
Vrije Universiteit Brussel - Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes - France
and

Universidad Nacional de La Plata - Argentina
2007

ECOLE DES MINES DE NANTES

Koschke Revisited

Object-Oriented Component Detection
for Software Understanding

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

By: Toon Verwaest

Promoter: Prof. Dr. Theo D’Hondt (Vrije Universiteit Brussel)
Co-Promoter: Dr. Gabriela B. Arévalo (UNLP)

Abstract

When a software engineer has to maintain a system, he needs to understand how
the system is built. In order to help engineers understand existing systems, re-
search has been conducted around automating the process of architecture recov-
ery. A first step consists of building a straightforward browsable model of the
system. However, the conceptual level of abstraction behind the design might be
higher than the available level of abstraction in the used programming paradigm.
Therefore, a second step which retrieves this implicit information needs to be un-
dertaken.

In his thesis, Rainer Koschke [Kos02] has developed and evaluated several tech-
niques which retrieve implicit architectural information from procedural systems.
These techniques resulted in the detection of atomic architectural components,
comparable to the concept of prototypes.

More and more systems are developed using the object-oriented programming
paradigm. Systems built using this paradigm embed a similar, yet more coarse-
grained, type of implicit information. Here we think of a higher level of abstrac-
tion, comparable to the concept of software components.

In this thesis, we investigate if and how some of the component detection heuris-
tics, presented in the thesis by Koschke, can be adapted as such that they are
applicable to object-oriented code in order to detect components comparable to
software components. Additionaly, we investigate how we can complement them
with available object-oriented information.

Acknowledgements

I would like to thank all the people who supported me during the research and the
writing phase of this dissertation.

Dr. Gabriela Arévalo for presenting me with an interesting subject and grant-
ing me the freedom to work on it at my own pace.

Peter Ebraert for introducing me to the EMOOSE program and helping me fill
out the necessary paperwork.

All my friends of the EMOOSE program, with who I had a wonderful time in
Nantes.

Laura Sánchez for all the loving support, especially during the hardest phases
of the program.

My parents for allowing me to start an interesting year of studies abroad.

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Proposed Solution . 2
1.3 Outline . 3

2 Context 4
2.1 Reengineering . 4

2.1.1 Examination . 4
2.1.2 Alteration . 4
2.1.3 Procedural Architecture Recovery 5
2.1.4 Object-Oriented Architectural Recovery 5

2.2 Component-Based Software Development 6
2.2.1 Our Definition of Object-Oriented Components 6
2.2.2 Identifying Components at Design Level 7
2.2.3 Identifying Components at Implementation Level 7

2.3 Related Research . 8
2.4 Summary . 8

3 Adaptation of Automatic Techniques 9
3.1 Shifting Focus . 9

3.1.1 Global Objects and Procedures 10
3.1.2 Referenced Objects and Procedure Calls 10

3.2 Adapted Heuristics . 11
3.2.1 Global Object Reference Heuristic 12
3.2.2 Same Module Heuristic 13
3.2.3 Delta-IC . 13
3.2.4 Strongly Connected Components 15
3.2.5 Dominance Analysis . 16
3.2.6 Similarity Clustering . 17

3.3 Summary . 20

i

CONTENTS ii

4 Combined and Incremental Techniques 23
4.1 Combining Results . 24

4.1.1 Extending Results . 24
4.1.2 Refining Results . 24

4.2 Collapsing Results . 25
4.3 Negative Information . 26

4.3.1 Temporary Negative Information 26
4.3.2 Final Negative Information 27
4.3.3 Accepted Negative Information 27

4.4 Cluster Completeness . 27
4.4.1 Cluster Requirements . 28
4.4.2 Cluster Usage . 28
4.4.3 Inner Cluster Completeness 28

4.5 Summary . 29

5 The Adapted Interactive Method 30
5.1 Result Combination and Presentation 30

5.1.1 Global Object Reference 31
5.1.2 Same Module Heuristic 31
5.1.3 Overlapping Results . 32
5.1.4 Dominance Analysis . 33
5.1.5 Crafting Reasons . 33
5.1.6 Annotating Combinations 34
5.1.7 Filtering Results . 34
5.1.8 Hierarchical Filtering . 34

5.2 Component Evaluation . 35
5.2.1 Visualization Type . 35
5.2.2 Visualizing Component Composition 36
5.2.3 Visualizing Component Interaction 40
5.2.4 Visualizing Reasons . 40
5.2.5 Fine-Grained Visualizations 40

5.3 Summary . 40

6 Case Study 43
6.1 Prototype Implementation . 43

6.1.1 Limitations . 43
6.2 Case Study: Moose Namespace 44

6.2.1 Statistics . 44
6.2.2 Candidate Component Detection 45

6.3 Summary . 51

CONTENTS iii

7 Conclusions 52
7.1 Problem Statement Revisited . 52
7.2 Adapting Automatic Techniques 53

7.2.1 Shifting Focus . 53
7.2.2 Automatic Techniques 53
7.2.3 Adaptation Problems . 54

7.3 Combined and Incremental Techniques 54
7.3.1 Component Completion 54

7.4 Component Evaluation . 55
7.5 Future Work . 55

A Prototype 57

Bibliography 64

List of Figures

3.1 An Object-Oriented Software Component 10
3.2 Two Components . 16

5.1 Different Component Composition Visualizations 37
5.2 Component Interaction . 42

6.1 7 Clusters . 45
6.2 An Oversized Strongly Connected Component 46
6.3 Reduced Strongly Connected Components 47
6.4 Add-on Cluster . 48
6.5 Interaction Visualization of Candidate Components 49

7.1 Overloaded Component Interaction Visualization 56

A.1 ClusterFinders (a) Main and (b) Requirements interface 58
A.2 ClusterFinders (a) Visualization and (b) Fixate interface 59

iv

1
Introduction

One of the major factors for the invention of the object-oriented programming
paradigm, was to remove some flaws of the procedural programming paradigm.
About forty-five years after its invention, twenty years after it started becoming
mainstream, it is well-known that compared to its ancestor, this paradigm in-
creases reusability and maintainability. However, understandability is another
crucial factor to consider that encompasses the other two. As shown in several
case studies [WH92], understanding the systems takes more than half of the time
during software maintenance. Thus, we can see that architecture recovery is a
complex and time-consuming process.

When a software engineer has a first contact with an object-oriented application,
in order to understand the system, he needs to get a mental image of the sys-
tem. He needs to recover what the original conceptual architecture of the system
was. For this purpose, the object-oriented programming paradigm is already more
powerful compared to procedural code, because it offers encapsulation (grouping
related functionality and data into classes) and class inheritance as mechanisms
to explicitly embed these parts of the conceptual design into the code.

When considering applications with huge amounts of classes, the level of
abstraction available at code-level might not match the conceptual level of ab-
straction. This is also true when while during the implementation or maintaining
phase, proper object-oriented programming rules were ignored. The combina-
tion of those two problems is even worse. These facts, in spite of the promising
decomposition implied by the paradigm, decrease the understandability of object-

1

CHAPTER 1. INTRODUCTION 2

oriented systems.

In order to draw the burden of recovering the original conceptual architecture,
away from the maintainer, it is useful to investigate ways of automating this pro-
cess.

1.1 Problem Statement
The idea of automating the recovery of the architecture of software has already
been explored quite extensively for the procedural programming paradigm. This
is logical since, up until a few years ago, most of the legacy systems where devel-
oped using that paradigm. In his PhD thesis, Rainer Koschke [Kos02] has worked
on a deep analysis of several representative techniques. Additionally, he presented
ways of combining those techniques and described a way of involving the user into
the process, in order to increase the effectiveness of (semi-)automatic architecture
recovery.

However, nowadays a fair share of systems are built using object-oriented paradigm.
Unfortunately, most of the techniques resulting from research conducted to archi-
tecture recovery are not up to the task of being applied to this type of systems.

1.2 Proposed Solution
One solution in the quest for automating architecture recovery, could be to look
for new ways of recovering implicit architectural information from a system. This
path was taken by related research such as [WSY+06, LSLW05, LLSW03, KP96,
eAPS00].

Yet we believe that when conducting research, before coming up with new ideas,
it is important to investigate the adaptability of previous research to a new envi-
ronment. In this thesis we investigate how adaptable some of the already existing
architecture recovery techniques are to the object-oriented environment. Espe-
cially if we look at techniques defined for procedural programming, we see that
the setting and goal are actually quite similar. Koschke [Kos02] already remarked
that the difference between detecting atomic components and bigger entities is
just a matter of granularity.

Therefore, we focus our research on the techniques described in the thesis of
Koschke [Kos02], which are defined for procedural programming languages. And
specifically, we investigate if they are translatable as such that they are applicable

CHAPTER 1. INTRODUCTION 3

to object-oriented and dynamically-typed systems.

We restrict our research to the adaptation of the techniques by minimizing the
possible amount of changes to the original techniques. The goal is to clearly draw
the line between adapted techniques, and techniques which are merely based on
the ideas behind another technique.

Since object-oriented paradigm has the advantage of being better structured by
nature, we will extend this research by investigating up to what level the object-
oriented structure can be leveraged to complement the adaptations of the original
techniques. The limitation we place on this part of our research is that this may
not result in new heuristics.

1.3 Outline
This report is organized as follows: Chapter 2 defines the context of this thesis.

Chapter 3 explains what the global changes are when adapting the automatic
techniques described in [Kos02], and reports the specific adaptations for every
technique we adapted.

Chapter 4 shows how the techniques, adapted in Chapter 3, are combined in
order to increase their effectiveness.

Chapter 5 presents an extended interactive method in two parts. Section 5.1
explains how techniques are combined and presented in an optimal way. And
Section 5.2 describes techniques to evaluate candidate components.

Chapter 6 validates our adapted techniques by applying them to a “real-world”
application.

Finally, we conclude the findings of this thesis in Chapter 7.

2
Context

This chapter explains the used terminology and provides an introduction to the
research fields focused on this thesis.

2.1 Reengineering
When a system must be changed, the software engineer must follow a reengineer-
ing process. Cross and Chikofsky [CI90] define this process as

the examination and the alteration of a subject system to reconstitute
it in a new form and the subsequent implementation of a new form.

This definition comprises two main activities, namely examination and alteration
of a system. More formally, these activities are defined as follows.

2.1.1 Examination
Reverse Engineering is the process of analysing a subject system to (i) identify

the system’s components and their relationships and (ii) create representa-
tions of the system in another form or at a higher level of abstraction.

2.1.2 Alteration
For the alteration phase, there are two different types of activities to be applied.
Mostly, the higher-level view is firstly restructured in some way, and then forward

4

CHAPTER 2. CONTEXT 5

engineering is applied.

Restructuring is the transformation from one representation form to another at
the same relative abstraction level, while preserving the subject system’s
external behavior (functionality and semantics). Restructuring is often used
as a form of preventive maintenance to improve the physical state of the
subject system with respect to some preferred standard.

Forward Engineering is the traditional process of moving from high-level ab-
stractions and logical, implementation-independent designs to the physical
implementation of a system.

2.1.3 Procedural Architecture Recovery
Koschke [Kos02] stated that there was still a debate on what could actually be con-
sidered part of the software architecture, but that most agree that it should at least
include components and connectors. Since the research was done in procedural
environment, the most basic form of such components were atomic components,
which are comparable to the concept of prototypes1. These atomic components
are defined in a level of abstraction which is higher than the level of abstraction
which is actually available in procedural code.

2.1.4 Object-Oriented Architectural Recovery
Even while most of the research regarding to architecture recovery, up until now
has been conducted in a procedural setting, in order to understand object-oriented
systems, it is equally necessary to recover their architectural information.

Architectural Unit

If we adapt the definition of recovering architectural information of section 2.1.3
to object-oriented architecture recovery, this results in the detection of compo-
nents similar to software components.

Problems in Object-Oriented Systems

As defined above, when recovering architectural information in an object-oriented
setting, the goal is to detect and expose different dependencies between software
artifacts of components. And this by only applying statical analysis to the subject
system’s code. Even more than when recovering architectural information for

1For more information on prototypes, see [TM01].

CHAPTER 2. CONTEXT 6

procedural code, this is not a trivial task because in most cases the code contain
implicit dependencies [Are05].

Dependency. An object A depends upon another object B, if it is possible that
a change to B implies that A is affected or also needs to be changed, i.e.,
dependency between a client and a server.

Explicit Dependency. A dependency between two or more objects is explicit
when it is precisely and clearly expressed without ambiguity in the source
code, i.e., definition of a direct subclass (in Smalltalk using the keyword
superclass or in Java using the keyword extends).

