
Conformity Strategies
Measures Of Software Design Rules

By

Mircea Filip Lungu

Diploma Thesis
Faculty of Automatics and Computer Science

“Politehnica” University of Timisoara

Advisors
Dr. Ing. Radu Marinescu
Dipl. Ing. Tudor Gı̂rba

Timisoara
September 20, 2004



ii



Abstract

Reengineering is a subfield of software engineering which is concerned with
maintaining and improving existing software systems. Reengineering is also
a process, the process by which such systems get to be understood, improved
and extended. Part of this process is another process, the so called reverse
engineering.

In reverse engineering man tries to understand the existing software sys-
tem. There are different approaches to this task. Several of these approaches
are based on metrics. One such approach is the detection strategies, a mech-
anism which makes use of compositions of metrics. The detection strategies
offer a means for detecting design flaws in software artifacts by filtering a
given set according to its property of respecting a certain design rule.

The detection strategies have proved to be useful in detecting flaws in
software systems, and this is an important step in the process of reverse
engineering. However their mechanism of filtering does not make any dif-
ference between the different degrees of conformity to the rule by which the
filtering is made. To address this, we introduce in this work the conformity
strategies, a mechanism who’s main purpose is to compute the degree of
conformity of the software artifacts to specific design rules.

As an application of the conformity expressions we develop a visualiza-
tion technique called the Magnet View. It visually presents information
about the software artifacts by letting them interact with their properties
after laws derived from the equivalent physical laws of magnetism.

iii



iv ABSTRACT



Acknowledgements

First of all I want to thank my parents for being two of the most wonderful
people I know. I am sure that without their love and dedication, today I
couldn’t be able to finish a big work like this. Moreover I want to thank
them for their trust they put in me when seing that other friends finish
university while I still have to work all the summer.

Many thanks go to my advisors Radu Marinescu and Tudor Gı̂rba. I will
remember the discussions we had, the ones regarding the diploma, and the
ones regarding anything else, by no means less important. Especially I ad-
mire Radu’s capacity of encouraging people and Doru’s endless enthusiasm.
May you never change in these respects.

I want to thank professor Stéphane Ducasse for making possible my
collaboration with the University of Bern and for the interesting discussions
and advice he gave me.

I also want to express my gratitude towards Oana and Doru for the time
spent in their home while living in Bern. You are two of the most wonderful
hosts I ever had. May your house be always a place where guests feel so
good.

The last but not the least I must thank Adi for reviewing some chapters
in this work and for being a great friend, Anca for helping with the subtleties
of English and Ada for reminding me that, from time to time, one should
use breaks (even if I couldn’t always follow the advice).

Timisoara,
September, 2004

v



vi ACKNOWLEDGEMENTS



Structure Of The Document

The first logical part of this document will present the context of our work,
going from a general level to a specific one, chapter by chapter.

Chapter 1 presents reverse engineering as being an important part of the
reengineering process. We will see here why there is need for reengi-
neering, the historical evolution of reverse engineering and see some of
the approaches to reverse engineering.

Chapter 2 dives into one of the approaches to reverse engineering pre-
sented in the previous chapter, namely the software metrics. We see
why and who uses metrics and understand some of the basic princi-
ples of measurement theory. Eventually we learn about the detection
strategies, one approach to using metrics in the quality assessment
process. We understand the purpose of the detection strategies and
their working mechanism.

With the detection strategies the context is fully defined and we can
proceed to presenting the actual work we have done.

Chapter 3 begins by enumerating the drawbacks of the detection strate-
gies. To address these drawbacks, it eventually introduces the confor-
mity strategies, the mechanism we have developed in this thesis. We
will see the way the operators that compose the strategies are defined
and understand what is the difference between the detection strategies
and conformity strategies.

Chapter 4 is meant to be a study of the conformity strategies at work and
also a comparison between the conformity and detection strategies. In
the end the reader should understand why the conformity startegies
are more effective than the detection strategies.

vii



viii STRUCTURE OF THE DOCUMENT

Chapter 5 presents Magnet View, the tool we have developed as a possible
application of the conformity strategies. We understand its concept,
its functioning and see it at work analyzing some real systems.

Chapter 6 tries as impartially as it can to present our contributions and
draw some conclusions. It also sheds light on some possible future
developments of the concepts presented in this work.

The last part of this work contains some supplementary material ar-
ranged in two chapters.

Appendix A is meant to present some of the implementation details of
the conformity strategies and of the magnet view. It contains expla-
nations, source code listing and UML diagrams, still I will buy a beer
to the one who is able to read it from start to end.

Appendix B lists code that exemplifies the capabilities of one visualiza-
tion implemented in the Magnet View, namely Methods In Need Of
Refactoring.



Contents

ix



x CONTENTS



Chapter 1

Reverse Engineering

“Things are always the best in their
beginning”

Blaise Pascal

1.1 Software Aging

In an article from 1986 Frederick Brooks was stating that because software
development is such a conceptually tough craft it was unlikely that in ten
years an improvement would be made that could increase the productivity
with an order of magnitude [?]. If any of the many improvements that
appeared since then had made the order of magnitude jump is hard to say
because the opinions are split: some say yes, some, including Brooks, say
no. What is certain is that the idea behind the courageous prediction is
valid - software is difficult because of its essential complexity. 1.

Indeed, the software systems are some of the most complex systems
built by man and, therefore, it isn’t a surprise anymore that many software
projects end up having the architectural look of a “haphazardly structured,
sprawling, sloppy, duct-tape and bailing wire, spaghetti code jungle.” as
Brian Foote, so bitterly, puts it [?].

Parnas believes that one of the main reasons that lead to the decay of a
software system is ignorant change. Changes done by somebody else than
the original developer almost always make the structure of the program to

1The essential complexity is the mental crafting of the conceptual construct. There is
also an incidental complexity represented by the implementation part, but this, as Brooks
says, is not the main problem

1



2 CHAPTER 1. REVERSE ENGINEERING

decay because the newcomer will be unlikely to fully understand the concept
the original developer had in mind when designing that system:

Changes made by people who do not understand the original de-
sign concept almost always cause the structure of the program to
degrade. Under those circumstances, changes will be inconsis-
tent with the original concept; in fact, they will invalidate the
original concept. [...] After many such changes, the original
designers no longer understand the product. Those who made
the changes, never did. In other words, nobody understands the
modified product.[?]

Besides ignorant change there are other factors that influence the degra-
dation of software:

Time Pressure In an ever growing software market, the companies should
develop software quick enough not to let the competition take their
share of the market. But this haste puts pressure on the developers
and managers determining them to try to achieve the goal by using
shortcuts. And using shortcuts in the software development process
will show its danger only later in time.

Inconsistent Documentation The code and the documentation are not
inherently connected, the documentation’s sake is merely at the discre-
tion of the developer. This is the reason why usually documentation
and code gets out of synchronization. And a software system which is
undocumented or badly documented will very likely decay soon.

Prototype Not Thrown Away One of the best approaches to developing
a new kind of software system is “planning to throw one away” or
building a prototype [?]. In this process important domain knowledge
is gained, unforeseen problems raise and possible future developments
come to light. But alas, the psychologically difficulty of throwing
one’s work away and the short term benefits usually determine the
changing of the prototype’s destination: from prototype it becomes
product, from temporary shelter it becomes dwelling. Such a project
is improbable to become a project easy to maintain or understand.

By no means did we try to present a complete list of factors that deter-
mine the degradation of software structure. The important thing to under-
stand is that in a way or another, at some point in time, a project gets to a



1.2. REENGINEERING 3

Figure 1.1: The reengineering process

phase when maintenance becomes very difficult and expensive. In this situa-
tion, two alternatives appear: rewrite the software or recondition it. Rewrite
would be the best alternative, but for the cases when this is not feasible the
reconditioning should be done. And in software, this reconditioning is called
reengineering.

1.2 Reengineering

The software reengineering is the process of understanding and modifying
an existing system. Usually, the goal of the process is to reimplement the
existing system for improved quality, functionality or performance. As it
can be seen in the figure ?? there are three phases of the process

Reverse Engineering The reverse engineering process is concerned with
creating a higher level abstraction of the existing system. No matter
which is the desired level of abstraction, there will be several compo-
nents that interact. Correctly determining the components and their
interaction is the focus of this phase. The reverse engineering phase
is distinct, it does not look like any of the phases of the traditional
forward engineering process.



4 CHAPTER 1. REVERSE ENGINEERING

Alteration After the desired abstraction level has been attained, the sys-
tem representation at that level must be modified. The alteration must
be done according to the current and future needs of the project.

Forward Engineering Forward Engineering is the phase in which, having
understood the system, the reengineering team modifies it with the
aim of incorporating the design changes introduced in the previous
phase. The forward engineering is by no means different than the
implementation phase in traditional software development processes.
Having a higher level description of the system, the implementation is
done accordingly.

Even if not presented in the previous enumeration, an analysis phase,
in which the feasibility of the reengineering approach is studied is useful.
Surely, the analysis phase should take place after the reverse engineering
phase has been finalized, so the reengineering team has a clear picture of
what it takes to reengineer the project.

1.3 Reverse Engineering

In a very well-known work of the 90’s, and an fundamental one for the
software engineering field, Chikofsky and Cross define reverse engineering
as “analyzing a subject system to identify its current components and their
dependencies, and to extract and create system abstractions and design
information”[?].

The initial reverse engineering was done on hardware circuits for military
or industrial espionage. Even if more domestic in its motivation, the software
counterpart has the same aim: to create a more abstract representation
from the existing one. This means that there are several levels at which
the reverse engineering can be done, as it can be seen from Figure ??. The
implementation can be abstracted to design, the design can be abstracted to
requirements, the requirements can be abstracted to a higher level concept.
The efforts of today are mainly focused at the first level, towards extracting
the design from code.

For the reverse engineering process the research is developing in several
directions, some of them being mentioned here with a brief description.

Software Metrics Software metrics offer a way of compressing the infor-
mation available in code. This is useful because analyzing large sys-
tems by reading the code is sometimes impossible. In these cases, by



1.3. REVERSE ENGINEERING 5

using metrics, an intuitive image of the software system can be devel-
oped. This technique is especially valuable when it is used in corrob-
oration with software visualization. Also, by using metrics, compo-
nent quality can be assessed and therefore components that should be
reengineered can be detected [?].

Visualization Because of the brain’s inherent capabilities of working with
images, using the power of computer graphics to present aspects of
software may prove to be an important factor in enhancing the human
understanding of computer programs. There are many categories of
software visualization and many tools which support software visual-
ization. In this work, we will focus on static, metric based visualization
[?].

Program Slicing Program slices are noncontiguous parts of code that de-
termine the state of a variable at a certain point in the program. The
automatic detection of program slices can be useful in making easier
the code comprehension process by letting the software engineer focus
only on the statements that influence the outcome of a variable. Pro-
gram slicing is also very useful in the debugging and testing processes
[?].

Grouping The term grouping encompasses several techniques of moving
from a detailed description of a system to a more abstract descrip-
tion. This process is useful in reducing the perceived complexity of
the system and making the information easier to fit in the head of the
reengineering team’s members [?].

Concept Assignment The code in a software system is an abstract rep-
resentation of real-world concepts. In order to understand the system
a human must make a mapping between programming language arti-
facts and the real-world concepts. This mapping is called the concept
assignment problem. Even if there is an a priori knowledge about
the domain model, the concept assignment problem is a difficult task.
Software that would help in this process would be very useful [?].

From the previously mentioned techniques, in this work we make use of
software metrics and visualization techniques. More than this, the following
chapter is dedicated entirely to software metrics.



6 CHAPTER 1. REVERSE ENGINEERING



Chapter 2

Software Metrics

“’The degree to which you can express
something in numbers is the degree to
which you really understand it”

Lord Kelvin

We use software measurements, or metrics, for various reasons. Some of
the most used are: quality assessment, effort prediction, complexity mea-
surement, process evaluation. There are many issues related to software
measurement. In this chapter we look at measurement theory, internal and
external attributes, measurement processes and in the end see a way of
composing metrics, namely the detection strategies.

2.1 History

Companies like Siemens, Hewlett-Packard, Hitachi, Motorola, NASA have
one thing in common, they use metrics in their software development pro-
cesses. They use them at different points in their corporate life and with
different purposes [?]. Hewlett-Packard used it to evaluate the effectiveness
of the software inspections and to improve its production process. NASA
implemented a measurement program since 1973. Its main goal was im-
proving the software development process. Hitachi created Hitachi Software
Engineering company to support its software development. The goal of HSE
was managing costs, schedules and quality. Siemens employed measurements
as part of its best-practices program. The program resulted in a focus on
quality and increased customer satisfaction.

7



8 CHAPTER 2. SOFTWARE METRICS

The importance of metrics results from their capacity of making visible
a process that normally is not. When you build a house, anybody can see
the progress. Still, when you build software, the progress is hard to grasp.
This is why having a metrics program can make the development process
more visible and as a consequence, more controllable.

2.2 What Can Be Measured?

The first obligation of a measurement activity is identifying the entities and
attributes that should be measured. In software there are three types of
entities:

• Processes are the activities involved in the creation of a product,
in our case, a software product. Process measurements are a way of
improving the visibility of the software development process.

• Resources represent all the inputs of a process. They can be people,
machinery or the result of other processes. In this work we will focus
on the measurement of resources and mainly of the measurement of
the source code.

