
Evaluating the dynamic behavior of
Smalltalk applications

Bachelor Thesis

Roger Stebler
from

Balsthal, Switzerland

Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

21. April 2015

Prof. Dr. Oscar Nierstrasz

Boris Spasojević

Software Composition Group
Institut für Informatik und angewandte Mathematik

University of Bern, Switzerland

Contents

1 Introduction 4

2 VariableTracker 7
2.1 What is VariableTracker? . 7
2.2 How does VariableTracker work? . 7

2.2.1 The Reflectivity framework . 7
2.2.2 How does VariableTracker use the Reflectivity framework? 9
2.2.3 What happens to the original methods? . 9
2.2.4 Integrating VariableTracker into a development environment 9
2.2.5 Caching & storing the data in the database . 10
2.2.6 How does the analysis work? . 11

3 Case Studies 13
3.1 Nautilus . 14

3.1.1 What functionality was executed to exercise the instrumented code? 14
3.1.2 Results . 15

3.2 Roassal . 15
3.2.1 What functionality was executed to exercise the instrumented code? 16
3.2.2 Results . 17

3.3 Glamour . 17
3.3.1 What functionality was executed to exercise the instrumented code? 18
3.3.2 Results . 18

3.4 Phratch . 19
3.4.1 What functionality was executed to exercise the instrumented code? 19
3.4.2 Results . 19

3.5 Pangea . 20
3.5.1 What functionality was executed to exercise the instrumented code? 20
3.5.2 Results . 20

4 Conclusion 22
4.1 Patterns . 25

4.1.1 Patterns for Nautilus . 28
4.1.2 Patterns for Roassal . 28
4.1.3 Patterns for Glamour . 28
4.1.4 Patterns for Phratch . 28
4.1.5 Patterns in total . 28

4.2 Summary . 29
4.3 Threats to validity . 29

4.3.1 External validity . 29
4.3.2 Internal validity . 30

1

CONTENTS 2

5 Related work 31

A Anleitung zu wissenschaftlichen Arbeiten 33

B Raw data from the case studies 36

Abstract

Since Smalltalk is a dynamically typed programming language it remain agnostic to variable types at
compile time, and only take them into account at runtime. This gives more freedom to the developer, as one
variable can take on radically different types during program execution. Lack of understanding of dynamic
behavior of Smalltalk applications can lead to misleading conclusions about the presents of dynamic
features such as duck typing. By instrumenting Smalltalk source code and tracking the different types
that variables receive, we concluded that duck-typed variables account for around 1% of total variables.
We gather this information using our tool named VariableTracker. We also present an analysis of usage
patterns of duck-typed variables from our collected data.

3

1
Introduction

A type system is a component in programming languages that defines rules how a type can be associated
to a variable. It can ensure the absence of erroneous behaviours using the information about types of
values that are computed by the program [6]. A fundamental purpose of a type system is to make sure, the
program does not do any syntactically or semantically inconsistent operations on the variables, parameters
or class members.

Languages are, based on their type system, roughly divided in two groups:

Statically typed languages, such as C, Java or Pascal, are languages that use static type-checking.
The developer is required to specify the type of each variable in the source code. During compilation

the source code is verified by a type-checker. This allows the compiler to detect specific type errors during
compile time and can reduce the numbers of run time errors.

Dynamically typed languages, such as JavaScript, Python, Ruby or Smalltalk, are languages that use
dynamic type-checking.

In dynamically typed languages the developer does not need to specify the type of a variable in the
source code. Also the compiler will not do a type-checking process. This behavior gives the developer
more freedom because a variable can take completely different types during the execution of the program.
The disadvantage is that this can increase the number of run time errors. Also the compiler cannot perform
certain optimizations - for example function inlining or more efficient machine instructions - based on
knowing the types of variables at compile time.

Let’s look at an example in Smalltalk:

1 | a |
2 a := 42.
3 a := a + a.
4 a := 'Hello'.
5 a := a, ' world'.
6 a := Dictionary new.
7 a at: 1 put: 5.

4

CHAPTER 1. INTRODUCTION 5

This code assigns three values of different types (an Integer, a String and a Dictionary) to a
temporary variable a and invokes some methods on it. This is syntactically correct Smalltalk code. In a
statically typed language that would not be possible. You could define a as Object to assign values of
different types, but the invocation of the methods would result in a compile time error since Object does
not implement all these methods. But as Smalltalk is a dynamically typed language; it allows us to do so.
This is sometimes refereed to as “Variable Reuse”.

In 1967 Christopher Strachey distinguished in his lecture notes between two main classes of polymor-
phism:

The first kind is the parametric polymorphism which you get when a function works uniformly on a
range of different types which normally all have a common structure.

The second kind is the ad-hoc polymorphism where a function can handle different types which don’t
need to have a common structure. Additionally it may behave in different ways depending on the type of
its arguments.

This classification was then refined by Luca Cardelli and Peter Wegner in the paper “On Understanding
Types, Data Abstraction, and Polymorphism” [3]. They introduced the differentiation between “universal”
and “ad-hoc” polymorphism. One form of universal polymorphism they called inclusion polymorphism or
also known as subtype polymorphism that allows a function which operates on a type T also to work on
any subtype S of T.

Another form of polymorphism is called duck-typing [8]. This concept describes the type of an object
not by its inheritance from a particular class or interface but by its properties and methods. So the type of
an object is defined by its behavior. This approach refers to the so called duck-test. James Whitcomb Riley
described the duck-test as follows:

“When I see a bird that walks like a duck and swims like a duck and quacks like a duck, I call
that bird a duck.”

Polymorphism is also common practice in statically typed languages. For example in Java generic
functions are a type of parametric polymorphism. An example for ad-hoc polymorphism is the concept of
function overloading.

For simplicity’s sake we will only distinguish between non-polymorphic, subtype polymorphic and
potentially duck-typed variables in this thesis.

The questions that we want to answer in this thesis are:

• Do developers use variable reuse?

• If developers use this feature, is it more present in instance variables, method arguments or temporary
variables?

• What patterns emerge in variable reuse?

To investigate these questions we first need a way to monitor how developers use variables. To monitor
these variable assignments I have written a program called VariableTracker. It can be used to instrument
Smalltalk code to collect information about a variable every time a value is written to it.

This collected data about variable assignments can then be saved into a database (optional) or directly be
analyzed. The analysis provided by VariableTracker will find potentially duck-typed variables i.e., variables
whose types don’t have a common ancestor in the class hierarchy (except Object or ProtoObject as

CHAPTER 1. INTRODUCTION 6

these are common ancestors for all classes in Smalltalk). For example the common superclass of Float
and ByteString is Object so we consider them completely different. That means a variable that, at
run time, is of both types is potentially duck-typed.

To find patterns in variable reuse we focus on potentially duck-typed variables and ignore variables
that have only similar types assigned - for example Float, Double and Integer. Their common
superclass is Number. These three types are all numbers. So they don’t represent real dynamic behavior
in a program. These kind of variables represent subtype polymorphism but not duck-typing.

For additional simplicity we ignore the interface of the variable. For example a variable could have
values of completely different types assigned but we only invoke methods that are implemented in Object.
Or there are no method invocations at all on this variable. So we can not be completely sure that a variable
is duck-typed. It’s just a heuristic to find potential duck-typed variables.

VariableTracker was used in 5 case studies to investigate the variable usage of projects written in
Smalltalk:

• Nautilus

• Roassal

• Glamour

• Phratch

• Pangea

In each of those case studies we instrumented the project, collected information about variable usage
and analyzed them using VariableTracker to find potentially duck-typed variables. These potentially
duck-typed variables were then manually investigated to categorize its kind of usage in different patterns.

2
VariableTracker

2.1 What is VariableTracker?
VariableTracker is a tool used to collect and analyze information about variables being written during
run time in Pharo1 - an open source IDE and virtual machine for Smalltalk which allows us to directly
inspect and modify objects and compile code during run time. The information about variables that
VariableTracker collects are the class and method where the variable can be found, the type of the value
that is assigned, the scope of the variable (temporary, instance variable, method argument) and more.
Whenever a value is assigned to a variable VariableTracker will collect this information about the variable
and cache it in a dictionary.

This collected data can then be stored into a database or directly be analyzed using the analyzer
provided by VariableTracker. The analysis can find variables that are assigned different types during run
time. Also it is analyzing the class hierarchy of the type to detect variables using so called “completely”
different types - i.e., potentially duck-typed variables.

2.2 How does VariableTracker work?

2.2.1 The Reflectivity framework
VariableTracker is based on the Reflectivity framework. Reflectivity provides the possibility to annotate
nodes of an abstract syntax tree with metalinks. That means with this framework we can easily extend and
modify an abstract syntax tree. This provides us a simple way to add code to an existing method.

An abstract syntax tree (AST) is a tree representation of the source code of a program. The source code
can be divided into different segments that represent the abstract syntactic structure of the source code [5].