Implicit dependency. A dependency between two or more objects is implicit
when it is implied by the source code though is not directly expressed, i.e.,
chain of superclasses of a newly defined class

In our approach, we will focus on modeling architecture recovery solely on ex-
plicit dependencies. By applying architecture recovery clustering techniques, it is
expected that resulting clusters expose implicit dependencies between enclosing
classes.

2.2 Component-Based Software Development
In component based software development (CBSD), software components are the
basic units of reuse, which provide a relatively coarse-grained functionality. A
software component described in an object-oriented setting, typically consists of
one or more related classes which in collaborate order to carry out system opera-
tions [HC01]. In order to build systems using CBSD, several software components
are to be chosen and their interfaces to be combined with glue code.

While the granularity of componentware and object-oriented programming
differ, their goals are very similar: facilitate and thereby increase the reuse of
software, in order to make it more reliable and less expensive [HRR98].

2.2.1 Our Definition of Object-Oriented Components
Software components are considered to be stand-alone pieces of software, so-
called black-boxes, which interact with each other using (different types of) in-
terfaces. Classically, these interfaces are defined as such that they only allow
communication between components by means of message passing. However, if
we are to build software using object-oriented components, it makes sense to ex-
tend the specification of possible interfaces of components as such that they at

CHAPTER 2. CONTEXT 7

least match the flexibility of the specification of possible interfaces of classes. For
this reason, we identify two types of provided interface elements:

Message Interface part represents what classically is considered as a valid part
of a component interface. Components using a given component commu-
nicate with this type of interface elements, by means of message passing.
Message passing between interfaces of components does not necessarily
equal message passing between actual internal classes, but is a possible im-
plementation, as will be the case in the systems we inspect2.

Subclass Interface part represents a part of the interface which makes the com-
ponent “subcomponentable”. Those elements are generally classes of which
the interface is provided as part of the interface of the component, so that
other components can subclass from them. This allows components to be
placed hierarchically3, or the other way around, allows us to split class hier-
archies in components. This is a needed feature if we are to decompose full
object-oriented systems, including system libraries, into components. This
also allows us to reuse tools originally designed to evaluate resulting com-
ponents, to evaluate already available decompositions into packages and
namespaces, which are also possibly defined as such that they break class
hierarchies.

2.2.2 Identifying Components at Design Level
While CBSD paves the way to better decomposition which improves understand-
ability, maintainability and reuse, because of the level of abstraction, it is not
always easy to reason about software in terms of software components. For
this reason, several approaches have been presented in [JCIR01, CD00, STS99,
LYC+99, KC04] which help software developers into identifying software com-
ponents, given that object oriented models for domain applications are available.

2.2.3 Identifying Components at Implementation Level
The work presented in this thesis, can also be considered to belong in the pre-
viously defined field. However, we go out from the idea that we do not have

2The systems we inspect “mimick” message passing between components by passing messages
between classes, since we only investigate systems built in object-oriented languages which are
not equipped with special component-oriented constructs.

3Placing components hierarchically is defined in the same line as class hierarchies, not how
hierarchical components are defined in projects such as SOFA [BHP06] and Fractal [BCL+06],
where bigger reusable components are build as compositions of smaller ones.

CHAPTER 2. CONTEXT 8

object-oriented designs, but only object-oriented implementations at hand for de-
tecting components. Our goal is then to reverse engineer such systems and to
generate high-level views in which the implicit decompositions of the systems
into software components are made explicit.

2.3 Related Research
Apart from the related research listed in chapter 1, there have been two other
studies more closely related to our research.

Trifu [Tri01] investigated how Dominance Analysis as well as Similarity Clus-
tering could be applied to object oriented code. His ideas are based on [Kos02]. In
his work, the techniques are defined using all available information about object-
oriented programs. This includes invocation candidates. He presents a four stage
methodology for clustering consisting of analysis, compaction, clustering and re-
sult interpretation.

In [BT04], a incremental approach to component detection is presented. This
approach combines an adapted version of Similarity Clustering from [Tri01] with
logic meta-programming which is used to detect design patterns.

2.4 Summary
Our research is focused on reverse engineering and restructuring. The goal is
to recover architectural information of object-oriented systems, relying only on
explicit dependencies. Our approach is based on similar research conducted by
R. Koschke in a procedural setting, where he used clustering algorithms to detect
atomic components. We adapt those algorithms to detect software components
in an object-oriented setting, which are expected to expose implicit dependencies
between enclosed classes.

3
Adaptation of

Automatic Techniques

The detection of atomic components in procedural code was the main goal of the
algorithms in the PhD thesis of Koschke [Kos02]. Those techniques generally
intent to optimize the cohesion/coupling ratio and maximize encapsulation in the
components.

The main drawback of these techniques is that they can only be applied to
procedural code, while the idea of software components in object-oriented com-
ponent is quite similar.

In this chapter we will discuss how to change or extend some of the atomic
clustering algorithms, so that they can be applied to object-oriented code, in order
to find meaningful clusters of classes which help maintainers to understand object-
oriented applications.

3.1 Shifting Focus
When we adapt component clustering techniques from procedural code to object-
oriented code, in most cases the idea stays quite similar, but the type of subject
systems change. This allows us to specify a subset of general changes which apply
to all techniques.

9

CHAPTER 3. ADAPTATION OF AUTOMATIC TECHNIQUES 10

Figure 3.1: An Object-Oriented Software Component

3.1.1 Global Objects and Procedures
The main difference in the clustering data is that the difference between encapsu-
lated data and the interface of the resulting component fades away, by shifting the
focus from global objects and procedures to classes. As opposed to the original
ideal situation, where global objects were totally encapsulated in resulting atomic
components, classes have a double role in software components. They can rep-
resent (a part of) the interface as well solely internally used elements. It can be
envisioned that adapted techniques based on the idea of encapsulation will be clut-
tered with evermore false positives, due to the unification of encapsulated global
objects with interface classes. For example, this is the case for classes B, D, L
and O in figure 3.1.

3.1.2 Referenced Objects and Procedure Calls
Most of the original techniques used references to global objects and procedure
calls as information for grouping elements together. Ignoring the availability of
function-pointers, these links in procedural code are mostly statical. This fact
validates their use.

When adapting this kind of techniques, in a class-based environment, both
references as well as method calls are available. However, especially for a dy-

CHAPTER 3. ADAPTATION OF AUTOMATIC TECHNIQUES 11

namically typed, class-based programming language, information about method
calls is not as static. This mostly results from the use of virtual tables. Where
procedure calls where mostly statically computable, statical analysis of polymor-
phic methods calls result in sets of invocation candidates, most likely containing
several false positives.

Taking this into account, when adapting techniques using object references
and/or procedure calls as clustering information, one is presented with a choice.
Either we choose to use the invocation candidates as clustering information, al-
ready cluttering the clustering information with false positives, which will result
in more false clusters. Or we decide to narrow the information down to only
using statical references to classes. In the section 3.1 we have mentioned that
adapting techniques related to encapsulation will already inevitably result in more
false positives. For this reason, we are in favour of having more true negatives as
opposed to having even more false positives, therefore we only use statical refer-
ences as narrowed clustering information. This follows the approach we set out
in section 2.1.4, where we defined to model our approach by only using explicit
dependencies between classes.

An advantage of working in a class-based environment, is the explicit presence
(at least for well-designed systems) of relations between classes. This allows us
to define the function referred-by(c), or the set of classes that a class c refers to, as
the union of the set of references of the methods defined in the class (thus exclud-
ing inherited methods), with the set of direct superclasses. Excluding inherited
methods allows us to keep the difference between different classes in hierarchies.
Including direct superclasses on the other hand, allows us to include the avail-
able hierarchical information. As we will see, this drastically improves the results
of algorithms such as the Strongly Connected Components algorithm, defined in
section 3.2.4.

referred-by(c) = direct superclasses(c) ∪ class references(c) (3.1)

refers-to(c) = referred-by−1(c) (3.2)

For example, in figure 3.1, referred-by(M) = {I, K} and
refers-to(K) = {G, M, N, O}

3.2 Adapted Heuristics
In this section we give a detailed description of the adaptation of automatic com-
ponent detection algorithms. Each technique is described using a small pattern
containing three sections:

CHAPTER 3. ADAPTATION OF AUTOMATIC TECHNIQUES 12

Original Clustering Criterion explains which was the goal of technique described
in its original source. If no source is explicitly mentioned, the thesis of
Koschke [Kos02] is the implied source.

Revisited Clustering Criterion describes how we adapt the original clustering
criterion to one applicable to object-oriented, dynamically-typed systems.
This is a superficial definition which deviates as little as possible from the
original criterion.

Sidenotes details extra features related to the adaptation of the clustering algo-
rithm. It highlights possible problems and/or deviations from the original
techniques.

3.2.1 Global Object Reference Heuristic
Original Clustering Criterion. Global objects and all the routines that refer-
ence these objects, regardless of where they are declared, are grouped together.

Revisited Clustering Criterion. Classes, all classes which reference these classes
in their methods, regardless of where they are declared, and all direct subclasses,
are grouped together.

Sidenotes. As for the original version, widely used classes may cause large parts
of the system to collapse into one big cluster. Yeh et al. proposed to exclude fre-
quently used objects from the analysis to avoid this unwanted effect. Even more in
the adapted version, excluding widely used classes will improve the performance
of the technique, since unlike the use of global objects, the use of library classes
is not so exceptional.

While for the original version, after removing widely used global objects as
clustering data, good results are to be expected, the adapted version suffers from
more false positives due to the unification of global objects with interface classes.
For example, in figure 3.1, suppose that the system is fully decomposed into soft-
ware components, requirements 1 and 2 represent classes external to the given
software component. Since they are used by the given software component, this
means that those classes are part of the interface of another software component.
If those classes would now be considered global data objects for the Global Ob-
ject Reference heuristic, these classes would be included in the given software
component since they are referred to by classes A, G and J .

CHAPTER 3. ADAPTATION OF AUTOMATIC TECHNIQUES 13

3.2.2 Same Module Heuristic
In well designed software, the system is properly decomposed and all modules
contain single components. When we count on good design, we can group all
declarations of a module together in a component. This is the underlying cluster-
ing criterion of this technique.

Original Clustering Criterion. All related subprograms, user-defined data types,
and global objects that are declared in the same module are grouped together. A
subprogram is related to a data type when the data type occurs in the signature of
the subprogram. Likewise, a subprogram is related to an object when the subpro-
gram references the object.

Revisited Clustering Criterion. Since we expect the base system to already
use multiple different ways of grouping classes together, we split the original
technique into three different heuristics. The first yields clusters of classes per
namespace, the second per package and the last one per subhierarchy.

Sidenotes. In the original technique, the purpose was to find single atomic com-
ponents in modules. Adapting that technique to cluster namespaces and packages,
can also have the effect of finding at least parts of software components in those
groups of elements. The subhierarchy adaptation will be useful if the chosen su-
perclass belongs to a software component and none of its subclasses are part of
the subclassed interface.

3.2.3 Delta-IC
High cohesion in a software component S, means that all of the classes of S refer
to many classes in S. Low coupling implies that those classes refer only to very
few classes which do not belong to S, and that only very few classes from outside
of S refer to classes in S.

The Delta-IC technique is a step in that way. It first clusters elements together,
according to a specific usage pattern. Then all resulting clusters are evaluated by a
connectivity metric, and accepted or rejected resulting on their relation to a given
threshold.

Original Clustering Criterion. A candidate for a given subprogram S is candidate-
cluster(S) where ∆IC(S) > Θ.

CHAPTER 3. ADAPTATION OF AUTOMATIC TECHNIQUES 14

closely-related subprograms(S) =⋃
e∈referred-by(S)

{F |F ∈ refers-to(e) ∧ referred-by(F) ⊆ referred-by(S)} (3.3)

candidate-cluster(S) = closely-related subprograms(S) ∪ referred-by(S) (3.4)

Revisited Clustering Criterion. The revisited clustering criterion equals the
original one. We only adjust the function candidate-cluster to take classes as input
and to have clusters of classes as output. The definition of the revisited formula
complies with the shift of focus presented in section 3.1.2, such that refers-to(e)
represents a set of classes which refer to (reference or subclass the given class c).

closely-related classes (C) =⋃
e∈referred-by(C)

{F |F ∈ refers-to(e) ∧ referred-by(F) ⊆ referred-by(C)} (3.5)

candidate-cluster(C) = closely-related classes(C) ∪ referred-by(C) (3.6)

Koschke [Kos02] suggested to use a different metric than the one that was
originally presented by Canfora et al. because of the fact that external connectivity
was not correctly represented in that metric. For the same reason, we also use the
Internal and External Connectivity metric proposed by Koschke.

