
Software Developers’
Information Needs

Bachelor Thesis

Jonas Richner

from

Gränichen, Switzerland

Faculty of Science
University of Bern

1 February 2019

Prof. Dr. Oscar Nierstrasz
Pooja Rani

Software Composition Group
Institute of Computer Science

University of Bern, Switzerland

Abstract

Nowadays software shapes most aspects of our daily life, and application
developers are increasingly confronted with complex scenarios which de-
mand collecting information from various sources. As developers face many
challenges in seeking desired information, a substantial amount of research
has been performed to understand software developers’ information needs.
However, little is known regarding researchers’ use of methods and measures
to quantify developers’ information needs, and there has not been any effort
yet to systematically select, review, and synthesize developers’ information
needs that are presented in the literature. Consequently, we investigate this
domain by conducting a systematic literature review. Through our search
strategy, we identified 60 relevant papers. We discovered that the most
common way to quantify developers’ information needs is to use surveys,
and that some of the most valuable information that developers need to make
progress considers the rationale (e.g., why is this implemented this way?),
awareness (e.g., what have my coworkers been doing?), and the implications
of a code change (e.g., what might break?). This thesis presents the review’s
findings, which we believe will help scientists studying developers’ informa-
tion needs by enabling them to use appropriate methods and measures for
their research, as well as assist researchers in developing tools and practices
that are better aligned with developers’ needs.

i

Contents

1 Introduction 1

2 Methodology 4
2.1 Preliminary Search . 4
2.2 Inclusion and Exclusion Criteria . 5
2.3 Data Extraction . 5
2.4 Data Sources and Search Strategy . 5
2.5 Relevant Literature . 8

3 Quantifying Information Needs 9
3.1 Overview . 9
3.2 People-centric Studies . 11

3.2.1 Surveys . 12
3.2.2 Observations . 14
3.2.3 Interviews . 16
3.2.4 Other methods . 16

3.3 Technology-centric Studies . 16
3.3.1 Stack Overflow . 17
3.3.2 Mailing lists . 18
3.3.3 Other sources . 18

3.4 Discussion of RQ1 . 18
3.5 Results . 20

4 Important Information Needs 21

ii

CONTENTS iii

4.1 Challenges of Synthesizing Data . 21
4.1.1 Categorization . 22
4.1.2 Partitioning of questions . 25
4.1.3 Comparing measures . 25
4.1.4 Scope of the study . 26

4.2 Information Needs . 26
4.2.1 Methodology . 27
4.2.2 Results . 27

4.2.2.1 Rationale . 27
4.2.2.2 Awareness . 29
4.2.2.3 Implications of a change 30
4.2.2.4 Other categories . 31

5 Threats to Validity 33

6 Discussion and Future Work 35

7 Conclusion 37

A Anleitung zum wissenschaftlichen Arbeiten 39
A.1 Data extraction . 40
A.2 Search terms . 41
A.3 Systematic search . 42
A.4 List of papers . 46
A.5 List of papers relevant to RQ2 . 49
A.6 Excluded studies . 52
A.7 Excluded categories . 56

1
Introduction

Technology has become an increasingly important part of our everyday life. The number
of internet users worldwide has doubled over the last decade; today more than half of the
world has access to the internet through computers or smartphones [75]. At the same
time software applications have become more complex and massive systems like the
Linux kernel grew even larger. The Linux operating system increased from 2.4 million
lines of code in 2001 [77], to over 25.3 million in 2018 [61]. Nowadays even modern
cars can contain more than 100 million lines of code, as features like collision avoidance,
navigational systems, and automatic emergency braking contribute to this rapid increase
in complexity [72].

Building and maintaining complex systems is a time-consuming and expensive process
that requires the collaboration of many people. Successfully writing code requires
developers to have in-depth knowledge in multiple fields, and coordinate with their team
effectively. However, even when developers try their best, the software still ships late

1

CHAPTER 1. INTRODUCTION 2

and buggy [66]. Due to the complexity of the work, developers need to exchange a
variety of information to understand the system’s behavior and its components [70].
Specifically, developers need information regarding the rationale of a piece of code [25],
what coworkers have been doing [20], which changes will break code elsewhere [26],
and who has experience with a component [6].

Hence, we can understand what contributes to these difficulties by identifying which
information needs lead to exhausting and time-consuming searches. In order to find
information, developers search various sources such as the documentation, the source
code, online resources, or they interrupt coworkers who might have the knowledge
that they seek [20] [56]. Developers often develop hypothesis about the code and ask
questions to test their assumptions [70]. Gathering these questions, i.e., the information
needs, from various sources and understanding them in context can guide the development
of tools and practices that help developers find the desired information more easily.

Scientists performed a substantial amount of research to obtain and understand these
information needs. They study developers’ searching behavior by observing them either
in industry or with a predefined task in the lab, they use self-reporting in surveys, and
collect qualitative data in interviews. Finally, researchers also mine various software
development artifacts such as Stack Overflow and mailing lists to collect developers’
questions.

Our goal is to find the most important questions that developers ask, i.e., questions that
use the most resources and have the biggest impact on the progress of a software project.
For this task, we need to understand the methods and measures that researchers use to
gather and quantify developers’ questions. Thus we assess which methods researchers
use to collect the questions e.g., surveys, or observations, and which measures they use
to evaluate their importance e.g., by measuring the frequency, or the time taken to answer
the question.

In order to answer these questions, we conducted a systematic literature review on
software developers’ information needs and investigate the following research questions:

• RQ1: How do researchers quantify software developers’ information needs? We
reviewed relevant literature and collected the research methods and measures used
to quantify the information needs, as well as the rationale behind them. Our

CHAPTER 1. INTRODUCTION 3

results reveal that researchers quantify the information needs primarily using self-
reporting in surveys and by studying the questions that are asked on Stack Overflow.
Furthermore, we observed that there are only three observational studies that assess
the importance of a question using a measure other than how frequently it was
asked.

• RQ2: Which information needs are important for developers to make progress,

and useful for the development of tools and practices? We reviewed relevant
literature and gathered information needs that researchers consider useful for the
development of tools and practices. We then assessed which of those information
needs are important for developers to make progress by synthesizing the results of
the papers included in our study. We find three useful and important information
needs that are supported by many studies, namely information about rationale (e.g.,
why is this implemented this way?), awareness (e.g., what have my coworkers been

doing?), and the implications of a code change (e.g., what might break?).

We believe that our work will support researchers by providing an overview of the current
research methods and sources used to collect developers’ information needs. Moreover,
we assist researchers in assessing the importance of information needs by comparing
different measures such as how often a given type of information was sought, and how
much time it took to obtain it. Finally, we provide a list of important categories of
information needs that are supported by a wide range of studies. We believe that these
needs can guide the work on tools and practices that make software development more
productive.

The remainder of this thesis is structured as follows: chapter 2 describes the methodology
we follow, chapter 3 investigates the quantification of information needs, and in chapter 4
we discuss the most important ones. We consider threats to validity in chapter 5, we
discuss future work in chapter 6 before we conclude with chapter 7.

2
Methodology

We closely follow Keele’s guidelines on conducting systematic literature reviews in
software engineering. This approach makes it more likely that the results will be unbiased
and reproducible. It consists of the following steps: i) We state our research questions,
ii) perform a preliminary search, iii) define our inclusion and exclusion criteria for the
primary studies, iv) state what data we extract, v) describe which data sources and search
strategy we use, and finally, vi) state which studies were selected [69].

2.1 Preliminary Search

In accordance with the guidelines, we performed a preliminary search to develop a review
protocol. This allowed us to refine our research questions, identify the search terms,
decide which data we will extract from the studies, and develop detailed inclusion and
exclusion criteria. We found that researchers most often study developers’ information

4

CHAPTER 2. METHODOLOGY 5

needs using interviews, observations and surveys or use Stack Overflow and mailing lists
as data sources to extract developers’ questions.

2.2 Inclusion and Exclusion Criteria

In order to focus on relevant primary studies, we define several criteria for inclusion and
exclusion as shown in Table 2.1. The criteria lead to papers that focus either in whole or
in part on the information needs of software developers and are relevant to our research
questions. A study is selected if it satisfies all of the inclusion criteria, and excluded if it
fulfills any of the exclusion criteria.

2.3 Data Extraction

In accordance with Keele’s guidelines, we state which data we will extract from the
primary studies. We will collect the data sources and methods that were used to study
developers’ information needs, the measures that were employed to quantify them, as
well as other information such as the title of the paper and the primary author as shown
in section A.1.

2.4 Data Sources and Search Strategy

To find appropriate studies we first searched for terms relevant to our research questions.
However, we found that even when we used many different variations of search terms
and different scholarly search engines such as Google Scholar, IEEE Xplore, and ACM

digital library, we did not find all of the studies from our preliminary search. In the end
we primarily used Google Scholar for searching and citation tracking, as it is considered
an appropriate data source [64], and delivered the most comprehensive results in our
study.

We adopted an iterative search strategy in which we first used terms like “software

CHAPTER 2. METHODOLOGY 6

Criterion Rationale
Inclusion Criterion 1. A study that
focuses in whole or in part on soft-
ware developers’ information needs.

We want to identify the most important informa-
tion needs of software developers, thus we need
studies that assess developers working directly
with software (e.g., not managers).

Inclusion Criterion 2. A study
where the information needs are re-
lated to software development.

We want to find which type of information soft-
ware developers need to make progress. Thus
information needs should be related to the pro-
cess of software development.

Inclusion Criterion 3. A study that
is peer-reviewed.

A peer-reviewed study provides some level of
quality.

Inclusion Criterion 4. A study that
is written in English.

For feasibility reasons only papers written in
English are included.

Inclusion Criterion 5. A study that
includes empirical evidence.

We want studies with empirical evidence, not
lessons learned or expert advice.

Exclusion Criterion 1. A study
that only contains information needs
from other studies and does not pro-
vide any new quantitative data on
those information needs.

We do not want papers that only contain informa-
tion needs from other studies, as this duplicate
data can bias our results. However, if the pub-
lication provides new quantitative information
on the results from other studies, then it is of
interest.

Exclusion Criterion 2. A study
where the only focus is to evaluate a
tool.

We want studies that assess information needs
and not just how many information needs a tool
can answer.

Table 2.1: The inclusion and exclusion criteria for the primary studies

CHAPTER 2. METHODOLOGY 7

developer information needs” in Google Scholar (see section A.2 for the list of all search
terms) and then continued with all of the cited and citing papers that we found. In more
detail, we searched for seven search terms in the first iteration, with each search limited
to the first 100 results, as we did not find any more relevant papers after this threshold.
These results include duplicates because we searched for the terms sequentially. Then in
each iteration, we investigated all the cited and citing studies of the discovered papers,
until we did not find any new papers. Searching through the cited studies of the returned
papers provides additional reliability as it is independent of the data source and search
engine that is used.

In Table 2.2 we list the number of papers that we searched through, which contain
duplicates because some papers have been cited or referenced more than once. More
details can be found in section A.3, which provides the list of the new papers that we
found after each iteration.

One can see from Table 2.2 that the number of papers found through citation and reference
searching dropped rapidly after the first iteration. We searched through 2 174 studies in
the second iteration, yet we only discovered three new papers. This decline in newly
discovered papers is probably due to many studies referencing and citing each other; thus
we believe it indicates that we found most of the relevant studies in our field of research.

Iteration Results
Searched

Cited Papers
Searched

Citing Papers
Searched

Papers
Included

Initial Search 700 0 0 35
First Iteration 0 978 3 820 31
Second Iteration 0 840 1 334 3
Third Iteration 0 74 304 1
Fourth Iteration 0 28 66 0

Table 2.2: The number of results, cited and citing papers that we searched

When applying our inclusion and exclusion criteria we proceeded as follows: i) We first
excluded papers based on the title. ii) When it was unclear from the title if the study
should be included or excluded, we reviewed the abstract. iii) When it was still not
clear if the study should be included or excluded, we considered the content of the paper.

CHAPTER 2. METHODOLOGY 8

iv) When in doubt, we always included the study and only excluded it later based on
further examination.