1http://www.pharo.org/

7

http://www.pharo.org/

CHAPTER 2. VARIABLETRACKER 8

Reflectivity creates a wrapper object of type RFWrapper (Reflectivity Framework Wrapper) contain-
ing this augmented AST. Installing the wrapper replaces the reference in the method dictionary of the
corresponding class with a reference to this wrapper object.

Here an example how Reflectivity can be used to instrument all methods in the class MyClass. It
adds code to print “variable written” whenever a value is written to a variable:

1 MyClass methods do:
2 [:method |
3 method ast
4 forAllNodes: [:node | node isAssignment]
5 putAfter: [RFMetalink fromExpression:
6 'Transcript crShow: ''variable written'''];
7 installWrapper]

First we loop over all methods in MyClass. For each of them we get their AST (line 3). The next
four lines manipulate that AST. On line 4 we go through all nodes in the AST and every time we find a
variable assignment we add the code Transcript crShow: ’variable written’ after the
assignment. A wrapper is generated containing this extended AST which can be used to compile a new
method containing the extended code. The generated wrapper replaces the original method by installing
the wrapper as seen on line 7 in the example above.

On the first call to this method the virtual machine of Smalltalk detects that there is not an in-
stance of CompiledMethod in the method dictionary but a wrapper object. So it sends the message
run:with:in: to this wrapper. The wrapper will then compile the extended AST, replace itself with
this newly compiled method in the method dictionary and resend the message to the method. From now
on the new extended method is called and the message about the variable assignment is shown in the
Transcript - the default output window in Pharo.

To make collecting the data as fast as possible, we want to compile the extended method immediately
during instrumentation and not on the first message send to this method during the collection of the data.
To do that we can change the install method of the Wrapper in the following way:

1 install
2 "Install the wrapper in the method dictionary to replace the compiled method"
3 self isInstalled ifFalse: [self install: self]

is changed to:

1 install
2 "Compile the method using the extended AST and install it in the method dictionary"
3 self generateCompiledMethod.
4 self installCompiledMethod.
5 self flushCache

In this way the new method is not compiled on the first call, but already when the wrapper is in-
stalled i.e., when VariableTracker is activated. So when we start collecting the data the original method
is already replaced by a CompiledMethod containing all code to collect the data and save it in the cache.

We are aware that compiling the extended methods already during the instrumentation can be slower
than compiling the methods the first time they are called because there are potentially some methods that
are compiled but never used. However, our goal is to improve the performance during the interactive part
with the program. This means that we don’t want to slow down the system by compiling the methods
during the collection of the data.

CHAPTER 2. VARIABLETRACKER 9

2.2.2 How does VariableTracker use the Reflectivity framework?
We want the VariableTracker to store information about a variable whenever a value is assigned to it. To
do so we can just extend the code from above:

1 pvtAddWrapperCode: aMethod
2 aMethod ast
3 forAllNodes: [:node | node isAssignment]
4 putAfter: [:node | RFMetalink fromExpression:
5 'VariableTracker addToCache:',
6 '((Dictionary new)',
7 'at: ''name'' put: ''', node variable name asString, ''';',
8 'at: ''class'' put: self class name asString;',
9 'at: ''method'' put: thisContext method selector asString;',

10 'at: ''isClassSide'' put: self class isClassSide;',
11 'at: ''isInstanceVariable'' put: ', node variable isInstance asString, ';',
12 'at: ''isTemp'' put: ', node variable isTemp asString, ';',
13 'at: ''isArgument'' put: ', node variable isArgument asString, ';',
14 'at: ''isGlobal'' put: ', node variable isGlobal asString, ';',
15 'at: ''type'' put: ', node variable name asString, ' class asString;',
16 'at: ''count'' put: 1;',
17 'yourself).'];
18 installWrapper.

On lines 6-16 we create a Dictionary object which stores information about the variable being writ-
ten. It represents the JSON object that is stored in the database (see section 2.2.5). We pass this dictionary
to the method VariableTracker>>#addToCache: which will store it in VariableTracker’s cache.
The Reflectivity framework does the rest. It creates a wrapper containing the extended AST. When the
wrapper is installed this extended AST is used to compile a new method which replaces the original one.

2.2.3 What happens to the original methods?
If we want the possibility to deactivate VariableTracker again we need to be able to restore the original
method. To do that we must store the references to the original methods so that the garbage collector will not
deallocate them. These references are stored in a dictionary called orginalMethods in the VariableTracker
class just before it is replaced by the wrapper. To deactivate VariableTracker on a method we can just
restore the original method by replacing the current instrumented method in the method dictionary of the
corresponding class with the reference stored in this dictionary.

2.2.4 Integrating VariableTracker into a development environment
Note: The modifications of the system classes in this section are needed only if we want to be able to change
already instrumented methods or if we want to be able to see the source code of instrumented methods. In
a normal use case where we just want to collect data we don’t necessarily need these modifications.

If we want to change a method that is currently instrumented by VariableTracker the modified method
should be instrumented again.

When we save the changed source code of a method the compiler is called and will generate and install
a new method. So the following code was added to the compiler method:

1 key := self asString, '>>#', method selector asString.
2 (VariableTracker originalMethods includesKey: key)
3 ifTrue: [
4 VariableTracker originalMethods removeKey: key.
5 VariableTracker activateOnMethod: method].

CHAPTER 2. VARIABLETRACKER 10

This will check if the method is found in the originalMethods dictionary. If so, the VariableTracker
was activated for this method before. After compiling the new source code, VariableTracker will throw
away the old original method and activate the tracking for this changed method again. So you can modify
instrumented methods without any problems. The tracking is always reactivated on this new method if it
was active before.

The other system modification is in the CompiledMethod class. We don’t want to see the extended
source code when we open an instrumented method in a class browser. Independent of the state of
VariableTracker the displayed source code should always be the same. So the sourceCode method is
changed from

1 trailer sourceCode ifNotNil: [:code | ˆ code].

to

1 trailer sourceCode ifNotNil: [:code |
2 (code trim = self codeForNoSource)
3 ifTrue: [
4 key := self methodClass asString, '>>#', self selector asString.
5 (VariableTracker originalMethods includesKey: key)
6 ifTrue: [code := (VariableTracker originalMethods at: key) sourceCode]].
7 ˆ code].

Here we use the originalMethods dictionary again to check if VariableTracker is activated. If we find
the method in this originalMethods dictionary we display the code of the original method.

2.2.5 Caching & storing the data in the database
To not collect millions of variable assignments, only one entry is created for each variable - type combina-
tion. For example:

Let’s assume a variable has the following assignments:

• 20 times an Integer

• 5 times a ByteString

• 12 times a Float

If we would create an entry for every assignment we would have 37 entries. Using variable - type combi-
nations we will just create 3 entries - the ones in the list above.

So we need to check if this variable - type combination was already seen before or if it’s the first
time. If it’s the first time we create a new entry - otherwise we just increase the counter for this combination.

VariableTracker uses an internal cache to store and update these entries. After we have run the
instrumented code and collected the data we can directly analyze it using the analysis provided by Vari-
ableTracker or we can optionally store the data in a MongoDB database.

If we would directly update these entries in the database without caching it first during the collection
we would need to check the database for every assignment if this combination was already seen or not
and then update it. This is really inefficient because a communication with an external component is slow.
Thus we need a cache to temporarily store the collected data in our system without writing to the external
database. This is done using a dictionary where the keys represent the variable - type combination and the

CHAPTER 2. VARIABLETRACKER 11

values represent the information that was collected about the variable including a counter that represents
the number of times this combination occured.

When the collection of the data is completed we can store the whole content of the cache to the database
in one step.

To optionally store the data in the MongoDB database the MongoTalk2 driver is used. It provides the
basic methods to communicate with MongoDB. MongoDB stores everything in JSON format.

JSON (JavaScript Object Notation) is a simple format to interchange data based on JavaScript. Its
simple structure allows parsing and generating data in this format in an easy way. Also for humans it’s
easy to read and understand.3

Data in JSON format can be easily represented by nested dictionaries in Smalltalk. For example:

1 { 'abc' :
2 { 'hello' : 'world' }
3 }

is represented by:

1 outerDict := Dictionary new.
2 innerDict := Dictionary new.
3 innerDict at: 'hello' put: 'world'.
4 outerDict at: 'abc' put: innerDict.

Calling VariableTracker>>#saveCacheToDB will then add each element in the cache to the
MongoDB collection:

1 saveCacheToDatabase
2 cache values do: [:entry |
3 collection add: entry.
4]

2.2.6 How does the analysis work?
VariableTracker provides a way to analyze the collected data to find potentially duck-typed variables. This
section describes how this can be achieved.

If we have stored our collected variable information data in the database, we first we need to load this
data from the database back into the cache.

