12. Architectural Styles for

Concurrency

Overview

[]
[]
[]

[]

What is Software Architecture?
Three-layered application architecture
Flow architectures

0 Active Prime Sieve

Blackboard architectures

O Fibonacci with Linda

Sources

0 M. Shaw and D. Garlan, Software Architecture:

Perspectives on an Emerging Discipline, Prentice-Hall,
1996.

0 F. Buschmann, et al., Pattern-Oriented Software
Architecture — A System of Patterns, John Wiley,
1996.

[0 D. Lea, Concurrent Programming in Java — Design
principles and Patterns, The Java Series, Addison-
Wesley, 1996.

0 N. Carriero and D. Gelernter, How to Write Parallel
Programs: a First Course, MIT Press, Cambridge, 1990.

Software Architecture

A Software Architecture defines a system in terms of
computational components and interactions amongst
those components.

An Architectural Style defines a family of systems in
terms of a pattern of structural organization.

— cf. Shaw & Garlan, Software Architecture, pp. 3, 19

Architectural style

Architectural styles typically entail four kinds of properties:
0 A vocabulary of design elements
0 e.g., "pipes”, "filters", "sources”, and "sinks"
0 A set of configuration rules that constrain compositions

0 e.g., pipes and filters must alternate in a linear
sequence

[l A semantic interpretation

0 e.g., each filter reads bytes from its input stream
and writes bytes to its output stream

0 A set of analyses that can be performed

0 e.g., if filters are "well-behaved"”, no deadlock can
occur, and all filters can progress in tandem

Communication Styles
Shared Variables

° ° e Processes communicate
indirectly.

— X Explicit synchronization

mechanisms are needed.

Message-Passing

Communication and
synchronization are

combined.

5

ok

Simulated Message-Passing

Most concurrency and communication styles can be simulated
by one another:

Unsynchronized objects

: o

Synchronized objects

|

Message-passing can be modelled by associating message
queues to each process.

Three-layered Application Architectures

Interaction with external world
Generating threads

Concurrency control
Locking, waiting, failing

Basic mechanisms

This kind of architecture avoids nested monitor problems by
restricting concurrency control to a single layer.

Problems with Layered Designs

Hard to extend beyond three layers because:

0 Control may depend on unavailable information
[0 Because it is not safely accessible
[0 Because it is not represented (e.g., message history)

[0 Synchronization policies of different layers may
conflict

[0 E.g., nested monitor lockouts

0 Ground actions may need to know current policy
0 E.g., blocking vs. failing

Flow Architectures

Many synchronization problems can be avoided by arranging
things so that information only flows in one direction from
sources to filters to sinks.

Unix "pipes and filters”: Processes are connectedina
linear sequence.

Control systems: events are picked up by sensors,
processed, and generate new events.

Workflow systems: Electronic documents flow through
workflow procedures.

Unix Pipes

Unix pipes are bounded buffers that connect producer and
consumer processes (sources, sinks and filters):

cat file # send file contents to output stream
tr -c "a-zA-Z '\012" # put each word on one |line
sort # sort the words
unig -c # count occurrences of each word

sort -rn # sort I1n reverse nunerical order
nmor e # and display the result

Unix Pipes

Processes should read from standard input and write to
standard output streams:

[0 Misbehaving processes give rise to "broken pipes”!
Process creation and scheduling are handled by the O/S.

Synchronization is handled implicitly by the I/O system
(through buffering).

