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1. Concurrent Programming

Lecturer: Prof. O. Nierstrasz
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MIT Press, Cambridge, 1990.

❑ A. Burns and G. Davies, Concurrent Programming
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Schedule

❑ 10.24 1. Introduction — Concurrency and Java
❑ 10.31 2. Safety
❑ 11.07 3. State-dependent Action
❑ 11.14 4. Asynchronous Methods
❑ 11.21 5. Fine-grained Synchronization
❑ 11.28 6. Architectural Styles for Concurrency
❑ 12.05 7. Coordination Languages
❑ 12.12 8. Coordination Components in Java
❑ 12.19 No lecture
❑ 01.09 9. Object-Based Concurrency
❑ 01.16 10. Petri Nets
❑ 01.23 11. Pi Calculus and Pict
❑ 01.30 12. JPict — Pict in Java
❑ 02.06 Open ...
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Overview

❑ Concurrency and Parallelism

❑ Applications of Concurrency

❑ Limitations
☞ safety, liveness, non-determinism ...

❑ Approach
☞ idioms, patterns and architectural styles

❑ Java and concurrency
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Concurrency and Parallelism

“A sequential program specifies sequential execution of a lis
is called a process. A concurrent program specifies two or m
may be executed concurrently as parallel processes.”

A concurrent program can be executed by:
1. Multiprogramming: processes share one o
2. Multiprocessing: each process runs on 

but with shared memo
3. Distributed processing: each process runs on 

connected by a networ

Assume only that all processes make positive finite progres
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Applications of Concurrency

There are many good reasons to build concurrent program

❑ Reactive programming
☞ minimize response delay; maximize throughp

❑ Real-time programming
☞ process control applications

❑ Simulation
☞ modelling real-world concurrency

❑ Parallelism
☞ exploit multiple CPUs for number-crunching; 

❑ Distribution
☞ coordinate distributed services
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aintain consistency

tee progress

end on “race conditions”

 than a method call

nchronization take time
niversität Bern

Limitations

But concurrent applications introduce complexity:

❑ Safety
☞ synchronization mechanisms are needed to m

❑ Liveness
☞ special techniques may be needed to guaran

❑ Non-determinism
☞ debugging is harder because results may dep

❑ Communication complexity
☞ communicating with a thread is more complex

❑ Run-time overhead
☞ thread construction, context switching and sy
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Atomicity

Programs P1 and P2 execute concurrently:

{ x = 0 }
P1: x := x+1
P2: x := x+2

{ x = ? }

What are possible values of x after P1 and P2 complete?
What is the intended final value of x?

Synchronization mechanisms are needed to restrict the pos
processes so that sets of actions can be seen as atomic.
Mutual exclusion ensures that statements within a critical s
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nt programs:
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Safety and Liveness

There are two principal difficulties in implementing concurre

Safety — ensuring consistency:
☞ Mutual exclusion — shared resources must b
☞ Condition synchronization — operations may

resources are not in an appropriate state (e.g
Liveness — ensuring progress:

☞ No Deadlock — some process can always ac
☞ No Starvation — all processes can eventually

Notations for expressing concurrent computation must add
1. Process Creation: how is concurrent execution spe
2. Communication: how do processes communicate
3. Synchronization: how is consistency maintained?
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Architecture, pp. 12-14
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Idioms, Patterns and Architectu

Idioms, patterns and architectural styles express best pract
design problems.

❑ Idioms
➪ “a low-level pattern specific to a program

— or more generally: “an implementation

❑ Design patterns
➪ “a commonly-recurring structure of comm

solves a general design problem within a

❑ Architectural patterns (styles)
➪ “a fundamental structural organization sc

— cf. Buschmann et al., Pattern-Oriented Software 
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Java

Language design influenced by existing OO languages (C+
❑ Strongly-typed, concurrent, pure object-oriented la
❑ Syntax, type model influenced by C++
❑ Single-inheritance but multiple subtyping
❑ Garbage collection

Innovation in support for network applications:
❑ Standard API for language features, basic GUI, IO
❑ Compiled to bytecode; interpreted by portable abs
❑ Support for native methods
❑ Classes can be dynamically loaded over network
❑ Security model protects clients from malicious obj

Java applications do not have to be installed and maintaine
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 the thread does
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Threads
A Thread  defines its behaviour in its run  method, but is st

// Copyright (c) 1995, 1996 Sun Microsystems, Inc. All Rights Reserve

class TwoThreadsTest  {
public static void main (String[] args) {

new SimpleThread("Jamaica").start(); // Instan
new SimpleThread("Fiji").start();

}
}

class SimpleThread  extends Thread {
public SimpleThread(String str) {

super(str); // Call T
}
public void run () { // What

for (int i = 0; i < 10; i++) {
System.out.println(i + " " + getName());
try {

sleep((int)(Math.random() * 1000));
} catch (InterruptedException e) { }

}
System.out.println("DONE! " + getName());

}
}
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f Java, the execution
rleaved.

r all implementations!

lines never garbled?
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Running the TwoThreadsTest
0 Jamaica
0 Fiji
1 Jamaica
1 Fiji
2 Jamaica
2 Fiji
3 Jamaica
3 Fiji
4 Jamaica
4 Fiji
5 Jamaica
6 Jamaica
5 Fiji
6 Fiji
7 Fiji
7 Jamaica
8 Jamaica
9 Jamaica
8 Fiji
DONE! Jamaica
9 Fiji
DONE! Fiji

In this implementation o
of the two threads is inte

This is not guaranteed fo

✎ Why are the output 

E.g.
00 JaFimajicai

...
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running threads of control:

uctors

d sleeps

(equal priority)

od
d running
alts a thread

me after suspend()
eadDeath error
ad to die
niversität Bern

java.lang.Thread
The Thread class encapsulates all information concerning 

public class java.lang.Thread
extends java.lang.Object implements java.lang.Runnable

{
public Thread(); // Public constr
public Thread(Runnable target);
public Thread(Runnable target, String name);
public Thread(String name);

...

public static void sleep(long millis)// Current threa
throws InterruptedException;

public static void yield(); // Yield control 
...

public final String getName();
public void run (); // “main()” meth
public synchronized void start (); // Starts a threa
public final void suspend (); // Temporarily h
public final void resume (); // Allow to resu
public final void stop (); // Throws a Thr
public final void join () // Waits for thre

throws InterruptedException;
...
}
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t Runnable

 elapsed

e()

r notifyAll()

 completed

Not Runnable

stop()
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Transitions between Thread Sta

Runnable→ ← No

sleep() time

suspend() resum

wait() notify()  o

blocked on I/O I/O

New Thread Runnable

Dead

yield()

start()

stop()

stop() , or
run() exits
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to inherit from both Thread
let ).

nts the Runnable interface,
lass as a parameter:
niversität Bern

java.lang.Runnable

Since multiple inheritance is not supported, it is not possible
and from another class providing useful behaviour (like App

In these cases it is sufficient to define a class that impleme
and to call the Thread constructor with an instance of that c

public interface java.lang.Runnable
{

public abstract void run ();
}
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n Thread :
Inc. All Rights Reserved.

ates its own thread

, 5, 10);
niversität Bern

Creating Threads
A Clock  object updates the time as an Applet  with its ow
import java.awt.Graphics; // Copyright (c) 1995, 1996 Sun Microsystems,
import java.util.Date;

public class Clock  extends java.applet.Applet implements Runnable {

Thread clockThread = null;

public void start() {
if (clockThread == null) {

clockThread = new Thread(this, "Clock"); // NB: cre
clockThread.start();

}
}

public void run () {
// loop terminates when clockThread is set to null in stop()
while (Thread.currentThread() == clockThread) {

repaint();
try { clockThread.sleep(1000); }
catch (InterruptedException e){ }

}
}

public void paint(Graphics g) {
Date now = new Date();
g.drawString(now.getHours() + ":" + now.getMinutes() + ":" + now.getSeconds()

}

public void stop() { clockThread = null; }
}
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y be running at any time

d with other synchronized

one may run at a time

with respect to some object:
niversität Bern

Synchronization

Without synchronization, an arbitrary number of threads ma
within the methods of an object.

One can either declare an entire method to be synchronize
methods of an object:

public class PrintStream  extends FilterOutputStream {
...
public synchronized  void println(String s);// Only 
public synchronized  void println(char c);
...

}

or an individual block within a method may be synchronized
synchronized  (resource) { // Lock resource before using it

...
}
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 suitable state:
 one-slot buffer

 variable

 if available

re is something to get()

producer

ue, if there is room

e is room to put()

consumer
niversität Bern

wait and notify
Sometimes threads must be delayed until a resource is in a

class Slot  { // Implements a
private int contents;
private boolean available = false; // the condition

public synchronized  int get() { // put contents,
while (available == false) {

try { wait (); } // wait until the
catch (InterruptedException e) { }

}
available = false;
notify (); // wake up the 
return contents;

}

public synchronized  void put(int value) { // put val
while (available == true) {

try { wait (); } // wait until ther
catch (InterruptedException e) { }

}
contents = value;
available = true;
notify (); // wake up the 

}
}
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java.lang.Object
Unlike synchronized , wait()  and notify()  are metho

public class java.lang.Object
{

public Object();
public boolean equals(Object obj);
public final Class getClass();
public int hashCode();
public String toString();
public final void wait ()

throws InterruptedException, IllegalMonitorStateExceptio
public final void wait(long timeout)

throws InterruptedException, IllegalMonitorStateExceptio
public final void wait(long timeout, int nanos)

throws InterruptedException, IllegalMonitorStateExceptio
public final void notify () throws IllegalMonitorStateExcept
public final void notifyAll () throws IllegalMonitorStateEx
protected Object clone()

throws CloneNotSupportedException, OutOfMemoryExc
protected void finalize() throws Throwable;

}
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 “parallelism”?
ramming?
 sequential ones?

 change state?
nized ?

ivalent sequential one?

n?
nchronized method or block?
n methods?
niversität Bern

Summary

You Should Know The Answers To These Questions:
❑ What is the distinction between “concurrency” and
❑ What are classical applications of concurrent prog
❑ Why are concurrent programs more complex than
❑ What are “safety” and “liveness”? Give examples.
❑ How do you create a new thread in Java?
❑ What states can a Java thread be in? How does it
❑ When should you declare a method to be synchro

Can You Answer The Following Questions?
✎ What is an example of a “race condition”?
✎ When will a concurrent program run faster than an equ

When will it be slower?
✎ What is the difference between deadlock and starvatio
✎ What happens if you call wait or notify outside a sy
✎ When is it better to use synchronized blocks rather tha
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 Principles and Patterns,

mming in Java,
niversität Bern

2. Safety

Overview
❑ Immutability:

☞ avoid safety problems by avoiding state chan
❑ Full Synchronization:

☞ dynamically ensure exclusive access
❑ Partial Synchronization:

☞ restrict synchronization to "critical sections"
❑ Containment:

☞ structurally ensure exclusive access

Sources
❑ D. Lea, Concurrent Programming in Java: Design

Addison-Wesley, 1996
❑ D. Lea, On-line Supplement to Concurrent Progra

http://gee.cs.oswego.edu/dl/cpj/index.html
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sentation) invariants

ach method may assume
at the object is in a “clean”,
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hen it is done.

 methods interleave
rbitrarily, an inconsistent
tate may be accessed, and
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Safety problems

Objects must only be accessed when they are in a consiste
☞ methods must maintain class (state and repre

m1

m2

m3

m4

m5

incoming requests

methods

abstract states
E
th
c
s
th
w

If
a
s
th
“d

?!
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Integer) and strings

 immutable versions

value
esent the same value
niversität Bern

Immutable classes

Intent
Bypass safety issues by not changing an object’s state afte

Applicability
❑ When objects represent values of simple ADTs

☞ colours (java.awt.Color), numbers (java.lang.
(java.lang.String)

❑ When classes can be separated into mutable and
☞ java.lang.String vs. java.lang.StringBuffer

❑ When updating by copying is cheap
☞ “hello” + “ ” + “world” → “hello world”

❑ When multiple instances can represent the same 
☞ i.e., two distinct copies of the integer 712 repr
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do not need to be
static )

 the method

ted needs no synchronization

ase
hreads only after hardening
niversität Bern

Immutability variants

Variants
❑ Stateless methods

☞ methods that do not access an object’s state 
synchronized (such methods can be declared

☞ any temporary state should be purely local to

❑ Stateless objects
☞ an object whose “state” is dynamically compu

❑ “Hardening”
☞ object becomes immutable after a mutable ph
☞ be sure that object is exposed to concurrent t
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Immutable classes — design st

❑ Declare a class with instance variables that are ne
construction.

class Relay  { // a within-package helper 
private final Server server_;// “blank final” (in Java 1.1

Relay(Server s) { // blank finals must be initia
server_ = s; // in all constructors

}

void doIt() {
server_.doIt();

}
}

❑ Especially if the class represents an immutable da
String ), consider overriding Object.equals  a

❑ Consider writing methods that generate new objec
(e.g., String  concatenation)

❑ Consider declaring the class as final .
❑ If only some variables are immutable, use synchro

for the methods that are not stateless.
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etries, or infinite loops.
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ample, by:
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Fully Synchronized Objects

Intent
Maintain consistency by fully synchronizing all methods.At 
any point in time.

Applicability
❑ You want to eliminate all possible read/write and wr

of the context in which it the object is used.
❑ All methods can run to completion without waits, r
❑ You do not need to use instances in a layered des

control synchronization of this class.
❑ You can avoid or deal with liveness failures, for ex

☞ Exploiting partial immutability
☞ Removing synchronization for accessors.
☞ Removing synchronization in invocations.
☞ Arranging per-method concurrency.
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 steps

public instance variables;
 variables).

zed  in Java. Use a
es this to multiple threads.
either do so via static
the form

e object in a consistent state,

ompletion. State-dependent

onditions fail
e.g., just on the arguments),
de!
ts can check conditions
niversität Bern

Fully Synchronization — design

❑ Declare all methods as synchronized

☞ Do not allow any direct access to state (i.e, no
no methods that return references to instance

☞ Constructors cannot be marked as synchroni
synchronized block in case a constructor pass

☞ Methods that access static  variables must 
synchronized  methods or within blocks of 
synchronized(getClass()) { ... } .

❑ Ensure that every public method exits leaving th
even if it exits via an exception.

