Meta-level Language Bridging

Nathanael Schaerli, Franz Achermann, Oscar Nierstrasz

Software Composition Group
University of Bern, Switzerland
www.iam.unibe.ch/~scg
{schaerli, acherman, oscar.nierstrasz}@iam.unibe.ch

ABSTRACT guagestake this idea step further, and offer programmers a way to
Scripting and composition languages offer high-level mechanisms tospecify applications as high-level compositions of software compo-
combine and compose services provided by a lower-level host pronents implemented in other, low-level languages [3][4]. Both script-
gramming language. Inter-language bridging mechanisms are theréng languages and composition languages must solve a common
fore needed to map host language entities and services tgroblem, which is how to bridge the gap between the low-level host
abstractions of the scripting language, and vice versa. language and the high-level scripting view. This language bridge

Many popular languages such as Python, Perl, and Ruby use Qustnotonlwvrapcomponents so that they can be accessed from the

I . scripting level, but must also offer the opportunitataptcompo-
bridging approach based wmappersthat must be written or gener- . .
ated in the host language. Other languages like Jython and KaWnents that have been designed independently and may therefore not

adopt a fixed bridging strategy that exploéfectivefeatures pro- Be plug-compatible [2].

vided by the host language. Although both of these _approa_lches are \ve have been developing a general purpose composition lan-

usable, they are cumbersome and low-level. In particular, it can bey .26 calleiccola[5] and have identified a set of requirements

very difficult to adapt host language services to cooperate seamlessly, 1yiqging strategies for languages like Piccola should support to

with abstractions of the scripting language. achieve seamless, high-level composition. (Since these requirements
In this paper we present a lightweight bridging strategy for script- are also valid for scripting languages, we will use the term “scripting

ing and composition languages that simplifies the task of adaptindanguage” in the remainder of this paper to also include composition

host language services to the abstraction level of the scripting lanlanguages.)

guage. This strategy uses introspection facilities of the host language

to automate the wrapping process, while providing a hook for pro-Ready to accessHost language components and services should

grammer-defined adaptation of the generated interface. A meta-level bedirectly accessibl&om the scripting language without requir-

bridging layer is responsible for wrapping and unwrapping both host ing the programmer to write or generate any wrapper or glue

and scripting language entities so they can seamlessly cooperate. code.

The bridging strategy employs partial evaluation of wrapping and

unwrapping operations to achieve acceptable performance. Ready to adapt.Programmers should be able to specify glue code

to adapt components directly in the scripting language [2]. It

Categories and Subject Descriptors should be possible to defigeneric glue codthat will automati-
cally adapt a range of components supporting one interface to an-
D.3.3 [Programming Language$. Language Constructs and Fea- other one.

tures -scripting languages, partial evaluation, composition.

Ready to composeHost language components shosémless-

General Terms ly integrate with scripting language mechanisms [1][6]. This

Design, Languages, Theory. means that scripts can uniformly manipulate both scripting lan-
guage entities and host language components. Furthermore, ex-
Keywords pressions that invoke both scripting level and host language

services should transparently wrap or unwrap scripting and host
level arguments and results as required (possibly making use of
generic glue code).

Scripting Languages, inter-language bridging, higher-level compo-
sition, adapting components, partial evaluation

1. INTRODUCTION

Scrioting | " high-level vi ¢ . As we shall see in section 3, conventional language bridging
>Cripling Janguages ofier programmers a high-1evel view o SerV'Ces‘strategies adopted by scripting languages such as Perl [7], Python
implemented in a lower-level host language @gmposition lan-

[8], Ruby [9], Jython [10], and Kawa [11] either require wrapper
code to be written or generated in the host language, or they adopt a
fixed bridging strategy using reflective capabilities of the host lan-
guage. The wrapping approach violates our first requirement, where-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or as the reflective approach fails to adequately address the second and
republish, to post on servers or to redistribute to lists, requires prior spe- third requirements.

cific permission and/or a fee. . L

Conference 00, Month 1-2, 2000, City, State. In this paper we p_resent thg language brldg_lng strategy that we
Copyright 2000 ACM 1-58113-000-0/00/0000 $5.00. have developed for Piccola. This strategy combines and extends the

other two strategies to achieve greater flexibility and thereby address
all of our three requirements. The key ideas are:

mailto:schaerli@am.unibe.ch
http://www.iam.unibe.ch/~scg

Meta-level Language Bridging, Nathanael Schaerli, Franz Achermann, Oscar Nierstrasz 2

« Host language introspection together with a fixed bridging be readily accessible to Piccola scripts. Components will typically
strategy are used to generdéfault wrappergor host com- need to be adapted to provide high-level plugs corresponding to a
ponents. compositional style. Finally, since Piccola is a pure composition lan-

« Wrapped components have two identities: (1) the default 9U@ge, scripts do nothing but coordinate host language components,
wrapper used to access fiser (i.e., the unwrapped host —and so itis essential that connectors specified in Piccola seamlessly
component), and (2) the curregitie wrapper interact with the underlying host components, without the need for

* Wrapping and unwrapping is performed byata-level lan- explicit conversions.

guage bridgespecified in the scripting language. In this lay- The semantics of Piccola is defined in termaggintschannels
er, programmers may specify generic glue code and deter-forms andservices A scriptis the text of a Piccola specification
mine when to apply it to host components. which may be loaded into the Piccola run-time and evaluated by one