With this information in the cache we can create a Variable object for every one of these variable
entries. This Variable object holds the name of the variable, the class and method where it can be
found, a list of types this variable had assigned during the collection of the data and the scope of the variable.

To check if a variable is potentially duck-typed we need the list of types of this variable stored in its
Variable object. Then we compute the common superclass/ancestor of all these types. If the common
superclass is Object we can assume that these types are completely different types and that this variable
is potentially duck-typed. But if they have a common ancestor deeper in the class hierarchy it means that
these types are all similar and this variable is subtype polymorphic and not duck-typed.

2http://smalltalkhub.com/#!/˜MongoTalkTeam/mongotalk
3http://www.json.org/

http://smalltalkhub.com/#!/~MongoTalkTeam/mongotalk
http://www.json.org/

CHAPTER 2. VARIABLETRACKER 12

Note that this procedure is just a heuristic. Since we don’t take invoked methods into account we
can not be 100% sure that the types are completely different. There are about 400 common methods
implemented in Object. For example, every object understands the method printString because
this method is implemented in the class Object and in Smalltalk everything is an Object. When we
detect a variable with two types in completely different positions of the class hierarchy this heuristic
assumes that these types are potentially duck-typed. But it could be that these objects behave completely
different and we just invoke a common method inherited from Object or ProtoObject - or we don’t
invoke any methods at all.

Some examples for the common ancestor:
Types Common superclass/ancestor
Float, SmallInteger, Double Number
ByteString, Symbol String
ByteString, Float Object

So the first two examples are not potentially duck-typed variables - but the third one is because its type
ancestor is Object.

To find the common superclass/ancestor of a variable we use the following algorithm:

We initialize the ancestor with the first type found in the list of types contained in the Variable
object. If there are more types in the list we compare the current ancestor to the second type. Now we have
one of the following cases:

• The second type is the same or a subclass of the current ancestor - In this case we don’t need to do
anything because the current ancestor is already higher in the class hierarchy.

• The second type is higher in the class hierarchy than the current ancestor - In this case we set the
second type as the new ancestor.

• The second type is not in the same class hierarchy as the current ancestor - In this case we set the
current ancestor to its superclass and check again until we are in the same class hierarchy. That
means that current ancestor is now the root of the two subtrees representing the class hierarchy of
these types.

When we have found the ancestor of the first two types we can compare this new ancestor to the third type
in the list and so on until we have found the common superclass of all types this variable had assigned
during the collection of the data.

Using this procedure we can find all potentially duck-typed variables by selecting the ones whose
common ancestor is Object.

3
Case Studies

We have done 5 case studies by instrumenting common Smalltalk projects using VariableTracker.

The projects are:

• Nautilus1 - the default system browser since Pharo 2.0

• Roassal2 - a visualization engine

• Glamour3 - a framework for browser creation

• Phratch4 - a platform for kids to learn programming

• Pangea5 - an analysis tool for OO software corpora

The results of the instrumentation were collected and stored in a MongoDB database. To analyze the data
the corresponding method in VariableTracker was used to find potentially duck-typed variables. These
results were then manually examined to see how developers use potentially duck-typed variables. After
each case study you can find the results and the use patterns we have found.

In the appendix you can find more information about all found potentially duck-typed variables and its
types for each case study.

For each case study we first describe the project itself. Then we explain what functionality was
executed while the code was instrumented and at the end we show a table containing the results that were
gathered by the analysis in VariableTracker. The table contains the following data:

• How many variable assignments were detected during the instrumentation

1http://smalltalkhub.com/#!/˜Pharo/Nautilus
2http://smalltalkhub.com/#!/˜ObjectProfile/Roassal
3http://smalltalkhub.com/#!/˜Moose/Glamour
4http://smalltalkhub.com/#!/˜JLaval/Phratch
5http://smalltalkhub.com/#!/˜SCG/Pangea

13

http://smalltalkhub.com/#!/~Pharo/Nautilus
http://smalltalkhub.com/#!/~ObjectProfile/Roassal
http://smalltalkhub.com/#!/~Moose/Glamour
http://smalltalkhub.com/#!/~JLaval/Phratch
http://smalltalkhub.com/#!/~SCG/Pangea

CHAPTER 3. CASE STUDIES 14

• The total number of variables

• How many times on average was each variable assigned to

• The number of subtype polymorphic variables including potentially duck-typed variables

• The number of potentially duck-typed variables

• The total number of different types of all the assigned values

3.1 Nautilus
Since Pharo 2.0 the default browser is Nautilus by Benjamin Van Ryseghem. It can be used to browse the
system, create classes, add methods, it provides cool features for refactoring and a lot more. It is probably
one of the most used features in Pharo. To collect the data VariableTracker was activated on all packages
starting with the name “Nautilus”.

3.1.1 What functionality was executed to exercise the instrumented code?
• Open Nautilus

• Add a new package

• Rename the package

• Delete the package

• Find the Nautilus package

• Create a new class

• Add a method

• Change the method

• Delete the method

• Add a class comment

• Create a method on class side

• Add a protocol

• Drag & drop the method to the protocol

• Rename the protocol

• Rename the method

• Rename the class

• Activate/deactivate groups view

• Activate/deactivate hierarchy view

• Find Nautilus class

CHAPTER 3. CASE STUDIES 15

• Rename an instance variable in the class Nautilus

• Rename a class variable in the class Nautilus

• Delete my created class

• Run all unit tests

• Close Nautilus

3.1.2 Results
Total variable assignments 68’102
Total variables 466
Average variable assignments 146.14
Total polymorphic variables 55 (11.8%)
Total potentially duck-typed variables 5 (1.07%)
Total different types 300

0

5

10

15

20

25

30

35

40

45

2 3 4 50 93 196

N
u

m
b

er
 o

f
va

ri
ab

le
s

Number of types

Nautilus

Figure 3.1: How many polymorphic variables have how many different types assigned.

Figure 3.1 shows the distribution of how many polymorphic variables were assigned how many
different types in Nautilus.

3.2 Roassal
Roassal is an agile visualization engine for Smalltalk. It provides a large set of interaction facilities like
painting, brushing, interconnecting, zooming, drag and dropping.6

6http://objectprofile.com/Roassal.html

http://objectprofile.com/Roassal.html

CHAPTER 3. CASE STUDIES 16

3.2.1 What functionality was executed to exercise the instrumented code?
The data was collected in a Moose image built on 18. July 2014. It included 111 Roassal examples. 3 of
them did not work (exception). And 22 were more complex ones that generated a huge amount of data (>1
million variable assignments). So only 2 of these complex examples were executed.

That means in total 88/111 Roassal examples were executed (79%)

What was NOT executed:

• Roassal examples:

– Graph builder:

* exampleForceBasedLayoutWithMinSize

* exampleColoringGraph2

* exampleColoringGraph3

* examplePartitions2

* exampleTreeMapAndNormalizeColor (exception)

* exampleVisualizationRoassal

* exampleDependenciesInRoassalAndTrachel

* examplePartitionedGraph

* exampleNormalizeColor (exception)

* exampleConnectFormAndSelectiveColor (exception)

* exampleLabelledGraph

* exampleColoredGraph

– Plain Roassal:

* exampleGroupOfGroups

* exampleEdgedWorm

* exampleMovingGrid

* exampleLinkingObjects

* exampleForceBasedLayoutAnimated

* exampleTimeLineOfRoassal

* exampleForceBasedLayout

* exampleVisualizingSoftwareWithBeziers

– Spectrograph:

* exampleRoassalVisualization

– GraphET:

* exampleScatterPlotLabelled

* exampleMovies

• Roassal Easel:

– Bezier Curve

– Dynamic Force Based Layout

– Force Based Layout

CHAPTER 3. CASE STUDIES 17

– Highlight Using Bezier

– Method Complexity

– Step 6

– Step 7

– Step 8

– Uml

– View Tree Map

3.2.2 Results
Total variable assignments 28’290’898
Total variables 2’641
Average variable assignments 10’712.19
Total polymorphic variables 209 (7.91%)
Total potentially duck-typed variables 35 (1.33%)
Total different types 666

0

20

40

60

80

100

120

140

160

2 3 4 5 6 8 9 12 30 164 178 250 267 435 442

N
u

m
b

er
 o

f
va

ri
ab

le
s

Number of types

Roassal

Figure 3.2: How many polymorphic variables have how many different types assigned.

Figure 3.2 shows the distribution of how many polymorphic variables were assigned how many
different types in Roassal.

3.3 Glamour
Glamour is an engine for scripting browsers.

CHAPTER 3. CASE STUDIES 18

It was originally built by Philipp Bunge as a validation for his Masters thesis and Tudor Girba who
actively maintains the current version. Andrei Vasile Chis, worked on the Seaside renderer. Lukas
Renggli created the first version of the Seaside renderer, Jorge Ressia contributed to the core, and David
Röthlisberger worked on the Morphic renderer.7

3.3.1 What functionality was executed to exercise the instrumented code?
The data was collected in a Moose image built on 23. July 2014. It included 62 Glamour examples. All of
them were executed.

