
FAMIX C++ language plug-in 1.0

Author Holger Bär (baer@fzi.de)

Version 1.0

Last modified 1999-09-07

1 Abstract
This document defines a language plug-in for FAMIX, the FAMOOS information exchange
model [Deme99]. It extends, instantiates and modifies the FAMIX core model to cover most
of the entities and relationships that can be found in C++ source code.

2 Notation
The common exchange model is modified in three different ways to handle C++ sources:

• New classes are added to the basic FAMIX model to model entities and associations
unique to C++. These classes are marked as new entities and new associations
respectively.

• New attributes are added to existing classes of the basic FAMIX model. In this case the
class is marked "modified" and only the new and modified (see below) attributes are listed
in the definition of the modified class.

• The definition of attributes of existing classes are modified or their syntax and semantics
are instantiated for C++. The instantiation case mostly occurs for attribute definitions in
the core model having a phrase like “… is a language dependent issue”.
Like with new attributes the corresponding class is marked "modified" and the modified
attributes are listed in the definition of the modified class. To discriminate modified from
new attributes, modified attributes are listed without any type information since that
information isn't modified anyway.

3 Modified classes

3.1 Class (interpreted and extended)

Class
instantiatesTemplate (): Name # new

friendsAt (pos Integer): Name # new

isUnion (): Boolean

isAbstract

Figure 1: Class

Each definition of a class in source code constitutes this entity. A class definition in C++ takes
the form
class A { ... };
in contrast to a class declaration of the form:
class A;

Structures (struct) are modelled as classes. They differ only from classes in their members
and base classes being public by default in spite of private in the case of classes. So only the
parser must know the difference between classes and structures.

Unions (union) are also modelled as classes. They are a kind of restricted classes: they can’t
have any base classes, can’t be used as base classes, have no virtual methods, have no static
methods or attributes. For a detailed description of all restrictions to unions please refer to
[ISO98].

The new or modified attributes are:

• instantiatesTemplate: Name; optional
If the class is a template instantiation this attribute refers to the corresponding template.
The uniqueName of the class template is used as a reference. How to deal with class
templates is described in section 4.1.

• friends: 0 .. N Name; optional
This is a multi-valued attribute holding all friend classes and friend behavioural entities of
a class. The friend entities are referenced by their uniqueName.

• isUnion: Boolean; optional
This attribute is true, iff a C++ union is modelled by this entity.

• isAbstract
In C++ a class is abstract, iff at least one of its methods is abstract.

3.2 BehaviouralEntity (interpreted and extended)

BehaviouralEntity
baseReturnType (): Name # new

instantiatesTemplate (): Name # new

accessControlQualifier

signature

Figure 2: BehaviouralEntity

The new and modified attributes are:

• baseType: Name; optional
The core model defines the totally not interpreted attribute declaredReturnType and the
attribute declaredReturnClass, which refers to the class in the return type declaration of
the Behavioural Entity, if there is any. For Behavioural Entities with a fundamental return
type, for example, there is no declared class. The new attribute baseReturnType is similar
to the declaredReturnClass attribute: it refers to the most specific type representable in the
language model, i.e., core model plus language plug-in. If we have C* f() in the source
code, the baseReturnType of f is class C with the current language plug-in. If future
versions of the C++ plug-in would also define pointers as type entities, the
baseReturnType would refer an array entity referring to the class C.
baseReturnType can’t replace declaredReturnClass, because generic FAMIX readers
wouldn’t see the class C, where the type declaration ends, because they don’t know the
intermediate pointer entity.

• instantiatesTemplate: Name; optional
If the BehaviouralEntity is a template instantiation this attribute refers to the
corresponding function template. The uniqueName of the function template is used as a
reference. How to deal with function templates is described in section 4.2.

• accessControlQualifier
The two behavioural entities, Method and Function, have different sets of allowed access
qualifiers in C++. Functions have the access qualifiers static (local to compilation
unit) and extern (global). The access to Methods can be controlled by the qualifiers
public, protected and private.

