Threats to validity

In this section we discuss possible threats to the validity of this work.

Threats to internal validity are primarily concerned about the processing of how a class or method
stereotype is assigned. The heuristics we adapted might just prove to be invalid in the way they return
class or method stereotypes. For this purpose we had two additional developers, both with multiple years
of experience in Pharo, reviewing and giving continuous feedback on the way we selected method and
class stereotypes. We analyzed different classes together and adapted our code until there was a consensus
for each method and class stereotype.

Similarly we decided on a template based approach, to display the generated results. The way we
present this data is personally influenced, as in that it was created in accordance with the main developer’s
personal views and preferences and confirmed by the aiding developers. This representation of information
might not represent all the information that developers would like to see, or might just lead to information
being forgotten in the comment if developers do not update their comments with the specific information
they want it to entail. As we found in our evaluation roughly 56% of our class comments are not missing
any relevant information. As discussed in subsection 4.4.3 the major concerns about inadequacy of the
class comments can be addressed by the way we use the heuristics in subsection 3.2.2.

Threats to external validity include points related to our results. One, the results for the method and
class stereotype distributions in subsection 3.3.2 have been built on the choice of 500 or 350 random

45



CHAPTER 5. THREATS TO VALIDITY 46

classes in the Pharo base image. We believe that the large enough size of classes used should make up for
any distortion effect that might happen in smaller samples.

A further threat to external validity concerns the results of our online evaluation. Firstly, we chose only
two classes for each class stereotype. This might prove to not be representative enough for the specific
class stereotypes. Though, we reviewed all the classes for their functionality and decided that all of them
are representative enough in their own right. We also did take our classes at random from the Pharo base
image, except for one questionnaire which was filled with classes in the Roassal system, to profit from the
fact that we managed to have developers of Roassal evaluate our class comments. However, we selected the
classes for our study randomly from the Roassal system. This might have lead to a more laborious effort
needed from developers, who didn’t work on Roassal and didn’t receive the Roassal questionnaire. They
might have had to investigate multiple classes and packages in more depth to understand the classes they
were assigned. However, this helped us in getting a balanced opinion from novice and expert developers.
We tried to prevent fatiguing participants with short questionnaires, where each participant only had to
evaluate 6 different classes in total, which limited the mass of information they had to look at.

The participants have been chosen from different experience levels, domains and organizations. We had
participants who had multiple years of experience, whereas others were novices in the Pharo environment.
This might lead to slight distortions of the evaluation, where expert developers focus on different points
than novices would. Though this specifically represented the goal, in that we wanted our class comments
to be helpful to both ends of this spectrum, we allowed participants their own time schedule, so each
participant could inform themselves about class behavior as much or as little as they wanted.

A further point corresponding to the understanding of the classes, included the fact that we allowed the
participants to look at the already existing class comments. This could generate a certain expectancy from
the participants, as they might be influenced by the already present class comment and thus they expected
specific information to be available in the automatically generated class comment. That in turn could lead
to a biased approach to the automatically generated class comment. Said behavior, was allowed, so that
inexperienced developers could get a better and easier understanding of a class. We suggest prohibiting
participants to look at existing class comments in future evaluations.

In addition to these points there might also be a learning effect, that took hold of participants. A
participant, after having finished the first class summary evaluation, might already think ahead for certain
criteria, she realized in the previous summary, and answer the second class’ summary in a biased manner.
Though we did not realize any explicit effect of this in the results.



6
Conclusion and future work

Understanding the code base of a software system is a crucial point in software development, as such code
comments are an integral part of comprehending and maintaining the structure of code. They provide all
kinds of information for developers, such as high-level intentions of code, as well as low-level details
of implementation or API documentation. We gather that creating class comments automatically helps
developers write and maintain code comments. In that context, we present a tool for automatic class
comment generation in Pharo. Although the techniques used in this work are adapted from previous work,
it is the first tool that attempt to create automated class comments for Pharo.

In the final evaluation by several developers, we discerned that our tool generates and output with
87% of the summaries being easily understandable, 56% of summaries being complete and 54% percent
of summaries being concise i.e., there is no or just some unnecessary information. This shows that our
tool can generate easily readable and understandable class comments, which generally contain adequate
information and for the most part do not contain unnecessary information.