Flow Stages

Every flow stage is a producer or consumer or both:

O Splitters (Multiplexers) have multiple successors
O Multicasters clone results to multiple consumers
[0 Routers distribute results amongst consumers

0 Mergers (Demultiplexers) have multiple predecessors
[0 Collectors interleave inputs to a single consumer
[0 Combiners process multiple input to produce a single

result

0 Conduits have both multiple predecessors and

consumers

Flow Policies

Flow can be pull-based, push-based, or a mixture:
O Pull-based flow: Consumers take results from Producers
0 Push-based flow: Producers put results to Consumers
0 Buffers:
0 Put-only buffers (relays) connect push-based stages

0 Take-only buffers (pre-fetch buffers) connect pull-
based stages

[0 Put-Take buffers connect (adapt) push-based stages
to pull-based stages

t

Limiting Flow

Unbounded buffers: If producersare faster than
consumers, buffers may exhaust available memory

Unbounded threads: Having too many threads can
exhaust system resources more quickly than
unbounded buffers

Bounded buffers: Tend to be either always full or
CI/W?/S‘ empty, depending on relative speed of
producers and consumers

Bounded thread pools: Harder to manage than bounded
buffers

Example: a Pull-based Prime Sieve

Primes are agents that reject non-primes, pass on candidates,
or instantiate new prime agents:

TestForPrime ActivePrime(2)

—get(
3!» new ActivePrime(3)
< et i
4I> < g () :
| |
> | . .
5{» 5| : new ActivePrime(5)
- - | get () "
6.. -oetl
! | |
~ | | ActivePrime(7)
/. 7. new —
< < ' get () |
8, | I T
L L | | |

Using Put-Take Buffers

Each ActivePrime uses a one-slot buffer to feed values to the
next ActivePrime.

(e) D (O

The first ActivePrime holds the seed value 2, gets values from
a TestForPrime, and creates new ActivePrime instances
whenever it detects a prime value.

The PrimeSieve

The main PrimeSieve class creates the initial configuration
public class PrinmeSieve {
public static void main(String args[]) {
genPrinmes(1000);
}

public static void genPrines(int n) {
try {
ActivePrinme firstPrinme =
new ActivePrime(2, new TestForPrine(n));
} catch (Exception e) { }

}
}

Pull-based integer sources

Active primes get values to test from an| nt Sour ce:
Interface IntSource { int getint(); }
class TestForPrinme inplenments |ntSource {
private iInt nextVal ue;
private int nmaxVal ue;
public TestForPrine(int max) {
this.nextValue = 3; this.nmxVal ue = nax;

}

public int getlnt() { /] not synched!
| f (nextValue < maxVal ue) { return nextVal ue++; }
else { return 0; }

}

}

The ActivePrime Class

ActivePrimes themselves implement IntSource

cl ass ActivePrine
extends Thread inplenents |ntSource {
private static IntSource |lastPrinme; // shared
private i nt val ue; [l this prine
private int square; [l 1ts square
private IntSource intSrc; // ints to test
private Sl ot slot; /] to pass val ues on

The ActivePrime Class

public ActivePrinme(int value, IntSource intSrc)
throws ActivePrineFailure

{
this.val ue = val ue;
slot = new Slot(); [/ NB:. private
lastPrime = this; [/ unsynchroni zed (safe!)
this.start(); /| become active
}

It is impossible for primes to be discovered out of order!

The ActivePrime Class ...

public int value() {
return this.val ue:

}

private void putlint(int val) { [l may bl ock
slot.put()(new I nteger(val));

}

public int getlint() { [l may bl ock

return ((Integer) slot.get()).intValue();
}

The only synchronization is hidden in the Slot class.

The ActivePrime Class ...

public void run() {
int testValue = intSrc.getint(): // may bl ock

while (testValue !'= 0) { /] stop
If (this.square > testValue) { // got a prine
try {

new ActivePrine(testValue, |astPrine);
} catch (Exception e) { break; } // exit |oop
} else if ((testValue %this.value) > 0) {

this.putlnt(testValue); /'l may bl ock
}
testValue = intSrc.getlnt(): /1 may bl ock
}
putlnt(0); /] stop next

Blackboard Architectures

Blackboard architectures put all synchronization in a
"coordination medium” where agents can exchange messages.

SN

R

?

Agents do not exchange messages directly, but post messages
to the blackboard, and retrieve messages either by reading
from a specific location (i.e., a channe/?, or by posing a query
(i.e., a pattern to match).