∆IC(C) = connectivity(C) (3.7)

connectivity(C) =
a× IntC(C)− ExtC(C) + 1

a + 1
(3.8)

IntC(C) =
1

| referred-to(C) |
×

∑
e∈referred-to(C)

refers-to(e) ∩ referring(C)

referring(C)
(3.9)

ExtC(C) =
1

| referred-to(C) |
×

∑
e∈referred-to(C)

refers-to(e) \ referring(C)

refers-to(e)
(3.10)

Sidenotes. Since referring entities and referred entities in our case are repre-
sented by the same type of entities, it is possible that the referred entities overlap
the closely related classes. This is the reason why the definitions of IntC and ExtC
are not as straightforward as in the thesis of Koschke. We need the following
definitions to extract the original values:

extract(C, f) = {F |{E|C = candidate-cluster(E) ∧ F = f(E)}} (3.11)
referred-to(C) = extract(C, referred-by) (3.12)

referring(C) = extract(C, closely-related classes) (3.13)

CHAPTER 3. ADAPTATION OF AUTOMATIC TECHNIQUES 15

Of course, at implementation level these intermediate results, calculated to build
the candidate cluster, can be reused at the moment that we apply the metric.

3.2.4 Strongly Connected Components
Cycles in the graph of classes connected by the referred-by relation form (parts
of) software components, because none of the classes can be omitted without
losing a piece of information for the understanding of the referring classes in the
software component. These cycles correspond to the notion of strongly connected
subgraphs in graph theory.

Original Clustering Criterion. All strongly connected components in the call
graph form an atomic component.

Revisited Clustering Criterion. All strongly connected components in the referred-
by graph form a software component.

Sidenotes. Mutually recursive subprograms in procedural code are less com-
mon, and are assured to belong together. They are less common since procedures
generally refer to (call) only a small amount of other procedures.

By refocussing procedures to sets of methods of classes, this type of rela-
tionship gets less uncommon. This partly results from class extensions to classes
which are actually data classes, in other words, extended data classes. This type
of classes are generally referred to by a big part of the other classes in the system.
On their own, they also refer to a big part of the other classes. Systems con-
taining such classes will collapse in big software components based on strongly
connected components, with those classes as “center class”. In this case it is im-
portant that the user is able to remove certain false referred-by relations in order
to decouple such strongly connected graphs into possibly multiple new strongly
connected subgraphs.

Because of the definition of referred-by as stated in section 3.1.2, by incor-
porating inheritance information, we also find cycles between classes where the
referred class does not necessarily link back to the referring class, but also when
it refers to a superclass of the referring class. Secondly, since instead of incorpo-
rating this information as the set of references of all methods (of the class and all
inherited methods), we use the set of references of the local methods and outgo-
ing inheritance relationships1, we do not only find more cycles between classes
which refer to one another, but also which parts of hierarchies are responsible for
the cycles.

1Outgoing inheritance relationships: the set of all direct superclasses

CHAPTER 3. ADAPTATION OF AUTOMATIC TECHNIQUES 16

3.2.5 Dominance Analysis
Software components often have local classes (or hierarchies) which offer local
services to classes that constitute the interface of the components. Since these
basic service classes are local to software components, they are an essential part
of them and the software components can not be understood without them. Local
in this context means that they are only referred to by classes in the software
component. It does not mean that they are local in the sense of nested scopes
(nested classes); quite the opposite: Because they may be used by several other
classes in the software components, they must be visible to all of them. This kind
of local routines can be detected by means of dominance analysis. Locality in the
mentioned sense can be viewed as a dominance relation in graph theory.

Original Clustering Criterion. Cimitile and Visaggio (1995) propose to apply
dominance analysis to call graphs to identify candidates for reusable modules.
First cycles (i.e. strongly connected components) are collapsed before dominance
analysis is applied.

Revisited Clustering Criterion. Dominance analysis is applied to referred-by
graphs, in which strongly connected components are collapsed, to identify candi-
dates for reusable software components.

Figure 3.2: Two Components

Sidenotes. Collapsing previously found clus-
ters, as was described by Koschke [Kos02], im-
proves the results of dominance analysis. If we
do not collapse already found clusters first, it is
possible, as shown in figure 3.2 that two classes
B and C are found to be part of a cluster, both
of which are dominating a class A. If those two
classes B and C are part of the interface of the
found cluster, it is possible that they are both re-
ferred to by a class D. Applying dominance anal-
ysis without collapsing B and C into one node,
as happens now, results in A being dominated by
D, since as well B and C are different paths to
go from D to A. Already collapsing B and C
presents the user with the correct result, namely
that A is dominated by the interface (B and C) of
an already found cluster.

Koschke defined his application of the domi-
nance analysis technique as such that collapsed components were necessary. It

CHAPTER 3. ADAPTATION OF AUTOMATIC TECHNIQUES 17

is defined as such that all elements dominated by a component are added to that
component. In his definition, dominance analysis can only be used as an addi-
tional technique. We however, believe that results from dominance analysis can
already present interesting information (however limited), without using already
defined components as basis.

By using the algorithm in this way, the adapted version suffers from false pos-
itives due to the solely local use of libraries. For this reason, it is interesting to
present a dominance tree to the user as such that he can select from which root
the elements actually belong to software components, but such that he can choose
from which subnode the dominated subtree actually represents an external2 li-
brary. The resulting cluster would then include the tree starting at the included
root, cutting the subtrees which are out of the software component’s scope. This
idea is similar to the way of browsing the result of similarity clustering, presented
in section 3.2.6.

Another difference we consider from Koschke, is that our programs can have dif-
ferent entry points. An entry point is a piece of code where a program might start.
If we broaden this point of view, all pieces of software which are not explicitly
referred to, can start from any point, or from none. Especially for dynamic lan-
guages like Smalltalk, where it is for example possible to instantiate all classes
defined in a certain package, it is important that clustering algorithms take this
possibility into account. For that reason, the adapted version of the technique
adds a supernode to the directed graph of all relations, which links to all entry
points of the subject system.

3.2.6 Similarity Clustering
If two classes use several of the same set of classes, as well as when they are used
by several similar classes, they are likely to be sharing a significant amount of
design information. In that case they are good candidates for placing in the same
module. The similarity clustering algorithm defined in the thesis of Koschke is an
extension of Schwanke’s Arch Approach.

Original Clustering Criterion. Before starting the clustering algorithm, all
procedures are placed in their own group. In each iteration, the two most similar
groups are combined using the similarity metric for groups. This happens until no
new group can be found which has higher similarity than a given threshold.

2External in this situation refers to not belonging to the software component, not necessarily to
outside of the scope of the subject system. If the class is a part of the subject system, but external,
it belongs to another software component of the system

CHAPTER 3. ADAPTATION OF AUTOMATIC TECHNIQUES 18

The original similarity between groups, proposed by Schwanke (1991), was
defined as maximal individual similarity (also known as single linkage):

GSim(A, B) = max(Sim(a, b)) ∀a ∈ A, b ∈ B (3.14)

Sim(A, B) =
W (Common(A, B)) + k × Linked(A, B)

n + W (Common(A, B)) + d×W (Distinct(A, B))
(3.15)

In the definition of Sim(A, B), Common(A, B) represents the amount of com-
mon features of A and B. Linked(A, B) returns 1 if A calls B or B calls A,
otherwise it returns 0. Distinct(A, B) represents the amount of distinct features
of A and B. Features of a procedure in this scope means all types of non-local
references. W is a weighting function which ensures that more widely used ele-
ments have less impact on the total result, and that elements with a low occurrence
rate have the opposite effect.

Common(A, B) = features(A) ∩ features(B) (3.16)
Distinct(A, B) = features(A)⊕ features(B) (3.17)

W (features) =
∑

f∈features

wf (3.18)

wf = − ln Probability(f) (3.19)

Probability(f) =
occ(f)

occ(type(f))
(3.20)

In formula 3.17, operator⊕ denotes the symmetric difference for sets, and the
Probability(f) function represents the Shannon information content [Sha53] from
information theory.

Koschke extended Schwanke’s approach as such that the similarity between
groups was defined as a hierarchical clustering algorithm with average linkage.

GSim(A, B) =

∑
(a∈A,b∈B) Sim(a, b))

| A | × | B |
(3.21)

Secondly, the similarity metric between two procedures was extended to the fol-
lowing definition:

Sim(A, B) = x1 · SimIndirect(A, B)

+ x2 · SimDirect(A, B)

+ x3 · SimInformal(A, B)

(3.22)

Here there are two differences to the original algorithm. The definition of SimIndirect

has been changed to take overlapping references by different types of connections

CHAPTER 3. ADAPTATION OF AUTOMATIC TECHNIQUES 19

into account. For this reason the function Common(A, B) was separated into
Commoneq(A, B) which represents common features by a same type of refer-
ence, and Commonne(A, B), which represents common features which are bound
to A in a different way from how they are bound to B. By separating common fea-
tures, different weights (different importance) can be assigned to different types
of common features.

Secondly the SimInformal is added, in order to take informal information
about the procedures into account. This informal information consists of infor-
mation about the words used in the definition of the procedure, as well as words
used in the name of the file where the procedure was defined.

Koschke suggested to keep the history of joins of groups and present this as a
result to the user. In this way, the algorithm can join until there is just one group
left. The user can then inspect the resulting tree and only accept candidate clusters
at subtrees of nodes where the join is doubtful.

Revisited Clustering Criterion. We adopt the change of definition of Gsim(A, B)
and Sim(A, B) by Koschke. However, since we only consider one type of rela-
tion between classes, the extended definition of SimIndirect by Koschke can be
replaced by the easier original definition by Schwanke3.

As for the informal information of classes, we define it as a combination of
four different relations found in a class-based setting.

Ratio(A, B, f) = xf ·
Wf (Commonf (A, B))

Wf (Commonf (A, B)) + Wf (Distinctf (A, B)
(3.23)

SimInformal(A, B) = Ratio(A, B, MethodNames)

+ Ratio(A, B, AttributeNames)

+ Ratio(A, B, Superclasses)

+ Ratio(A, B, Surroundings)

(3.24)

In which Surroundings represents all information available about the scope in
which the classes are defined. This is similar to what Koschke did with filenames.
In our case, the available types of information are the namespace and package in
which the class is defined.

Notice that for any of the different types of features which classes can have, a
different weighting function Wtype is used, as well as different functions Commontype

and Distincttype. These two last use featurestype(Class) as base function. In
the same way, the functions for SimIndirect can be defined in function of
Commonreferred-by,refers-to and Distinctreferred-by,refers-to.

3Actually there are two different types of relations which are joined in the definition of referred-
by, referenced by and direct superclasses. It might be interesting to investigate what would change
if we make a difference between those types of relations. This is suggested as future work.

CHAPTER 3. ADAPTATION OF AUTOMATIC TECHNIQUES 20

Sidenotes. The result of applying a hierarchical clustering algorithm to the dis-
tances between elements, is a dendrogram, i.e. a binary tree, whose leaves are
clustered classes and whose nodes represent the union of the two sub-clusters.
The further nodes are from a root, the higher the similarity-level of the cluster it
represents.

A dendrogram is useful information since it shows the order in which entities
are clustered, and the respective most similar entities. Hence the result of Simi-
larity Clustering should be shown as a dendrogram to the user. A minor aid to the
user, in order to go through the resulting information as fast as possible, would be
to cut unnecessary information from the tree. As such our method removes leaves
(clusters with only one element, which are not considered real clusters), and does
not show direct subnodes which have the same similarity as their supernode. This
can especially be useful when an amount of entities all lay at the same distance
from each other. It is of no importance to the user, which of the entities are joined
before others are added. This is probably merely randomly decided by the algo-
rithm, based on internal states. As such, subnodes whose parent have the same
similarity level are discarded, and their children are recursively added to their par-
ents. This results in a tree which is not necessarily binary.

One of the main disadvantages of using this technique, is the time-complexity
needed to calculate the distances between elements. In the worst case, all classes
refer to all classes, which implies that calculation of second degree neighbours for
m classes, has a cost of O(m3). Koschke described that, since procedures gen-
erally only have a small amount of neighbouring procedures, the real complexity
was a lot lower. This reduces extremely the time needed to compute the similarity
matrix. Unfortunately, in a class-based setting, we do not necessarily share this
property. As was already stated in section 3.2.4, relations between classes are,
because of the use of certain object-oriented patterns, less uncommon. Extended
data classes have a significant negative impact on the complexity. As such, it is
important that the user can identify and ignore unnecessary relations going to and
coming from this type of classes, before applying the algorithm.

In addition to the advantage related to time-complexity, also the results of the
algorithm will be less cluttered after removing relations between objects which
are only present in the code to fulfill certain object-oriented tasks.

