Transform Conditionals: a
Reengineering Pattern
Language

Serge Demeyer, Stéphane Ducasse and Oscar Nierstrasz
Serge.Demeyer@uia.ua.ac.be
{ducasse,oscar}@iam.unibe.ch

Abstract. The reengineering pattern presented in this paper shows how you can
transform conditionals in object-oriented code to improve the flexibility of appli-
cation.

1. Introduction

Legacy systems are not limited to the procedural paradigm and languages like Cobol. Even if
object-oriented paradigm promised the building of more flexiblesystems and the ease in their
evolution, nowadays object-oriented legacy systems existin C++, Smalltalk or Java. These leg-
acy systems need to be reengineered to meet new requirements. The goal of the Famoos Esprit
project was to support the evolution of such a object-oriented legacy systems towards frame-
works.

Inthis context, we used patterns as a way to record reengineering expertise. We wrote reverse
engineering patterns that record how to extract information of the legacy systems from the
code, the organization or the people [Deme99a] and reengineering patterns that present how
code can be transformed to support new requirements, to be more flexible or to simply follow
object-oriented design [Duca99dtansform Conditional is a reengineering pattern that
presents how conditionals can be transformed to improve the flexibility of object-oriented ap-
plication.

AcknowledgementsThis work has been funded by the Swiss Government under Project no.
NFS-2000-46947.96 and BBW-96.0015 as well as by the European Union under the ESPRIT
program Project no. 21975. We would like to thanks the attendees of the SCG internal work-
shop writer at the Universitu of Bern: Serge Demeyer, Pietro Malorgio, Tamar Richner,Matth-
ias Rieger and Sander Tichelaar.

Transform Conditional

Transform Conditional

Transform Conditional is a pattern language describing how switch statements are trans-
formed into code that is more flexible and exhibits less coupling between classes. This pattern
language consists of four pattermansform Self Conditional to Subclassing, Transform Cli-

ent Conditional to Polymorphism, Apply State andApply Null Object. For Apply State
andApply Null Object our intention is not to copy two established design pattesrste and
NullObjectbut rather to provide a more specific reading with a focus on reengineering. We in-
vite the reader to read [Gamm95a, Alpe98a, Dyso098a] and [Wool98a] for the original descrip-
tion of theState andNullObject.

The following picture summarizes their differences.

Transform Conditional

id a self type . _
over a provider type Transform Self Conditional to Subclassing

Transforr\Conditional to Polymorphism

over nW| values Apply State Pattern

Apply Null Object

Transform Self Conditional to Subclassing eliminates switch statements over type in-
formation by introducing subclasses for each type case, and by replacing the conditional
code with a single polymorphic method call to an instance of one of the new subclasses.
Apply State is a special case dgfansform Self Conditional to Subclassing in the

sense they both transform a conditional within the class itself to a polymorphic call. In
Apply State the conditional over the state is transformed into methods associated with
different delegated classes representing the different states.

Transform Client Conditional to Polymorphism transforms a switch statement over
type information in a client class by introducing polymorphic methods in the provider
and calling them from the client class.

Apply Null Object is a special case dfansform Client Conditional to Polymorphism

in the sense they both transform a conditional expression over the provider into a poly-
morphic call. Here the type of the provider is reduced to the most simple expression: the
null value. The condition that check for a null value is transformed by creatiigi@b-

Transform Conditional 3.

ject class that performs the default behaviour, liberating the client from having to type
check before performing an operation.

Client A
= \
switch (a.class)
case B: ... B C D
case C: ...
case D: ...
Client A
m() doit()
a.doit() B Zi D
doit() doit() doit()

4. Transform Self Conditional to Subclassing

Transform Self Conditional to Subclassing

Make a class more extensible by transforming complex conditional code that tests immutable
state into a single polymorphic call to a hook method on the same class. The hook method will
be implemented by a different subclass for each case of the conditional.

Problem

A class is hard to modify or subclass because it implements multiple behaviours depending on
the value of some immutable attribute.

Context
You need to modify the functionality of a class or add new functionality.