2.5 Relevant Literature

This process yielded 70 papers, from which ten were afterwards excluded as they did not
pass our inclusion and exclusion criteria, resulting in a total of 60 papers that are relevant
for answering RQ1. The included publications are listed in Table A.5.

To answer RQ2, we define two additional exclusion criteria that select a subset of the
papers in our study. First, we exclude papers that do not contain quantitative data or
that explicitly state that they are qualitative instead of quantitative. Second, we exclude
studies that are more than 15 years old, because tools and practices might have changed
over time and we want to find the current most important information needs of developers.
This leaves us with 43 studies that are listed in Table A.8.

As suggested by Keele’s guidelines, we also maintain a list of excluded studies. This
list does not contain all of the studies that we investigated in our systematic literature
review. Instead, it consists of edge cases or papers that were excluded for other reasons
that were not immediately evident from the title or abstract, such as papers that only
contain duplicate data from other studies as mentioned in Table A.11.

3
Quantifying Information Needs

In this section, we provide an overview of the selected studies and analyze the various
data sources and methods that researchers use to quantify developers’ information needs.

3.1 Overview

The relevant studies date from 1987 to 2018, as shown in Figure 3.2. Our studies include
15 different originating countries, although the United States and Canada combined
account for more than half of the studies. They span 35 different journals, confer-
ences, workshops and symposiums, of which the seven most common ones are listed in
Table 3.1.

In Figure 3.1, we show how the number of papers published in the most common
conferences, workshops, and journals changed over time. While the International

9

CHAPTER 3. QUANTIFYING INFORMATION NEEDS 10

Conference on Software Engineering published most studies before 2014, the papers are
now distributed among many different conferences and journals, such as the Empirical

Software Engineering journal and the conference on Mining Software Repositories.

Short name Full name # Studies

ICSE International Conference on Software Engineering 11
MSR Mining Software Repositories 5
FSE International Symposium on Foundations of Software Engi-

neering1
4

PLATEAU Workshop on Evaluation and Usability of Programming Lan-
guages and Tools

3

CHASE International Workshop on Cooperative and Human Aspects of
Software Engineering

3

EMSE Empirical Software Engineering 3
IWPC International Workshop on Program Comprehension 3

Table 3.1: The number of studies published in the seven most common conferences,
journals and workshops

0

1

2

3

4

before 2010 2010 and 2011 2012 and 2013 2014 and 2015 2016 and 2017

ICSE FSE IWPC Empirical Software Engineering MSR CHASE PLATEAU

Figure 3.1: The number of studies published per year in the seven most common
conferences, journals and workshops

1This symposium includes works of the ESEC/FSE joint conference as this is the new name of this
conference series.

CHAPTER 3. QUANTIFYING INFORMATION NEEDS 11

0

1
2

3
4

5
6

7
8

9

10
19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

3
4

6

4

9

5
44

6

1
2

1
2

11
00000

22

00
11

00000
1

Figure 3.2: The number of studies published per year

We categorized the studies according to which data source they use. We classify 35 (58%)
of the papers as People-centric. They refer to studies that recruit participants directly for
observations, surveys, and interviews. The other 25 (42%) papers are Technology-centric,
as they study an artifact of the development process such as Stack Overflow or mailing
lists.

3.2 People-centric Studies

When researchers recruited participants directly, they used a variety of methods to obtain
data, as shown in Figure 3.3. The categories are not mutually exclusive. Sixteen studies
use more than one method, for example, an interview is often conducted after observing
participants.

CHAPTER 3. QUANTIFYING INFORMATION NEEDS 12

0

5

10

15

20

25

Survey Observation Interview Other Methods

4

13

17
20

Figure 3.3: The methods used for studying the information needs of developers directly

3.2.1 Surveys

Surveys are a convenient way to collect and assess developers’ questions. Compared to
interviews and observational studies, they are inexpensive to carry out, even with many
participants across different organizations and countries. We distinguish between surveys
that are closed-form, where the participants rate information needs from predefined
answer choices, and those that are open-ended, where participants can write down their
own information needs. Studies that use both kinds of survey methods use the open-ended
section to allow developers to provide additional information needs that the authors might
have missed in the closed-form survey. The numbers of surveys of each type are shown
in Table 3.2. The categories are mutually exclusive.

Survey Type # Studies
closed-form 11
open-ended 5
closed-form and open-ended 4

Table 3.2: The number of closed-form and open-ended surveys

CHAPTER 3. QUANTIFYING INFORMATION NEEDS 13

The studies assess the importance of an information need in several ways. Participants
most often rate how frequently they need some information, how difficult it is to acquire,
or how important it is for them to make progress.

Some ways of asking participants to rate their information needs might be able to
combine these dimensions with a single measure, such as asking developers if a given
information need represents a serious problem for them [26], or asking participants to
pick information needs where they think that it would have a big positive impact on their
workday if they had a tool available to address this need [6].

Open-ended surveys. The studies that use open-ended surveys usually report how often
a given question was asked. For example, LaToza et al. ask their participants to provide

“hard-to-answer questions about code” and then abstract those specific questions into
more general questions. At the end, they report how many participants asked a specific
type of question [25].

Closed-form surveys. From the 15 studies that use closed-form surveys, only five of
them evaluate the importance of a question using multiple measures. Those that use
multiple measures or methods for assessing the importance of a question often discover
results that could not be found otherwise. For example:

• Tao et al. found that participants consider rationale the most important information
need, but at the same time they rate it as easy to acquire. We believe that if the
authors just would have asked participants to rate how important an information
need is, they would have missed this fact [46].

• LaToza et al. discovered positive correlations between a question’s difficulty and
how often it is asked [24].

• Buse et al. discovered that predicting the future is rated as harder to acquire
than understanding the past, but that participants rated predicting the future as
less important. Again, if the participants would have only rated how difficult the
information is to acquire, the results could have been misleading, as the information
rated difficult to acquire was also considered the least important [11].

• Ko et al. found that the implications of a change are rated as difficult to acquire,
but surprisingly in their observations they found that this information is easily

CHAPTER 3. QUANTIFYING INFORMATION NEEDS 14

obtained. This reveals a mismatch between perceptions of the participants and
reality [20].

3.2.2 Observations

Observational studies have been performed either in an equipped lab, or in industry.
The number of observational studies that were conducted in the lab and the ones that
were performed in industry are shown in Table 3.3. The categories are again mutually
exclusive.

Observational Setting # Studies
Lab 7
Field study in industry 6
Include both, a field study and a study in the lab 4

Table 3.3: The number of studies that were conducted in the lab and in the field

In contrast to surveys, observational studies are not subject to misremembering, misre-
porting, or inaccurate estimations by the participants. However, they can be influenced
by the observers’ biases and are limited to what can be observed. Ko et al. note that they
could not observe some instances of information seeking because they were “either too
subtle, like glancing at a coworker’s instant messenger status, or invisible, like the use of
memory to recall facts about the code” [20]. Observational studies can also be expensive
to carry out. Kubelka et al. note that it took them one and a half days to analyze just 40
minutes of footage from their study [23]. The studies often use the think-aloud technique
in combination with audio and video recordings.

From the 17 observational studies in our dataset, nine (53%) of them are qualitative.
They occasionally provide information regarding the frequency of given information
needs, but some authors explicitly advise the reader against using their data to quantify
the information needs. The remaining eight (47%) studies are quantitative, and most
of them are based on the frequency of which a given information which was sought.
Surprisingly, only three of the eight quantitative studies use other measures to assess the
importance of a question:

CHAPTER 3. QUANTIFYING INFORMATION NEEDS 15

• Ko et al. measured the time it took developers to satisfy an information need and
how frequently the information was sought. They also measured how often the
search was deferred or abandoned, because some developers immediately gave
up on searching for information that they knew only existed in the mind of an
unavailable coworker [20].

• Duala-Ekoko et al. decided against using the amount of time taken to answer
a question to measure the difficulty, because there is significant variability of
how long it takes developers to answer a question, even within similar levels of
experience. Interestingly, they observed that some actions indicated a lack of
progress. For example, the researchers measured how often participants had to
backtrack on the assigned actions when they realized that their search strategy led
down the wrong path [12].

• LaToza et al. measured the time spent on answering a question. Additionally,
whenever developers inserted defects, they looked at the questions that developers
had asked that led them to information that they did not understand correctly. Thus,
they measured which questions were associated with the most defects [24].

Classifying the statements of participants in observational studies can be challenging,
as their utterances could include both implicit or explicit questions. In order to extract
questions from the observations some researchers define a protocol. For example, the
protocol of the publication “Questions developers ask while diagnosing potential security
vulnerabilities with static analysis” from Smith et al. [45]:

A statement was coded as a question only if it met one of the following criteria:

• The participant explicitly asks a question.
Example: Why aren’t they using PreparedStatements?

• The participant makes a statement and explores the validity of that state-
ment.
Example: It doesn’t seem to have shown what I was looking for. Oh, wait! It’s

right above it...

• The participant uses key words such as, “I assume,” “I guess,” or “I don’t

CHAPTER 3. QUANTIFYING INFORMATION NEEDS 16

know.”
Example: I don’t know that it’s a problem yet.

• The participant clearly expresses uncertainty over a statement.
Example: Well, it’s private to this object, right?

• The participant clearly expresses an information need by describing plans
to acquire information.
Example: I would figure out where it is being called.

3.2.3 Interviews

Most interviews are follow-up interviews conducted after the observations or surveys to
collect qualitative data. We found only one study where the focus of the interview was to
collect questions that developers asked. There are no interviews that assess developers’
information needs quantitatively.

3.2.4 Other methods

Xia et al. installed a tool on participants’ computers that collected all of the queries
that were submitted to search engines. Based on these results they could later analyze
those queries to find how frequently a developer was looking for a specific type of infor-
mation [56]. Sadowski et al. use a similar methodology with a company-internal code
search tool [38]. Kim conducted a focus group study and recorded the conversation [19],
while Müller et al. asked the participants to write a diary at the end of each day [30].

3.3 Technology-centric Studies

Twenty-five (42%) of the papers included in our study are Technology-centric, as they
study an artifact of the development process such as Stack Overflow or mailing lists.
The number of papers per data source included in our study can be seen in Figure 3.4.

CHAPTER 3. QUANTIFYING INFORMATION NEEDS 17

The categories are not mutually exclusive, but only one study uses data from multiple
sources.

0

5

10

15

20

25

Stack Overflow Mailing Lists Other

34

19

Figure 3.4: The number of papers per data source

3.3.1 Stack Overflow

Stack Overflow2 is a Q&A website for programmers. Among many features, it provides
users with a way to ask and answer questions, vote questions up or down, and edit them.
Stack Overflow aims to be a wiki-type repository of knowledge that is easily search-
able [63]. Most developers seeking answers do not ask questions on Stack Overflow,
instead they use search engines that lead them to questions that already have answers [62].

Stack Overflow has some rules on what types of questions are allowed on their website,
for example, they do not allow questions on opinion. There are also other factors that
limit the types of questions that are asked. For example, what an employees’ coworkers
have been working on cannot be answered by strangers.

There are a variety of ways that researchers use to measure the importance of a question

2https://stackoverflow.com

https://stackoverflow.com

CHAPTER 3. QUANTIFYING INFORMATION NEEDS 18

on Stack Overflow. A few studies just count the number of questions in a given category.
However, this does not take into account that some questions were viewed millions of
times while others have almost no views. Thus some researchers also sum up the views of

the questions in their categories. Other scientists believe that this is not a valid measure
for the popularity of a question, because a question with many views may be prioritized
by search engines, leading many developers to view that question although they may be
looking for something else. As a result, they also consider the number of answers, the
number of comments, the number of users who added the question to their favorites list

as well as the number of upvotes and downvotes to measure the popularity of a question.
Furthermore, to find the difficulty of a question, some researchers use metadata such as
how long it took to get a response, or if the question has an accepted response.

3.3.2 Mailing lists

Software developers also use mailing lists as a communication channel for collaboration.
However, compared to Stack Overflow, this data is less structured, since one e-mail can
contain multiple questions or even discussions. For this reason, it requires more work
to extract the data from e-mails than from Stack Overflow. Researchers measure the
number of questions about a given topic, if the questions were answered, the number of

responses, the delay before the first response, and the average response time.