❑ Keep methods short so they can atomically run to c
actions must rely on balking:
☞ Return failure (i.e., exception) to client if prec
☞ If the precondition does not depend on state (

then no need to run check in synchronized co
☞ Provide public accessor methods so that clien

before making request!
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Example: a BalkingBoundedCo

A Bounded Counter holds a value between MIN and MAX.
If the preconditions for inc()  or dec()  fail, an exception i

public class BalkingBoundedCounter  {
protected long count_ = BoundedCounter.MIN;

public synchronized long value() { return count_; }

public synchronized void inc() throws CannotIncrementExc
if (count_ >= BoundedCounter.MAX)

throw new CannotIncrementException();
else

++count_;
}

public synchronized void dec() throws CannotDecrementEx
if (count_ <= BoundedCounter.MIN)

throw new CannotDecrementException();
else

--count_;
}

}

✎ What safety problems would arise if this class were no
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Example: an ExpandableArray

This Expandable Array is a simplified variant of java.util.Ve

import java.util.NoSuchElementException;

public class ExpandableArray  {
private Object[] data_; // th
private int size_; // th

public ExpandableArray(int cap) {
data_ = new Object[cap]; // re
size_ = 0;

}

public synchronized int size() { return size_; }

public synchronized Object at(int i) // su
throws NoSuchElementException {
if (i < 0 || i >= size_ )

throw new NoSuchElementException();
else

return data_[i];
}

...
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public class ExpandableArray  {
...

public synchronized void append(Object x) { // a
if (size_ >= data_.length) { // n

Object[] olddata = data_;
data_ = new Object[3 * (size_ + 1) / 2];// in
for (int i = 0; i < size_; ++i)

data_[i] = olddata[i];
}
data_[size_++] = x;

}

public synchronized void removeLast()
throws NoSuchElementException {
if (size_ == 0)

throw new NoSuchElementException();
else

data_[--size_] = null;
}

}

✎ What could happen if any of these methods were not s
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Bundling Atomicity

❑ Consider adding synchronized methods that perfo
sequences of actions as single atomic action, so t
impose extra synchronization or control.

public interface Procedure  { // apply some oper
public void apply(Object x);

}

public class ExpandableArrayV2  extends ExpandableArray {

public ExpandableArrayV2(int cap) { super(cap); }

public synchronized void applyToAll(Procedure p) {
for (int i = 0; i < size_; ++i) { // oops -- SIZE 

p.apply(data_[i]); // should have
}

}

✎ What possible liveness problems does this technique i
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Inner classes

Anonymous inner classes (in Java 1.1) are the OO equival

class ExpandbleArrayUser  {

public static void main(String[] args) {
ExpandableArrayV2 a = new ExpandableArrayV2(100);

for (int i = 0; i < 100; ++i) // fill it up
a.append(new Integer(i));

a.applyToAll( new Procedure { // print all eleme
public void apply(Object x) { System.out.println(x); }

}
)

}
}

Any variables shared with the host object must be declared
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Partial Synchronization

Intent
Reduce overhead by synchronizing only within “critical sec

Applicability
❑ When objects have both mutable and immutable i
❑ When methods can be split into a “critical section”

and a part that does not.

Design steps
❑ Fully synchronize all methods
❑ Remove synchronization for accessors to atomic o
❑ Remove synchronization for methods that access

single other, already synchronized method
❑ Replace method synchronization by block synchro

access to mutable state is restricted to a single, cr
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Example: LinkedCells
public class LinkedCell  {

protected double value_; // d
protected final LinkedCell next_; // fix

public LinkedCell (double v, LinkedCell t) { value_ = v; next_ = t; 

public synchronized  double value() { return value_; }

public synchronized  void setValue(double v) { value_ =

public LinkedCell next() { return next_; } // n

public double sum() { // a
double v = value(); // g
if (next() != null) // sy

v += next().sum();
return v;

}

public boolean includes(double x) { // se
synchronized(this) { // sy

if (value_ == x) return true;
}
if (next() == null) return false;
else return next().includes(x);

}
}
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Containment
Intent
Achieve safety by avoiding shared variables. Unsynchroniz
inside other objects that have at most one thread active at 

Applicability
❑ There is no need for shared access to the embedd
❑ The embedded objects can be conceptualized as 
❑ You can tolerate the additional context dependenc
❑ Embedded objects must be structured as islands —

of objects ultimately reachable from a single uniqu
contain methods that reveal their identities to othe

❑ You are willing to hand-check designs for complia
❑ You can deal with or avoid indefinite postponemen

where host objects must transiently acquire multip
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Contained Objects — design s

❑ Define the interface for the outer host object.
☞ The host could be, e.g., an Adaptor, a Compos

synchronized access to an existing, unsynchr

❑ Ensure that the host is either fully synchronized, or

❑ Define instances variables that are unique referen
☞ Make sure that these references cannot leak 
☞ Establish policies and implementations that e

references are really unique!
☞ Consider methods to duplicate or clone conta

copies are unique
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Managed Ownership

❑ Model contained objects as physical resources:
☞ If you have one, then you can do something th
☞ If you have one, then no one else has it.
☞ If you give one to someone else, then you no
☞ If you destroy one, then no one will ever have

❑ If contained objects can be passed among hosts, 
☞ Hosts should be able to acquire, give, take, ex
☞ Consider using a dedicated class to manage 
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A minimal transfer protocol cla

This class is essentially a one-slot buffer for transferring re
separate threads.

public class ResourceVariable  {
protected Object ref_;

public ResourceVariable(Object res) { ref_ = res; }

public synchronized Object resource() { return ref_; }

public synchronized Object exchange(Object r) {
Object old = ref_;
ref_ = r;
return old;

}
}

NB: exchange()  is enough to implement most transfer op
implemented by exchange(null)
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Summary

You Should Know The Answers To These Questions:
❑ Why are immutable classes inherently safe?
❑ Why doesn’t a “relay” need to be synchronized?
❑ What is “balking”? When should a method balk?
❑ When is partial synchronization better than full syn
❑ How does containment avoid the need for synchro

Can You Answer The Following Questions?
✎ When is it all right to declare only some methods as sy

✎ When is an inner class better than an explicitly named
✎ What liveness problems can full synchronization introd
✎ Why is it a bad idea to have two separate critical sectio
✎ Does it matter if a contained object is synchronized or 
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3. State-dependent Action

Overview
❑ Liveness and Fairness

☞ The Dining Philosophers problem
❑ Guarded Methods

☞ Checking guard conditions
☞ Handling interrupts
☞ Structuring notification
☞ Tracking state
☞ Delegating notifications

Sources
❑ A. Burns and G. Davies, Concurrent Programming
❑ D. Lea, Concurrent Programming in Java: Design

Addison-Wesley, 1996
❑ D. Lea, On-line Supplement to Concurrent Progra

http://gee.cs.oswego.edu/dl/cpj/index.html
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Liveness Problems

Liveness properties guarantee that your (concurrent) progr
A program may be “safe”, yet suffer from various kinds of li

❑ Contention:
☞ AKA “starvation” or “indefinite postponement”

makes progress, but some individual process

❑ Dormancy:
☞ A waiting process fails to be woken up

❑ Deadlock:
☞ Two or more processes are blocked, waiting 

others (i.e., in a cycle)

❑ Premature termination:
☞ A process is killed before it should be
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Achieving Liveness

There are various strategies and techniques to ensure liven

❑ Start with safe design and selectively remove syn

❑ Start with live design and selectively add safety

❑ Adopt design patterns that limit the need for synch

❑ Adopt standard architectures that avoid cyclic dep
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The Dining Philosophers Problem

Philosophers alternate between
thinking and eating.

A philosopher needs two forks to eat.

No two philosophers may hold the
same fork simultaneously.

There should be no deadlock and no
starvation.

Want efficient behaviour under
absence of contention.
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Dining Philosophers, Safety and

Dining Philosophers illustrates many classical safety and liv

❑ Mutual Exclusion: Each chopstick can be used by
❑ Condition synchronization: A philosopher needs tw
❑ Shared variable communication: Philosophers sha
❑ Message-based communication: ... or they can pa
❑ Busy-waiting: A philosopher can poll for forks ...
❑ Blocked waiting: ... or can sleep till woken by a ne
❑ Livelock: All philosophers can grab the left fork an
❑ Deadlock: ... or grab the left one and wait (sleep) 
❑ Starvation: A philosopher may starve if the left and

faster at grabbing the forks
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Dining Philosopher Solutions

There are countless solutions to the Dining Philosophers p
concurrent programming styles and patterns, and offer vary
guarantees:

❑ Number the forks;
philosophers grab the lowest numbered fork first.

❑ Have philosophers leave the table while they think
allow at most four to sit at a time;
philosophers queue to sit down.

✎ Is deadlock possible in either case?
✎ What about starvation?
✎ Are these solutions “fair”?
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Fairness

There are subtle differences between definitions of fairness

Weak fairness:
☞ If a process continuously makes a request, ev

Strong fairness:
☞ If a process makes a request infinitely often, e

Linear waiting:
☞ If a process makes a request, it will be granted

granted the request more than once.
FIFO (first-in first out):

☞ If a process makes a request, it will be grante
making a later request.
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Guarded Methods
Intent
Temporarily suspend an incoming thread when an object is
a request, and wait for the state to change rather than balk

Applicability
❑ Clients can tolerate indefinite postponement. (Othe
❑ You can guarantee that the required states are ev

requests), or if not, that it is acceptable to block fo
❑ You can arrange that notifications occur after all re

(Otherwise consider a design based on a busy-wa
❑ You can avoid or cope with liveness problems due

all synchronization locks (except for that of the ho
❑ You can construct computable predicates describi

will succeed. (Otherwise consider an optimistic de
❑ Conditions and actions are managed within a single

a transactional form.)
❑ You have no need to encapsulate waiting and not

special condition objects.
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Guarded Methods — design ste

The basic recipe is to use wait  in a conditional loop to blo
and use notifyAll  to wake up blocked threads.

public synchronized  Object service() {
while ( wrong State ) {

try { wait (); }
catch (InterruptedException e) { }

}
// fill request
// and change state
notifyAll (); // NB: use notify() only if it 
return result; // which waiting thread you

}
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Separate interface from policy

❑ Define interfaces for the methods, so that classes
methods according to different policies.

public interface BoundedCounter  {
public static final long MIN = 0; // minimum allowed
public static final long MAX = 10; // maximum allowe

public long value(); // invariant: MIN <=
// initial condition: v

public void inc(); // increment only w
public void dec(); // decrement only w

}
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Check guard conditions

❑ Define a predicate that precisely describes the co
may proceed. (This can be encapsulated as a hel

❑ Precede the conditional actions with a guarded wa
while (!condition)
try { wait(); } catch (InterruptedException ex) { ... }

Optionally, encapsulate this code as a helper met

❑ If there is only one possible condition to check in t
subclasses), and notifications are issued only whe
there is no need to re-check the condition after ret

❑ Ensure that the object is in a consistent state (i.e.,
before entering any wait  (since wait releases the
easiest way to do this is to perform the guards bef
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Handle interrupts

❑ Establish a policy for dealing with InterruptedExce
force a return from wait ). Possible policies are:

☞ Ignore interrupts (i.e., have an empty catch  
safety at the possible expense of liveness.

☞ Terminate the current thread (via stop ). This a
brutally!

☞ Exit the method, possibly raising an exception
may require the caller to take special action to

☞ Take some pre-planned action; such as clean
☞ Ask for user intervention before taking further

Interrupts can be useful to signal that the guard ca
because, for example, the collaborating threads h
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Signal state changes

❑ Add notification code to each method of the class t
that can affect the value of a guard condition. Som

☞ notifyAll  wakes up all threads that are blo
object. Calls to notifyAll (as well as notify
a synchronized method or block.

☞ notify wakes up only one thread (if any exis
optimization where (i) all blocked threads are
conditions signalled by the same notifications
enabled by any given notification, and (iii) it d
them becomes enabled.

☞ You build your own special-purpose notificatio
and notifyAll . (For example, to selectively
certain fairness guarantees.)
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Structure notifications

❑ Ensure that each wait is balanced by at least one 

☞ Blanket Notifications: Place a notification at th
can cause any state change (i.e., assigns any
simple and reliable, this approach can cause 

☞ Encapsulating Assignment: Encapsulate assi
mentioned in any guard condition in a helper 
notification after updating the variable.

☞ Tracking state: Only issue notifications for the
could actually unblock waiting threads. This a
performance, at the cost of flexibility. (I.e., su

☞ Tracking State Variables: Maintain an instanc
control state. After each method that changes
method that re-evaluates the variable and che
affect a guard condition, and if so, issues a no

☞ Delegating Notifications: If aspects of state ar
contained helper objects, have these helpers
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Encapsulating assignment
public class BoundedCounterV0  implements BoundedCounter {

protected long count_ = MIN;

public synchronized long value() { return count_; }

public synchronized void inc() {
awaitIncrementable();
setCount(count_ + 1);

}

public synchronized void dec() {
awaitDecrementable();
setCount(count_ - 1);

}

protected synchronized void setCount(long newValue) {
count_ = newValue;
notifyAll(); // wake up any thread depe

}

protected synchronized void awaitIncrementable() {
while (count_ >= MAX) try { wait(); } catch(InterruptedException 

}

protected synchronized void awaitDecrementable() {
while (count_ <= MIN) try { wait(); } catch(InterruptedException e

}
}
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Tracking State

The only transitions that could possibly affect waiting threa
those that step away from logical states bottom and top:

public class BoundedCounterVST  implements BoundedCounter 
protected long count_ = MIN;

public synchronized long value() {
return count_;

}

public synchronized void inc() {
while (count_ == MAX)

try { wait(); } catch(InterruptedException ex) {};
if (count_++ == MIN) // signal if previ

notifyAll();
}

public synchronized void dec() {
while (count_ == MIN)

try { wait(); } catch(InterruptedException ex) {};
if (count_-- == MAX) // signal if previ

notifyAll();
}

}
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Tracking State Variables
public class BoundedCounterVSW  implements BoundedCounter 

static final int BOTTOM= 0; // logica
static final int MIDDLE= 1;
static final int TOP = 2;

protected int state_ = BOTTOM; // the st
protected long count_ = MIN;

protected synchronized void checkState() {
int oldState = state_;
if (count_ == MIN) state_ = BOTTOM;
else if (count_ == MAX) state_ = TOP;
else state_ = MIDDLE;

if (state_ != oldState && // notify
(oldState == TOP || oldState == BOTTOM))

notifyAll();
}

public synchronized long value() { return count_; }

public synchronized void inc() {
while (state_ == TOP) // only c

try { wait(); } catch(InterruptedException ex) {};
++count_;
checkState();

} // dec()
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Delegating notifications

NotifyingLong  class can be used to issue a notifyAll
whenever it changes value:

public class NotifyingLong  {
private long value_;
private Object observer_;

public NotifyingLong(Object o, long v) {
observer_ = o;
value_ = v;

}

public synchronized long value() { return value_; }

public void setValue(long v) {
synchronized(this) {

value_ = v;
}
synchronized(observer_) {

observer_.notifyAll();
}

}
}
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Delegating notifications ...