• signature
The signature string takes the form name(T1,T2, ... ,Tn) (without spaces) where
name is the method name and T1..n are the types of the formal parameters of the method.
Constant parameters of type T have the form: const T.

3.3 Method (interpreted and extended)

Method
isDestructor (): Boolean # new

isOperator (): Boolean # new

isVirtual (): Boolean # new

isConst (): Boolean # new

accessControlQualifier

signature

isAbstract

isConstructor

uniqueName

Figure 3: Method

Each declaration of a method in source code constitutes this entity. One could have expected
each method definition to constitute this entity, but in C++ a method declaration can be used
to just manipulate the access to inherited methods. This can only be represented by a new
Method entity.

The new or modified attributes are:

• isDestructor: Boolean; optional
Indicates whether or not the method is a destructor. A destructor is a method with no
declared return type and a name equal to the name of the class it belongs to prepended
with the tilde character ~.

• isOperator: Boolean; optional
Indicates whether or not the method is an operator function.

• isVirtual: Boolean; optional
Indicates whether or not the method is declared virtual.

• isConst: Boolean; optional
Indicates whether or not the method is declared constant. Constant methods assert, that
they do not alter the object’s attributes, so that they can safely be called upon constant
objects.

• accessControlQualifier
The allowed access qualifiers are: public (access for anyone), protected (access
restricted to derived classes) and private (access only from within the class).

• isAbstract
A method is abstract, iff it is declared as pure virtual, e.g.: virtual void m() = 0;

• isConstructor
A constructor is a method with no declared return type and a name identical to the name
of the class it belongs to.

• uniqueName
const is appended to the unique name without whitespace, iff isConst is true.

3.4 Function (interpreted)

Function
accessControlQualifier

Figure 4: Function

Each definition of a global function in source code constitutes this entity.

The modified attributes are:

• accessControlQualifier
The allowed access qualifiers are: static and extern.
They indicate whether the function is declared external, i.e. globally accessible from all
compilation units (each compilation unit results in an object file *.obj), or), which is
default for global functions in C++, or static. Static functions are local to a translation unit
and can be declared using the keyword static like in:
static int helperFunc(int n) { ... }

3.5 StructuralEntity (extended)

Attribute
baseType (): Name # new

isConstant (): Boolean # new

Figure 5: StructuralEntity

The new or modified attributes are:

• baseType: Name; optional
The core model defines the totally not interpreted attribute declaredType and the attribute
declaredClass, which refers to the class in the type declaration of the Structural Entity, if
there is any. For Structural Entities of fundamental type, for example, there is no declared
class. The new attribute baseType is similar to the declaredClass attribute: it refers to the
most specific type representable in the language model, i.e. core model plus language
plug-in. If we have C* a[] in the source code, the baseType is class C with the current
language plug-in. If future versions of the C++ plug-in would also define pointers and
arrays as type entities, the baseType would refer an array entity referring to a pointer
entity referring to the class C.
BaseType can’t replace declaredClass, because generic FAMIX readers wouldn’t see the
class C, where the type declaration ends, because they dont’t know the intermediate
entities array and pointer.

• isConstant: Boolean; optional
The const modifier is used in type declarations to express that the declared object must
not be altered after its initialisation. This information could be interesting, e.g., to search
for variables not declared as constant but only accessed once for writing. In such cases it
is likely that the variable is a constant indeed and could therefore declared constant. In
doing so future modifications of the source code cannot accidentally alter this variable.

3.6 Attribute (interpreted)

Attribute
accessControlQualifier

Figure 6: Attribute

The new or modified attributes are:

• accessControlQualifier
The allowed access qualifiers are: public (access for anyone), protected (access
restricted to derived classes) and private (access only from within the class).

