
© Oscar Nierstrasz! 2!

Sources!

>  Section 4.4 of Concurrent Programming in Java (Doug
Lea, Prentice Hall PTR, November 1999)!
— Covers parallel decomposition in greater detail.!

>  Section 6-7-8 of Java concurrency in practice (Brian
Goetz, et al., !Addison Wesley Professional !May 09,
2006)!

>  Doug Lea's concurrency-interest website: !
— Download the fork-join framework as part of the jsr166y package !
—  read the paper on its design.!
—  http://gee.cs.oswego.edu/dl/concurrency-interest/index.html!

Parallelism!

<Unknown User>
Note
6, 7 and 8

Why we should practice parallel programming? !

© Oscar Nierstrasz! 7!

Parallelism!

Because I want to keep my super
cool multi-core computer busy!!

<Unknown User>
Note
should we

<Unknown User>
Highlight

Why we should practice parallel programming? !

© Oscar Nierstrasz! 11!

Parallelism!

25!

20!

25! 25! 25!

20!

20!

100!

20!

140! 65!

!

Speed up =
1

(1" p) +
p
n

!

p = part of parallel code
n = number of CPUs

Amdahl’s law

<Unknown User>
Note
Fraction

<Unknown User>
Highlight

Why we should practice parallel programming? !

>  Donʼt try to force a non-parallel problem to be parallel!

>  Identify which are the program chunks that can provide
the best ratio speedup/effort!

© Oscar Nierstrasz!

Parallelism!

15!

<Unknown User>
Highlight

<Unknown User>
StrikeOut

Kinds of parallelism (Problem decomposition)!

© Rodric Rabbah, IBM! 19!

Parallelism!

!" #$!%&'()*'+,,-'.(/01$'234156'278879:'(;.$

join

IDCT

IQuantization

split

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
.*<='0>634>1

Motion
Compensation

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Here’s my algorithm.
Where’s the concurrency?

� /7?@'4>63AB3?5C53D
� *717EE>E5?A'5D'C9>'7BBE567C53D'

� 07C7'4>63AB3?5C53D
� F7A>'63ABGC7C53D'A7DH'47C7

� *5B>E5D>'4>63AB3?5C53D
� 07C7'7??>A8EH'E5D>?'

� *134G6>1I63D?GA>1'6975D?

<Unknown User>
Note
Order of kinds of parallelism is a confusing. Where is the data parallelism? (last step)
Should add notes to the PDF explaining the MPEG example. Highlight on the slide which part of the diagram fits the example!

Kind of parallelisms (Problem decomposition)!

© Rodric Rabbah, IBM! 20!

Parallelism!

!" #$!%&'()*'+,,-'.(/01$'234156'278879:'(;.$

join

IDCT

IQuantization

split

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
.*<='0>634>1

Motion
Compensation

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Here’s my algorithm.
Where’s the concurrency?

� /7?@'4>63AB3?5C53D
� *717EE>E5?A'5D'C9>'7BBE567C53D'

� 07C7'4>63AB3?5C53D
� F7A>'63ABGC7C53D'A7DH'47C7

� *5B>E5D>'4>63AB3?5C53D
� 07C7'7??>A8EH'E5D>?'

� *134G6>1I63D?GA>1'6975D?

>  Data parallelism: The same
task run on different data in
parallel!

!  Can divide parts of the
data between different
tasks and perform the
tasks in parallel!

!  No dependencies among
the tasks that cause their
results to be ordered or
merged !

<Unknown User>
Note
runs

<Unknown User>
Highlight

© Oscar Nierstrasz! 28!

Thread Pool!

>  A thread pool manages a set of worker threads.!
>  The threads into the pool have a simple life cycle:!

>  Request the next task from the queue of tasks!
>  Execute!
>  And wait for another task!

>  Advantages from using a thread pool:!
>  Reduce the costs of thread creation and teardown!
>  Increases responsiveness!
>  By properly tuning the pool you always have the correct number

of threads (you donʼt run out of memory and all your CPUs are
busy)!

Parallelism!

<Unknown User>
Note
of

<Unknown User>
Highlight

© Oscar Nierstrasz! 30!

Thread Pool!

>  newSingleThreadExecutor: !A single-threaded executor
creates a single worker thread to process tasks,
replacing it if it dies unexpectedly. Tasks are guaranteed
to be processed sequentially according to the order
imposed by the task queue (FIFO, LIFO, priority order).!

>  newScheduledThreadPool: !A fixed-size thread pool that
supports delayed and periodic task execution, similar to
Timer.!

Parallelism!

<Unknown User>
Note
What's Timer? Need an example?

<Unknown User>
Highlight

Merge sort!

>  Divide et Impera algorithm:!
>  Divide: split your problem into sub-problems that are smaller

parts of the original problem!
>  Impera: solve the sub-problems recursively. (If the sub-

problem is small enough than it is solve in a straightforward
manner).!

>  Combine: the solutions to the sub-problems into the solution for
the original problem.!

© Oscar Nierstrasz!

Parallelism!

36!

<Unknown User>
Highlight