The resulting BoundedCounter  class differs from an Adap
object provides the change notifications on behalf of the ho

public class BoundedCounterVNL  implements BoundedCounter 
private NotifyingLong c_ = new NotifyingLong(this, MIN);

public synchronized long value() {
return c_.value();

}

public synchronized void inc() {
while (c_.value() >= MAX)

try { wait(); } catch(InterruptedException ex) {};
c_.setValue(c_.value()+1);

}

public synchronized void dec() {
while (c_.value() <= MIN)

try { wait(); } catch(InterruptedException ex) {};
c_.setValue(c_.value()-1);

}
}
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Using template methods
To improve extensibility, consider separating out the code th
the action in a separate (non-public) method. The same ac
within different guarded methods:

public class BoundedCounterVSG  implements BoundedCounter 

protected long count_ = MIN;
// non-public actions
protected long value_() { return count_; }

protected void inc_() { ++count_; }

protected void dec_() { --count_; }

// possibly guarded public methods

public synchronized long value() {
return value_();

}

public synchronized void inc() {
while (value_() >= MAX)

try { wait(); } catch(InterruptedException ex) {};
inc_();
notifyAll();

}

// etc ....
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Summary

You Should Know The Answers To These Questions:
❑ What kinds of liveness problems can occur in con
❑ What is the difference between livelock and deadl
❑ When should methods recheck guard conditions a
❑ Why should you usually prefer notifyAll()  to n

❑ When and where should you issue notification?

Can You Answer The Following Questions?
✎ How can you detect deadlock? How can you avoid it?
✎ What is the easiest way to guarantee fairness?
✎ When are guarded methods better than balking?
✎ What is the best way to structure guarded methods for

be easy for others to define correctly functioning subcl
✎ Is the complexity of delegating notifications worth it?
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4. Asynchronous Methods

Overview
❑ Asynchronous invocations
❑ Simple Relays

☞ Direct Invocations
☞ Thread-based messages; Gateways
☞ Command-based messages

❑ Tail calls
❑ Early replies
❑ Futures

Sources
❑ D. Lea, Concurrent Programming in Java: Design

Addison-Wesley, 1996
❑ Doug Lea, On-line Supplement to Concurrent Pro

http://gee.cs.oswego.edu/dl/cpj/index.html
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Asynchronous Invocations

Intent
Avoid waiting for a request to be serviced by decoupling se

Applicability
❑ When a host object can distribute services among
❑ When an object does not need the result of an inv

useful work, for example:
☞ Notifications: inform the target object of a cer
☞ Activations: construct and start daemon objec
☞ Multicast: invoke independent services on a g
☞ Relays: hand off work to be performed by a h

❑ When invocations that are logically asynchronous
are coded using threads.

❑ During refactoring, when classes and methods are
concurrency and reduce liveness problems.
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Asynchronous Invocations — fo

Generally, asynchronous invocation designs take the follow

class Host  {
public service() {

pre(); // code that must execute before in
invokeHelper(); // the invocation
during(); // code that may run at the same ti
post(); // code that must execute after com

}
}
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Asynchronous Invocations — d

Consider the following issues:
❑ Does the Host need to get results back from the H

☞ Not if, e.g., the Helper returns results directly 
❑ Can the Host process new requests while the Hel

☞ Might depend on the kind of request ...
❑ Does the Host need to do something while the He

☞ I.e., in the during  code
❑ Does the Host need to do synchronized pre-invoc

☞ I.e., if service()  is guarded or if pre()  upd
❑ Does the Host need to do synchronized post-invo

☞ I.e., if post()  updates the Host’s state
❑ Does post-invocation processing only depend on 

☞ ... or does the host have to wait for other cond
❑ Is the same Helper always used?

☞ Is a new one generated to help with each new
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Simple Relays

A relay method is obtains all its functionality by delegating 
pre() , during() , or post()  actions.

Three common forms:
❑ Direct invocations

☞ Invoke the Helper directly, but without synchr

❑ Thread-based massages
☞ Create a new thread to invoke the Helper

❑ Command-based messages
☞ Pass the request as a Command object to an

Relays are commonly seen in Adaptors.
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Direct invocations

Although the invocation is not strictly asynchronous, we hav
since the Host is free to accept other requests, while the H
reply. This is a special case of stateless method.

class Host  {
protected Helper helper_ = new Helper();
public void service() {

invokeHelper();
}
protected void invokeHelper() { helper_.help(); } //

}

If helper_  is mutable, it may be necessary to protect it wit
protected synchronized  Helper helper() { return helper_; }
public void service() {

helper().help();
}
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Thread-based massages

The invocation can be performed within a new thread:

protected void invokeHelper() {
Runnable r = new Runnable { // NB: an in

final Helper h_ = helper_;
public void run() { h_.help() ; }

}
new Thread(r).start();

}

The cost of evaluating Helper.help() should outweigh the o
☞ If the Helper is a daemon (loops endlessly)
☞ If the Helper does IO
☞ Possibly, if multiple helper methods are invok

NB: If helper_  is mutable, service() should be synchro
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Thread-per-message Gateway
Variant: the host may construct a new Helper to service 

public class FileIO  {
public void writeBytes(String fileName, byte[] data

new Thread (new FileWriter(fileName, data)).start();
}

public void readBytes(String fileName, byte[] data)
new Thread (new FileReader(fileName, data)).start();

}
}

class FileWriter  implements Runnable {
private String nm_; //
private byte[] d_;
public FileWriter(String name, byte[] data) {

nm_ = name;
d_ = data;

}

public void run() {
// write bytes in d_ to file nm_ ...

}
} //
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Command-based messages

Instead of invoking the Helper directly, or starting a thread 
message in a queue to be read by another object that will i

protected EventQueue q_;

protected invokeHelper() {
q_.put(new HelperMessage(helper_));

}

Command-based forms are most appropriate when you ne
scheduling, undo, or replay capabilities, or are transporting
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Tail calls

Tail-call designs apply when the helper method can be per
statement(s) of a method; i.e., when there is no post() pro
be performed under synchronization, released before the c
immediately available to accept other messages after issui

Observer designs often take this form, where Host is Subje
updateState , pre is doUpdate , Helper is Observer , an
changeNotification :

class Subject  {
protected Observer obs_ = new ...;
protected double state_;
public void updateState(double d) { // not sy

doUpdate(d); // synch
sendNotification(); // not sy

}
protected synchronized doUpdate(double d) { state_ = d;
protected void sendNotification() { obs_.changeNotification(this

}
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Tail calls with new threads

Rather than direct invocations, the tail call may be performe

public synchronized void updateState(double d) {
state_ = d;
Runnable r = new Runnable {

final Observer o_ = obs_;
public void run() { o_.changeNotification(Subject.this); }

}
new Thread(r).start();

}
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Early Reply
Early reply allows a host to perform useful activities after re

Early reply is a built-in feature in some programming langu
It can be easily simulated when it is not a built-in feature.

service()

Client Host

reply
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Simulating Early Reply

A one-slot buffer can be used to pick up the reply from a he

A one-slot buffer is a simple abstraction that can be used to i
concurrency abstractions ...

service()

Client Host

reply

Slotnew

get()
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A One-Slot Buffer
class Slot  { // a

private Object slotVal_; // in

public synchronized  void put(Object val) {
while (slotVal_ != null) {

try { wait(); }
catch (InterruptedException e) { }

}
slotVal_ = val;
notifyAll(); // sa
return; // if 

} // a

public synchronized  Object get() {
Object rval;
while (slotVal_ == null) {

try { wait(); }
catch (InterruptedException e) { }

}
rval = slotVal_;
slotVal_ = null;
notifyAll();
return rval;

}
}
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Early Reply in Java

The Helper thread can be easily implemented using an ano

public static Stuff service() {
final Slot reply = new Slot(); // NB: shared v
new Thread(new Runnable () { // anonymous in

public void run() {
Stuff result;
// compute result
reply.put(result); // early reply via
// do other stuff

}
}).start();
return (Stuff) reply.get(); // wait till reply 

}
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Futures
Futures allow a host to continue in parallel with a helper un

service()

Host Helper

(returns future)

value()

(returns value)

pre

invokeHelper

during

post
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A Future Class

Futures can be implemented as a layer of abstraction arou

class Future  {

private Object val_; // initially null
private Slot slot_; // shared with some worker

public Future(Slot slot) {
slot_ = slot;

}

public Object value() {
if (val_ == null)

val_ = slot_.get(); // be sure to only get() once
return val_;

}

}
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Using Futures in Java

WIth futures, the client, rather than the host, proceeds in pa

public static Future service () {
final Slot slot = new Slot(); // immutable sh
new Thread(new Runnable () { // start anonym

public void run() {
// compute result
slot.put(result); // pass result to

}
}).start();
return new Future(slot); // immediately r

} // client will wai

Without special language support, futures are less transpar
the client must explicitly request a value()  from the future
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Summary

You Should Know The Answers To These Questions:
❑ What general form does an asynchronous invocat
❑ When should you consider using asynchronous in
❑ In what sense can a direct invocation be “asynchr
❑ Why (and how) would you use “inner classes” to im
❑ What is “early reply”, and when would you use it?
❑ What are “futures”, and when would you use them
❑ How can implement futures and early replies in Ja

Can You Answer The Following Questions?
✎ Why are servers commonly structured as thread-per-m
✎ Which of the concurrency abstractions we have discus

implemented using one-slot-buffers as the only synchr
✎ When are futures better than early replies? Vice versa
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5. Fine-grained Synchronization

Overview
❑ Condition Objects
❑ The “Nested Monitor Problem”
❑ Permits and Semaphores
❑ Concurrently available methods

☞ Priority
☞ Interception
☞ Readers and WRiters

❑ Optimistic Methods
Sources

❑ D. Lea, Concurrent Programming in Java: Design
Addison-Wesley, 1996

❑ Doug Lea, On-line Supplement to Concurrent Pro
http://gee.cs.oswego.edu/dl/cpj/index.html
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Condition Objects

Intent
Condition objects encapsulate the waits and notifications u

Applicability
❑ To simplify class design by off-loading waiting and

☞ Because of the limitations surrounding the use
in some cases the use of condition objects wi
decrease design complexity!

❑ As an efficiency manoeuvre. By isolating condition
notifying waiting threads that could not possibly pro
change.

❑ As a means of encapsulating special scheduling p
notifications, for example to impose fairness or pri

❑ In the particular cases where conditions take the f
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A Simple Condition Object

Condition objects implement this interface:
public interface Condition  {

public void await(); // wait for some condition
public void signal(); // signal that some conditio

}

Suppose we tried to encapsulate guard conditions with this
public class SimpleConditionObject  implements Condition {

public synchronized void await() {
try { wait(); } catch (InterruptedException ex) {}

}

public synchronized void signal() {
notifyAll();

}
}

Careless use of this class can lead to the “Nested Monitor 
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The Nested Monitor problem
Avoid designs like this!

public class BoundedCounterVBAD  implements BoundedCounte
protected long count_ = MIN;
protected Condition notMin_ = new SimpleConditionObject();
protected Condition notMax_ = new SimpleConditionObject();

public synchronized long value() { return count_; }

public synchronized  void inc() {
while (count_ == MAX)

notMax_.await() ; // wait until count is not at m
if (count_++ == MIN)

notMin_.signal(); // signal that count is not at
}

public synchronized  void dec() {
while (count_ == MIN)

notMin_.await();
if (count_-- == MAX)

notMax_.signal() ; // can’t get here if locked o
}

}

Nested monitor lockouts occur whenever a blocked thread 
containing the method that would otherwise provide a notifi
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Solving the Nested Monitors pro

You must ensure that:
❑ Waits do not occur while synchronization is held o

☞ This leads to a guard loop that reverses the s
faulty version.

❑ Notifications are never missed.
☞ The entire guard wait loop should be enclosed

on the condition object.

❑ Notifications do not deadlock.
☞ All notifications should be performed only upo

synchronization except of that for the notified

❑ If the helper object maintains any state, that it is a
the host, and if it shares any state with the host, th
synchronized.
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Example solution
public class BoundedCounterVCV  implements BoundedCounter 

protected long count_ = MIN;
protected Condition notMin_ = new SimpleConditionObject();
protected Condition notMax_ = new SimpleConditionObject();

public synchronized long value() { return count_; }

public void inc() { // NOT synched!
boolean wasMin = false; // record notification
synchronized(notMax_)  { // synch guard loop

for (;;) { // the recast guard 
synchronized(this)  {

if (count_ < MAX) { // check and act
wasMin = (count_++ == MIN);
break;

}
}
notMax_.await() ; // release host sync

}
}
if (wasMin) notMin_.signal() ; // release all sync b

}

public void dec() { // symmetric
...

}
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Permits and Semaphores

Intent
Bundle synchronization in a condition object when synchro
with tracking the value of a counter.

Applicability
❑ When any given await may proceed only if there h

awaits.
☞ More generally, if there are enough “permits”,

increments and every await decrements the n

❑ You need to guarantee the absence of missed sig
☞ Unlike simple condition objects, semaphores 

enters its await after another thread has signa

❑ The host classes using them can arrange to invok
outside of synchronized methods or code blocks.
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Permits and Semaphores — de

❑ Define a class implementing Condition  that mai
immediately releases await if there are already en

❑ As with all kinds of condition objects, the classes u
invoking await inside of synchronized methods an

☞ One way to help ensure this is to use a before
class Host  {

Condition aCondition_;
Condition anotherCondition_;
Condition aThirdCondition_;

public method m1() {
aCondition_.await(); // n
doM1(); // sy
for each Condition c enabled by m1()

c.signal(); // n
}

protected synchronized doM1() { /* t
}
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Variants

❑ Permit Counters (Counting Semaphores)
☞ Just keep track of the number of “permits”
☞ Can use notify  instead of notifyAll  if cla

❑ Fair Semaphores
☞ Maintain FIFO queue of threads waiting on a

❑ Locks and Latches
☞ Locks can be acquired and released in separ
☞ Keep track of thread holding the lock so locks
☞ A latch is set to true by signal , and always 

See the On-line supplement for details.
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Concurrently Available Method

Intent
Non-interfering methods comprising a service an be made 
splitting them into different objects or aspects of the same ob
execution conditions to enable and disable the methods ac
concurrency control policy.

Applicability
❑ Host objects are typically accessed across many d
❑ Host services are not completely interdependent, 

under mutual exclusion.
❑ You need better throughput for one or more of the

object, and need to eliminate nonessential blockin
❑ You want to prevent various accidental or maliciou

which synchronized methods on a host block becau
its lock.

