
Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior spe-

cific permission and/or a fee.

Conference 00 , Month 1-2, 2000, City, State.

Copyright 2000 ACM 1-58113-000-0/00/0000 $5.00.

Meta-level Language Bridging
Nathanael Schaerli, Franz Achermann, Oscar Nierstrasz

Software Composition Group
University of Bern, Switzerland

www.iam.unibe.ch/~scg
{schaerli, acherman, oscar.nierstrasz}@iam.unibe.ch

ABSTRACT
Scripting and composition languages offer high-level mechanisms to
combine and compose services provided by a lower-level host pro-
gramming language. Inter-language bridging mechanisms are there-
fore needed to map host language entities and services to
abstractions of the scripting language, and vice versa.

Many popular languages such as Python, Perl, and Ruby use a
bridging approach based on wrappers that must be written or gener-
ated in the host language. Other languages like Jython and Kawa
adopt a fixed bridging strategy that exploits reflective features pro-
vided by the host language. Although both of these approaches are
usable, they are cumbersome and low-level. In particular, it can be
very difficult to adapt host language services to cooperate seamlessly
with abstractions of the scripting language.

In this paper we present a lightweight bridging strategy for script-
ing and composition languages that simplifies the task of adapting
host language services to the abstraction level of the scripting lan-
guage. This strategy uses introspection facilities of the host language
to automate the wrapping process, while providing a hook for pro-
grammer-defined adaptation of the generated interface. A meta-level
bridging layer is responsible for wrapping and unwrapping both host
and scripting language entities so they can seamlessly cooperate.

The bridging strategy employs partial evaluation of wrapping and
unwrapping operations to achieve acceptable performance.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures – scripting languages, partial evaluation, composition.

General Terms
Design, Languages, Theory.

Keywords
Scripting Languages, inter-language bridging, higher-level compo-
sition, adapting components, partial evaluation

1. INTRODUCTION
Scripting languages offer programmers a high-level view of services
implemented in a lower-level host language [1]. Composition lan-

guages take this idea step further, and offer programmers a way to
specify applications as high-level compositions of software compo-
nents implemented in other, low-level languages [3][4]. Both script-
ing languages and composition languages must solve a common
problem, which is how to bridge the gap between the low-level host
language and the high-level scripting view. This language bridge
must not only wrap components so that they can be accessed from the
scripting level, but must also offer the opportunity to adapt compo-
nents that have been designed independently and may therefore not
be plug-compatible [2].

We have been developing a general purpose composition lan-
guage called Piccola [5] and have identified a set of requirements
that bridging strategies for languages like Piccola should support to
achieve seamless, high-level composition. (Since these requirements
are also valid for scripting languages, we will use the term “scripting
language” in the remainder of this paper to also include composition
languages.)

Ready to access. Host language components and services should
be directly accessible from the scripting language without requir-
ing the programmer to write or generate any wrapper or glue
code.

Ready to adapt. Programmers should be able to specify glue code
to adapt components directly in the scripting language [2]. It
should be possible to define generic glue code that will automati-
cally adapt a range of components supporting one interface to an-
other one.

Ready to compose. Host language components should seamless-
ly integrate with scripting language mechanisms [1][6]. This
means that scripts can uniformly manipulate both scripting lan-
guage entities and host language components. Furthermore, ex-
pressions that invoke both scripting level and host language
services should transparently wrap or unwrap scripting and host
level arguments and results as required (possibly making use of
generic glue code).

 As we shall see in section 3, conventional language bridging
strategies adopted by scripting languages such as Perl [7], Python
[8], Ruby [9], Jython [10], and Kawa [11] either require wrapper
code to be written or generated in the host language, or they adopt a
fixed bridging strategy using reflective capabilities of the host lan-
guage. The wrapping approach violates our first requirement, where-
as the reflective approach fails to adequately address the second and
third requirements.

In this paper we present the language bridging strategy that we
have developed for Piccola. This strategy combines and extends the
other two strategies to achieve greater flexibility and thereby address
all of our three requirements. The key ideas are:

mailto:schaerli@am.unibe.ch
http://www.iam.unibe.ch/~scg

Meta-level Language Bridging, Nathanael Schaerli, Franz Achermann, Oscar Nierstrasz 2

• Host language introspection together with a fixed bridging
strategy are used to generate default wrappers for host com-
ponents.

• Wrapped components have two identities: (1) the default
wrapper used to access its peer (i.e., the unwrapped host
component), and (2) the current glue wrapper.

• Wrapping and unwrapping is performed by a meta-level lan-
guage bridge specified in the scripting language. In this lay-
er, programmers may specify generic glue code and deter-
mine when to apply it to host components.

This strategy combines the advantages of both conventional lan-
guage bridges approaches, while addressing all of our requirements.
Furthermore, the approach can be efficiently implemented. By
adopting a partial evaluation strategy, it is possible to ensure that
only those wrapping and unwrapping operations that are strictly nec-
essary will actually be evaluated at run-time.

The rest of this paper is structured as follows: In section 2, we mo-
tivate this work by introducing our view of composition and script-
ing languages, and by presenting a running example that illustrates
our three requirements for language bridging. In section 3 we review
and evaluate existing bridging strategies with respect to our require-
ments and the running example. In section 4 we present the meta-lev-
el language bridging strategy. We briefly outline the partial
evaluation scheme and outline its correctness proof in section 5. We
discuss related and future work in section 6 and conclude this paper
in section 7.