The generated class comments are structured in such a way that they should support developers in
their process of creating documentation. The proposed class summaries are not meant for any specific
point of development, rather than being used as a jumping-off point for more detailed class comments.
Our tool uses an adapted approach, which is completely automated and does not take any preexisting
documentation into consideration.
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In that context our work exposed certain points in which our tool is yet lacking. As described above,
our tool does not take any preexisting documentation into consideration. For further development we plan
to improve on generating class comments which work with already provided information. Additionally,
as the evaluation in Chapter 4 has shown, we want to further refine the heuristics used to define class
and method stereotypes as described in subsubsection 3.3.2.1, as well as finding different approaches to
generating a final class comment as described in subsubsection 3.3.3.1.

All in all we foresee many ways in which our tool might be upgraded. Considering this we would lay
focus on (i) adapting the used heuristics to find further diversification in method and class stereotypes, (ii)
evaluate different approaches to generate class comments which contain more implicit information types,
such as intent and responsibility, by using methods like Machine Learning or different approaches entirely,
and (iii) try to include even more information, especially information that developers look for in the class
comments, such as examples to instantiate or expand the class. In that way we want to support developers
even further in writing documentation.



7
Anleitung zu wissenschaftlichen Arbeiten

In this section we will show how our tool can be installed, used and extended. The first section shows how
to install the tool. After that we show the architectural design of the tool, and we give brief explanations
which classes handle which action. In the following section we present multiple ways in which our tool
can be used to generate various stereotypes and class comments. Finally, we show in a simple way how to
access the methods and classes used as examples in Table 3.1 and Table 3.3.

7.1 Installation instructions

The installation process for our tool is quite simple. First, users have to clone the git repository. This can
be done by opening a terminal in the desired folder and entering the following command:

1 git clone git@yogi.inf.unibe.ch:thesis-bsc-lhess

When prompted, users will have to enter their username and password, upon which the cloning process
should run.

After the repository was cloned, users will have to open a Pharo image, preferably running Pharo 9.1

Once inside the Pharo image they will have to use a tool called Iceberg. The Iceberg tool offers a list of

1https://pharo.org/download.html
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the repositories loaded in a Pharo image. As a next step, import and load the project into the image. There
is a button in the upper right corner labeled ‘add’, which returns a menu that allows users to ‘import from
existing clone’. Users can then simply enter the path to the folder where they cloned the github repository.
Once the repository has been added, users simply have to load the new package by right-clicking on the
new repository and clicking on ‘load’ so the package will be loaded into their image.

Figure 7.1: Iceberg window to load repository
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7.2 Tool architecture

Figure 7.2: UML diagram of the tool architecture

7.2.1 The CommentGenerator class

The main class used to automatically generate a class comment is called CommentGenerator. It
handles the input of a ‘targetClass’ and starts the process to generate a class comment by running
generateDocument. How to run this can be seen in the subsection 7.3.1. The CommentGenerator
instantiates two of its sub-classes called CGFormatter and CGIdentifier.

The class CGFormatter is used to format the writestream output that is returned by the Comment-
Generator. Its functionality consists of organizing the generated data and styling it in such a way that we
can present it as seen in Figure 3.3.

The class CGIdentifier contains most of the logic to identify the information we need to generate
the class comment. It contains multiple methods to quantify method and class stereotype frequencies, as
well as the logic to which information is used or discarded for the final comment. Additionally it also
instantiates the visitors, which hold the logic to decide method stereotypes for a method.
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7.2.2 The Visitor classes

The visitors we created allow us to map over the ASTs of a method. They are crucial to finding the
information needed to decide if a method is tagged with a method stereotype. We have created multiple
such visitors that look at different nodes of a method. The visitors always have a boolean value called
‘result‘, which represents true = yes the method receives the method stereotype or false = no the method
does not. We set up visitors in the following way:

1 | method visitor |

2 method := targetClass >> aSymbol.

3 visitor := CGAccessorVisitor new.

4 method ast acceptVisitor: visitor.

5 visitor result

The important values here are ‘aSymbol‘, as it is the symbol with the method name and ‘CGAccessorVisitor‘
as it represents the specific method stereotype visitor we want to use. Only the ‘CGAccessorVisitor‘should
be exchanged with another visitor, if one wants to check for another method stereotype.

7.2.3 Extensions used in our Tool

In this section we present the two classes used to extend the functionality of our tool with pre existing
functionality of the Pharo base image. These classes add functionality to our tool that makes the way
the tool can be used even simpler. They mainly interact with the system browser or the standard class
comment template. We extended the two classes as follows.