3.3 Summary
In this chapter we have presented how to adapt six different atomic component
recovery algorithms for procedural languages, in order to find meaningful clusters
of classes in dynamically-typed, class-based languages. The techniques are only

CHAPTER 3. ADAPTATION OF AUTOMATIC TECHNIQUES 21

based on structural information.
The atomic component recovery techniques we have chosen as basis for our

research, are techniques which are, at least to some extent, adaptable such that
they only require pure object-oriented information about their subject system. We
have made a selection of algorithms which were defined as automatic component
recovery techniques in the thesis of Koschke, which are not fully based on the
availability of a static typesystem.

These two requirements ruled out the adaptation of the Internal Access / Non-
Abstract Usage Heuristic, which is based on internal accesses of objects and types.
It also ruled out the adaptation of the Type-Based Cohesion and Part Type heuris-
tics, which are defined based upon the idea of the availability of static typing.

The techniques we have adapted can be roughly classified and adapted as fol-
lows:

• Connection-based approaches cluster entities based on a specific set of di-
rect relationships between entities to be grouped. Of the adapted algorithms,
Global Object Reference and Same Module fall into this category. The only
types of connections between entities we consider in the adapted algorithms,
are class hierarchy relations and direct references in bodies of methods.

• Metric-based approaches cluster entities based on a metric using an itera-
tive approach. The Similarity Clustering approach falls under this category.
This approach is partly based on connections too, but the difference lies in
the way the used metric can fine-tune the importance given to certain rela-
tions. For this heuristic, the metric is adapted such that, instead of taking
available procedural features into account, it now defined in terms of the
available object-oriented features.

Koschke also classified Delta-IC in this category since, next to its underly-
ing connection-based clustering heuristic, it also uses a metric to filter out
non-relevant clusters. However, since all information used for the underly-
ing heuristic, as well as for the metric, are based on global entity usage, this
approach can be adapted in a similar way as the connection-based heuristics.

• Graph-based approaches derive clusters from a graph by means of graph-
theoretic analysis. The Strongly Connected Components and Dominance
Analysis heuristics belong to this category. The difference between these
approaches and connection-based approaches lies in the way the algorithm
handles connections. This implies that, since we are only changing types of
nodes and edges, these algorithms can be adapted as straightforward as the
connection-based heuristics.

CHAPTER 3. ADAPTATION OF AUTOMATIC TECHNIQUES 22

As we can see, all techniques we adapted, except for the Similarity Clustering
technique, can be adapted by using the referred-by, refers-to and class hierarchy
relations defined on classes as only types of connections. Similarity Clustering is
more complex and needs to be adapted separately.

4
Combined and

Incremental Techniques

In the previous chapter, we have presented a set of automatic clustering tech-
niques, adapted from atomic component clustering techniques. Already for the
original techniques, it was clear that none of the techniques resulted in compo-
nents up to the standards of components detected by humans. Even more, be-
cause of the adaptation problems stated in the previous chapter, this is true for the
adaptation of the techniques which detect software components in a class-based
setting.

There are two different alternatives which improve the research related to de-
tecting software components. A first one is building more advanced, new heuris-
tics which are not necessarily based on the techniques presented in the previous
chapter. A second alternative is to look for an approach to optimize the results of
existing techniques.

We chose the second alternative due to several reasons. Because it makes more
sense to first explore how we can improve the results of existing techniques, before
new techniques are tackled. Secondly because our research is partly centered
around the question to which extent we can successfully adapt existing atomic
clustering techniques to detect software components.

In this chapter, we show how software component detection techniques are
combined in order to improve results, and how object-oriented information about
the subject system is leveraged to complete candidate components.

23

CHAPTER 4. COMBINED AND INCREMENTAL TECHNIQUES 24

4.1 Combining Results
Applying clustering algorithms to a set of classes will, obviously, result in clusters
of classes. Applying clustering algorithms to procedural code however, results in
different types of clusters, based on the entities which are affected by the cluster-
ing algorithm in question. This makes the combination of techniques applied to
procedural code more complex than just combinations on sets. However, fortu-
nately, since we are only clustering classes, normal set operators will do just fine
for most of the possible ways of combining techniques. This results in the fact
that we can reuse operators such as the union, intersection and difference opera-
tors defined for sets, for clusters.

4.1.1 Extending Results
A first way to define the composition T2(T1(Classes)) of two techniques T1 and
T2, is to define it as a such that the candidate clusters provided by T1 are used as
valid clusters which are extended by T2.

Composition(T1, T2, C) = MergeOverlapping(T1(C) ∪ T2(C)) (4.1)

In which MergeOverlapping is defined as a function which iteratively combines
all overlapping sets until all remaining sets are disjunct.

We define it this way, because we go out from the position that approved can-
didate clusters imply an actually belong together relation between the classes in
the cluster. It is possible that the elements of two distinct candidate clusters found
by one technique, also belong together. Since a second technique has found that
those elements also belong together, their respective clusters are combined into
one cluster. In other words, if T1 has found that {A, B} and {C, D} belong to-
gether, and T2 has found that {B, C} belong together, then it is only logical that
{A, B, C,D} belong together.

As such, the space of components is defined a set of disjoint sets. For conve-
nience, we can define the data structure used to represent the space of components
in a way that it always enforces this restriction, in other words, a disjoint-sets
datastracture [THCS01]. Like this, when we now combine techniques in the ex-
plained way, we just have to add all their resulting clusters to a space of compo-
nents which automatically handles overlapping.

4.1.2 Refining Results
As a second way of combining techniques, we define it as such that T2 refines the
results of T1 by looking for clusters in the candidates resulting from applying T1

CHAPTER 4. COMBINED AND INCREMENTAL TECHNIQUES 25

to a set of classes. The idea of refining results, stems from the fact that techniques
with several false positives result in clusters which are too big. The original tech-
nique has found that the classes in a big cluster probably belong together, but it
is classified as a false positive since it is not refined enough to define a software
component.

There are two ways of defining a refining composition. In the first one, the
same information about the system is provided to both techniques. Then the re-
sulting clusters are intersections of all pairs of clusters with one cluster from the
results of T1 and one cluster from the results of T2.

Composition(T1, T2, C) =
⋃

C1∈T1(C),C2∈T2(C)

C1 ∩ C2 (4.2)

The result of this definition can then be filtered so only real clusters1 remain.
In the second type of refining, we provide local information of all clusters

found by T1, one by one to T2.

Composition(T1, T2, Classes) =
⋃

Cluster∈T1(Classes)

T2(Cluster) (4.3)

In the previous definition we can define T2(Cluster) as such that we consider the
availability of all the relations between classes in Cluster as well as relations from
Cluster to Classes. Or we only consider how classes inside the cluster react to
each other, discarding relations from Cluster to Classes. In this way, refining
results of a technique by the same technique, might result in clusters inside a
previous candidate cluster, since all side-information is discarded. Actually, the
first option is similar to the first way of refining results, but defined in a way that
needs more computation. Also when the second technique differs from the first
one, by implementing the combination this way, the second technique will only
receive a limited amount of information (limited by the first technique). If we
would not do this, the second technique would produce more true negatives. That
is why for the second way of refining clusters, we choose the second definition.

4.2 Collapsing Results
When T2 is a graph-based technique, as already stated in section 3.2.5, it is useful
to collapse previously found clusters into single nodes, before applying domi-
nance analysis. Koschke stated that it might also be useful to collapse clusters
before applying Strongly Connected Component detection, in order to find which

1Real clusters are clusters with at least two elements

CHAPTER 4. COMBINED AND INCREMENTAL TECHNIQUES 26

components can not live without each other. This is no different for strongly
connected software components. However, it might be useful to first apply the
strongly connected base components algorithm to detect and remove false refer-
ences as described in section 3.2.4, before applying the strongly connected col-
lapsed components view, where such relations might be hidden.

Implementing collapsed techniques is quite straightforward in a object-oriented
language. Instead of feeding the list of classes to the algorithms, classes contained
in clusters are replaced by their enclosing clusters. Clusters then have to be ex-
tended as such that they answer to the same messages as normal classes. Actually,
this is not only useful for this purpose, but will also be useful for section 4.4.1.
Secondly, classes resulting from message sends which are contained in clusters,
have to be replaced by their enclosing cluster. Implementing collapsing in this
way, allows us to reuse the original graph-based clustering algorithms without
modification.

4.3 Negative Information
Dealing with negative information is needed in a user-guided mode. Negative
information allows the user to state negative links between entities (classes), “be-
fore” applying techniques, whose results will respect this negative information, as
such that the user does not get confronted with clusters containing these negative
information again.

Even while it would be logical to pass negative information to the techniques,
so that they can deal with it, as already stated by Koschke, it would be a better so-
lution to handle this information outside the techniques. This allows us to keep the
implementation of the techniques, without making them more complex. For this
reason, the implementation of handling the different types of negative information
stated bellow, pre- or post-process the input or output of the algorithms.

4.3.1 Temporary Negative Information
It is possible that a class-based program features relations between classes which
are only present for object-oriented purposes, as stated in section 3.2.4. As was
explained there, it is useful for the user to be able to remove certain relations
between classes. Removing such direct relations however, does not imply that it
is not possible that clustering techniques cluster the elements together, caused by
transitive relations. In other words, this kind of information is temporary negative
information. In order to deal with this type of negative information, the input
of clustering techniques is changed as such that the temporary negated links are
removed.

CHAPTER 4. COMBINED AND INCREMENTAL TECHNIQUES 27

4.3.2 Final Negative Information
Another type of negative information, is final negative information. This informa-
tion is represented by mutually exclusive links between classes. This means that
all results of techniques which actually place mutually exclusive classes together,
have to be reconsidered. Koschke described a technique for splitting clusters con-
taining mutually exclusive links, as such that the splitted clusters have a maximal
amount of relations to between entities in the subcluster. This algorithm can be
adapted straightforwardly as such that it is based on relations between classes.

4.3.3 Accepted Negative Information
When we are constructing software components, at certain points in time, certain
components will be fully self containing. These components are software com-
ponents which can be accepted by the user as finished. At that point, information
about the rest of the subject system in relation to those components is irrelevant,
and will only cause noise in the results of the techniques applied to the system. For
this reason, by accepting components, all classes in the component get removed
from the analysis. This stems from the idea that it is easier to find components in
smal systems than in big systems.

4.4 Cluster Completeness
Looking for software components in a class-based setting, informally comes down
to finding parts of class hierarchies which represent meaningful parts of the sub-
ject application which can be extracted from the subject application and can be
reused later on in other applications. Once techniques find clusters of classes, this
(informal) definition can be leveraged to complete candidate clusters into actual
software components.

Most of the adapted automatic techniques presented in chapter 3 already au-
tomatically incorporate hierarchical information by using the referred-by relation
which includes superclass references. However, especially after combining and
overlapping different clustering techniques, it is possible that parts of hierarchies
are missing. This results in extra tools for analysing candidate clusters which
should be available as additional tools to the techniques.

The tools presented in the next sections are defined as additional tools to the
clustering techniques, and should probably only be used right before accepting
the cluster as a software component.

CHAPTER 4. COMBINED AND INCREMENTAL TECHNIQUES 28

4.4.1 Cluster Requirements
When we find a cluster of classes, it is possible that the cluster refers to external
classes. This does not necessarily mean that those external classes should be part
of the component that the cluster represents, but the user should be able to analyse
clusters for these types of classes easily, since they represent the requirements of
the cluster. Since it is possible that requirement classes are classes which were
missed by the used techniques, the user should be able to add such requirements
with just a few mouse clicks. These kind of classes, because of the definition of
referred-by, overlaps two types of classes:

• Superclasses. This is the set of classes of which the roots of the component
its hierarchies subclass.

• Referenced Classes. This is the set of classes to which classes in the com-
ponent directly refer.

For reusing software components with requirements, a new environment in which
the software component is going to be used, should provide the same interface of
classes listed in the requirements. When the requirements of the software compo-
nent state library classes, this is probably not a problem. When classes are listed
which are not part of the standard library however, before reusing the component,
the engineer should make sure that the necessary classes are available. In other
words, next to using such extraction to complete software components, it is also
useful to automatically describe a crucial set of requirements.

4.4.2 Cluster Usage
In order to complete candidate clusters, it is useful to investigate how the environ-
ment from which we extract the clusters is using the cluster. This task is additional
to calculating the requirements of a cluster. This is not only useful for completing
clusters, but it also provides us with an automatic mechanism to describe what
(probably2) presents the interface of the software component.

4.4.3 Inner Cluster Completeness
In the introduction of this section, we informally defined clusters as sets of parts of
class hierarchies. These hierarchies do not need to be complete, since it is possible

2In case of non-abstract usage of the component in the subject system, the interface will be too
big. Secondly, it is also possible that parts are to be defined as part of the interface, but which are
not used by the environment. This occurs when components are designed more completely than
they are actually used.