2. MOTIVATION
Scripting languages offer a high-level programming interface for
specialized tasks, making use of services implemented in a conven-
tional, low-level host language. A composition language generalizes
the idea of a scripting language, by offering a way to view applica-
tions as high-level compositions of software components imple-
mented in conventional languages.

In this section we briefly introduce Piccola, a composition lan-
guage, and we present a simple example that illustrates the problems
of language bridging for scripting languages in general, and for Pic-
cola in particular.

2.1 Piccola — A pure composition language
Piccola is a small language for composing applications from soft-
ware components [5]. Piccola can be seen as a generic scripting lan-
guage in the sense that it supports the definition of “compositional
styles” for different application domains. Each style determines a set
of component interfaces (“plugs”) relevant for that domain, and a set
of operators (“connectors”) that one may use to connect compatible
components.

Although the details of Piccola are beyond the scope of this paper,
it may help the reader to understand the context of this paper if we ex-
plain a few points concerning the intent of Piccola and the design of
the language.

Piccola is truly a minimal language in the sense that the language
provides almost no built-in behaviour. Everything is accomplished
by external components. Even booleans, numbers and strings are
provided by the host language (Java or Squeak, in the current imple-
mentations).

The requirements we have identified in the introduction are par-
ticularly relevant for Piccola. Any host language component should

be readily accessible to Piccola scripts. Components will typically
need to be adapted to provide high-level plugs corresponding to a
compositional style. Finally, since Piccola is a pure composition lan-
guage, scripts do nothing but coordinate host language components,
and so it is essential that connectors specified in Piccola seamlessly
interact with the underlying host components, without the need for
explicit conversions.

The semantics of Piccola is defined in terms of agents, channels,
forms, and services. A script is the text of a Piccola specification
which may be loaded into the Piccola run-time and evaluated by one
or more agents. Agents communicate and synchronize using shared
channels. Forms are immutable, nested records containing bindings
of labels to values. Services are abstractions that may be invoked.

Forms are important because they serve two important purposes:
first, they allow us to structure the services provided by external
components; second, they double as explicit namespaces [12] in
which scripts may be evaluated. So forms serve both as primitive ob-
jects and as dictionaries.

Syntactically, Piccola resembles the Python scripting language.
Semantically it is rather different due to its support for explicit name-
spaces. The operational semantics of Piccola is defined in terms of an
underlying process calculus [13]. An unusual, but important detail is
that the sublanguage of forms and services (i.e., without agents and
channels) is purely functional. State can only be modeled by com-
municating information through channels (or by using host compo-
nents).

2.2 Motivating example
This simple example illustrates the difficulties posed by our three re-
quirements, and applies not only to Piccola, but to scripting languag-
es in general. In this subsection we will assume that our host
language is Java and our scripting language is Python (not Piccola).

Suppose that we have an application that uses a Java document
component as shown in Figure 1. This component allows a user to ac-
cess text at the current caret position. Furthermore, it contains serv-
ices to set the caret position, to check whether the caret is at the end,
and to retrieve text up to a certain pattern.

Our application contains services that use this document compo-
nent. Consider a service addWordsToDatabase, which takes such
a document as an argument and adds each of its words to a database.
Figure 2 shows how such a service might be written in Python.

class CaretDocument {
void setPos(int pos);
void nextPos();
// Write text and increment position
void write(String text);
// Read and increment position
String read(int len);
String readUntil(String pattern);
bool atEnd();

}

Figure 1 A host document component

def addWordsToDatabase(doc):
doc.setPos(1)
while not(doc.atEnd()):
word = doc.readUntil(" ")
database.add(word)
doc.nextPos()

Figure 2 A scripting language service

Meta-level Language Bridging, Nathanael Schaerli, Franz Achermann, Oscar Nierstrasz 3

We use this service in the following scenario that first obtains a
new document component from the host language. Then, it adds the
words to the database, and finally, it prints the document using an ex-
ternal printer service that is tuned to the document component.
(Printer and document come from the same document framework).

Now, we would like to use our application also with other docu-
ment components that have a different interface. One of these com-
ponents has the interface shown in figure 4. Basically, this
component provides the same functionality as the original one. We
can access text at a certain position and also retrieve text up to a cer-
tain text pattern. But unlike the original component, the new one
does not store the caret position and requires the user to specify this
position as an explicit argument when using a service.

A scripting language should allow us to use the new component
without changing existing application code. This means that we can
adapt the new component so that we neither have to change the high-
er-level service addWordsToDatabase nor the script in which it is
used.

In the next section, we review existing bridging techniques and
evaluate how well they support this scenario.

3. PROBLEMS WITH TRADITIONAL
BRIDGING APPROACHES

In this section, we review the bridging strategies used by popular
scripting languages. We discuss how they address the three require-
ments stated in the introduction of this paper analyze the conse-
quences on our example.

Table 1 gives an overview of the different bridging strategies and
shows whether and how they conform to the required properties. In
this section we will look at bridging strategies based on reflection
and on explicit wrappers and we will review their shortcomings. We
will briefly introduce meta-level language bridging, and present it in
detail in the following section.