3.3.3 Other sources

We also found two papers that gather developers’ information needs from newsgroups
and one paper that uses bug reports as a data source. They measure the number of

questions in a given category, how many questions get asked and how long it takes to get

a response.

3.4 Discussion of RQ1

We investigated how researchers quantify software developers’ information needs (RQ1).

CHAPTER 3. QUANTIFYING INFORMATION NEEDS 19

We found that most papers that directly study the information needs of developers use
surveys, and most surveys assess the importance of a question with just a single measure.
However, the importance of an information need depends on many factors, such as how
hard it is to satisfy, or how frequently it is sought. We believe that it is not enough to
just measure how frequently a given type of information is sought, as it might be easily
obtainable or might not be important for the progress of the project. Some ways of asking
participants to rate their information needs might be able to combine these dimensions
with a single rating such as “this represents a serious problem for me”. We found that
only five surveys measure the importance of a question using multiple dimensions, with
many of them leading to non-obvious insights. However, it is unclear how reliable these
measures are because they are subject to misremembering, inaccurate estimations, and
misreporting. Given that surveys are the most common way to measure how important an
information need is and that some researchers found discrepancies between self-reported
statements and observations, we believe that it would be useful to know which measures
are reliable and which measures might have problems with self-reporting.

Furthermore, psychological research suggests that rating the frequency of a given infor-
mation need may be especially prone to bias. People overestimate the frequency of events
that are easier to recall from memory, which can be influenced by factors such as how
recent or emotionally charged the memory is, which can lead to systematic biases [76].
Other measures such as rating how difficult a given type of information is to acquire
could also be affected by well-known biases such as how easy it is to come up with a
typical example [71].

In our opinion it would be useful to know if there are differences in the reliability of
self-reporting between different types of information needs. For example, finding which
changes broke your code might be combined with more negative feelings leading to an
oversized estimation of its difficulty and frequency. Understanding which measures and
information needs are more prone to bias could lead to better techniques for assessing
them.

CHAPTER 3. QUANTIFYING INFORMATION NEEDS 20

3.5 Results

We discovered that the quantification of information needs is a crucial part of many stud-
ies, as the most important information needs guide the development of tools and practices.
However, there has been no meta-study yet that analyses how researchers quantify infor-
mation needs. In order to shed light on this topic, we studied how researchers quantify
developers’ information needs. We found that in 35 (58%) of the papers the researchers
study developers’ information needs directly, whereas in 25 (42%) papers they study an
artifact of the development process such as mailing lists and Stack Overflow.

Of the papers that study information needs of developers directly, most of them acquire
the data through surveys. Only 25% of the surveys use more than one measure to assess
the importance of a question, such as how frequently it is asked or how difficult it is
to answer. The surveys that use multiple measures often contain insights that would
be impossible to find with only one measure. We also found that only three of the
quantitative observational studies use a measure other than the frequency with which a
given type of information was sought to assess the importance of an information need.

It might be worth doing a follow-up study to find the percentage of time developers
spend searching for answers on Stack Overflow and mailing lists in relation to the time
they spend on other information needs. If the amount of time spent and the mental
drain from context switching turns out to be small in relation to other information needs,
then research on tools that answer questions that can already be efficiently answered on
Stack Overflow might not be optimally aligned with the needs of developers.

4
Important Information Needs

In this section, we first discuss the challenges that we faced when synthesizing the
data and then describe the methodology that we used to find categories of information
needs that are both useful for the development of tools and practices and have the most
empirical support. Finally, we present our results by summarizing the most important
information needs and the solutions that researchers propose.

4.1 Challenges of Synthesizing Data

Synthesizing data across studies is apparently difficult, as most systematic literature
reviews in software engineering do not synthesize results [67]. We want to synthesize
data from the papers included in our study to find which important information needs
have the most empirical support. We discovered that this is very challenging. The
research methods and data sources, as well as the quantitative evaluation of developers’

21

CHAPTER 4. IMPORTANT INFORMATION NEEDS 22

questions, are diverse. Thus we dedicate this section to the difficulties that we faced
when synthesizing results from the studies.

We first discuss issues with comparing the question categories of researchers, then
we look at the difficulties of partitioning the questions, we highlight the problems of
comparing different measures, and finally, we present the complications concerning the
scope of the studies.

4.1.1 Categorization

There are many different ways to categorize developers’ questions.

Sometimes researchers cluster the questions just for readability and to provide a structure
to the paper. For example, Ko et al. categorized questions by the work category in which
they arose, such as writing code, fixing bugs, or reasoning about design. This is not an
issue because they also provide more fine-grained categories of developers’ questions,
such as “Why was this code implemented this way?” or “What are the implications

of this change?”. They abstracted 21 information needs like these from 334 concrete
questions that developers asked. For example, the question category “What are the

implications of this change?” can come in many concrete forms, such as “Does this

change break any code elsewhere?”, “How does this change alter the program’s dynamic

behavior?”, or “Did this change miss any place that should also be changed at the same

time?” [20] [46].

Researchers need to abstract these concrete information needs into general categories
of information needs to make sense of the multitude of data. However, for our needs of
aggregating and synthesizing this data it is problematic when researchers choose to only
report high-level categories of information needs, such as how-to, discrepancy, and error

questions [47], or user interface, web document and stack trace questions [55], or Domain

concept descriptions, and location and uses of identifiers question categories [52]. This
can make it impossible to extract the fine-grained questions and relate findings across
papers when the questions have been reduced to high-level categories.

Some researchers tried to compare their findings with other papers. For example, La-
Toza et al. define reachability questions as “a search across feasible paths through a

CHAPTER 4. IMPORTANT INFORMATION NEEDS 23

program for target statements matching search criteria”. They then relate their question
category to the findings of two other papers, stating that they believe that 33% of the
questions in the paper by Ko et al. [20] and 52% of questions that were asked in the
paper of Sillito et al. [43] might be answerable by reachability questions [24]. This also
illustrates that it is impossible to find an exhaustive list of categories, as researchers can
constantly develop new categories that they deem useful.

Sharif et al. also spend significant effort on mapping their question categories to cate-
gories of other researchers, as pictured in Figure 4.1. However, the relationship between
those question categories is rarely bijective.

Furthermore, categories with the same name can be different. For example, the design
category of Ko et al. mainly focuses on why something was implemented a certain
way, whereas questions on design identified by Sharif et al. focus on how to move
from a high-level design to a specific implementation [20] [39]. The boundaries of the
categories, such as which questions were included and excluded with their rationale for
inclusion and exclusion, are rarely documented. Thus it is unclear how much categories
with the same name differ between researchers.

Indeed, even Kubelka et al., who replicated a previous study by Silito et al., wonder how
to compare their results with other studies [23]. They note that they found more questions
than in the study that they replicated and wonder if this difference can be explained with
their study protocol, as they might have adopted a more fine-grained approach. The
detailed study protocol for observations is rarely documented and can lead researchers to
find different questions. For example, Smith et al. find questions on self-reflection in
their observations, such as “Do I understand?” or “What should I do first”?, or “Have

I seen this before?”, whereas the other observational studies do not. We believe that
this is probably due to the study protocol and not that they were the only ones that had
participants who asked questions on self-reflection [45].

Another difficulty in assessing the importance of a category is that one can always con-
struct categories that are more important by just including more questions in that category.
For example, one can construct a category such as questions about understanding code,
which will be evaluated as much more important than questions about inheritance. Indeed
LaToza et al. find that the categories that were rated as the most frequently needed and

CHAPTER 4. IMPORTANT INFORMATION NEEDS 24

Figure 4.1: A figure from Sharif et al. [39] relating their categories with the categories
of other researchers

CHAPTER 4. IMPORTANT INFORMATION NEEDS 25

difficult to answer were the most high-level categories [24]. Thus we also need to ask
ourselves how useful a category is for the development of new tools and practices.

4.1.2 Partitioning of questions

Sillito et al. observe that answering a high-level question is often done by answering
multiple low-level sub questions. For example, when searching for an answer to the
question “Which classes are relevant?”, participants asked several low-level questions
about finding certain classes, set breakpoints and ran the application to find out if “this is

the thing”. Although one may observe developers searching for method names or classes,
these questions can be in support of a more high-level question. Sillito et al. noted that
they sometimes only later realized what the high-level question was that the developer
was asking himself [43].

Some observational studies find mostly high-level questions, while others observe more
low-level questions. Moreover, which level of granularity the observations focus on is
often not explicitly stated in the research protocol. Finally, the high-level question that
the developer is trying to answer might not always be obvious to the observer. This
makes it hard to compare questions across papers, as some questions might be asked in
support of other questions.

4.1.3 Comparing measures

Comparing different measures with each other is challenging. For example, LaToza et

al. let their participants rate information needs according to the statement “this is a

serious problem for me” on a 7-point rating scale [26]. In contrast, Begel et al. ask their
participants to “pick the tasks that are most important to you, and where if you had a

new tool that could make this task easier, it would have a big positive impact on your

work day”. It remains unclear how these measures relate to each other.

Additionally, similar information needs are often stated differently. For example, La-
Toza et al. ask their participants to rate “understanding who owns a piece of code”,
whereas Begel et al. ask their participants to rate “finding out who owns some code or

CHAPTER 4. IMPORTANT INFORMATION NEEDS 26

has ever worked on it in the past”. Thus it is also unclear how differences in the wording
of the information needs might influence their rating.

Therefore we believe that comparing only the absolute values is not the ultimate solution.
A better way might be to compare the relative values of the information needs listed in a
study. If it is one of the most highly rated information needs, then it would be important,
and if it is at the bottom of the list, then it would be less important. However, some
studies may only ask participants to rate information needs that are all very important,
which makes the ones rated as the least important on the list still be very important.

4.1.4 Scope of the study

The studies are often scoped to a specific activity or task, such as which information
developers need when diagnosing security vulnerabilities, reasoning about object struc-
ture, when understanding code changes, or during software maintenance. The scope of
the study is also affected by which data sources researchers chose to study and which
research methods they used. Thus if a study does not find a given information need to
be important or does not find the information need at all, does that mean that the study
does not support the finding that this information need is important? Or was it just out
of the scope of the study? Sometimes this is obvious. For example, papers that study
the questions on Stack Overflow will not find information needs about what coworkers
have been doing. However, often it is not as clear that an information need is out of the
scope of a study. For example, when a study is conducted in an artificial lab setting and
does not find questions on if an issue is important enough to fix. Is this because the study
was done in the lab, or does this indicate a lack of evidence that this is an important
information need?

4.2 Information Needs

In this section, we first describe our methodology for answering RQ2, and then present
our results by summarizing important categories of information needs. We also list
contrary findings and outline the solutions proposed by the researchers.

CHAPTER 4. IMPORTANT INFORMATION NEEDS 27

4.2.1 Methodology

Since we want to find categories that are useful for the development of new tools and
practices, we need a way to select categories from the wide range of categories proposed
in the research papers. Our assumption is that researchers would not point out a category
in the abstract or the conclusion of their paper, if the category is not useful. Thus we
looked at the abstract and the conclusion of the collected papers to compile a list of
categories to investigate.

We then go through this list and for each category proposed, we look through all of the
research papers to see if there is enough support. We then list the papers that are in
support of, or provide evidence against the importance of that category.

4.2.2 Results

We found three important categories of information needs that have substantial support
across a variety of studies. We note that the findings of most of the 43 papers relevant to
RQ2 neither support nor reject the importance of a given category of information needs,
either because the scope of the study is too narrow (e.g., closed-form surveys that only
assess a fixed list of information needs), or because the authors do not discuss how their
categories relate to other researchers’ categories.

4.2.2.1 Rationale

Questions on rationale address why something was done in a certain way, i.e., what
was the reasoning behind a decision? Research shows that questions on rationale are
moderately prevalent, but they are rated as important and hard to answer [20] [26] [25]
[29] [19] [31] [6] [35].

Developers question whether a piece of code is a temporary workaround, how much
thought went into it, and if it is implemented this way because of a deep understanding
of the problem or because of a lack of knowledge [26] [25].