7.2.3.1 The CgGenerateClassCommentCommand class

It is this class that allows us to create class comments from anywhere in the system browser. The
CgGenerateClassCommentCommand class contains little functionality other than extending logic
from the Commander-Core package, letting us assign a personalized title and icon to the right-click menu
of a class in the system browser.

7.2.3.2 The ClassDescription class

The ClassDescription class is responsible for filling empty class comments with our automatically
generated class comments per default. It contains but a single method which runs our ‘CommentGenerator
generateDocument’ script instead of adding the CRC class comment template.

7.3 User guide

The way we created our tool, there are two different ways in which users can get a generated class comment
and one additional functionality that lets the user replace all the class comments, which only hold the class
comment template, with an automatically generated class comment. The methods are as follows:
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1. Run the tool from the Playground

2. Run the tool directly from the interface

3. Replacing all CRC class comment templates with a generated class comment

7.3.1 Run the tool from the Playground

The instantiation and call to create a class comment are fairly easy. Once the user opens a new playground
in Pharo, he or she simply has to enter the following:

1 |cg|

2 cg := CommentGenerator new.

3 cg targetClass: RSShape.

4 cg generateDocument.

The only variable a user has to change to his or her desire is the ‘targetClass’ value. As the name
implies this is the value that decides which class the comment will be generated for. Once the user runs
this, the Pharo IDE should open an inspector window with the output found in Figure 7.3.
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Figure 7.3: The Inspector window after generating the class comment for RSShape

7.3.2 Run the tool directly from the interface

To make it even easier for users we created a method which allows them to generate class comments
directly from the system browser. For this the user simply has to search his desired target class in the
system browser and right click on it. A menu will appear, displaying various actions for the class. We
implemented an action called ‘Generate stereotype-based Class Comment‘ as seen in Figure 7.4. Once the
user clicks on the field, the Pharo IDE should once again open an inspector window with the same output
found in Figure 7.3.



CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 55

Figure 7.4: Menu accessing of ‘Generate stereotype-based Class Comment‘ in the system browser

7.3.3 Replacing all CRC class comments with a generated class comment

As a final possibility we give the option to overwrite the standard handling of empty class comments.
Usually when a developer creates a class, its class comment initially is empty. The class comment template
is then automatically added to the empty class comment, so that each new class contains the class comment
template. We rewrote some of the base functions of the ClassDescription class, allowing us to always
automatically generate a stereotype-based class comment, if there is no class comment available. In this
way, classes without comments will still be flagged with a red exclamation mark, that remarks that there is
no class comment available. But they will now have a generated class comment as a starting point.

7.4 Other functions

7.4.1 Extracting method stereotypes

As the process of generating a class comment includes extracting method stereotypes, developers can easily
check the stereotypes found for the methods in a class. To find out the method stereotypes developers have
to use the class CGIdentifier. The process works similarly to the process in 7.3.1. Developers can open the
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Pharo Playground again and run the following:

1 |ci|

2 ci := CGIdentifier new.

3 ci targetClass: RSShape.

4 ci getMethodStereotypes.

Just as in the previous script, the ‘targetClass‘can be adjusted to the user’s desire. The Pharo IDE should
open a new Inspector again displaying the method names in the left column and its method stereotypes in
the right hand column as can be seen in Figure 7.5.

Figure 7.5: Inspector output with Dictionary for all method stereotypes of RSShape

7.4.2 Extracting class stereotypes

Just as we can extract only method stereotypes, we can also only extract class stereotypes. The process
functions exactly the same as the process in 7.4.1. The only thing we can adjust here is the ‘targetClass’
once again. Other than that we only have to change the method call of the CGIdentifier to return class
stereotypes. The script to this looks like this:
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1 |ci|

2 ci := CGIdentifier new.

3 ci targetClass: RSShape.

4 ci getClassStereotype.

This will open a new inspector with a list of the available class stereotypes.

7.5 General usage

7.5.1 Finding classes and methods in the Pharo image

To access the example methods and classes proposed in Table 3.1 and Table 3.3 one can browse the Pharo
base image. Classes can be found quite easily by using the so called Spotter in the Pharo IDE. The
Spotter can be opened by either clicking on the menu ‘Tools’ in the toolbar of the IDE or by simply
clicking on the background and opening the ‘World-menu’. It can also be opened by using the short-cut
‘Shift-Enter’. Once the Spotter window pops up, one can simply enter the class they are looking for and
the Spotter will open a new system browser with the desired class opened. With this, methods in specific
classes can be found just as easily.
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