
FAMIX Ada language plug-in 2.2

Author Robb Nebbe (nebbe@iam.unibe.ch)

Version 2.2

Last modified 1999-08-17

1 Abstract
This document defines a language plug-in for FAMIX, the FAMOOS information exchange
model [Deme99]. It extends and interprets the FAMIX core model to cover the essential
entities from the Ada programming language.

2 Notation
The common exchange model is modified in three different ways to handle Ada:

• Attributes are generalised and moved higher into the classes comprising the FAMIX
model. In particular the class entity is extended with the method enclosingEntity and
isPrivate in order to better handle nesting. This replaces several attributes found lower in
the class hierarchy which are retained (to not break tools that work at the language-
independent level), but subsequently interpreted to correspond to the more general
attributes.

• New attributes are added to existing classes of the common exchange model. In this case
the class is marked "modified" and only the new and modified (see below) attributes are
listed in the definition of the modified class.

• The definition of attributes of existing classes are modified or their syntax and semantics
are interpreted with respect to Ada. To discriminate modified from new attributes,
modified attributes are listed without any type information since that information isn’t
modified anyway.

3 Modified classes

3.1 Model (interpreted)

Model
SourceLanguage

SourceDialect

Figure 1: Model

• SourceLanguage
For all Ada models the attribute always contains the string "Ada"

• SourceDialect
This attribute should correspond to the standard defining the version of the language. In
the case of the most recent version of Ada this should be "ANSI/ISO/IEC-8652:1995"

3.2 Entity (interpreted and extended)

Entity
name

uniqueName

enclosingEntity (): Name # new

isPrivate ():Boolean # new

Figure 2: Entity

The name of an entity corresponds to its simple name in Ada. The unique name corresponds
to the fully qualified name in Ada but may also require extra information such as the signature
in the case of subprograms1.

The method enclosingEntity returns the unique name of the entity in which another is declared
unless the entity is a library level compilation unit in which case it returns an empty string "".
The method isPrivate tells whether the entity in question is made public or private with
respect to the enclosing entity.

3.3 Package (interpreted)

Package
belongsToPackage

Figure 3: Package

• belongsToPackage():Name;
When a package is nested within another package or in the case of a child package this
method returns the name of the enclosing package or the parent package. If a package is
nested inside another entity such as a subprogram then the method will return the empty
string. If both belongsToPackage and enclosingEntity are defined then they will return
the same entity.

3.4 Class (interpreted)

Class
isAbstract
belongsToPackage

Figure 2: Class

Ada types are all mapped to the class entity in FAMIX with the exception of access types and
subtypes. Neither access types or subtypes introduce a new abstraction in the problem
domain. Furthermore, pointers are conventionally implicit in traditional object-oriented
languages and metrics would be skewed if access types were not eliminated in Ada.

This means that enumeration, signed integer, modular, floating point, fixed point, decimal
fixed point, unconstrained and constrained array, record and tagged record types as well as
task and protected types are all mapped to the class entity.

• isAbstract():Boolean
True if the class corresponds to an abstract tagged record type.

1 Note that that "subprogram" is the generic term for procedures and functions (and thus for methods in FAMIX)
in Ada terminology.

• belongsToPackage():Name;
When a class is nested within a package this method returns the name of the enclosing
package. If a class is nested inside another entity than a package (such as a subprogram)
then the method will return the empty string. If both belongsToPackage and
enclosingEntity are defined then they will return the same entity.

3.5 Method (interpreted)

Method
belongsToClass

isAbstract

signature

declaredReturnClass

Figure 3: Method

Methods correspond to Ada’s primitive subprograms and class-wide subprograms. This is
because both primitive and class-wide subprograms are already defined for or will be derived
for any derived types. Task entries as well as the entries, functions and procedures defined
for protected types are also considered as methods.