Ko et al. observed that developers who asked why the code was implemented a certain

CHAPTER 4. IMPORTANT INFORMATION NEEDS 28

way often had to postpone their search, as the design knowledge only existed in coworkers’
minds. Design knowledge is often in unsearchable places such as whiteboards and
personal notebooks. In the rare case where this knowledge is documented, it is scattered
across design documents, bug reports, personal notebooks, e-mail threads, and code
comments. Developers do not search these sources because they think that they are
inaccurate and outdated [20] [26].

As one of the developers in the study states: “Given that I’ll be the one fixing

the bugs, I need to make sure I know not what we are doing, but why we are

doing it. We have these big long design meetings, and everybody states their

ideas, and we come to a consensus, but what never gets written in the spec is

why we decided on that. Keeping track of that is really hard.” [20]

Thus obtaining design knowledge comes at a high cost. Developers have to interrupt
their coworkers, which decreases their productivity [74]. Moreover, whenever someone
needs that same information again, they have to rediscover it by once more interrupting a
coworker [26].

Contrary Findings. Tao et al. find that knowledge on rationale is the most important
information need. However, contrary to most other research they find that this is the
most easily acquired information. We conjecture that this is because they only study
the information that developers need when understanding code changes, instead of
studying the broader information needs that arise in other everyday tasks. Specifically,
one participant in their study states that he can easily understand a change rationale from
bugs, change list descriptions, review comments and other metadata, but that this data
does not accompany the code as it changes over time [46].

Sharif et al. find fewer questions on rationale in mailing lists of open source projects
than other researchers found in colocated teams. However, this might be because their
categories do not match the rationale category of other researchers. They classified
questions into various categories including what and why questions. They state that there
are only very few questions in the why category, which the rationale category of other
researchers maps onto, in their comparison. However, they also note that questions on
rationale can be asked both in the form of why and what questions. Thus it remains
unclear if their study finds fewer questions on rationale or if the categories differ too

CHAPTER 4. IMPORTANT INFORMATION NEEDS 29

much to reasonably compare them [39].

Proposed Solutions. LaToza et al. suggest that providing hyperlinks in the code or
using tools that can capture informal whiteboard or paper designs might reduce the
cost of using design documents. They ask themselves if the design information that
developers seek was even considered by the original developer, and if so, how readable
informal notes would be to other developers [26].

Ko et al. suggest that recording all the design knowledge might not be cost-effective
and result in wasted effort, as it might never be used or might become outdated before
being read. Thus they propose that a demand-driven approach might be better. They also
note that developers often need to know how trustworthy a source is and that they enjoy
face-to-face interactions for exchanging design knowledge [20].

Begel et al. note that there are tools that could help. For example, “Deep Intellisense” [68]
can present scattered historical artifacts related to a piece of code, such as bug reports,
e-mails, check-ins, and specs in a more coherent way, which can help developers infer
the rationale behind a piece of code [6].

4.2.2.2 Awareness

Questions about maintaining awareness of coworkers and artifacts are asked frequently.
Some of this information may be easy to acquire but can come at a high cost of inter-
rupting coworkers. Developers often want to know who has experience with some piece
of code, what coworkers have been doing, who is working on the same file, or how the
resources they depend on have changed [20] [39] [41] [19] [16] [25] [31].

The most important information needs are about people rather than artifacts. Developers
want to find experts to talk to about a feature, API, or a product [6]. Coworkers are
essential information sources that developers rely on for many information needs such
as understanding the rationale behind a piece of code. Thus the need for maintaining
awareness of coworkers is linked to other information needs that are frequently only in
developers’ minds [20]. People have meetings or drop by coworkers’ offices to find out
which issues coworkers face and what is blocking them [20], and often ask friends about
who might have experience with a component [6].

CHAPTER 4. IMPORTANT INFORMATION NEEDS 30

Contrary Findings. Maalej et al. find that information about awareness is the least
frequently sought type of information. They also show that developers in large organiza-
tions need significantly more awareness-related information than developers working for
smaller companies [29].

Proposed Solutions. Ko et al. propose that agile methods such as Scrum could help
with maintaining awareness. They also point to a few tools such as FASTDash [65] where
developers can see who is viewing or working on which classes and methods among a
variety of other features. Indeed, there are so many different awareness displays that
there are even studies that compare their features [73].

Begel et al. propose a tool that connects developers with their artifacts, which makes it
easier for developers to find relationships such as “who has experience with a particular
piece of code” [6].

4.2.2.3 Implications of a change

Developers continuously add new features and fix bugs. As software evolves over time,
they need to know the implications their changes have on other code, as well as which
other changes affect their code. These questions are difficult to answer, and are rated as
important [46] [25] [19] [20] [26] [41] [31] [6] [7].

Developers most often want to know if a change breaks code in another part of a project.
They are also concerned whether a change has missed any place that should be changed at
the same time, how the change affects the behavior of the program, and if it introduces any
security concerns or timing issues [46] [25]. The main approaches to gain some certainty
that a change does not break anything are testing and code review. However, writing
tests as well as running them can be time-consuming and depends on the desired test
coverage. Code review requires manual effort and is subject to human error. Moreover,
developers would like to have high confidence in their changes [46].

Contrary Findings. Sharif et al. find only very few questions in open-source mailing
lists about the implications of a change. They state that possible reasons for this could be
that the dataset is largely taken from the initial stages of software evolution, or that it
could be because of the difference in research methods used, or that it might indicate a

CHAPTER 4. IMPORTANT INFORMATION NEEDS 31

different mindset of commercial and open source software developers [39].

Ko et al. observed developers acquiring information about the implications of a change
easily, but in the same study the participants rated it difficult to acquire. This reveals a
mismatch between the perception of developers and observations. As the other studies
mostly use surveys to assess how difficult information about the implications of a change
is to acquire, this might indicate that there is a problem with developers’ perceptions of
this issue [20].

Proposed Solutions. Kim notes that developers often have to go through large numbers
of irrelevant changes that do not semantically affect their own changes. She suggests that
tools could help developers filter out the irrelevant changes [19].

Understanding the implications of a code change that fixes multiple bugs or implements
multiple features is especially hard. Other researchers such as Tao et al. tried to reduce
the complexity of this problem by suggesting tools that can decompose a large change
into many smaller ones that are aligned with a specific issue [46].

4.2.2.4 Other categories

In this section, we discuss a few other categories that might be activity or company
specific and some that were impossible to investigate rigorously.

How to use an API. Some studies find this to be an important information need and
some do not. We do not know the reason for this variance. Most often developers that
are trying to use an API are looking for examples of how to use it and also often wonder
if it provides a certain functionality or not.

Understanding how the customers typically use their applications. There are only
two studies that assess this. It is also unclear how to measure the impact that this
information need has on the progress of a software project.

Understanding the cause of a program state. The information needs regarding the
cause of a program state may be specific to debugging. This is a big issue particularly in
studies where developers are fixing bugs, whereas this does not seem to be that important
when developers are engaged in other activities.

CHAPTER 4. IMPORTANT INFORMATION NEEDS 32

Understanding what the code is supposed to do. Some studies find this to be an
important information need while others do not. We do not know the reason for this
variance.

We list the categories that we excluded in Table A.15. Most of the excluded categories
were too technology specific, did not have enough support from other studies, or were
impossible to investigate.

5
Threats to Validity

Construct Validity. We assessed how important developers’ information needs are by
evaluating how important these needs are in primary research papers. Thus our results
are affected by the quality of the primary studies.

We excluded studies that are older than 15 years for RQ2. However, information needs
might have changed within this time period as developers embraced better tools and
practices. Nevertheless, we believe that the information needs we found are still important
today.

We also assume that useful and important categories of information needs are pointed out
in the abstract or the conclusion of these papers, which is rather a simplistic heuristic.

Internal Validity. We used Google Scholar for the systematic search instead of using
multiple search engines. We mitigated this threat by also searching for the papers that
are referenced by the included papers as this is independent of the search engine.

33

CHAPTER 5. THREATS TO VALIDITY 34

We believe that the greatest threat to validity is that all of the steps in our systematic
literature review were carried out by only one person. The guidelines that we followed
assume that the systematic search would be done by a large group of researchers. This
might bias our result and make them more prone to clerical errors.

Given the large number of results that we searched (8 147 results), many papers had to be
excluded just based on the title or the abstract, without looking at the content more closely.
This threat has been partially mitigated, because the matched papers that we evaluated
contained many duplicates. However, this might have biased the results towards including
more papers with many citations than ones that are not cited as often. We believe that
although we might have missed a few papers, this would not have changed the results of
RQ1 significantly. For RQ2, more papers included could lead to more categories found.
However, the goal for RQ2 was not to find an exhaustive list of categories. The goal was
to find important and useful categories, which we believe we found.

RQ2 is at higher risk of researcher bias, as synthesizing the data across papers is chal-
lenging. Additionally, the methodology used for finding important and useful categories
of information needs was only fully defined after we answered RQ1. Thus it is subject to
post hoc hypotheses.

External Validity. Many of the studies were conducted at larger companies and with
developers experienced enough to be hired by these companies. Thus the information
needs that we found might not generalize to novices or small projects.

6
Discussion and Future Work

Finding important information needs turned out to be much more challenging than finding
how researchers quantify information needs. How data from different papers can be
compared correctly is a question researchers struggle with. We do not know what a
better way to combine this data might be. We believe that having multiple researchers
synthesize this data independently of each other would improve the validity of our results.

During this project, we learned from the studies that the types of questions that developers
ask are intertwined with the tools and strategies that they use. As noted in several papers,
many developers seem to make ineffective use of these tools and use futile strategies. As
an example, Roehm et al. observed a participant who wanted to find locations where a
specific constant is used. Thus he changed the name of the constant and then inspected
the compiler warnings. He was unaware of the feature that finds all references, although
he had six years of experience using Eclipse [36]. During our search, we noticed that
most papers propose new tools whereas only a few papers propose new practices or how

35

CHAPTER 6. DISCUSSION AND FUTURE WORK 36

developers could learn more effective strategies. Many papers note that developers made
inefficient use of the tools and used ineffective strategies. If this is true, then it begs the
question: Is research on new tools more beneficial at helping developers than research on
new practices that enable them to choose, learn, and share more effective strategies?

7
Conclusion

We studied how researchers quantify developers’ information needs (RQ1) and which
important categories of information needs have empirical support from a wide range of
studies (RQ2).

We found only three observational studies that assess the importance of a question using
a measure other than how frequently it was asked. Most studies use self-reporting
in surveys or an artifact of the development process such as Stack Overflow to study
developers’ information needs. Both might have problems in that we do not know how
closely self-reporting matches with reality and we do not know if searching for answers
on Stack Overflow impacts the productivity of developers significantly in relation to
other information needs. We find that information about rationale (e.g., why is this

implemented this way?), awareness (e.g., what have my coworkers been doing?), and the
implications of a code change (e.g., what might break?) are some of the most important
information types that developers need to make progress.

37

CHAPTER 7. CONCLUSION 38

We described the state of the research on quantifying developers’ information needs.
We also discussed the challenges that we faced when synthesizing the most important
information needs from different studies. We did not find a complete list of categories of
information needs, nor is it possible to find a complete list, as researchers can constantly
develop new categories of information needs that they deem useful. We believe that the
categories that we found are both useful and important, as many studies support them.
Furthermore, we encourage researchers to align the tools and practices used to record,
communicate, and obtain information with developers’ needs.

Thus we think that our systematic literature review provides useful insights for researchers
studying developers’ information needs, as well as for tool developers working on tools
and practices to make software development more productive.

A
Anleitung zum wissenschaftlichen

Arbeiten

In the appendix, we list the details on:

• Which data we extracted from the studies (section A.1)

• Our search terms and search parameters (section A.2)

• The papers that we found after each iteration of our systematic search (section A.3)

• The papers included in our study (Table A.5)

• The papers that we included after applying our additional exclusion criteria for
RQ2 (Table A.8)

• The list of excluded studies (Table A.11)

• The list of excluded categories (Table A.15)

39

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 40

A.1 Data extraction

We extract from the studies:

• Study method. Which method was used for studying developers’ information
needs, e.g., did they use observations, surveys, interviews, or some other method?