This strategy combines the advantages of both conventional lanf MOre agents. Agents communicate and synchronize using shared
guage bridges approaches, while addressing all of our requirement§hanne|s' Forms are |mmutable, nested _records contalnln_g bindings
Furthermore, the approach can be efficiently implemented. By of labels to values. Services are abstractions that may be invoked.
adopting a partial evaluation strategy, it is possible to ensure that Forms are important because they serve two important purposes:
only those wrapping and unwrapping operations that are strictly nec-irst, they allow us to structure the services provided by external
essary will actually be evaluated at run-time. components; second, they doubleeaplicit namespacefl 2] in

The rest of this paper is structured as follows: In section 2, we mo-WhiCh scripts may be evaluated. So forms serve both as primitive ob-

tivate this work by introducing our view of composition and script- jects and as dictionaries.

ing languages, and by presenting a running example that illustrates Syntactically, Piccola resembles the Python scripting language.
our three requirements for language bridging. In section 3 we reviewSemantically it is rather different due to its support for explicit name-
and evaluate existing bridging strategies with respect to our requirespaces. The operational semantics of Piccola is defined in terms of an
ments and the running example. In section 4 we present the meta-lewinderlying process calculus [13]. An unusual, but important detail is
el language bridging strategy. We briefly outline the partial that the sublanguage of forms and services (i.e., without agents and
evaluation scheme and outline its correctness proof in section 5. Wechannels) is purely functional. State can only be modeled by com-
discuss related and future work in section 6 and conclude this papemunicating information through channels (or by using host compo-
in section 7. nents).

2. MOTIVATION 2.2 Motivating example

Scripting languages offer a high-level programming interface for This simple example illustrates the difficulties posed by our three re-
specialized tasks, making use of services implemented in a convendquirements, and applies not only to Piccola, but to scripting languag-
tional, low-level host language.@dmposition languaggeneralizes es in general. In this subsection we will assume that our host
the idea of a scripting language, by offering a way to view applica- language is Java and our scripting language is Python (not Piccola).
tions as high-leve_l compositions of software components imple- Suppose that we have an application that uses a Java document
mented in conventional languages. component as shown in Figure 1. This component allows a user to ac-

In this section we briefly introduce Piccola, a composition lan- cess text at the current caret position. Furthermore, it contains serv-
guage, and we present a simple example that illustrates the problemies to set the caret position, to check whether the caret is at the end,
of language bridging for scripting languages in general, and for Pic-and to retrieve text up to a certain pattern.

colain particular. cl ass Caret Docunent {
. ... voi d set Pos(int pos);
2.1 Piccola — A pure composition language voi d next Pos() ;
Piccola is a small language for composing applications from soft- /1 Wite text and increnent position
ware components [5]. Piccola can be seen as a generic scripting lan- ~ void wite(String text);
guage in the sense that it supports the definition of “compositional ~ // Read and increment position

String read(int len);
String readntil (String pattern);
bool at End();

styles” for different application domains. Each style determines a set
of component interfaces (“plugs”) relevant for that domain, and a set
of operators (“connectors”) that one may use to connect compatible }

components.)
])) Figure 1 A host document component
Although the details of Piccola are beyond the scope of this paper,

it may help the reader to understand the context of this paper ifwe ex- ©OUr @pplication contains services that use this document compo-

plain a few points concerning the intent of Piccola and the design of €Nt Consider a servieeldVér dsToDat abase, which takes such
the language. a document as an argument and adds each of its words to a database.

]) o] Figure 2 shows how such a service might be written in Python.
Piccola is truly a minimal language in the sense that the language def addWer dsToDat abase(doc) :

provides almost no built-in behaviour. Everything is accomplished doc. set Pos(1)

by external components. Even booleans, numpers and strings are whi | e not (doc. at End()):
provided by the host language (Java or Squeak, in the current imple- word = doc. readuntil (" ")
mentations). dat abase. add(wor d)

The requirements we have identified in the introduction are par- doc. next Pos()
ticularly relevant for Piccola. Any host language component should Figure 2 A scripting language service

Meta-level Language Bridging, Nathanael Schaerli, Franz Achermann, Oscar Nierstrasz

We use this service in the following scenario that first obtains a

Table 1: Bridging strategies

new document component from the host language. Then, it adds the

words to the database, and finally, it prints the document using anex-| Strategy Accessing Adapting Composing

ternal printer service that is tuned to the document component.

(Printer and document come from the same document framework). Scripting
doc = servi ceYi el di ngDocunent () Reflection _ level and
addVr ds ToDat abase(doc) based Automatic No support hOSt serv-
printer = serviceYieldingPrinter() ices not uni-
printer.print(doc) form

Figure 3 CoTnblnlng host and s.crlp-)tlng level .serV|ces Based on | Needs on the level Compo-
Now, we would like to use our application also with other docu- wrappers wrappers in nents not
ment components that have a different interface. One of these com- in host the host lan- of the host first class
ponents has the interface shown in figure 4. Basically, this language | guage language entities
component provides the same functionality as the original one. We

can access text at a certain position and also retrieve text up to a cer- Seamless

. . - Meta-level . :
tain text pattern. But unlike the original component, the new one . On the integration
- . . . language | Automatic

does not store the caret position and requires the user to specify this bridging meta-level of host com-

position as an explicit argument when using a service. ponents

cl ass Text Docunent {
/1 Wite text at the end
void wite(String text);
/1 Wite text at a certain position
void wite(int pos, String text);
String read(int start, int end);
String readUntil (int start, String pattern);
int size();

a Java object is mapped to a Python object with an interface that cor-
responds to its Java counterpart. As a consequence, the programmer
can plug external Java components together by using the higher-level
abstractions that are offered by the Python language.