Applicability
You have access to the source code of the class and of clients that instantiate it.

Symptoms
» The class you want to modify has long methods with complex conditional branches.
* Instances of the class seem to represent multiple data types each with different behaviour.

* The expression being tested in the conditional represents type information over the class
containing the expression itself.

» The behaviour of a class depends on the value of some immutable attribute.

» Conceptually simple extensions require many changes to the conditional code.

» Subclassing is next to impossible without duplicating and adapting the methods with
conditional code.

Solution

Identify the methods with complex conditional branches. In each case, replace the conditional
code with a call to a new hook method. Identify or introduce subclasses corresponding to the
cases of the conditional. In each of these subclasses, implement the hook method with the code
corresponding to that case in the original case statement.

Transform Self Conditional to Subclassing 5.

Structure/Participants

Client A

case B: ...
m() case C: ...

case D: ...
W A

Client
| 0
hook () hook()
B C D
hook() hook() hook()
Detection

Most of the time, the type discrimination will jump in our face while you are working on the
code, so this means that you will not really need to detect where the checks are made. However,
it can be interesting to have simple techniques to quickly assess if unknown parts of a system
suffer from similar practices. This can be a valuable source of information to evaluate the state
of a system.

» Look for long methods with complex decision structures on some immutable attribute of
the object that models type information. In particular look for attributes that are set in the
constructor and never changed.

» Especially look for classes where multiple methods switch on the same attribute. This is
often a sign that the attribute is being used to simulate a type.

* As methods containing switch statements tend to be long, it may help to use a tool that
sorts methods by lines of code or visualizes classes and methods according to their size.
Alternatively, search for classes or methods with a large number of conditional state-
ments.

» Forlanguages like C++ or Java where it is common to store the implementation of a class
in a separate file, it is straightforward to search for and count the incidence of conditional
keywords f , else , case, etc.). On a UNIX system, for example,

grep 'switch' ‘find . -name "*.cxx" -print’

enumerates all the files in a directory tree with extensigx that contain awitch

Other text processing tools like agrep offer possibilities to pose finer granularity queries.
Text processing languages like Perl may be better suited for evaluating some kinds of
queries, especially those that span multiple lines.

6. Transform Self Conditional to Subclassing

C/C++: Legacy C code may simulate classes by means of union types. Typically the
union type will have one data member that encodes the actual type. Look for conditional
statements that switch on such data members to decide which type to cast a union to and
which behaviour to employ.

In C++ it is fairly common to find classes with data members that are declared as void
pointers. Look for conditional statements that cast such pointers to a given type based on
the value of some other data member. The type information may be encodednasman

or (more commonly) as a constant integer value.

Instead of defining subclasses of the class containing the conditional statement, consider
also whether the types to which the void pointer is cast can be integrated into a single
hierarchy.

Ada: Because Ada83 did not support polymorphism (or subprogram access types), dis-
criminated record types are often used to simulate polymorphism. Typically an enumer-
ation type provides the set of variants and the conversion to polymorphism is straightfor-
ward in Ada95.

Smalltalk: Smalltalk provides only a few ways to manipulate types. Look for applica-
tions of the methodsMemberOf: andiskindof: , which signal explicit type-checking.
Type checks might also be made with tests ke class = anotherClass , or with
property tests throughout the hierarchy using methodsdgisenbol , isString , isSe-
quenceable , isinteger

Steps

1. Identify the class to transform and the different conceptual classes that it implements.
An enumeration type or set of constants will probably document this well.

2. Introduce a new subclass for each behaviour that is implemented. Modify clients to
instantiate the new subclasses rather than the original class. Run the tests.

3. Identify all methods of the original class that implement varying behaviour by means
of conditional statements. If the conditionals are surrounded by other statements,
move them to separate, protected hook methods. When each conditional occupies a
method of its own, run the tests.

4. lteratively move the cases of the conditionals down to the corresponding subclasses,
periodically running the tests.

5. The methods that contain conditional code should now all be empty. Replace these by
abstract methods and run the tests.