3.3.2 Results
Total variable assignments 1’288’100
Total variables 1’590
Average variable assignments 810.13
Total polymorphic variables 119 (7.48%)
Total potentially duck-typed variables 29 (1.82%)
Total different types 182

0

10

20

30

40

50

60

70

2 3 4 5 6 7 8 9 10 11 12 21 24 26 30 31 32

N
u

m
b

er
 o

f
va

ri
ab

le
s

Number of types

Glamour

Figure 3.3: How many polymorphic variables have how many different types assigned.

Figure 3.3 shows the distribution of how many polymorphic variables were assigned how many
different types in Glamour.

7http://gt.moosetechnology.org/

http://gt.moosetechnology.org/

CHAPTER 3. CASE STUDIES 19

3.4 Phratch
Phratch8 is a programming language that makes it easy to create your own interactive stories, animations,
games, music, and art - and share your creations on the web. It is a port of Scratch (http://scratch.
mit.edu/) on recent platforms (Pharo 2.0 and Pharo 3.0).

3.4.1 What functionality was executed to exercise the instrumented code?
Several spites and costumes were created. They were used to create and run various scripts. Each script
was a random combination of commands selected from the different categories in the GUI of Phratch.

3.4.2 Results
Total variable assignments 9’197’807
Total variables 6’245
Average variable assignments 1’472.83
Total polymorphic variables 553 (8.86%)
Total potentially duck-typed variables 29 (0.46%)
Total different types 211

0

50

100

150

200

250

300

350

400

450

2 3 4 5 6 7 8 9 10 11 12 13 16 17 18 19 24 25

N
u

m
b

er
 o

f
va

ri
ab

le
s

Number of types

Phratch

Figure 3.4: How many polymorphic variables have how many different types assigned.

Figure 3.4 shows the distribution of how many polymorphic variables were assigned how many
different types in Phratch.

8http://www.phratch.com/

http://scratch.mit.edu/
http://scratch.mit.edu/
http://www.phratch.com/

CHAPTER 3. CASE STUDIES 20

3.5 Pangea
Pangea9 enables running language independent analyses on corpora of OO software projects using meta-
models stored as object model snapshots.[2]

It’s a project by the Software Composition Group of the University of Bern. It currently provides two
corpora of software projects - Java: QualitasCorpus 2012 and Smalltalk: Squeak100. Pangea generates a
Moose image for every project on the corpus. And Moose is used to analyze software systems by exporting
a Famix Metamodel from the source code of said system. So we can run a Moose analysis across a whole
corpora of projects.

3.5.1 What functionality was executed to exercise the instrumented code?
The data was collected in a Moose image built on 27. September 2014 using the “ant-1.8.2” Famix meta
model from QualitasCorpus. All packages starting with “Famix” and “Moose” were instrumented. Then
the three scripts in the paper “Pangea: A Workbench for Statically Analyzing Multi-Language Software
Corpora” [2] by Andrea Caracciolo, Andrei Chis, , Boris Spasojević and Mircea F. Lungu were executed.

3.5.2 Results
Total variable assignments 346’430
Total variables 41
Average variable assignments 8449.51
Total polymorphic variables 4 (9.76%)
Total potentially duck-typed variables 0 (0%)
Total different types 21

0

1

2

3 4 5

N
u

m
b

er
 o

f
va

ri
ab

le
s

Number of types

Pangea

Figure 3.5: How many polymorphic variables have how many different types assigned.

9http://scg.unibe.ch/research/pangea

http://scg.unibe.ch/staff/Caracciolo
http://scg.unibe.ch/staff/andreichis
http://scg.unibe.ch/staff/Boris-Spasojevic
http://scg.unibe.ch/staff/mircea
http://scg.unibe.ch/research/pangea

CHAPTER 3. CASE STUDIES 21

Figure 3.5 shows the distribution of how many polymorphic variables were assigned how many
different types in Pangea.

4
Conclusion

We did five case studies to analyze the usage of potentially duck-typed variables. The case studies included
five common Smalltalk projects:

• Nautilus - the default system browser since Pharo 2.0

• Roassal - a visualization engine

• Glamour - a framework for browser creation

• Phratch - a platform for kids to learn programming

• Pangea - an analysis tool on OO software corpora

To collect the data we built a tool called VariableTracker to collect data about a variable whenever a value
is assigned to it. This data was stored into a database and then analyzed using VariableTracker to find
potentially duck-typed variables. All found potentially duck-typed variables were then examined manually
and categorized into patterns how the variable is used.

22

CHAPTER 4. CONCLUSION 23

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Potentially duck-typed

Subtype polymorphic

All

Potentially duck-typed

Subtype polymorphic

All

Potentially duck-typed

Subtype polymorphic

All

Potentially duck-typed

Subtype polymorphic

All

Potentially duck-typed

Subtype polymorphic

All

P
an

ge
a

P
h

ra
tc

h
G

la
m

o
u

r
R

o
as

sa
l

N
au

ti
lu

s

Temporary variables Instance variables Method arguments Global variables Other

Figure 4.1: Distribution of temporary variables, instance variables, method arguments and global variables
for the five case studies

Figure 4.1 shows the distribution of temporary variables, instance variables, method arguments and
global variables of the potentially duck-typed variables for each case study. We see that a big part of the
variables are temporary or instance variables. But there is no general pattern for the distribution of instance
variables and temporary variables between the different projects. Some of them assign more temporary
variables and others assign more instance variables. What they have in common is that method arguments,
global variables or other kind of scopes are assigned to really rarely.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Potentially duck-typed

Subtype polymorphic

All

Temporary variables Instance variables Method arguments Global variables Other

Figure 4.2: Distribution of temporary variables, instance variables, method arguments and global variables
on average

Figure 4.2 shows the average distribution of the variable scopes over all the case studies. The number
of temporary variables on average is about 51% and the usage of instance variables lies between 48% and
49%. Global variables are assigned in less than 1% of all cases.

CHAPTER 4. CONCLUSION 24

Unlike in some other programming languages it is possible in Pharo Smalltalk to assign new values to
a method argument. But in our collected data we did not find any variable assignment of this kind at all. It
seems developers don’t like to modify method arguments.

So we can say that in general about one half of the assigned variables are temporary variables and the
other half are instance variables.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pangea

Phratch

Glamour

Roassal

Nautilus

Non-polymorphic Subtype polymorphic Potentially duck-typed

Figure 4.3: Distribution of non-polymorphic, subtype polymorphic and potentially duck-typed variables
for the five case studies

Figure 4.3 shows the distribution of non-polymorphic, subtype polymorphic and potentially duck-typed
variables for each case study. As in the diagram before we cannot see a general difference between the
projects. All distributions are similar.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Non-polymorphic Polymorphic (not potentially duck-typed) Potentially duck-typed

Figure 4.4: Distribution of non-polymorphic, subtype polymorphic and potentially duck-typed variables
on average

Figure 4.4 shows the average usage of polymorphism over all the case studies. We can see that about
91% of all variables are non-polymorphic. That means they had only values with the same type assigned
during the whole execution. About 8% of the variables are subtype polymorphic. These are the variables
that had variables with different types assigned - but the types were all similar. And the part of potentially
duck-typed variables - variables that had values assigned with completely different types - is only around

CHAPTER 4. CONCLUSION 25

1% on average. As we can see the usage of duck-typing is quite rare.

0%

5%

10%

15%

20%

25%

30%

35%

Nautilus Roassal Glamour Phratch Pangea

Figure 4.5: Fraction of variables that are only initialized and never reassigned.

Figure 4.5 shows the percentage of variables that are assigned to just once. That means they are only
initialized but never reassigned. We can see that about 20% of all the variables are used this way. This
kind of variables is often used to improve the readability of the code by splitting a complex code block
into different parts, assign the parts to variables and formulate the complex code using the variables, e.g.

1 dict := Dictionary new at: 1 put: (Dictionary new at: 1 put: 2; yourself); yourself.
2

3 innerDict := Dictionary new.
4 innerDict at: 1 put: 2.
5 dict := Dictionary new.
6 dict at: 1 put: innerDict.

The first line is equivalent to lines 3-6. But the second code part has a better readability than the first one.
Here the variable innerDict is only initialized but never reassigned.

In these 5 case studies we can say that 4 of them are rather development projects (Nautilus, Roassal,
Glamour and Pangea) and the only real application project is Phratch. Looking at the results regarding
this categorization we cannot find any difference between development and application projects. So we
can assume that the developers of development projects use variable assignments and polymorphism in a
similar way as the developers of application projects.