3.1 Fixed strategy based on reflection
Jython and Kawa are implementations of Python and Scheme on top
of the Java platform. Although Python and Scheme are rather differ-
ent languages, the two implementations share a lot of similarities re-
garding their strategy for inter-language bridging. Both languages
provide direct access to all the available Java classes and their con-
structors, which enables the programmer to directly instantiate them.
Both Jython and Kawa use introspection facilities of the Java lan-
guage to represent instances of host classes as appropriate first class
types in their own language model. In case of Jython, this means that

a Java object is mapped to a Python object with an interface that cor-
responds to its Java counterpart. As a consequence, the programmer
can plug external Java components together by using the higher-level
abstractions that are offered by the Python language.

Although this bridging strategy does a good job of allowing host
objects to be accessed and composed as they are, this strategy is
fixed, because it does not provide a way to adapt components when
they are passed to the higher-level language.

In our example this issue urges to programmer to use either man-
ual wrapping or subclassing in order to adapt our new document
component. But as we point out in the following subsections, neither
approach enables seamless composition of components.

3.1.1 Manually wrapping the component
With this approach, the programmer uses delegation to wrap the new
document component into an entity that provides the necessary glue
and has the appropriate interface. Unfortunately, this approach suf-
fers from several drawbacks: The main problem is that wrapped
components cannot be used as arguments for host services because
they do not get converted to the appropriate host objects. This issue
is an occurrence of the identity problem that is caused by wrappers
because the identity of the wrapper is not the same as the identity of
the original entity [2].

We will illustrate this problem with our example scenario. As-
sume that we have written a service wrapDocument that wraps a
TextDocument so that it provides the same interface as Caret-

Document. This service allows us to use a TextDocument as an ar-
gument to the service addWordsToDatabase, which is defined in
the scripting language. But because of the identity problem, we can-
not use this component as an argument to the service print, which
has been written in the host language.

Instead, we have to pass the original document component to the
service print because only this component can be recognized and
used on the level of the host language. Assuming that the wrapped

doc = serviceYieldingDocument()
addWordsToDatabase(doc)
printer = serviceYieldingPrinter()
printer.print(doc)

Figure 3 Combining host and scripting level services

class TextDocument {
// Write text at the end
void write(String text);
// Write text at a certain position
void write(int pos, String text);
String read(int start, int end);
String readUntil(int start, String pattern);
int size();

}

Figure 4 An incompatible component

Table 1: Bridging strategies

Strategy Accessing Adapting Composing

Reflection
based

Automatic No support

Scripting
level and
host serv-
ices not uni-
form

Based on
wrappers

in host
language

Needs
wrappers in
the host lan-
guage

On the level
of the host
language

Compo-
nents not
first class
entities

Meta-level
language
bridging

Automatic
On the
meta-level

Seamless
integration
of host com-
ponents

doc = wrapDocument(serviceYieldingDocument())
addWordsToDatabase(doc)
printer = serviceYieldingPrinter()
printer.print(doc) # Fails!

Figure 5 Identity problem caused by wrapping

Meta-level Language Bridging, Nathanael Schaerli, Franz Achermann, Oscar Nierstrasz 4

document contains a service unwrap, we must therefore replace the
last line and pass the original component as an argument to the print
service.

It is clear that this manual wrapping and unwrapping of compo-
nents seriously impairs the higher-level composition process be-
cause it does not allow us to deal with both scripting level and host
services in a uniform way. An simple but very problematic idea to
tackle this problem is to adapt the host services so that they wrap a
document when it is passed to the scripting language and unwrap it
when it is returned to the host language. In our example, this means
that the invocations of wrapDocument and unwrap are respectively
performed in the services serviceYieldingDocument and
print.

In order to realize that, the programmer would have to identify
and adapt all the host services that have a document component as an
argument or as a return value. Besides the fact that this is only possi-
ble in a strongly typed language, it also becomes very cumbersome
and impractical for non-trivial applications. Already in our small ex-
ample, we have to adapt the service print of all the printer compo-
nents. This means that we also have to adapt all the host services that
are dealing with printer components and then all the components
where these services are defined. Obviously, this adoption process
has a deeply recursive complexity and results in adoption code that is
scatter throughout our application. In his work about integration of
independent components, Hölzle refers to this problem as wrapper
explosion [2].

3.1.2 Subclassing the component
Jython allows one to create subclasses of Java classes. Therefore, it
is possible to add glue code to a component by subclassing it. Unfor-
tunately, this approach has only limited applicability for adapting
components because subclassing is not designed for adapting inter-
faces of classes [13]. Since there is no private inheritance in Java (and
most other object-oriented languages), a subclass always inherits the
whole interface of the base class. This leads to cluttered interfaces,
and it makes the new component incompatible to the original one if
there is a name clash between the original and the new interface.

In our example, such a name clash occurs because the method
void write(String) has a different semantics for the two compo-
nents. (In CaretDocument, it writes text at the current caret posi-
tion, and in TextDocument it always writes text at the end).
Therefore, it is not possible to subclass TextDocument so that it is
compatible to CaretDocument without breaking compatibility to
the base class.

If such a name class does not occur, a subclass is compatible to its
base class. This avoids the identity problem that occurs in the wrap-
ping approach because we can use an instance of subclass as an argu-
ment for every host service that is written for the base class.
Nevertheless, the programmer still has to make sure that all the in-
stances of the original component are replaced with instances of the
subclass when they are passed to the scripting language. Especially
for non-trivial applications, this is very impractical and leads to the
same problems as shown above (wrapper explosion).