3.7 GlobalVariable (interpreted)

GlobalVariable
accessControlQualifier (): Qualifier # new

Figure 7: GlobalVariable

Each definition of a global variable in source code constitutes this entity.

The new or modified attributes are:

• accessControlQualifier: Qualifier; optional
The allowed access qualifiers are: static and extern.
They indicate whether the variable is declared external, i.e. globally accessible from all
compilation units (each compilation unit results in an object file *.obj), or), which is
default for global variables in C++, or static. Static variables are local to a translation unit
and can be declared using the keyword static like in:
static int helper;

3.8 InheritanceDefinition (interpreted and extended)

InheritanceDefinition
isVirtual (): Boolean # new

accessControlQualifier

index

Figure 8: InheritanceDefinition

The new or modified attributes are:

• isVirtual: Boolean; optional
Indicates whether or not the inheritance is virtual, i.e., whether a class that is derived from
the same base class multiple times via different paths, should include the data members of
the base class only once or not.

• accessControlQualifier
The allowed access specifiers are: public, protected, private. The specifier
sets the maximum access that clients of the derived class will have to the features of the
base class.

• index
The index is always ´null´ as name collisions in C++ are not resolved by the order of the
base classes.

3.9 Access (extended)

Access
receivingClass (): Name # new

receivingVariable (): Name # new

Figure 9: Access

The new or modified attributes are:

• receivingClass: Name; optional
The statically determinable class of the expression receiving the variable access. For
example:
C* r;
r->v = 0;
Then C is the receiving class of this access. The receiving class is ´null´ for accesses to
global variables. For accesses to local variables and to formal parameters the receiving
class is the class the method defining the local variables resp. parameters belongs to, i.e. it
is ´null´ for local variables and parameters of global methods (functions). The receiving
class is referenced by its uniqueName.

• receivingVariable: Name; optional
The variable r in the above example. The receiving variable is ´null´ for accesses to global
or local variables, to formal parameters and within "chain calls". For example the access
to attr in r.m1().attr has no receiving variable. The receiving variable is
referenced by its uniqueName.

3.10 Invocation (extended)

Invocation
receivingVariable (): Name # new

base

Figure 10: Invocation

The new or modified attributes are:

• receivingVariable: Name; optional
The variable r in the above example. The receiving variable is ´null´ for invocations of
static or global methods and within "chain calls". For example the call to m2 in
r.m1().m2() has no receiving variable. The receiving variable is referenced by its
uniqueName.

• base: Name; optional
In C++ this attribute contains the statically determinable class of the expression receiving
the invocation. For example:
C* r;
r->m();
Then C is the receiving class of this invocation. For method invocations the candidate
attribute holds all methods overriding the method base::invokes.

4 New classes
The new classes from 4.3 to 4.6 all define entities representing a type in C++. Consequently
they can be referred in the attributes baseType and baseReturnType.

4.1 ClassTemplate

ClassTemplate
templateParameterAt (pos Integer): Qualifier

Figure 11: ClassTemplate

This new entity models class templates of C++. It inherits from the entity Class of the core
model. One could argue that Class Templates are no proper subclasses of Classes, because
they cannot be used in every place a Class can be used, e.g., as the target of a reference via a
declaredClass attribute. This is because class templates are no classes but only a template for
a class that needs its template parameters to be instantiated to become a proper class. On the
other hand the ClassTemplate entity needs all the attributes of a Class entity plus an attribute
describing its template parameters. Even the newly defined attribute instantiatesTemplate
makes sense, since class templates can be partially instantiated. So letting ClassTemplate not
inherit from Class would mean to define a new entity with exactly the same attributes like an
existing one plus one attribute. Therefore ClassTemplate inherits from Class. The same
argumentation also applies to the new entity FunctionTemplate defined below also inheriting
from its corresponding core model entity Function.

The methods an attributes of a class template are modelled as Method and Attribute
respectively. If it is necessary to determine whether a method/attribute is part of a template
definition, this can be decided by looking at the type of the entity referred by the
belongsToClass attribute of the method/attribute.