• Products are the expected results of a process. The specification
is the result of the requirements engineering process, the high level
design is the result of the analysis and design process.

Many times what we want to measure and what we can actually measure
are not the same thing. For example, we would like to measure the com-
plexity of a module. The problem is that complexity is an abstract concept.
A concrete attribute that can be measured would be the number of lines of
code of that module.

Taking the previous example we can introduce the notions of internal
and external entity attributes. The complexity of a module is an external
attribute of the module, because it depends on the context in which we
look at the module. For example, the author of the module will find it
less complex than the newcomer, because of his experience. On the other
hand, both the newcomer and the author of the module would agree on the
number of lines of code. Therefore, the number of lines of code measure
doesn’t depend on the context, it is an internal attribute. Generalizing the
previous example we can say that:



2.3. INTERNAL PRODUCT ATTRIBUTES 9

• Internal Attributes are those attributes of a process, product or re-
source that can be measured purely from a process, product or resource
itself. They do not depend on the environment of the attribute.

• External Attributes of a process, product or resource are those
attributes that can be measured only taking into account the way the
process, product or resource relates with its environment.

2.3 Internal Product Attributes

We saw earlier in this chapter that there is a distinction between the internal
and external attributes of the measured entities. Usually the internal are the
easiest to measure but the external are the most important to be measured.
From the internal attributes of software, the most often measured are size
and structure.

Size

We will look in this section at some of the metrics related to size which have
been proven to be the choice of the software engineers over time.

By far the most widely used metric in software engineering is LOC.
LOC is the acronym for Lines of Code, a metric which is undoubtedly a
measure for the size of the system. The reason for the high usage of this
metric is maybe the simplicity of computing it. It is very easy to count
lines of code. The problem gets a bit trickier when faced with the problem:
what constitutes a line of code? Should the comment lines be counted?
What about the block delimiters which usually stay on their own lines? But
the whitespaces? Or maybe the variable definitions? From the previous
questions it is obvious that one should clearly define his definition of LOC
and use it consistently.

There seems to be another problem with LOC. Some lines of the program
are more complex than others. Wouldn’t it be fair that these should weight
more in the counting? This is a tricky question. There were people which
trying to address this problem introduced the S/C (size/complexity) metric
[?]. It weights the lines according to their complexity. But why is this a
tricky question? Because you can’t say that LOC is a bad measure. LOC
is absolutely right if used to measure the number of sheets of paper the
program will be printed on. Actually it has been proved that LOC is good
for more than this: it is very good as a size estimating measure. The previous



10 CHAPTER 2. SOFTWARE METRICS

objection to LOC is similar to saying that that age, as a measure, is not
enough because you can not use it to determine the weight of a man.

Surprisingly it has been proved that LOC is almost as good a measure
of size as S/C. So LOC is right for the right purposes. And here we come
again at the Goal Question Metric model that we presented earlier. You
can’t say a metric is not good. All you can say is that it might not be good
for your purpose.

The problem with LOC is that it might have been a good estimator back
in the nineties when almost all the programs were typed. But nowadays
when graphical user interfaces and automatically generated code are in high
demand, LOC is that useful anymore. A size metric which seems to be more
fit for this is Albrecht’s Function Points (Albrecht cited in [?]). Function
points measures the size of a software project in terms of inputs, outputs,
files, inquires. Even if they are more subjective than LOC, if used with
care, FP can be a much more precise size estimator than LOC. Relevant,
we might say, is that a study showed that in 1996 more than 60% of the
software contracts in Netherlands have their price depending somehow on a
FP estimation [?].

For the object oriented software good size estimators are the number of
methods of a class (NOM) as a measure of class size and the number of
classes (NOC) as a measure of the size of the system.

Structure

Many times the estimation of effort needed to understand a software is im-
portant. For this size is not a very good predictor. An extreme example
would be the famous obfuscated programs, which, although have few lines,
take much time to be understood. What we can learn from them is that
naming conventions, formatting conventions, code documentation and code
structure matter very much in the process of understanding software. Lit-
tle effort was dedicated in the metrics field to the naming, formatting and
documentation. Structure, on the other hand, has been more privileged.

One of the most widely used structure metrics is McCabe’s Cyclomatic
Complexity. Cyclomatic Complexity has a theoretical foundation based on
graph theory. McCabe considers that a good measure for the complexity
of a block of code is the cyclomatic complexity of the associated flowgraph.
For a program with a flowgraph F the cyclomatic number can be computed
as

V (F ) = e− n + 2



2.3. INTERNAL PRODUCT ATTRIBUTES 11

where F has e arcs and n nodes. The value of V (F ) represents the
number of linearly independent paths existing in the graph.

McCabe says that a module having a cyclomatic number higher than
10 could be problematic. There were other studies which showed a relation
between the cyclomatic number in a module and the number of updates
needed for the module. In the Channel Tunnel the security reasons make any
module with a cyclomatic number higher than 20 to be rejected. Therefore,
even if it is not perfectly intuitive, the cyclomatic number is widely accepted
as a good measure of structural complexity.

There are other reasons why one would want to measure the structural
complexity of the code besides understanding it. One would be predicting
the difficulty of testing the code. Here we talk especially about white-box-
testing. There are different approaches to white-box-testing and we will
discuss each of them based on the program flowgraph concept. First would
be executing each program statement at least once. This is equivalent to
finding a set of paths such that each node lies on a path. Another strategy
would be to execute each branch at least once. This is equivalent to finding
a set of paths through the graph such that each edge is contained in at least
one path. And finally, the most exhaustive would be to execute each path
in the program. However this is impossible because in programs containing
loops there is an infinity of possible paths. However, there is a problem with
white box testing because even if you test each path, which we saw it is not
possible, you might not find all the problems. See the discussion in [?], page
301, for a more detailed analysis of this aspect.

Because we were talking about the testing strategies, it is interesting to
shake a little bit the calm we are dwelling in when thinking about testing.
Mike Hennel has observed that a test with 100% statement coverage has an
effectiveness ratio of only 40% while branch coverage has even more modest
results.

Other Internal Properties

In a study at IBM [?], researchers introduced two measures of software qual-
ity. They are coupling and cohesion. For none of them a widely accepted
measure is available, still they are considered important for the quality of
software. Coupling is a measure of the interdependency between two mod-
ules. Cohesion is a measure of the degree in which the individual components
of a module perform the same task. Data structure captures a class of struc-
tural aspects that were not given a too much attention in the research. But
this is wrong, because data structure complexity is part of the complexity



12 CHAPTER 2. SOFTWARE METRICS

of software.

The best example to illustrate the difference and complementarity be-
tween data and control structure is the paradigm shift from structural pro-
gramming towards object oriented programming. The polymorphism tends
to eliminate the control structure complexity (i.e. case statements) by in-
troducing data structure complexity. It would be interesting to study if the
new complexity is as everybody advertises lower than the replaced one. It
would be also interesting to state a law for the conservation of the complexity
similar with the law of the conservation of the energy.

2.4 External Product Attributes

As we have seen external attributes of a product are those attributes can
be measured only in relation to the product’s environment. For example
maintainability is an external product attribute because it depends on the
people who are involved in the process of evolving the software. This is
obvious because if the maintenance phase the same developers are involved
like in the development phase maintenance will be much more easier than
when the maintainers are not familiar with the project.

Because we have seen that the external attributes depend on user in-
teraction, therefore they are defined by the user, they usually are seen as
quality aspects. We say aspects because quality is a manifold measure, or
as Fenton put it “Quality is in the eye of the beholder”. This means that for
the real-time system developer quality might mean timeliness, for a critical
system developer it might mean lack of bugs and for the end-user, quality
might be synonym with usability or fitness for purpose.

It is this human involvement that accounts for the difficulty of measuring
the external product attributes. The situation becomes more interesting
when we realize that even though they are the most difficult to measure
they are in the highest demand to be measured because they are the ones
that have meaning for the managers of a company. Therefore, given the
high demand for external product attribute measures and the simplicity of
measuring internal product attributes, it is easy to understand the efforts of
measuring the external attributes by making use of the internal ones. We
will look at some of the most popular external property attributes in the
following paragraphs.



2.4. EXTERNAL PRODUCT ATTRIBUTES 13

Defect Density

There are defects in the software that are detecting during the development
process, the known defects, and there are defects which are not found, the
latent defects. For the definition of defect density the following formula is
used:

Defect Density =
Number Of Known Defects

Product Size
.

There are different problems with defect density which appear because
of the multiple ways both the denominator and the numerator of the frac-
tion can be defined. We have already discussed in the section dealing with
internal metrics the multiple ways size can be measured. The same stays
true for number of known defects: we could count only the faults or include
also the failures. The failures can be found before or post-release. There
are critical and non critical failures. Maybe in some cases there would be a
time frame to be used in counting the defects. As it can be seen only after
a rigorous definition of the terms in the fraction could we use the defect
density measure and even when we have such a clear definition we should
be very attentive when comparing different organizations.

Studies show that usually the defect density in the American companies
ranges from 4 to 10 per KLOC and the density is lower for the Japanese
companies. Software engineers agree that a defect density of 2 defects per
KLOC is an extremely good achievement. An interesting measure computed
in terms of defects is spoilage, defined as the fraction of total development
time used to fix post-release defects.

Usability

A possible definition could be that usability is the extent to which the product
is convenient and practical to use. Or in our computer-science jargon we
would say that a product is usable if it is user-friendly. We still need a
way to measure the usability and for this we try to decompose the external
attribute in internal, measurable ones. Therefore we could say, as [?], that
usability is a mixture of

• consistent interfaces

• good manuals

• effective use of menus and graphics

• number of help screens



14 CHAPTER 2. SOFTWARE METRICS

Still we didn’t progress much, because we can count the number of help
screens and not be able to express the relationship between the number
of screens and usability. More than this, good manuals factor, is again an
external factor because it depends on the person whom we ask if he considers
a manual as being good.

2.5 Measurement Theory

The Representational Theory Of Measurement

We use measurements in our everyday life. We measure things by comparing
them and establishing relations between them. This kind of relations are
called empirical relations. Because the empirical measurement is a subjec-
tive experience, it would be very useful if we could translate this knowledge
in a widely accepted and rigourously formalized way. This is the concern of
the representational theory of measurement.

For the relations to be preserved, a mapping from the real world to the
formal, mathematical world is needed. This mapping is done in the process
of measurement.

Definition 1 (Measurement) A measurement is a mapping from the real
world to the formalized mathematical world.

Definition 2 (Measure) A measure is a numerical value or a symbol that
is assigned to an entity’s attribute in the process of measurement.

Because a measurement is a mapping, in order to be completely defined,
it requires the following components

• Domain The domain in our case is the real world

• Range The range is the mathematical world

• Rules The rules make explicit the way of performing the mapping

More than this, a mapping should satisfy the representational condition.
This means that a mapping must map entities into numbers and empirical
relations into numerical relations in such a way that the empirical relations
preserve and are preserved by the numerical relations [?].



2.5. MEASUREMENT THEORY 15

Scale Transformations
Nominal Scale 1 to 1 mapping
Ordinal Scale Monotonic mapping
Interval Scale M ′ = aM + b (a¿0)
Ratio Scale M ′ = aM(a > 0)

Absolute Scale M ′ = M

Table 2.1: Measurement scales in decreasing order of their sophistication

Measurement Scales

The advantage of mapping relations into an formal system is the power the
formal system gives us of manipulating them. However, different measure-
ments can be manipulated in different ways: we can say that the number of
pages of this work is twice as much as the number of pages of another one
but we can’t say that the 30 degrees is twice as much as 15 degrees when
working on the Celsius scale. For the study of the possible operations on
measures there is a need of introducing measurement scales. There are five
types of scales and we shall look briefly at each one

1. Nominal scale - it is a scale in which the measures are assigned arbi-
trarily. Any transformations can be applied.

2. Ordinal Scale - in such a scale the mappings to the formal system
should preserve the empirical relations. Therefore any affine transfor-
mation could be used on such a scale.

3. Interval Scale - in such a scale all the properties of the ordinal scale
are kept; moreover the difference between two values on the scale has
meaning. Admissible transformations are linear transformations.

4. Ratio Scale - all the properties of the interval scale hold for the ratio
scale; moreover there is a point named 0 which signifies the total lack of
the property and therefore ratio’s have meaning on such a scale. The
possible transformations are proportional modifications of the input
(i.e. M ′ = aM, (a > 0))

5. Absolute Scale - there is only one transformation on such a scale and
it is the identity transformation. Usually the mapping is done by
counting the number of components of an attribute of the entity.



16 CHAPTER 2. SOFTWARE METRICS

We talk about the sophistication of a scale as being direct proportional
with the number of transformations that are possible to be applied on that
scale. The more sophisticated the scale, the more transformations we can
add to it. We see here a clear example of how rules that seem to restrict the
freedom of such a scale offer freedom in the ways the measure on the scale
can be interpreted.

Therefore, knowing on which scale we are working is of paramount impor-
tance: only this way we know which are the possible ways of manipulating
the formal system we are working with. We will talk again about this sub-
ject in the chapter where we describe our contribution and study the scale
our conformity strategies mechanism is using.

In software, measurements are also called metrics, even if this is not
correct. A metric is a mathematical function which has several properties
that the measurement does not hold. However, from historical reasons the
term metric is widely used.