❑ Use of full synchronization would needlessly make
deadlock or other liveness problems.



Concurrent programming — WS 97/98 90.

U Fine-grained Synchronization

 steps

oked?

orce policy.

s and then relay them under
actually perform the actions.
niversität Bern

Concurrent Methods — design

Layer concurrency control policy over mechanism by:

❑ Policy Definition:
☞ When may methods run concurrently?
☞ What happens when a disabled method is inv
☞ What priority is assigned to waiting tasks?

❑ Instrumentation:
☞ Define state variables that can detect and enf

❑ Interception:
☞ Have the host object intercept public message

the appropriate conditions to the methods that
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Priority

❑ Priority may depend on any of:
☞ Intrinsic attributes of the tasks (class and inst
☞ Representations of task priority, cost, price, o
☞ The number of tasks waiting for some conditi
☞ The time at which each task is added to a que
☞ Fairness — guarantees that each waiting task
☞ The expected duration or time to completion o
☞ The desired completion time of each task.
☞ Termination dependencies among tasks.
☞ The number of tasks that have completed.
☞ The current time.
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Interception

Interception strategies include:

❑ Pass-Throughs
☞ The host maintains a set of immutable referen

simply relays all messages to them within uns

❑ Lock-Splitting
☞ Instead of splitting the class, split the synchron

subsets of functionality

❑ Before/After methods
☞ Public methods contain before/after processin

public methods in the host that perform the se
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Concurrent Reader and Writers

“Readers and Writers” is a family of concurrency control de
policies governing concurrent invocation of non-mutating a
mutative, state-changing operations (“Writers”).
The basic idea is to let any number of readers to concurren
are no writers, but writers have exclusive access.

Individual policies must address:
❑ Can new Readers join already active Readers eve

☞ If yes, Writers may starve; if not, the throughp
❑ If both Readers and Writers are waiting for a Write

let in first?
☞ Readers? A Writer? Earliest first? Random? A
☞ Similar choices are available after termination

❑ Can Readers upgrade to Writers without having to

Before/after methods are the simplest way to implement Re
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Readers and Writers example

The following example illustrates a common set of choices:
❑ Block incoming Readers if there are waiting Write
❑ “Randomly” choose among incoming threads. (I.e

native Java scheduler)
❑ No upgrade mechanisms.

public abstract class RWVT {
protected int activeReaders_ = 0; // threads exec
protected int activeWriters_ = 0; // always zero o
protected int waitingReaders_ = 0; // threads not y
protected int waitingWriters_ = 0; // same for writ

protected abstract void read_(); // implement in 
protected abstract void write_();

public void read() { beforeRead(); read_(); afterRea

public void write() { beforeWrite(); write_(); afterWrite()

protected boolean allowReader() {
return waitingWriters_ == 0 && activeWriters_ == 0;

}
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protected boolean allowWriter() {
return activeReaders_ == 0 && activeWriters_ == 0;

}

protected synchronized void beforeRead() {
++waitingReaders_;
while (!allowReader())

try { wait(); } catch (InterruptedException ex) {}
--waitingReaders_;
++activeReaders_;

}

protected synchronized void afterRead() {
--activeReaders_; notifyAll();

}

protected synchronized void beforeWrite() {
++waitingWriters_;
while (!allowWriter())

try { wait(); } catch (InterruptedException ex) {}
--waitingWriters_;
++activeWriters_;

}

protected synchronized void afterWrite() {
--activeWriters_; notifyAll();

}

}
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Optimistic Methods

Intent
Optimistic methods attempt actions, but rollback state if the
interfered with by the actions of other threads. After rollbac
exceptions or retry the actions.

Applicability
❑ Clients can tolerate either failure or retries.

☞ If not, consider using guarded methods .
❑ You can avoid or cope with livelock.
❑ You have a way to deal with actions occurring bef

☞ Provisional action: “pretend” to act, delaying co
possibility of failure has been ruled out.

☞ Rollback/Recovery: undo the effects of each 
messages are sent to other objects, they mus
messages”
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Optimistic Methods — design s

❑ Collect and encapsulate all mutable state so that i

☞ Define an immutable helper class holding val
☞ Define a representation class, but make it mu

variables to change), and additionally include
transaction identifier) field or even a sufficient

☞ Embed all instance variables, plus a version n
define commit  to take as arguments all assu
values of these variables.

☞ Maintain a serialized copy of object state.
☞ Various mixtures of the above ...
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Detect failure ...

❑ Provide an operation that simultaneously detects v
updates via a method of the form:

class Optimistic  { // g
private State currentState_; // S

synchronized boolean commit(State assumed, Sta
boolean success = (currentState_ == assumed);

if (success)
currentState_ = next;

return success;
}

}

❑ Structure the main actions of each public method 
State assumed = currentState();
State next = ...
if (!commit(assumed, next))

rollback();
else

otherActionsDependingOnNewStateButNotChangingIt()
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Handle conflicts ...

❑ Choose and implement a policy for dealing with co
☞ Throw an exception upon commit failure that

(Of course, this kicks the decision back to the
be in a better position to decide whether to re

☞ Internally retry the action until it succeeds.
☞ Retry some bounded number of times, or unt

throwing an exception.
☞ Synchronize the method, precluding commit fa

when other methods in the class use exceptio

❑ Take precautions to ensure that retries are based u
of instance variables.
☞ If state is maintained in an immutable helper 

reference in the class, then this reference sho
All accessor methods can be left as unsynchr

volatile specifies that a variable changes asynchronousl
attempt optimizations with it (such as using a copy stored in
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Ensure progress ...

❑ Take precautions to ensure progress in case of in
state-dependent methods.
☞ Optimistic state-dependent methods require u

which it is counterproductive to immediately r
☞ Yielding may not be effective unless all thread

and the Java scheduler at least approximates
tasks (which it is not guaranteed to do)!

❑ Limit retries.
☞ Unless there is some independent assurance

eventually succeed, retries can result in livelo
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An optimistic Bounded Counte
public class BoundedCounterVOPT  implements BoundedCounte

protected volatile Long count_ = new Long(MIN);

protected synchronized  boolean commit(Long oldc, Long n
boolean success = (count_ == oldc);
if (success) count_ = newc;
return success;

}

public long value() { return count_.longValue(); }

public void inc() {
for (;;) { // th

Long c = count_; long v = c.longValue();
if (v < MAX && commit(c, new Long(v+1))) break;
Thread.currentThread().yield(); // is

}
}

public void dec() {
for (;;) {

Long c = count_; long v = c.longValue();
if (v > MIN && commit(c, new Long(v-1))) break;
Thread.currentThread().yield();

}
}

}
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Summary

You Should Know The Answers To These Questions:
❑ What are “condition objects”? How can they make
❑ What is the “nested monitor problem”? How can y
❑ What are “permits” and “semaphores”? When is it
❑ Why (when) can semaphores use notify()  inste
❑ When should you consider allowing methods to be
❑ What kinds of policies can apply to concurrent Re
❑ How do optimistic methods differ from guarded me

Can You Answer The Following Questions?
✎ What is the easiest way to avoid the nested monitor pr
✎ What assumptions do nested monitors violate?
✎ How can the obvious implementation of semaphores (
✎ How does “partial synchronization” differ from “concurr
✎ When should you prefer optimistic methods to guarded
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6. Architectural Styles for Conc

Overview
❑ What is Software Architecture?
❑ Three-layered application architecture
❑ Flow architectures
❑ Blackboard architectures

Sources
❑ M. Shaw and D. Garlan, Software Architecture: Pe

Discipline, Prentice-Hall, 1996.
❑ F. Buschmann, et al., Pattern-Oriented Software A

Patterns, John Wiley, 1996.
❑ D. Lea, Concurrent Programming in Java — Desig

The Java Series, Addison-Wesley, 1996.
❑ N. Carriero and D. Gelernter, How to Write Paralle

MIT Press, Cambridge, 1990.
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Software Architecture

A Software Architecture defines a system in terms of
components and interactions amongst those compon

An Architectural Style defines a family of systems in 
structural organization.

— cf. Shaw & Garlan, Software
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Architectural style

Architectural styles typically entail four kinds of properties:

❑ A vocabulary of design elements
☞ e.g., “pipes”, “filters”, “sources”, and “sinks”

❑ A set of configuration rules that constrain compos
☞ e.g., pipes and filters must alternate in a linea

❑ A semantic interpretation
☞ e.g., each filter reads bytes from its input stre

output stream

❑ A set of analyses that can be performed
☞ e.g., if filters are “well-behaved”, no deadlock

progress in tandem
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Communication Styles

Shared Variables:

Message-Passing:

P1 P2

P1 P

P3
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Simulated Message-Passing

Most concurrency and communication styles can be simula

Message-passing can be modelled by associating messag

Unsynchronized objects

Synchronized objects
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Three-layered Application Arch

This kind of architecture avoids nested monitor problems b
control to a single layer.

Interaction with external world
Generating threads

Concurrency control
Locking, waiting, failing

Basic mechanisms
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Problems with Layered Designs

Hard to extend beyond three layers because:
❑ Control is restricted to before/after — not within
❑ Control may depend on unavailable information

☞ Because it is not safely accessible
☞ Because it is not represented (e.g., message

❑ Actions in control code may encounter conflicting 
☞ E.g., nested monitor lockouts

❑ Ground actions may need to know current policy
☞ E.g., blocking vs. failing

Partial solutions:
❑ Explicit policy compatibility constraints
❑ Explicit nesting constraints
❑ Delegated control
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and generate new events

rocedures
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Flow Architectures

Many synchronization problems can be avoided by arrangi
only flows in one direction from sources to filters to sinks:

❑ Unix “pipes and filters”:
☞ Processes are connected in a linear sequenc

❑ Control systems:
☞ events are picked up by sensors, processed, 

❑ Workflow systems
☞ Electronic documents flow through workflow p
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 single consumer
a single result

nsumers
niversität Bern

Flow Stages

Every flow stage is a producer or consumer or both:

❑ Splitters (forks) have multiple successors
☞ Multicasters clone results to multiple consum
☞ Routers divide results amongst consumers

❑ Mergers have multiple predecessors
☞ Collectors (Multiplexers) interleave inputs to a
☞ Combiners process multiple input to produce 

❑ Conduits have both multiple predecessors and co
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ers

 stages
pull-based stages
 to pull-based stages

e Consumer
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Flow Policies

Flow can be pull-based, push-based, or a mixture:

❑ Pull-based flow: Consumers take results from Pro
❑ Push-based flow: Producers put results to Consum
❑ Buffers:

☞ Put-only buffers (relays) connect push-based
☞ Take-only buffers (pre-fetch buffers) connect 
☞ Put-Take buffers connect push-based stages

Producer buffer
put

tak
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resources more quickly than

depending on relative speed
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Limiting Flow

❑ Unbounded buffers:
☞ If producers are faster than consumers, buffe

memory

❑ Unbounded threads:
☞ Having too many threads can exhaust system

unbounded buffers

❑ Bounded buffers:
☞ Tend to be either always full or always empty,

of producers and consumers

❑ Bounded thread pools:
☞ Harder to manage than bounded buffers
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ber is an active agent
tests integers, and either
tes a new agent if a
e is detected, or passes
number to test on to the
t agent in the chain

ivePrime(5)

ActivePrime(7)

get()
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Example: a Pull-based Prime Si

4

5

3

6

5

7 7

8

get()

new

new

new

TestForPrime
In th
num
that
crea
prim
the 
nex

ActivePrime(2)

ActivePrime(3)

Act

get()

get()
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ime(n));

5
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Using Put-Take Buffers
Each ActivePrime will use a one-slot buffer to feed values t

Initially we create an ActivePrime for the value 2, connecte
generator:

public class PrimeSieve  {

public static void main(String args[]) {
genPrimes(1000);

}

public static void genPrimes(int n) {
try {

ActivePrime firstPrime = new ActivePrime(2, new TestForPr
} catch (Exception e) { }

72... 10 9 8 3
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}
}
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Pull-based integer sources

Active primes get numbers to test from an IntSource  inte

interface IntSource  {
int getInt();

}

class TestForPrime  implements IntSource {
private int nextValue;
private int maxValue;

public TestForPrime(int max) {
this.nextValue = 3;
this.maxValue = max;

}

public int getInt() { // No synchroni
if (nextValue < maxValue) { return nextValue++; }
else { return 0; }

}
}
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A Put-Take Buffer
class Slot  { // a

private Object slotVal; // in

public synchronized  void put(Object val) { // T
while (slotVal != null) { // sy

try { wait(); }
catch (InterruptedException e) { }

}
slotVal = val;
notifyAll(); // sa
return; // if 

} // a

public synchronized  Object get() {
Object rval;
while (slotVal == null) {

try { wait(); }
catch (InterruptedException e) { }

}
rval = slotVal;
slotVal = null;
notifyAll();
return rval;

}

}
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eFailure

 variable
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The ActivePrime Class
class ActivePrime  extends Thread implements IntSource {

private static  IntSource lastPrime; // where to link 

private int value; // value of this p
private int square; // square of this
private IntSource intSrc; // source of ints

private Slot slot; // to pass test

public ActivePrime(int value, IntSource intSrc) throws ActivePrim
{

this.value = value;
this.square = value*value;
this.intSrc = intSrc;
slot = new Slot(); // NB: private
lastPrime = this; // NB: set class
System.out.print(value + " ");
System.out.flush();
this.start(); // become activ

}

public int value() { return this.value; }

...
}



Concurrent programming — WS 97/98 120.

U Architectural Styles for Concurrency
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may block

stop the thread

may block

may block

stop condition
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ActivePrime ...
class ActivePrime  extends Thread implements IntSource {

...

private  void putInt(int val) { slot.put(new Integer(val)); }

public int getInt() {
int rval;
rval = ((Integer) slot.get()).intValue(); //
return rval;

}

public void run() {
int testValue = intSrc.getInt(); //
while (testValue != 0) {

if (testValue < this.square) {
try { new ActivePrime(testValue, lastPrime); }
catch (Exception e) { testValue = 0; } //

} else if ((testValue % this.value) > 0) {
this.putInt(testValue); //

}
testValue = intSrc.getInt(); //

}
putInt(0); //

}

}
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Blackboard Architectures

Blackboard architectures put all synchronization in a “coord
agents can exchange messages.

Agents do not exchange messages directly, but post mess
retrieve messages either by reading from a specific location
a query (i.e., a pattern to match).

Linda is a “coordination language” that provides primitives
architectures ...

?
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h workers are spawned to
niversität Bern

Result Parallelism

Result parallelism is a blackboard architectural style in whic
produce each part of a more complex problem.