• Data source. Which data source they used, e.g., people, mailing lists, Stack Over-
flow or some other source?

• If the study is quantitative. Does the study include quantitative data or was the
focus of the study qualitative?

• How the study quantifies developers information needs. E.g., does the study
measure how frequently a question was asked, how long it took to answer a
question, or do they use some other measure?

• Title. The title of the paper.

• Author. The primary author of the paper.

• Year published. The year that the study was published.

• Institution. Which institution the primary author is affiliated with (e.g., University
of Bern).

• Country. The country of the institution (e.g., Switzerland).

• References. The number of studies that the paper references.

• Citations. The number of studies that cite the paper. We used Google Scholar for
citation tracking.

• Venue. E.g., which conference, workshop, or journal was the paper published in
(e.g., ICSE).

• Publication type. E.g., was the paper published in a conference, workshop or in
a journal?

• Survey type. If the paper used surveys, did they use closed-form or open-ended
surveys?

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 41

• Study setting. E.g., was the study done in the lab or was it a field study in
industry?

A.2 Search terms

We conducted the systematic search in December of 2018 using Google Scholar. We
used the default search options, which did not limit our search to a specific time range
and we sorted the results by relevance. We limited each search to the first 100 results,
as we did not find any more relevant papers after this threshold. We used the following
search terms:

Search term
software developer “information needs”
developer questions
program comprehension “information needs”
program comprehension questions
stack overflow questions
developer mailing list questions
developer information seeking mailing list

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 42

A.3 Systematic search

Initial Search
Title Authors References Citations

Information Needs in Collocated Software Development
Teams

Ko et al. 20 447

Information needs for software development analytics Buse et al. 44 148
Information needs in bug reports: improving cooperation
between developers and users

Breu et al. 28 178

A quantitative analysis of developer information needs in
software ecosystems

Haenni et al. 15 20

Categorizing Developer Information Needs in Software
Ecosystems

Haenni et al. 11 17

Using information fragments to answer the questions devel-
opers ask

Fritz et al. 16 153

Codebook: discovering and exploiting relationships in soft-
ware repositories

Begel et al. 32 203

How do programmers ask and answer questions on the
web?: Nier track

Treude et al. 12 266

How do professional developers comprehend software? Roehm et al. 24 130
How Do Software Engineers Understand Code Changes? -
An Exploratory Study in Industry

Tao et al. 59 102

Analyze this! 145 questions for data scientists in software
engineering

Begel et al. 52 107

Developers ask reachability questions LaToza et al. 22 126
An empirical study on developer interactions in Stack Over-
flow

Wang et al. 19 65

Maintaining mental models: a study of developer work
habits

LaToza et al. 14 522

On the comprehension of program comprehension Maleej et al. 68 92
Comprehension Processes During Large Scale Maintenance Von

Mayrhauser
et al.

13 132

Table A.1: The list of studies that we found after each iteration of our systematic search.
This table is continued on the next page

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 43

Title Authors References Citations

Program Understanding Behavior During Adaptation of
Large Scale Software

Von
Mayrhauser
et al.

23 38

Program understanding behaviour during enhancement of
large-scale software

Von
Mayrhauser
et al.

21 90

Program Understanding Needs During Corrective Mainte-
nance of Large Scale Software

Von
Mayrhauser
et al.

16 21

Modelling the Information-Seeking Behaviour of Program-
mers D An Empirical Approach

O’Brien et
al.

32 22

Questions programmers ask during software evolution tasks Sillito et al. 25 256
Why, when, and what: analyzing stack overflow questions
by topic, type, and code

Allamanis et
al.

5 68

What are developers talking about? An analysis of topics
and trends in Stack Overflow

Barua et al. 55 234

What are mobile developers asking about? A large scale
study using stack overflow

Rosen et al. 44 59

An Exploratory Analysis of Mobile Development Issues
using Stack Overflow

Linares-
Vasquez et
al.

12 44

Mining Questions about Software Energy Consumption Pinto et al. 35 106
Mining Questions Asked by Web Developers Bajaj et al. 30 62
Using and Asking: APIs Used in the Android Market and
Asked About in Stack Overflow

Kavaler et al. 22 29

What Security Questions Do Developers Ask? A Large-
Scale Study of Stack Overflow Posts

Yang et al. 37 17

How the R Community Creates and Curates Knowledge: A
Comparative Study of Stack Overflow and Mailing Lists

Zagalsky et
al.

23 15

A Manual Categorization of Android App Development
Issues on Stack Overflow

Beyer et al. 9 19

Which Non-functional Requirements do Developers Focus
on?

Zou et al. 6 11

An empirically-based characterization and quantification
of information seeking through mailing lists during Open
Source developers’ software evolution

Sharif et al. 92 9

Observation of Open Source Programmers’ Information
Seeking

Sharif et al. 6 4

Developing Schema for Open Source Programmers’
Information-Seeking

Sharif et al. 36 8

Table A.2: This is a continuation of the table on the previous page

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 44

First Iteration
Title Authors References Citations

Asking and answering questions during a programming
change task

Sillito et al. 76 249

Hard-to-Answer Questions about Code LaToza et al. 28 93
Asking and Answering Questions about Unfamiliar APIs:
An Exploratory Study

Duala-
Ekoko et
al.

26 70

Questions developers ask while diagnosing potential secu-
rity vulnerabilities with static analysis

Smith et al. 41 31

Questions about Object Structure during Coding Activities Abi-Antoun
et al.

27 13

An Exploratory Study of Awareness Interests about Soft-
ware Modifications

Kim 19 11

Asking and Answering Questions during a Programming
Change Task in Pharo Language

Kubelka et
al.

9 9

Searching Across Paths LaToza et al. 11 3
Stakeholders’ Information Needs for Artifacts and their
Dependencies in a Real World Context

Müller et al. 35 9

Reporting Usability Defects: Do Reporters Report What
Software Developers Need?

Yusop et al. 27 14

What Questions Developers Ask During Software Evolu-
tion? An Academic Perspective

Novais et al. 13 3

Detecting API Usage Obstacles: A Study of iOS and An-
droid Developer Questions

Wang et al. 17 40

Mining Testing Questions on Stack Overflow Kochhar 16 2
Classifying Stack Overflow Posts on API Issues Ahasanuzzaman

et al.
36 1

What do Developers want? An Advisor approach for De-
veloper Priorities

Sharma et al. 7 1

What Help Do Developers Seek, When and How? Li et al. 31 37
From Code Understanding Needs to reverse Engineering
Tool Capabilities

Von
Mayrhauser
et al.

19 102

What Can Programmer Questions Tell Us About Frame-
works?

Hou et al. 12 33

Characterizing Programmers’ Information-Seeking during
Software Evolution

Buckley et
al.

30 8

Further Observation of Open Source Programmers’ Infor-
mation Seeking

Sharif et al. 34 4

Table A.3: This is a continuation of the table on the previous page

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 45

Title Authors References Citations

A field study of how developers locate features in source
code

Damevski et
al.

22 16

A Study on the Most Popular Questions About Concurrent
Programming

Pinto et al. 24 5

Towards comprehending the non-functional requirements
through Developers’ eyes: An exploration of Stack Over-
flow using topic analysis

Zou et al. 65 6

Empirical Analysis of the Logging Questions on the Stack
Overflow Website

Gujral et al. 24 1

What are Software Engineers asking about Android Testing
on Stack Overflow?

Villanes et
al.

27 2

What Questions Do Programmers Ask About Configuration
as Code?

Rahman et
al.

23 2

What Concerns Do Client Developers Have When Using
Web APIs? An Empirical Study of Developer Forums and
Stack Overflow

Venkatesh et
al.

29 9

Open Source Programmers’ Information Seeking During
Software Maintenance

Sharif et al. 43 1

Archetypal Source Code Searches: A Survey of Software
Developers and Maintainers

Sim et al. 14 122

What Do Concurrency Developers Ask About? A Large-
scale Study Using Stack Overflow

Ahmed et al. 34 0

Cognitive Processes in Program Comprehension Letovsky et
al.

21 437

Second Iteration
Title Authors References Citations

How Developers Search for Code: A Case Study Sadowski et
al.

31 50

What Makes APIs Hard to Learn? Answers from Develop-
ers

Robillard 9 239

What do developers search for on the web? Xia et al. 34 18

Third Iteration
Title Authors References Citations

Obstacles in Using Frameworks and APIs: An Exploratory
Study of Programmers’ Newsgroup Discussions

Hou et al. 28 66

Table A.4: This is a continuation of the table on the previous page

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 46

A.4 List of papers

Title Authors Year Reference

Empirical Analysis of the Logging Questions on the Stack
Overflow Website

Gujral et al. 2018 [14]

What Do Concurrency Developers Ask About? A Large-
scale Study Using Stack Overflow

Ahmed et al. 2018 [2]

What Questions Do Programmers Ask About Configuration
as Code?

Rahman et al. 2018 [34]

What are Software Engineers asking about Android Testing
on Stack Overflow?

Villanes et al. 2017 [49]

Towards comprehending the non-functional requirements
through Developers’ eyes: An exploration of Stack Over-
flow using topic analysis

Zou et al. 2017 [60]

What do developers search for on the web? Xia et al. 2017 [56]
What do Developers want? An Advisor approach for De-
veloper Priorities

Sharma et al. 2017 [41]

Reporting Usability Defects: Do Reporters Report What
Software Developers Need?

Yusop et al. 2016 [58]

What Concerns Do Client Developers Have When Using
Web APIs? An Empirical Study of Developer Forums and
Stack Overflow

Venkatesh et al. 2016 [48]

How the R Community Creates and Curates Knowledge: A
Comparative Study of Stack Overflow and Mailing Lists

Zagalsky et al. 2016 [59]

What Security Questions Do Developers Ask? A Large-
Scale Study of Stack Overflow Posts

Yang et al. 2016 [57]

Mining Testing Questions on Stack Overflow Kochhar 2016 [21]
What are mobile developers asking about? A large scale
study using stack overflow

Rosen et al. 2016 [37]

A Study on the Most Popular Questions About Concurrent
Programming

Pinto et al. 2015 [33]

An empirically-based characterization and quantification
of information seeking through mailing lists during Open
Source developers’ software evolution

Sharif et al. 2015 [39]

Questions developers ask while diagnosing potential secu-
rity vulnerabilities with static analysis

Smith et al. 2015 [45]

Table A.5: The list of primary studies that we identified

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 47

Title Authors Year Reference

How Developers Search for Code: A Case Study Sadowski et al. 2015 [38]
A Manual Categorization of Android App Development
Issues on Stack Overflow

Beyer et al. 2014 [8]

Mining Questions about Software Energy Consumption Pinto et al. 2014 [32]
What Questions Developers Ask During Software Evolu-
tion? An Academic Perspective

Novais et al. 2014 [31]

Mining Questions Asked by Web Developers Bajaj et al. 2014 [4]
What are developers talking about? An analysis of topics
and trends in Stack Overflow

Barua et al. 2014 [5]

Asking and Answering Questions during a Programming
Change Task in Pharo Language

Kubelka et al. 2014 [23]

A quantitative analysis of developer information needs in
software ecosystems

Haenni et al. 2014 [16]

Analyze this! 145 questions for data scientists in software
engineering

Begel et al. 2014 [7]

Why, when, and what: analyzing stack overflow questions
by topic, type, and code

Allamanis et al. 2013 [3]

An empirical study on developer interactions in Stack Over-
flow

Wang et al. 2013 [55]

Stakeholders’ Information Needs for Artifacts and their
Dependencies in a Real World Context

Müller et al. 2013 [30]

Categorizing Developer Information Needs in Software
Ecosystems

Haenni et al. 2013 [15]

An Exploratory Analysis of Mobile Development Issues
using Stack Overflow

Linares-Vásquez et
al.