Result Parallelism

Result parallelism is a blackboard architectural style in which
workers produce parts of a more complex whole.

A

4R T
55 o8

Workers may be arranged hierarchically ...

Agenda Parallelism

Agenda parallelism is a blackboard style in which workers
retrieve tasks to perform from a blackboard, and may
generate new tasks to perform.

QOO A

77

Workers repeatedly retrieve tasks until everything is done.
Workers are typically able to perform arbitrary tasks.

Specialist Parallelism

Specialist parallelism is a style in which each worker is
specialized to perform a particular task.

Specialist designs are equivalent fo message-passing, and are
often organized as flow architectures, with each specialist
producing results for the next specialist o consume.

Linda

Linda is a coordination medium, with associated primitives for
coordinating concurrent processes, that can be added to an
existing programming language.

The coordination medium is a fuple-space, which can contain:

0 data tuples — tuples of primitives vales (numbers,
strings ...)

0 active tuples — expressions which are evaluated and
eventually turn into data tuples

Linda primitives

Linda’s coordination primitives are:

out (T) |output a tuple T to the medium (non-blocking)
e.g., out (“enpl oyee”, “pingu”, 35000)

in(S) |destructively input a tuple matching S (blocking)
e.g., i n(“enpl oyee”, “pingu”, 7?salary)

rd(S) |non-destructively input a tuple (blocking)

i np(S) | fry to input a tuple
rdp(S) |report success or failure (non-blocking)

eval (E) |evaluate E in a new process
leave the result in the tuple space

Example: Fibonacci

A (convoluted) way of computing Fibonacci numbers with Linda:
int fib(int n) {

I f (rdp("fib", n, ?fibn)) /1 non- Dbl ocki ng
return fibn;

i f (n<2) {
out(“fib”, n, 1); /'l non- Dbl ocki ng
return 1;
}
eval ("fib", n, fib(n-1) + fib(n-2)); // asynch
rd("fib", n, ?fibn); /'l bl ocks

return(fibn);

} [l Post-condition: rdp(“fib”,n, ?fibn) == True

CP — Winter 2001/2002 272.

Evaluating Fibonacci

Cf 1 b(5) D\f‘d/mi/s, so start evaﬁ

~eval (“fib”,5,fib(4)+ib(3))

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency

Evaluating Fibonacci

(Fib(5))= rd(“fib", 5, 2f n)

blocks for result I

Gi b(4) +f | b(3))\

eval (“fib”,5,fib(4)+fib(3))

eval (“fib”,4,fib(3)+ib(2))

CP — Winter 2001/2002 274.

Evaluating Fibonacci
(fib(5) e rd(“fib’,5,?2fn)

eval (“fib",5,fib(4)+fib(3))

G.b) +f i b(3)

| (“fib", 4 fib(3)+fib(2
Glb(3)+flb2))\ eval (“fi i b(3) +fib(2))
Meval (“fib”, 3, fib(2)+fib(1))

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency

CP — Winter 2001/2002 275.

Evaluating Fibonacci
(fib(5) e rd(“fib’,5,?2fn)

eval (“fib",5,fib(4)+fib(3))

G‘ib(4)+fib(3) >

(“fib". 4 fib(3)+fib(2
Gib(3)+fib(2))v\ eval LT 1 03) i)
eval (“fib", 3 fib(2)+ib(1))

rd
fib(2)+f1b(1
CI (2) +1b())*eval(“fib”,2,fib(1)+fib(0))

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency

Evaluating Fibonacci

(Fib(5))= rd(“fib", 5, 2f n)

eval (“fib”,5,fib(4)+fib(3))

G‘ib(4)+fib(3) >

| (“fi1b”,4,fli '
Gib(3)+fib(2))\ eval (“f1 4,f1b(3)+fi1b(2))

rd | leval (“fib”,3,fib(2)+fib(1))

fib(2)+ib(1
C' (2)+ ())1\ eval (“fib”, 2, fib(1)+fib(0))

GI b(1)+fiDb(O))_* (fip". L 1) base level succeeds Iﬁ

CP — Winter 2001/2002 277.