CHAPTER 4. COMBINED AND INCREMENTAL TECHNIQUES 29

that clusters subclass from library classes. It is also possible that a part of the
interface of a software component can be used as such, that classes subclass from
certain interface classes. However, this does not say anything about classes of
which a superclass is available in the cluster, as well as at least one subclass. When
such internal classes are not member of the cluster, we call them ghostclasses.
There is (probably) no reason why classes of this type are not present in the cluster,
since the parts of the class hierarchies surrounding these classes, which are present
in the cluster, are broken.

In order to reuse a cluster containing ghostclasses, we have to make sure that
all ghostclasses are actually available in the system. As such, ghostclasses are part
of the requirements of the cluster, although a more important kind, since they are
more likely to actually be elements which belong to the cluster.

4.5 Summary
Since none of the techniques, presented in chapter 3, are completely accurate, in
this chapter we presented ways of obtaining improved results. As Koschke did
before us in his thesis, we presented ways of combining and manipulating input
and results of the different techniques which are expected to improve results. Ad-
ditionally, we showed how certain object-oriented information can be leveraged
to complete candidate components, and to automatically extract requirements and
candidate interfaces of software components.

5
The Adapted

Interactive Method

In the previous chapter, we explained how component detection techniques can be
combined in order to improve their results. We also showed how object-oriented
information can be used to complete candidate components. However, it is clear
that, due to the complexity and vagueness, component detection techniques can
only go so far. It will probably remain a problem which has to be tackled in
cooperation with a human engineer. As such, next to the research to component
detection techniques, it is interesting to find ways for aiding the user so that he
can wade through the information obtained by the techniques, as fast as possible.

In this chapter, we will present an interactive method for detecting software
components. We will show how the user can conveniently be involved in the
process of building components, and how the user can inspect components with
as goal improving them.

5.1 Result Combination and Presentation
In order to involve the user in finding software components, we have built a user
interface which allows the user to browse through results of all techniques at the
same time. The basic results of clustering algorithms are called reasons, since
they are mostly too basic to already be called components, but they are already
reasons to cluster elements together. Each clustering technique can decide by

30

CHAPTER 5. THE ADAPTED INTERACTIVE METHOD 31

itself how to present their results to the user. Mostly these ways are conform with
the ways described in chapter 3. However, we have made a few adjustments to
limit the amount of information presented to the user.

5.1.1 Global Object Reference
In section 3.2.1, we already stated that this technique suffers from more false
positives due to the unification of global objects with interface classes. From
case studies we have noticed that in most cases, when using this technique as
an automatic technique, the biggest part of the subject application collapses into
one big cluster. This is quite logical, since programs are mostly written as such
that there is always a (transitive) connection between any two classes in a system,
unless there are some classes which have a different type of entry point than a
reference (for example, by using meta-information).

A second observation is that the algorithm which calculates these clusters,
finds “global objects” and “procedures” which refer to them, and clusters them
together into basic reasons. In the second part of the algorithm, all overlapping
gets merged, until a set of disjoint sets remains.

Since we define the space of components in the same way as the second part of
the algorithm, we only present the basic reasons to the user. These basic reasons
are structured as such that they contain the referred class as well as all classes
which refer to that class. The label of the reason is the referred class. In this
way the user can accept labels to be internal classes as opposed to rejecting labels
which are interface classes. By accepting and adding the correct reasons to the
space of components, the overlapping reasons get automatically combined into
new, bigger clusters.

5.1.2 Same Module Heuristic
The original Same Module heuristic as presented in the thesis of Koschke, actu-
ally applies the Global Object Reference heuristic, limited to the scope of mod-
ules. This equals the refining combination of a “heuristic” which would cluster all
elements by module, with the Global Object Reference heuristic.

Since combinations of other heuristics with full modules can also be interest-
ing to guide the user in finding software components, we present the Same Module
heuristic in a different way from the original one. We fully show modules (which
were in our case packages, namespaces and class hierarchies) to the user. If the
user now wants to inspect what the results of the original heuristic would be, he
just has to combine the new version of the results with the Global Object Refer-
ence heuristic.

CHAPTER 5. THE ADAPTED INTERACTIVE METHOD 32

An extra advantage of presenting the results like this will be that a user can
cluster the program by its modules, and then inspect the resulting clusters using
the available tools. In this way, the user can use the tool to inspect how well the
original program is decomposed in packages, namespaces or class hierarchies.

5.1.3 Overlapping Results
Many of the techniques, such as all the Same Module and the Delta-IC heuristics,
result in reasons which are possibly overlapping. In some cases, some reasons are
subsets of other reasons. In order to limit the amount of information which the
user has to observe, such reasons are incrementally (hierarchically) ordered before
showing them to the user. This method complies with an extension to Delta-IC,
presented by Koschke, where largely overlapping results are merged. However, by
only merging fully overlapping reasons, we do not need an extra parameter (the
amount of overlap minimally required), nor do we introduce more uncertainty,
such that this technique can be reused for other techniques too.

We do not necessarily place reasons incrementally based on which elements
are finally clustered by the techniques, but by the elements which caused the tech-
niques to cluster the elements together. In order fulfill this task, techniques whose
results are to be ordered incrementally, have to annotate reasons with the directed
graph which lies at the origin of the clustering. In general this comes down to
adding a set of directed edges to the reason. In order to place reasons incremen-
tally, we then look for subsets of the end-points of edges.

ends(C) =
⋃

edge∈directed-edges(C)

end(edge) (5.1)

ifSubset(S1, S2) =

{
{S1} if ∀e ∈ S1 : e ∈ S2,

{} else.
(5.2)

find-subclusters(C, Cs) =
⋃

Cluster∈Cs

ifSubset(ends(Cluster), ends(C)) (5.3)

When we place reasons incrementally in this way, since for example for Delta-IC,
the less elements are referenced, the smaller the chance that elements only refer
to that specific subset of elements, and thus the more significant but smaller the
related reason is. As such this type of trees resemble semantically to the trees
resulted from hierarchical clustering algorithms (such as the Similarity Clustering
heuristic).

CHAPTER 5. THE ADAPTED INTERACTIVE METHOD 33

5.1.4 Dominance Analysis
Dominating Trees transitively dominate elements of its subnodes. As such, at each
node of the tree, we can recursively combine the elements only dominated by the
node, with elements dominated by its subnodes. If we present reasons in this way,
and define Dominance Analysis as an Incremental heuristic, results of Dominance
Analysis automatically gets ordered in dominating trees.

5.1.5 Crafting Reasons
Up until now we have mostly defined how different types of techniques can be
combined or presented as such that they make good building blocks for clus-
ters. The next step in the process is defining how a user can select such building
blocks, and actually combine them into clusters. One way of doing this is already
presented by the definition of the space of components, which covers combining
reasons in an expanding way. The second way of combining reasons was refining.

We present reasons to a user such that he can select a reason as being the
current reason. The default current reason is the global reason which clusters all
classes of the subject system. When a user adds a reason to the current reason,
the current reason gets refined by the new reason, so that the intersection of both
reasons becomes the new current reason. A user can also customize the current
reason, by manually selecting a subgroup of the current reason. At any point,
a user can accept the current reason, which will then be added to the space of
components. Refining reasons in this way provides the user with the power and
insight of what is happening, at all moments.

A disadvantage of presenting results refinements in this way, is that a lot of the
work has to be done manually, in other words, slowly. For this reason two other
operators are provided which use the current reason, and which are modelled on
the two different ways of refining results.

The first one enables the user to automatically add results of techniques to
the current reason, and accept the combination. In this way, the Same Module
heuristic by Koschke can easily be mimicked by selecting module by module as
current reason, and auto-merging all (related) Global Object References.

The second one is built on the idea that a second technique should only be pre-
sented with the scope of the subgroup of elements, selected by the first technique.
The result of the first technique is represented as the current reason. The second
operator allows the user to find subclusters inside the current reason, by applying
the techniques again to the current cluster. The user can build clusters using the
results of the techniques applied to the current cluster. When all subclusters are
found, the user can accept these subclusters.

CHAPTER 5. THE ADAPTED INTERACTIVE METHOD 34

5.1.6 Annotating Combinations
Original reasons are self explanatory, since they are linked to a clustering tech-
nique which constructed them. When we combine reasons into combined reasons
(or clusters) however, it can be difficult to grasp which reasons lie at the basis
of grouping exactly those elements together. For this reason, combined reasons
(and clusters) are annotated with the set of all reasons (positive or negative) which
added to the construction of that exact reason (cluster). By doing this, users can
easily inspect how clusters and reasons were constructed, or decompose them into
their original building blocks and refine them.

5.1.7 Filtering Results
In order to guide a user better and as fast as possible through the amount of reasons
presented it is useful to have a good, extendible, filtering mechanism.

Elements which are already clustered by the user, in other words, which are
already confirmed by the user as belonging together, should not be reconfirmed
by the user. For this reason, all basic reasons which are subsets of already ex-
isting clusters in the space of components should be removed from the lists of
candidates.

While refining a certain reason, by combining results of certain techniques, it
is vital that only results related to the combined reason which the user is currently
constructing, are shown. Since we refine reasons only until there are minimally
two elements in the reasons1, at any moment only reasons which have at least two
elements in common with the reason we are currently constructing, are shown.

Another remark from a refinement point of view, is that reasons only refine a
given reason, when intersection of both reasons is smaller than the original given
reason. Results which do not actually refine the reason which we are currently
crafting, are filtered too.

Filtering as defined above, improves the way the Same Module definition by
Koschke can be mimicked. When we select a module, automatically only reasons
which reference objects in the module are listed as results of the Global Object
References heuristic. This way a user is only presented with relevant information
and will have less trouble finding the internal classes related to the module.

5.1.8 Hierarchical Filtering
When a reason is structured hierarchically, and when a certain node is filtered
away, it is possible that unlike the supernode, the subnode complies with the filter.

1The minimal amount of elements in a reason is two, since a reason is a basic building block
for clusters. Elements are only clustered together if there are at least two elements.

CHAPTER 5. THE ADAPTED INTERACTIVE METHOD 35

Therefore, for all filtered supernodes, the filter has to be applied recursively to its
subnodes. When a subnode does comply with the filter, it gets rebound to the first
supernode which was not filtered away. If there is no supernode which was not
filtered, the subnode gets added to the list of results.

If we now select a supernode of a hierarchical reason, as current reason, this
type of filtering results (possibly only) in direct subnodes of the current reason
as refining results. This presents an advantage for all heuristics where the user
wants the find the correct upper and lower bound in a hierarchy, such as Similarity
Clustering and Dominance Analysis.

For example, a user can select a node of a Dominance Tree as current reason,
the point where we enter a cluster. By doing this, only subnodes will appear in the
result of the Dominance Analysis. The user can now browse through those results
to find subnodes which do not belong to the cluster anymore, but to libraries which
were solely used by the cluster, and reject them from the current reason.

5.2 Component Evaluation
Once we have found a set of disjoint components, it is important that the user is
presented with a set of tools to evaluate and complete these components, since the
task of evaluating candidate components is comparatively large to the time needed
to group candidates [Kos02].

Until now we already explained how components can be evaluated by ways
of combining techniques in section 4.1, by investigating the requirements in sec-
tion 4.4.1 and investigating the component usage in section 4.4.2. Moreover we
annotated components with all reasons out of which the component is composed
so that the user is able to browse the component to see its structure. We explained
this in section 5.1.6.

Apart from making components browsable as hierarchical sets of elements, it
is also useful to visualize them, in order to highlight certain relations inside the
cluster, or between the cluster and its surroundings. The concept of visualizations
is well-known as “the power or process of forming a mental image of vision of
something not actually present to the sight” [SW89].

5.2.1 Visualization Type
In [MS00], L. Martin showed that the optimal way of showing dependencies be-
tween components, is by connecting the components by use of graphs. Class
hierarchies are logically also represented by directed acyclic graphs. For this rea-
son, we will represent most of our visualizations, which can be combinations of
components and (parts of) class hierarchies, by graphs.

CHAPTER 5. THE ADAPTED INTERACTIVE METHOD 36

For the colours used in our visualizations, we follow visual guidelines by
Bertin [Ber83], who states that the human mind can only process about a dozen
different colours.

As stated earlier, there are two different aspects in visualizing components.
First we want to visualize how components are constructed as a combination of
reasons. Secondly, we want to investigate how components react to their environ-
ment.

5.2.2 Visualizing Component Composition
There are several reasons for visualizing the composition of components. Some
of the reasons can be combined in one and the same visualization, but in order to
maintain simplicity, sometimes it is more useful to split visualizations as such that
they focus on specific problems. This results in three main different visualizations,
of which the first one is combined with the two other ones into two extra combined
visualizations. The overlay of visualizations allows us to conveniently present
extra information. In some cases it will also allow us to present information in the
other visualizations, in a cleaner and less obfuscated way.