2013 [28]

Asking and Answering Questions about Unfamiliar APIs:
An Exploratory Study

Duala-Ekoko et al. 2012 [12]

How Do Software Engineers Understand Code Changes? -
An Exploratory Study in Industry

Tao et al. 2012 [46]

On the comprehension of program comprehension Maalej et al. 2012 [29]
How do professional developers comprehend software? Roehm et al. 2012 [36]
Information needs for software development analytics Buse et al. 2012 [11]
How do programmers ask and answer questions on the
web?: Nier track

Treude et al. 2011 [47]

Open Source Programmers’ Information Seeking During
Software Maintenance

Sharif et al. 2011 [22]

An Exploratory Study of Awareness Interests about Soft-
ware Modifications

Kim 2011 [19]

Obstacles in Using Frameworks and APIs: An Exploratory
Study of Programmers’ Newsgroup Discussions

Hou et al. 2011 [17]

Using information fragments to answer the questions devel-
opers ask

Fritz et al. 2010 [13]

Table A.6: This is a continuation of the table on the previous page

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 48

Title Authors Year Reference

Information needs in bug reports: improving cooperation
between developers and users

Breu et al. 2010 [9]

Developers ask reachability questions LaToza et al. 2010 [24]
Hard-to-Answer Questions about Code LaToza et al. 2010 [25]
Questions about Object Structure during Coding Activities Abi-Antoun et al. 2010 [1]
Codebook: discovering and exploiting relationships in soft-
ware repositories

Begel et al. 2010 [6]

What Makes APIs Hard to Learn? Answers from Develop-
ers

Robillard 2009 [35]

Asking and answering questions during a programming
change task

Sillito et al. 2008 [43]

Developing Schema for Open Source Programmers’
Information-Seeking

Sharif et al. 2008 [40]

Information Needs in Collocated Software Development
Teams

Ko et al. 2007 [20]

Questions programmers ask during software evolution tasks Sillito et al. 2006 [42]
Maintaining mental models: a study of developer work
habits

LaToza et al. 2006 [26]

What Can Programmer Questions Tell Us About Frame-
works?

Hou et al. 2005 [18]

Characterizing Programmers’ Information-Seeking during
Software Evolution

Buckley et al. 2004 [10]

Archetypal Source Code Searches: A Survey of Software
Developers and Maintainers

Sim et al. 1998 [44]

Program Understanding Behavior During Adaptation of
Large Scale Software

Von Mayrhauser et
al.

1998 [53]

Program Understanding Needs During Corrective Mainte-
nance of Large Scale Software

Von Mayrhauser et
al.

1997 [52]

Program understanding behaviour during enhancement of
large-scale software

Von Mayrhauser et
al.

1997 [54]

Comprehension Processes During Large Scale Maintenance Von Mayrhauser et
al.

1994 [51]

From Code Understanding Needs to reverse Engineering
Tool Capabilities

Von Mayrhauser et
al.

1993 [50]

Cognitive Processes in Program Comprehension Letowsky 1987 [27]

Table A.7: This is a continuation of the table on the previous page

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 49

A.5 List of papers relevant to RQ2

Title Authors Year Reference

Empirical Analysis of the Logging Questions on the Stack
Overflow Website

Gujral et al. 2018 [14]

What Do Concurrency Developers Ask About? A Large-
scale Study Using Stack Overflow

Ahmed et al. 2018 [2]

What Questions Do Programmers Ask About Configuration
as Code?

Rahman et al. 2018 [34]

What are Software Engineers asking about Android Testing
on Stack Overflow?

Villanes et al. 2017 [49]

Towards comprehending the non-functional requirements
through Developers’ eyes: An exploration of Stack Over-
flow using topic analysis

Zou et al. 2017 [60]

What do developers search for on the web? Xia et al. 2017 [56]
What do Developers want? An Advisor approach for De-
veloper Priorities

Sharma et al. 2017 [41]

Reporting Usability Defects: Do Reporters Report What
Software Developers Need?

Yusop et al. 2016 [58]

What Concerns Do Client Developers Have When Using
Web APIs? An Empirical Study of Developer Forums and
Stack Overflow

Venkatesh et al. 2016 [48]

How the R Community Creates and Curates Knowledge: A
Comparative Study of Stack Overflow and Mailing Lists

Zagalsky et al. 2016 [59]

What Security Questions Do Developers Ask? A Large-
Scale Study of Stack Overflow Posts

Yang et al. 2016 [57]

Mining Testing Questions on Stack Overflow Kochhar 2016 [21]
What are mobile developers asking about? A large scale
study using stack overflow

Rosen et al. 2016 [37]

A Study on the Most Popular Questions About Concurrent
Programming

Pinto et al. 2015 [33]

An empirically-based characterization and quantification
of information seeking through mailing lists during Open
Source developers’ software evolution

Sharif et al. 2015 [39]

How Developers Search for Code: A Case Study Sadowski et al. 2015 [38]

Table A.8: The list of primary studies that we identified after applying our additional
inclusion and exclusion criteria of RQ2. This table is continued on the next page

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 50

Title Authors Year Reference

A Manual Categorization of Android App Development
Issues on Stack Overflow

Beyer et al. 2014 [8]

Mining Questions about Software Energy Consumption Pinto et al. 2014 [32]
What Questions Developers Ask During Software Evolu-
tion? An Academic Perspective

Novais et al. 2014 [31]

Mining Questions Asked by Web Developers Bajaj et al. 2014 [4]
What are developers talking about? An analysis of topics
and trends in Stack Overflow

Barua et al. 2014 [5]

A quantitative analysis of developer information needs in
software ecosystems

Haenni et al. 2014 [16]

Analyze this! 145 questions for data scientists in software
engineering

Begel et al. 2014 [7]

An empirical study on developer interactions in Stack Over-
flow

Wang et al. 2013 [55]

Stakeholders’ Information Needs for Artifacts and their
Dependencies in a Real World Context

Müller et al. 2013 [30]

An Exploratory Analysis of Mobile Development Issues
using Stack Overflow

Linares-Vásquez et
al.

2013 [28]

Asking and Answering Questions about Unfamiliar APIs:
An Exploratory Study

Duala-Ekoko et al. 2012 [12]

How Do Software Engineers Understand Code Changes? -
An Exploratory Study in Industry

Tao et al. 2012 [46]

On the comprehension of program comprehension Maalej et al. 2012 [29]
Information needs for software development analytics Buse et al. 2012 [11]
How do programmers ask and answer questions on the
web?: Nier track

Treude et al. 2011 [47]

Open Source Programmers’ Information Seeking During
Software Maintenance

Sharif et al. 2011 [22]

An Exploratory Study of Awareness Interests about Soft-
ware Modifications

Kim 2011 [19]

Information needs in bug reports: improving cooperation
between developers and users

Breu et al. 2010 [9]

Developers ask reachability questions LaToza et al. 2010 [24]
Hard-to-Answer Questions about Code LaToza et al. 2010 [25]
Codebook: discovering and exploiting relationships in soft-
ware repositories

Begel et al. 2010 [6]

What Makes APIs Hard to Learn? Answers from Develop-
ers

Robillard 2009 [35]

Table A.9: This is a continuation of the table on the previous page

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 51

Title Authors Year Reference

Developing Schema for Open Source Programmers’
Information-Seeking

Sharif et al. 2008 [40]

Information Needs in Collocated Software Development
Teams

Ko et al. 2007 [20]

Maintaining mental models: a study of developer work
habits

LaToza et al. 2006 [26]

What Can Programmer Questions Tell Us About Frame-
works?

Hou et al. 2005 [18]

Characterizing Programmers’ Information-Seeking during
Software Evolution

Buckley et al. 2004 [10]

Table A.10: This is a continuation of the table on the previous page

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 52

A.6 Excluded studies

Title Reason for exclusion

Modelling the Information-Seeking Behaviour
of Programmers’ An Empirical Approach

Focuses on information seeking behavior and not on
information needs.

Searching Across Paths The questions are taken from previous studies. This
study just describes how developers translate many
common questions into searches across paths.

Classifying Stack Overflow Posts on API Is-
sues

Focuses on constructing a classifier rather than cat-
egorizing questions to find developers’ information
needs.

A field study of how developers locate features
in source code

Focuses on how developers locate features in source
code instead of the information needs of developers.

What Help Do Developers Seek, When and
How?

Although the researchers state in the abstract that the
study focuses on information needs, it does not. It
instead focuses on which information sources devel-
opers use.

Which Non-functional Requirements Do De-
velopers Focus On? An Empirical Study on
Stack Overflow Using Topic Analysis

Contains duplicate data from another study by the
same authors.

Further Observation of Open Source Program-
mers’ Information Seeking

Contains duplicate data from another study by the
same authors.

Observation of Open Source Programmers’ In-
formation Seeking

Contains duplicate data from another study by the
same authors.

How effective developers investigate source
code

Focuses on information seeking behaviour rather than
what kind of information developers seek.

What Help Do Developers Seek, When and
How?

Focuses on the help seeking behavior and not the
information needs of the developers.

Debugging Reinvented: Asking and Answer-
ing Why and Why Not Questions about Pro-
gram Behavior

Proposes a new tool instead of focusing on developer’
information needs.

Information Needs for Validating Evolving
Software Systems: An Exploratory Study at
Google

Focuses on reliability engineers instead of software
developers.

How Developers Diagnose Potential Security
Vulnerabilities with a Static Analysis Tool

Contains duplicate data from another study by the
same authors.

Table A.11: The list of excluded papers. This table is continued on the next page

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 53

Title

Frequently Asked Questions in Bug Reports
Get Me Here: Using Verification Tools to Answer Developer Questions
Deep intellisense: a tool for rehydrating evaporated information
Replaying Past Changes in Multi-developer Projects
Program Comprehension as Fact Finding
Software Evolution Comprehension: Replay to the Rescue
Harnessing Stack Overflow for the IDE
Communication in Open Source Software Development Mailing Lists
Group Awareness in Distributed Software Development
Studying the Use of Developer IRC Meetings in Open Source Projects
An Exploratory Study of How Developers Seek, Relate, and Collect Relevant Information during
Software Maintenance Tasks
Studying the use of developer IRC meetings in open source projects
Defining Open Source Software Project Success
A review of awareness in distributed collaborative software engineering
An Empirical Study of API Usability
Extracting and answering why and why not questions about Java program output
Programmer information needs after memory failure
Replaying Past Changes in Multi-developer Projects
Information Needs for Integration Decisions in the Release Process of Large-Scale Parallel Devel-
opment
Debugging Revisited
Answering software evolution questions: An empirical evaluation
Open Source Programmers’ Information Seeking
What Questions do Requirements Engineers Ask?
Information Needs for Integration Decisions in the Release Process of Large-Scale Parallel Devel-
opment
Information Needs in Contemporary Code Review
Information Needs in Software Ecosystems Development
Finding Relevant Answers in Software Forums
Information Needs in Software Ecosystems Development
Information Needs for Integration Decisions in the Release Process of Large-Scale Parallel Devel-
opment
Answering Conceptual Queries with Ferret
Navigating and Querying Code Without Getting Lost
What Questions do Requirements Engineers Ask?