4.1 Patterns
After we found all the potentially duck-typed variables we examined them manually and tried to categorize
them by how they are used. The following list shows the patterns we have found. To make the patterns

CHAPTER 4. CONCLUSION 26

more clear we will look at an example for each pattern. The examples are real ones found in our case
studies.

• semantics are same, different APIs - the variable takes objects that are semantically the same but
use a different API.

Example: In Roassal we find the method
RTMetricNormalizer>>normalizePosition:min:max:using: that contains the fol-
lowing code:

1 ...
2 minValue := 1000000.
3 maxValue := -1000000.
4 elements do: [:el |
5 | t |
6 t := transformation rtValue: (metricBlock rtValue: el model).
7 minValue := minValue min: t.
8 maxValue := maxValue max: t].
9 (maxValue - minValue) ˜= (0 @ 0) ifTrue: [

10 ...

Here we want to normalize the position of the Roassal elements. We loop over all the Roassal
elements and get its position - a Point - and update the current minValue and maxValue.
Because we initialized minValue and maxValuewith 1000000 and -1000000 these variables
in lines 7 and 8 can have two different types: SmallInteger and Point. Points and Numbers
are very similar because a point is represented by two Numbers. So we have here a different API but
the semantic is the same.

• object or BlockClosure - the variable takes objects and code blocks

Example: For this pattern we will look at a basic example not related with the case studies.

1 coll := OrderedCollection new.
2 ...
3 coll collect: [:each | each asFloat].
4 coll collect: #asFloat

Here lines 3 and 4 are equivalent. We can send a BlockClosure or a ByteSymbol to this
method collect: and in both cases we get a collection containing the numbers as Float. So in
this category we will collect variables that take objects - in this case a symbol - and code blocks.

• any object as data model - the variable takes objects that serve as data model

Example: Roassal has the method ROElement>>model: containing:

1 model := anObject

Whenever Roassal wants to visualize an object then it creates a Roassal element of type ROElement
for this object. The method above is then called to store a reference to the object which is then used
as data model for this Roassal element.
Let’s assume we want to visualize all classes in the system and the connections to their subclasses.
So we can create a Roassal element for each class and each of them holds a reference to the actual
class in the system. When we want to visualize the edges which represent the connections between a
class and its subclasses, Roassal needs a way to find the Roassal elements that need to be connected.
That means it needs to be able to find the Roassal elements that represent a specific object. This is
simply done by comparing the object with the model variable of all the Roassal elements. In this
way Roassal can find all the elements which represent the subclasses of a specific class and then

CHAPTER 4. CONCLUSION 27

draw a connection to them.
So Roassal can use any object as data model and interactions with that model are given through
metaprogramming.

• collection or single element - the variable takes a whole collection of objects or just a single
element

Example: Roassal has a method ROTreeMapLayout>>prepareGraph: that contains the
following code:

1 roots := ROGraphTransformation new fromEdgesToNesting: nodeCollection edges: edges.
2

3 (roots isKindOf: Collection) ifFalse: [
4 roots := OrderedCollection with: roots.
5].

When Roassal needs to create a tree map it asks for the root nodes of the tree. If we have multiple
roots we get a collection of the roots. But if we only have one root we don’t get a collection
containing only this node but we get the node object itself. So the code checks if this roots
variable is a collection and if not then it creates a new collection containing this root node.

• real usage of potential duck-typing - the variable can have completely different types from
different parts of the inheritance tree. Since we don’t investigate the invoked methods in this
thesis it is still only a potential usage of duck-typing. Additionally it does not fit the other patterns.

Example: An example from a method in Phratch:
PhratchUpdatingStringMorph>>readFromTarget

1 | v |
2 (v := self valueFromTargetOrNil) ifNil: [ˆ contents].
3 lastValue = v ifTrue: [ˆ contents].
4 lastValue := v.
5 ˆ self formatValue: v

This method is called when a string morph is updated. E.g. a progress bar changes its value so
this method is called to also update the text representation of the progress. Or a color picker that
displays the name or the hex represenation of the selected color. On line 3 the method compares the
current value v with the stored lastValue to see if it’s needed to update the text. This variable
lastValue does not store the string representation itself but the object that is represented. E.g. if
the color is changed it does not store the color name as String but the Color object itself. So
this variable lastValue can have different types assigned. There are no methods invoked on the
variable; it’s only stored for comparison. Since we ignore the interface of a variable in this thesis this
variable lastVariable meets the conditions to count as a real usage of potential duck-typing.

• potential wrong usage - the variable takes values of types that do not make any sense regarding the
name of the variable and the other types assigned.

Example: In Nautilus we find the method MethodWidget>>methodIconFor: which contains
the following line:

1 button := action actionIcon.

Nautilus uses this method to display an icon next to a method in the method browser. Some of
those icons are clickable (e.g. overriding/overridden arrows) and some are not (e.g. halt flag or no
icon). So the type of the values assigned to this variable called button can be an IconicButton
(clickable), a ColorForm (e.g. flags, not clickable) or Form (no icon). This can be confusing

CHAPTER 4. CONCLUSION 28

since this variable button is not always used as a real button. In duck-typing the type of an object
is defined by its behavior. But the behavior is not the same for all these icons; some of them are
clickable and others are not. There is no run-time error, so it’s still duck-typing. But because of the
confusion we will categorize this example as potential wrong usage.

In the following sections we show the patterns for each project. The first column in the table is the
pattern and the second column shows how many of the potentially duck-typed variables use this pattern.

4.1.1 Patterns for Nautilus
semantics are same, different APIs 4
potential wrong usage 1

4.1.2 Patterns for Roassal
object or BlockClosure 19
semantics are same, different APIs 8
collection or single element 4
any object as data model 2
real usage of potential duck-typing 2

4.1.3 Patterns for Glamour
object or BlockClosure 10
real usage of duck-typing 10
any object as data model 6
potential wrong usage 3

4.1.4 Patterns for Phratch
real usage of potential duck-typing 27
any object as data model 2

4.1.5 Patterns in total
real usage of potential duck-typing 39
object or BlockClosure 29
semantics are same, different APIs 12
any object as data model 10
collection or single element 4
potential wrong usage 4

CHAPTER 4. CONCLUSION 29

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

real usage of potential duck-typing object or BlockClosure semantics are same, different APIs

any object as data model collection or single element potential wrong usage

Figure 4.6: Distribution of use patterns for potentially duck-typed variables

In figure 4.6 we can see that about 40% of all potentially duck-typed variables use real duck-typing.
Another 30% handle objects or code blocks, about 12% take objects that have a similar semantic but a
different API, 10% of the potentially duck-typed variables are used as data model, about 4% handle single
elements and collections and the other 4% are potential wrong usages.

4.2 Summary
In this thesis we evaluated the dynamic behavior of Smalltalk applications. We have written a tool called
VariableTracker that can collect information about variables being written during the run time of a Smalltalk
application. VariableTracker also allows us to do a basic analysis of the collected data to find potentially
duck-typed variables. Optionally the collected data can be stored in an external MongoDB database.

This tool was then used in 5 case studies of common Smalltalk applications. The results show that
almost all of the variables that are assigned are temporary or instance variables. On average about one half
of the collected data are temporary and the other half are instance variables. Global variables or method
arguments are only assigned in very rare cases.

More than 90% of the variables are non-polymorphic. About 9% are subtype polymorphic and only
about 1% are potentially duck-typed. So the usage of duck-typing is quite rare.

These potentially duck-typed variables were then manually examined and categorized into 6 different
patterns of how the variable is used. About 40% of the variables use real duck-typing. The rest is used in
other kinds of duck-typing.

4.3 Threats to validity

4.3.1 External validity
In this thesis we evaluated the dynamic behavior of Smalltalk applications. Since we need to run all the
programs to do a dynamic analysis we can only analyze a limited number of projects. So we decided to do
5 case studies. We tried to select projects that are often used in a Smalltalk environment. To not only have
development but also an application project one of our case studies included the analysis of Phrach.

In a static analysis - as done by Oscar Callaú et al. (see Related work) - it would be possible to analyze
a much bigger number of projects but we would lose a lot of information about the real dynamic behavior
of the program.

CHAPTER 4. CONCLUSION 30

4.3.2 Internal validity
The categorization of the potentially duck-typed variables to different usage patterns was done manually.
In some cases the assignment to a specific category was not completely clear. It would be possible to
categorize them to multiple patterns. So we added them to the most reasonable category from our point of
view. Another person using the same data could get a slightly different result regarding the distribution of
the usage patterns.

5
Related work

There exist a number of empirical studies about static and dynamic analysis of software projects.

One of the most related works is the statical analysis of the usage of polymorphism in Smalltalk by
Oscar Callaú et al. [1] They did a static analysis on the 1000 largest projects found in Squeaksource. They
found out that dynamic features are rarely used and they are more used in specific kinds of projects such
as core system libraries and development tools than in normal applications. Also the most used dynamic
features are supported by other static languages such as Java.