Although this bridging strategy does a good job of allowing host
objects to be accessed and composed as they are, this strategy is
fixed, because it does not provide a way to adapt components when

they are passed to the higher-level language.

Figure 4 An incompatible component _ :
In our example this issue urges to programmer to use either man-

A scripting language should allow us to use the new componentya| wrapping or subclassing in order to adapt our new document
without changing existing application code. This means that we cancomponent. But as we point out in the following subsections, neither
adapt the new Component SO that we neither haVe to Change the higra'pproach enables Seam|ess Composition Of Components_
er-level serviceddwr dsToDat abase nor the scriptin which itis
used. 3.1.1 Manually wrapping the component

In the next section, we review existing bridging techniques and With this approach, the programmer uses delegation to wrap the new
evaluate how well they support this scenario. document component into an entity that provides the necessary glue

and has the appropriate interface. Unfortunately, this approach suf-
3. PROBLEMS WITH TRADITIONAL fers from several drawbacks: The main problem is that wrapped
BRIDGING APPROACHES

components cannot be used as arguments for host services because
In this section, we review the bridging strategies used by popularthey do not get converted to the appropriate host objects. This issue
scripting languages. We discuss how they address the three requirdS @n occurrence of the identity problem that is caused by wrappers
ments stated in the introduction of this paper analyze the conse-bec""u_s‘_a the |d§nt|ty of the wrapper is not the same as the identity of
guences on our example. the original entity [2].

Table 1 gives an overview of the different bridging strategies and e Will illustrate this problem with our example scenario. As-
shows whether and how they conform to the required properties. InSUMe that we have written a serweepDocunent that wraps a
this section we will look at bridging strategies based on reflection Text Docunent so that it provides the same interfaceCaset -
and on explicit wrappers and we will review their shortcomings. We Docunent . This service allows us to us&ext Docunent as an ar-

will briefly introduce meta-level language bridging, and present itin 9Ument to the serviceddVr dsToDat abase, which is defined in
detail in the following section. the scripting language. But because of the identity problem, we can-

not use this component as an argument to the semice , which
3.1 Fixed strategy based on reflection has been written in the host language.
Jython and Kawa are implementations of Python and Scheme ontop doc = w apDocunent (ser vi ceYi el di ngDocunent ())
of the Java platform. Although Python and Scheme are rather differ- addver dsToDat abase(doc)
ent languages, the two implementations share a lot of similarities re- printer = serviceYiel di ngPrinter()
garding their strategy for inter-language bridging. Both languages printer.print(doc) # Fails!
provide direct access to all the available Java classes and their con- Figure 5
structors, which enables the programmer to directly instantiate them.
Both Jython and Kawa use introspection facilities of the Java lan- Instead, we have to pass the original document component to the
guage to represent instances of host classes as appropriate first classrvicepr i nt because only this component can be recognized and
types in their own language model. In case of Jython, this means thatised on the level of the host language. Assuming that the wrapped

Identity problem caused by wrapping

Meta-level Language Bridging, Nathanael Schaerli, Franz Achermann, Oscar Nierstrasz 4

document contains a servieew ap, we must therefore replace the 3.2 Wrapping in the host |anguage
last line and pass the original component as an argument to the prirﬂ/lany popular languages like Perl, Python or Ruby use a bridging ap-

service. proach based on wrappers and glue code that has to be written in the
doc = wrapDocunent (servi ceYi el di ngDocunent ()) host language (usually C/C++). This allows a great flexibility in de-
addVér dsToDat abase(doc) fining the glue abstractions, but it requires the user to specify them on
printer = serviceYieldingPrinter() the level of the implementation language, which impairs the higher-
printer.print(doc.unwap()) # Verks! level scripting process. Therefore, these languages do not meet the
Figure 6 Unwrapping components requirement of lightweight and direct access to the host components.

Itis clear that this manual wrapping and unwrapping of compo- This problem can be tackled by using a tool like SWIG [14] that
nents seriously impairs the higher-level composition process be_automatlcally generates th_e necessary wrappers frqm the source
cause it does not allow us to deal with both scripting level and hostcOde of the components. This grants the programmer direct access to
. host entities, but it does not preserve the structure of the components.
services in a uniform way. An simple but very problematic idea to ' . .
y P yp én case of C++ and Python, this means that derived C++ data types

tackle this problem is to adapt the host services so that they wrap h | Carr re not m dt " nding Pvthon
document when it is passed to the scripting language and unwrap i Uch as classes or arrays are not mapped to correspo g Fytho

when it is returned to the host language. In our example, this meangla_sses. In fact, instances of derived data types are only available as
that the invocations of apDocunent andunwr ap are respectively pointers, and methods are mapped to global functions that need the

performed in the serviceservi ceYi el di ngDocunment and this—p')ointer as an explicit argument: As. a consequence, a compo-
print. nent's e_ncapsulatgd structure and its fl_rst class characteristics get

lost, which makes it very hard to plug entire components together on

In order to realize that, the programmer would have to identify a higher level without having to write additional wrapper code first.

and adapall the host services that have a document component as an
argument or as a return value. Besides the fact that this is only possi-
ble in a strongly typed language, it also becomes very cumbersom%
and impractical for non-trivial applications. Already in our small ex-
ample, we have to adapt the seryicent of all the printer compo-
nents. This means that we also have to adapt all the host services th
are dealing with prlnter components ar_1d then e.“' the cqmponents roblem that the services and the state of a component are only avail-
where these services are defined. Obviously, this adoption proces

has a deeply recursive complexity and results in adontion code that i ble as functions respectively pointers on the level of the scripting
S adeeply recursive compie _tya esulls in adoption code ?anguage. This means that we have to write additional code in the
scatter throughout our application. In his work about integration of

ind dent ts. Holzle refers to thi bl scripting language in order to turn these entities into a single first
g‘xp?g;gr[ezr]] components, Holzle reters 1o this probiewrasper class object representing the host component.