Component Class Hierarchy

Visualizing the class hierarchy of a component lies quite close to the idea of clus-
ter completeness presented in section 4.4. More specifically, when visualizing
class hierarchies of components, it is interesting to highlight inner completeness
(section 4.4.3) and show the superclasses of the component (section 4.4.1).

Applying Component Class Hierarchy visualizations might expose the pres-
ence of ghostclasses. Since inner completeness is one of the most important de-
fects of class-based components, we colour these type of classes bright green so
that they stand out. The superclasses of the component are classes which are
needed by the component, but which are not actually available in the component.
In order to highlight this, they also get a separate color, blue in our case. For the
rest of the classes in the hierarchy, we apply a standard class hierarchy visualiza-
tion scheme in which class-metrics are used for the outlook of the rectangle which
represent them.

In this way, users can, by one look see which (parts of) class hierarchies are
present in software components. They can inspect which superclasses are needed
so that the component can be installed, as well as which classes are missing from
it.

CHAPTER 5. THE ADAPTED INTERACTIVE METHOD 37

(a) Component Class Hierarchy (b) Component Composition

(c) Inner Access Graph (d) Component Hierarchy Composi-
tion

(e) Inner Hierarchy Access
Graph

Figure 5.1: Different Component Composition Visualizations

CHAPTER 5. THE ADAPTED INTERACTIVE METHOD 38

Component Composition

If components are composed of multiple reasons, possibly resulting from different
clustering techniques, it is not always clear which reasons agree with the presence
of which classes in a cluster. For this reason a visualization which highlights
agreement of reasons on the composition of a component, is useful.

In order to visualize this scheme, which is actually an overlap of sets, there
are multiple possibilities. In mathematics, it is a standard procedure to visualize
overlapping sets using Venn diagrams [Wei99]. However, this technique quickly
gets out of hand, since for n reasons, there are

∑n
i=0

(
n
i

)
or 2n different overlap-

ping subsets to be displayed. In order to keep things more simple, we also use a
directed graph.

The edges of the graph go out from icons (squares with blue borders) which
represent the reasons, to all elements represented by the reason. Every reason is
assigned its own colour of edges, selected from a limited selection of colors. For
the colour of the squares representing reasons, we use a metric which measures
how many of the classes in the component are supported by the reason. The size
of the square indicates how many elements are truly supported by the reason.
The amount of supported elements can be bigger than the amount of represented
elements, since a part of the reason can be cut away by a refinement. The colour
we use for squares representing classes, is a metric indicating how many of the
total amount of reasons of the component support its presence.

Inner Access Graph

Some of the techniques presented in chapter 3, are centered around access graphs.
The most important ones here are, Dominance Analysis and Strongly Connected
Components, but also Global Object Reference to some extent belongs to this cat-
egory. Since this information is used as basis for clustering classes together, it
might be interesting to save this access information in reasons, so that combi-
nations of access graphs of the different reasons can be shown later. In section
5.1.3 we actually already annotated reasons with access information, so here that
information is reused.

The most interesting access graphs that will be visualized in this way, are the
dominating trees resulting from dominance analysis. Since they are trees, it is
interesting to order them as such.

Different reasons can be incorporated in this visualization in a similar way as
for the previous visualization, however here we can leverage structural informa-
tion in order to limit the amount of edges between elements, Which improves the
understandability of the total visualization. We do this, by only drawing edges
from reasons to the different entry points of access graphs. For each dominating

CHAPTER 5. THE ADAPTED INTERACTIVE METHOD 39

tree, as well as for each strongly connected cluster (which are cyclic graphs), there
is only one such entry point. In order to visualize which of the classes of the tree
or graph are actually supported by the reason, the access edges between elements
are coloured in the same way.

Access graphs are an ideal way to detect extended data classes, defined in
section 3.2.4. Classes which are linked by an unusual amount of edges are most
likely to be such kind of classes. Therefore, in order to detect those classes easily,
we colour classes related to the amount of edges.

Component Hierarchy Composition

The Component Composition visualization shows interesting information about
general sets of entities. However, since the entities we are clustering are ordered
by nature in class hierarchies, it is interesting to overlay both the Component Class
Hierarchy and the Component Composition visualization.

We can use the hierarchical information of Component Class Hierarchy, to
limit the amount of edges going out from reasons to classes, in a way similar to
Inner Access Graph edges of section 5.2.2. However, here we connect included
classes with a green edge, and fully included subhierarchies with a blue one. It is
also possible to invert edges from a reason. If there is only a limited amount of
classes not included in a reason, an orange edge means that a class is not included
and a purple that a subhierarchy is not included. Orange or purple edges coming
from a reason, means that everything which is not connected to the reason, is au-
tomatically supported. The visualization automatically choses the version which
produces the least amount of edges.

This visualization might expose interesting information about how parts of
hierarchies are joined by different reasons. Still, the original version is also still
interesting as separate visualization since class hierarchies might also obscure the
actual component composition.

Inner Hierarchy Access Graph

In the same line as the overlay of Component Composition and Component Class
Hierarchy in section 5.2.2, we can also overlay the Inner Access Graph of section
5.2.2 with the Component Class Hierarchy. This technique highlights how classes
in a component, while ordered as class hierarchies, access each other. In order to
limit the amount of edges, we do not show referred-by edges resulting from hier-
archical information, since by definition the set of referred-by relations includes
links from classes to its superclasses.

CHAPTER 5. THE ADAPTED INTERACTIVE METHOD 40

5.2.3 Visualizing Component Interaction
At the moment we visualize the interaction of a component with its enclosing
environment, we expect those components to already comply with the inner com-
pleteness restriction. Because of this restriction, parts of class hierarchies are fully
enclosed in such components, which makes it easy to represent such components
as squares containing (parts of) the class hierarchies.

There are two different sources of information which can be used to visualize
interaction between components and its environment. It is possible to show how
components refer to classes (or components) in their environment. Secondly it is
possible to show the class (and component) hierarchies which are used as super-
classes and which classes and components subclass from the visualized compo-
nents. Because the structure of accesses outside and between components has no
importance, we only present the access visualization, as a visualization projected
on the class hierarchy visualization.

In order to limit the amount of information shown, we only show classes hier-
archies which are related to the visualized components.

5.2.4 Visualizing Reasons
Next to the fact that reasons can be combined into components, reasons can also
be combined into reasons. Components are actually hierarchical combinations
of reasons. When we visualize a component based on combined reasons, the
difference between different subreasons automatically gets hidden, by interpreting
the combined reason as one. Now because of this idea, it is interesting to also be
able to visualize composition of reasons in a similar way to the composition of
components.

5.2.5 Fine-Grained Visualizations
In some situations, it might be necessary to take a closer look at what exactly
constituted to the clustering of certain classes. For this reason, it is useful to be
able to display a group of class blueprints [Duc05] of the selected classes. In
this way, a user has more insight in the actual structure and dependencies of the
cluster.

5.3 Summary
In this chapter we described a way to optimally present results of component
recovery techniques to a user, to aid him to evaluate those results in order to find

CHAPTER 5. THE ADAPTED INTERACTIVE METHOD 41

fully self containing software components. We reevaluated how to present the
results of the adapted component detection techniques defined in chapter 3. Then
we presented ways to combine results into components based on combinations
presented in chapter 4. Finally, we discussed new ways of evaluating components
by use of component visualizations.

CHAPTER 5. THE ADAPTED INTERACTIVE METHOD 42

(a) Cluster Hierarchy

(b) Accesses Between Hierarchical Clusters

Figure 5.2: Component Interaction

6
Case Study

In previous chapters, we have explained how the atomic component detection
techniques, described in the thesis of R. Koschke [Kos02], are technically adapted
to be applied in a dynamically-typed object-oriented environment, using only ex-
plicit dependencies. We have showed that object-oriented properties are leveraged
to inspect and complete the results from these techniques. In this chapter we com-
plement the theoretical descriptions with case studies validating their use.

6.1 Prototype Implementation
In order to perform case studies, we have build a prototype tool called Clus-
terFinder which incorporates the techniques described in chapters 3, 4 and 5.
It is implemented in Cincom Smalltalk [cin], as a tool extension of the language
independent reengineering environment Moose [NDG05]. Our tool uses explicit
dependencies in the object-oriented language meta-model FAMIX (FAMOOS In-
formation Exchange Model) [DTD01] as basis for adapted techniques. Visualiza-
tions are constructed using the agile visualization framework Mondrian [MGL06].
The interface of the prototype is described in more detail in Appendix A.

6.1.1 Limitations
At the time of the experiment, the ClusterFinder tool had some limitations.

43

CHAPTER 6. CASE STUDY 44

• As a limitation to negative information, it was only possible to (temporarily
of fully) remove classes. Thus, it was not possible to specifically remove
certain relations between classes, or to introduce mutually exclusive rela-
tions. This has an impact on the studies done around extended data classes,
where negative information is crucial. This results in the fact that, wher-
ever relations have to be negated, one of the related classes has to be fully
ignored.

• Even while the clustering techniques plugins are implemented using dif-
ferent parameters as described in chapter 3, no interface is provided for
easy adjustment. So in this chapter, we do not investigate how techniques
can be adjusted by playing with different parameter settings. However, for
techniques such as Delta-IC, where a minimal Θ should be set, this is no
problem since we just display all results in an ordered way as such that the
user can choose to ignore results results below a minimal Θ.

• To display visualizations, we use the framework Mondrian [MGL06]. This
framework has a default set of layouts which can be used to order elements,
such as a tree layout. However, since the Interaction Visualizations which
we described in section 5.2.3 uses hierarchical trees (trees of which the
nodes can contain up to forests of subtrees), a normal tree layout is not
sufficient. A better layout for such trees was not provided, resulting in vi-
sualizations which are not optimally ordered.

• Interface extraction was not available.

6.2 Case Study: Moose Namespace
We validate our techniques by applying them to the reengineering environment
Moose, in which we embedded our tool.

6.2.1 Statistics
When we “moosify” the subject system, in other words, import it into the moose
system as such that a meta-model representation in FAMIX is available, moose
provides the information listed in table 6.1. The used terminology is as follows:

Model vs Stub Classes In these statistics, a difference is made between model
classes and stub classes. This difference is adopted directly from Moose,
which tags imported classes as non-stub. Classes which are only imported
because they linked to the model classes in some way, but not part of the

CHAPTER 6. CASE STUDY 45

Model Classes Stub Classes
∑

Classes SLOC
339 323 662 20.869

Table 6.1: Statistics

classes which were selected, are imported as stub classes. When a class
is tagged as a stub, this means that only a minimal amount of information
is available about those classes. When detecting components in this envi-
ronment, it makes sense to incorporate the information about links between
model classes, and stub classes to some extent, but it probably does not
make sense to look for clusters in the set of stub classes. For this reason,
our tool provides a “clustering algorithm” which clusters classes by their
state of the stub attribute. By selecting the cluster for which that attribute
is false as current cluster, we automatically only look for clusters in the
set of model classes without excluding information about the referred stub
classes.

In order to visually support the difference between model and stub classes,
model classes have a black border, and stub classes a red border around the
rectangles representing them.

SLOC is the total amount of lines of code of the system S. This is calculated as∑
c∈classes(S) LOC(c). Remark that stub classes are defined to have 0 lines

of code, thus including them in the definition of SLOC has no impact.

6.2.2 Candidate Component Detection
We start our experiment by applying the Strongly Connected Components algo-
rithm to the SCG Namespace. We use this algorithm first, since strongly con-
nected components imply that the classes in the connected components need each
other. This was also specified as first step of the component detection strategy in
[Kos02].

Figure 6.1: 7 Clusters

The resulting clusters have sizes 2, 3, 3, 3, 4,
14 and 125 (figure 6.1). Since the last one consists
of 37% of the model classes, which is an unusu-
ally big partition of the system, we investigate this
cluster further before accepting it. If we apply the
inner hierarchy access graph visualization of sec-
tion 5.2.2, this results in figure 6.2

If we look closely, we see that there are only
few classes with a big amount of access relations,

CHAPTER 6. CASE STUDY 46

Figure 6.2: An Oversized Strongly Connected Component

as opposed to multiple classes with only few access relations. This indicates that
probably these few classes hold together multiple small strongly connected com-
ponents, and as such are possible extended data classes.