3.2 Wrapping in the host language
Many popular languages like Perl, Python or Ruby use a bridging ap-
proach based on wrappers and glue code that has to be written in the
host language (usually C/C++). This allows a great flexibility in de-
fining the glue abstractions, but it requires the user to specify them on
the level of the implementation language, which impairs the higher-
level scripting process. Therefore, these languages do not meet the
requirement of lightweight and direct access to the host components.

This problem can be tackled by using a tool like SWIG [14] that
automatically generates the necessary wrappers from the source
code of the components. This grants the programmer direct access to
host entities, but it does not preserve the structure of the components.
In case of C++ and Python, this means that derived C++ data types
such as classes or arrays are not mapped to corresponding Python
classes. In fact, instances of derived data types are only available as
pointers, and methods are mapped to global functions that need the
this-pointer as an explicit argument. As a consequence, a compo-
nent's encapsulated structure and its first class characteristics get
lost, which makes it very hard to plug entire components together on
a higher level without having to write additional wrapper code first.

Applied to our example, this means that we first have to write or
generate wrapping code in order to make the new document compo-
nent (TextDocument) accessible within the scripting language. If
we write this code by hand, we can directly include glue code that
adapts the component so that it gets compatible to the original docu-
ment (CaretDocument). Unfortunately, this does not avoid the
problem that the services and the state of a component are only avail-
able as functions respectively pointers on the level of the scripting
language. This means that we have to write additional code in the
scripting language in order to turn these entities into a single first
class object representing the host component.

3.3 Summary and outlook
As a summary, we can say that neither traditional bridging approach
meets all the requirements necessary for flexible and higher-level
composition. Regarding our example, this has the consequence that
it is not possible to reuse a higher-level application for incompatible
components without making changes that are scattered across the
code of the scripting language or even of the host language.

In the next chapter, we introduce a bridging approach that simpli-
fies the task of adapting host language components to the abstraction
level of the scripting language. This strategy uses introspection facil-
ities of the host language to automate the wrapping process, while
providing a hook for programmer-defined adoption of the generated
interface. A meta-level bridging layer is responsible for wrapping
and unwrapping both host and scripting language entities so they can
seamlessly cooperate.

4. META-LEVEL LANGUAGE BRIDGING
In this section we present an inter-language bridging strategy that al-
lows the scripting language to meet the requirements stated in the in-
troduction of this paper. We have developed this strategy for our
composition language Piccola and we successfully use it in both the
Squeak and the Java based implementation [15]. Since the concept of
our approach is independent of Piccola, we keep the theoretical part
of the description on a general level and mention the Piccola imple-
mentation for concrete examples.

Basically, our solution consists of two main concepts: We sepa-
rate the different aspects of a host component in order to solve the

doc = wrapDocument(serviceYieldingDocument())
addWordsToDatabase(doc)
printer = serviceYieldingPrinter()
printer.print(doc.unwrap()) # Works!

Figure 6 Unwrapping components

Meta-level Language Bridging, Nathanael Schaerli, Franz Achermann, Oscar Nierstrasz 5

identity problem. In addition, we move the variable part of the inter-
language bridge into the scripting language in order to specify the
adaptation and glue code at a higher level.

4.1 Modeling host components
The first step in designing an inter-language bridge is to specify how
host components are modeled within the language. According to our
requirements, such a model should support the following properties:
On one hand, host components that already provide the right struc-
ture should be immediately ready to compose, which means that they
can be used consistently for services in both the scripting language
and the host language. On the other hand, it should also be possible
to adapt incompatible components in a higher-level way.

In order to meet these requirements, we separate the two different
aspects that are associated with a host component, namely its exter-
nal identity (i.e. the relation to the associated component) and its
higher-level interface together with the glue. This means that we
model every host component as a nested structure that embeds the
host entity within the higher-level interface. This allows the pro-
grammer to adapt the interface and the glue code without affecting
the host identity.

In the concrete example of Piccola, forms are the only first class
entities, and therefore, we use a nested form to realize this separa-
tion. This means that every host component is represented by a form
that has the following structure:

Interface and glue. The top level of a host form represents the Pic-
cola interface and the glue that is necessary to adapt the component
to a specific compositional style.

Peer. The host form contains a label peer bound to the form that
actually represents the host object. This subform contains a binding
for every service provided by the component.

Note that in the rest of this paper, we sometimes use the names
peer and interface to refer respectively to the external identity and
the higher-level interface (including the glue code) of a host compo-
nent.

Figure 7 illustrates the nested structure of a form that represents a
document component TextDocument with an interface that is com-
patible to CaretDocument. At the top level of the form, there is the
Piccola interface, which consists of the services that implement the
glue to access to component in the appropriate way. In addition, there
is the label peer bound to the peer form representing the identity of
the host component. This form contains bindings that are directly
mapped to the host component and provide direct access to the low-
er-level services.