Workers may be arranged hierarchically ...
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etrieve tasks to perform from
niversität Bern

Agenda Parallelism

Agenda parallelism is a blackboard style in which workers r
a blackboard, and may generate new tasks to perform.

Workers repeatedly retrieve tasks until everything is done.
Workers are typically able to perform arbitrary tasks.
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Specialist Parallelism

Specialist parallelism is a style in which each workers is sp
particular task.

Specialist designs are equivalent to message-passing, and
flow architectures, with each specialist producing results fo
consume.
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tiple processors?
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Summary

You Should Know The Answers To These Questions:
❑ What is a Software Architecture?
❑ What are advantages and disadvantages of Layer
❑ What is a Flow Architecture? What are the options
❑ What are Blackboard Architectures? What are the

Can You Answer The Following Questions?
✎ How would you model message-passing agents in Jav
✎ How would you classify Client/Server architectures?

Are there other useful styles we haven’t yet discussed
✎ How can we prove that the Active Prime Sieve is corre

Active Primes will join the chain in the correct order?
✎ Which Blackboard styles are better when we have mul

Which are better when we just have threads on a mon
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 Programs, MIT Press, 1991
 Enginnering, 1997
e.ch/~cruz
niversität Bern

7.  Coordination Models and La
Overview

❑ Coordinated Systems
❑ Coordination Languages
❑ Coordination Models
❑ Blackboard Coordination Models

☞ Linda
☞ JavaSpace - Jada

❑ Multiset Coordination Models
☞ GAMMA

❑ Object Oriented Coordination Languages
☞ FLO/C
☞ ATOM

❑ SCG Coordination Research
Sources

❑ N.Carriero and D.Gelernter, How to Write Parallel
❑ P. Ciancarini, Tutorial: Coordination and Software

Juan Carlos Cruz, cruz@iam.unibe.ch, http://www.iam.unib
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 complex ways in order to
hey may need to coordinate

e Bank X

Transfer

EB
erver

Solde
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Coordinated Systems
Modern software systems are systems composed of e
entities (i.e. active objects, agents, actors, etc.) that ru
process information concurrently.

— cf. Hewitt “Offices are Open

Software entities that compose those systems cooperate in
produce results. It is also because of they cooperate, that t
their actions.

A
T
M

A
T
M

Banking-System
Bank X

Bank Y

Accounts X

Accounts Y

Withdraw

Transfer

Onlin

W
S
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ep the information of all the
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y execute

 same account at the same
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hatever bank in the system

of modern software systems.
mp., V1 N3, May 97, pp 8-20
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Why they may need to coordin

❑ No entity has enough competence to solve the en
☞ ATMs don’t know how to make Withdraws or 

different banks can apply different policies (i.e
❑ No entity has enough resources to solve the entire

☞ ATMs don’t not have infinite disk-space to ke
accounts in the system

❑ No entity has enough information to solve the enti
☞ ATMs and Online Servers do not have the acc

the banking operations (i.e they may need to 
❑ There are dependencies between the activities the

☞ Concurrent banking operations may modify a
time

❑ There are some global constraints they have to re
☞ All ATM may realize banking operations on w

Managing Coordination is a key aspect in the development
— cf. T.Malone“The Implications of The Digital Age”, Int. Co
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What is Coordination?

Coordination concerns the organisation in time and in
of a group of entities in order to either improve their c
reduce their conflicts.

— cf. Cruz et al. “A Coordination Component Framew

From the viewpoint of the Software Engineering Coordinati

Coordination refers to the process of building program
active pieces.

— cf. Carriero & Gelernter, How to W

An active piece may be a process, task, thread or an
execution that executes concurrently and asynchrono
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Coordination Language and M
A Coordination Language provides the “glue” that bin
pieces into software systems. The “glue “must allow 
pieces to communicate and to synchronize with ea
need to.

— cf. Carriero & Gelernter, How to Write P

All Coordination Language embodies a Coordination Mode

A Coordination Model is an abstract (semantic) frame
and understand coordination problems when designi
systems.

— cf. Ciancarini, “Coordination and Softw

A coordination model defines how active pieces (i.e agents
interactions can be controlled. This includes:

Creation and destruction of agents, control of commu
agents, control of spatial distribution and mobility of a
synchronization and distribution of actions over time.
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“A particular way of
thinking about a
problem”
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Model vs. Language
A model is an abstraction of something for the purpose of un
Because a model omits nonessential details, it is easier to 
entity. Abstraction is a fundamental human capability that p
complexity.

Name
Age
Color
Nationality

Abstraction

Real World

M

Co

Class Person {
String name;
int age;
Color color;
String Nation

}

Person
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Coordination Models
A Coordination Model is a triple (E,M,L), where:

. E are the coordinable entities (components):

These are the active agents which are coordinated (
processes, active objects, tuples, atoms, etc.).

. M are the coordinating media (connectors):

These are the coordinators of interagent entities (i.e
shared variables, tuple spaces, bags, etc.)

. L are the coordination laws:

They rule actions of coordinable entities (i.e. associa
guards, synchr. constraints)

— cf. Ciancarini, “Coordination and Software Engineering”
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Coordination Language and M
A Coordination Language provides the “glue” that bin
pieces into software systems. The “glue “must allow 
pieces to communicate and to synchronize with ea
need to.

— cf. Carriero & Gelernter, How to Write P

All Coordination Language embodies a Coordination Mode

A Coordination Model is an abstract (semantic) frame
and understand coordination problems when designi
systems.

— cf. Ciancarini, “Coordination and Softw

A coordination model defines how active pieces (i.e agents
interactions can be controlled. This includes:

Creation and destruction of agents, control of commu
agents, control of spatial distribution and mobility of a
synchronization and distribution of actions over time.
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Programming Model

We can build a complete programming model out of 
the computational model and the coordination model

— cf. Carriero & Gelernter “Coord. Lang. and th

The computational model allows programmers to build sing

The coordination model is the glue that binds separate acti

Advantages:

❑ Separation of concerns
❑ Reusability of the separate pieces

Programs = Coordination + Computati
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Data-Tuple

Process-Tuple
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Linda Coordination Model

The Linda model is a blackboard model. Linda blackboard
of a collection of logical tuples.

☞ (“a string”, 15.01, x), (1, 0, “Hello”)

There are two kinds of tuples:
❑ Process-Tuples which are under active evaluation
❑ Data-Tuples which are passive.

Process-Tuples execute simultaneously. They exchange d
and consuming Data-Tuples. A Process-Tuple that is finish
Data-Tuple.

Tuple Space
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; the executing process

s to be withdrawn from tuple
values of the actuals in t are
tual-to-formal assignment).

lues (or “actuals”),
l is prefixed with a “?”

tuple remains in tuple space.

tes, the executing
eeds as before.

ated after rather than before

and return 0 if they fail;
al assignment.
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LInda Operations

❑ out(t)  causes a tuple t to be added to tuple space
continues immediately.

❑ in(s) causes some tuple t that matches anti-tuple
space. Once in(s) has found a matching tuple, the
assigned to the corresponding formals in s (i.e ac

An anti-tuple is a tuple with typed fields; some are va
others are typed place-holders (or “formals”). A forma
marker.

☞ (“a string”, ?f, ?i, x )
❑ rd(s) is the same as in(s), except that the matched

If not matching t is available when in(s) or rd(s) execu
process suspends (i.e. blocks) until one is, then proc

❑ eval(t) is the same as out(t), except that t is evalu
it enters tuple space.

❑ inp(s) , rdp(s) , attempt to locate a matching tuple 
otherwise they return 1, and perform actual-to-form
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Tuple Space

 string”, 15.01, 17, 2)

 string”, 15.01, 17, 2)

,1)

,1)

5.01, i = 17

 string”, 15.01, 17, 2)

,1)

5.01, i = 17

um”, 2, 3)
niversität Bern

Examples
1) x = 2

out (“a string”, 15.01, 17, x)

2)  out(0,1)

3)  y = 2

in (“a string”, ?f, ?i, y)

4)  y = 2

rd (“a string”, ?f, ?i, y)

5) eval (“sum”,y, f(y))

f = Σ i 1<=i<=y

Time

(“a

(“a

(0

(0

f = 1

(“a

(0

f = 1

(“s
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Example: Fibonacci
How to calculate the N-th fibonacci number?

fibonacci(n):/* fib(n+2)=fib(n)+fib(n+1) */

if (rdp(“fibonacci”,n-1,?fibn_1)==0)

eval(“fibonacci”,n-1,fibonacci(n-1))

rd(“fibonacci”,n-1,?fibn_1)

rd(“fibonacci”,n-2,?fibn_2)

out(“fibonacci”,n, fibn_2+fibn_1)

out(“fibonacci”, 0, 0)

out(“fibonacci”, 1, 1)

eval(“fibonacci”,5, fibonacci(5))

in(“fibonacci”, 5, ?fib)

fib = ??
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JavaSpace- (Java + Linda)
The JavaSpace package provides a distributed persistence
mechanism for code written in the Java programming langu

JADA language (Java+Linda): An implementation of the Ja

— P. Ciancarini and D.Rossi, “Esprit Project Page S
import jada.Tuple ;

import jada.ObjectSpace ;

import java.lang.*;

class CalculFibo implements Runnable {

  ObjectSpace tpspc;

  int nfib = 0;

public CalculFibo(ObjectSpace tp, int n) {

    tpspc = tp;

    nfib  = n;

  }
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public void run() {

 int f1, f2;

    Tuple fib2 = (Tuple) tpspc. read_nb (new Tuple(“fibo”,

 new Integer(nfib-

 Tuple.IntegerCla

    if (fib2 == null) {

      new Thread( new CalculFibo(tpspc, nfib-2)).start();

      fib2 = (Tuple) tpspc. read (new Tuple(“fibo”, new Intege

Tuple.IntegerClass()));

    }

 f2 = ((Integer)fib2.getItem(2)).intValue();
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ss()));
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 Tuple fib1 = (Tuple) tpspc. read_nb (new Tuple(“fibo”,

 new Integer(nfib-

 Tuple.IntegerCla

    if (fib1 == null) {

      new Thread( new CalculFibo(tpspc, nfib-1)).start();

      fib1 = (Tuple) tpspc. read (new Tuple(“fibo”, new Intege

           Tuple.IntegerClass()));

    }

    f1 = ((Integer)fib1.getItem(2)).intValue();

    tpspc. out ( new Tuple(“fibo”, new Integer(nfib), new Integer(f1+f

}

}
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.
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niversität Bern

Multiset Rewriting-The Gamma
Gamma is a coordination model whose main data structure
whose unique control structure is the Γ operator.

— cf.Banatre & Le Metayer “Programming by Multi

Γ((R1,A1),...,(Rm,Am))(M) =
if ∀i ε [1,m], ∀x1,...,xn not  Ri(x1,...,xn)
then  M
else let  x1,...,xn ε M, let  i ε [1,m] such that  Ri(x1,
Γ((R1,A1),...,(Rm,Am)) ((M-{x1,...,xn}) + Ai(x1,...,x

❑ {...} represents multisets
❑ (Ri,Ai) are pairs of closed functions specifying rea

The effect of (Ri,Ai) on multiset M is to replace in M a subs
such that Ri(x1,..,xn) is true by the elements of Ai(x1,...,xn)

❑ Γ is a fixpoint operator: reactions continue until no
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prime_numbers(10)

fact(4)
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Examples:
1)  prime_numbers(N) = Γ ((R,A))

({2,..,N}) where

R(x,y) = multiple(x,y)

A(x,y) = {y}

2)  fact(n)= G ((R,A)) ({1,...,n}) where

R(x,y) = true

A(x,y) = {x*y}

10
2

8
5

6
4

7

9
3

2
5

6
4

7

9
3

2
5

7
3

2

4

31

6

4
24
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nation languages have focus
of per-object synchronization

(i.e coordination of group of
rdination language for active

tions=
: if buffer != full
: if buffer != empty
s =
 = usedSlots != numSlots
pty = usedSlots == 0
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Object Oriented Coordination 
The main motivation behind coordination is to allow c
be specified separately from the implementation of in

— cf. Papa

Most of the research done in the development of O.O coordi
in the design of mechanisms for the specification and reuse
constraints (i.e. per-object coordination).

Recently, we have a lot of work in multi-object coordination
objects). In SCG we have for example FLO/C: an O.O. coo
objects based on the constraint of methods invocations.

BOUNDED-BUFFER
put

get

condi
 put
get

state
 full

usedSlots = 3
numSlots = 5

em
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R2
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FLO/C
This languages provide abstractions called Connectors tha
inter-object coordination. Connectors react upon messages
control. Their reaction is coded into rules.

def connector  <name> ( Role [,Role]*)
Rule = Precondition Operator Consequen

Operators:

❑ impliesLater: Asynchronous Communication
❑ implies: Synchronous Communication
❑ impliesBefore: Synchronous Communication
❑ permittedIf: Conditional Synchronization
❑ waitUntil: Conditional blocking Synchronization

Role1.MessageA (arg) Operator Role

R1Message A

Message B

R1.A implies R2
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ns(Bu,Pr,Co):
lies Bu.put(x)

ittedif !Bu.full()
ies Bu.get(return x)
ittedif !Bu.empty()

s Runnable {
r = Null;

uffer buf) {

e(Object x) {}

ds Runnable {
r = Null;
uffer buf) {

ume() {}
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Example:

class Buffer  {
Vector buff = Null;
int buffsize = 0;

public Buffer(int size){
 buff = new Vector(size);
 buffsize = size;}

public void put (Object x) {
 buff.addElement(x); }

public Object get () {
 Object x = buff.firstelement();
 buff.removeElement(x); return x;
}

public boolean full (){
 return buff.size()==buffsize;}

public boolean empty () {
 return buff.size()==0;}

}

def connector ProdCo
Pr.produce(x) imp
Pr.produce(x) perm
Pr.consume() impl
Pr.consume() perm

class Producer extend
private Buffer buffe
public Producer(B

buffer = buf;}
public void produc

}

class Consumer exten
private Buffer buffe
public Consumer(B

buffer = buf;}
public Object cons

}
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cess the request from
em in an order that is

synchronization of

xecute quasi-concurrently

B
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ATOM
A Coordination Language for Active Objects based on Stat

Active Object = Objects are active entities that can pro
other objects, they can delay requests and process th
most suitable to them (i.e they have control over the 
concurrent request).