Applied to our example, this means that we first have to write or
enerate wrapping code in order to make the new document compo-
ent [ext Docunment) accessible within the scripting language. If
we write this code by hand, we can directly include glue code that
adapts the component so that it gets compatible to the original docu-
ent Car et Docunent). Unfortunately, this does not avoid the

. 3.3 Summary and outlook
3.1.2 Subclassing the component . . .

As a summary, we can say that neither traditional bridging approach
Jython allows one to create subclasses of Java classes. Therefore,jfoets 41l the requirements necessary for flexible and higher-level
is possible to add glue code to @ component by subclassing it. Unforgomposition. Regarding our example, this has the consequence that
tunately, this approach has only limited applicability for adapting it js not possible to reuse a higher-level application for incompatible
components because subclassing is not designed for adapting integomponents without making changes that are scattered across the
faces of classes [13]. Since there is no private inheritance in Java (andy4e of the scripting language or even of the host language.
most other object-oriented languages), a subclass always inherits the) o o
whole interface of the base class. This leads to cluttered interfaces, N the next chapter, we introduce a bridging approach that simpli-
and it makes the new component incompatible to the original one iffies the task of adapting host language components to the abstraction

there is a name clash between the original and the new interface. level of the scripting language. This strategy uses introspection facil-
ities of the host language to automate the wrapping process, while

In our example, such a name clash occurs because the methogroviding a hook for programmer-defined adoption of the generated
voi d write(String) hasadifferent semantics for the two compo- interface. A meta-level bridging layer is responsible for wrapping

nents. (InCar et Document , it writes text at the current caret posi- and unwrapping both host and scripting language entities so they can
tion, and inText Document it always writes text at the end). seamlessly cooperate.

Therefore, it is not possible to subclasgt Docunent so that it is

compatible taCar et Docunment without breaking compatibility to 4. META-LEVEL LANGUAGE BRIDGING

the base class. In this section we present an inter-language bridging strategy that al-

If such a name class does not occur, a subclass is compatible to i{gws the scripting language to meet the requirements stated in the in-

base class. This avoids the identity problem that occurs in the wrap-tmducm_)r_' of this Paper. We have developed this strat_egy for our
gmposition language Piccola and we successfully use it in both the

ing approach because we can use an instance of subclass as an ar@ . . .
ping app queak and the Java based implementation [15]. Since the concept of

ment for every host service that is written for the base class. L . .
Nevertheless, the programmer still has to make sure that all the in2ur approach is independent of Piccola, we keep the theoretical part

stances of the original component are replaced with instances of thé)f the d_escrlptlon on a general level and mention the Piccola imple-

subclass when they are passed to the scripting language. Especialwem""tIon for concrete examples.

for non-trivial applications, this is very impractical and leads to the Basically, our solution consists of two main concepts: We sepa-

same problems as shown above (wrapper explosion). rate the different aspects of a host component in order to solve the

Meta-level Language Bridging, Nathanael Schaerli, Franz Achermann, Oscar Nierstrasz

identity problem. In addition, we move the variable part of the inter-
language bridge into the scripting language in order to specify the
adaptation and glue code at a higher level.

4.1 Modeling host components

Interace
and glue

Piccola

The first step in designing an inter-language bridge is to specify how peer >

host components are modeled within the language. According to our 2 tggd 0 f]iiie()()
requirements, such a model should support the following properties: iixtgzs()() write ()

On one hand, host components that already provide the right struc- write () read()
ture should be immediately ready to compose, which means that they read() readuntil ()

: o i dUntil
can be used consistently for services in both the scripting language e

and the host language. On the other hand, it should also be possible
to adapt incompatible components in a higher-level way.

In order to meet these requirements, we separate the two different
aspects that are associated with a host component, namely its exter
nal identity (i.e. the relation to the associated component) and its
higher-level interface together with the glue. This means that we
model every host component as a nested structure that embeds the
host entity within the higher-level interface. This allows the pro- 4 .2 Defining the bridging process
grammer to adapt the interface and the glue code without affecting, the previous section, we have illustrated that modeling host com-

the host identity. ponents with a nested structure allows the programmer to modify

In the concrete example of Piccola, forms are the only first classthese components without affecting the compatibility to host servic-
entities, and therefore, we use a nested form to realize this separas. Now, we present an inter-language bridge that supports this con-
tion. This means that every host component is represented by a forngept in a way that allows the programmer to specify glue code that is
that has the following structure: automatically applied to an entire class of components.