Table A.12: This is a continuation of the table on the previous page

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 54

Title

Communicative Intention in Code Review Questions
An Efficient Approach for Providing Rationale of Method Change for Object Oriented Programming
What Do Developers Use the Crowd For?
A survey on mining stack overflow: question and answering (Q&A) community
Group Awareness in Distributed Software Development
On the Importance of Understanding the Strategies that Developers Use
Can you tell me if it smells?: A study on how developers discuss code smells and anti-patterns in
Stack Overflow
The information-seeking practices of engineers: searching for documents as well as for people
Coordination in Large-Scale Software Development: Helpful and Unhelpful Behaviors
Ask the Crowd: Scaffolding Coordination and Knowledge Sharing in Microtask Programming
From Program Comprehension to Tool Requirements for an Industrial Environment
Foraging and Navigations, Fundamentally: Developers’ Predictions of Value and Cost
Breakdowns and processes during the early activities of software design by professionals
Expert problem solving strategies for program comprehension
Stimulus structures and mental representations in expert comprehension of computer programs
Knowledge and Processes in the Comprehension of Computer Programs
Program Understanding - A Survey
Patterns of developers behaviour: A 1000-hour industrial study
On the Role of Program Comprehension in Embedded Systems
Empirically Refining a Model of Programmers’ Information-Seeking Behavior during Software
Maintenance
What do I need to know and where do I find it? - An Empirical Investigation of Information Needs
in Enterprise Integration Projects
Managing Software Change Tasks: An Exploratory Study
Portfolio: Finding Relevant Functions and Their Usages
Querying source code with natural language
Working with Search Results
Understanding and Classifying the Quality of Technical Forum Questions
Classifying Stack Overflow Questions Based on Blooms Taxonomy
Software History under the Lens: A Study on Why and How Developers Examine It
Making Your Programming Questions Be Answered Quickly: A Content Oriented Study to
Technical Q&A Forum
How Do Developers Discuss Rationale?
An Empirical Study of API Usability

Table A.13: This is a continuation of the table on the previous page

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 55

Title

Content Classification of Development Emails
Using Conditional Random Fields to Extract Contexts and Answers of Questions from Online
Forums
Extracting Problem and Resolution Information from Online Discussion Forums
Finding Relevant Answers in Software Forums
A Survey on the Software Maintenance Process
Information needs of developers for program comprehension during software maintenance tasks
Concurrency at Microsoft: An exploratory survey
Identifying the information needs and sources of software practitioners
What information do software engineering practitioners need?
Evaluating Forum Discussions to Inform the Design of an API Critic
FASTDash: A Visual Dashboard for Fostering Awareness in Software Teams

Table A.14: This is a continuation of the table on the previous page

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 56

A.7 Excluded categories

Category Reason for exclusion

Why something is failing We only found support for this in studies where de-
velopers are debugging.

How to fix a bug If a given question is asked in support of fixing a
bug cannot be extracted from the questions in most
studies.

Understanding the cause of the problem This is not assessed in most studies.
Exceptions/error messages There is not much support from studies that do not

use Stack Overflow that this is an important issue.
Unexpected behavior This is hard to investigate. We cannot extract if a

given question was asked because of unexpected be-
havior.

What the expected results are This is not assessed in most studies.
Which suitable third-party libraries/services to
use

We did not find enough support for this.

Questions about the tools and technology em-
ployed in the project

We did not find enough support for this.

Best industrial practices We did not find enough support for this.
How-to questions It is not clear from the studies where the boundaries

of this category are, and thus it is impossible to in-
vestigate.

Why questions It is not clear from the studies where the boundaries
of this category are, and thus it is impossible to in-
vestigate.

Where questions It is not clear from the studies where the boundaries
of this category are, and thus it is impossible to in-
vestigate.

What questions It is not clear from the studies where the boundaries
of this category are, and thus it is impossible to in-
vestigate.

Table A.15: The list of excluded categories. This table is continued on the next page

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 57

Category Reason for exclusion

The value of a fix We did not find enough support for this.
Unknown terminologies We did not find enough support for this.
Where code is located We did not find enough support for this.
“Is it possible . . . ?” questions It is not clear from the studies where the boundaries

of this category are, and thus it is impossible to in-
vestigate.

“What is the problem. . . ?” questions It is not clear from the studies where the boundaries
of this category are, and thus it is impossible to in-
vestigate.

Reachability questions LaToza et al. define reachability questions as “a
search across feasible paths through a program for
target statements matching search criteria”. How-
ever, it is impossible for us to investigate which high-
level questions in other studies could be answered by
asking several low-level reachability questions.

Table A.16: This is a continuation of the table on the previous page

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 58

Category

OOP
Classes
Java
Python
C#
C
User interface
Stack trace
Large code snippets
Web documents
Miscellaneous
Systems’ implementations
HTML5
Javascript
Practical problems
Basic concepts of concurrent programming
Syntax errors
Provisioning instances
Assessing Puppet’s feasibility to accomplish certain tasks
Installation
Security
Data separation
Template related questions
Compatibility issues
Crash reports
Database connection
General knowledge
App distribution
Mobile tools
User interface development
Usability problems
Reliability problems
Maintainability problems
Reviewing code
Correctness of concurrent programs
Performance of concurrent programs
Thread safety
Questions about database management systems
Public datasets to test newly developed algorithms
Database optimization solutions

Table A.17: This is a continuation of the table on the previous page

Systematic Literature Review Papers

[1] Marwan Abi-Antoun, Nariman Ammar, and Thomas LaToza. Questions about
object structure during coding activities. In Proceedings of the 2010 ICSE Workshop

on Cooperative and Human Aspects of Software Engineering, pages 64–71. ACM,
2010.

[2] Syed Ahmed and Mehdi Bagherzadeh. What do concurrency developers ask about?:
a large-scale study using Stack Overflow. In Proceedings of the 12th ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement,
page 30. ACM, 2018.

[3] Miltiadis Allamanis and Charles Sutton. Why, when, and what: analyzing Stack
Overflow questions by topic, type, and code. In Proceedings of the 10th Working

Conference on Mining Software Repositories, pages 53–56. IEEE Press, 2013.

[4] Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. Mining questions asked
by web developers. In Proceedings of the 11th Working Conference on Mining

Software Repositories, pages 112–121. ACM, 2014.

[5] Anton Barua, Stephen W Thomas, and Ahmed E Hassan. What are developers
talking about? an analysis of topics and trends in Stack Overflow. Empirical

Software Engineering, 19(3):619–654, 2014.

[6] Andrew Begel, Yit Phang Khoo, and Thomas Zimmermann. Codebook: discovering
and exploiting relationships in software repositories. In Software Engineering, 2010

ACM/IEEE 32nd International Conference on, volume 1, pages 125–134. IEEE,
2010.

59

SYSTEMATIC LITERATURE REVIEW PAPERS 60

[7] Andrew Begel and Thomas Zimmermann. Analyze this! 145 questions for data sci-
entists in software engineering. In Proceedings of the 36th International Conference

on Software Engineering, pages 12–23. ACM, 2014.

[8] Stefanie Beyer and Martin Pinzger. A manual categorization of Android app
development issues on Stack Overflow. In Software Maintenance and Evolution

(ICSME), 2014 IEEE International Conference on, pages 531–535. IEEE, 2014.

[9] Silvia Breu, Rahul Premraj, Jonathan Sillito, and Thomas Zimmermann. Informa-
tion needs in bug reports: improving cooperation between developers and users.
In Proceedings of the 2010 ACM conference on Computer supported cooperative

work, pages 301–310. ACM, 2010.

[10] Jim Buckley, Christopher Exton, and Judith Good. Characterizing programmers’
information-seeking during software evolution. In Software Technology and Engi-

neering Practice, 2004. STEP 2004. The 12th International Workshop on, pages
7–pp. IEEE, 2005.

[11] Raymond PL Buse and Thomas Zimmermann. Information needs for software
development analytics. In Proceedings of the 34th international conference on

software engineering, pages 987–996. IEEE Press, 2012.

[12] Ekwa Duala-Ekoko and Martin P Robillard. Asking and answering questions about
unfamiliar APIs: An exploratory study. In Software Engineering (ICSE), 2012 34th

International Conference on, pages 266–276. IEEE, 2012.

[13] Thomas Fritz and Gail C Murphy. Using information fragments to answer the
questions developers ask. In Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering-Volume 1, pages 175–184. ACM, 2010.

[14] Harshit Gujral, Abhinav Sharma, Sangeeta Lal, Amanpreet Kaur, A Kumar, and
Ashish Sureka. Empirical analysis of the logging questions on the Stack Over-
flow website. In 2018 Conference On Software Engineering & Data Sciences

(CoSEDS)(in-press), 2018.

SYSTEMATIC LITERATURE REVIEW PAPERS 61

[15] Nicole Haenni, Mircea Lungu, Niko Schwarz, and Oscar Nierstrasz. Categorizing
developer information needs in software ecosystems. In Proceedings of the 2013

International Workshop on Ecosystem Architectures, pages 1–5. ACM, 2013.

[16] Nicole Haenni, Mircea Lungu, Niko Schwarz, and Oscar Nierstrasz. A quantitative
analysis of developer information needs in software ecosystems. In Proceedings

of the 2014 European Conference on Software Architecture Workshops, page 12.
ACM, 2014.

[17] Daqing Hou and Lin Li. Obstacles in using frameworks and APIs: An exploratory
study of programmers’ newsgroup discussions. In Program Comprehension (ICPC),

2011 IEEE 19th International Conference on, pages 91–100. IEEE, 2011.

[18] Daqing Hou, Kenny Wong, and H James Hoover. What can programmer ques-
tions tell us about frameworks? In Program Comprehension, 2005. IWPC 2005.

Proceedings. 13th International Workshop on, pages 87–96. IEEE, 2005.

[19] Miryung Kim. An exploratory study of awareness interests about software modi-
fications. In Proceedings of the 4th International Workshop on Cooperative and

Human Aspects of Software Engineering, pages 80–83. ACM, 2011.

[20] Andrew J Ko, Robert DeLine, and Gina Venolia. Information needs in collocated
software development teams. In Proceedings of the 29th international conference

on Software Engineering, pages 344–353. IEEE Computer Society, 2007.

[21] Pavneet Singh Kochhar. Mining testing questions on Stack Overflow. In Proceed-

ings of the 5th International Workshop on Software Mining, pages 32–38. ACM,
2016.

[22] Fakulti S Komputer and T Maklumat. Open source programmers’ information
seeking during software maintenance. Journal of Computer Science, 7(7):1060–
1071, 2011.

[23] Juraj Kubelka, Alexandre Bergel, and Romain Robbes. Asking and answering
questions during a programming change task in Pharo language. In Proceedings

of the 5th Workshop on Evaluation and Usability of Programming Languages and

Tools, pages 1–11. ACM, 2014.

SYSTEMATIC LITERATURE REVIEW PAPERS 62

[24] Thomas D LaToza and Brad A Myers. Developers ask reachability questions.
In Proceedings of the 32Nd ACM/IEEE International Conference on Software

Engineering-Volume 1, pages 185–194. ACM, 2010.

[25] Thomas D LaToza and Brad A Myers. Hard-to-answer questions about code. In
Evaluation and Usability of Programming Languages and Tools, page 8. ACM,
2010.

[26] Thomas D LaToza, Gina Venolia, and Robert DeLine. Maintaining mental models: a
study of developer work habits. In Proceedings of the 28th international conference

on Software engineering, pages 492–501. ACM, 2006.

[27] Stanley Letovsky. Cognitive processes in program comprehension. Journal of

Systems and software, 7(4):325–339, 1987.

[28] Mario Linares-Vásquez, Bogdan Dit, and Denys Poshyvanyk. An exploratory
analysis of mobile development issues using Stack Overflow. In Mining Software

Repositories (MSR), 2013 10th IEEE Working Conference on, pages 93–96. IEEE,
2013.

[29] Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. On the compre-
hension of program comprehension. ACM Transactions on Software Engineering

and Methodology (TOSEM), 23(4):31, 2014.

[30] Sebastian C Müller and Thomas Fritz. Stakeholders’ information needs for artifacts
and their dependencies in a real world context. In Software Maintenance (ICSM),

2013 29th IEEE International Conference on, pages 290–299. IEEE, 2013.

[31] Renato Novais, Creidiane Brito, and Manoel Mendonça. What questions developers
ask during software evolution? an academic perspective. In 2nd Workshop on

Software Visualization, Evolution, and Maintenance (VEM 2014), pages 14–21,
2014.

[32] Gustavo Pinto, Fernando Castor, and Yu David Liu. Mining questions about
software energy consumption. In Proceedings of the 11th Working Conference on

Mining Software Repositories, pages 22–31. ACM, 2014.

SYSTEMATIC LITERATURE REVIEW PAPERS 63

[33] Gustavo Pinto, Weslley Torres, and Fernando Castor. A study on the most popular
questions about concurrent programming. In Proceedings of the 6th Workshop

on Evaluation and Usability of Programming Languages and Tools, pages 39–46.
ACM, 2015.

[34] Akond Rahman, Asif Partho, Patrick Morrison, and Laurie Williams. What ques-
tions do programmers ask about configuration as code? In Proceedings of the 4th

International Workshop on Rapid Continuous Software Engineering, pages 16–22.
ACM, 2018.