❑ In ATOM request are processed by threads that e
within an object

A

object state

threads

object manager

notifications

S.P.
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Example: Per-Object Synchron
from ao import *

class BoundedBuffer(ActiveObjectSupport):

  states  = [‘empty’,’full’]

  methods = [‘put’, ‘get’]

  conditions = { ‘put’: (lambda o:not o.atState((‘full’,)),),

                 ‘get’: (lambda o:not o.atState((‘empty’,)),)}

  def __init__(self,size):

    self.inbuffer = 0

    self.lim = size

    self.store = []

def empty(self,state):

    return self.inbuffer == 0

Abstract
States

Syn
Co

State Empty
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  def full(self,state):

    return self.inbuffer == self.lim

  def put(self,data):

    self.store.append(data)

    self.inbuffer = self.inbuffer + 1

  def get(self):

    self.inbuffer = self.inbuffer -1

    d = self.store[0]

    del self.store[0]

    return d

Python 1.4 (Jun 4 1997) [GCC 2.7.2]
>>> b = ActiveObject(BoundedBuffer)(10)
>>> b.put(3) x
>>> b.get()

State Fu
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Consumer

er only produces when the
pty and the consumer only

 when the buffer is full”

get
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Example: Inter-Object Coordin
from ao import *

class BoundedBuffer(ActiveObjectSupport):

...

  methods = [‘put’, ‘get’, ‘capacity’]

...

  def capacity(self):

    return self.lim

Python 1.4 (Jun 4 1997) [GCC 2.7.2]
>>> b = ActiveObject(BoundedBuffer)(10)
>>> p = ActiveObject(Producer)(b)
>>> c = ActiveObject(Consumer)(b)

Producer

“The produc
buffer is em
consumes

put
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class Consumer(ActiveObjectSupport):

  def __init__(self, buff):

    self.buff = buff

  def Activity(self):

    self.noti = self.buff. notifyRequest ((‘full’,))

    while (1):

      print “consumer I will wait until full”

      self. suspendUntil (self.noti)

      print “consumer now is full”

      for i in range(self.buff.capacity()):

        x = self.buff.get()

        print “I’m getting from the buffer”,i

      self.noti = self.buff. notifyRequest ((‘full’,))

Notif
the C

E
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class Producer(ActiveObjectSupport):

  def __init__(self, buff):

    self.buff = buff

  def Activity(self):

 self.noti = self.buff. notifyRequest ((‘empty’,))

 while(1):

      print “producer I will wait until empty”

      self. suspendUntil (self.noti)

      print “producer Is empty”

      for i in range(self.buff.capacity()):

        self.buff.put(i)

        print “I’m putting in the buffer”,i

      self.noti = self.buff. notifyRequest ((‘empty’,))

Notif
the P

F
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SCG Coordination Research1

Foundations
1. Coordination Patterns and Architectures

☞ Classification of coordination abstractions, pa
2. Composition Contracts for Concurrent Objects

☞ Composition Contracts
Components

3. Component-Oriented Approach to Coordination:
☞ CoCo: A coordination-component framework

Language Design and Experiments
1. A scripting language for CORBA
2. FLO/C: a coordination language for object-oriented
3. Piccola: a Small Composition Language
4. ProCoordBroker: A Programmable Coordination Br

Applications

1. Re-engineering: FAMOOS2

1. ESPRIT Working Group 24512 - “Coordina: Coordination Models and Languages”
2. ESPRIT Project 21975 — “Framework-based Approach for Mastering Object-Oriented Software Ev
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1994.
 Principles and Patterns,
niversität Bern

8. Coordination Components in
Overview

❑ The context
☞ Coordination for Open Distributed Systems
☞ Components

❑ Communication components: network communica
❑ Synchronization components: shared resource
❑ Composing abstractions: distributed coordination

☞ distributed shared resource
☞ distributed transactions

Sources
❑ Gamma et al., Design Patterns, Addison-Wesley, 
❑ D. Lea, Concurrent Programming in Java: Design

Addison-Wesley, 1996.
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ly coupled entities in a
 a goal. The system is
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entity
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Coordination for Open Distribut
Coordination  is the act of managing the interaction b
entities

An Open Distributed System is a collection of loose
distributed environment, working together to achieve
extendable and heterogeneous.

Programs = Coordination + Compu
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h is reconfigurable and

putting things together”

Glue

Application

Adapters

Components
niversität Bern

Approach: Coordination Comp

A Component is a generic blackbox abstraction whic
composable by plugs

Glue is the element of programming concerned with “

✔ Goal: an open, flexible and reusable coordination layer

Coordination Component
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etwork to a set of

e participants to all other

connection
components

multicasting server
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Network communication
Coordination Problem: how to distribute messages over a n

interested clients?
Example: a chat environment that multicasts the lines of th

participants

client

client

client
client
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ection

ing line) method

CConnectionManager

putSocket(Socket)

ulticastConnection
Connection(Connection)
niversität Bern

A design for the multicast solut

✔ Connector and Acceptor take care of setting up the conn
✔ MulticastConnection multicasts to all connected clients
✔ Dispatcher interface ensures that there is a dispatch(Str

Connection

register(Dispatcher)
unregister(Dispatcher)
writeLine(String)

Connector Acceptor M

M
put

Dispatcher

ChatClient

client server
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The Connection components

LineReader

SocketConnec

Connection

Socke

Connection
Dispatcher

Multicaster

dispatch(String)

MulticastConnection
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The LineReader in Java

public class LineReader  implements Runnable {

...

public void run () {

for(;;) {

 line = conn.readLine(); // waits for line

 class LineHandler  implements Runnable {

public LineHandler (Dispatcher target, String line) {

(new Thread(this)).start() ;

        }

        public void run () { target.dispatch(line) ; }

      }

new LineHandler(target, line) ;

    }

}

}
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scheduling
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Synchronization: Shared Resou
Coordination Problem: how to deal with concurrent request

resource (while keeping the resourc

bankaccount

ATM

ATM

database
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Requirements for scheduling po
❑ dispatch concurrent requests
❑ resource stays consistent
❑ bank and database independent of policy
❑ policy independent of bank and database

✔ why do we want this independence?
✔ what control policies are possible?
✔ what are possible problems concerning the independen

The solution consists of a set of design and concurrency pa
➪ explicit commands (Command pattern)
➪ explicit policy (Policy pattern (aka Strateg
➪ explicit properties
➪ early replies
➪ different synchronization policies
➪ configuration objects
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PrConfiguration

Resource
request()

ource.request();

licy component
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Scheduling Policy Design

Interface

RWConfiguration

Command

Policy

ReadersWriterPolicy PriorityPolicyFIFOPolicy

incoming

ConcreteCommand

execute()

execute()
request()

requests

put(Command c)

c = new ConcreteCommand;

Res

1

3

2 4

po
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ee slide 72 a.f.)

Property

ConcreteProperty
aProperty
niversität Bern

Explicit Commands

✔ uses the Command pattern (see Gamma et al)
✔ the ReturnCommand uses the early reply mechanism (s

Command

ConcreteCommand

execute()

execute()
Resource.request();

setProperty(Property p)
Property getProperty()

setResult(Object res)
getResult()

ReturnCommand

or
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true
false
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username priority
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sistant 10
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configuration
objects
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Explicit Policies

✔ the policies are not all completely independent: some ne
information !!

Policy

ReadersWriterPolicy PriorityPolicyFIFOPolicy

put(Command c)

classname i

GetBalanceCommand
SetBalanceCommand
...

<<interface>>

pr
as
stu

no configuration object
because no need for
extra information
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The Configuration Object

Hashtable table = new Hashtable(); // available in java.util

public void add (String classname, boolean isReader) {

 table.put(classname,new Boolean(isReader));

}

public void remove (String classname) {

 table.remove(classname);

}

public boolean isReader (Command c) {

return ((Boolean)table.get( c.getClass().getName()

}

classname isReader

GetBalanceCommand true
SetBalanceCommand false
... ...
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The adapted readers/writer po
The policy of slide 94 is slightly adapted. Instead of:

public void read()  {

beforeRead(); read_(); afterRead();

}

public void write()  {

beforeWrite(); write_(); afterWrite();

}

we now have:

public void dispatchReadCommand(Command c)   {

beforeRead(); c.execute(); afterRead();

}

public void dispatchWriteCommand(Command c)  {

beforeWrite(); c.execute(); afterWrite();

}
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Which enables the policy to give every command its own thr
to the RWVT policy implementation:

public class ReadersWriterPolicy  implements Policy {

private RWConf conf; // configuration object

private RWVT rwvt = new RWVT();  // actual policyholder

public ReadersWriterPolicy (RWConf conf) { this.conf = conf

public void put (Command c) {

class RWCommandHandler implements Runnable {

....

public RWCommandHandler(Command cmd,  boolean isRe

this.cmd = cmd; this.isReader = isReader;

(new Thread(this)).start();

}

public void run () {

if (isReader) { rwvt.dispatchReadCommand(cmd); }

else { rwvt.dispatchWriteCommand(cmd);}

}

}

new RWCommandHandler(c,conf.isReader(c)) ; }}
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resource
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Composing abstractions: distrib

✔ a simple layered architecture

communication

serv

client
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eInterface Policy
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A design for a distributed share

✔ the adapter converts, for instance, the synchronous call
asynchronous calls of the communication layer. The ada
CORBA or RMI or whatever communication mechanism

Connection

ServerAdapter

SharedResourc

Server

Connection

Client

ClientAdapter
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An Adapter in Java
public class ServerAdapter  implements Dispatcher {

Connection conn;

ResourceInterface bank;

...

public void dispatch (String line) {

java.util.StringTokenizer strtok = new java.util.StringTokenizer

if (strtok.nextToken() == “getBalance”) {

int value = bank.getBalance();

conn.writeLine(“&getBalance&”+value);

}

else if ....

}

}

✔ this adapter converts from asynchronous line sends to s
✔ line can have more information (for instance, parameter

will have to be parsed as well
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et of resources before it can
 transaction it is rolled-back:

actionalresource

resource
niversität Bern

Distributed transactions

✔ In a (distributed) transaction the client has first to grep a s
do actions on them. If something goes wrong during the
the initial state of the participants is restored.

communication

trans

client

transactionalclient
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 = new Object();

.join(key);

.join(key);

.doIt(key);

.doIt(key);

.commit(key);

.commit(key);

ctionException e){

.abort(key);

.abort(key);

tation in Java
niversität Bern

Transactions in a nutshell

atomic {

resource1.doIt();

resource2.doIt();

}

idea

try {

Object key

resource1

resource2

resource1

resource2

resource1

resource2

}

catch(Transa

resource1

resource2

}

implemenThe client view:
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 shown

onnection

ServerAdapter

TransactionalResource

Resource
It()

join(Object key)
commit(Object key)
abort(Object key)

ResourceInterface

doIt(Object key)
niversität Bern

a design for distributed transac

✔ operations to organize recover or resource state are not

CConnection

Client

ClientAdapter

TransactionalClient

do

if (key == rightkey))
resource.doIt()
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9. Object-Based Concurrency

Overview
❑ What is an OBCL?
❑ Dimensions of OO Languages
❑ Expression of Concurrency

☞ Objects and Processes
☞ Granularity of Concurrency
☞ Creating Processes

❑ Communication and Synchronization
☞ Intra-Object and Inter-Object Synchronization

❑ Evaluating OBCLs
❑ Research Topics
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What is an OBCL?

An Object-Based Concurrent Language supports:
❑ Encapsulation

☞ objects encapsulate data and operations
❑ Concurrency

☞ multiple processes may be concurrently activ
☞ need to: specify, create and synchronize proc

Why do we need OBCLs?
❑ Inherent application (real-world) concurrency
❑ Distributed applications
❑ Application integration and interoperability
❑ Parallel applications
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Overview of OBCLs

❑ Traditional OBLs:
☞ Smalltalk-80, C++, Objective C, Ada
☞ libraries

❑ Extended OBLs:
☞ CLU: Argus
☞ Smalltalk-80: ConcurrentSmalltalk, Actalk, PO
☞ C++: ACT++, Arjuna, Avalon, Karos
☞ Eiffel//

❑ Concurrent OBLs:
☞ Actors, ABCL, POOL, Guide, Hybrid, Java
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Requirements for OBCLs

❑ Object autonomy:
☞ protection from concurrent requests

❑ Internal concurrency:
☞ should be transparent to clients

❑ Local delay transparency:
☞ handling of local delays should be transparen

❑ Remote delay transparency:
☞ handling of remote delays should be transpar

❑ Composable synchronization policies:
☞ subclasses should share synchronization cod

REF: Papathomas, PhD thesis, 1992.
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Expression of Concurrency

❑ Objects and Processes:
☞ How are processes and objects related?

❑ Granularity of Concurrency:
☞ How many processes can be associated with

❑ Process Creation:
☞ How are processes created?
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 objects

 are unified
L ...)
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Objects and Processes

How are processes related to objects?

Three Classes of OBCL:

❑ Passive Objects: objects & concurrency
(Smalltalk-80, C++, Ob

❑ Active/Passive: passive + “concurrent”
(PAL)

❑ Active Objects: objects and processes
(ABCL/1, Hybrid, POO
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Process
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Passive Object Models

Concurrent processes access passive objects.
Processes synchronize according to a shared memory mod

☞ objects must be designed to be shared, or
☞ processes must explicitly synchronize via lock

Smalltalk-80, C++, Objective-C, Emerald, Java

operations
data operations

data

Process Process
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Active/Passive Models

Active Objects are identified with processes
Passive objects are protected by the active objects contain

☞ lightweight/heavyweight distinction
☞ two class hierarchies are incompatible

PAL

Active Objects

Passive Objects
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Active Object Models

Objects and processes are integrated:
☞ each operation invocation is a potentially con
☞ an object with a running operation is active
☞ every object is autonomous and synchronizes

ABCL, Hybrid, POOL, ...

Active Objec
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Granularity of Concurrency

Approaches to Concurrency:

Inter-Object Concurrency:
❑ Sequential Objects Ada,

Intra-Object Concurrency:
❑ Quasi-Concurrent Objects ABC

❑ Concurrent Objects:
☞ Client-Driven: Passive Objects Sma
☞ Server-Driven: Active Objects Sina
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Sequential Objects

In a sequential object model, requests are serialised in a w
☞ each operation runs to completion before the
☞ concurrency is introduced by having more ob
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Quasi-Concurrent Objects

Quasi-concurrent objects may switch attention between mu
☞ In Hybrid, a delegated call to another object a

switch to another request
☞ In ABCL, an express message may interrupt 

ordinary invocation



Concurrent programming — WS 97/98 187.