6. Alternatively, if there are suitable default behaviours, implement these at the root of
the new hierarchy.

7. Ifthe logic required to decide which subclass to instantiate is non-trivial, consider en-
capsulating this logic as a factory method of the new hierarchy root. Update clients to
use the new factory method and run the tests.

Transform Self Conditional to Subclassing 7.

Tradeoffs

Pros

« Different clients now depend on different subclasses of the original class, thereby im-
proving modularity. Furthermore, functionality can now be extended by defining addi-
tional subclasses, without affecting clients of the existing classes.

Cons

» The larger number of classes makes the design more complex, and potentially harder to
understand. If the original conditional statements are simple, it may not be worthwhile
to perform this transformation.

Difficulties

* Wherever instances of the transformed class were originally created, now instances of
different subclasses must be created. If the instantiation occurred in client code, that code
must now be adapted to instantiate the right class. Factory objects or methods may be
needed to hide this complexity from clients.

* If you do not have access to the source code of the clients, it may be difficult or impos-
sible to apply this pattern since you will not be able to change the calls to the construc-
tors. Evaluate carefully whether it is possible to present the transformed design through
the old interface or iDouble Dispatch can be applied.

* If the case statements test more than one attribute, it may be necessary to support a more
complex hierarchy, possibly requiring multiple inheritance. Considering splitting the
class into parts, each with its own hierarchy.

When the legacy solution is the solution

Explicit type checks cannot always be avoided. One of the few good reasons to use type check
instead of polymorphism is when polymorphism cannot be used! Indeed when the code is deal-
ing with the limits of the paradigm like using non object-oriented libraries or when streaming

in objects from files. When streaming objects in from a text file representation, the objects do
not yet exist, so an explicit type check is necessary to recreate the objects. In this case, once the
instances are created, methods can then be called to fill the object instance variable values.

Tolerating type checks

Explicit type checks are not always a problem. In particular they may be an alternative to the
creation classes when:

» the set over which the method selection is fixed and will not evolve in the future.
* the typecheck is only made in one place.
Example

A message class wraps two different kinds of messages (andACTION) that must be serial-
ized to be sent across a network connection as shown in the code and the figure. We would like

8. Transform Self Conditional to Subclassing

to be able to send a new kind of message {8alZE), but this will require changes to several
methods of Message.

Message
Clientl Client2
set_value(action Integer)
send(channel Channel)
set_value(text String)
receive(channel Channel)

class Message { Message::send(Channel c) {
public: switch (type_) {
Message(); case TEXT:
set_value(char* text);
set_value(int action); case ACTION:
void send(Channel c);
void receive(Channel c); }
}
private: void Client1::doit() { ...
void* data_; Message * myMessage =
int type_; new Message();
static const int TEXT = 1; myMessage->set_Value("...");

static const int ACTION = 2;
}

Figure 1 Initial design and source code.

Since Message conceptually implements two different classe®xt Message and
Action_Message , we introduce these as subclasseg@dsage . We introduce constructors for
the new classes, we modify the clients to construct instance¥exfMessage and
Action_Message ratherthamessage, and we remove theet_value() methods. Our regres-
sion tests should run at this point.

Now we find methods that switch on thge_ variable. In each case, we move the entire
switch statement to a separate, protected hook method, unless the switch already occupies the
entire method. In the case @fnd() , thisis already the case, so we do not have to introduce a
hook method. Again, all our tests should still run.

Now we iteratively move cases of the switch statements essage to its subclasses. The
TEXT case ofMessage::send() moves toText_Message::send() and theACTION case
moves toAction_Message::send() . Every time we move such a case, our tests should still
run.

Transform Self Conditional to Subclassing 9.