2.6 The Measurement Processes

Gilb’s principle states that “Targets without clear goals will not achieve
their goals clearly”. Based on this principle, Fenton observes that a metrics
program takes time and effort, therefore it is important to have clear goals
in mind when starting it. This is the basis of the Goal-Question-Metric
approach to measurement.

The Goal Question Metric was introduced by Basili (Basili cited in [?]. It
proposes three steps for finding the correct metrics that should be collected
during a program.

1. Establish the goals of your maintenance or development project.

2. Derive, for each goal, questions that allow you to verify its accomplish-
ment.

3. Find what should be measured in order to quantify the answer to the
questions.

The GQM model seems too simple to deserve to be called a model. Still,
its usefulness becomes clear when realizing that many metrics programs
start not with a goal in mind, but with measuring what is easy to measure
and end up with bunch of unrelated and nonconclusive measurements. This
situation was addressed also by Kybourg: “If you have no viable theory in
which X enters, you have very little motivation to generate a measure of X”.



2.7. DETECTION STRATEGIES 17

And as a final argument for the GQM it is worth mentioning that AT&T
used it successfully in assessing the utility of code inspections [?]

Once the metrics that will be collected are in place, it is the time to
collect the data. Data collection should be done in such a way that it
minimizes data corruption. For this there is need for an orthogonal system
of categories in which to classify data [?].

Each software process cares most about quality and maintainability. For
this there are some data that should be always collected like faults, failures
and changes. For each the process of collection should be non-obtrusive.

Once the data is successfully collected, the analysis phase begins. Sta-
tistical methods are used in this phase of the process. One should be aware
of the pitfalls that exist during this phase. One important issue now, is to
realize which methods can be applied and which can not. For example using
average on a set of data which is not normally distributed would not make
sense.

2.7 Detection Strategies

The problem with metrics is that sometimes they are too fine grained. The
result of a single metric cannot help us much in assessing the quality of the
software1. Nobody can tell the quality of the software from its number of
lines of code, classes or cyclomatic complexity.

As a step forward in working with metrics Marinescu introduces the
detection strategy concept [?]. This section is a brief introduction to detec-
tion strategies. This is an important concept for our work because in the
subsequent chapter we will present an extension of the detection strategies.

2.7.1 Defining Detection Strategies

The detection strategies were introduced as a mechanism for composing
metrics and therefore allowing the engineers to work on a more abstract
level, which is conceptually much closer to the real intentions when using
metrics. The mechanism defined for this purpose is called detection strategy:

Definition 3 (Detection Strategy) A detection strategy is the quantifiable
expression of a rule by which design fragments that are conforming to that
rule can be detected in the source code.

1As we have shown in a previous chapter, there are many aspects of quality and we
wouldn’t be wrong even if we extrapolate and talk about assessing an external product
attribute instead of assessing the quality of software



18 CHAPTER 2. SOFTWARE METRICS

The use of metrics in the detection strategies is based on the mechanisms
of filtering and composition. In the following sections we will describe the
two mechanisms in more detail.

Filtering Operators

A data filter is a mechanism through which a subset of data is retained from
an initial set of measurement results, based on the particular focus of the
measurement. The main reason for reducing data is to present to the user
only the data that is useful to his purpose. If we consider the initial set
to be sorted, filtering would result in a contiguous subset of the initial set
which can be defined using an upper and a lower limit.

The data filters can be of two types

• Absolute Filters are those filters that can be parameterized with
a numerical value representing a threshold. These filters are used to
express very sharply defined design heuristics. Filters of this kind
would be the ones called HigherThan and LowerThan

• Relative Filters are those filters that are parameterized with the
number of entities we are interested in rather than the values of the
properties for the entities. These filters are used for quantifying a
”fuzzy” design rule like. Filters of this kind would be TopValues and
BottomValues

Composition Operators

As we already saw, the aim of a detection strategy is to be provide the
possibility of quantifying design rules. Therefore in addition to the filtering
mechanism which implements the quantification of parts of the rules we need
a way of putting together the parts and this is the composition mechanism.
The composition mechanism is also based on a set of operators. The oper-
ators are And Or and Not. The operators can be regarded from two points
of view

• The Logical Point Of View. From the logical point of view the
operators can be seen as the way of translating the informal design
rule in the formal one. They are the connection between the different
assertions contained inside a rule.

• The Set Theory Point Of View. From the set theory point of view,
the operators are the way of composing the results of the various data
sets, sets that were obtained as result of the filtering process.



2.7. DETECTION STRATEGIES 19

Figure 2.1: The way filtering and composition interrelate

2.7.2 Examples

Two of the detection strategies introduced in [?] are FeatureEnvy and Shot-
gunSurgery. We will show how the filtering and composition mechanisms in-
troduced earlier work together to detect classes presenting the corresponding
design flaws.

Feature Envy

The idea behind object oriented programming is to keep related data and be-
havior in the same class. When this is not happening methods can be found
which work more with data from other classes then from their’s 2. There-
fore the basic principle of object oriented programming is not respected. A
solution would be to move the method to the class who’s data it “envies”.
The expression of the strategy is as follows:

FeatureEnvy := ((AID, HigherThan(4)) and (AID, TopValues(10%))
and (ALD, LowerThan(3)) and (NIC, LowerThan(3))

There are three metrics involved in defining the strategy and they are
presented below

2The data can be accessed directly or using accessor methods



20 CHAPTER 2. SOFTWARE METRICS

• AID is the number of data members accessed by a method either
directly or through an accessor method

• ALD Access to Local Data, the number of local data members ac-
cessed by the method.

• NIC Number of Import Classes, the number of classes from which the
method uses data.

Shotgun Surgery

There are situations when a change in a class leads to many small changes in
many other classes. This situation is named shotgun surgery in “Refactoring:
Improving the Design of Existing Code” [?]. The flaw is obvious because
maintaining a system in which you have to keep track of multiple places
where you have to make changes when something changes is hard. We have
here a problem of coupling: the system is too strongly coupled. One of the
possible reasons would be failing to respect “Demeter’s law”. The expression
for detecting classes which are suspect of inducing shotgun surgery in the
system is

ShotgunSurgery := ((CM, TopValues(20%)) and (CM, HigherThan(10)))
and (CC, HigherThan(5))

There are two metrics involved in the expression

• CM Changing Methods, the number of distinct methods in the system
that would be potentially affected by changes operated in the measured
class.

• CC Changing Classes, the number of client-classes where the changes
must be operated as the result of a change in the analyzed class.



Chapter 3

Conformity Strategies

“Measurement owes its existence to
Earth; Estimation of quantity to Mea-
surement; Calculation to Estimation
of quantity; Balancing of chances to
Calculation; and Victory to Balancing
of chances”

Sun Tzu

In this chapter we discuss the drawbacks of the detection strategies and,
in an attempt to address these drawbacks, we introduce an extension for
them: the conformity strategies.

3.1 Detection Strategy Drawbacks

In the previous chapter we have seen how the detection strategies work.
We have seen that they offer a mechanism for working with a higher level
of abstraction than the mere metrics and express in a quantifiable manner
some design rules.

If we had to graphically depict the conceptual working of the detection
strategies we could use Figure ??

3.1.1 Lack Of Ranking

The rules that the detection strategies quantify are “rules of thumb” or
statistical rules. One characteristic of such rules is that different entities
will conform to the rules in different degrees. And from here we can see

21



22 CHAPTER 3. CONFORMITY STRATEGIES

Figure 3.1: Detection Strategy Concept. The detection strategy filters the
set of input entities. The figure shows that entities One and Two conform to
the rule (they are presented as colored) while entity Three does not conform
to the rule (it is colored in white)



3.1. DETECTION STRATEGY DRAWBACKS 23

Figure 3.2: Conformity Strategy Concept. Conceptually the filtering mech-
anism remains in place but the entities are annotated with the degree of
conformity to the rule of the detection strategy.

one facility that is not provided by the detection strategies, but would be
useful in practice, the ranking of the filtered set according to the degree of
conformity to the quantified rule.

Let’s take for example the rule “A method should not have the cyclo-
matic complexity number (TCC) higher than 20”1 and quantify it as the
Structurally Complex Method detection strategy. Creating a detection strat-
egy for this rule and filtering a given set of entities could result in a filtered
set containing a method with TCC = 20 and one with TCC = 40. Even if
none of them is conforming to the rule the second is more likely to hide a
design problem than the first.

3.1.2 The False Negatives Issue

The detection strategy is more than a filter because it attaches a meaning
to the entities that it detects. This being said, in the very definition of the
strategy, there is an assertion included about the entities that are going to

1The rule is applied to the software written for the Channel Tunnel. See [?]



24 CHAPTER 3. CONFORMITY STRATEGIES

be filtered. For the rule defined in the previous section we suppose that the
entities (i.e. methods) that will be filtered are structurally very complex. If
there were structurally complex methods that were not detected we would
say about them that they are false negatives. They are detected as negative
relating to the rule but this is false.

Because of the rigidity of the threshold mechanism involved in defining
the expressions for the detection mechanism, the existence of false negatives
is inevitable. Let’s take again the rule we defined relating to the structural
complexity of the methods. We could apply the rule on the entities (i.e.
methods) of a system to detect the structurally very complex methods of the
system. Suppose we have a number of methods with TCC = 20. Applying
the Structurally Complex Method detection strategy on the system won’t
detect our methods because they don’t have TCC > 20 (!). Even if our
methods are very complex they won’t be detected because of the rigidity of
the filtering mechanism.

The filtering mechanism on the other way is the strong point of the
mechanism. By making use of it we can reduce the initial set of entities
to one that can be more easily handled and is relevant to the problem.
Therefore we would like to address the problem of the false negatives in
some way but don’t want to interfere with the already proven useful filtering
mechanism. The solution we found will be detailed in the following chapter
and is represented conceptually in Figure ??. As it can be seen the solution
is to rate each entity according to the degree of conformity to the detection
strategy’s rule. There are many possible rules for rating the entities and we
will look in the next chapter for some of the possibilities.

3.2 Conformity Operators

Definition 4 (Conformity Operators) The conformity operators are opera-
tors that, applied on an entity, give as result a rating representing the degree
of conformance of an entity to the simple rule expressed by the operator.

The HigherThan and LowerThan were easily implemented as filters. If
the property that was taken into account was higher or lower than the
threshold, as the filtering operator suggested, the entity was filtered or not.
It is our concern in the new implementation not only to filter the entities
but to also give ratings to them.

Let’s take for example the following operator NOM > 30. We decide
to return the result as the degree in which the analyzed entity conforms to



3.2. CONFORMITY OPERATORS 25

the rule in percents. One possible implementation would be to assign the
ratings linearly, having therefore

HigherThan 30 rating =
Actual value of NOM for entity

30
.

This means that for an entity with NOM = 30 we would get a result of 100%
while for a actual value of NOM of 60 we would get a result of 200%. From
here the filtering mechanism can be very simply implemented by offering
as a result only those entities with a rating higher than 100% like in the
following code extracted from the class Filter

SCG.Van defineClass: #Filter
superclass: #{SCG.Moose.MSEAbstractTool}
instanceVariableNames: ’expression’

Filter>>computeFor: aGroupOfEntities
^aGroupOfEntities

select: [:each|
(expression computeFor: each) >100
].

Surely, there can be alternative ways of computing the rating for an
entity depending on the characteristics of the conformity operator and also
depending on the measured property but, nevertheless, the filtering remains
the same.

We will focus now on the implementation of the operators in our imple-
mentation giving alternative rating methods where they make sense. The
operators are HigherThan, LowerThan, Defuzzify.

Axiom For The Preservation Of The Behavior

The new conformity operators should respect the following axioms in order
to preserve the behavior of the detection strategies:

Definition 5 (Axiom For The Preservation Of The Behaviour) The rating
should be greater than equal 100% for all entities that would have been filtered
by the old filtering operators.



26 CHAPTER 3. CONFORMITY STRATEGIES

3.2.1 HigherThan

Rating

The rating for HigherThan will be done according to the formula

Rating(HigherThan) =
Actual value of metric for entity

Specified treshold for metric
.

Regarding this formula we can make a few observations:

• As we recall from the chapter on measurements, this formula does
make sense only if the measurement is made on a ratio scale. Fortu-
nately, many of the metric definitions available today are on a ratio
scale

• Even if we are working on a ratio scale, for a threshold of 0 the formula
does not make sense. In this case we will consider the output 100%
whatever would be the actual value of the metric.

• The conformity rating for the HigherThan operator is a ratio, an adi-
mensional number. It does not have the meaning of a metric anymore.
It merely suggests a degree of conformity or an alarm level.

If we looked at the operator as a function we could represent it graphi-
cally in the following way

Implementation

The code for computing the rating for one entity is very simple. It must be
mentioned however that for the complete understanding of the place in the
framework of the presented code the reader should consult appendix A.

CFHigherThanOperator>>computeFuziness: aValue
threshold = 0 ifTrue: [^100].
^(aValue / threshold * 100) asInteger.

3.2.2 LowerThan

Rating

The rating for this operator is done according to the formula

Rating(LowerThan) =
Specified treshold for metric

Actual value of metric for entity
.

Regarding this formula we can make a few observations:



3.2. CONFORMITY OPERATORS 27

Figure 3.3: HigherThan operator, represented graphically as a function

• As we recall from the chapter on measurements, this formula does
make sense only if the measurement is made on a ratio scale.