U Object-Based Concurrency

tly:
f threads
ts
ice a single request
niversität Bern

Concurrent Objects

Concurrent Objects may serve multiple requests concurren
❑ Passive Objects require explicit synchronization o
❑ Active Objects control when to accept new reques

☞ may create additional internal threads to serv

Passive: Smalltalk-80, Java, ...
Active: Sina, PO, Eiffel//, ...
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Process Creation

❑ Asynchronous Objects
☞ Explicit bodies
☞ Implicit bodies

❑ Asynchronous Messages
☞ one-way message-passing
☞ futures
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Asynchronous Objects

The “body” of an active object may be:
☞ Implicit and inaccessible — standard schedul
☞ Explicit and customizable — initialization, sch

Implicit: Actalk, Act++, Actors
Explicit: Ada, Eiffel//, Pool

instantiation

independe
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Asynchronous Invocation

Clients do not wait for the reply to continue executing
❑ one-way message-passing:

☞ reply (if any) sent by another invocation

❑ futures:
☞ reply sent to a future object
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Futures

The reply to an asynchronous request is sent to a future ob
☞ The client obtains the result when needed.
☞ Clients block only if the result is not yet availa

Futures may be created either explicitly by clients or implic

Explicit: ACT++, ABCL, PO, ConcurrentSmalltalk
Implicit: Eiffel//, Karos, Meld
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Communication and Synchron

❑ Intra-Object Synchronization:
☞ Remote Delays: asynchronous invocations
☞ Local Delays: condition synchronization

❑ Inter-Object Synchronization:
☞ Transactions



Concurrent programming — WS 97/98 193.

U Object-Based Concurrency

al inconsistency.

rald, Smalltalk-80, Java

 POOL, ABCL
lk, ABCL/R

e, Hybrid, SINA
ol, ACT++, Rosette
niversität Bern

Local Delays

An object may need to delay selected requests to avoid loc

❑ Unconditional acceptance Eme

❑ Conditional acceptance

☞ Centralized acceptance
➪ Explicit acceptance Ada,
➪ Reflective computation Acta

☞ Distributed activation conditions
➪ Representation specific Guid
➪ Abstract Proc
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Local Delays

?

Unconditional acceptance

Representation specific delays Abstract syn

Exp
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Transactions

❑ Concurrency atomicity:
☞ intermediate effects on shared objects are inv

(serialisability or isolation)

❑ Failure atomicity:
☞ transactions either complete successfully, or 

effect on shared objects (the “all-or-nothing” p

Transactions may be associated with transaction blocks (e
be realized as atomic invocations (implicit with operation st
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Classifying OBCLs

❑ Object Models
☞ Active or Passive Objects?

❑ Granularity of Concurrency
☞ Sequential, Quasi-Concurrent or Concurrent?

❑ Process Creation
☞ Asynchronous Objects or Asynchronous Invo

❑ Local Delays
☞ Conditional or Unconditional Acceptance?
☞ Centralized or Distributed Activation Conditio
☞ Explicit or Reflective / Abstract or Representa
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Evaluation

❑ Object autonomy:
☞ active objects

❑ Internal concurrency:
☞ server-driven

❑ Local delay transparency:
☞ various approaches ...

❑ Remote delay transparency:
☞ futures or internal threads

❑ Composable synchronization policies:
☞ composable abstract synchronization policies



Concurrent programming — WS 97/98 198.

U Object-Based Concurrency

 objects?
driven concurrency?
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urely sequential objects?
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synchronize , wait() and
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Summary

You Should Know The Answers To These Questions:
❑ What is the difference between active and passive
❑ What is the difference between client- and server-
❑ What different ways are there to introduce concur
❑ What are local and remote delays?
❑ What are the usual ways to implement local delay
❑ How can an object avoid remote delays?

Can You Answer The Following Questions?
✎ What kinds of problems cannot be easily solved with p
✎ When is the active/passive model useful when program
✎ How could you implement an active object in Java? W
✎ How would you implement futures in Java?
✎ Suppose you want to extend a class that makes use of

notify() — what would you have to be careful about
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10. Petri Nets

Overview
❑ Definition:

☞ places, transitions, inputs, outputs
☞ firing enabled transitions

❑ Modelling:
☞ concurrency and synchronization

❑ Properties of nets:
☞ liveness, boundedness

❑ Implementing Petri net models:
☞ centralized and decentralized schemes

Sources
❑ J. L. Peterson, Petri Nets Theory and the Modellin

1983.
❑ D. Lea, Concurrent Programming in Java — Desig

The Java Series, Addison-Wesley, 1996.
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Petri nets: a definition

A Petri net C = 〈P,T,I,O〉 consists of:
1. A finite set P of places
2. A finite set T of transitions

3. An input function I: T → NP (maps to bag

4. An output function O: T → NP

A marking of C is a mapping µ: P → N

x

b

Example:
P = { x, y }
T = { a, b }
I(a) = { x }, I(b) = { x, x }
O(a) = { x, y }, O(b) = { y }
µ = { x, x }
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 O(t)

x

y

a

b

x

y

a

b

b
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Firing transitions

To fire a transition t:
1. There must be enough input tokens: µ ≥ I(t)
2. Consume inputs and generate output: µ′ = µ - I(t) +

x

y

a

b

x

y

a

b

x

y

a

b

a a

b

x

y

a

b

b
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Modelling with Petri nets

Petri nets are good for modelling:
❑ concurrency
❑ synchronization

Tokens can represent:
❑ resource availability
❑ jobs to perform
❑ flow of control
❑ synchronization conditions ...
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Concurrency

Independent inputs permit “concurrent” firing of transitions
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Conflict

Overlapping inputs put transitions in conflict

Only one of a or b may fire

a

b
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Mutual Exclusion
The two subnets are forced to synchronize
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Fork and Join
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Producers and Consumers

producer
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Bounded Buffers

occupied slots

free slots
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Properties

Reachability:
❑ The reachability set R(C,µ) of a net C is the set of a

initial marking µ.

Boundedness:
❑ A net C is safe if places always hold at most 1 tok
❑ A net is (k-)bounded if places never hold more tha
❑ A net is conservative if the number of tokens is co

Liveness:
❑ A transition is deadlocked if it can never fire.
❑ A transition is live if it can never deadlock.
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Liveness and Boundedness

This net is both safe and conservative.
Transition a is deadlocked.
Transitions b and c are both live.
The reachability set is {{y}, {z}}.

a

c

b

x y
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Related Models

Finite State Automata
❑ Equivalent to regular expressions
❑ Can be modelled by one-token conservative nets
❑ Cannot model unbounded Petri nets

The FSA for: a(b|c)*d

a

b

d

c
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Computational Power

Petri nets are not computationally complete
❑ Cannot model “zero testing”
❑ Cannot model priorities

a

A zero-testing net:
An equal number of
a and b transitions may fire
as a sequence during any
sequence of matching
c and d transitions.
(#a ≥ #b, #c ≥ #d)
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Applications of Petri nets

Modelling information systems:
❑ Workflow
❑ Hypertext (possible transitions)
❑ Dynamic aspects of OODB design
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Implementing Petri nets

We can implement Petri net structures in either centralized

❑ Centralized:
☞ A single “net manager” monitors the current s

enabled transitions.

❑ Decentralized:
☞ Transitions are processes, places are shared

compete to obtain tokens.
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Centralized schemes

In one possible centralized scheme, the Manager selects a
When no transitions are enabled, it waits for tokens to be re

✎ What liveness problems can this scheme lead to?

a b c

a b
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Decentralized schemes

In decentralized schemes transitions are processes and tok
places:

Transitions can be implemented as thread-per-message gat
can be fired more than once if enough tokens are available

Tokens must be grabbed in a consistent order, or the net c
transitions are enabled!

x y

a b

a

x
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Transactions

Transitions attempting to fire must grab their input tokens as
net may deadlock even though there are enabled transition

If a and b are implemented by independent processes, and
this net can deadlock even though b is enabled if a (incorre

a

b

x y
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Coordinated interaction

A simple solution is to treat the state of the entire net as a s

If a transition is not enabled, it waits and releases the net till
a transition fires and updates the net, it notifies all waiting t

✎ How could you refine this scheme to work in a distribu

a

b

x y

a b

get()
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Summary

You Should Know The Answers To These Questions:
❑ How are Petri nets formally specified?
❑ How can nets model concurrency and synchroniza
❑ What is the “reachability set” of a net? How can yo
❑ What kinds of Petri nets can be modelled by finite
❑ How can a (bad) implementation of a Petri net dea

enabled transitions?
❑ If you implement a Petri net model, why is it a good

“gateways”?

Can You Answer The Following Questions?
✎ What are some simple conditions for guaranteeing tha
✎ How would you model the Dining Philosophers problem

Is such a net bounded? Is it conservative? Is it live?
✎ What could you add to Petri nets to make them Turing
✎ What constraints could you put on a Petri net to make 
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11. The pi Calculus

Overview

❑ Basic ideas

❑ The polyadic π-calculus

❑ Simple examples

❑ Observable equivalence, Process typ

❑ A simplification

❑ Objects in the π-calculus

❑ PICT

❑ Programming in PICT
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Introduction

❑ The π-calculus is a model of concurren
upon the notion of naming.

❑ The π-calculus is a calculus in which 
communication can evolve dynamical

❑ In the π-calculus communication links
names, and computation is represente
communication of names across links

❑ The π-calculus is an extension of the p
following work by Engberg and Nielse
to CCS while preserving its algebraic 

❑ The most popular versions of the π-ca
monadic π-calculus, the polyadic π-ca
simplified polyadic π-calculus.
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Basic ideas

The most primitive entity in the π-calculus is a name. Name
∈N; they have no structure. In the basic version of the π-calc
kind of entity: a process. Processes are P, Q, ... ∈Pr and build
syntax:

Here I is a finite indexing set; in the case I = ∅ we write the
the prefix π represents an atomic action, the first action perf
basic forms of prefix:

In each case we call x the subject and y the object of an ac

Pr ::= ∑i∈I πi.Pi |P|Q | !P | (υ x

x(y), which binds y in the prefixed process, means
“input some name - call it y - along the link na

xy, which does not bind y, means
“output the name y along the link named x”.
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Simple examples
xy.0 | x(u).uv.0 | xz.0

can evolve to
0 | yv.0 | xz.0 or xy.0 | zv.0 |

(υx)(xy.0 | x(u).uv.0) | xz.0
evolve to

0 | yv.0 | xz.0

xy.0 | !x(u).uv.0 | xz.0
can evolve to
0 | yv.0 |!x(u).uv.0 | xz.0 or xy.0 | zv.

and
0 | yv.0 |!x(u).uv.0 |zv.0 | 0
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!P ≡ P| !P
| 0 P ≡ P + 0
| P P + Q ≡ Q + P
| Q) | R ≡ P | (Q | R)
Q) + R ≡ P + (Q + R)
Q ≡ (υ x)(P | Q) x ∉ fv(Q)

(υ x)P → (υ x)Q

P → Q

xn \ y1, ..., yn }Q | R
niversität Bern

The polyadic pi calculus

P, Q ::= P | P Parallel composition
(υ x) P Restriction
P + P Summation
x[x1, ..., xn].P Input

x[x1, ..., xn].P Output

!P Replication
0 Null

P ≡ P 
P | Q ≡ Q

(P 
(P +

(υ x)P |

P | Q → P | R

Q → R P ≡ P’ P’ → Q’ Q ≡ Q’

P → Q

(P + c[x1, ..., xn].Q) | (c[y1, ..., yn].R + S ) → { x1, ...,
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Church’s encoding of boolean
True  = λtrue.λfalse.true
False  = λtrue.λfalse.false
Not  = λarg.λtrue.λfalse.arg false true

Not True  = (λarg.λtrue.λfalse.arg false true)λtru
→ λtrue.λfalse.(λtrue’.λfalse’.true’) fa
→ λtrue.λfalse.false
= False

True (b) = b( t, f ).t
False (b) = b( t, f ).f
Not (b, c) = b( t, f ).c(f, t)

(υ c)(Not (b, c) | True (c)) =
(υ c)( b( t, f ).c( f, t ) | c( t, f

λ:

π:
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Observable equivalence

Definition:
Two systems are equivalent whenever by interacting
outside world, no difference can be observed.

Observation predicate:
A process P is observable at α, written P↓α, if some α

if P =def a[y] + b[x] + τ.c
then we have { z : P↓z } = { a, b } and { z : P⇓z } = { a

Definition:
(Strong) reduction equivalence, •~r, is the largest equiv
processes such that P |≡ Q implies
1. If P → P’, then Q → Q’ for some Q’ such that P’ |≡
2. For each a, if P↓α then Q↓α.
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Observable equivalence II

Definition:
(Strong) reduction congruence, ~r, is the largest cong
processes such that P ~r Q implies that for all proces

C[P] •~r C[Q].

A process context C[ ] is a process term with a single
a process in the hole yields a well-formed process.

True (b) = b( t, f ).t
False (b) = b( t, f ).f
Not (b, c) = b( t, f ).c(f, t)

(υ c)(Not (b, c) | True (c)) ~r False (b)

(υ c)( b( t, f ).c( f, t ) | c( t, f ).t ) ~r b( t, f ) .f
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Process typing

❑ In the π-calculus processes do not ha

❑ Types are only assigned to names (ch

❑ The type of a name (channel) remains
its lifetime.

