13. Petri Nets

Overview
0 Definition:
0 places, transitions, inputs, outputs
0 firing enabled transitions
0 Modelling:
[0 concurrency and synchronization
0 Properties of nets:
0 liveness, boundedness
0 Implementing Petri net models:
0 centralized and decentralized schemes

Reference: J.L.Peterson, Petri Nets Theory and the
Modelling of Systems, Prentice Hall, 1983.

Petri nets: a definition

A Petri net C = [R,T,I,Olconsists of:
1. A finite set P of places
2. A finite set T of transitions

3. An input function I: T — N* (maps to bags of places)

4. An output function O: T - wF
A marking of C is a mapping : P - N

Example:
P={x,y} X a
T={a,b}
I(a)={x}, I(b)={x x}
O(a)={x,y},0Mb)={y} b Y

u={x, x}

Firing transitions

To fire a transition t:
1. There must be enough input tokens: p = I(t)
2. Consume inputs and generate output: p' = p - I(t) + O(t)

Firing transitions

To fire a transition t:
1. There must be enough input tokens: p = I(t)
2. Consume inputs and generate output: p' = p - I(t) + O(t)

a

~_

Firing transitions

To fire a transition t:
1. There must be enough input tokens: p = I(t)
2. Consume inputs and generate output: p' = p - I(t) + O(t)

a

Firing transitions

To fire a transition t:
1. There must be enough input tokens: p = I(t)
2. Consume inputs and generate output: p' = p - I(t) + O(t)

CP — Winter 2001/2002 286.

Firing transitions

To fire a transition t:
1. There must be enough input tokens: p = I(t)
2. Consume inputs and generate output: ' = p - I(t) + O(*)

® O. Nierstrasz — U. Berne Petri Nets

Modelling with Petri nets

Petri nets are good for modelling:
LI concurrency
0 synchronization

Tokens can represent:
0 resource availability
[jobs to perform
0 flow of control
0 synchronization conditions ...

Concurrency

Independent inputs permit "concurrent” firing of transitions

SN

Q/’ —
—O
of

CP — Winter 2001/2002 289.

Concurrency

Independent inputs permit "concurrent” firing of transitions

L

Q.
—®
o |

@ O. Nierstrasz — U. Berne Petri Nets

Conflict

Overlapping inputs put transitions in conflict
o

b

of

Only one of a or b may fire

Conflict

Overlapping inputs put transitions in conflict
o

b

J

Only one of a or b may fire

Mutual Exclusion

The two subnets are forced to synchronize

D

o<~ oo/

Mutual Exclusion

The two subnets are forced to synchronize

A

o~ o/

Mutual Exclusion

The two subnets are forced to synchronize

D

o<~ oo/

Mutual Exclusion

The two subnets are forced to synchronize

SRR

o~ Do/

Fork and Join

ool

CP — Winter 2001/2002 297.
Fork and Join
@ O. Nierstrasz — U. Berne Petri Nets

Fork and Join

sgiche

Fork and Join

ool

Fork and Join

ool

Producers and Consumers
producer consumer

Y 9

(OZdh]