Finally, the original send() method is now empty, so it can be redeclared to be abstract (i.e.,

virtual void send(Channel) = 0). Again, our tests should run.
Message
Clientl Client2
send(channel Channel)

receive(channel Channel)

i

Text_Message Action_Message
Text_Message(String) Action_Message(int)
send(channel Channel) send(channel Channel)
receive(channel Channel) receive(channel Channel)

class Message { class Action_Message: public
public: Message {
virtual void public:
send(Channel ¢) = 0; Action_Message(int action);
virtual void void send(Channel c);
receive(Channel ¢) = 0; void receive(Channel c);
private:
h int action;
class Text_Message: public Message h
{
public: void Client1::doit() { ...
Text_Message(char* text); Message * myMessage = new
void send(Channel c); Text_Message("...");
void receive(Channel c);
private: }
char* text;
h
Figure 2 Resulting hierarchy and source code.
Rationale

Classes that masquerade as multiple data types make a design harder to understand and extend.
The use of explicit type checks leads to long methods that mix several different behaviours. In-
troducing new behaviour then requires changes to be made to all such methods instead of sim-
ply specifying one new class representing the new behaviour.

By transforming such classes to hierarchies that explicitly represent the multiple data types,
you make your design more transparent, and consequently easier to maintain.

10. Transform Self Conditional to Subclassing

Related Patterns

In Transform Self Conditional to Subclassing the condition tests type information of the class
that contains it. A similar situation is addressedpply State where the conditional tests over
state. From this point of viewApply State is a specialization dfransform Self Conditional

to Subclassing even if the solution proposed by teeate pattern introduces state classes that
are not subclasses of the original class. On the other hainainifiorm Client Conditional to
Polymorphism the conditional expressions are used to invoke methods not of the class itself but
of provider classes.

Replace Type Code with Subclasses, Refactoring To Specialize are two refactorings
that can be used to apply the pattern. If the conditional codertasgtsblestate of the object,
consider instead applyingansform Client Conditional to Polymorphism. Otherwise, if
state of other objects is tested, such as arguments to the method, then consider agpiying
form Client Conditional to Polymorphism.

Discussion

Why the legacy solution may have been applied
The problem may arise for various reasons:

» The class may have been repeatedly extended with code to handle special cases to satisfy
the needs of many different clients. Whereas the original design of the class may have
been simple, it now contains several methods with complex conditional logic over its at-
tributes.

* Programmers may have decided not to define subclasses to handle special cases to avoid
cluttering the name space, or to keep changes and extensions local to a single class. It is
rarely obvious when varying behaviour is better implemented by subclassing than by
conditional code. (In Smalltalk, for example, True and False are subclasses of Boolean,
but this is not the case in most other object-oriented languages.)

* In languages without polymorphism, case statements may be used to simulate polymor-
phic dispatch. Even if a later version of the language does support polymorphism (e.g.,
C++vs. C, or Ada 95 vs Ada 83), coding conventions in place may encourage program-
mers to continue to apply the outdated idiom.

Transform Self Conditional to Subclassing can be composed with delegation when the
class containing the original conditional cannot be subclassed. One solution is then to use the

Transform Self Conditional to Subclassing 11.

polymorphism on another hierarchy, by moving part of the state and behaviour of the original
class into a separate class to which the method will delegate.

AA
A A delegate
m() m()
mo / hook() hook()

Ease B: ...
Case C: ... delegate m ()
CaseD: ...
B C D

hook() hook() hook()

12. Transform Client Conditional to Polymorphism

Transform Client Conditional to Polymorphism

Transform conditional code that tests the type of a provider object into a polymorphic call to a
new method, thereby reducing client/provider coupling.

Problem

Itis hard to extend a provider hierarchy because many of its clients perform type checks on its
instances to decide what actions to perform.

Context

You want to add a new subclass to a provider hierarchy. You have access to both the client and
provider source code.

Symptoms

 Clients of the class you want to subclass have long conditional methods that test the type
of provider instances.

» Adding a new subclass to the provider hierarchy requires making changes to clients, es-
pecially where there tests occur.

» The fact that the Law of Demeter is violated, e.g. that the clients access private data of
the provider can be a symptom especially when combined with the fact that these private
data are used to select the provider method to be invoked.

Solution

Replace the client’s conditional code by a call to a new method of the provider hierarchy. Im-
plement the new method in each provider class by the appropriate case of the original condi-
tional code.

Transform Client Conditional to Polymorphism 13.