Secondly, on the right of the image, we see a small subhierarchy of stub classes
which are strongly connected, because of its hierarchy construction, to the class
with most accesses in the cluster. This group is indicated with a circle and tagged
2. Since they are stub classes, they are not supposed to be part of the system, but
only used by the system. If classes of this type are part of a strongly connected
component, this clearly indicates that the relations pointing to those stub classes
are only present to serve the implementation of the system partly composed of
those stub classes. Therefore, the class from which the relations go out, is an
extended data class.

Refinement

In order to detect if there might be useful strongly connected subcomponents in
the oversized component, we remove extended data classes one by one, starting at
the biggest one. The first class we remove is SCG::Moose::MooseModel, which
is represented by the darkest rectangle, tagged 1, in figure 6.2. This results in four
remaining subcomponents, presented in figure 6.3. Clusters labelled 3 and 4 are
accepted, but bigger clusters 1 and 2 need some more inspection.

Cluster 1 appears to contain another extended data class, SCG::Moose::Group,
which has a relation to a stub class. We refine this cluster by looking for Strongly

CHAPTER 6. CASE STUDY 47

Figure 6.3: Reduced Strongly Connected Components

Connected Components inside the cluster, ignoring relations to the extended data
class. This results in two clusters with sizes 2 and 21, each containing a class
implementing a user interface and one subhierarchy. We accept these subclusters.

In cluster 2, we note that three different subhierarchies are quite strongly con-
nected. However, it is possible that not just one class of a hierarchy is used as
a extended data class, but that one of the hierarchies is designed as a extended
data hierarchy. In order to test the level of relatedness between the hierarchies,
we refine the cluster using Similarity Clustering. This rates the total similarity of
the cluster at 7%. The first subclusters both have a similarity level of 24%. This
places one of the three subhierarchies in the original cluster into a separate cluster.
We accept these two clusters of sizes 8 and 12.

So far we have split the original cluster of 125 elements, into 6 clusters of sizes
2, 2, 2, 8, 12 and 21. These clusters represent crystallization points [Kos02].

Extending Results

We build further on top of these clusters by combining previous results with Delta-
IC candidates with a high ∆IC(C), and with Similarity Clustering results with

CHAPTER 6. CASE STUDY 48

high similarity, which receive visual confirmation1. Here we must remark that
these techniques sometimes cluster classes which perform a similar task, and as
such are probably even subclassed from a same set of superclasses, but which ac-
tually belong in different environments. This is especially true for user interface
classes, which generally use several of the same user interface elements, but which
belong to the separate applications or tools for which they are defined. How-
ever, the fact that classes of this type are grouped together by some techniques,
also indicates that they are probably mere add-ons to the original applications for
which they were designed, and that the back-end of the original applications can
be reused without it.

Figure 6.4: Add-on Cluster

For this reason, to improve the global ef-
fectiveness of automatically applying these tech-
niques, it is useful to ignore these add-on clusters
before merging their results with results of other
techniques. They can easily be detected by visu-
alizing the results of these techniques using the
Component Interaction visualization. These type
of clusters generally have a bundle of access re-
lations coming from all classes in the cluster, to
a same set of classes, and separate bundles of ac-
cess relations from classes in the cluster to differ-
ent parts of the subject system.

If subclusters can be found inside add-on clus-
ters of which both types of relation-bundles point to the same sets of classes, it is
useful to accept these subclusters since they probably collaborate in their similar
add-on task. This can be checked by using the inner access graph visualization.

Component Evaluation

Figure 6.5 shows the component interaction visualization of the components found
in the breakup of the strongly connected cluster of 125 classes (visualized in figure
6.2), using the Strongly Connected Components, Delta-IC and Similarity Cluster-
ing techniques. Below we present a description of the different clusters, numbered
as in the figure. Remember that this figure only represents 37% of the full appli-
cation that we are studying.

1. Represents the core of the Moose application which was present in the

1Our user interface presents classes in the form namespace::subnamespace::classname, which
already helps the user into deciding whether or not clusters are consistent. If two classes of un-
related namespaces are joined, this is doubtfully a clean join. Of course, this is only useful for
systems which use different namespaces and/or naming schemes which have semantical meaning.

CHAPTER 6. CASE STUDY 49

Figure 6.5: Interaction Visualization of Candidate Components

CHAPTER 6. CASE STUDY 50

strongly connected cluster. All parts subclassing from the cluster, are ex-
tensions specifically designed for Moose.

2. A small library hierarchy used by component 5. The library has a reference
to a class in the core of Moose, namely SCG::Moose::Group, which shows
that the library was built with Moose in mind.

3. A bigger library hierarchy, extended with a user interface class, used by
components 4 and 5.

4. This cluster represents a tool built on top of Moose. Therefore it uses its
core. It also uses the library cluster 3.

5. Cluster 5 could also be considered a tool built on top of Moose. However,
this cluster relies heavier on its core, as well as the library cluster 3 and
more interestingly, another tool cluster, number 6. This indicates that one
of both clusters contains a hierarchy of extended data classes. Since cluster
5 also references to other classes (which are not clustered yet), and cluster
6 only links to a user interface class next to the core cluster and cluster 5,
we identify cluster 5 as possible extended data cluster.

6. This cluster is explained in the description of cluster 5.

7. Represents a part of a tool which was linked by an extended data class.
Since it is a cluster of stub classes, it is semantically not really useful, and
might as well be discarded.

8. Another library cluster. In this cluster we have not found yet for which other
cluster it was designed.

Component Completion

The next step, after identifying (parts of) candidate components, is to complete
them into full components. To perform this task, we start by looking at the dif-
ferent heuristics we have not used yet. We start by generating dominating trees of
the Dominance Analysis, based on the clusters we have already found. In those
results, we carefully select and/or reject candidate clusters which may or may not
belong to same clusters

Then we use the Global Object Reference technique in combination with the
Interaction Visualization, in order to detect which classes are not interface classes.
This last step is quite fuzzy and therefore, this technique by itself is less useful than
the others, if we do not have knowledge about the subject system, or if the subject

CHAPTER 6. CASE STUDY 51

system is badly designed. In our case however, we can heavily rely on correct
usage of namespaces and naming schemes to validate candidate clusters2.

After using Global Object Reference, we visualize the hierarchy of clusters, in
order to detect if parts of class hierarchies are still unbound. If so, we complete
those parts of the hierarchy as such that the unlinked parts are added to their parent
cluster.

Finally we check the requirements of all clusters. All ghostclasses (in our
case there are no ghostclasses detected) are added to their enclosing component.
Requirements have to be checked manually to detect if they belong to the cluster
or to a required cluster. The interaction visualization is useful to detect how such
requirements are used in the rest of the application, which we need to know in
order to make such a decision.

Accepting Results

After applying the last techniques, we accept the intermediate results we have
found in the oversized strongly connected cluster as candidate clusters for the
Moose application. Next, we evaluate the other Strongly Connected Components
as stated in the beginning of section 6.2.2, and we loop the full process until the
cluster we have refined at the moment we accept its results, was the cluster of all
classes in the subject application.

6.3 Summary
In this chapter we validated our techniques by applying them using a prototype
implementation called ClusterFinder. In doing so, we also implicitly described
the following detection strategy:

1. Use Strongly Connected Component detection as starting point

2. Apply Delta-IC, Dominance Analysis and Similarity Clustering to extend
the Strongly Connected Components, and possibly add new components.

3. Complete clusters using Global Object Reference, Requirements Detection
and visualizations.

4. Whenever a detected cluster is identified as too big, we recursively apply
this strategy to the oversized cluster, in order to refine it.

2If we were to rely too heavily on clustering by namespaces, this would result in a system
“collapsed” in different namespace clusters.

7
Conclusions

As explained in Chapter 1, in order to understand the code of software systems, a
mental model of the system has to be generated. Even while better encapsulation
improves the understandability of systems, it is a difficult and time-consuming
task in case of complex and/or badly designed systems. Since such a big share
of time of maintaining applications is spent on understanding applications, the
research to methodologies for automatically extracting conceptual models is jus-
tified.

7.1 Problem Statement Revisited
Research has already conducted to finding ways of automating the extraction of
conceptual models. This research is mostly focussed on procedural programs.
This is quite normal, since until a few years ago, this type of programs repre-
sented the biggest share of industrial applications. However, with the uprise of
object-oriented programming, the need for automating the extraction of concep-
tual models from object-oriented programs has increased too.

The general ideas behind recovering conceptual models in procedural code
are quite similar to those behind recovering conceptual models in object-oriented
code. Unfortunately, the results from research conducted around procedural pro-
grams, are defined in terms of procedural programming language constructs, such
as global objects and procedures. For this reason they can not be applied directly
in object-oriented programs, because these constructs are not available. More cor-

52

CHAPTER 7. CONCLUSIONS 53

rectly, these constructs are available in a different, encapsulated way.

7.2 Adapting Automatic Techniques
In this thesis we investigated how some of the procedural techniques are adapted
so that they are applicable to dynamically-typed, object-oriented software. The
techniques we chose as groundwork for our research, were the techniques de-
scribed in the thesis of Rainer Koschke [Kos02]. This results in the adaptation of
six techniques.

7.2.1 Shifting Focus
Migrating from the procedural to object-oriented programming paradigm results
in several observations which affect the definition of most of the techniques. Due
to this fact, we have specified general adaptations which are applied to most of the
techniques.

• Instead of global objects and procedures, classes are the elements to be
grouped together in components.

• Instead of procedure calls and global object references, techniques are mod-
elled using class and superclass references.

7.2.2 Automatic Techniques
In addition to the more general adaptations, some of the techniques also require
specific adaptations.

Same Module Heuristic is changed as such that it groups together classes based
on the packages, namespaces or class hierarchies in which they were defined. This
as opposed to grouping procedures and global objects in separate files together.

Similarity Clustering uses extra information about its elements to decide if
they belong to the same component. We have replaced the definition of informal
information so that it represents statically available information about classes. In
addition to direct relations, method names, attribute names, all superclasses, pack-
ages and namespaces are considered.

CHAPTER 7. CONCLUSIONS 54

7.2.3 Adaptation Problems
While adapting the automatic techniques, we identified several problems.

• By unifying procedures and global objects into one construct, it is possible
that techniques based on references to global objects will be used in a setting
were a class-reference actually represents a reference to a method.

• Excluding invocation candidates as information for the techniques results in
more true negatives.

• As opposed to procedures, classes may contain a large amount of references.

• Certain object-oriented programming patterns decrease effectiveness. Here
we identify extended data classes as a source of oversized connection- and
graph-based clusters.

7.3 Combined and Incremental Techniques
Component detection techniques on their own can only go so far. To improve the
results, as well as Koschke did [Kos02], we presented ways to combine different
techniques. We identified two ways to combine results. Firstly by complementing
each other and secondly by refining each other. While refining components, it
is possible to include or ignore information about relations between the elements
inside and the elements outside the component which we are refining.

7.3.1 Component Completion
We identified that hierarchical information can be leveraged to fill in “holes” found
in object-oriented components. There are three main types of holes which can be
detected

The requirements of a component are defined as the set of classes it refers to.
This is the union of the set direct superclasses of the classes in the compo-
nent and the set of referenced classes, minus the classes in the component.

The interface of a component is defined as the set of classes which refer to the
component. This is the union of the set of direct subclasses of the classes
in the component and the set of classes which reference the classes in the
component, minus the classes in the component.

CHAPTER 7. CONCLUSIONS 55

Inner Completeness is related to the completeness of subhierarchies found in a
component. When a subclass of a class in a component is also found inside
the component, all classes on the inheritance path from the subclass to the
class also should be included in the component. If a class on the inheritance
path is not included, this is called a ghostclass.

Requirements and interface classes are possible holes in components, while ghost-
classes are definite holes.

7.4 Component Evaluation
Finally, we defined ways, additional to component completion, to evaluate candi-
date components based on component visualizations. These visualizations visual-
ize the inner composition of a component, or the relationship between components
and their environment. Three different visualizations are identified.

The Composition visualization is only defined for the inner composition of a
component. This visualization shows how different building blocks are
combined into the creation of the component.

Hierarchical visualizations highlight how components are related to class hier-
archies. When we focus on the inner composition of a component, this
visualization highlights ghostclasses.

When we focus on component interaction, this visualization shows how
system hierarchies are divided over components.

Access visualizations show how classes and components access each other. When
applying this visualization to the inner workings of a class, this might help
the software engineer to detect extended data classes.

Applying it to a set of components allows users to detect certain relations be-
tween components. This is especially useful to detect add-on components.
This is a type of component where classes are falsely grouped together be-
cause they possess similar characteristics. However, these characteristics
only represent which value they add to the component to which they actu-
ally belong. User interface classes are typical victims of such clustering.

