
Architectural Extraction in Reverse Engineering

by Prototyping: An Experiment
�

Sander Tichelaar Stéphane Ducasse

Theo Dirk Meijler

Software Composition Group, Universität Bern

(ducasse,tichel)@iam.unibe.ch,tdmeijler@research.baan.nl

http://iamwww.unibe.ch/�(ducasse,tichel)/

1 Introduction

In this workshop proposal we present a prototype approach to help the extraction

of architectural information in the re-engineering process.

Commonly, the re-engineering life-cycle has been de�ned as a succession of the

following tasks: analysis of requirements, model capture (understanding the sys�

tem), problem detection, problem analysis, reorganisation and change propagation

[1]. We have evaluated the bene�t of a prototyping approach with a focus on model

capture. Although prototyping is a known approach to evaluate the application

feasibility, costs, comparison and validation of choices, we focus in this paper on

the aspects of prototyping that are helpful for re-engineering.

In the following sections we �rst present the problem, and afterwards we present

our proposal to solve this problem: a pattern describing how to use prototyping to

extract architectural information from a legacy system.

2 Problems with extraction of architecture

During re-engineering a complex system, understanding its architecture is of pri�

mary importance for the quality of the process itself [1]. Indeed, without under�

standing the architecture the re-engineering can miss some aspects of old systems

that are of key importance.

Problems arise when there is no accurate documentation and when the original

designers and programmers are di�cult to access.

� Good documentationmay be not present due to factors like time-to-market

pressure and inconsistency between code and documentation due to ver�

sioning. Sometimes there is simply no documentation at all. Moreover,

documentation often does not present the why and only focusses on the

how of the design elements: although there is documentation it is not

clear what problem is actually solved, and how the system can be adapted

and extended.

� Access to the original designers and programmers gives the possibility

to discuss about the architecture. But access can be di�cult, because

developers are working on other projects or even worse, left the company

at all.
�This research is supported by the Swiss National Science Foundation, grant 2000-46947.96 and

the FAMOOS European Esprit Project grant 21975.

1

3 A Pattern for Architectural Extraction

In this section we introduce a pattern for the extraction of architectural knowledge

from old systems. The approach uses a prototype to model the extracted informa�

tion.

3.1 The pattern

Name: Architectural extraction using a prototype

Problem: The knowledge of the application architecture is hard to obtain because

existing documentation is missing or inconsistent, and/or the original developers are

gone or di�cult to access.

Symptoms:

� Inconsistent documentation: documentation may appear not to match the

actual implementation. For instance, documented classes are not found in the

code, or classes appear in the code and not in the documentation.

� Lack of useful documentation: often, documentation explains only how the

system is designed and not why. To re-engineer a system you have to under�

stand why decisions have been taken, otherwise the re-engineered system can

have the same problems as the old one, or solutions to problems in the old

system (i.e. knowledge) may be overlooked.

� Even if the original developers are accessible, knowledge may be hard to ex�

tract from them, because they are normally working on the implementation

level.

Solution: Building a prototype that represents the architecture of the part of the

system that you want to understand.

Recipe: The process is iterative and looping :

1. start to identify the aspects, i.e. the main focus points of the system, like for

instance, communication and user interfaces.

2. make an initial design based on the available documentation and discussions

with the developers, if possible.

3. start a prototype according to the initial design.

4. have a running prototype at all stages. This forces you to be complete: a

system has to solve all the problems up to a certain point to be able to

run. In this way you are automatically confronted with known and unknown

problems the old system solves and the prototype should solve: knowledge is

extracted.

5. compare the design with the old code and discuss with the developers about

the design of the prototype. In this way you can �nd out design decisions,

features of the system that are unknown (for instance, because the original

developers left) or undocumented.

6. alter the prototype and the inconsistent documentation according to the dis�

cussions.

7. goto point 4....