Structure/Participants

Client A
m()
;Witch (a.class) B C D
case B: ...
case C: ...
case D: ...
Client A
m() doit()
;doit()
B c D
doit() doit() doit()
Detection

Apply essentially the same techniques describ&dansform Self Conditional to Subclass-

ing to detect case statements, but look for conditions that test the type of a separate service pro-
vider which already implements a hierarchy. You should also look for case statements
occurring in different clients of the same provider hierarchy.

C++: Legacy C++ code is not likely to make use of run-time type information (RTTI).
Instead, type information will likely be encoded in a data member that takes its value
from some enumerated type representing the current class. Look for client code switch-
ing on such data members.

Ada: Detecting type tests falls into two cases. If the hierarchy is implemented as a single
discriminated record then you will find case statements over the discriminant. If the hi-
erarchy is implemented with tagged types then you cannot write a case statement over
the types (they are not discrete); instead an if-then-else structure will be used.

Smalltalk: As in Transform Self Conditional to Subclassing, look for applications of
isMemberOf: andisKindOf: , and tests likeelf class = anotherClass

14.

Transform Client Conditional to Polymorphism

Java: Look for applications of the operatoistanceof , which tests membership of an
object in a specific, known class. Although classes in Java are not objects as in Smalltalk,
each class that is loaded into the virtual machine is represented by a single instance of
java.lang.Class. It is therefore possible to determine if two obje@sdy belong to the
same class by performing the test:
x.getClass() == y.getClass()
Alternatively, class membership may be tested by comparing class names:
x.getClass().getName().equals(y.getClass().getName())

(Recall that= compares object references, whereasls() compares object values.)

Steps

1. Identify the clients performing explicit type checks.

2. Add a new, empty method to the root of the provider hierarchy representing the action
performed in the conditional code.

3. lteratively move a case of the conditional to some provider class, replacing it with a
call to that method. After each move, the regression tests should run.

4. When all methods have been moved, each case of the conditional consists of a call to
the new method, so replace the entire conditional by a single call to the new method.

5. Consider making the method abstract in the provider’s root. Alternatively implement
suitable default behaviour here.

Other Steps to Consider.

« If the provider hierarchy is not a real inheritance hierarchy, you must transform it first.
It may well be that multiple clients are performing exactly the same test and taking the

same actions. In this case, the duplicated code can be replaced by a single method call
after one of the clients has been transformed. If clients are performing different tests or
taking different actions, then the pattern must be applied once for each conditional.

If the case statement does not cover all the concrete classes of the provider hierarchy, a
new abstract class may need to be introduced as a common superclass of the concerned
classes. The new method will then be introduced only for the relevant subtree. Alterna-
tively, if it is not possible to introduce such an abstract class given the existing inherit-
ance hierarchy, consider implementing the method at the root with either an empty de-
fault implementation, or one that raises an exception if it is called for an inappropriate
class.

« If the conditionals are nested, the pattern may need to be applied recursively.

Tradeoffs

Normally the instances of the correct classes should be already created so we do not have to
look for the creation of the instances, however refactoring the interface will affect all clients of
the provider classes and must not be undertaken without examining the full consequences of
such an action. In case of multiple clientyuble Dispatch can be an aid for the migration.

Transform Client Conditional to Polymorphism 15.

When type checks are needed

Contrary tarransform Self Conditional to Subclassing where type checks are sometimes jus-
tified, the only time where type checks over provider type information is needed is when the
code of the provider is frozen and may not be extended.

Example

The code in figure 3 illustrates misplaced responsibilities since the client must explicitly type-
check instances of Telephone to determine what action to perform..

void makeCalls(Telephone * phoneArray[]) {
for (Telephone **p = phoneArray; *p; p++) {

switch((*p)->phoneType()) {

case TELEPHONE::POTS:
POTSPhone *potsp = (POTSPhone *) p;
potsp->tourneManivelle();
potsp->call();
break;

case TELEPHONE::ISDN:
ISDNPhone *isdnp = (ISDNPhone *) p;
isdnp->initializeLine();
isdnp->connect();
break;

case TELEPHONE::OPERATORS:
OperatorPhone *opp = (OperatorPhone *) p;
opp->operatormode(on);
opp->call();
break;

case TELEPHONE::OTHERS:
default:

error(....);

Figure 3 Explicit type checks in client code.