[35] Martin P Robillard. What makes APIs hard to learn? answers from developers.
IEEE software, 26(6):27–34, 2009.

[36] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. How do profes-
sional developers comprehend software? In Proceedings of the 34th International

Conference on Software Engineering, pages 255–265. IEEE Press, 2012.

[37] Christoffer Rosen and Emad Shihab. What are mobile developers asking about?
a large scale study using Stack Overflow. Empirical Software Engineering,
21(3):1192–1223, 2016.

[38] Caitlin Sadowski, Kathryn T Stolee, and Sebastian Elbaum. How developers
search for code: a case study. In Proceedings of the 2015 10th Joint Meeting on

Foundations of Software Engineering, pages 191–201. ACM, 2015.

[39] Khaironi Y Sharif, Michael English, Nour Ali, Chris Exton, JJ Collins, and Jim
Buckley. An empirically-based characterization and quantification of information
seeking through mailing lists during open source developers’ software evolution.
Information and Software Technology, 57:77–94, 2015.

[40] Khaironi Yatim Sharif and Jim Buckley. Developing schema for open source
programmers’ information-seeking. In Information Technology, 2008. ITSim 2008.

International Symposium on, volume 1, pages 1–9. IEEE, 2008.

[41] Vibhu Saujanya Sharma, Rohit Mehra, and Vikrant Kaulgud. What do developers
want?: an advisor approach for developer priorities. In Proceedings of the 10th In-

SYSTEMATIC LITERATURE REVIEW PAPERS 64

ternational Workshop on Cooperative and Human Aspects of Software Engineering,
pages 78–81. IEEE Press, 2017.

[42] Jonathan Sillito, Gail C Murphy, and Kris De Volder. Questions programmers
ask during software evolution tasks. In Proceedings of the 14th ACM SIGSOFT

international symposium on Foundations of software engineering, pages 23–34.
ACM, 2006.

[43] Jonathan Sillito, Gail C Murphy, and Kris De Volder. Asking and answering
questions during a programming change task. IEEE Transactions on Software

Engineering, 34(4):434–451, 2008.

[44] Susan Elliott Sim, Charles LA Clarke, and Richard C Holt. Archetypal source
code searches: A survey of software developers and maintainers. In Program

Comprehension, 1998. IWPC’98. Proceedings., 6th International Workshop on,
pages 180–187. IEEE, 1998.

[45] Justin Smith, Brittany Johnson, Emerson Murphy-Hill, Bill Chu, and
Heather Richter Lipford. Questions developers ask while diagnosing potential
security vulnerabilities with static analysis. In Proceedings of the 2015 10th Joint

Meeting on Foundations of Software Engineering, pages 248–259. ACM, 2015.

[46] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. How
do software engineers understand code changes?: an exploratory study in indus-
try. In Proceedings of the ACM SIGSOFT 20th International Symposium on the

Foundations of Software Engineering, page 51. ACM, 2012.

[47] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. How do programmers
ask and answer questions on the web?: Nier track. In Software Engineering (ICSE),

2011 33rd International Conference on, pages 804–807. IEEE, 2011.

[48] Pradeep K Venkatesh, Shaohua Wang, Feng Zhang, Ying Zou, and A Hassan. What
concerns do client developers have when using web APIs? an empirical study of
developer forums and Stack Overflow. In IEEE international conference on web

services (ICWS), pages 131–138, 2016.

SYSTEMATIC LITERATURE REVIEW PAPERS 65

[49] Isabel K Villanes, Silvia M Ascate, Josias Gomes, and Arilo Claudio Dias-Neto.
What are software engineers asking about Android testing on Stack Overflow?
In Proceedings of the 31st Brazilian Symposium on Software Engineering, pages
104–113. ACM, 2017.

[50] Anneliese von Mayrhauser and A Marie Vans. From code understanding needs to
reverse engineering tool capabilities. In Computer-Aided Software Engineering,

1993. CASE’93., Proceeding of the Sixth International Workshop on, pages 230–239.
IEEE, 1993.

[51] Anneliese von Mayrhauser and A Marie Vans. Comprehension processes during
large scale maintenance. In Proceedings of the 16th international conference on

Software engineering, pages 39–48. IEEE Computer Society Press, 1994.

[52] Anneliese von Mayrhauser and A Marie Vans. Program understanding needs
during corrective maintenance of large scale software. In Computer Software and

Applications Conference, 1997. COMPSAC’97. Proceedings., The Twenty-First

Annual International, pages 630–637. IEEE, 1997.

[53] Anneliese Von Mayrhauser and A Marie Vans. Program understanding behavior
during adaptation of large scale software. In Program Comprehension, 1998.

IWPC’98. Proceedings., 6th International Workshop on, pages 164–172. IEEE,
1998.

[54] Anneliese Von Mayrhauser, A Marie Vans, and Adele E Howe. Program understand-
ing behaviour during enhancement of large-scale software. Journal of Software

Maintenance: Research and Practice, 9(5):299–327, 1997.

[55] Shaowei Wang, David Lo, and Lingxiao Jiang. An empirical study on developer
interactions in StackOverflow. In Proceedings of the 28th Annual ACM Symposium

on Applied Computing, pages 1019–1024. ACM, 2013.

[56] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E Hassan, and
Zhenchang Xing. What do developers search for on the web? Empirical Software

Engineering, 22(6):3149–3185, 2017.

SYSTEMATIC LITERATURE REVIEW PAPERS 66

[57] Xin-Li Yang, David Lo, Xin Xia, Zhi-Yuan Wan, and Jian-Ling Sun. What security
questions do developers ask? a large-scale study of Stack Overflow posts. Journal

of Computer Science and Technology, 31(5):910–924, 2016.

[58] Nor Shahida Mohamad Yusop, John Grundy, and Rajesh Vasa. Reporting usability
defects: do reporters report what software developers need? In Proceedings

of the 20th international conference on evaluation and assessment in software

engineering, page 38. ACM, 2016.

[59] Alexey Zagalsky, Carlos Gómez Teshima, Daniel M German, Margaret-Anne
Storey, and Germán Poo-Caamaño. How the R community creates and curates
knowledge: a comparative study of Stack Overflow and mailing lists. In Proceedings

of the 13th International Conference on Mining Software Repositories, pages 441–
451. ACM, 2016.

[60] Jie Zou, Ling Xu, Mengning Yang, Xiaohong Zhang, and Dan Yang. Towards
comprehending the non-functional requirements through developers’ eyes: An
exploration of Stack Overflow using topic analysis. Information and Software

Technology, 84:19–32, 2017.

Other References

[61] Ausblick auf 4.16, umfang der Änderungen & changelog in: heise.de.
https://www.heise.de/ct/artikel/Die-Neuerungen-von-

Linux-4-15-3900646.html?seite=9. Accessed: 2019-01-31.

[62] A blog post on the official Stack Overflow blog with the title “Does
Anyone Actually Visit Stack Overflow’s Home Page?”. https:

//stackoverflow.blog/2017/03/09/anyone-actually-visit-

stack-overflows-home-page/. Accessed: 2019-01-09.

[63] Jeff Atwood. A blog post from the creator of Stack Overflow on his blog
Coding Horror with the title “What does Stack Overflow want to be when it
grows up?”. https://blog.codinghorror.com/what-does-stack-
overflow-want-to-be-when-it-grows-up/. Accessed: 2019-01-09.

[64] Nisa Bakkalbasi, Kathleen Bauer, Janis Glover, and Lei Wang. Three options for
citation tracking: Google Scholar, Scopus and Web of Science. Biomedical digital

libraries, 3(1):7, 2006.

[65] Jacob T Biehl, Mary Czerwinski, Greg Smith, and George G Robertson. Fastdash:
a visual dashboard for fostering awareness in software teams. In Proceedings of

the SIGCHI conference on Human factors in computing systems, pages 1313–1322.
ACM, 2007.

[66] Frederick P Brooks Jr. The Mythical Man-Month: Essays on Software Engineering,

Anniversary Edition, 2/E. Pearson Education India, 1995.

67

https://www.heise.de/ct/artikel/Die-Neuerungen-von-Linux-4-15-3900646.html?seite=9
https://www.heise.de/ct/artikel/Die-Neuerungen-von-Linux-4-15-3900646.html?seite=9
https://stackoverflow.blog/2017/03/09/anyone-actually-visit-stack-overflows-home-page/
https://stackoverflow.blog/2017/03/09/anyone-actually-visit-stack-overflows-home-page/
https://stackoverflow.blog/2017/03/09/anyone-actually-visit-stack-overflows-home-page/
https://blog.codinghorror.com/what-does-stack-overflow-want-to-be-when-it-grows-up/
https://blog.codinghorror.com/what-does-stack-overflow-want-to-be-when-it-grows-up/

OTHER REFERENCES 68

[67] Daniela S Cruzes and Tore Dybå. Research synthesis in software engineering: A
tertiary study. Information and Software Technology, 53(5):440–455, 2011.

[68] Reid Holmes and Andrew Begel. Deep Intellisense: a tool for rehydrating evapo-
rated information. In Proceedings of the 2008 international working conference on

Mining software repositories, pages 23–26. ACM, 2008.

[69] Barbara Kitchenham. Procedures for performing systematic reviews. Keele, UK,

Keele University, 33(2004):1–26, 2004.

[70] Andrew J Ko, Brad A Myers, Michael J Coblenz, and Htet Htet Aung. An ex-
ploratory study of how developers seek, relate, and collect relevant information
during software maintenance tasks. IEEE Transactions on software engineering,
32(12):971–987, 2006.

[71] Melvin Manis, Jonathan Shedler, John Jonides, and Thomas E Nelson. Availabil-
ity heuristic in judgments of set size and frequency of occurrence. Journal of

Personality and Social Psychology, 65(3):448, 1993.

[72] Jürgen Mössinger. Software in automotive systems. IEEE software, 27(2), 2010.

[73] Inah Omoronyia, John Ferguson, Marc Roper, and Murray Wood. Using developer
activity data to enhance awareness during collaborative software development.
Computer Supported Cooperative Work (CSCW), 18(5-6):509, 2009.

[74] Heider Sanchez, Romain Robbes, and Victor M Gonzalez. An empirical study of
work fragmentation in software evolution tasks. In 2015 IEEE 22nd International

Conference on Software Analysis, Evolution and Reengineering (SANER), pages
251–260. IEEE, 2015.

[75] International Telecommunication Union Telecommunication Development Bureau.
ICT facts and figures 2005, 2010, 2017. https://www.itu.int/en/ITU-
D/Statistics/Pages/facts/default.aspx/. Accessed: 2019-01-31.

[76] Amos Tversky and Daniel Kahneman. Availability: A heuristic for judging fre-
quency and probability. Cognitive psychology, 5(2):207–232, 1973.

https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx/
https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx/

OTHER REFERENCES 69

[77] David A. Wheeler. More than a gigabuck: Estimating GNU/Linux’s size. https:
//dwheeler.com/sloc/redhat71-v1/redhat71sloc.html. Ac-
cessed: 2019-01-31.

https://dwheeler.com/sloc/redhat71-v1/redhat71sloc.html
https://dwheeler.com/sloc/redhat71-v1/redhat71sloc.html

	Introduction
	Methodology
	Preliminary Search
	Inclusion and Exclusion Criteria
	Data Extraction
	Data Sources and Search Strategy
	Relevant Literature

	Quantifying Information Needs
	Overview
	People-centric Studies
	Surveys
	Observations
	Interviews
	Other methods

	Technology-centric Studies
	Stack Overflow
	Mailing lists
	Other sources

	Discussion of RQ1
	Results

	Important Information Needs
	Challenges of Synthesizing Data
	Categorization
	Partitioning of questions
	Comparing measures
	Scope of the study

	Information Needs
	Methodology
	Results
	Rationale
	Awareness
	Implications of a change
	Other categories

	Threats to Validity
	Discussion and Future Work
	Conclusion
	Anleitung zum wissenschaftlichen Arbeiten
	Data extraction
	Search terms
	Systematic search
	List of papers
	List of papers relevant to RQ2
	Excluded studies
	Excluded categories