Although this separation is also a variant of wrapping, the bridg-
ing process explained in the following section allows us to overcome
the identity problem that occurs in the other solutions (cf. Section 3).
The reason for that is the fact that all the wrapping is transparently
performed on the level of the inter-language bridge rather than in the
code written by the user. Every component that is passed to the
scripting language is automatically converted into this nested struc-
ture. Therefore, the services inside the scripting languages always
see the higher-level interface, which can be freely adapted by the
programmer. In the other direction, when such a component is used
as a parameter for a lower-level service, the bridge only passes the
external identity (peer) to the host language. This ensures that the
lower-level services always deal with the original object, and it
therefore avoids the identity problem.

4.2 Defining the bridging process
In the previous section, we have illustrated that modeling host com-
ponents with a nested structure allows the programmer to modify
these components without affecting the compatibility to host servic-
es. Now, we present an inter-language bridge that supports this con-
cept in a way that allows the programmer to specify glue code that is
automatically applied to an entire class of components.

Figure 8 gives an overview of this bridging process. It shows that
the inter-language bridge is divided into two parts: The generic part
is implemented in the virtual machine and the variable part is located
inside the scripting language. When a host component is passed to
the scripting language (left side), the generic part converts it into a
nested structure as described in the previous section. Then, this struc-
ture is passed to the variable part of the bridge. Here, the generic in-
terface gets replaced with a specific interface that can be specified by
the programmer. The resulting structure consisting of the specific in-
terface and the peer represents the component within the scripting
language. Note that the variable part of the interface may not neces-
sarily provide every object with a specific interface. In this case the
generic interface is used within the scripting language.

When a host component is passed back to the host language (right
side), the inter-language bridge discards the higher-level interface
and only passes the peer. This avoids the identity problem and guar-
antees that the component has the structure required by the host lan-
guage.

4.2.1 Passing host components to the scripting
language
When a host component is passed to the scripting language, the task
of the inter-language bridge can be divided into two parts. First, the
bridge has to convert the component to make it technically compati-
ble to the object model of the scripting language. And second, it
should adapt the component in order to fit the needs of the applica-
tion and to cooperate with the other components. Whereas the first
part is generic, the second one is completely variable and may de-
pend on many aspects of the component such as its class or the cur-
rent state (e.g. instance variable values).

In most traditional approaches, both of these parts are hard-coded
in the virtual machine, and the user cannot influence how compo-
nents in one language are mapped to components of the other lan-
guage. As we have pointed out in Section 3, this is a problem because

peer
atEnd()
setPos()
nextPos()
write()
read()
readUntil()

size()
write()
write()
read()
readUntil()

ª Hello World

Piccola

Interace

and glue
Peer

Document component

Figure 7 Structure of a host component

Meta-level Language Bridging, Nathanael Schaerli, Franz Achermann, Oscar Nierstrasz 6

it does not allow the programmer to work with incompatible compo-
nents and to adapt them according to the specific needs of the appli-
cation. We avoid this limitation by minimizing the bridging code in
the virtual machine to the technical conversion and moving the vari-
able part into the scripting language. This allows the programmer to
define the representation of host components by modifying the
bridging framework within the higher-level language itself. Control-
ling the behavior of a language within the language itself is called
meta-programming [16], and we therefore say that the variable as-
pect of the inter-language bridge is located in the meta-level of the
scripting language.

Performing the technical conversion in the virtual machine

The responsibility of the bridging layer in the virtual machine is to
convert a component so that it is compatible to the object model of
the scripting language. This is accomplished by building up a nested
structure as defined in Section 4.1. This structure provides access to
all the available services of the original component. Note that this
step is entirely generic, and therefore, the higher-level interface is
identical to the interface of the original component and all the serv-
ices are directly mapped to the corresponding peer services.

For both the Squeak and the Java based Piccola implementation
we were able to do this automatically by using run-time introspec-
tion functionality offered by the host language. This allows the
bridge to create a generic Piccola form for every host component that
is passed to the Piccola language. In figure 9, we show the generic
component that gets created for the document component Text-

Document. Note that it has the nested structure defined above and
that the services in the interface are direct references to the services
in the peer. This structure allows the programmer to access the com-
ponent as it is provided by the host language. Because the interface
is separated from the peer, it can be modified without affecting the
external identity.

Since many popular languages and component architectures offer
basic introspection facilities, a similar approach can be used for oth-
er scripting languages. If the host language does not support run-

time introspection, this gets more difficult. However, if the source
code is available, a generic conversion can be realized with source
code analysis. This is essentially the same approach that is used by
SWIG in order to create wrappers for C++ components [14].

Performing the variable part in the scripting language

After the virtual machine layer of the inter-language bridge has cre-
ated the generic representation of the host component, this represen-
tation gets passed to the variable part of the inter-language bridge,
which is located inside the scripting language. The purpose of this
part is to automatically adapt certain classes of components in order
to make them compatible to one another and to the requirements of
the application. Whereas in most other languages, the glue code for
specific components is either hard-coded in the virtual machine or
has to be written on the level of the host language, our approach al-
lows the programmer to do this on the meta-level of the scripting lan-
guage. This means that he can use the unrestricted expressive power
of the higher-level language to configure host components. For in-
stance, this makes it possible to use the state of the application to dy-
namically determine how a certain component should be configured.

