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1 Introduction

Old software systems are still in use because they implement useful business tasks.
Unfortunately, they are difficult to adapt. They have been subject to maintenance re-
peatedly, have become less and less comprehensible, and they are closely tied to old
technology.

To address these problems, much research has been carried out to extract busi-
ness objects — groups of data and associated operations — from existing systems.
These business objects are extracted by inspecting sources, documentation, or by ask-
ing the original developers to provide appropriate design information; see, e.g., [6, 2]
for techniques supporting this process. Once they are extracted, they form the basis for
an object-oriented re-implementation of the kernel of the system, a re-implemntation
which thanks to the object-orientation is far more flexible and easier to adapt.

There are three important steps in the extraction of business objects: (1) iden-
tification of potential instance variables; (2) identification of potential methods; (3)
grouping of variables and methods into classes. In this paper, we concentrate on the
third step, for which we propose the use ofcluster analysis, a general technique for
finding groups in data [4].

In this paper we will show that cluster analysis can support the extraction of an
object oriented re-design in that it can

� group instance variables into classes based on the common use of global in the
legacy source code;

� assign methods to classes based on the use of variables in the procedures as
occurring in the legacy code;

� visualize the common use of variables and procedures in the legacy system.
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P1 P2 P3 P4
NAME 1 0 0 0
TITLE 1 0 0 0

INITIAL 1 0 0 0
PREFIX 1 0 0 0

NUMBER 0 0 0 1
NUMBER-EXT 0 0 0 1

ZIPCD 0 0 0 1
STREET 0 0 1 1

CITY 0 1 0 1

Figure 1: The usage matrix that is used as input for the cluster analysis

In the next section, we describe our current experience with using cluster analysis
for the extraction of business objects. We are currently experimenting with a 100
KLOC COBOL system and, although the research is still in a preliminary stage, have
been able to find some useful groupings. In the final section we list issues that require
further discussion or future research.
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house DPFinance, and the Dutch Ministery of Economical Affairs via the Senter Project
#ITU95017 “SOS Resolver”. Our results are based on work done jointly with the au-
thors of [9, 10].

2 Tools and Experiments

When trying to find classes in legacy code, our current emphasis is ondata, i.e., vari-
ables. Because we can perform cluster analysis on a set of variables and their distri-
bution throughout the legacy code, we first need to establish such a set. Obviously,
we need to discriminate between important and unimportant variables. We do this by
looking atdata persistency(whether data is written to file), and by human inspection.

For each of the variables in the set, we determine their location throughout the
code. We determine whether or not a specific variable is used in a particular part of the
code. In our experiments, we determine the usage of variables both per program, and
per section (of a COBOL program). The result of this operation is a matrix, such as
the one in Table 1. Here we have 9 variables, distributed over 4 programs. Each entry
in the matrix shows whether a variable is used in a program (1) or not (0).

Because we want to perform cluster analysis on this data, we need to calculate some
form of distance (or Hamming metric) between the variables. If we see the rows of the
matrix as vectors, then each variable occupies a position in a four dimensional space.
We can now calculate a distance between any two variables, using vector arithmetic.
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For instance, the distance between NAME and CITY from the table in Figure 1 is
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This distance is called theEuclideandistance. Many other distance measures are
possible.

If we put the distances between any two variables in a matrix, we get a so-called
distance, ordissimilaritymatrix. (The greater the distance, the bigger the dissimilar-
ity). Such a dissimilarity matrix can be used as input to a clustering algorithm. We
used an hierarchical clustering algorithm (AGNES, from [4]). This algorithm starts
by putting each element in its own cluster, and then proceeds by creating new clusters
that contain two (or more) clusters that are closest to one another. Finally, only one
cluster remains, and the algorithm terminates. All intermediate clusterings can be seen
as branches on a tree, in a dendrogram. Figure 2(a) shows the dendrogram that results
from clustering the data in Figure 1.

Because our matrix only contains boolean values (either a variable is used in a
program, or it is not), we can also apply a different cluster algorithm. The algorithm
MONA [4] does not take a dissimilarity matrix as input, but works directly on the
matrix from Figure 1. It tries to split all the variables into groups by looking whether
certain attributes are true or false. Figure 2(b) shows the result of this analysis. It shows
that the variables NAME, TITLE, INITIAL, and PREFIX are separated from the others
because of attribute P1. CITY was then separated from the resulting variables because
of attribute P2, and so on. In this case, Figures 2(a) and 2(b) show the same clustering.

Although this example uses only a fraction of the code that we are experimenting
with, we can clearly see two main clusters: one containing information about a persons
name, and the other about a persons address. The address is further divided in a cluster
containing STREET, one containing CITY, and one containing NUMBER, NUMBER-
EXT, and ZIPCD. This is particularly nice, because the combination of a zip-code, a
number and a number extension, uniquely defines an address in The Netherlands. Note
that ordering between CITY and STREET is completely arbitrary. They both have the
same distance to both other clusters.

3 Discussion

We have used the clustering techniques as described in the previous section to split the
central data structure of a COBOL legacy system into smaller substructures. This cen-
tral structure is a single record containing 45 fields, described in a copy book included
in most programs of the system. The clustering performed on this record resulted in
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Figure 2: The resulting clustering from Figure 1

a proposal of 10 classes which was perceived as meaningful by the original system
developers.

These initial results are encouraging, and show that clustering indeed can play a
role in the grouping of variables and visualization of variable use. There are, however,
still a number of important issues that require further elaboration and discussion.

First of all, we still have to investigate how our method complements or can be
combined with other methods. Of particular interest is the relationship withconcept
analysis[8], the use of clustering to measure module cohesion [3, 1], and the use of
clustering for subsystem classification [5, 7].

Secondly, the clustering can be used to assign programs to groups of variables
as well, as illustrated by the program names occuring in Figure 2(b). More work is
needed to understand the role of additional information, such as call dependencies, to
steer the clustering process.

Furthermore, the data set as clustered on in the experiments conducted so far, might
be changed in a number of ways:

� Every textual occurrence of a variable whose postfix matches one of the data
item names is counted as a “use”. More refined versions are possible, taking data
flow into account, and giving different weights to for example variable updates,
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operator arguments, assignments without operators, etc.

� The notion of “proximity” can be refined: at this moment, two variables are
related if they occur in the same program. Alternative groupings involve occur-
rence on the same control flow path, use in the same procedure, etc.

� The experiments suggest that it makes little difference whether to take frequen-
cies of variable occurrences into account. Can this phenomenon be explained?

� The experiments use a very large data set, which includes a fairly significant
amount of noise. It may be possible to improve the clusters found by drastically
reducing the data set.
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