2

Example: In the context of the FAMOOS1 project we currently test this approach

for a user interface system for the (remote) control of mail sorting machines for

AEG [4]. This user interface system consists of 350.000 lines of C++-code and it

should be re-engineered to provide for a more �exible and scalable communication

layer. The system is highly complex due to the �exibility of user interfaces and

the intrinsic communication structure. The communication structure now runs into

performance problems while being scaled up to cover more communication nodes.

It should therefore be extensively adapted. This change is hard to achieve, because

of the complete lack of documentation and technical comments in the code.

The prototype clearly helped to extract the architecture of the AEG system

due to discussions with the developers. Assumptions of the prototype developers

proved partly false, but it triggered the developers of the old system to explain the

architecture and its features.

Advantages: Besides the extraction of documentation the prototype approach

o�ers the following advantages:

Extracting knowledge from engineers. The process of prototyping will be an

indirect form of extracting the knowledge of the engineers of the existing

software2. This is also related to the role rapid prototyping plays in certain

"standard" (i.e., forward engineering based) software engineering processes

[3] to �nd out what the users really want. It will give understanding of what

certain parts of the existing software does.

Problem detection. Knowlegde about the existing software can be extracted by

looking for solutions in the existing software for problems that occur in the

prototype. Indeed, when a problem occurs in the prototype it has to have a

solution in the existing software.

Separation of aspects. We can prototype di�erent aspects of software separately.

We may for example, separately prototype a solution to communication and

one for implementing the user interface. Thus, the prototypes may be simpler

to build, allow us to focus on the di�erent aspects. However the necessity for

integration in a �nal solution should be kept in mind.

Awareness. Using a running prototype demands awareness of all the aspects that

you are prototyping, i.e. with a running prototype you know always if the

structure you have in your prototype, has the same behaviour as the old

system.

Limitations: In this pattern we focused on using prototyping in re-engineering.

But due to unclearness of goals, within and without the re-engineering life-cycle,

there may be some problems:

The prototype approach does not �t well in the re-engineering life cycle as pre�

sented in the introduction. The model capture and problem detection and analysis

are mixed in an ad hoc process. This is done by comparing with the old code and

trying to understand it, and the fact that problems are detected and that reorgan�

isations by means of new design are done. (Therefore, the prototype can probably

bene�t from many metrics and other analysis methods as well).

It is also easy to mix re-engineering and forward engineering in the prototype

approach: the use of a prototype always implies a tension between the extraction of

1FAMOOS that stands for Framework-basedApproach for Mastering Object-Oriented Software
Evolution is an European Esprit project.

2Out of our experience, we saw that a prototype can trigger developers to make their knowlegde
explicit (�He, in our system we already solved that problem in this way�).

3

the original architecture and the de�nition of a new one (cleaning up the old one or

clearly changing it). When the prototype is used in the latter goal in mind it may

not reproduce the old architecture. The work involved in building the prototype

may be too much for the sake of extracting the architecture alone. It may be

more attractive to build a prototype, if it is also used for testing possible evolution

schemes of the architecture or new technology, which is the normal use of rapid

prototyping.

Related:

� While building the prototype other analysis methods (e.g. metrics) may help.

� A prototype approach can have other goals like testing target architectures.

� Confrontation with developers in form on question-response discussion based

on class diagrams can give real insights about the architecture of the system

[2]. In comparison the prototype approach is more behavioral oriented in the

sense that this is not the structure of the classes that is the starting point of

the discussion but the behavior of the prototype in terms of its functionality

and properties like �exibility.

References

[1] E. Casais. State of the art in OO re-engineering methods, Oct. 1996. FAMOOS

Achievement Report A1.3.1.

[2] G. Florijn. Class diagrams as support for re-engineering. Personal Communica�

tion.

[3] I. Sommerville. Software Engineering. Addison-Wesley, �fth edition, 1996.

[4] S. Tichelaar. AEC bedienkonzept prototype: A �rst basic design experiment.

Technical report, UniBern, 1997.

4