Another related work is an analysis of the dynamic behavior of JavaScript programs by Gregor Richards
et al. [7] Their results show that libraries often change the built-in prototypes in JavaScript to add behavior
to types. Also their assumption that the use of eval is infrequent and primarily used for deserialization
turned out to be wrong.

There exists also an analysis about the dynamic behavior of Python applications by Alex Holkner and
James Harland.[4] They concluded that most of the dynamic behavior - such as adding properties to an
object - is done at the initialization phase of the object. And during the rest of the object lifetime they are
more or less used in a static way.

31

Bibliography

[1] Oscar Callaú, Romain Robbes, Éric Tanter, and David Röthlisberger. How developers use the dynamic
features of programming languages: The case of Smalltalk. In Proceedings of the 8th working
conference on Mining software repositories (MSR 2011), pages 23–32, New York, NY, USA, 2011.
IEEE Computer Society.

[2] Andrea Caracciolo, Andrei Chis, Boris Spasojević, and Mircea Lungu. Pangea: A workbench for
statically analyzing multi-language software corpora. In Source Code Analysis and Manipulation
(SCAM), 2014 IEEE 14th International Working Conference on, pages 71–76. IEEE, September 2014.

[3] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism. ACM
Computing Surveys, 17(4):471–522, December 1985.

[4] Alex Holkner and James Harland. Evaluating the dynamic behaviour of python applications. In
Proceedings of the Thirty-Second Australasian Conference on Computer Science-Volume 91, pages
19–28. Australian Computer Society, Inc., 2009.

[5] Steven S. Muchnick. Advanced compiler design implementation. Morgan Kaufmann, 1997.

[6] Benjamin Pierce. Types and Programming Languages. The MIT Press, 2002.

[7] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis of the dynamic behavior
of javascript programs. SIGPLAN Not., 45(6):1–12, June 2010.

[8] Andrew Hunt and David Thomas. Programming ruby: The pragmatic programmer’s guide. In New
York: Addison-Wesley Professional., 2, 2000.

32

A
Anleitung zu wissenschaftlichen Arbeiten

This tutorial explains how we can use VariableTracker to instrument the code we are interested in to collect
and optionally store data about the variable usage in a MongoDB database and then analyze it using the
analysis provided by VariableTracker.

Install VariableTracker

Instrument interesting classes

Execute system to produce data

Save data to a database

Analyze data

Figure A.1: Usage flow how to use VariableTracker

In figure A.1 you get a general overview how VariableTracker is used. After the data was collected we
have the possibility to store it to an external database or we can directly analyze it.

33

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 34

Preparation
The source code for VariableTracker is hosted on SmalltalkHub 1.

It has some dependency projects:

• Reflectivity 2 - Used to hook the method when a variable is written

• MongoTalk 3 (optional) - Driver to talk to the MongoDB database

• MongoDB 4 (optional) - The database where the information about the variables are stored

MongoTalk and MongoDB are optional. The collected data is first cached in a dictionary. The analysis of
the data can also directly be done using the cache - without storing the data to a database. If we don’t want
to store the data in a database we can skip the steps to set up a connection to the database or load it from
the database back into our Smalltalk image.

Collect the data
After we have installed VariableTracker and its dependencies we are ready to collect variable type data.

To activate VariableTracker we can use one or multiple of the following commands:

1 VariableTracker activateOnClass: MyClass.
2 VariableTracker activateOnMethod: (MyClass>>#doSomething).
3 VariableTracker activateOnPackageName: 'Nautilus'.
4 VariableTracker activateOnPackagesStartingWith: 'Nautilus'.

The VariableTracker provides an interface to enable tracking all variables of a whole class, of a specific
method or on complete packages. It’s also possible to combine any of the commands above.

Now, every time a tracked variable is assigned, information about this variable is collected and cached.

As we have seen in section 2.2.5 about how the caching and storing of the data works we only collect
variable - type combinations instead of creating an entry for every variable assignment. If we don’t want
this behavior but want an entry for each assignment we can change that by executing:

1 VariableTracker collectAll: true

To stop VariableTracker from collecting data we can just call the corresponding deactivation methods.

1 VariableTracker deactivateOnClass: MyClass.
2 VariableTracker deactivateOnMethod: (MyClass>>#doSomething).
3 VariableTracker deactivateOnPackageName: 'Nautilus'.
4 VariableTracker deactivateOnPackagesStartingWith: 'Nautilus'.

1http://smalltalkhub.com/#!/˜rostebler/VariableTracker
2http://smalltalkhub.com/#!/˜RMoD/Reflectivity
3http://smalltalkhub.com/#!/˜MongoTalkTeam/mongotalk
4http://www.mongodb.org/

http://smalltalkhub.com/#!/~rostebler/VariableTracker
http://smalltalkhub.com/#!/~RMoD/Reflectivity
http://smalltalkhub.com/#!/~MongoTalkTeam/mongotalk
http://www.mongodb.org/

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 35

Interaction with the database
If we want to store the data to a MongoDB database we first need to establish a connection to the database.
After we are sure MongoDB is installed and running on our system and we have loaded MongoTalk from
Smalltalk Hub in our image we can connect to the database using the command:

1 VariableTracker connectToDefaultDB

This will create a database and a collection both called ’VariableTracker’ (if not existing yet) and
connect to it.

If we want to connect to another database or another collection we can use one of the following
commands:

1 VariableTracker connectToDB: dbName
2 VariableTracker connectToDB: dbName collection: collectionName
3 VariableTracker connectToDB: dbName collection: collectionName host: hostname
4 VariableTracker connectToDB: dbName collection: collectionName host: hostname port: port
5 VariableTracker connectToDefaultDBWithCollection: collectionName

After we have a connection to our database we can store the content of the cache to the database:

1 VariableTracker saveCacheToDB

If we want to load the data from the database to the VariableTracker cache and we are connected to the
database then we can run the following command:

1 VariableTracker loadDataFromDB

This will load all the data in the database into the Pharo image and store it in the VariableTracker
cache.

Analyze the data
To analyze the collected/loaded data we need the VariableTrackerAnalyzer class. We open a
Transcript and then run the command:

1 VariableTrackerAnalyzer analyze

The data is now being analyzed and we can see a summary in the Transcript.

Additionally an inspector of a collection of all subtype polymorphic variables and another inspector
of a collection of all potentially duck-typed variables is opened. We can use these inspectors to further
examine the variables and see the whole data that was collected about a variable.

B
Raw data from the case studies

Nautilus

Variable Types Count

SortHierarchicallyNode>>setElement:>>element 195 different class types 1475
Trait 10

NautilusRefactoring>>class:andInstVariable:>>class RBClass 1
Nautilus class 1

MethodWidget>>methodIconFor:>>button IconicButton 9
Form 61

SortHierarchically class>>sortNodes:>>superior 49 different class types 463
SortHierarchicallyNode 463

PackageTreeNautilusUI>>listSelection2At:>>elt Trait 10
92 different class types 1703

Roassal

Variable Types Count

RTLabelled>>initializeElement:>>t
SmallInteger 5
248 different class types 248
ByteString 3

RTAnimatedScatterPlot>>x:>>x
SmallInteger 1
BlockClosure 8
ByteSymbol 3

RTAnimatedScatterPlot>>y:>>y
SmallInteger 1
BlockClosure 4
ByteSymbol 3

36

APPENDIX B. RAW DATA FROM THE CASE STUDIES 37

ROEdge>>model:>>model

Association 110
SmallInteger 732
ROElement 40
161 different class types 2167

ROLabel>>color:>>color
BlockClosure 1
Color 111

ROLabel>>textFor:>>v

SmallInteger 98
27 different class types 75
ByteSymbol 22
ByteString 292

RTMetricNormalizer>>
normalizePosition:min:max:using:>>minValue

SmallInteger 5
Point 157

RTMetricNormalizer>>
normalizePosition:min:max:using:>>maxValue

SmallInteger 5
Point 157

ROBox>>borderColor:>>borderColor
BlockClosure 2
Color 294

ROBox>>color:>>color
BlockClosure 353
Color 302

ROLine>>width:>>strokeWidth
SmallInteger 1
BlockClosure 2

ROLine>>color:>>color
BlockClosure 84
Color 367

ROElement>>model:>>model

BlockClosure 9
ByteString 109
Association 1
ByteSymbol 37
ROSelection 1
171 different class types 2543
Array 4
SmallInteger 1597

RTShowEdge>>shape:>>shape
BlockClosure 1
RTLine 1
RTLine class 250

RTSugiyamaLayout>>reduceCrossing>>v RODummyNode 29
RTElement 532

RTSugiyamaLayout>>reduceCrossing>>u RODummyNode 3
RTElement 558

RTSugiyamaLayout>>addDummyNodes>>fromNode RODummyNode 3
RTElement 99

RTMenuBuilder >>
menu:submenu:background:callback:>>parentMenu

TRLabelShape 69
OrderedCollection 69

RTGDLayoutB>>if:>>condition True 22
BlockClosure 6

RTLinearMove>>to:during:on:>>element
TRLabelShape 50
RODummyNode 3
RTElement 1062