Document component

2Hello World

Figure 7 Structure of a host component

Interface and glue. The top level of a host form represents the Pic- Figure 8 gives an overview of this bridging process. It shows that
cola interface and the glue that is necessary to adapt the componettie inter-language bridge is divided into two parts: The generic part
to a specific compositional style. is implemented in the virtual machine and the variable part is located

Peer. The host form contains a lapeér bound to the form that inside t'he_ scripting Ianguagg. When a host_component Is p_as_sed 0

- . the scripting language (left side), the generic part converts it into a
gnested structure as described in the previous section. Then, this struc-
ture is passed to the variable part of the bridge. Here, the generic in-

Note that in the rest of this paper, we sometimes use the namesgerface gets replaced with a specific interface that can be specified by
peerandinterfaceto refer respectively to the external identity and the programmer. The resulting structure consisting of the specific in-
the higher-level interface (including the glue code) of a host compo-terface and the peer represents the component within the scripting
nent. language. Note that the variable part of the interface may not neces-

Figure 7 illustrates the nested structure of a form that represents 8211y provide every object with a specific interface. In this case the
document componefiext Document with an interface that is com- ~ 9€neric interface is used within the scripting language.
patible toCar et Docunent . At the top level of the form, there is the When a host component is passed back to the host language (right
Piccola interface, which consists of the services that implement theside), the inter-language bridge discards the higher-level interface
glue to access to component in the appropriate way. In addition, therand only passes the peer. This avoids the identity problem and guar-
is the label peer bound to the peer form representing the identity ofantees that the component has the structure required by the host lan-
the host component. This form contains bindings that are directlyguage.
mapped to the host component and provide direct access to the low- . Lo
er-level services. 4.2.1 Passing host components to the scripting

language

for every service provided by the component.

Although this separation is also a variant of wrapping, the bridg- h h . dioth inting | h K
ing process explained in the following section allows us to overcome "/hen & host component is passed to the scripting language, the tas

the identity problem that occurs in the other solutions (cf. Section 3).Of the inter-language bridge can be divided into two parts. First, the

The reason for that is the fact that all the wrapping is transparentl)})lridge Tqas tcln)_convertéhtla cfon;ponept 'FO mlake it techr’lai\czlly comgat_i-
performed on the level of the inter-language bridge rather than inthebe to the object model of the scripting language. And second, it

code written by the user. Every component that is passed to thehould adapt the component in order to fit the needs of the applica-

scripting language is automatically converted into this nested stryc-1on and to cooperate with the other components. Whereas the first

ture. Therefore, the services inside the scripting languages alway?art is generic, the second one is completely varlgble and may de-
see the higher-level interface, which can be freely adapted by theDend on many gspects of the component such as its class or the cur-
programmer. In the other direction, when such a component is usedentstate (e.g. instance variable values).

as a parameter for a lower-level service, the bridge only passes the In most traditional approaches, both of these parts are hard-coded
external identity (peer) to the host language. This ensures that thén the virtual machine, and the user cannot influence how compo-
lower-level services always deal with the original object, and it nents in one language are mapped to components of the other lan-
therefore avoids the identity problem. guage. As we have pointed out in Section 3, this is a problem because

Meta-level Language Bridging, Nathanael Schaerli, Franz Achermann, Oscar Nierstrasz 6

Higher-level representation E;iej: 0 T size ()
Interface Peer Inter- write () write ()

o ‘ ‘ language write () write ()

s bridge read () read()

g ' N readuntil () i kY

= Specific -

= Interface o “:5

é g 2 Figure 9 Generic representation offext Document

.% % Eé time introspection, this gets more difficult. However, if the source

3 = code is available, a generic conversion can be realized with source
Z code analysis. This is essentially the same approach that is used by
o SWIG in order to create wrappers for C++ components [14].

o ;S_ Performing the variable part in the scripting language
2]

s g After the virtual machine layer of the inter-language bridge has cre-

o0) y g g g

2 5 ated the generic representation of the host component, this represen-

= = ation gets passed to the variable part of the inter-language bridge,

= e tat t dtoth ble part of the inter-| brid

g which is located inside the scripting language. The purpose of this

‘E Generic part is to automatically adapt certain classes of components in order

= Interface O Component to make them compatible to one another and to the requirements of

the application. Whereas in most other languages, the glue code for

specific components is either hard-coded in the virtual machine or
Figure 8 The inter-language bridge has to be written on the level of the host language, our approach al-
it does not allow the programmer to work with incompatible compo- lows the programmer to do this on the meta-level of the scripting lan-
nents and to adapt them according to the specific needs of the applguage. This means that he can use the unrestricted expressive power
cation. We avoid this limitation by minimizing the bridging code in of the higher-level language to configure host components. For in-
the virtual machine to the technical conversion and moving the vari-stance, this makes it possible to use the state of the application to dy-
able part into the scripting language. This allows the programmer tonamically determine how a certain component should be configured.

defing the representgtipn of hOSt components by, modifying the An interesting aspect of our approach is the question how to or-
k_)rldglng frameyvork within the hlghgr-_level language |t_self. Qontrol- ganize the meta-level bridging layer and how to activate it from the
ling the behavior of a language within the language itself is called bridging layer in the virtual machine. In our work on Piccola, we

meta-programming [16], and we therefore say that the variable asy o heen experimenting with different approaches [15]. In one of
pegt (.)f the inter-language bridge is located inntiega-levebf the them, we introduce a single hook service that gets called from the ge-
scripting language. neric part of the inter-language bridge whenever a host component is
Performing the technical conversion in the virtual machine passed to Piccola. As an argument, this service receives the generic
structure that is created by the bridging layer in the virtual machine.
The responsibility of the bridging layer in the virtual machine is to Depending on characteristics of the component (e.g. its class), this
convert a component so that it is compatible to the object model ofygok service now calls an appropriate service to adapt the interface
the scripting language. This is accomplished by building up a nestedyf the component or leaves it untouched if the programmer has not
structure as defined in Section 4.1. This structure provides access tgefined a specific service to configure this component. The program-

all the available services of the original component. Note that this ,er has complete freedom in specifying both the hook service and
step is entirely generic, and therefore, the higher-level interface isihe services that finally adapt the components.