• Even if we are working on a ratio scale, for an actual value of metric
of 0 the formula does not make sense. In this case we will consider the
output 100% whatever would be value of the threshold.

• The conformity rating for the LowerThan operator is a ratio, an adi-
mensional number. It does not have the meaning of a metric anymore.
It merely suggests a degree of conformity or an alarm level.

If we looked at the operator as a function we could represent it graphi-
cally in the following way

Implementation

The code for computing the rating for one entity is very simple. It must be
mentioned however that for the complete understanding of the place in the
framework of the presented code the reader should consult appendix A.

CFLowerThanOperator>>computeFuziness: aValue
aValue = 0 ifTrue: [^0].
^(threshold / aValue * 100) asInteger



28 CHAPTER 3. CONFORMITY STRATEGIES

Figure 3.4: LowerThan operator, represented graphically as a function

3.2.3 Defuzzify

Rating

The rating for this operator is done according to the formula

Rating(Defuzzify) =

{
0 Actual V alue <= Threshold
100 Actual V alue > Threshold

If we looked at the operator as a function we could represent it graphi-
cally in the following way

Implementation

The code for computing the rating for one entity is very simple. It must be
mentioned however that for the complete understanding of the place in the
framework of the presented code the reader should consult appendix A.

CFDefuzzyfyOperator>>computeFor: anEntity
(self children first computeFor: anEntity) >= 100

ifTrue: [^100]
ifFalse: [^0]



3.3. COMPOSITION OPERATORS 29

Figure 3.5: Defuzzyfy operator, represented graphically as a function

3.3 Composition Operators

The composition operators have the role of

In the old detection strategies the composition operators had the role of
set operators. “And” was defined exactly as the logical and, and “or” the
same way. In our mechanism we took a different approach.

The expression of the detection strategy is computed separately for each
entity, the entity is rated according to the expression. Applying the strategy
on a set of entities will yield another set with each entity having associated
its rating. Only then the filtering takes place according to the rating of the
entities. The difference between the two mechanisms is that while the old
detection strategies did many filtering operations in the computation of an
expression, the conformity strategies do only a filtering step: the final step
before presenting the result.

However, we must assure that the implementation of the composition
operators and the overall implementation of the conformity strategies based
on them, preserves the behavior of the old detection strategies. We will
prove this after introducing the composition operators.



30 CHAPTER 3. CONFORMITY STRATEGIES

Figure 3.6: The And operator

3.3.1 And

Rating

The composition operators are binary operators. As input they have two
conformity expressions. The rating of the composite expression will be given
in the case of “And” by the minimum of the ratings of the two expressions.
This approach is a reminder of the way the “And” operation is done in
fuzzy logic. The only difference is that the result in fuzzy logic the result
is restricted to the [0..1] range while in our rating scheme the values can be
bigger than 100%.

For an expression ExpAnd = Exp1 And Exp2 we could compute the
result using the formula

Rating(ExpAnd) = min(Rating(Exp1), Rating(Exp2)).

Regarding this formula we can make a few observations:

• The chosen implementation of the rating for “And” preserves the re-
sults the old detection strategies had. Suppose we have two expressions
which respect the Axiom For Preservation Of The Behavior (Section
??). The old detection strategies would check if the entities respect
the rule of each expression and all those who respect will be filtered.



3.3. COMPOSITION OPERATORS 31

Therefore we would have as a result two sets. The entities that exist in
both sets will form the result set after being filtered again by the And
operator. But the property of the entities in the resulting set is that
they respect both composed rules. Therefore when applying the con-
formity expressions on each of those entities they, and only they, will
have the rating for each expression higher than 100%. Therefore after
applying the rating for the “And” operator as defined earlier they, and
only they, will have a resulting rating higher than 100%. This means
that if we apply the final filter we presented in the first section of this
chapter, they and only they, will form the resultant set. Therefore, we
see that the behavior will be preserved.

• Somebody might raise the objection that we are adding apples with
oranges here because we assign a number to a composition of two
metric expressions, metrics that might not be related one with another
(e.g. NOM>20 and NOC>4). The important observation is here that
the conformity rating is not a metric anymore. We have seen when
talking about conformity operators, that the meaning of the rating for
the operators is merely that of an alarm.

Implementation

The code for the effective computing the rating for one entity is spread across
two levels of the class hierarchy under CFCompositionOperator.

CFCompositionOperator>>computeFor: anEntity

^self
fuzzyOperationOn: (self left computeFor: anEntity)
and: (self right computeFor: anEntity).

CFAndOperator>>fuzzyOperationOn: firstPropertyValue and:
secondPropertyValue

^firstPropertyValue min: secondPropertyValue.

3.3.2 Or

Rating

The rating of the composite expression will be given in the case of “Or”
by the maximum of the ratings of the two composing expressions. This



32 CHAPTER 3. CONFORMITY STRATEGIES

Figure 3.7: The And operator

approach is a reminder of the way the “Or” operation is working in fuzzy
logic. The only difference is that the result in fuzzy logic the result is
restricted to the [0..1] range while in our rating scheme the values can be
bigger than 100%.

For an expression ExpOr = Exp1 Or Exp2 we could compute the result
using the formula

Rating(ExpOr) = max(Rating(Exp1), Rating(Exp2)).

Regarding this formula we can make a few observations:

• The chosen implementation of the rating for “Or” preserves the results
the old detection strategies had. Suppose we have two expressions
who respect the Axiom For Preservation Of The Behavior (Section
??). The old detection strategies would check if the entities respect
the rule of each expression and all those who respect will be filtered.
Therefore we would have as a result two sets. The entities that exist in
at least one set will form the result set after being filtered again by the
“Or” operator. But the property of the entities in the resulting set is
that they respect at least one of the rules joined with “Or”. Therefore
when applying the conformity expressions on each of those entities
they, and only they, will have the rating for at least one expression



3.4. CONFORMITY STRATEGIES 33

higher than 100%. Therefore after applying the rating for the “Or”
operator as defined earlier, they, and only they, will have a resulting
rating higher than 100%. This means that if we apply the final filter
we presented in the first section of this chapter, they and only they,
will form the resultant set. Therefore, we see that the resulting set
behavior will be preserved in the case of “Or”.

Implementation

The code for the effective computing of the rating for one entity is spread
across two levels of the class hierarchy under CFCompositionOperator.

CFCompositionOperator>>computeFor: anEntity

^self
fuzzyOperationOn: (self left computeFor: anEntity)
and: (self right computeFor: anEntity).

CFOrOperator>>fuzzyOperationOn: firstPropertyValue and:
secondPropertyValue

^firstPropertyValue max: secondPropertyValue.

3.4 Conformity Strategies

We have seen that the main goal of the detection strategies is to provide the
engineers with a filtering mechanism based on the composition of metrics.
In this process an expression is built which expresses a design rule. The
software artifacts are filtered according to this expression.

The goal of the conformity strategies is more than filtering, is compu-
tation of the degree of conformity to the expressed rule. This degree of
conformity is given by a grade assigned to the subject entity2. In the pro-
cess of assigning the grade we also use a similar expression as the one for
the detection strategies but with different operators, operators that were
described in the previous sections.

Definition 6 (Conformity Expression) A conformity expression is a recur-
sive function composed of conformity operators applied on software artifacts

2While it was the main goal of the detection strategies, filtering is just one possible
application of the conformity strategies



34 CHAPTER 3. CONFORMITY STRATEGIES

and composition operators applied on the results of conformity or on other
composition operators.

The conformity strategy is not more than an expression which has a
semantical meaning. We see this from the definition

Definition 7 (Conformity Strategy) A conformity strategy is a function
used as a means of automatically computing the degree of conformity of
some software artifacts to a design rule.

As it can be seen from the two previous definitions, there is a sub-
tle difference between conformity expressions and conformity strategies. A
conformity expression does not have to represent a design rule. Therefore
a strategy always has an associated expression but a strategy is not nec-
essarily built from a given expression. This is true because there could be
expressions which do not have any semantic, which do not represent any
meaningful rule.

3.5 Chapter Summary

In this chapter we saw the context in which we implemented the conformity
strategies, we presented some of the implementation details and we under-
stood how the different operators interact in order to create the conformity
expressions.

We have been theorizing about the conformity strategies in this chapter.
The theory is over and we move to the applicative part. In the following
chapter we take a software system and apply conformity strategies on it
in the context of a case study. The subsequent chapter will present an
application of the conformity strategies.



Chapter 4

Case Study

“Geometry is the art of finding perfect
solutions to problems with the help of
imperfect figures”

Anonymous

Because engineering is not geometry, we never have perfect solutions.
Neither detection strategies nor conformity strategies are flawless. However,
in this chapter, we will show on several real case studies why conformity
strategies are a better solution than the detection strategies. For this we
plan to apply the two mechanisms on several smalltalk systems and compare
the results.

4.1 The Experimental Setting

We will analyze the following systems: CodeCrawler, AdventureBase and
Advance (Table ??. For the analysis of CodeCrawler we had the permission
of the author while the other systems are in the public domain so we didn’t
have to ask for any permission. For each o the systems we will provide a
separate subsection in which we discuss the problems related to it.

The goal of the analysis is to detect God Classes. God Class is a “bad
smell” defined by Fowler in his Refactorings book [?]. A God Class is a class
which concentrates much of the systems intelligence. This is a sign of action
oriented programming which is opposed to object oriented programming.
As Riel advises, the system intelligence should be distributed horizontally
so ”the top-level classes in a design should share the work uniformly”[?].

35



36 CHAPTER 4. CASE STUDY

System Number Of Classes Number Of Model Classes
Advance 2037 264

Adventure Base 308 108
Code Crawler 457 115

Table 4.1: The systems used in our study

For the detection of God Classes we use a simplified expression of the
strategy defined by Ratiu [?]

God Class = (ATFD > 40)AND((WMC > 75)OR((TCC > 0.20)AND(NOA > 20))).

The metrics involved in the expression have the following meanings

• ATFD (Access To Foreign Data) ATFD represents the number of
external classes from which a given class accesses attributes, directly
or via accessor-methods. The higher the ATFD value for a class, the
higher the probability that the class is or is about to become a god-
class.

• WMC (Weighted Method Count) is the sum of the statical complexity
of all methods in a class. If this complexity is considered unitary,
WMC measures in fact the number of methods (NOM). Usually WMC
is computed as the sum of the cyclomatic complexities of all methods
in a class.

• TCC (Tight Class Cohesion) TCC is defined as the relative number
of directly connected methods. Two methods are directly connected
if they access a common instance variable of the class.

• NOA (Number Of Attributes) The number of attributes of the class.
As an interesting issue, in smalltalk all the attributes are private.

The expression represents the formal representation of the following rule:
“If the class has a high degree of access to foreign data and has a high
internal complexity or if it has a high degree of access to foreign data and
a low cohesion” than the class is a God Class. The two variants of the rule
can be traced back to the two flavors of God Class defined in [?].



4.2. THE EXPERIMENT 37

Class Name CS Rating DS Result
Class A 185 detected
Class B 100 detected
Class C 40

. . . < 40

Table 4.2: Sample Results Table

4.2 The Experiment

We apply the detection strategy and the conformity strategy based on the
previously introduced God Class expression on each of the systems men-
tioned at the beginning of this section. The results are separately discussed
for each system and presented as tables.

For the layout of the tables we can look at Table ??. For each row we have
a class and the results obtained by using the two mechanisms. On the column
corresponding to the conformity strategy there is a rating representing the
degree ion which the class conforms to the God Class strategy. On the
column corresponding to the detection strategy we have the string detected
if the entity was detected as being suspect of having the design flaw and
nothing otherwise.

We can see that in the last row from table ?? there is no class name and
an inequality instead of the rating. This means that the entities which had a
rating expressed by the inequality were not presented because we considered
them to be irrelevant.

4.2.1 CodeCrawler

The result of applying the strategies on Code Crawler is presented in Table
??. We can see that all the classes that were detected by the detection strate-
gies as suspects, were assigned a higher than 100 rating by the conformity
strategies. This should not be a surprise, because in the previous chapter
we already proved the equivalence between the results of the detection and
conformity strategies.

What is worth mentioning is that after analyzing the code we come to
the conclusion that CodeCrawler really is a class which concentrates a lot
of behavior, controls some sequential events and can be considered to be a
God Class. CCNodeFigureModel and CCDrawing are big classes but they
are more cohesive and represent some clearly defined concepts. They can
be considered suspects of being God Classes but they are not so acute as



38 CHAPTER 4. CASE STUDY

Class Name CS Rating DS Result
CodeCrawler 185 detected

CCNodeFigureModel 118 detected
CCDrawing 117 detected

CCItemFigureModel 62
CCEmbeddedSpringLayout 60

CCGraph 52
CCViewSpecNodeTypeSubcanvas 48

CCNode 46
CCSingleClassBlueprintLayout 45

CCDrawingProxy 45
CCViewBuilder 41

. . . < 40

Table 4.3: God Class detection in CodeCrawler

the first mentioned. This is information we derived after looking at the
code. The same information could have been deduced from the result of the
conformity strategy but couldn’t be deduced from the detection strategy as
Table ?? suggests.

4.2.2 AdventureBase

AdventureBase is a framework for the development of role-playing games in
Smalltalk of medium size, having more than 5Klines of code and 154 classes
(308 if we also count the metaclasses). After applying the strategies on the
system we got the results listed in Table ??.