Producers and Consumers
producer consumer

Y 9

40

Producers and Consumers
producer consumer

P 9

40

Producers and Consumers
producer consumer

Y P

40

Producers and Consumers
producer consumer

P P

40

Producers and Consumers
producer consumer

Y P

40

Producers and Consumers
producer consumer

= P

(YA

Bounded Buffers

occupied

5(1(35/

/ -

ﬁ
slots

—O- /J ©

@%} -9

Bounded Buffers

occupied

5(/(35/

/ -

}?e
slots

O /J O

&—G)« Be

Bounded Buffers

occupied

5(/(35/

/ -

}?e
slots

—O- /J @®

&—G)« Be

Bounded Buffers

occupied

5(:(35/

/ -

}?e
slots

—O- /J @®

@%} Bo

Bounded Buffers

occupied

SégS/

/ -

}e}e
slots

—O- /J @®

Q{%} -5

Bounded Buffers

occupied

SégS/

/ -

}e}e
slots

—O- /J @®

@%9« Be

Bounded Buffers

occupied

SC;gS/

/ -

jge
slots

—O- /J @®

@%} -9

Bounded Buffers

occupied

SC;gS/

/ -

jge
slots

—O- /J @®

(ih@ Be

Bounded Buffers

occupied

5(;;55/

/ -

}e}e
slots

—O- /J @®

@%} -9

Bounded Buffers

occupied

5(;;55/

/ -

}e}e
slots

—O- /J @®

@%} Be

Reachability and Boundedness

Reachability:

[0 The reachability set R(C,1) of a net C is the set of all
markings ' reachable from initial marking p.

Boundedness:

0 A net Cwithinitial marking pis safe if places always hold
at most 1 token.

0 A marked net is (k-)bounded if places never hold more
than k tokens.

[0 A marked net is conservative if the number of tokens is
constant.

Liveness and Deadlock

Liveness:
[1 A transition is deadlocked if it can never fire.
0 A transition is /ive if it can never deadlock.

b
This net is both safe and a
conservaftive.
Transition a is deadlocked. Q_'{_’@'
Transitions b and c are /ive. X 4
The reachability set is {{y}, {z}}. C

[J Are the examples we have seen bounded? Are they live?

Related Models

Finite State Processes
0 Equivalent to regular expressions
0 Can be modelled by one-token conservative nets

b
a d
The FSA for: a(b|c)*d O_g_g
C

Finite State Nets
Some Petri nets can be modelled by FSPs

[1 Precisely which nets can (cannot) be modelled by FSPs?

Finite State Nets
Some Petri nets can be modelled by FSPs

[1 Precisely which nets can (cannot) be modelled by FSPs?

Finite State Nets
Some Petri nets can be modelled by FSPs

[1 Precisely which nets can (cannot) be modelled by FSPs?

Finite State Nets
Some Petri nets can be modelled by FSPs

[1 Precisely which nets can (cannot) be modelled by FSPs?

Zero-testing Nets

Petri nets are not computationally complete
[0 Cannot model “zero testing”
0 Cannot model priorities

A zero-testing net:

An equal number of

a and b transitions may fire
as a sequence during any
sequence of matching

¢ and d transitions.

(#a = #b, #c = #d)

Zero-testing Nets

Petri nets are not computationally complete
[0 Cannot model “zero testing”
0 Cannot model priorities

A zero-testing net:

An equal number of

a and b transitions may fire
as a sequence during any
sequence of matching

¢ and d transitions.

(#a = #b, #c = #d)

Zero-testing Nets

Petri nets are not computationally complete
[0 Cannot model “zero testing”
0 Cannot model priorities

A zero-testing net: a

An equal number of
a and b transitions may fire
as a sequence during any

sequence of matching
¢ and d transitions. .
(#a > #b, #c > #d) L/

Zero-testing Nets

Petri nets are not computationally complete
[0 Cannot model “zero testing”
0 Cannot model priorities

A zero-testing net:

An equal number of

a and b transitions may fire
as a sequence during any
sequence of matching

¢ and d transitions.

(#a = #b, #c = #d)

Zero-testing Nets

Petri nets are not computationally complete
[0 Cannot model “zero testing”
0 Cannot model priorities

A zero-testing net:

An equal number of

a and b transitions may fire
as a sequence during any
sequence of matching

¢ and d transitions.

(#a = #b, #c = #d)

Zero-testing Nets

Petri nets are not computationally complete
[0 Cannot model “zero testing”
0 Cannot model priorities

A zero-testing net:

An equal number of

a and b transitions may fire
as a sequence during any
sequence of matching

¢ and d transitions.