RTShapeBuilder>>if:fillColor:>>oldBlockOrValue BlockClosure 3

APPENDIX B. RAW DATA FROM THE CASE STUDIES 38

Color 2

RTElement>>model:>>model

ByteSymbol 13
CompiledMethod 460
Color 335
Float 46
Character 26
Array 1043
433 different class types 5501
SmallInteger 3263
Association 165
ByteString 502

ROAthensCanvas>>canvas:>>nativeCanvas
AthensCairoCanvas 320
RONullCanvas 79

RTGDEdgeB>>connectTo:>>connectTo BlockClosure 2
ByteSymbol 8

RTGDEdgeB>>initialize>>condition True 13
BlockClosure 13

RTGDEdgeB>>createEdgesFor:>>toObjects Array 5116
266 different class types 1078

RTGDEdgeB>>createEdgesFor:>>fromObjects Array 5124
434 different class types 5124

ROTreeMapLayout>>prepareGraph:>>roots ROElement 3
OrderedCollection 8

ROMondrianShapeBuilder>>color:>>color BlockClosure 1
Color 428

ROMondrianShapeBuilder>>if:borderColor:>>
oldBlockOrValue

BlockClosure 1
Color 1

ROEllipse>>color:>>color BlockClosure 7
Color 272

RTBezierLine>>controllingElements:>>
controllingElements

Array 1
BlockClosure 6
RTGroup 2

ROMondrianFrame>>layout:>>layout

ROTreeLayout 50
ROScatterplotLayout 1
RONullLayout class 1
RODominanceTreeLayout 2
ROVerticalLineLayout 1
ROTreeMapLayout 18
ROBottomFlowLayout 1
ROFlowLayout 1
ROHorizontalTreeLayout 6
ROCircleLayout 16
ROGridLayout 13
ROHorizontalLineLayout 319

RTMapBuilder>>countries:named:>>countryNames BlockClosure 2
ByteSymbol 1

RTMapBuilder>>color:>>color BlockClosure 2
Color 1

APPENDIX B. RAW DATA FROM THE CASE STUDIES 39

Glamour

Variable Types Count
GLMTextPresentation>>transformation:>>
transformation

BlockClosure 40
ByteString 4

GLMTextPresentation>>displayValue>>
cachedDisplayedValue

GLMAnnouncingCollection 27
SmallInteger 8
ByteString 39
ByteSymbol 5
Interval 129
Text 180
Array 2
OrderedCollection 10
Character 23

GLMGenericAction>>action:>>action
GLMPortUpdater 25
BlockClosure 2389

GLMTableColumn>>computation:>>computation BlockClosure 289
ByteSymbol 20

GLMTableColumn>>title:>>title
BlockClosure 1
ByteString 308

GLMSingleUpdateAction>>transformation:>>
transformation

BlockClosure 3
Announcer 9
ByteSymbol 12

GLMMagrittePresentation>>displayValue>>
cachedDisplayedValue

GLMMagrittePersonExample 5
GLMAnnouncingCollection 2

LazyTabPage>>labelMorph:>>labelMorph
AlphaImageMorph 1
ByteSymbol 5
ByteString 721

LazyTabPage>>lazyPageMorphCreation:>>
lazyPageMorphCreation

BlockClosure 724
PanelMorph 3

GLMSmalltalkCodePresentation>>displayValue>>
cachedDisplayedValue

MethodContext 29
ByteString 3

GLMSmalltalkCodePresentation>>transformation:>>
transformation

BlockClosure 71
ByteString 1

GLMListPresentation>>displayValue>>
cachedDisplayedValue

GLMAnnouncingCollection 64
Interval 67
Array 52
LinkedList 12
OrderedCollection 59
Character 6

GLMListPresentation>>title:>>title
BlockClosure 3
ByteString 90

GLMListPresentation>>transformation:>>
transformation

BlockClosure 155
ByteSymbol 31

GLMTransmission>>value>>originalValue

ByteString 29
GLMCompositePresentation 8
GLMMultiValue 120
GLMBasicExamples class 1

APPENDIX B. RAW DATA FROM THE CASE STUDIES 40

MethodContext 174
ByteSymbol 49
GLMTextPresentation 21
GLMAnnouncingCollection 19
GLMTabulator 10
SmallInteger 380
Pragma 69
LinkedList 24
GLMMagrittePersonExample 4
GLMFormatedPresentation class 1
BlockClosure 7
Character 97
OrderedCollection 10
DebugSession 58
GLMWrapper 9
Text 182
Array 44
Interval 154
Association 6
GLMActionListPresentation 21

GLMTransmission>>meetsCondition>>originValues

ByteString 21
GLMCompositePresentation 6
GLMMultiValue 145
GLMBasicExamples class 1
MethodContext 145
ByteSymbol 5
GLMTextPresentation 18
GLMAnnouncingCollection 13
GLMTabulator 8
SmallInteger 194
GLMMagrittePersonExample 2
BlockClosure 6
Character 25
OrderedCollection 10
DebugSession 58
GLMWrapper 6
Text 176
Array 38
Interval 152
Association 3
GLMActionListPresentation 18

GLMTransmission>>transformation:>>transformation
BlockClosure 89
ByteSymbol 67

GLMPortEvent>>
initializeOn:previouslyValued:in:>>oldValue

GLMCompositePresentation 3
ByteString 34
GLMDynamicPresentation 1
GLMMultiValue 97
MethodContext 29
ByteSymbol 39

APPENDIX B. RAW DATA FROM THE CASE STUDIES 41

GLMTextPresentation 23
GLMTablePresentation 6
GLMTreePresentation 19
GLMTabulator 3
GLMSmalltalkCodePresentation 1
SmallInteger 444
GLMAnnouncingCollection 9
Pragma 137
LinkedList 53
GLMMagrittePersonExample 3
BlockClosure 3
Character 145
OrderedCollection 306
GLMWrapper 3
GLMListPresentation 28
Text 1786
Array 7
Interval 1282
Association 2
GLMActionListPresentation 9

GLMTreeMorphSelectionChanged>>
selectionValue:>>selectionValue

MethodContext 58
ByteSymbol 47
OrderedCollection 19
GLMFormatedPresentation class 1
Character 53
Pragma 69
LinkedList 14
Array 3
GLMAnnouncingCollection 6
SmallInteger 160
Association 3

GLMTreeMorphStrongSelectionChanged>>
strongSelectionValue:>>strongSelectionValue

GLMAnnouncingCollection 2
ByteSymbol 15
Pragma 2
LinkedList 8
SmallInteger 60
Character 21

GLMCompositePresentation>>title:>>title BlockClosure 20
ByteString 7

GLMTreePresentation>>displayValue>>
cachedDisplayedValue

Array 18
Interval 17
Character 4
LinkedList 1

GLMTreePresentation>>transformation:>>
transformation

Array 3
BlockClosure 19

GLMMorphPresentation>>displayValue>>
cachedDisplayedValue

SmallInteger 1
ImageMorph 5

GLMMorphicMagritteRenderer>>
magritteMorphFrom:>>toShow

GLMMagrittePersonExample 5

APPENDIX B. RAW DATA FROM THE CASE STUDIES 42

GLMAnnouncingCollection 2

GLMContextChanged>>oldValue:>>oldValue

ByteString 97
GLMCompositePresentation 3
GLMDynamicPresentation 1
GLMMultiValue 97
MethodContext 29
ByteSymbol 74
GLMTextPresentation 42
GLMTablePresentation 12
GLMTreePresentation 48
GLMTabulator 3
GLMSmalltalkCodePresentation 3
SmallInteger 856
GLMAnnouncingCollection 16
Pragma 274
LinkedList 139
GLMMagrittePersonExample 5
BlockClosure 3
Character 302
OrderedCollection 633
GLMWrapper 3
GLMListPresentation 50
Text 2978
Array 22
Interval 2363
Association 4
GLMActionListPresentation 9

GLMContextChanged>>value:>>value

GTSimpleMethodsBrowser 4
GLMCompositePresentation 33
ByteString 173
GLMDynamicPresentation 3
GLMMultiValue 304
GLMBasicExamples class 4
MethodContext 493
ByteSymbol 219
GLMTextPresentation 148
GLMTablePresentation 12
GLMTreePresentation 67
GLMTabulator 38
GLMSmalltalkCodePresentation 3
SmallInteger 1676
GLMAnnouncingCollection 62
Pragma 280
LinkedList 198
GLMMagrittePersonExample 12
GLMFormatedPresentation class 4
BlockClosure 28
Character 496
GTGenericStackDebugger 58