The most interesting class for our discussion is the AdventureContainer-
Inspector class. We see that it almost conforms to the rule. If we used
only the detection strategies we would have discarded this class as not being
suspect. However, its high rating makes it a suspect and we should better
do a manual inspection to determine if it is flawed or not.

Analyzing the class we see that the class is referred by only three methods
in the system but it refers 251 methods. Therefore we see that the class really
is some kind of a controller class. The class is also in the top 3 classes in the
system with respect to accessing foreign data having ATFD = 55. In fact
only 10 classes in the system have an ATFD higher than 10 and it must be
reminded again that the system has more than 100 classes. Therefore our
class seems to do too much, access too much external data and probably



4.2. THE EXPERIMENT 39

Class Name CS Rating DS Result
AdventureThing 178 detected

AdventureControlPanel 114 detected
AdventureContainerInspector 98 suspect

AdventureActor 84
AdventureRobot 66

Machine 30
AdventurePlayerMonitor 30

MachineState 26
AdventurePlayer 26

Adventure 24
AdventureLauncher 21

. . . < 20

Table 4.4: God Class detection in AdventureBase

should distribute its behavior to other classes. The symptoms described
suggest the class as a candidate to being a flawed class.

The important thing to notice in this example is how the conformity
strategies enabled us to detect a class which would have remained undetected
using the old detection strategy mechanism.

4.2.3 Advance

The conclusions we got after we studied the code are reported below. In
this case study there is no doubt that the first detected class is a God Class.
AD2DiagramPainter is the brain of the system, it is the class which handles
the graphical editing and this is why it is so complex. On the other hand
it’s complexity would be hard to split among other classes and maybe the
design would be less intuitive if one did so.

The next detected classes are big and complex classes but, after manual
inspection, we concluded that they are cohesive enough to represent unique
concepts in the domain so we don’t consider them to be dangerous God
Classes. Nevertheless, even if not dangerous, the fact that a class in the
system is so big, complex and accesses so much external data might be a
sign of poor design.

It’s important to notice that even if some of the detected classes are
false positives, the ranking possibilities offered by the conformity strategies
increase the probability that the real flawed classes are detected first. This



40 CHAPTER 4. CASE STUDY

Class Name CS Rating DS Result
AD2DiagramPainter 255 detected
AD2DiagramModel 221 detected

AD2ClassModel 209 detected
AD2SubjectBrowser 127 detected

NVEditor 102 detected
AD2ApplicationModel 85

ICC1Dialog 66
IccVWSystemOrganisation 64

AD2ToolbarGenerator 53
IccHTMLVWDocumentation 50

. . . < 50

Table 4.5: God Class detection in Advance

is what happened with AD2DiagramPainter in our example: we saw that it
had the highest probability of being flawed from all the classes in the system
and, in the end, we concluded that the rating was right.



Chapter 5

Magnet View

“Software is intangible, having no
physical shape or size. Software visual-
ization tools use graphical techniques
to make software visible by displaying
programs, program artifacts, and pro-
gram behavior”

T. Ball

Having validated the thesis, we go a step forward and present one ap-
plication which uses conformity strategies, the Magnet View. We begin this
chapter by presenting the philosophy behind Magnet View and its purpose.
After that we go in a little detail about how the tool is integrated in the
Moose environment and especially in CodeCrawler a software visualization
tool. In the end we will have a look at some applications of Magnet View.

5.1 The Concept

We start by explaining the second term from the name of our tool, view.
One of the definitions of view in the Webster’s dictionary is to regard in a
particular way and this is exactly what we want to do with Magnet View, to
introduce a new way of looking at a software system. In our implementation
of the view we used the exiting infrastructure of CodeCrawler, infrastructure
that will be discussed in one of the following sections.

The other term from the name, magnet, suggests the particularities of
the view. If we generalize the way a magnet attracts iron entities, we could
say that an attractor, the magnet, attracts the attractees, the iron entities,

41



42 CHAPTER 5. MAGNET VIEW

conforming to some physical laws. What we did was to implement a view
that lets the software entities, as attractees, interact with several attrac-
tors which represent attributes of the attractees by respecting simple laws
analogous to the magnetic laws.

The attractees In Magnet View the attractees are software artifacts have
corresponding entities in Moose. That is they can be subsystems,
classes, methods, attributes or invocations. However it must be men-
tioned that, although we can create views that work with any of the
previous mentioned types of entities, in a view all the entities should
be of the same type.

The Attractors The attractors as we have already said should represent
quantifiable properties of the attractees. In Moose the attractors could
be metrics but could also be conformity strategies because the confor-
mity strategies are compositions of metrics.

The Interaction Law The interaction law states that each entity is po-
sitioned in such a way that the attractions of all the attractors that
affect it be in equilibrium. Each attractor attracts each attractee with
a force proportional with the degree the attractee has the property
symbolized by the attractor.

The Magnet View The Magnet View is the view that results by letting
the attractors and attractees defined before interact. By observing
the resulting positions of the attractees we would be able to make
assertions about the entities they represent. By observing the config-
uration of the attractees we would be able to make assertions about
the system.

5.2 Relation With CodeCrawler

For the visualization that we have proposed in this chapter we could have
developed a new software tool. We decided not to do this but to use the
existing framework provided by CodeCrawler. CodeCrawler is a tool based
on Moose that supports reverse engineering by software visualization. Its
aim is to present an overview, a feeling of the system, a starting point from
where the reverse engineering process can continue.

We have decided not to create a tool from scratch because we wanted to
test our concept. Therefore we needed a fast implementation, and the fastest



5.2. RELATION WITH CODECRAWLER 43

Figure 5.1: Magnet View Concept. We can see how the attractors (A1, A2,
A3) create forces (F1, F2, F3) that influence the position of the attractee
(E). It should be noted that because A1 attracts E weaker (F1 is smaller
than F2 and F3) E is closer to A2 and A3



44 CHAPTER 5. MAGNET VIEW

Figure 5.2: Magnet View as a polymetric view. We can see that the blue
band has a faded blue shade to express the fact that the blue attractor has
a weak influence on the attractee

way to get this was integrating our view in CodeCrawler. CodeCrawler
offered some facilities like polymetric views, integration with moose and
interactivity features that were needed. To implement our extensions we had
to subcases some existing classes and overwrite some methods by making
use of the extensions mechanism provided by Smalltalk.

The aim of polymetric views is to present as much information as possible
in a 2d diagram. A polymetric view maps attributes on the dimensions of
the rectangular figures representing the entities, and also can map attributes
on color and position of the entities. As it can be seen in Figure ?? we
used polymetric views that make use of color an position. The color of each
attractee is an aggregate of bands each band having the color of an attractor
and the intensity proportional with the force the attractor determines on the
attractee. The position is given by the overall interaction of the forces the
attractors induce on the attractees.



5.3. APPLICATIONS 45

5.3 Applications

We introduce now a set of views that illustrate possible ways of using the
Magnet View tool. These are some of the possible views and by no mean
are they an extensive list. Depending on needs and model properties new
views can be defined.

In the following sections we will see some ways of using the Magnet View.
Each visualization has its section. We split each section in the following
subsections:

• Purpose represents the high level goal of the visualization

• Applies On specifies the entity type addressed by the current view. It
could be class, method, package or any other entity type defined in
Moose.

• Rationale presents the aims we had for defining the view.

• View Definition introduces the attractors of the view and the attracted
entities.

• Interpretation presents what properties we expect the entities from
a specified region on the graph to have. Also introduces any other
observations regarding the view.

• Validation takes a real-life software system and applies Magnet View
on it. From the view it derives some conclusions that are then validated
or invalidated by analyzing the code of the system or from studying
writings about the system.

5.3.1 Important Classes

Purpose

System Understanding

Applies On

Classes



46 CHAPTER 5. MAGNET VIEW

Rationale

A class to which much effort was dedicated should be an important class of
the system. A sound measure of effort is size, and two measures of size are
NOM and LOC (see section ??) This is why we correlate these two measures
in order to detect the important classes of the system.

View Definition

We use two conformity expressions as attractors. They are,

• (NOM > 20 OR WLOC > 200). The thresholds are for a smalltalk
system where the average method length is 8 LOC and average number
of methods for a class is 10 [?].

• TRUE. The default attractor attracts all the entities with a force
equal with the force an normal attractor would show for an entity
which conforms 100% to its rule.

This view applies on all the classes of the system.

Interpretation

Because of the default attractor the classes with conformity around 100%
should be at the half of the distance between the two attractors. The classes
closer to the default attractor are classes which do not respect neither one
of the two conditions imposed by the Main Actor conformity expression.

Validation

HotDraw is a 2-D graphical framework written in smalltalk. Suppose we
never heard about it and we want to understand the system in order to
further develop it. A first step could be detecting the main actors of the
system. We apply the view on the system and we get the result shown in
the Figure ??

In Figure ??, the region marked with 1 we have the following classes:
Drawing, DrawingEditor class, Figure, ToolState, Tool class. Because they
are the leftmost they are the most suspect of being MainActors for the
system. Now we need to verify if indeed these classes are main actors in the
system.

One of the most famous papers on HotDraw is R. Johnson’s “Document-
ing Frameworks Using Patterns” [?]. In his paper Johnson proposes a new



5.3. APPLICATIONS 47

Figure 5.3: Main Actors as they are detected in the HotDraw Use Case

approach to documenting frameworks by presenting a structured list of ways
of using them. These ways of using the framework he calls patterns. As a
validation of his approach he documents HotDraw using patterns. For the
proposed task he uses a set of 10 patterns he arranges in the order of their
importance.

We would consider that we succeeded in our approach if the classes we
suspect as being main actors are found in Johnson’s patterns. And now we
take each of our suspects and see if they exist in Johnson’s documentation.

• Drawing We just quote from Johnson: “Other important classes are
Drawing [...]”. In pattern 9 Johnson talks about animation and says
“Animation is provided in HotDraw by making a subclass of Drawing
that defines the step method. This is the main reason that Drawing
is subclassed.”

• DrawingEditor class The first pattern is dedicated to introducing the
DrawingEditor. We quote again: “The DrawingEditor is the model,
and is responsible for keeping track of the drawing, the set of tools,
the current tool, the menu of operations on the drawing, and many of
the operations on drawings.”

• Figure The second pattern describes the Figure class. Here we find
out that “Each kind of drawing element is a subclass of Figure. [...] A
figure keeps track of other objects that depend on it [...] Each drawing
element in a HotDraw application is a subclass of Figure”

• ToolState This class is not found in the documentation. We will inves-
tigate why was it detected.

• Tool class Pattern 8 is entirely dedicated to tools. Here we find that
“Selecting a tool from the palette lets the user manipulate figures,
create new figures, or perform operations upon a figure or the entire



48 CHAPTER 5. MAGNET VIEW

drawing. An important part of designing an editor using HotDraw is
to design the set of tools that will be on the palette.”

The quotations we gave from mr. Johnson’s paper make any further
comments of ours superfluous. However, as a conclusion we can say that for
this case, our tool had proved to be effective in helping us detect the main
actors of the system.

5.3.2 Internal Complexity vs. Interface

Purpose

System Maintenance, System Understanding

Applies On

Classes

Rationale

There are classes in the system which do have a high internal complexity,
still they expose a small interface to the other classes. We use this view to
emphasize these classes. These classes might be classes which

View Definition

We use three conformity expressions as attractors. They are,

• WMSG > 250 The thresholds correspond to the used case study.
WMSG means number of all message sends in all methods of the class.
We chose the threshold to be the median value of the WMC distribu-
tion. This is very different from the average which would be much
lower due to the high number of classes in the system having a small
WMSG count. However the distribution of the values is not normal
so statistics say that it makes no sense to use average with such data
sets.

• WMC > 40 Threshold is relative to the studied system and it repre-
sents the median of the data set with WMC values. WMC is the sum
of all the CYCLO for all the methods of the considered class. It is
worth observing that for more than 75% of the methods in our study
the CYCLO metric is 1.



5.3. APPLICATIONS 49

• PubM > 40 Threshold is related to WMC. Knowing that most of the
WMC are 1 we would expect that entities in the center of the image to
be attracted equally by WMC > 40 and PubM > 40. Any unbalance
would mean a disproportion in the expected relation between PubM
and WMC and might be inspected.

This view applies to all the classes of the system.

Interpretation

The WMC > 40 and WMSG > 250 attract the classes with a high internal
complexity. We have considered high internal complexity to be sending
many messages to other classes and also having a big cyclomatic complexity
for their methods. The PubM is a measure for the public interface of a class.

Validation

We have already introduced CodeCrawler, the visualization tool available in
Moose. Applying the InternalComplexity vs. Interface view on it now and
we get the result shown in the figure ??