identical to the interface of the original component and all the serv- o))
ices are directly mapped to the corresponding peer services. The code in figure 10 shows how this mechanism can be used to

automatically provide th&ext Docunent components with an in-

For both the Squeak and the Java based Piccola implementatioferface and glue code that makes them equivalebdrtet Docu-
we were able to do this automatically by using run-time introspec- nent . When arext Docunent is passed to the scripting language, it
tion functionality offered by the host language. This allows the gets first converted into the generic form that is shown in figure 9.
bridge to create a generic Piccola form for every host component thatrhen, this form is passed as an argument to the hook skodke
is passed to the Piccola language. In figure 9, we show the generigecause the host component is an instance of theTelasBocu-
component that gets created for the document compdeent ment , the servicedapt Text Docunent provides it with the neces-
Docurent . Note that it has the nested structure defined above andsary glue code and returns the nested form shown in figure 7.
that the services in the interface are direct references to the servicestherwise, the argument form is just returned as it is.
in the peer. This structure allows the programmer to access the com-

ponent as it is provided by the host language. Because the interface II? tl:ﬁ servicadapt TEXtt DocunEtr.'tt)l’ WE.erV|de the?Iue Cc_)detto .
is separated from the peer, it can be modified without affecting the™Maxe the new component compatible. Frst, we create a private varl-
external identity. able that stores the current caret position and is initialized with 1.

Then, we create the lalpler and bind it to the peer of the argument
Since many popular languages and component architectures offecomponent. Finally, we add all the services that are needed to make
basic introspection facilities, a similar approach can be used for oth-the higher-level interface compatible to the compor@ntet -
er scripting languages. If the host language does not support runbocunent . Note that in Piccola, we use a quotgtp define a tem-

Meta-level Language Bridging, Nathanael Schaerli, Franz Achermann, Oscar Nierstrasz 7

porary (private) binding that is not visible in the return value. specify the adaptation code for the new document component in the
Furthermore, we use a form with bindings 1 andval 2 to invoke meta-level bridging layer as shown in figure 10.
host services with more than one argument. For conciseness, we do

ponent returned by the serviser vi ceYi el di ngDocunent al-

ready has the structure shown in figure 6. Therefore, we do not have
to manually wrap this component and can directly use it as the argu-
ment of the serviceaddWr dsToDat abase. Because the inter-lan-
guage bridge only passes the peer to a host service, we can use the

Adapt interface of a TextDocunent conponent
adapt Text Docunent (Doc) :
Private variable to store the position
'pos = newar 1

peer = Doc. peer
set Qur sor Pos newPos:
' pos <- newPos
next Pos:
set Qur sor Pos(*pos + 1)

same component also as an argument to host services. In our exam-
ple, this means that the servjme nt of the host printer component

can be invoked directly with the higher-level representation of the
component.

wite text:
"peer.wite(val 1 = text, val2 = *pos) 5. IMPLEMENTATION ISSUES
" set Qursor Pos(*pos + text. size()) Adapting host components in the meta-level of the scripting lan-
read len: guage adds an additional layer of indirection. An implementation
peer. read pos(*pos + | en) must avoid the associated performance cost as much as possible. In
set Qursor Pos(*pos + | en) the Piccola implementation, we use caching and partial evaluation in

readntil pattern: . .
‘text = peer.readuntil order to achieve this.

(vall = pos, val2 = pattern) Without optimization, a lot of time is spent in the hook service
' set Qursor Pos(*pos + text.size()) that dispatches the wrappers for a given host component. Since the
text dispatching process typically only depends on a few parameters such
ft End:) as the class of the component, we can build up an efficient cache ta-
pos == peer.si ze() ble. This table associates a wrapper with the parameters that were
Hook service that is called fromthe WM used in the dispatching process and gets cleared when the hook serv-

hook(Conponent) : ice changes.
if className(Conponent) = "Text Document” In addition we use partial evaluation as a general technique for

then: adapt Text Docunent (Conponent) optimization and in particular apply it to specialize the indirection
el se: Component caused by the wrappers in the bridging layer. Partial evaluation is a

source-to-source program transformation technique for specializing

. . programs with respect to parts of their input [21]. With respect to the

4.2.2 Passing objects to the host language wrappers, partial evaluation weaves the effectively needed glue code

When an object of the scripting language is passed as an argument {@to the application script. This avoids wrapping and unwrapping of

a host service, the inter-language bridge is responsible for convertingervices that are not used.

it into the structure expected by the host language. In our bridging) . o .

strategy, the actions taken by the bridge depend on whether the COnSider the expressian= [1, 2] which is syntactic sugar for

passed object represents a host component or is an object that was 8x = nev_\,Li st()_' add(1). add(2). V\{he_n naively executing this .
nihilo created within the scripting language expression we first create an empty list in the host language, wrap it

in the scripting language, create (or grab) a host number 1, wrap the
If the object of the scripting language does not represent a hoshymber and pass this wrapped number as an argument to the service

component, the bridge just passes the lower-level representation of4q of the wrapped list, where it gets unwrapped and added to the

the object to the host language. Since we assume that the scriptingost list. The same applies for the second element. Each time an ob-

language itself is implemented on top of the hostlanguage, every object crosses the language boundary, a wrapper is added or removed.
ject of the scripting language is finally also an object of the host lan-

guage, and therefore, this bridging activity is trivial.