APPENDIX B. RAW DATA FROM THE CASE STUDIES 43

OrderedCollection 905
DebugSession 116
GLMListPresentation 71
GLMWrapper 34
Text 4028
Array 155
Interval 2933
Association 12
GLMActionListPresentation 86

GLMPanePort>>silentValue:>>value

GTSimpleMethodsBrowser 2
GLMCompositePresentation 12
ByteString 64
GLMDynamicPresentation 1
GLMMultiValue 114
GLMBasicExamples class 2
MethodContext 232
ByteSymbol 105
GLMTextPresentation 59
GLMTablePresentation 6
GLMTreePresentation 24
GLMTabulator 15
GLMSmalltalkCodePresentation 1
SmallInteger 826
GLMAnnouncingCollection 28
Pragma 140
LinkedList 72
GLMMagrittePersonExample 6
GLMFormatedPresentation class 2
BlockClosure 12
Character 219
GTGenericStackDebugger 29
OrderedCollection 427
DebugSession 58
GLMListPresentation 35
GLMWrapper 13
Text 1934
Array 67
Interval 1398
Association 6
GLMActionListPresentation 34

GLMPanePort>>changeValueTo:in:>>oldValue

GLMCompositePresentation 3
ByteString 34
GLMDynamicPresentation 1
GLMMultiValue 97
MethodContext 29
ByteSymbol 39
GLMTextPresentation 23
GLMTablePresentation 6
GLMTreePresentation 19

APPENDIX B. RAW DATA FROM THE CASE STUDIES 44

GLMTabulator 3
GLMSmalltalkCodePresentation 1
SmallInteger 444
GLMAnnouncingCollection 9
Pragma 137
LinkedList 53
GLMMagrittePersonExample 3
BlockClosure 3
Character 145
OrderedCollection 306
GLMWrapper 3
GLMListPresentation 28
Text 1786
Array 7
Interval 1282
Association 2
GLMActionListPresentation 9

Phratch

Variable Types Count

ArgumentPlaceHolderMorph>>mouseDown:>>frag BlockLabelFragment 2
ByteSymbol 2

ReporterBlockMorph>>defaultArgs:>>defaultValue

PhratchSpriteMorph 13
ByteSymbol 168
ByteString 318
ScriptablePhratchMorph 1
SmallInteger 129

ReporterBlockMorph>>showValue>>msg

Float 2
ByteString 17
PhratchListMorph 2
Form 2
SmallInteger 7

PhratchStageMorph>>changeVar:by:>>n SmallInteger 5
ByteString 2

PhratchSpriteMorph>>lookLike:>>i SmallInteger 37
ByteString 1

PhratchProcess>>returnValueToParentFrame:>>obj

Color 15
PhratchSpriteMorph 630
ByteSymbol 3
ByteString 111
PhratchStageMorph 1
Float 5
SmallInteger 426

PhratchProcess>>evaluateSelfEvaluating>>value

SmallInteger 421
Color 15
ByteSymbol 3
ByteString 98

APPENDIX B. RAW DATA FROM THE CASE STUDIES 45

PhratchProcess>>evaluateFor:>>expression

SpecialBlockMorph 1642
ByteSymbol 2
ChoiceOrExpressionArgMorph 3
ReporterWatcherBlockMorph 22
CustomCommandBlockMorph 8
ExpressionArgMorphWithMenu 7
SetterBlockMorph 52
ChoiceArgMorph 31
CommandBlockMorph 1729
ReporterBlockMorph 43
ExpressionArgMorph 477
CBlockMorph 104
Array 915
TimeBlockMorph 1081
ColorArgMorph 15
SpriteArgMorph 3
AttributeArgMorph 2

PhratchProcess>>popStackFrame>>command

SpecialBlockMorph 14
ChoiceOrExpressionArgMorph 3
ByteSymbol 1710
ReporterWatcherBlockMorph 22
CustomCommandBlockMorph 4
ExpressionArgMorphWithMenu 7
SetterBlockMorph 26
ChoiceArgMorph 31
CommandBlockMorph 1236
ReporterBlockMorph 24
Array 245
CBlockMorph 16
ExpressionArgMorph 477
TimeBlockMorph 18
SpriteArgMorph 3
AttributeArgMorph 2
ColorArgMorph 15

PhratchProcess>>applyPrimitive>>value

PhratchSpriteMorph 630
ByteString 13
PhratchStageMorph 1
SmallInteger 5
Float 5

PaintFrame>>scaleCanvas:>>numToScale
SmallInteger 3
Float 1
ByteSymbol 2

CommandBlockMorph>>argMorphToReplace:>>v SmallInteger 2
ByteString 4

CommandBlockMorph>>defaultArgs:>>defaultValue SmallInteger 629
ByteString 680

PhratchCommandHandler>>model:>>model

ScriptablePhratchMorph 139
PhratchStackFrame 8

APPENDIX B. RAW DATA FROM THE CASE STUDIES 46

PhratchSpriteMorph 3247
PhratchStageMorph 10

ReporterWatcherBlockMorph>>showValue>>msg
SmallInteger 1
Float 1
ByteString 2

VariableBlockMorph>>receiver:>>receiver
CustomBlockDefinition 7
PhratchSpriteMorph 8
PhratchStageMorph 5

ListContentsBlockMorph>>showValue>>msg PhratchListMorph 1
Form 1

PhratchStackFrame>>expression:>>expression

SpecialBlockMorph 1642
ChoiceOrExpressionArgMorph 3
ByteSymbol 2
ReporterWatcherBlockMorph 22
CustomCommandBlockMorph 4
ExpressionArgMorphWithMenu 7
SetterBlockMorph 26
ChoiceArgMorph 31
CommandBlockMorph 1247
ReporterBlockMorph 24
Array 258
CBlockMorph 96
ExpressionArgMorph 477
TimeBlockMorph 20
ColorArgMorph 15
SpriteArgMorph 3
AttributeArgMorph 2

PhratchEvent>>name:argument:>>argument SmallInteger 24
KeyboardEvent 126

WatcherMorph>>translatedName>>param SmallInteger 1
ByteString 14

ColorBlockMorph>>defaultArgs:>>defaultValue SmallInteger 16
ByteString 4

PhratchFrameMorph>>
watcherShowingFor:selectorAndArg:>>arg

SmallInteger 14
Color 28
ByteString 250

BooleanBlockMorph>>showValue>>msg
True 3
False 7
ByteString 20

TimeBlockMorph>>defaultArgs:>>defaultValue SmallInteger 152
ByteString 54

BooleanWatcherBlockMorph>>showValue>>msg False 1
ByteString 2

DoAsk>>model:>>model
ScriptablePhratchMorph 1
PhratchStackFrame 4
PhratchSpriteMorph 13

PhratchUpdatingStringMorph>>
valueFromTargetOrNil>>result

Color 3474
False 1861
ByteSymbol 8400

APPENDIX B. RAW DATA FROM THE CASE STUDIES 47

ByteString 21250
Float 92854
SmallInteger 29941

PhratchUpdatingStringMorph>>readFromTarget>>v

Color 3474
False 1861
ByteSymbol 8400
ByteString 21250
Float 92858
SmallInteger 29941

PhratchUpdatingStringMorph>>readFromTarget>>
lastValue

Color 1
False 2
ByteSymbol 2
ByteString 37
Float 1156
SmallInteger 12711

Pangea
No potentially duck-typed variables found.

	1 Introduction
	2 VariableTracker
	2.1 What is VariableTracker?
	2.2 How does VariableTracker work?
	2.2.1 The Reflectivity framework
	2.2.2 How does VariableTracker use the Reflectivity framework?
	2.2.3 What happens to the original methods?
	2.2.4 Integrating VariableTracker into a development environment
	2.2.5 Caching & storing the data in the database
	2.2.6 How does the analysis work?

	3 Case Studies
	3.1 Nautilus
	3.1.1 What functionality was executed to exercise the instrumented code?
	3.1.2 Results

	3.2 Roassal
	3.2.1 What functionality was executed to exercise the instrumented code?
	3.2.2 Results

	3.3 Glamour
	3.3.1 What functionality was executed to exercise the instrumented code?
	3.3.2 Results

	3.4 Phratch
	3.4.1 What functionality was executed to exercise the instrumented code?
	3.4.2 Results

	3.5 Pangea
	3.5.1 What functionality was executed to exercise the instrumented code?
	3.5.2 Results

	4 Conclusion
	4.1 Patterns
	4.1.1 Patterns for Nautilus
	4.1.2 Patterns for Roassal
	4.1.3 Patterns for Glamour
	4.1.4 Patterns for Phratch
	4.1.5 Patterns in total

	4.2 Summary
	4.3 Threats to validity
	4.3.1 External validity
	4.3.2 Internal validity

	5 Related work
	A Anleitung zu wissenschaftlichen Arbeiten
	B Raw data from the case studies