In Figure ??, we see that there are three outlier classes. One is the
class marked as 1 and the other is the group of two classes marked as 2 1.
Looking at the view we can state that class 1 is strange because it sends
a lot of messages in its methods still it does not provide any interface to
other classes nor does it have a high structural complexity. Therefore we
expect this class to have methods which send a lot of messages in a linear
fashion. Looking at the code we realize that we were right, the class is
CCSplashScreen class and it has a method splashScreenImage with many
lines of generated code, some of them we list here for :

... at:1 put:Graphics.ColorValue black;
at:2 put:(Graphics.ColorValue scaledRed: 57 scaledGreen: 56
scaledBlue: 54);
at:3 put:(Graphics.ColorValue scaledRed: 30 scaledGreen: 17
scaledBlue: 26);
at:4 put:(Graphics.ColorValue scaledRed: 79 scaledGreen: 77
scaledBlue: 79);

1It is interesting to note that in the proximity of groups 1 and 2 there are also other
groups of classes. We didn’t focus our attention on them because, as it can be seen from
the intensity of their colored bands, those classes are weakly attracted so they do not
represent extreme cases



50 CHAPTER 5. MAGNET VIEW

Figure 5.4: Internal Complexity vs. Interface view applied on CodeCrawler



5.3. APPLICATIONS 51

at:5 put:(Graphics.ColorValue scaledRed: 79 scaledGreen: 79
scaledBlue: 77);
at:6 put:(Graphics.ColorValue scaledRed: 39 scaledGreen: 37
scaledBlue: 37);
at:7 put:(Graphics.ColorValue scaledRed: 44 scaledGreen: 39
scaledBlue: 37);
at:8 put:(Graphics.ColorValue scaledRed: 45 scaledGreen: 35
scaledBlue: 39);
at:9 put:(Graphics.ColorValue scaledRed: 49 scaledGreen: 49
scaledBlue: 49);
...

The group marked 2 represents another kind of outliers. Classes, with
high internal complexity, but with a very small interface. We look at the two
classes and realize that they are classes implementing layouts, classes which
have one single public method called layout (e.g. CCSingleClassBlueprint-
Layout.layout, CCCorrelationViewLayout.layout). It is interesting to realize
that one of the detected classes is the layout class we have implemented for
extending CodeCrawler.

5.3.3 Methods In Need Of Refactoring

Purpose

System Maintenance, Restructuring

Applies On

Methods

Rationale

As Fowler suggests, a method shouldn’t have a too big size because they
will become too hard to understand. In these cases the “extract method”
refactoring procedure should be applied.

View Definition

For this view we use three conformity expressions as attractors. They are
enumerated below.



52 CHAPTER 5. MAGNET VIEW

• LOC > 100 attracts the methods with a big number of lines of code.
We thought that methods having more than 100 LOC can be consid-
ered too big considering especially the 7 LOC per method rule used in
smalltalk.

• NI > 100 attracts the methods with a high number of invocations.
Usually on a line we have at most an invocation. Therefore for 100
LOC a TI of 100 is a high value.

• Normal Methods is a conformity expression of the following form

Normal Methods = LOC < 100 and NI < 100

Its use is to attract the methods with normal values for LOC and NI
so the outliers will be more easily seen.

Interpretation

There are four zones on this view. The first is the normal methods, which
are grouped around the virtual axis perpendicular on the “Normal Methods”
attractor in the lower half of the image.

The outliers with many lines of code but few invocations should be found
on the axis that goes from “Normal Methods” attractor to the LOC > 100.
The outliers with many invocations but few lines of code are to be found
on axis between the NI > 100 and “Normal Methods” attractors. These
two classes of outliers are usually special kinds of methods, like smalltalk
window specifications or image data in the smalltalk language.

The outliers we are looking for corresponding to the methods that should
be refactored, are to be found around the top of the imaginary perpendicular
axis on the “Normal Method” attractor. This is so because the previously
mentioned methods should be attracted by LOC and NI with comparable
forces while in the same time be very faint attracted by the “Normal Meth-
ods” attractor.

Validation

This experiment will be done with an adventure game framework for smalltalk,
called AdventureBase. Adventure base contains more than 100 classes cor-
responding to game logic and user interface. We want to see if we can detect
methods in need of refactoring in this package.

We see that in the region where we expected to have methods in need for
refactoring, we, indeed, have two obvious outliers. Looking at them we found



5.3. APPLICATIONS 53

Figure 5.5: Methods In Need Of Refactoring view applied on AdventureBase



54 CHAPTER 5. MAGNET VIEW

Machine class.lightSwitch and AdventureActor.addNonsenseHandlerTo: suc-
cessBlock: successState methods. The two methods, having 90 and respec-
tively 127 LOC, were too long to be listed here so we provided an appendix
containing the first, shorter one. They also didn’t have comments 2 so they
were hard to understand. By applying the “extract method” we could bring
the first mentioned method to a decent size of less than 30 non comment
LOC and we believe, increase its comprehensibility.

It can also be seen from Figure ?? that we have four outliers with big
LOC and small NI. All of them represent window specifications so they do
not need refactoring.

Surely, we treated here only the extreme outliers, if we were to treat the
not so obvious outliers, we could continue our search for methods in need of
refactoring with other methods not so extremely positioned. However, we
consider that we have already proved the usefulness of the view.

5.4 Integration In Moose

The ultimate goal of Magnet View is to provide a mean to analyze a system
by visualizing the relationships between entities of the system and the prop-
erties of the entities. But how do we load a system in Magnet View? How
do we select the entities we want to visualize? How do we select the attrac-
tors? What do the conformity expressions have to do with the visualization?
These are the questions we plan to answer in this section.

The Magnet View is integrated in Moose. In Moose you can load a
system and browse its entities in a browser that categorizes them. The
entities are grouped in categories according to their entity type3. Each
category has a menu associated with it. In this category menu, we have
added an option that starts the Magnet View Runner. In Figure ?? we can
see the menu for a group of classes

Therefore after Magnet View Runner is started, it has a reference to the
system currently loaded in Moose and also to the group of entities that it
is working with. Having a reference to the working set of entities, it can
obtain through Moose all the defined properties that are available for that
set of entities.

Those properties can be simple metrics or can be conformity expressions

2This also inspired us to think about a view which to corroborate the current expres-
sions with information about the number of comment lines.

3Subgroups of these initial groups can also be generated by filtering mechanisms



5.4. INTEGRATION IN MOOSE 55

Figure 5.6: The menu attached to a class group from which the Magnet
View Runner can be run.



56 CHAPTER 5. MAGNET VIEW

Figure 5.7: MagnetViewRunner the mediator between Moose and Mag-
netView

that are associated with a certain entity type4. The properties can be used as
attractors themselves or can be composed using the conformity expressions
mechanism with the use of the Magnet View Runner 5

In Figure ?? we present now the MagnetViewRunner the mediator be-
tween Moose and the Magnet View visualization.

In the right side of the Magnet View Runner we have the attractors. We
can define an attractor in the Expression Editor. The editing can be done
by making use of the edited expressions’ associated menu.

The operations executed on expressions in the expression editor with the
help of the edit expression menu are

1. Replace expression with another. The possible expressions that
can replace the current are presented in a menu which is dynamically

4See Appendix ?? for details on how a conformity expression can be defined as property
of a specific entity type

5Here we see an important property of the conformity expressions. They can be com-
posed themselves to form even higher-level compositions. The properties that are com-
puted as conformity expressions can be used to form the basis of other conformity ex-
pressions in the Magnet View Runner expression editor we will describe in the following
pages



5.4. INTEGRATION IN MOOSE 57

Figure 5.8: The expression menu lets the user edit the expressions in the
editor. An expression can be replaced with another, made the child of
another or have its parameters modified.

generated as all the combinations between the defined operators (i.e.
HigherThan, LowerThan) and the metrics defined for the working set
of entities.

2. Make expression child of another. This is used in the process of
composing an expression. In order to compose two expressions by And
the user should create the first expression then make the expression
the child of an And expression and then edit the second child of the
And

3. Edit expression’s parameters. This is used because when execut-
ing operation 1 (Replace expression with another) the new expression
has a default threshold. Therefore this default threshold should be
adapted to the current situation.



58 CHAPTER 5. MAGNET VIEW

Figure 5.9: The menu that allows the replacement of an expression with
another. The expressions in the image apply to classes.

Figure 5.10: The editor for the parameters of the expressions



Chapter 6

Conclusions and Future
Work

“The black belt represents the begin-
ning – the start of a never-ending jour-
ney of discipline, work, and the pursuit
of an ever-higher standard” says the
student.
“Yes. You are now ready to receive the
black belt and begin your work.”

Chinese Parable

As one of our professors used to say, a successful research work will raise
more questions than answers. And as the student in the parable learnt, an
achievement is not an end, is just the foundation for what is to come. This
chapter is a good place to assess what has been done and show what remains
to be done. We start by presenting what is original in the work, continue
with some conclusions and end by presenting several possible continuation
pathways that are opened by the work.

6.1 Contribution

The original contributions of the author to this paper are enumerated below

The Conformity Strategy Concept The idea of measuring the degree
of conformity of software entities to the formal rules expressed by the
conformity expressions is the main idea of this work. We have seen it

59



60 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

applied in different contexts through this work and we believe it is an
interesting and potential mechanism. Maybe it still is a bit ahead of
its time because the software engineering field is still new and many
rules of thumb do not exist.

Composition Operators Implementation The implementation of the
composition operators (presented in Chapter ??) in a manner similar
to the way the fuzzy logic operators are impl4emented, is a concept
we didn’t find anywhere else in the software reengineering literature.

The Magnet View Concept The visualization layout in which the soft-
ware artifacts and several of their properties are positioned as a result
of their interaction, interaction happening based on laws analogous
with the magnetic ones, is a new concept and proved to be an effective
technique of visualizing software systems.

6.2 Future Work

During our work we discovered possible continuation paths for it. Although
we didn’t have the time to explore them, we mention some of them here.
They are grouped in two categories: the ones related to conformity expres-
sions and the ones related to Magnet View.

6.2.1 Conformity Expressions

• Argumentation Of Result. Exactly the same way an expert system
is expected to be able to make explicit the steps that led to one deci-
sion, the conformity strategies could be extended to explain the rating
they assign to an entity. This means they should be able of presenting
the information about the rating of each operator that composes an
expression and not only the final rating. Therefore if we will have an
and between an operator with a rating of 50 and one with a rating of
80, by making explicit the intermediary decisions, we will be able to
know that there was a rating of 80 even if the final one is only 50. The
question is, would this bring the user more useful information, or just
more information?

• Study Of The Evolution Of Ratings. Studying the evolution of
the ratings of an entity relative to a design rule we believe could expose
relevant insights about it. This was done for the detection strategies [?]
but with the supplementary information provided by the conformity



6.2. FUTURE WORK 61

strategies the results could be even better. We might even be able
to predict the evolution of the entity from the past evolution. An
related application would be a real-time alert system integrated in a
development environment, which would use the ratings and prediction
algorithms to offer feedback as the user is developing the project. This
would be great progress, because the development and the quality
assessment would not be two separate steps anymore.

• Alternative Conformity Operators. We presented only one im-
plementation for the conformity operators but there could be other
implementations, also. Let’s take HigherThan for example. We could
devise an implementation which to use a logarithmic transfer function
instead of a linear one. This would make the rating given for values
bigger than the threshold not so preeminent.

• Weight The Conformity Operators. Because in composed a rule
not all the clauses have the same importance, the conformity strat-
egy mechanism would be closer to representing real design rules if it
implemented a way of weighting it’s component subexpressions. Nev-
ertheless, it remains to be studied if the benefits of this enhancement
pay for the increase in complexity.

6.2.2 Magnet View

• Predefined View Suites. The definition of views is the most chal-
lenging part of the utilization of Magnet View. As we already dis-
cussed in the previous section, working with thresholds is a difficult
task. Therefore it would be great if we could provide a standard set
of views to be used in the process of reverse engineering. The views
we have presented are just examples and they lack the cohesion of a
dedicated reverse engineering suite.

• Magnet Maps. This would be a very cool feature. We would have
graphical representations of regions of a view. We could exactly define
diagnostics related to each view. So if we have an entity positioned in
a certain zone, we would be able to automatically diagnose it. This
way we could eliminate the actual human reasoning about the position
of the entities, human reasoning which is susceptible to errors.



62 CHAPTER 6. CONCLUSIONS AND FUTURE WORK



Appendix A

Implementation Details

A.1 Conformity Expressions

The classes used in the implementation of the conformity expressions in
Moose are treated below. We look first at the hierarchy under CFIntrospec-
tionOperator (hierarchy that can be seen in Figure ??) by taking each class
and presenting the important facts about it.

CFIntrospectionOperator

CFIntrospectionOperator is the root of the class hierarchy responsible with
implementing the operators. From its implementation we observe the con-
structor for its subclasses and the initialization method

SCG.Van defineClass: #CFIntrospectionOperator superclass:
#{SCG.Van.CFExpression} instanceVariableNames: ’block threshold ’
category: ’VanModestCFOperators’

CFIntrospectionOperator class>>withBlock: aBlock
withThreshold: aNumber
^self new initialize

setBlock: aBlock threshold: aNumber.

CFIntrospectionOperator>>setBlock: aBlock threshold: aNumber
block := aBlock.
threshold := aNumber.

63



64 APPENDIX A. IMPLEMENTATION DETAILS

Figure A.1: The IntrospectionOperator Hierarchy



A.1. CONFORMITY EXPRESSIONS 65

CFAbsoluteOperator

CFAbsoluteOperator is the class of the operators that take an absolute value
as threshold. It is the base class for HigherThan and LowerThan operators
and implements the common behavior for them. The common behavior is
related to computing the rating for an entity. As we can see in the following
code we use the “template method” design pattern [?]

SCG.Van defineClass: #CFAbsoluteOperator superclass:
#{SCG.Van.CFIntrospectionOperator} instanceVariableNames: ’’
category: ’VanModestCFOperators’

CFAbsoluteOperator>>computeFor: anEntity
^self computeFuziness: (block value: anEntity).