After applying the pattern the client code will look like this:

void makeCalls(Telephones *phoneArray[]) {
for(Telephone **p = phoneArray; *p; p++)
*p->makeCall();

Rationale

Riel states, "Explicit case analysis on the type of an object is usually an error. The designer
should use polymorphism in most of these cases" [Riel96a]. Indeed, explicit type checks in cli-
ents are a sign of misplaced responsibilities since they increase coupling between clients and
providers. Shifting these responsibilities to the provider will have the following consequences:

16. Transform Client Conditional to Polymorphism

» The client and the provider will be more weakly coupled since the client will only need
to explicitly know the root of the provider hierarchy instead of all of its concrete sub-
classes.

» The provider hierarchy may evolve more gracefully, with less chance of breaking client
code.

» The size and complexity of client code is reduced. The collaborations between clients
and providers become more abstract.

» Abstractions implicit in the old design (i.e., the actions of the conditional cases) will be
made explicit as methods, and will be available to other clients.

» Code duplication may be reduced (if the same conditionals occur multiply).

Related Patterns

InTransform Client Conditional to Polymorphism the conditional is made on the type infor-
mation of a provider class. The same situation occurgdply Null Object where the condi-
tional tests over null value before invoking the methods. From this point of vieys)y Null
Obiject s a specialization diransform Client Conditional to Polymorphism.

Replace Conditional with Polymorphism is the core refactoring of this reengineering pat-
tern, so the reader may refer to the steps described in [Fowl99a].

Known Uses

This pattern has been applied in one of the Famoos case studies written in Ada. This consider-
ably decreased the size of the application and improved the flexibility of the software. In one of
the Famoos C++ case studies, explicit type checks were also implemented statically by means
of preprocessor commands (# ifdefs).

Apply State 17.

Apply State

Like Transform Self Conditional to Subclassing, transform complex conditional code that
tests over quantified states into delegated calls to state classes. So we appitdmattern,
delegating each conditional case to a separate State object.

We invite the reader to read t§eate andState Patternsfor a deep description of the problem

and discussion [Gamm, Alpe98a, Dys098a]. Here we only focus on the reengineering aspects
of the pattern.

Problem

Itis hard to extend a class because you have to modify all its methods that perform conditional
checks on its states to decide what actions to perform.

Context
You want to add a new behavior to a class. You have access the class source code.

Symptoms
» Duplication of the same tests based on object state description in several methods of the
object.

* New states cannot be added without having to modify all the methods containing the ob-
ject state tests.

Solution

Apply theState pattern, i.e. encapsulate the state dependent behavior into separate objects, del-
egate calls to these objects and keep the state of the object consistent by refering to the right in-
stance of these state objects.

Structure/Participants

A AContext de Iegate AState
m() m() -
mo / hook() hook()

case stateA:

delegate m ()

case stateB:

StateA StateB StateC

case stateC:

hook() hook() hook()

18. Apply State

Steps

1. Ildentify the interface of a state and the number of states.
Create a new abstract class, State, representing the interface of the state.
Create a new class subclass of State for each state.

Define methods of the interface identified in Step 1 in each of the state classes by cop-
ying the leaf of the test in the method. Pay attention to change the state of the instance
variable in the Context to refer to the right instance of State class.

Add a new instance variable in the Context class.

6. You may have to have a reference from the State to the Context class to invoke the
state transitions from the State classes.

7. Initialise the newly created instance to refer to a default state class instance.

8. Change the methods of the Context class containing the tests to delegate the call to the
instance variable.

WD

o1

The step 4 can be done using the Extract Method of the Refactoring Browser. Note that the order
of the steps are different from the ones of [Alpe98a] because we choose to apply the transfor-
mation in a way that let the system always runnable and testabel using unit tests.

TradeOffs

Pros

 Limited Impact.The public interface of the original class does not have to change. Since
the state instances are accessed by delegation from the original object, the clients are un-
affected. In the straightforward case the application of this pattern has a limited impact
on the clients.