An interesting aspect of our approach is the question how to or-
ganize the meta-level bridging layer and how to activate it from the
bridging layer in the virtual machine. In our work on Piccola, we
have been experimenting with different approaches [15]. In one of
them, we introduce a single hook service that gets called from the ge-
neric part of the inter-language bridge whenever a host component is
passed to Piccola. As an argument, this service receives the generic
structure that is created by the bridging layer in the virtual machine.
Depending on characteristics of the component (e.g. its class), this
hook service now calls an appropriate service to adapt the interface
of the component or leaves it untouched if the programmer has not
defined a specific service to configure this component. The program-
mer has complete freedom in specifying both the hook service and
the services that finally adapt the components.

The code in figure 10 shows how this mechanism can be used to
automatically provide the TextDocument components with an in-
terface and glue code that makes them equivalent to CaretDocu-

ment. When a TextDocument is passed to the scripting language, it
gets first converted into the generic form that is shown in figure 9.
Then, this form is passed as an argument to the hook service hook.
Because the host component is an instance of the class TextDocu-

ment, the service adaptTextDocument provides it with the neces-
sary glue code and returns the nested form shown in figure 7.
Otherwise, the argument form is just returned as it is.

In the service adaptTextDocument, we provide the glue code to
make the new component compatible. First, we create a private vari-
able that stores the current caret position and is initialized with 1.
Then, we create the label peer and bind it to the peer of the argument
component. Finally, we add all the services that are needed to make
the higher-level interface compatible to the component Caret-

Document. Note that in Piccola, we use a quote (') to define a tem-

S
cr

ip
ti

n
g

la
n

gu
ag

e
E

xt
er

na
l

la
ng

ua
ge

M
et

a- le
ve

l

(V
ar

ia
bl

e
pa

rt
)

V
M

(G
en

er
ic

 p
ar

t)

Higher-level representation

Peer

Generic

In terface

Specific

Interface

Component

In terface Inter-
language
bridge

Figure 8 The inter-language bridge

peer
size()
write()
write()
read()
readUntil()

size()
write()
write()
read()
readUntil()

Figure 9 Generic representation of TextDocument

Meta-level Language Bridging, Nathanael Schaerli, Franz Achermann, Oscar Nierstrasz 7

porary (private) binding that is not visible in the return value.
Furthermore, we use a form with bindings val1 and val2 to invoke
host services with more than one argument. For conciseness, we do
not add code to make this component thread safe. However, this
could be achieved easily by using the synchronization mechanisms
provided by the Piccola language.

4.2.2 Passing objects to the host language
When an object of the scripting language is passed as an argument to
a host service, the inter-language bridge is responsible for converting
it into the structure expected by the host language. In our bridging
strategy, the actions taken by the bridge depend on whether the
passed object represents a host component or is an object that was ex
nihilo created within the scripting language.

If the object of the scripting language does not represent a host
component, the bridge just passes the lower-level representation of
the object to the host language. Since we assume that the scripting
language itself is implemented on top of the host language, every ob-
ject of the scripting language is finally also an object of the host lan-
guage, and therefore, this bridging activity is trivial.

The more interesting case applies if the passed object is a host
component. Then, the inter-language bridge only passes the associ-
ated peer rather than the whole structure that represents the compo-
nent on the higher-level (cf. figure 8). As we have already pointed out
in Section 4.1, this avoids the identity problem because the unmodi-
fied peer is guaranteed to have the structure expected by the host
service.

4.2.3 Example
Using this bridging strategy, we are able to use our example applica-
tion also for TextDocument components without changing either
the scripting abstractions (e.g., the service addWordsToDatabase)
nor the code where they are used. The only thing we have to do is to

specify the adaptation code for the new document component in the
meta-level bridging layer as shown in figure 10.

When we execute our application, every TextDocument compo-
nent is automatically adapted by the inter-language bridge. In the
case of our example scenario (cf. figure 3), this means that the com-
ponent returned by the service serviceYieldingDocument al-
ready has the structure shown in figure 6. Therefore, we do not have
to manually wrap this component and can directly use it as the argu-
ment of the service addWordsToDatabase. Because the inter-lan-
guage bridge only passes the peer to a host service, we can use the
same component also as an argument to host services. In our exam-
ple, this means that the service print of the host printer component
can be invoked directly with the higher-level representation of the
component.

5. IMPLEMENTATION ISSUES
Adapting host components in the meta-level of the scripting lan-
guage adds an additional layer of indirection. An implementation
must avoid the associated performance cost as much as possible. In
the Piccola implementation, we use caching and partial evaluation in
order to achieve this.

Without optimization, a lot of time is spent in the hook service
that dispatches the wrappers for a given host component. Since the
dispatching process typically only depends on a few parameters such
as the class of the component, we can build up an efficient cache ta-
ble. This table associates a wrapper with the parameters that were
used in the dispatching process and gets cleared when the hook serv-
ice changes.

In addition we use partial evaluation as a general technique for
optimization and in particular apply it to specialize the indirection
caused by the wrappers in the bridging layer. Partial evaluation is a
source-to-source program transformation technique for specializing
programs with respect to parts of their input [21]. With respect to the
wrappers, partial evaluation weaves the effectively needed glue code
into the application script. This avoids wrapping and unwrapping of
services that are not used.

Consider the expression a = [1,2] which is syntactic sugar for
a = newList().add(1).add(2). When naively executing this
expression we first create an empty list in the host language, wrap it
in the scripting language, create (or grab) a host number 1, wrap the
number and pass this wrapped number as an argument to the service
add of the wrapped list, where it gets unwrapped and added to the
host list. The same applies for the second element. Each time an ob-
ject crosses the language boundary, a wrapper is added or removed.