The usage of one of the template parameters within the class template, e.g., for a type
declaration of an attribute or within a function signature, is modelled by a reference to the
template parameter. Template parameters are defined in 4.3.

Fully instantiated class templates are modelled as ordinary classes with their template
parameters substituted accordingly. Partially instantiated templates are themselves templates
with only the bound template parameters substituted accordingly. Each different instantiation
produces a different Class or ClassTemplate entity. The instantiated copies have the bound
template parameters appended to the uniqueName attribute they would get as an ordinary
class in the form of a comma separated list in <> without spaces, e.g.: P::C<D,int>.

Besides the attributes inherited from Class, the new or modified attributes are:

• templateParameters: 0 .. N Name; mandatory
This attribute holds all template parameters of the modelled class template definition. The
entities defined within the class template can use these names, e.g., as their declared type.

4.2 FunctionTemplate

FunctionTemplate
templateParameterAt (pos Integer): Qualifier

Figure 12: FunctionTemplate

This new entity models function templates. It inherits from the entity Function of the core
model instead of defining a new heir of Entity for the same reasons as with class templates
(see 4.1 for a discussion).

The usage of one of the template parameters within the function template, e.g., within the
function signature or the type of a local variable, is modelled by a reference to the template
parameter. Template parameters are defined in 4.3.

Fully instantiated function templates are modelled as ordinary functions with their template
parameters substituted accordingly. Partially instantiated templates are themselves templates
with only the bound template parameters substituted accordingly.

Besides the attributes inherited from Function, the new or modified attributes are:

• templateParameters: 0 .. N Name; mandatory
This attribute holds all template parameters of the modelled function template definition.
The entities defined within the template can use these names, e.g., as their declared type.

4.3 TemplateParameter

TemplateParameter
belongsToTemplate (): Name

Figure 13: TemplateParameter

This new entity models template parameters of a ClassTemplate or FunctionTemplate entity.
It inherits from Entity and defines no new attributes.

Besides the attributes inherited from Entity, the new or modified attributes are:

• belongsToTemplate: Name; mandatory
Refers to the unique name of the Template the TemplateParameter is a parameter of.

The formula for uniqueName is:
uniqueName (templParam) = belongsToTemplate (templParam) +

“.” + name (templParam)

4.4 FunctionType

FunctionType
signature (): Qualifier

declaredReturnType (): Qualifier

declaredReturnClass (): Name

baseReturnType (): Name

belongsToContext (): Name

isOperator (): Boolean

Figure 14: FunctionType

This new entity models the declaration of a function type.

It shares some attributes with BehaviouralEntity but the attributes of BehaviouralEntity
describing its role as an callable piece of code do not apply. Unlike Method and Function a
FunctionType can be defined in any scope resulting in an attribute belongsToContext that can
refer to Package, Class, Method or Function.

The attributes of FunctionType are then:

• signature: Name; mandatory
The signature is defined as in BehaviouralEntity but lacks the name in front of the left
bracket.

• belongsToContext: Name; mandatory
Refers to the scope (Package, Class, Method or Function) the function type is declared in.
The reference is established by the unique name of the scope.

• The remaining attributes defined above have exactly the same syntax and semantic as they
have in the definition of BehaviouralEntity and Method.

The formula for uniqueName is:
uniqueName (funcType) = belongsToContext (funcType) + “.” +

signature (funcType)

4.5 EnumerationType

EnumerationType
belongsToContext (): Name

Figure 15: EnumerationType

This new entity models the declaration of an enumeration type (enum).

Enumeration types are modelled because they are often used, especially in not pure object-
oriented systems, to describe different options or states (e.g., drawing modes, output
destinations). This way they introduce dependencies within the system.