CFAbsoluteOperator>>computeFuziness: aValue
^self subclassResponsibility.

CFHigherThan and CFLowerThan Operators

CFHigherThan and CFLowerThan must provide an implementation for the
hook methods their superclasses defined. The most important is CFAbsoluteOperator>>computeFuzziness:
aValue

SCG.Van defineClass: #CFHigherThanOperator superclass:
#{SCG.Van.CFAbsoluteOperator} instanceVariableNames: ’’ category:
’VanModestCFOperators’

CFHigherThanOperator>>computeFuziness: aValue
threshold = 0 ifTrue: [^100].
^(aValue / threshold * 100) asInteger.

SCG.Van defineClass: #CFLowerThanOperator superclass:
#{SCG.Van.CFAbsoluteOperator} instanceVariableNames: ’’ category:
’VanModestCFOperators’

CFLowerThanOperator>>computeFuziness: aValue
aValue = 0 ifTrue: [^0].
^(threshold / aValue * 100) asInteger

An example of usage for the CFLowerThan and CFHigherThan opera-
tors can be seen in the CFExpressionRepository class which is used to store
conformity strategies. One such strategy is GodClass



66 APPENDIX A. IMPLEMENTATION DETAILS

CFExpressionRepository>>buildCFGodClassExpression
| atfdHigherThan tccLowerThan wmcHigherThan godClassExpression noaHigherThan |

atfdHigherThan := CFHigherThanOperator
withBlock: [:class | class property: #ATFD]
withThreshold: 40.

wmcHigherThan := CFHigherThanOperator
withBlock: [:class | class property: #WMC]
withThreshold: 75.

tccLowerThan := CFLowerThanOperator
withBlock: [:class | class property: #TCC]
withThreshold: 0.20.

noaHigherThan := CFHigherThanOperator
withBlock: [:class | class property: #NOA]
withThreshold: 20.

godClassExpression := CFAndOperator
withLeft: (atfdHigherThan)
withRight: (CFOrOperator

withLeft: wmcHigherThan
withRight: (CFAndOperator withLeft: tccLowerThan

withRight: noaHigherThan)).
^CFNamedOperator

withName: ’God Class’
withExpression: godClassExpression.

CFAbsolutePropertyOperator

This class and its two subclasses are used for a simpler use of the absolute
operators when used programmatically. Normally, an expression should be
parameterized with a block which takes an entity as parameter and com-
putes the property that is to be used by the operator. Because usually
the property is nothing more than a moose entity’s property, the CFAb-
solutePropertyOperator takes only the name of the property avoiding the
more complex construction used otherwise.

SCG.Van defineClass: #CFAbsolutePropertyOperator superclass:
#{SCG.Van.CFIntrospectionOperator} instanceVariableNames:
’property ’ category: ’VanModestCFOperators’

CFAbsolutePropertyOperator>>withProperty: aSymbol withThreshold:



A.1. CONFORMITY EXPRESSIONS 67

aNumber
^(self new)

property: aSymbol;
threshold: aNumber

CFAbsolutePropertyOperator>>computeFor: anEntity
| op |
op := self operatorClass

withBlock:
[:entity |
entity propertyNamed: property asSymbol]

withThreshold: threshold.
^op computeFor: anEntity

CFAbsolutePropertyOperator>>operatorClass
^self subclassResponsibility.

Subsequently we look at the composition operators as they are repre-
sented in the Figure ??

CFCompositionOperator

The composition operators take two expressions and compute the rating as
a function of the ratings of the two expressions. We can see this from the
constructor and from the CFCompositionOperator>>computeFor: method
(method defined in the public protocol of the class).

The CFCompositionOperator>>computeFor: is implemented by dele-
gating on subclasses the implementation of the hook method
CFCompositionOperator>>fuzzyOperationOn:and:.

SCG.Van defineClass: #CFCompositionOperator superclass:
#{SCG.Van.CFExpression} instanceVariableNames: ’’ category:
’VanModestCFOperators’

CFCompositionOperator class>>withLeft: leftDSFuzzyExpression
withRight: rightDSFuzzyExpression

^self new initialize
setLeft: leftDSFuzzyExpression
right: rightDSFuzzyExpression



68 APPENDIX A. IMPLEMENTATION DETAILS

Figure A.2: The CompositionOperator Hierarchy



A.1. CONFORMITY EXPRESSIONS 69

CFCompositionOperator>>setLeft: leftDSFuzzyExpression right:
rightDSFuzzyExpression

children add: leftDSFuzzyExpression.
children add: rightDSFuzzyExpression.

CFCompositionOperator>>computeFor: anEntity
^self fuzzyOperationOn: (self left computeFor: anEntity)

and: (self right computeFor: anEntity)

CFCompositionOperator>>fuzzyOperationOn: firstPropertyValue and:
secondPropertyValue

"Each subclass will implement its
specific function definition in fuzzy logic. "
^ self subclassResponsibility.

The two subclasses of CFCompositionOperator have no more to do than
implement the hook method called operatorClass as we see in the following
code.

SCG.Van defineClass: #CFPropertyHigherThanOperator superclass:
#{SCG.Van.CFAbsolutePropertyOperator} instanceVariableNames: ’’
category: ’VanModestCFOperators’

CFPropertyHigherThanOperator>>operatorClass
^CFHigherThanOperator.

SCG.Van defineClass: #CFPropertyLowerThanOperator superclass:
#{SCG.Van.CFAbsolutePropertyOperator} instanceVariableNames: ’’
category: ’VanModestCFOperators’

CFPropertyLowerThanOperator>>operatorClass
^CFLowerThanOperator.

CFAndOperator and CFOrOperator

The CFAndOperator and CFOrOperator only have to implement the hook
method provided by their parent class, namely CFCompositionOperator>>fuzzyOperationOn:and:.
We can see that the implementation is straightforward

SCG.Van defineClass: #CFAndOperator superclass:
#{SCG.Van.CFCompositionOperator} instanceVariableNames: ’’



70 APPENDIX A. IMPLEMENTATION DETAILS

category: ’VanModestCFOperators’

CFAndOperator>>fuzzyOperationOn: firstPropertyValue and:
secondPropertyValue

^firstPropertyValue min: secondPropertyValue.

SCG.Van defineClass: #CFOrOperator superclass:
#{SCG.Van.CFCompositionOperator} instanceVariableNames: ’’
category: ’VanModestCFOperators’

CFOrOperator>>fuzzyOperationOn: firstPropertyValue and:
secondPropertyValue

^firstPropertyValue max: secondPropertyValue.

We end our presentation of the class hierarchy with the direct subclasses
of CFExpression seen in Figure ??

CFTrue and CFFalse

The CFExpression class is the root of a composite recursive structure. As
leafs of such a structure we have the CFTrue and CFFalse classes which could
have been as well defined as singletons. However, because the objects of this
kind are very small we didn’t consider implementing the singleton pattern.
The only method in these classes’ interface is computeFor: anEntity which
without caring which is the entity always returns a value of 100 for True
and 0 for False.

CFNamedExpression

In CFExpression, as it can be seen from the UML diagrams, there is a name
method which returns basicName a subclassResponsibility. Each subclass of
CFExpression implements its specific basicName. However there are times
when an expression needs to have a distinct name that the one of its up-
permost operator. For these situations CFNamedExpression wrapper keeps
the functionality of the old expression but adds a name for the expression.
This name can be modified via a graphical user interface.

SCG.Van defineClass: #CFNamedOperator superclass:
#{SCG.Van.CFExpression} instanceVariableNames: ’’ category:
’VanModestCFOperators’



A.1. CONFORMITY EXPRESSIONS 71

Figure A.3: Subclasses of CFExpression



72 APPENDIX A. IMPLEMENTATION DETAILS

CFNamedOperator>>withName: aName withExpression: anExpression
^(self new)

name: aName;
setExpression: anExpression;
yourself.

CFNamedOperator>>printString
^self name.

CFNamedOperator>>computeFor: anEntity
^self children first computeFor: anEntity.

CFNamedOperator>>edit
| editName |
(SimpleDialog initializedFor: nil)

setInitialGap;
addMessage: ’Name’
textLine: (editName := self name asValue)
type: #string boundary: 0.4;
addGap;
addOK: [true];
addGap;
openDialog.

self name: editName value.

CFDefuzzyfy Operator and CFNotOperator

CDefuzzyfyOperator is a discretization mechanism. It converts the fuzzy
values of the conformity expressions to 0 and 100 corresponding to the
CFTrue and CFFalse truth values. CFNotOperator inverts the value of the
current subexpression, complementing the value relative to 100 if the value
is less than 100 and resulting in 0 otherwise. Both operators are unary
operators

SCG.Van defineClass: #CFDefuzzifyOperator superclass:
#{SCG.Van.CFExpression} instanceVariableNames: ’’ category:
’VanModestCFOperators’

CFDefuzzifyOperator>>with: anExpression
^self new initialize



A.1. CONFORMITY EXPRESSIONS 73

setChild: anExpression.

CFDefuzzifyOperator>>computeFor: anEntity
(self children first computeFor: anEntity) >= 100

ifTrue: [^100]
ifFalse: [^0]

SCG.Van defineClass: #CFNotOperator superclass:
#{SCG.Van.CFExpression} instanceVariableNames: ’’ category:
’VanModestCFOperators’

CFNotOperator>>with: expression
| newOp |
newOp := self new.
newOp children add: expression.
^newOp.

CFNotOperator>>computeFor: anEntity
^0 max: (100 - (children first computeFor: anEntity)).

CFExpressionRepository

CFExpressionRepository is, as its name suggests, a repository of expressions.
We will not present all the expressions defined in the repository because of
lack of space. We will look only at the way a GodClass conformity strategy
is built

SCG.Van defineClass: #CFExpressionRepository superclass:
#{Core.Object} instanceVariableNames: ’’ category:
’VanModestCFOperators’

CFExpressionRepository>>buildCFGodClassExpression
| atfdHigherThan tccLowerThan wmcHigherThan
godClassExpression noaHigherThan |

atfdHigherThan := CFHigherThanOperator
withBlock: [:class | class property: #ATFD]
withThreshold: 40.

wmcHigherThan := CFHigherThanOperator
withBlock: [:class | class property: #WMC]



74 APPENDIX A. IMPLEMENTATION DETAILS

Figure A.4: Classes that connect to Moose



A.1. CONFORMITY EXPRESSIONS 75

withThreshold: 75.
tccLowerThan := CFLowerThanOperator

withBlock: [:class | class property: #TCC]
withThreshold: 0.20.

noaHigherThan := CFHigherThanOperator
withBlock: [:class | class property: #NOA]
withThreshold: 20.

godClassExpression := CFAndOperator
withLeft: (atfdHigherThan)
withRight: (CFOrOperator

withLeft: wmcHigherThan
withRight: (CFAndOperator

withLeft: tccLowerThan
withRight: noaHigherThan)).

^CFNamedOperator
withName: ’God Class’
withExpression: godClassExpression.

CFPropertyOperatorFactory and CFExpressionPropertyOperator

CFPropertyOperatorFactory is a subclass of PropertyOperatorFactory. Ev-
ery now and then the entity types are reinitialized. At the reinitialization of
the entity types the properties associated to each of entity types are rede-
fined. For their definition the hierarchy under PropertyOperator is searched
for methods of the form create*Operator which are executed. These methods
are the places where the new properties are defined.

We have defined a few conformity expressions as properties of the class
entities. Therefore all the classes in a loaded model will have as property
the rating for the corresponding expression. We look here at the definition
of the CFGodClass conformity expression

SCG.Van defineClass: #CFPropertyOperatorFactory
superclass: #{SCG.Moose.PropertyOperatorFactory}
instanceVariableNames: ’’
category: ’VanModestCFOperators’

CFPropertyOperatorFactory>>createCFBigClassPropertyOperator
^CFExpressionPropertyOperator

withExpression: CFExpressionRepository new buildBigClassExpression
withName: #’BigClass [Modified]’



76 APPENDIX A. IMPLEMENTATION DETAILS

forEntityType: #FAMIXClass.

We see in the definition of the createCFBigClassPropertyOperator method
that we return an object of class CFExpressionPropertyOperator. This class
is a kind of PropertyOperator. It is a special kind of PropertyOperator be-
cause one entity’s property is computed as the rating of that entity conform-
ing to an expression, expression by which the operator is parameterized.

SCG.Van defineClass: #CFExpressionPropertyOperator superclass:
#{SCG.Moose.PropertyOperator} instanceVariableNames: ’expression ’
category: ’VanModestCFOperators’

CFExpressionPropertyOperator class>>withExpression: anExpression
withName: aString forEntityType: anEntityType

^self new
initialize
expression: anExpression;
targetEntityType: anEntityType;
propertyName: aString;
yourself.

CFExpressionPropertyOperator>>computeFor: anEntity
^expression computeFor: anEntity.



A.2. MAGNET VIEW 77

A.2 Magnet View

In this section we will see some of the relevant details regarding the imple-
mentation of Magnet View. The most important thing to be understood
is that we had to respect some constraints that CodeCrawler imposed in
order to be able to extend the framework. The constraints were related to
node plugins, layouts and node figures. All of them will be presented in this
section.