(#a = #b, #c = #d)

Other Variants

There exist countless variants of Petri nets

Coloured Petri nets: Tokens are "coloured” to
represent different kinds of resources

Augmented Petri nets: Transitions additionally depend
on external conditions

Timed Petri nets: A durationis associated with each
transition

Applications of Petri nets

Modelling information systems:
0 Workflow
0 Hypertext (possible transitions)
0 Dynamic aspects of OODB design

Implementing Petri nets

We can implement Petri net structures in either centralized or
decentralized fashion:

Centralized:

0 Asingle "net manager”monitors the current state of the
net, and fires enabled transitions.

Decentralized:

0 Transitions are processes, places are shared resources,
and transitions compete to obtain tokens.

Centralized schemes

In one possible centralized scheme, the Manager selects and
fires enabled transitions.

" Net Manager A
>[Idem‘ify enabledw deadlocked

transitions) ~®©
found some ¢ T got new marking
[Selec’r and fir'e]
_ transitions y

Concurrently enabled transitions can be fired in parallel.

[J What liveness problems can this scheme lead to?

Decentralized schemes

In decentralized schemes transitions are processes and tokens
are resources held by places:

X Y X y

° get() G

Transitions can be implemented as thread-per-message
gateways so the same transition can be fired more than once if
enough tokens are available.

Transactions

Transitions attempting to fire must grab their input tokens as
an atomic transaction, or the net may deadlock even though
there are enabled transitions!

b

a

If a and b are implemented by independent processes, and x
and y by shared resources, this net can deadlock even though
b is enabled if a (incorrectly) grabs x and waits for'y.

Coordinated interaction

A simple solution is to treat the state of the entire net as a
single, shared resource:

X Y
a

get ()

After a transition fires, it notifies waiting transitions.
[J How could you refine this scheme for a distributed setting?

O 0O O OO0

What you should know!

How are Petri nets formally specified?
How can nets model concurrency and synchronization?

What is the “reachability set” of a net? How can you
compute this set?

What kinds of Petri nets can be modelled by finite state
processes?

How can a (bad) implementation of a Petri net deadlock even
though there are enabled transitions?

If you implement a Petri net model, why is it a good idea to
realize transitions as "thread-per-message gateways”?

Can you answer these questions?

[1 What are some simple conditions for guaranteeing that a
net is bounded?

How would you model the Dining Philosophers problem as a
Petri net? Is such a net bounded? Is it conservative? Live?

[]

[J What could you add to Petri nets to make them Turing-
complete?

L[]

What constraints could you put on a Petri net to make it
fair?

	13. Petri Nets
	Petri nets: a definition
	Firing transitions
	Firing transitions
	Firing transitions
	Firing transitions
	Firing transitions
	Modelling with Petri nets
	Concurrency
	Concurrency
	Conflict
	Conflict
	Mutual Exclusion
	Mutual Exclusion
	Mutual Exclusion
	Mutual Exclusion
	Fork and Join
	Fork and Join
	Fork and Join
	Fork and Join
	Fork and Join
	Producers and Consumers
	Producers and Consumers
	Producers and Consumers
	Producers and Consumers
	Producers and Consumers
	Producers and Consumers
	Producers and Consumers
	Bounded Buffers
	Bounded Buffers
	Bounded Buffers
	Bounded Buffers
	Bounded Buffers
	Bounded Buffers
	Bounded Buffers
	Bounded Buffers
	Bounded Buffers
	Bounded Buffers
	Reachability and Boundedness
	Liveness and Deadlock
	Related Models
	Finite State Nets
	Finite State Nets
	Finite State Nets
	Finite State Nets
	Zero-testing Nets
	Zero-testing Nets
	Zero-testing Nets
	Zero-testing Nets
	Zero-testing Nets
	Zero-testing Nets
	Other Variants
	Applications of Petri nets
	Implementing Petri nets
	Centralized schemes
	Decentralized schemes
	Transactions
	Coordinated interaction
	What you should know!
	Can you answer these questions?