The only attribute of EnumerationType is:

• belongsToContext: Name; mandatory
Refers to the scope (Package, Class, Method or Function) the enumeration type is declared
in. The reference is established by the unique name of the scope.

The formula for uniqueName is:
uniqueName (enumeration) = belongsToContext (enumeration) +

“.” + name (enumeration)

4.6 TypeDef

TypeDef
declaredReturnType (): Qualifier

declaredReturnClass (): Name

baseReturnType (): Name

belongsToContext (): Name

Figure 16: TypeDef

This new entity models type aliasing via the typedef keyword.

The attributes of TypeDef are:

• belongsToContext: Name; mandatory
Refers to the scope (Package, Class, Method or Function) the type alias is declared in. The
reference is established by the unique name of the scope.

• The remaining attributes defined above have the same syntax and analogous semantic as
they have in the definition of StructuralEntity.

The formula for uniqueName is:
uniqueName (typeDef) = belongsToContext (typeDef) + “.” +

name (typeDef)

4.7 TypeCast

TypeCast
belongsToBehaviour (): Name

fromType (): Name

toType (): Name

Figure 17: TypeCast

This new association models type cast like (C*)pointer .

Type casts are interesting for re-engineering as they often point to problems in the design of a
system. There will be an instance of this class for every type cast occuring in the source code,
even if the cast is between the same types, because we are interested in all the places where
casts occur.

The attributes of TypeCast are:

• belongsToBehaviour: Name; mandatory
Refers to the BehaviouralEntity the cast appears in.

• fromType: Name; optional
Refers to the unique name of the declared type the casted expression has. This is the type
of pointer in the above example.

• toType: Name; optional
Refers to the unique name of the type the expression is casted to (C* in the above
example).

4.8 SourceFile

SourceFile

Figure 18: SourceFile

This new entity models a file of the source code (header file or implementation file). It
defines no additional attributes.

Source files are a grouping unit in C++. An implementation file plus all included header files
even defines a scoping unit, the compilation unit (see the definition of Function 3.4 and
GlobalVariable 3.7).

The structure of the relationships between source files created by include directives gives a
rough overview about the dependencies in the system, because a dependency between two
entities always is only possible with an include dependency between the files the two entities
are defined in. This makes source files together with their include relations quite important for
re-engineering purposes.

The values of the name and uniqueName attributes are specific to the operating system
used to compile the sources. One could think of the full path or of a relative path starting from
a common root directory that contains any source files of the system in one of its
subdirectories.

4.9 Include

Include
includingFile (): Name

includedFile (): Name

Figure 19: Include

This new association models an include directive of the preprocessor.

The structure of the relationships between source files created by include directives gives a
rough overview about the dependencies in the system, because a dependency between two
entities always is only possible with an include dependency between the files the two entities
are defined in. This makes source files together with their include relations quite important for
re-engineering purposes.

The attributes of Include are:

• includingFile: Name; mandatory
Refers to the file containing the include directive.

• includedFile: Name; mandatory
Refers to the file included by the include directive.

5 Excluded features of C++
Some features of C++ are not covered by this language plug-in:

• Type constructors *, [] and &.
The interesting thing for re-engineering purposes with these type constructors is that the
array constructor expresses multiplicity and the pointer constructor may mean multiplicity
or reference. The reference operator is only a specification for code generation.

• Fundamental types and their operations.
They do not carry interesting information and pollute the model of the system as, e.g.,
nearly every class uses some fundamental types.

• Anonymous classes.
Anonymous classes are not modelled explicitly because they can only be referenced
locally, e.g., as an actual parameter in a function or method call. We only see two possible
local references:

• References to the class as a type as in typedef {int i; ... } moronsType.
Then we can set the declaredType to the whole class definition and leave baseType
and declaredClass blank.

• References to the class as a value, e.g. as an actual parameter.
Then we can treat them as a ComplexExpression.

• Nested classes

• The modifiers inline, volatile, auto and register.
These modifiers concern only the code generation and are therefore of no interest for re-
engineering.