• belongsToClass():Name
Returns the class for which the subprogram is either a primitive method or a class-wide
subprogram. Note that in Ada subprograms are not nested in a type so
enclosingEntity is never the same as belongsToClass.

• isAbstract():Boolean
True if the corresponding subprogram is abstract.

• signature():Qualifier
The signature consists of the name of the method and the names and types of its
parameters. If there, resulttypes are concatenated at the end of the signature as well.
Contrary to other object-oriented languagues parameter names and resulttypes are part of
the unique identification of a method in Ada
The string should be formed by "methodname(parname:partype, …)[:returntype]" where
parname is the formal parameter name and partype is the unique name of the class to
which the type corresponds. Returntype only appears when available.
Example:
If we take the following Ada code:

 package P is
 type T is tagged private;
 function Method_A(X:Integer; Y:Boolean) return T;
 procedure Method_B(A_T: in out T; Y: in Boolean);
 procedure Method_B(A_T: in out T; X: in Integer);

 private ...
 end P;

for Method_A the signature is:
 "Method_A(X:Integer,Y:Boolean):T"

for the two methods Method_B the signatures are:

 "Method_B(A_T:T,Y:Boolean)"
 "Method_B(A_T:T,X:Integer)"

• declaredReturnClass():Name
The result of a method corresponding to a function in Ada is obtained through
declaredReturnClass, which returns the class corresponding to the Ada type
returned by the function.

3.6 Function (interpreted)

Function
signature

declaredReturnClass

Figure 4: Function

A FAMIX function corresponds to any subprogram that does not qualify as a method. In Ada
terminology the choice of function is rather unfortunate but it is kept for compatibility. It is
essentially the same as a method except it does not have the method belongsToClass or the
method isAbstract.

3.7 Attribute (extended and interpreted)

Attribute
belongsToClass

signature():Qualifier # new

declaredReturnClass():Name # new

Figure 5: Attribute

A FAMIX attribute corresponds to an Ada record component. It is similar to a method except
that an attribute may not be abstract. In Ada a private type declaration leads to a situation
where the type is not private but the attributes (record components) are private. An extension
is that attributes are considered as having a signature consisting of a single parameter whose
class is the class to which the attribute belongs. Since record components are always nested
in a type the enclosing entity will always be the same as the result of belongsToClass.

3.8 GlobalVariable (interpreted)

GlobalVariable
declaredClass

Figure 6: GlobalVariable

A global variable corresponds to any variable or constant declared in a package thus having a
lifetime corresponding to that of the program.

• declaredClass():Name
The type of the variable or in the case of an access type the type accessed.

3.9 LocalVariable (interpreted)

LocalVariable
declaredClass

Figure 7: LocalVariable

A global variable corresponds to any variable or constant declared local to a subprogram thus
having a lifetime corresponding to an invocation of the subprogram.

• declaredClass():Name
The type of the variable or in the case of an access type the type accessed.

3.10 FormalParameter (interpreted)

FormalParameter
declaredClass

position

Figure 8: FormalParameter

A formal parameter means the same thing in both FAMIX and Ada. The parameter modes as
well as access parameters are not carried over into the FAMIX model. A formal parameter is
never private as it corresponds to an association formed between a visible entity and those
defined by the parameter. If the formal parameter is an access parameter, an access type or a
subtype then declaredClass returns the type accessed or the base type of the subtype.

• declaredClass
The type of the formal parameter. Access parameters are contrued as being of the type
accessed.

3.11 InheritanceDefinition (interpreted)

InheritanceDefinition
subclass

superclass

Figure 9: InheritanceDefinition

An inheritance definition corresponds to a type derivation in Ada. The subclass corresponds
to the derived type and the superclass to the base type. All type derivations are considered as
an inheritance definition even if the types involved are not tagged types.

• subclass():Name
Returns the uniqueName of the derived type.

• superclass():Name
Returns the uniqueName of the base type.