Cons
» Class explosion. The systematic application of this pattern may lead to a class explosion.

When not to apply
« If the number of states are not fixed or too long.
« If the transitions between states is not clear.

When not to apply? When the legacy solution is ok!

When the states are clearly identified and it is known that they will not be changed, the legacy
solutionis a solution that has the advantage of grouping all the state behaviour by functionality
instead of spreading it over different subclasses.

Example

The Design Patterns Smalltalk Companion presents a code transformation steps by steps
[Alpe98a].

Apply Null Object 19.

Apply Null Object

Transform conditional code that tests over null values into a polymorphic call to method of a
NullObject. Shift the responsibility for deciding what to do to the provider hierarchy by intro-
ducing a special Null object. [Wo0l98a]

We invite the reader to read tivullObject pattern for a deep description of the problem and
discussion [Wool98a]. Here we only focus on the reengineering aspects of the pattern.

Problem

You are repeatly checking for null values before sending message.

Symptoms

» Client methods are always testing that certain values are not null before actually invoking
their methods.

» Adding a new subclass to the client hierarchy requires testing null values before invoking
some of the provider methods.

Solution

Apply the NullObject pattern, i.e. encapsulate the null behaviour as a separate provider class
so that the client class does not have to perform a null test.

Structure/Participants

Client RealObject

——__
o

illéiazNull)
&

Client AbstractObject
m() doit()
Real Object NullObject

a.doit()

doit() doit()

20. Apply Null Object

Detection

Look for idiomatic null tests.

Steps
1. Identify the interface required for the null behaviour.
Create a new abstract superclass as a superclass of the RealObject class.
Create a new subclass of the abstract superclass with a name starting with No or Null.
Define default methods into the Null Object class.

Initialise the instance variable or structure that was checked to now hold at least an
instance of the Null Object class.

6. Remove the conditional tests form the client.

arwbd

If you want to be able to still be able to make some conditional over null values in a clean way,
you may introduce in RealObject and Null Object classes a query method isNull as described
in Introduce Null Object [Fowl99a].

Tradeoffs

Pros

 As the client normally just checks whether it can invoke some methods of the provider,
the interface of the provider class does not have to be modified when applyir@pb-
ject. Contrary to other patterns likeansform Client Conditional to Polymorphism
where the interface of the provider may change considerably to propose a coherent inter-
face to the clients, the application of thellObject pattern has a limited impact.

Cons

» The application oNullObject can lead to a class explosion, indeed for every realObject
class, three classes are created, RealObject, NullObject and AbstractObject. However,
several techniques exist to circumvent this problem, such as implementing the null object
as a special instance of RealObject rather than as a subclass of AbstractObjestuRead
IObject for deeper explanations.

Difficulties: Multiple Clients

* If several clients have the same notion of default behaviour and share the same interface
they can be treated independently of each other. However, one of the difficulties that may
arise when applying this pattern is the fact that several clients may have a different notion
of default behaviour. If the different clients do not agree on the common behaviour but
agree on a common interface, one possibility is to have a palatable Null Object in which
each client may specify its desired default behaviour.

When not to apply? When the legacy solution is ok!
« If clients do not agree on the same interface.

* When very little code uses the variable directly or when the code that use the variable is
well-encapsulated in a single place.

Apply Null Object 21.

Example

The following example code is taken from [Wool98a]. The original code is the following one:

VisualPart>>objectWantedControl

“ctrl isNil

ifFalse:
[ctrl isControlWanted
ifTrue:[self]
ifFalse:[nil]]

Itis then transformed into :

VisualPart>>objectWantedControl

~ctrl isControlWanted
ifTrue:[self]
ifFalse:[nil]
Controller>>isControlWanted
"self viewHasCursor
NoController>>isControlWanted
"alse

22. Apply Null Object

External Pattern
Thumbnails

Replace Type Code with Subclasses

Provides a recipe for carrying out the refactorings requiredi@nsform Self Conditional to
Subclassing [Fowl99a].