• Pointers to class members.
We can model them as normal pointers by ignoring the fact that it can only access values
within a certain class.

• Exceptions.
If exceptions prove to be of interest we could model them as follows:

• A Class for every exception. Exceptions are classes in fact anyway.

• Ignoring the try block.

• The throwing (throw) of an exception is modelled as a call to the constructor of the
exception.

• The catch statement results in a definition of a local variable with the type of the
catched expressions.

6 References
[Deme99] Serge Demeyer, Sander Tichelaar and Patrick Steyaert, FAMIX – The
FAMOOS Information Exchange Model, version 2.0 alpha, July 1999. See
http://www.iam.unibe.ch/~famoos/FAMIX/.

[ISO98] International Standard ISO/IEC 14882, Programming Languages — C++, First
Edition 1998-09-01, American Natinal Standards Institute, New York.

Cover Pages
Achievement 2.4.1a

FAMIX C++ language plug-in 1.0

1) Identification
Project Id: Esprit IV #21975 “FAMOOS”

Deliverable Id: D 2.2 – FINALFHB Final FAMOOS Methodology
Handbook

Date for delivery: 31.08.99

Planned date for delivery: 31.08.99

WP(s) contributing to: 1

Author(s): Holger Bär

2) Abstract
This document defines a language plug-in for FAMIX, the FAMOOS information exchange
model [Deme99]. It extends, instantiates and modifies the FAMIX core model to cover most
of the entities and relationships that can be found in C++ source code.

3) Keywords
Object-oriented, reengineering, reverse engineering, code repository, round-trip engineering,
FAMOOS, FAMIX, C++.

4) Version History
Ver Date Editor(s) Status & Notes
1.0beta 24.08.99 Holger Bär

1.0 25.08.99 Sander Tichelaar

5) Issues for future releases

6) Table of Contents

FAMIX C++ language plug-in 1.0 ...1

1 Abstract ...1

2 Notation ...1

3 Modified classes ..1

3.1 Class (interpreted and extended)...1
3.2 BehaviouralEntity (interpreted and extended)..2
3.3 Method (interpreted and extended)...3
3.4 Function (interpreted) ...4
3.5 StructuralEntity (extended)...4
3.6 Attribute (interpreted) ...5
3.7 GlobalVariable (interpreted)...5
3.8 InheritanceDefinition (interpreted and extended)...5

3.9 Access (extended) ...6
3.10 Invocation (extended) ...6

4 New classes ..7

4.1 ClassTemplate...7
4.2 FunctionTemplate ...7
4.3 TemplateParameter ...8
4.4 FunctionType ..8
4.5 EnumerationType..9
4.6 TypeDef ..9
4.7 TypeCast ...10
4.8 SourceFile ...10
4.9 Include ..11

5 Excluded features of C++ ..11

6 References ...12

Cover Pages ..13

FAMIX C++ language plug-in 1.0...13
1) Identification ..13
2) Abstract ..13
3) Keywords ...13
4) Version History..13
5) Issues for future releases ..13
6) Table of Contents ...13
7) List of Figures ..14
8) List of Tables ...15

7) List of Figures
Figure 1: Class ..1

Figure 2: BehaviouralEntity..2

Figure 3: Method ..3

Figure 4: Function...4

Figure 5: StructuralEntity ...4

Figure 6: Attribute ..5

Figure 7: GlobalVariable ..5

Figure 8: InheritanceDefinition ..5

Figure 9: Access ...6

Figure 10: Invocation..6

Figure 11: ClassTemplate ...7

Figure 12: FunctionTemplate ...7

Figure 13: TemplateParameter ...8

Figure 14: FunctionType ..8
Figure 15: EnumerationType..9

Figure 16: TypeDef...9

Figure 17: TypeCast ...10

Figure 18: SourceFile ...10

Figure 19: Include...11

8) List of Tables