Evaluating Fibonacci
(fib(5) e rd(“fib’,5,?2fn)

eval (“fib",5,fib(4)+fib(3))

G‘ib(4)+fib(3) >

| (“fib”, 4, fib(3)+ib(2
Gib(3)+fib(2))w\ eval LT 1 03) i)
rd | feval (“fib”,3,fib(2)+fib(1))

fib(2)+f1b(1
CI (2)+11 ()T\d eval (“fib”,2,fib(1)+fib(0))

r

—

Gib(1)+fib(0)) CTib LD Lfib,0,1)

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency

CP — Winter 2001/2002 278.

Evaluating Fibonacci
(fib(5) e rd(“fib’,5,?2fn)

eval (“fib",5,fib(4)+fib(3))

G‘ib(4)+fib(3) >

| (“fib”, 4, fib(3)+ib(2
Gib(3)+fib(2))v\ eval LT 1 03) i)
rd | feval (“fib”,3,fib(2)+fib(1))

fib(2)+f1b(1
CI (2)+11 ())‘\d eval (“fib”,2,fib(1)+fib(0))

r

C 2) (“fip’,1,1)| [(Cf1p",0,1)

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency

Evaluating Fibonacci

(fib(5))e

Gi b(4) +f i b(3)

rd(“fib”, 5, ?fn)

rd

Gi b(3) +f | b(Z))\

rd

(fib(2)+i b(1))‘\rd

eval (“fib”,5,fib(4)+fib(3))

eval (“fib”,4,fib(3)+ib(2))

eval (“fib”,3,fib(2)+ib(1))

eval yields passive tuple

(“fib”",2,2)

(“fib,1,1)] [Lfrb",0 1)

Evaluating Fibonacci

(Fib(5))= rd(“fib", 5, 2f n)

eval (“fib”,5,fib(4)+ib(3))

G‘ib(4)+fib(3) >

| (“fib”,4,fib fib
Glb(3)+flb2))‘\ eval (“fi 4,fib(3)+fib(2))

eval (“fib”,3,fib(2)+ib(1))

(tib(2) +f|b(1))\\ S

BN

cached values are reusea AN (“fib". 1 1) (“fib”,0,1)

CP — Winter 2001/2002 281.

Evaluating Fibonacci
(fib(5) e rd(“fib’,5,?2fn)

eval (“fib",5,fib(4)+fib(3))

G‘ib(4)+fib(3) >

| (“fib”, 4, fib(3)+ib(2
Gib(3)+fib(2))v\ eval LT 1 03) i)
rd | feval (“fib”,3,fib(2)+fib(1))

C ’) (“fib”",2,2)

(“fip,1,1)] [Lf1b",0 1)

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency

CP — Winter 2001/2002 282.

Evaluating Fibonacci
(fib(5) e rd(“fib’,5,?2fn)

eval (“fib",5,fib(4)+fib(3))

Gi b(4) +f i b(3)

rd
| (“fib", 4, fib(3)+fib(2
Gib(3)+fib(2))w\ eval LTl 1 003)+15(2))
rd (“fib”,3,3)
(“fib",2,2)

(“fip,1,1)] [Lf1b",0 1)

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency

CP — Winter 2001/2002 283.

Evaluating Fibonacci

(Fib(5) = rd(“fib", 5, 2 n)

Gi b(4) + | b(g)j\rd eval (“fib”,5,fib(4)+fib(3))
eval (“fib". 4 fib(3)+ib(2))

Gi b(3) +f i b(2)

(“fib”,3,3)

N\ (“fib. 2, 2)

(“fip,1,1)] [Lf1b",0 1)

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency

CP — Winter 2001/2002 284.