3.12 Access (interpreted)

Access
accesses

accessedIn

Figure 10: Access

An access corresponds to any time that an attribute (record component) is used in an
expression or statement. Accesses is the attribute being accessed and accessedIn is the entity
from which the access is made.

• accesses():Name
The uniqueName of the attribute.

• accessedIn():Name
The uniqueName of the behavioural entity from which that attribute is accessed.

3.13 Invocation (interpreted)

Invocation
invokes

invokedBy

Figure 11: Invocation

An invocation corresponds to a subprogram call in Ada. The method invokes is the name of
the subprogram being called but not the unique name because this may be impossible due to
polymorphism. The method invokedBy is the unique name of the behavioural entity from
which the subprogram is invoked.

• invokes():Name
The uniqueName of the subprogram that is being called. In the case of polymorphism this
subprogram may have been overridden by a derived type so another implementation may
actually be executed.

• invokedBy():Name
The uniqueName of the subprogram that calls the other subprogram.

4 Miscellaneous
Generic entities are not covered by this plug-in. Their instantiations are however, and they are
treated as if they were written from scratch rather than instantiated from a generic. Implicit
declarations occurring in the case of type derivation should be handled the same as explicit
declarations.

5 References
[Deme99] Serge Demeyer, Sander Tichelaar and Patrick Steyaert, FAMIX – The FAMOOS

Information Exchange Model, version 2.0 alpha, July 1999. See
http://www.iam.unibe.ch/~famoos/FAMIX/.

Cover Pages
Achievement 2.4.1c

FAMIX Ada language plug-in 2.2
1) Identification
Project Id: Esprit IV #21975 “FAMOOS”

Deliverable Id: D 2.2 – FINALFHB Final FAMOOS Methodology
Handbook

Date for delivery: 31.08.99

Planned date for delivery: 31.08.99

WP(s) contributing to: 1

Author(s): Robb Nebbe

2) Abstract
This document defines a language plug-in for FAMIX, the FAMOOS information exchange
model [Deme99]. It extends and interprets the FAMIX core model to cover the essential
entities from the Ada programming language

3) Keywords
Object-oriented, reengineering, reverse engineering, code repository, round-trip engineering,
FAMOOS, FAMIX, Ada.

4) Version History
Ver Date Editor(s) Status & Notes

2.2 alpha 24.08.99 Robb Nebbe

2.2 25.08.99 Sander Tichelaar

5) Issues for future releases

6) Table of Contents

FAMIX Ada language plug-in 2.2 ...1

1 Abstract ...1

2 Notation ...1

3 Modified classes ..1

3.1 Model (interpreted) ...1
3.2 Entity (interpreted and extended) ...2
3.3 Package (interpreted) ..2
3.4 Class (interpreted)...2
3.5 Method (interpreted) ...3
3.6 Function (interpreted) ...4
3.7 Attribute (extended and interpreted)...4
3.8 GlobalVariable (interpreted)...4

3.9 LocalVariable (interpreted)...5
3.10 FormalParameter (interpreted)..5
3.11 InheritanceDefinition (interpreted) ...5
3.12 Access (interpreted) ..5
3.13 Invocation (interpreted) ..6

4 Miscellaneous..6

5 References ...6

Cover Pages ...7

1) Identification ..7
2) Abstract ..7
3) Keywords ...7
4) Version History..7
5) Issues for future releases ..7
6) Table of Contents ...7
7) List of Figures ..8
8) List of Tables ...8

7) List of Figures
Figure 1: Model ..1

Figure 2: Entity ...2

Figure 3: Package ...2

Figure 2: Class ..2

Figure 3: Method ..3

Figure 4: Function...4

Figure 5: Attribute ..4

Figure 6: GlobalVariable ..4

Figure 7: LocalVariable..5

Figure 8: FormalParameter ...5

Figure 9: InheritanceDefinition ..5

Figure 10: Access ...5

Figure 11: Invocation..6

8) List of Tables