Figure 10 The meta-level bridging layer

In the Java version of Piccola, the servieeLi st creates a host
_ _ o o object of the Java classct or and wraps it at the meta-level so that
The more interesting case applies if the passed object is & host conforms to the scripting view of a list. This view requires,
component. Then, the inter-language bridge only passes the associmongst others, servicesid andf or Each. The serviceadd is
ated peer rather than the whole structure that represents the COMPPnapped to the Java methatEl ement , but specifies a different re-
nenton the higher-level (cf. figure 8). As we have already pointed outy i value. The servideor Each is specified at the meta-level by us-
in Section 4.1, this avoids the identity problem because the unmodi-ing an iterator. In the above expression, we only use the seddce
fied peer is guaranteed to have the structure expected by the hogiartial evaluation specializes this expressions with the wrapper and
Service. generates the following equivalent, but more efficient code:

4.2.3 Example a = Host.class("java. util.Vector"). new()

Using this bridging strategy, we are able to use our example applicad- addE enent (1)

tion also forText Document components without changing either & addE ement (2)

the scripting abstractions (e.g., the servi¢éWr dsToDat abase) Because partial evaluation performs non-standard eager evalua-
nor the code where they are used. The only thing we have to do is téion, we need knowledge about the side-effects in order to apply it

Meta-level Language Bridging, Nathanael Schaerli, Franz Achermann, Oscar Nierstrasz 8

correctly. Therefore, we use a transformation to separate the side-ef- In parallel to the work described in this paper, we have also been
fect part from the referentially transparent part. When specializing working on distributed Piccola, and our goal is to implement a distri-
we simplify the referentially transparent part, and defer the invoca- bution layer directly in Piccola. Especially for distribution between
tion of the side-effects until run-time. In order to show correctness of heterogeneous Piccola hosts, we need a flexible technique to abstract
the partial evaluation, we use the formal model of Piccola. away from the host language. Future work will show how the bridg-

This formal model consists of agent expressions that evaluate tdgr?vfrlggrr?:r?th presented in this paper performs in such a distributed

forms. The partial evaluation transforms any agent expression to a
sandbox expressions, which are also agent expressicasdhox 7. CONCLUSION
expressior\; B specifies the namespate which the expressidd)

is evaluated. The free identifiersi®ére looked up in the value Af In this paper, we show that the requirements for a higher-level script-

ing and composition language are strongly related to the strategy for
For instance, the agent expressiatg; A denotes an abstraction inter-language bridging. Most of the traditional bridging approaches
overx. The body of the abstraction consists of the side-eéféud focus on the technical aspect of making host components available in
side effect) and a referentially transparent pafpplication of this the scripting language, but they do not provide the necessary abstrac-

service with the argume(B; C), whereB denotes the side effect part tion mechanisms to access the components in a higher-level way.
andC the referentially transparent, can be transform&j Ajx/C].

This means that we substitute the referentially transparer@ part
xin A, and we keep the side effect pariThe free variables &[x/

C] are identical to the free variables®é&nd they refer to the same
side-effects irB.

Analysis of these problems leads to the conclusion that it is not
possible to achieve the needed flexibility with a generic bridging
strategy that is hard-coded in the virtual machine. Thus, we have pro-
posed an inter-language bridge that reduces the activities in the vir-
tual machine to a technical conversion and performs the higher-level

For the correctness proof we show by structural induction over configuration in an abstraction layer located in the meta-level of the
agent expressioswhich are transformed # Bthat the following scripting language. This allows the programmer to use the full ex-

holds: pressive power of the scripting language to adapt and configure a

« The value ofA contains the results of all the side-effect com- host component in order to fit the needs of the application and coop-
putations irE. erate with the other components.

» The expressiom is referentially transparent, and all free Using this bridging strategy, we were able to develop and imple-
identifiers inB denote the results of side-effect terms availa- ment the Piccola 3 standard, which is completely independent of the
ble inA. underlying host language. Since Piccola is a pure composition lan-

« The value oF andA: B are the same guage, the standard specifies standard components such as numbers,

strings, collections, and URLSs that are used very frequently. Because
all the necessary glue code is written in Piccola itself, the program-
mer may dynamically reconfigure these components depending on

6. RELATED AND FUTURE WORK the specific requirements of an application.

Throughout this paper, we have already discussed the bridging stratg REFERENCES
egies of many popular scripting languages. Other bridging ap-
proaches use a component model to uniformly access externall]
components.

The formal calculus for Piccola and the correctness proof for the
specialization algorithm is in Achermann's thesis [13].