In the Java version of Piccola, the service newList creates a host
object of the Java class Vector and wraps it at the meta-level so that
it conforms to the scripting view of a list. This view requires,
amongst others, services add and forEach. The service add is
mapped to the Java method addElement, but specifies a different re-
turn value. The service forEach is specified at the meta-level by us-
ing an iterator. In the above expression, we only use the service add.

Partial evaluation specializes this expressions with the wrapper and
generates the following equivalent, but more efficient code:

a = Host.class("java.util.Vector").new()

a.addElement(1)

a.addElement(2)

Because partial evaluation performs non-standard eager evalua-
tion, we need knowledge about the side-effects in order to apply it

Adapt interface of a TextDocument component
adaptTextDocument(Doc):
Private variable to store the position
'pos = newVar 1
peer = Doc.peer
setCursorPos newPos:
'pos <- newPos

nextPos:
setCursorPos(*pos + 1)

write text:
'peer.write(val1 = text, val2 = *pos)
'setCursorPos(*pos + text.size())

read len:
peer.read pos(*pos + len)
'setCursorPos(*pos + len)

readUntil pattern:
'text = peer.readUntil

(val1 = pos, val2 = pattern)
'setCursorPos(*pos + text.size())
text

atEnd:
*pos == peer.size()

Hook service that is called from the VM
hook(Component):
if className(Component) = "TextDocument"
then: adapt TextDocument(Component)
else: Component

Figure 10 The meta-level bridging layer

Meta-level Language Bridging, Nathanael Schaerli, Franz Achermann, Oscar Nierstrasz 8

correctly. Therefore, we use a transformation to separate the side-ef-
fect part from the referentially transparent part. When specializing
we simplify the referentially transparent part, and defer the invoca-
tion of the side-effects until run-time. In order to show correctness of
the partial evaluation, we use the formal model of Piccola.

This formal model consists of agent expressions that evaluate to
forms. The partial evaluation transforms any agent expression to a
sandbox expressions, which are also agent expressions. A sandbox
expression A; B specifies the namespace A in which the expression B
is evaluated. The free identifiers of B are looked up in the value of A.

For instance, the agent expression λx.ε; A denotes an abstraction
over x. The body of the abstraction consists of the side-effect εεεε (no
side effect) and a referentially transparent part A. Application of this
service with the argument (B; C), where B denotes the side effect part
and C the referentially transparent, can be transformed to B; A[x/C].
This means that we substitute the referentially transparent part C for
x in A, and we keep the side effect part B. The free variables of A[x/
C] are identical to the free variables of C and they refer to the same
side-effects in B.

For the correctness proof we show by structural induction over
agent expressions E which are transformed to A; B that the following
holds:

• The value of A contains the results of all the side-effect com-
putations in E.

• The expression B is referentially transparent, and all free
identifiers in B denote the results of side-effect terms availa-
ble in A.

• The value of E and A; B are the same

The formal calculus for Piccola and the correctness proof for the
specialization algorithm is in Achermann's thesis [13].

6. RELATED AND FUTURE WORK
Throughout this paper, we have already discussed the bridging strat-
egies of many popular scripting languages. Other bridging ap-
proaches use a component model to uniformly access external
components.

Jones et al. [18] use Haskell to script COM components and make
use of higher-order functions. They also use the type system to detect
certain composition errors at compile time. IBM’s System Object
Model (SOM) [19] is another approach that allows a programmer to
use components that are written in a separate language. SOM is de-
signed specifically to overcome the main obstacles to the pervasive
use of object class libraries. System objects can be distributed in bi-
nary form. In addition, they can be used and subclassed across differ-
ent languages. SOM is based on an advanced object model and an
object-oriented run-time engine that supports this model. SOM sup-
ports the concepts and mechanisms that are normally associated with
object-oriented systems including inheritance, encapsulation, and
polymorphism.

A component model pushes the idea of standardized interfaces.
Therefore, the adaptation problems addressed in this paper are less
frequent, but not solved in general.

In order to adapt host components, our bridging approach uses
automatic and transparent wrapping. Büchi and Weck [22] use ge-
neric wrappers in order to solve the identity problem in the context of
strongly typed languages but not in the context of inter-language
bridging.

In parallel to the work described in this paper, we have also been
working on distributed Piccola, and our goal is to implement a distri-
bution layer directly in Piccola. Especially for distribution between
heterogeneous Piccola hosts, we need a flexible technique to abstract
away from the host language. Future work will show how the bridg-
ing approach presented in this paper performs in such a distributed
environment.

7. CONCLUSION
In this paper, we show that the requirements for a higher-level script-
ing and composition language are strongly related to the strategy for
inter-language bridging. Most of the traditional bridging approaches
focus on the technical aspect of making host components available in
the scripting language, but they do not provide the necessary abstrac-
tion mechanisms to access the components in a higher-level way.

Analysis of these problems leads to the conclusion that it is not
possible to achieve the needed flexibility with a generic bridging
strategy that is hard-coded in the virtual machine. Thus, we have pro-
posed an inter-language bridge that reduces the activities in the vir-
tual machine to a technical conversion and performs the higher-level
configuration in an abstraction layer located in the meta-level of the
scripting language. This allows the programmer to use the full ex-
pressive power of the scripting language to adapt and configure a
host component in order to fit the needs of the application and coop-
erate with the other components.