Replace Conditional with Polymorphism

Double Dispatch

Deprecation

Replace Type Code with State

Template Method

Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. Tem-
plate Method lets subclasses redefine certain steps of an algorithm without changing the algo-
rithm’s structure. [Gamm95a]

Refactoring To Specialize

W. Opdyke [Opdy92b] proposed using class invariants as a criterion to simplify conditionals.

NullObject

A Null Object provides a surrogate for another object that shares the same interface but does
nothing. Thus, the Null Object encapsulates the implementation decisions of how to do nothing
and hides those details from its collaborators [Wo0l98a].

Introduce Null Object

Provides a recipe for carrying out the refactorings required4qrply Null Object [Fowl99a].

Apply Null Object 23.

State

Allow an object to alter its behavior when its internal state changes. The object will appear to
change its class [Gamm95a].

State Patterns

The State Patterns pattern language refines and clarifies the State Pattern [Dyso98a].

References

[Alpe98a], Sherman R. Alpert, Kyle Brown and Bobby Wodlhe Design Patterns
Smalltalk CompanignAddison-Wesley, 1998.

[Gamm95a], Erich Gamma, Richard Helm, Ralph Johnson and John Vli€3etegn
Patterns Addison Wesley, 1995.

[Deme99a], Serge Demeyer, Stéphane Ducasse and Sander TicAeRsdtern Lan-
guage for Reverse EngineeriiRroceedings of the 4th European Conference on Pattern
Languages of Programming and Computing, 19P@ul Dyson (Ed.), UVK Univer-
sitatsverlag Konstanz GmbH, Konstanz, Germany, July 1999.

[Duca99a],Stéphane Ducasse, Tamar Richner and Robb Néppe;Check Elimina-
tion: Two Object-Oriented Reengineering PattemM8CRE’99 Proceedings (6th Work-
ing Conference on Reverse Engineerirglancoise Balmas, Mike Blaha and Spencer
Rugaber (Eds.), IEEE, October 1999.

[Fowl99a],Martin Fowler, Kent Beck, John Brant, William Opdyke and Don Roberts,
Refactoring: Improving the Design of Existing Cpdddison-Wesley, 1999.
[Opdy92a],William F. OpdykeRefactoring Object-Oriented Frameworl&h.D. thesis,
University of Illinois, 1992.

[Riel96a],Arthur J. RielObject-Oriented Design HeuristicAddison-Wesley, 1996.

[Woo0l98a], Bobby WoolfNull Object Pattern Languages of Program DesignRbbert
Martin, Dirk Riehle and Frank Bushmann (Eds.), pp. 5-18, Addison-Wesley, 1998.

	Transform Conditional
	Transform Self Conditional to Subclassing
	Problem
	Context
	Applicability
	Symptoms

	Solution
	Structure/Participants
	Detection
	Steps

	Tradeoffs
	Pros
	Cons
	Difficulties
	When the legacy solution is the solution
	Tolerating type checks

	Example
	Rationale
	Related Patterns
	Discussion
	Why the legacy solution may have been applied

	Transform Client Conditional to Polymorphism
	Problem
	Context
	Symptoms

	Solution
	Structure/Participants
	Detection
	Steps
	Other Steps to Consider

	Tradeoffs
	When type checks are needed

	Example
	Rationale
	Related Patterns
	Known Uses

	Apply State
	Problem
	Context
	Symptoms

	Solution
	Structure/Participants
	Steps

	TradeOffs
	Pros
	Cons
	When not to apply
	When not to apply? When the legacy solution is ok!

	Example

	Apply Null Object
	Problem
	You are repeatly checking for null values before sending message.
	Symptoms

	Solution
	Structure/Participants
	Detection
	Steps

	Tradeoffs
	Pros
	Cons
	Difficulties: Multiple Clients
	When not to apply? When the legacy solution is ok!

	Example

	Replace Type Code with Subclasses
	Replace Conditional with Polymorphism
	Double Dispatch
	Deprecation
	Replace Type Code with State
	Template Method
	Refactoring To Specialize
	NullObject
	Introduce Null Object
	State
	State Patterns
	References