7.5 Future Work
In this section, we present a list of related topics which might be interesting for
future research.

CHAPTER 7. CONCLUSIONS 56

Figure 7.1: Overloaded Component Interaction Visualization

• The Component Interaction visualization, which was described in section
5.2.3, has scalability issues. When applying it to several library compo-
nents, resulting visualizations are overloaded with information, as shown in
figure 7.1. This might be solved by simplifying the image by presenting
components as shown in figure 3.1, since in most cases several bundles of
lines go out from components to only a few classes.

• The way of refining components presented in section 4.1.2, has as a disad-
vantage that it requires quite a lot of input of the user. It would be interesting
to investigate how this can be improved, for example by using the voting ap-
proach described in [Kos02].

• A standard approach to validate the usefulness of new techniques, is to stat-
ically prove that they improve existing approaches. This still has to be done
for our adapted and complementing techniques.

• We already defined certain ways to improve how a user can browse through
results of the techniques. However, it is still open to investigation if there are
other ways to improve the interaction between the techniques and the user.
This is important since feedback of a maintainer will always be needed.

A
Prototype

This appendix describes the prototype of the adapted techniques described in this
thesis.

Main Tab is shown in figure A.1a. The results of the clustering techniques
are integrated in the hierarchical listbox labelled Refining Reasons. Listbox Se-
lected Reasons represents the current reason defined in 5.1.5, and listbox Reason
Classes shows the classes represented by the current reason. Listbox Clusters is
the browsable list of accepted clusters in the space of components.

The Add button is used to refine the current reason. Add Inverted removes the
classes in selected reason from the current reason. Customize allows the user to
manually select and accept a subset of classes in the current reason. Find opens
a new ClusterFinder which looks for clusters in the current reason. Collapse ini-
tiates the recalculation of all component detection techniques which are affected
by collapsing clusters.

Requirements Tab in figure A.1b shows the same list of accepted clusters as
in figure A.1a. By selecting a cluster and clicking select, the different types of
requirements get calculated and presented in the three different lists. The require-
ments can be added to the cluster by selecting them and clicking the merge button
under the list in which the requirements were selected.

57

APPENDIX A. PROTOTYPE 58

(a)

(b)

Figure A.1: ClusterFinders (a) Main and (b) Requirements interface

APPENDIX A. PROTOTYPE 59

(a)

(b)

Figure A.2: ClusterFinders (a) Visualization and (b) Fixate interface

APPENDIX A. PROTOTYPE 60

Visualization Tab in figure A.2a is used to visualize candidate components in
the space of components. Visualizations can be chosen by changing the value of
the multiple choice field, labelled DirectedHierarchical in the figure. If clusters
are selected when visualizing, they will be displayed using the selected visualiza-
tion. If classes are selected, the class blueprint [Duc05] is automatically applied.
When the selected visualization is a component composition visualization, it will
be applied to all selected clusters, and the results will be shown next to each other.
In case of an interaction visualization, the selected clusters will all be integrated
in one visualization.

Fixate Tab allows users to add negative information. Classes from the globally
available classes can be ignored manually. Classes in clusters which are consid-
ered complete can be ignored integrally by fixating their clusters. When a set
of classes is ignored, the techniques are automatically recalculated. If the cur-
rent ClusterFinder was opened using the Find button at the Main Tab in a parent
ClusterFinder, fixated clusters can be accepted. This results in adding the fixated
clusters to the space of components of the parent ClusterFinder.

Bibliography

[Are05] Gabriela B. Arevalo. High Level Views in Object Oriented Systems
using Formal Concept Analysis. PhD thesis, Bern, Switserland, Jan-
uary 2005.

[BCL+06] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma,
and Jean-Bernard Stefani. The fractal component model and its sup-
port in java: Experiences with auto-adaptive and reconfigurable sys-
tems. Softw. Pract. Exper., 36(11–12):1257–1284, 2006.

[Ber83] Jacques Bertin. Semiology of Graphics. University of Wisconsin
Press, 1983.

[BHP06] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. Sofa 2.0: Balanc-
ing advanced features in a hierarchical component model. In SERA
’06: Proceedings of the Fourth International Conference on Software
Engineering Research, Management and Applications, pages 40–48,
Washington, DC, USA, 2006. IEEE Computer Society.

[BT04] Markus Bauer and Mircea Trifu. Architecture-aware adaptive cluster-
ing of oo systems. In CSMR ’04: Proceedings of the Eighth Euromi-
cro Working Conference on Software Maintenance and Reengineer-
ing (CSMR’04), page 3, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[CD00] John Cheesman and John Daniels. UML components: a simple
process for specifying component-based software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[CI90] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and
design recovery: A taxonomy. IEEE Softw., 7(1):13–17, 1990.

[cin] Cincom smalltalkTM. On The Web. http://smalltalk.
cincom.com.

61

http://smalltalk.cincom.com
http://smalltalk.cincom.com

BIBLIOGRAPHY 62

[DTD01] Serge Demeyer, Sander Tichelaar, and Stéphane Ducasse. FAMIX
2.1 - the FAMOOS information exchange model. Technical report,
2001.

[Duc05] Stéphane Ducasse. The class blueprint: Visually supporting the un-
derstanding of classes. IEEE Trans. Softw. Eng., 31(1):75–90, 2005.
Member-Michele Lanza.

[eAPS00] Fernando Brito e Abreu, Gonçalo Pereira, and Pedro Sousa. A
coupling-guided cluster analysis approach to reengineer the modu-
larity of object-oriented systems. In CSMR ’00: Proceedings of the
Conference on Software Maintenance and Reengineering, page 13,
Washington, DC, USA, 2000. IEEE Computer Society.

[HC01] George T. Heineman and William T. Councill, editors. Component-
based software engineering: putting the pieces together. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[HRR98] Franz Huber, Andreas Rausch, and Bernhard Rumpe. Modeling
dynamic component interfaces. In Madhu Singh, Bertrand Meyer,
Joseph Gil, and Richard Mitchell, editors, TOOLS 26, Technology of
Object-Oriented Languages and Systems, Seite 58-70. IEEE Com-
puter Society, 1998.

[JCIR01] Hemant Jain, Naresh Chalimeda, Navin Ivaturi, and Balarama Reddy.
Business component identification - a formal approach. In EDOC
’01: Proceedings of the 5th IEEE International Conference on En-
terprise Distributed Object Computing, page 183, Washington, DC,
USA, 2001. IEEE Computer Society.

[KC04] Soo Dong Kim and Soo Ho Chang. A systematic method to identify
software components. In APSEC ’04: Proceedings of the 11th Asia-
Pacific Software Engineering Conference (APSEC’04), pages 538–
545, Washington, DC, USA, 2004. IEEE Computer Society.

[Kos02] R. Koschke. Atomic architectural component recovery for program
understanding and evolution. In ICSM ’02: Proceedings of the Inter-
national Conference on Software Maintenance (ICSM’02), page 478,
Washington, DC, USA, 2002. IEEE Computer Society.

[KP96] Christian Kramer and Lutz Prechelt. Design recovery by automated
search for structural design patterns in object-oriented software. In
WCRE ’96: Proceedings of the 3rd Working Conference on Reverse

BIBLIOGRAPHY 63

Engineering (WCRE ’96), page 208, Washington, DC, USA, 1996.
IEEE Computer Society.

[LLSW03] Eunjoo Lee, Byungjeong Lee, Woochang Shin, and Chisu Wu. A
reengineering process for migrating from an object-oriented legacy
system to a component-based system. In COMPSAC ’03: Proceed-
ings of the 27th Annual International Conference on Computer Soft-
ware and Applications, page 336, Washington, DC, USA, 2003. IEEE
Computer Society.

[LSLW05] Eunjoo Lee, Woochang Shin, Byungjeong Lee, and Chisu Wu. Ex-
tracting components from object-oriented system: A transformational
approach. IEICE - Trans. Inf. Syst., E88-D(6):1178–1190, 2005.

[LYC+99] Sang Duck Lee, Young Jong Yang, Eun Sook Cho, Soo Dong Kim,
and Sung Yul Rhew. Como: A uml-based component development
methodology. In APSEC ’99: Proceedings of the Sixth Asia Pacific
Software Engineering Conference, page 54, Washington, DC, USA,
1999. IEEE Computer Society.

[MGL06] Michael Meyer, Tudor Gı̂rba, and Mircea Lungu. Mondrian: an agile
information visualization framework. In SoftVis ’06: Proceedings of
the 2006 ACM symposium on Software visualization, pages 135–144,
New York, NY, USA, 2006. ACM Press.

[MS00] Ludger Martin and Elke Siemon. Component visualization based
on programmer’s conceptual models (poster session). In OOPSLA
’00: Addendum to the 2000 proceedings of the conference on Object-
oriented programming, systems, languages, and applications (Adden-
dum), pages 73–74, New York, NY, USA, 2000. ACM Press.

[NDG05] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̌rba. The story of
moose: an agile reengineering environment. SIGSOFT Softw. Eng.
Notes, 30(5):1–10, 2005.

[Sha53] Claude E. Shannon. Communication theory - exposition of funda-
mentals. IEEE Transactions on Information Theory, 1:44–47, 1953.

[STS99] Vijayan Sugumaran, Mohan Tanniru, and Veda C. Storey. Identifying
software components from process requirements using domain model
and object libraries. In ICIS ’99: Proceeding of the 20th international
conference on Information Systems, pages 65–81, Atlanta, GA, USA,
1999. Association for Information Systems.

BIBLIOGRAPHY 64

[SW89] J. A. Simpson and E. S. C. Weiner. The Oxford English Dictionary,
Second Edition. Oxford University Press, 1989.

[THCS01] Ronald L. Rivest Thomas H. Cormen, Charles E. Leiserson and Clif-
ford Stein. Introduction to Algorithms, Second Edition, chapter 21:
Data structures for Disjoint Sets, pages 498–524. MIT Press and
McGraw-Hill, 2001.

[TM01] A. Taivalsaari and I. Moore. Prototype-Based Object-Oriented Pro-
gramming: Concepts, Languages, and Applications. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2001.

[Tri01] A. Trifu. Using cluster analysis in the architecture recovery of object-
oriented systems. Master’s thesis, University of Timisoara, Septem-
ber 2001.

[Wei99] E. W. Weisstein. Venn diagrams. MathWorld–A Wolfram
Web Resource, 1999. http://mathworld.wolfram.com/
VennDiagram.html.

[WH92] Norman Wilde and Ross Huitt. Maintenance support for object-
oriented programs. IEEE Trans. Softw. Eng., 18(12):1038–1044,
1992.

[WSY+06] Xinyu Wang, Jianling Sun, Xiaohu Yang, Chao Huang, Zhijun He,
and Srinivasa R. Maddineni. Reengineering standalone c++ legacy
systems into the j2ee partition distributed environment. In ICSE ’06:
Proceeding of the 28th international conference on Software engi-
neering, pages 525–533, New York, NY, USA, 2006. ACM Press.

http://mathworld.wolfram.com/VennDiagram.html
http://mathworld.wolfram.com/VennDiagram.html

	Introduction
	Problem Statement
	Proposed Solution
	Outline

	Context
	Reengineering
	Examination
	Alteration
	Procedural Architecture Recovery
	Object-Oriented Architectural Recovery

	Component-Based Software Development
	Our Definition of Object-Oriented Components
	Identifying Components at Design Level
	Identifying Components at Implementation Level

	Related Research
	Summary

	Adaptation of Automatic Techniques
	Shifting Focus
	Global Objects and Procedures
	Referenced Objects and Procedure Calls

	Adapted Heuristics
	Global Object Reference Heuristic
	Same Module Heuristic
	Delta-IC
	Strongly Connected Components
	Dominance Analysis
	Similarity Clustering

	Summary

	Combined and Incremental Techniques
	Combining Results
	Extending Results
	Refining Results

	Collapsing Results
	Negative Information
	Temporary Negative Information
	Final Negative Information
	Accepted Negative Information

	Cluster Completeness
	Cluster Requirements
	Cluster Usage
	Inner Cluster Completeness

	Summary

	The Adapted Interactive Method
	Result Combination and Presentation
	Global Object Reference
	Same Module Heuristic
	Overlapping Results
	Dominance Analysis
	Crafting Reasons
	Annotating Combinations
	Filtering Results
	Hierarchical Filtering

	Component Evaluation
	Visualization Type
	Visualizing Component Composition
	Visualizing Component Interaction
	Visualizing Reasons
	Fine-Grained Visualizations

	Summary

	Case Study
	Prototype Implementation
	Limitations

	Case Study: Moose Namespace
	Statistics
	Candidate Component Detection

	Summary

	Conclusions
	Problem Statement Revisited
	Adapting Automatic Techniques
	Shifting Focus
	Automatic Techniques
	Adaptation Problems

	Combined and Incremental Techniques
	Component Completion

	Component Evaluation
	Future Work

	Prototype
	Bibliography