John K. Ousterhout. Scripting: Higher Level Programming
for the 21st Century. IEEE Computer magazine, March 1998.
] [2] Urs Holzle. Integrating Independently-Developed Compo-
Jones et al. [18] use Haskell to script COM components and make nents in Object-Oriented Languages. ECOOP '93 Proceed-
use of higher-order functions. They also use the type system to detect ings, Springer Verlag Lecture Notes on Computer Science.
certain compositioln errors at compile time. IBM’s System Object [3] Jean-Guy Schneider and Oscar Nierstrasz. Components,
Model (SOM) [19] is another approach that allows a programmer to Scripts and Glue. Software Architectures - Advances and Ap-

use cgmpon_?ntsilthat are written Ln a se_pargte Ialnguag(;. SOM |s_de- plications, Leonor Barroca, Jon Hall and Patrick Hall (Eds.),
signed specifically to overcome the main obstacles to the pervasive pp. 13-25, Springer, 1999.

use of object clas_§ libraries. System objects can be distributed in blr-[4] Jean-Guy Schneider. Components, Scripts, and Glue: A con-
nary form. In addition, they can be used and subclassed across differ- S)

. . ceptual framework for software composition. Ph.D. thesis,
ent languages. SOM is based on an advanced object model and an University of Bern. Institute of Computer Science and Ap-
object-oriented run-time engine that supports this model. SOM sup- Y ' P P

ports the concepts and mechanisms that are normally associated with plied Mathematics, October 1999.

object-oriented systems including inheritance, encapsulation, ano[s] Franz Achermgnn and Oscar Nie.rstrasz. Applications = Com-
polymorphism. ponents + Scripts — A Tour of Piccola. Software Architec-

tures and Component Technology, Mehmet Aksit (Ed.), Klu-
A component model pushes the idea of standardized interfaces. \er, 2001, to appear.

Therefore, the adaptation problems addressed in this paper are Ieefg]

) Franz Achermann, Stefan Kneubuehl and Oscar Nierstrasz.
frequent, but not solved in general.

Scripting Coordination Styles. Coordination Languages and
In order to adapt host components, our bridging approach uses ~ Models, Antonio Porto and Gruia-Catalin Roman (Eds.),
automatic and transparent wrapping. Biichi and Weck [22] use ge- LNCS 1906, Limassol, Cyprus, September 2000, pp. 19-35.
neric wrappers in order to solve the identity problemin the context of [7] Larry Wall, Tom Christiansen, Jon Orwant. Programming

strongly typed languages but not in the context of inter-language Perl (3rd Edition). O'Reilly & Associates, ISBN:
bridging. 0596000278, July 2000.

Meta-level Language Bridging, Nathanael Schaerli, Franz Achermann, Oscar Nierstrasz

(8]
9]

(10]

(11]

(12]

(13]

(14]

(15]

Mark Lutz. Programming Python (2nd Edition). O'Reilly &
Associates, ISBN: 0596000855, March 2001.

Yukio Matsumoto, Yukihiro Matsumoto. The Ruby Program-
ming Language. Addison Wesley Professional, February
2002, to appear.

Jython, an implementation of the high-level, dynamic, object-
oriented language Python written in 100% Pure Java. http://
www.jython.org/.

Per Bothner. Kawa, the Java-based Scheme system. http://
www.gnu.org/software/kawa/.

Franz Achermann and Oscar Nierstrasz. Explicit Namespac-
es. Modular Programming Languages, Jurg Gutknecht and
Wolfgang Weck (Eds.), LNCS 1897, Zirich, Switzerland,
September 2000, pp. 77-89.

Franz Achermann. Forms, Agents, and Channels, defining
Composition Abstractions with Style. Ph.D. thesis, University
of Bern, Institute of Computer Science and Applied Mathe-
matics, 2002, to appeatr.

David M. Beazley. Interfacing C/C++ and Python with
SWIG. 7th International Python Conference, SWIG Tutorial,
1998.

Nathanael Scharli. Supporting Pure Composition by Inter-lan-
guage Bridging on the Meta-level. Masters thesis, University
of Bern, September 2001.

(16]

(17]

(18]

(19]

(20]

(21]

(22]

Gregor Kiczales, Jim des Riviere and Daniel G. Bobrov. The
Art of the Metaobject Protocol. MIT Press, 1991.

Clemens Szyperski. Component Software - Beyond Object-
Oriented Programming. Addison-Wesley, 1998

Simon L. Peyton-Jones, Erik Meijer and Daan Leijen. Script-
ing COM components in Haskell. Fifth International Confer-
ence on Software Reuse (ICSR5), Victoria, Canada, 1998.

Christina Lau. Object-Oriented Programming Using SOM
and DSOM. John Wiley & Sons, March 1995.

Alan Snyder. Inheritance and the Development of Encapsulat-
ed Software Components. In Research Directions in Object-
Oriented Programming B. Shriver and P. Wegner (eds), pp
165-188, MIT Press 1987.

Charles Consel, Oliver Danvy. Tutorial Notes on Partial Eval-
uation. In 20th ACM Symposium on Principles of Program-
ming Languages. Charleston, South Carolina, pp.493-501,
ACM Press 1993.

Martin Blichi and Wolfgang Weck, Generic Wrappers,
ECOOP 2000, 14th European Conference on Object-Oriented
Programming, Elisa Bertino (Ed.), LNCS, vol. 1850, Springer
Verlag, 2000, pp. 201—225.

	Meta-level Language Bridging
	1. Introduction
	2. Motivation
	2.1 Piccola — A pure composition language
	2.2 Motivating example

	3. Problems with Traditional Bridging Approaches
	3.1 Fixed strategy based on reflection
	3.2 Wrapping in the host language
	3.3 Summary and outlook

	4. Meta-level language bridging
	4.1 Modeling host components
	4.2 Defining the bridging process

	5. Implementation Issues
	6. Related and future work
	7. Conclusion
	8. References