Running CodeCrawler

After the user selects the expressions that will form the view in the Magnet
View Runner all the necesary data is known for the view to be started.
However for this there is a clear sequence of steps to be made as it can
be seen in the runViewer method of the MagnetViewRunner class. The
important steps in this method are detailed in the next sections.

SCG.Van defineClass: #MagnetViewRunner
superclass: #{UI.ApplicationModel}
instanceVariableNames: ’Expression Editor
ExpressionEditor workingGroup viewExpressions ’
category: ’UIApplications-New’

MagnetViewRunner>>runViewer
| cc graph |
self viewExpressions listHolder value size = 0 ifTrue: [^self].
PropertiesForCorrelationViewManager uniqueInstance

expressions: viewExpressions listHolder value.
graph := CCGraphManager uniqueInstance createNewGraph.
CCModestPropertyNodePlugin generateAllPluginsForGraph: graph.
CCModestGenericNodePlugin generateAllPluginsFor: workingGroup

forGraph: graph.
CCModestPropertyEdgePlugin generateAllPluginsForGraph: graph.
self registerViews.
cc := CodeCrawler.CodeCrawler new.
cc spawnWithSpecName: ’Correlation View’

Creating the Graph

You see we first create a new graph. Then we let the Property nodes be
created. Then the Entity nodes. For creating the entities we had to properly



78 APPENDIX A. IMPLEMENTATION DETAILS

subclass ItemNodePlugin as we can see in the UML diagram from figure

Figure A.5: To extend CodeCrawler we had to subclass CCNodePlugin

The generateAllpluginsAndGraphs is the hook method and it has the
role of creating nodes for every entity and adding them to the graph. There
are two variants each takes the graph as parameter but one has an extra
parameter representing the entities for which there should be nodes created.

Smalltalk.CodeCrawler defineClass: #CCModestGenericNodePlugin
superclass: #{SCG.Van.CCVanNodePlugin}
instanceVariableNames: ’’
classInstanceVariableNames: ’’
category: ’VanModestCodeCrawlerExtensions’

CCModestGenericNodePlugin class>>generateItemsAndPluginsForGraph:
aGraph

self candidateItems do:
[:each |



A.2. MAGNET VIEW 79

| plugin |
plugin := self new entity: each.
aGraph addNode: (CCNode new plugin: plugin).
self increaseProgressBar]

Smalltalk.CodeCrawler defineClass: #CCModestPropertyNodePlugin
superclass: #{CodeCrawler.CCNodePlugin}
instanceVariableNames: ’’
classInstanceVariableNames: ’’
category: ’VanModestCodeCrawlerExtensions’

CCModestPropertyNodePlugin>>generateItemsAndPluginsForGraph: aGraph
self candidateItems do: [:eachExpression | | plugin |

plugin := (self new entity: eachExpression).
aGraph addNode: (CCNode new plugin: plugin).
self increaseProgressBar.

].

Smalltalk.CodeCrawler defineClass: #CCModestPropertyEdgePlugin
superclass: #{CodeCrawler.CCEdgePlugin}
instanceVariableNames: ’’
classInstanceVariableNames: ’’
category: ’VanModestCodeCrawlerExtensions’

CCModestPropertyEdgePlugin>>generateItemsAndPluginsForGraph:
aGraph

self withPropertyNodesFor: aGraph
do:

[:propertyNode |
self withGenericNodesFor: aGraph

do:
[:genericNode |
| newPlugin edge |
edge := CCEdge

fromNode: propertyNode
toNode: genericNode.

newPlugin := self new
entity: (propertyNode plugin entity
computeFor: genericNode plugin



80 APPENDIX A. IMPLEMENTATION DETAILS

entity).
edge isNil

ifFalse:
[edge plugin: newPlugin.
aGraph addEdge: edge]]]

Now that the graph is generated there is need to associate figures with
the nodes and arrange those figures conforming to the attraction laws. This
is done in the layout class. The layout class is also subclassed from a layout
class provided by the framework, namely CCGenericLayout.

Figure A.6: Class CMagnetViewLayout and position in hierarchy. It is
easy to see from the diagram that the only abstract method defined in
CCAbstractLayout is layout which is also the only public method in CMag-
netViewLayout.



A.2. MAGNET VIEW 81

Creating a new layout

As it can be seen from the diagram, there is only one hook method which
is layout. From its code it can be seen that it positions first the attractors
and then the attractees. The attractors are arranged in a circle and the
attractees ar arranged according to the algorithm presented in the chapter
describing the functionality of MagnetView.

CCMagnetViewLayout>>layout
self positionProperties.
self positionEntities.

CCMagnetViewLayout>>positionProperties
self coloredCircleWithFigures:

self allPropertyNodeFigures andRadius: 320

CCMagnetViewLayout>>coloredCircleWithFigures: figures
andRadius: rad

| angleTemp angle center |
center := Point x: rad y: rad.
angleTemp := 2 * Float pi / figures size.
angle := 0.
figures do:

[:each |
| point color |
point := center + (Point r: rad theta: angle).
angle := angle + angleTemp.
color := ColorValue

hue: angle / (2 * Float pi)
saturation: 0.8
brightness: 0.99.

each color: color.
each translateTo: point]

CCMagnetViewLayout>>positionEntities
| xCoord yCoord |
self allEntityNodeFigures do: [:entityNodeFigure | entityNodeFigure figure resetBands].
self allEntityNodeFigures do:

[:entityNodeFigure |
xCoord := self computeXPositionFor: entityNodeFigure.
yCoord := self computeYPositionFor: entityNodeFigure.



82 APPENDIX A. IMPLEMENTATION DETAILS

entityNodeFigure translateTo: xCoord @ yCoord.
self allPropertyNodeFigures do:

[:each |
| expression entity conformity |
expression := each item plugin entity.
entity := entityNodeFigure item plugin entity.
conformity := expression computeFor: entity.
entityNodeFigure figure

addBandWithColor: each currentColor hue
andIntensity: (1 min: conformity / 100)].

entityNodeFigure zIndexPriority:
entityNodeFigure figure totalIntensity].

self disperseEntities.



Appendix B

Refactoring Methods View

One of the methods in need of refactoring detected with the help of Methods
In Need Of Refactoring view was Root::Smalltalk::Machine class.lightSwitch.
We list it here

lightSwitch
"Answer an example state machine."
"
| myMachine |
myMachine := Machine lightSwitch.
myMachine event: (MachineEvent named: #on).
myMachine event: (MachineEvent named: #off).
myMachine event: (MachineEvent named: #toggle).
myMachine
"

| switch |
switch := (Machine named: #lightSwitch)

add: (MachineState named: #on);
add: (MachineState named: #off);
yourself.

(switch atState: #on)
addEntryBlock: [:machine |

Transcript cr; show: ’Entering ’ , machine currentState printString];
addReentryBlock: [:machine |

Transcript cr; show: ’Re-entering ’ , machine currentState printString];
add: (

83



84 APPENDIX B. REFACTORING METHODS VIEW

(MachineTransitions forEvent: #on)
add: (

MachineTransition new
actionBlock: [:machine :event |

Transcript cr; show: ’Light is already on: ’ ,
machine printString , ’ ’ , event printString]

)
);
add: (

(MachineTransitions forEvent: #off)
add: (

MachineTransition new
actionBlock: [:machine :event |

Transcript cr; show: ’Light being turned off: ’ ,
machine printString , ’ ’ , event printString];

nextState: (switch atState: #off)
)

);
add: (

(MachineTransitions forEvent: #toggle)
add: (

MachineTransition new
guardBlock: [:machine :event |

Dialog confirm: ’Really toggle?’];
actionBlock: [:machine :event |

Transcript cr; show: ’Light being toggled off: ’ ,
machine printString , ’ ’ , event printString];

nextState: (switch atState: #off)
)

).

(switch atState: #off)
addExitBlock: [:machine |

Transcript cr; show: ’Exiting ’ , machine currentState printString];
add: (

(MachineTransitions forEvent: #on)
add: (

MachineTransition new
actionBlock: [:machine :event |

Transcript cr; show: ’Light being turned on: ’ ,



85

machine printString , ’ ’ , event printString];
nextState: (switch atState: #on)

)
);
add: (

(MachineTransitions forEvent: #off)
add: (

MachineTransition new
actionBlock: [:machine :event |

Transcript cr; show: ’Light is already off: ’ ,
machine printString , ’ ’ , event printString]

)
);
add: (

(MachineTransitions forEvent: #toggle)
add: (

MachineTransition new
guardBlock: [:machine :event |

Dialog confirm: ’Really toggle?’];
actionBlock: [:machine :event |

Transcript cr; show: ’Light being toggled on: ’ ,
machine printString , ’ ’ , event printString];

nextState: (switch atState: #on)
)

).

^switch

After looking at it for understanding, we applied the “Extract Method”
refactoring. Eventually we have decreased its size and in the same time
increased its comprehensibility. The increase in comprehensibility is due to
the simpler structural complexity and to the tips introduced by applying
suggestive names for the extracted methods.

lightSwitch
"Answer an example state machine."

"
| myMachine |
myMachine := Machine lightSwitch.



86 APPENDIX B. REFACTORING METHODS VIEW

myMachine event: (MachineEvent named: #on).
myMachine event: (MachineEvent named: #off).
myMachine event: (MachineEvent named: #toggle).
myMachine
"

| switch |
switch := self createSwitch.
(switch atState: #on)

addEntryBlock: self entryBlock;
addReentryBlock: self reentryBlock;
add: ((MachineTransitions forEvent: #on)

add: self transitionFromOnToOn);
add: ((MachineTransitions forEvent: #off)

add: (self transitionFromOnToOff: switch));
add: ((MachineTransitions forEvent: #toggle)

add: (self transitionFromOnToggle: switch)).
(switch atState: #off)

addExitBlock: self exitBlock;
add: ((MachineTransitions forEvent: #on)

add: (self transitionFromOffToOn: switch));
add: self transitionFromOffToOff;
add: ((MachineTransitions forEvent: #toggle)

add: (self transitionFromOffToggle: switch)).
^switch



Bibliography

[BECK] K. Beck. Smalltalk. Best Practice Patterns Prentice Hall,
1997.

[BROO] F. P. Brooks. The Mythical Man-Month. Addison-Wesley,
Reading, Mass., 1975.

[BIMW] T. Biggerstaff, B. Mitbander, D. Webster. Program Under-
standing and the Concept Assignment Problem. Communications
of the ACM, May 1994.

[CHIK] E. J. Chikofsky and J. H. Cross II. Reverse Engineering and De-
sign Recovery: A Taxonomy. IEEE Software, pages 1317, January
1990.

[FAMO] H. Bar, M. Bauer, O. Ciupke, S. Demeyer, S. Ducasse, M. Lanza,
R. Marinescu, R. Nebbe, O. Nierstrasz, M. Przybilski, T. Richner, M.
Rieger, C. Riva, A. Sassen, B. Schulz, P. Steyaert, S. Tichelaar, and J.
Weisbrod. The FAMOOS Object-Oriented Reengineering Hand-
book.
European Union under the ESPRIT program Project no. 21975
(FAMOOS), October, 1999.

[FBBO] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refac-
toring: Improving the Design of Existing Code. Addison-Wesley,
1999.

[FENT] N. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous
and Practical Approach. International Thomson Computer Press,
London, UK, Second edition, 1997.

[FOOT] B. Foote and J. W. Yoder. Big Ball of Mud. In Proceedings of
PLop97, 1997.

87



88 BIBLIOGRAPHY

[GHJV] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[HSEL] B. Henderson-Sellers. Object Oriented Metrics. Measures Of
Complexity. Prentice Hall, 1996

[JOHN] R. E. Johnson. Documenting Frameworks using Patterns. In
Proceedings OOPSLA 92, ACM SIGPLAN Notices, pages 6376, October
1992.

[LANZ] M. Lanza. Combining Metrics and Graphs for Object Ori-
ented Reverse Engineering. Institut fur Informatik und angewandte
Mathematik, Universitat Bern.

[MARN] R. Marinescu. Measurement and Quality in Object-
Oriented Design (PhD thesis). “Politehnica” University of Timisoara,
2002

[MOOS] Stephane Ducasse, Michele Lanza, and Sander Tichelaar. Moose:
an extensible language-independent environment for reengineering object-
oriented systems. In Proceedings of the Second International Symposium
on Constructing Software Engineering Tools (CoSET 2000), 2000.

[PARN] D. L. Parnas. Software Aging. Department of Electrical
and Computer Engineering McMaster University, Hamilton, Ontario,
Canada Addison-Wesley, 1999.

[PRICE] Price, B.A., Baecker, R.M., and Small, I.S. A Principled Tax-
onomy of Sofware Visualization. Journal of Visual Languages and
Computing

[RIEL] A. J. Riel. Object Oriented Design Heuristics. Addison-Wesley,
1996.

[RDGR] D. Ratiu, S. Ducasse, T. Girba, R. Marinescu. Using History
Information to Improve Design Flaws Detection. In Proceedings
of CSMR, 2004.

[RATI] D. Ratiu. Time-Based Detection Strategies. Diploma Thesis at
Politehnica Timisoara.

[SMC] W. P. Stevens, G. J. Meyers, L.L. Constantine. Structured Design.
IBM Systems Hournal, 1974.



BIBLIOGRAPHY 89

[WEIS] Mark Weiser. Programmers Use Slicing When Debugging.
Commununications of the ACM, 1982.