Evaluating Fibonacci

(Fib(5) = rd(“fib", 5, 2 n)

Gi b(4) + | b(g)j\rd eval (“fib”,5,fib(4)+fib(3))
eval (“fib". 4 fib(3)+ib(2))
5)

(“fib”,3,3)

(“fib”",2,2)

(“fip,1,1)] [Lf1b",0 1)

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency

CP — Winter 2001/2002 285.

Evaluating Fibonacci

(Fib(5) = rd(“fib", 5, 2 n)

Gi b(4) + | b(g)j\rd eval (“fib”,5,fib(4)+fib(3))
(“fib", 4 5)

(“fib”,3,3)

(“fib”",2,2)

(“fip,1,1)] [Lf1b",0 1)

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency

CP — Winter 2001/2002 286.

Evaluating Fibonacci
(fib(5) e rd(“fib’,5,?2fn)

eval (“fib",5,fib(4)+fib(3))

Gi b(4) +f i b(3)

~ (“fib”, 4, 5)
N (“fib”,3,3)

(“fib”",2,2)

(“fip,1,1)] [Lf1b",0 1)

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency

CP — Winter 2001/2002 287.

Evaluating Fibonacci
(fib(5) e rd(“fib’,5,?2fn)

C -) eval (“fib",5,fib(4)+fib(3))

(“fib”, 4, 5)

(“fib”,3,3)

(“fib”,2,2)

(“fip,1,1)] [Lf1b",0 1)

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency

CP — Winter 2001/2002

288.

(Fib(5) e

Evaluating Fibonacci

rd(“fib”,5, ?fn)

(“fib”,5,8)

(“fib”, 4, 5)

(“fib”,3,3)

(“fib”",2,2)

(“fib",1,1)

(“fib”, 0, 1)

@ O. Nierstrasz — U. Berne

Architectural Styles for Concurrency

Evaluating Fibonacci

(f1 b(5)l\

(“fib”",5, 8)

(“fib”, 4, 5)

(“fib”,3,3)

(“fib”, 2, 2)

(“fib", 1,1)

(“fib”,0, 1)

CP — Winter 2001/2002 290.

Evaluating Fibonacci

&)

(“fib",5,8)

(“fib",4,5)
(“fib",3,3)
(“fib", 2, 2)

(“fip,1,1)] [Lf1b",0 1)

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency

oo O O O8%

What you should know!

What is a Software Architecture?

What are advantages and disadvantages of Layered
Architectures?

What is a Flow Architecture? What are the options and
tradeoffs?

What are Blackboard Architectures? What are the options
and tradeoffs?

How does result parallelism differ from agenda parallelism?
How does Linda support coordination of concurrent agents?

O 0O0on0

3

Can you answer these questions?

How would you model message-passing agents in Java?
How would you classify Client/Server architectures?
Are there other useful styles we haven't yet discussed?

How can we prove that the Active Prime Sieve is correct?
Are you sure that new Active Primes will join the chain in
the correct order?

Which Blackboard styles are better when we have multiple
processors?

Which are better when we just have threads on a
monoprocessor?

What will happen if you start two concurrent Fibonacci
computations?

	12. Architectural Styles for Concurrency
	Sources
	Software Architecture
	Architectural style
	Communication Styles
	Simulated Message-Passing
	Three-layered Application Architectures
	Problems with Layered Designs
	Flow Architectures
	Unix Pipes
	Unix Pipes
	Flow Stages
	Flow Policies
	Limiting Flow
	Example: a Pull-based Prime Sieve
	Using Put-Take Buffers
	The PrimeSieve
	Pull-based integer sources
	The ActivePrime Class
	The ActivePrime Class
	The ActivePrime Class ...
	The ActivePrime Class ...
	Blackboard Architectures
	Result Parallelism
	Agenda Parallelism
	Specialist Parallelism
	Linda
	Linda primitives
	Example: Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	What you should know!
	Can you answer these questions?