Using this bridging strategy, we were able to develop and imple-
ment the Piccola 3 standard, which is completely independent of the
underlying host language. Since Piccola is a pure composition lan-
guage, the standard specifies standard components such as numbers,
strings, collections, and URLs that are used very frequently. Because
all the necessary glue code is written in Piccola itself, the program-
mer may dynamically reconfigure these components depending on
the specific requirements of an application.

8. REFERENCES
[1] John K. Ousterhout. Scripting: Higher Level Programming

for the 21st Century. IEEE Computer magazine, March 1998.
[2] Urs Hölzle. Integrating Independently-Developed Compo-

nents in Object-Oriented Languages. ECOOP '93 Proceed-
ings, Springer Verlag Lecture Notes on Computer Science.

[3] Jean-Guy Schneider and Oscar Nierstrasz. Components,
Scripts and Glue. Software Architectures - Advances and Ap-
plications, Leonor Barroca, Jon Hall and Patrick Hall (Eds.),
pp. 13-25, Springer, 1999.

[4] Jean-Guy Schneider. Components, Scripts, and Glue: A con-
ceptual framework for software composition. Ph.D. thesis,
University of Bern, Institute of Computer Science and Ap-
plied Mathematics, October 1999.

[5] Franz Achermann and Oscar Nierstrasz. Applications = Com-
ponents + Scripts — A Tour of Piccola. Software Architec-
tures and Component Technology, Mehmet Aksit (Ed.), Klu-
wer, 2001, to appear.

[6] Franz Achermann, Stefan Kneubuehl and Oscar Nierstrasz.
Scripting Coordination Styles. Coordination Languages and
Models, António Porto and Gruia-Catalin Roman (Eds.),
LNCS 1906, Limassol, Cyprus, September 2000, pp. 19-35.

[7] Larry Wall, Tom Christiansen, Jon Orwant. Programming
Perl (3rd Edition). O’Reilly & Associates, ISBN:
0596000278, July 2000.

Meta-level Language Bridging, Nathanael Schaerli, Franz Achermann, Oscar Nierstrasz 9

[8] Mark Lutz. Programming Python (2nd Edition). O’Reilly &
Associates, ISBN: 0596000855, March 2001.

[9] Yukio Matsumoto, Yukihiro Matsumoto. The Ruby Program-
ming Language. Addison Wesley Professional, February
2002, to appear.

[10] Jython, an implementation of the high-level, dynamic, object-
oriented language Python written in 100% Pure Java. http://
www.jython.org/.

[11] Per Bothner. Kawa, the Java-based Scheme system. http://
www.gnu.org/software/kawa/.

[12] Franz Achermann and Oscar Nierstrasz. Explicit Namespac-
es. Modular Programming Languages, Jürg Gutknecht and
Wolfgang Weck (Eds.), LNCS 1897, Zürich, Switzerland,
September 2000, pp. 77-89.

[13] Franz Achermann. Forms, Agents, and Channels, defining
Composition Abstractions with Style. Ph.D. thesis, University
of Bern, Institute of Computer Science and Applied Mathe-
matics, 2002, to appear.

[14] David M. Beazley. Interfacing C/C++ and Python with
SWIG. 7th International Python Conference, SWIG Tutorial,
1998.

[15] Nathanael Schärli. Supporting Pure Composition by Inter-lan-
guage Bridging on the Meta-level. Masters thesis, University
of Bern, September 2001.

[16] Gregor Kiczales, Jim des Rivière and Daniel G. Bobrov. The
Art of the Metaobject Protocol. MIT Press, 1991.

[17] Clemens Szyperski. Component Software - Beyond Object-
Oriented Programming. Addison-Wesley, 1998

[18] Simon L. Peyton-Jones, Erik Meijer and Daan Leijen. Script-
ing COM components in Haskell. Fifth International Confer-
ence on Software Reuse (ICSR5), Victoria, Canada, 1998.

[19] Christina Lau. Object-Oriented Programming Using SOM
and DSOM. John Wiley & Sons, March 1995.

[20] Alan Snyder. Inheritance and the Development of Encapsulat-
ed Software Components. In Research Directions in Object-
Oriented Programming B. Shriver and P. Wegner (eds), pp
165-188, MIT Press 1987.

[21] Charles Consel, Oliver Danvy. Tutorial Notes on Partial Eval-
uation. In 20th ACM Symposium on Principles of Program-
ming Languages. Charleston, South Carolina, pp.493-501,
ACM Press 1993.

[22] Martin Büchi and Wolfgang Weck, Generic Wrappers,
ECOOP 2000, 14th European Conference on Object-Oriented
Programming, Elisa Bertino (Ed.), LNCS, vol. 1850, Springer
Verlag, 2000, pp. 201—225.

	Meta-level Language Bridging
	1. Introduction
	2. Motivation
	2.1 Piccola — A pure composition language
	2.2 Motivating example

	3. Problems with Traditional Bridging Approaches
	3.1 Fixed strategy based on reflection
	3.2 Wrapping in the host language
	3.3 Summary and outlook

	4. Meta-level language bridging
	4.1 Modeling host components
	4.2 Defining the bridging process

	5. Implementation Issues
	6. Related and future work
	7. Conclusion
	8. References