❑ We do not specify temporal properties

Types:
δ ::= ^[ δ1, ..., δn] Ch

True (b) = b( t, f ).t : ^[^[], ^[]]
False (b) = b( t, f ).f  : ^[^[], ^[]]
Not (b, c) = b( t, f ).c(f, t) : ^[^[], 
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!P ≡ P| !P
| 0 P | Q ≡ Q | P
| Q) | R ≡ P | (Q | R)

Q ≡ (υ x)(P | Q) x ∉ fv(Q)

(υ x)P → (υ x)Q

P → Q

 ..., yn }Q | R
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A simplification - polyadic min

P, Q ::= P | P Parallel composition
(υ x) P Restriction
x[x1, ..., xn].P Input

x[x1, ..., xn] Output

!P Replication (Input)
0 Null

P ≡ P 
(P 

(υ x)P |

P | Q → P | R

Q → R P ≡ P’ P’ → Q’ Q ≡ Q’

P → Q

c[x1, ..., xn].Q | c[y1, ..., yn].R → { x1, ..., xn \ y1,
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Objects in the pi-calculus

Sangiorgi’s translation of an untyped OC(Ad
polyadic π-calculus:

[[{ j∈1..n lj = ζ(y).bj} ]]p =def p[x].!x[l,r,y].( Πj∈

[[a.lj ]]p =def (υ q)( [[a]]q | q[x]

[[a.lj ⇐ ζ(y).b]]p =def (υ q)([[a]]q| q[x].p
((l = l j

[[x]]p =def p[x]
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A basic object model in the pi 

!RefCell[ init, result ].
(υ contents set get)

( contents[init]
| result[ set, get ]
| !set[value, ack].contents[dummy].(conte
| !get[result].contents[value].( contents[v
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!A ≡ A | !A
| 0 A | B ≡ B | A
| B) | C ≡ A | (B | C)
≡ 0 ε(F) ≡ 0
Q ≡ (υ x)(P | Q) x ∉ fv(Q)

(υ x)A → (υ x)B

A → B

yn }A
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The πL-calculus

A, B ::= A | A Parallel composition
(υ x) A Restriction
x(X).A Input
x(F) Output
!A Replication (Input)
0 Null

F ::= X | ε | F<l = x>
x, y, z ::= a | Xl

A ≡ A 
(A 

ε(X).A 
(υ x)P |

C | A → C | B

A → B A ≡ A’ A’ → B’ B ≡ B’

A → B

c(X).A | c(F) → { x1, ..., xn \ y1, ...,
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PICT

Overview

❑ PICT core syntax

❑ Creating new channels

❑ Channel types

❑ Modelling language constructs

❑ A concurrent queue
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Abstract Syntax of (Untyped) C

Proc = Val ? Abs
Val ?* Abs
Val ! Val
Proc | Proc
let new Name in Proc end

Abs = Pat > Proc

Pat = Name
[ Pat , ... ]
record Id = Pat , ... end
Name @ Pat
_

Val = N
B
[
re
V

Name = Id

BasicVal =
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Binding Channels

All channel names must be bound, either by “let new” or by

run
let new x in

x![ ]
| (x?[ ]>print!"Got it!")
end

NB: print is a built-in channel
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Typed Channels

Channels in PICT are typed, and may only carry values ma

Type = ^ Type
! Type
? Type
[ Type , ... ]
Record end
Type with Id : Type end
Top

In most cases, types can be automatically inferred, and dec

run
let new x : ^[ ] in

x![ ]
| (x?[ ]>print!"Got it!")
end
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Synchrony and Asynchrony

Although PICT uses asynchronous message-passing, sync
waiting for a response on a (fresh) channel:

def sem [p,v] >
(p?r > r![ ])

| (v?*r > r![ ] | (p?r > r![ ]))

A definition is syntactic sugar for a (new) replicated proces

let new sem
run (sem?*[p,v] >

(p?r > r![ ])
| (v?*r > r![ ] | (p?r > r![ ])))

Note that all channel names are bound, and that channels 
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Synchronizing Concurrent Clien

def client [p,v] >
let new r, s1, s2 in

p!r
| (r?[ ] > pr!["FIRST\n",s1])
| (s1?[ ] > pr!["SECOND\n",s2])
| (s2?[ ] > v!r | (r?[ ] > skip))
end

run
let new p, v in

sem![p,v]
| client![p,v]
| client![p,v]
| client![p,v]
end
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Modelling Booleans

def tt [b] > b?*[t,_] > t![ ]
def ff [b] > b?*[_,f] > f![ ]

def test [b] >
let new t, f in

b![t,f]
| (t?[ ] > print!"True")
| (f?[ ] > print!"False")
end

def notB [b,c] > c?*[t,f] > b![f,t]

run
let new b, c in

ff![b] | notB![b,c] | test![c]
end
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Modelling Language Construct
Higher-level language constructs are modelled by translatio

run
let new x in

x!false
| (x?b >

if  b
then  print!"True"
else  print!"False"
end )

end

is translated to:
run

let new x in
x!false

| (x?b >
let new t,f in

primif![b,t,f]
| (t?[ ] > print!"True")
| (f?[ ] > print!"False")
end)

end
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Natural Numbers
A natural number n can be modelled by a channel n that re
and either sends z![ ] if it is equal to zero, or else sends p![k

def zero [p,z] > z![ ]
def one [p,z] > p![zero]
def two [p,z] > p![one]
def three [p,z] > p![two]
def count [n] >

let new p,z in
n![p,z]

| (z?[ ] > print!"0")
| (p?[m] > print!"1+" | count![m])
end

run count![three]
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Counting

New numbers can be generated by constructing a succ

def succ [n, r] >
let new s in

r!s
| (s?*[p,z] > p![n])
end

run
let new r in

succ![three,r]
| (r?s > count![s])
end
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Arithmetic

Arithmetic operators can be built up in the same way:

def add [m,n,r] >
let new p, z in

m![p,z]
| (z?[ ] > r!n)
| (p?[pm] >

let new rn in
succ![n,rn]

| (rn?sn>add![pm,sn,r])
end)

end

run let new r in
add![two,three,r]

| (r?s > count![s])
end
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Functional Notation

Infix notation and functional application are syntactic sugar

run printi!(2+5)

translates to:
run printi!((+)[2,5])

which translates to:
run

let new r in
(+)![2,5,r] | (r?value > printi!value)

end
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Functions as Processes

Functions can be defined as processes:

def double [n] = n+n

translates to:
def double [n,r] > r!(n+n)

which translates to:
def double [n,r] >

let new r1 in
(+)![n,n,r1]

| (r1?value > r!value)
end

run printi!(double[5])
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0,br]

t, f in
if![b,t,f]

 > r!1)
 >
ew nr in
(-)![n,1,nr]
nr?k >
let new kfr in

fact![k,kfr]
| (kfr?kf >

let new fr in
(*)![n,kf,fr]

| (fr?f > r!f)
end)

end)
)
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Functions as Processes
def fact [n,r] >

let new br in
(==)![n,

| (br?b >
let new 

prim
| (t?[ ]
| (f?[ ]

let n

| (

end
end)

end

def fact [n] =
if n == 0
then 1
else n * fact[n-1]
end

run printi!(fact[5])

120

translates to:
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Sequencing

run
pr["hello "];
pr["world\n"];
skip

translates to:
run

let new r in
pr!["hello ",r]

| (r?[ ] >
let new r in

pr!["world\n",r]
| (r?[ ] > skip)
end)

end
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t’’,next’’’]

r] r![ ]

link!next’’

cell
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A Concurrent Queue

head

r![value]

next![ ]

cell![value,nex

put![value,

get![r]

cell

The head accepts a get request to yield its
value and trigger the next cell.
A cell waits to be triggered by the head, and
then itself becomes the head of the queue.
The tail services put requests by
constructing a new cell that waits for the
next trigger from the cell in front of it.
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Implementing the Concurrent Q
new get, put

def head[value, next] >
get?[r] > r!value | next![ ]

def cell[value, ready, next] >
ready?[ ] > head![value, next]

run
let new r in

tail![ ]
| (put["one"]; put["good"]; put["turn"]; put["deserves"];

put["another"]; skip)
| get![r]
| get![r]
| get![r]
| get![r]
| get![r]
| (r ?* s > print!s)
end

def tail [ ] >
let new lin

 link!in
| (put?*

link?r
let ne

ce
| lin
| r![ 
end )

| init![ ]
end
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12. JPict - the pi-Calculus in Ja

Overview

❑ Motivation

❑ The Model: Agents, Channels, and Va

❑ PiL: Forms

❑ Extensible Boolean in PiL

❑ Some optimization

❑ Concurrent Queue in PiL

❑ ToDo...
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Motivation
❑ The pi-calculus as a model for compo

❑ Implement pi-Model using Java-threa

❑ A real application of threads

❑ Notion of channels is extensible:
➪ internal communication
➪ user interaction
➪ distributed communication: sockets

❑ Glue environment: A biotop for agents
➪ E.g. Agents can listen on http-connection
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The Architecture

Active elements (agents) are threads, that communicate by
(values) along channels.

1. Parallel Agents: A | B
2. Restricted Agent: new x A
3. Sender x ! y
4. Receiver x ? y > A
5. Replicated Receiver x ?* y > A

☞ a Java-thread executes an agent.
☞ replicated and parallel agents start new threa
☞ each agent or thread needs its own Environm

from identifiers to values.
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Synchronization
Synchronization is achieved by channels. A channel has pu

public class Channel {
protected Vector queue;

public synchronized Object get() {
while (queue.size() == 0) {

try { wait(); } catch (InterruptedException e) {} }
Object v = queue.firstElement();
queue.removeElementAt(0);
return v; // return head of queue

}

public synchronized void put(Object val) {
queue.addElement(val); // add to tail of queue
notify();

}

}

✎ What happens, if notifyall()  would be used instea
Here, we implement channels as FIFO-Buffers. We could al
element from the queue in get() .
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 (new) thread a copy of the
niversität Bern

Running Agents
A running agent needs a program (an agent) and an enviro
are the synchronization issues?

☞ Agent is immutable (read only)
☞ Environment is written. We have to give each

Environment.

public class Running implements Runnable {
protected Agent p_ = null;
protected Env e_ = null;
public Running(Agent p, Env e) {

Thread t = new Thread(this);
p_ = p; e_ = e;
t.start();

}
public void run() {

Running r = this;
while (r != null)

r=r.p_.iter(r);

}
}
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Example: replicated Reader
public abstract class Agent {

public abstract Running iter(Running r) throws Exception;
// run an arbitrary Agent (from outside)
public void run(Env e) {

Running r = new Running(this, e);
}

}

public class RepAgent {
protected IdentToken chan_;
protected IdentToken pattern_:
protected Agent next_;
public Running iter(Running r) {

// get the channel
Channel t = (Channel)r.getEnv().valueOfId(chan_);
// get the Object
Object v = t.get(r);
run((Env)r.getEnv().clone());// start replicated Agent
r.getEnv().bind(pattern_, v);// bind Value to Pattern_
r.setA(next_); // set next Agent
return r;

}

✎ What would happen, if run()  would be before t.get(r)
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 rest of the world: extern
r is not an agent but (for
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No one is an island
We need agents to be able to communicate values with the
channels are channels, where one part of the communicato
example) an ordinary Java-Method:

public interface Extern {
public void run(Object v) throws Exception;

}

public class Print implements Extern {
public void run(Object v) {

System.out.println(v);
}

}

public class ExtChannel  extends StdChannel {
protected final String theclass_;
public synchronized void put(Object val) throws Exception {

// load Class theclass_
Class dest = Class.forName(theclass_);
// create a new Instance
Object o = dest.newInstance();
// invoke this Instance
((Extern)o).run(val);

}
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shtable, which must be
loneable) This is reasonable

oned:

(B)
 long as they use distinct
onversion. But we cannot

 | new x A | new x A
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Environment
We can implement the environment as an ordinary Java Ha
cloned. (Unfortunately. java.utils.Hashtable is not c
to get a first running version. But it is tedious slow.
There are two situations, when the environment must be cl

➪ Parallel Composition A | B
➪ Replicated Reading a ?* x > A

A look at the theory:
{new x A} | B ≡ new x {A | B} x ∉ fv

this means, that A | B can share the same environment, as
variables. This is easy, since variables are renamed by α-c
move new across replicated agents:

a ?* z > {new x A} | a ! b | a ! c −−−> a ?* z new x A
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y bound once (before all
s a tree, where value lookup

the environment for a

anything when
nt.

alculated in advance
is factors faster, but
n needed some thought
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Environment II
Using α-renaming, we can derive that each Identifier is onl
reads) for a environment. We can model the environment a
start at the leaves:

a .

b .

c .

z . z .

new x A new x A
❑ no need to clone

parallel agent

❑ no need to copy 
replicating an age

❑ lookup length is c
➪ Performance 

implementatio
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8 Classes

15 Classes

11 Classes

7 Classes

3 Classes

OC (incl. comments)
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Package jpict
a hierarchy of agents:

java.lang.Object
|
+----jpict.Agent

|
+----jpict.ChaAgent
| |
| +----jpict.ExtAgent
|
+----jpict.ParAgent
|
+----jpict.LocatedAgent

|
+----jpict.SndAgent
|
+----jpict.RecAgent
|
+----jpict.RepAgent

Lexer, Parser

Syntax Tree

Agents

Runtime

Exceptions

approx. 8’000 L
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ia Channels

sions. In JPict, we can send

s

actions
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Values
❑ What kind of values are exchanged v

Translations exists between (some of) these different π-Ver
and receive Objects  along Channel s.

Name Values

Monadicπ-calculus Channel

Polyadicπ-calculus Tupels

HOP-Calculi Agents / Abstr

πL Forms

... ...
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bers, Strings). Forms can be
l returning a channel.

 extended once, but read

y > y.reply! <>

 label reply

form y
niversität Bern

PiL - Forms
Forms are partial mappings from labels to channels (or Num
extended yielding a new form, and projected against a labe

Forms behave much like the environments above. They are
several times concurrently:

f ! x<reply = b> | f ! x<reply = c> | f ?*

y<reply = a> A new form, y extended with a binding for

y.reply Denotes the value, bound by reply in 
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t about synchronization and

Form)
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Implementing Forms
This implementation yields immutable forms. We can forge
sharing...

public class Form {
private final Form prev_;// the predecessor Form (null for the empty 
private final Object label_; // label of what I am extended from
private final Object ch_; // Object bound by label_

public Form() { prev_ = null; label_ = null; ch_ = null; }
private Form(Form prev, Object label, Object ch) {

prev_ = prev; label_= label; ch_ = ch;
}

public Object project(Object label) {
if (label.equals(label_)) return ch_;
else if (prev_ != null) return prev_.project(label);
else return null; /* since we are the empty Form */

}

public Form extend(Object label, Object name) {
return new Form(this, label, name);

}

}

✎ How would you implement mutable (extensible) Forms
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lse .
ong the true channel of it. It

antiate to true:

But you can’t send Strings along
Channels. The Translator reads:
print ! <val = “it’s true”>
niversität Bern

Modelling Boolean in PiL
A boolean is a modelled by a form, with labels true  and fa

This agent receives a boolean and sends the empty form al
sets the boolean to true:

b ? X > X.true ! <>

The True agent waits to get a channel b, which he can inst
True ?* b > b.val ? X > X.true ! <>

An agent, testing a boolean b:
new truecase new falsecase
run { truecase ?* _ > print ! "it’s true” }
run { falsecase ?* _ > print ! “it’s false” }
run {b ! <true = truecase><false = falsecase>}
True ! b

This agent swaps true and false :
Not ?* a > a.out ? X > a.in ! X<true = X.false><false = X.true>

Not True:
... new c { Not ! <in = c><out = b> | True ! c}
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= unknown.
e only add a case for

lse = X.true> ,
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Extending the Boolean
A tree values logic has: true, false, unknown. not unknown 
We can reuse the encoding from the previous encoding. W
unknown:

Unknown ?* b > b.val ? X > X.unknown ! <>

and recode the test agent:
run {

new truecase new falsecase new unknowncase
run { truecase ?* _ > print ! "it’s still true" }
run { falsecase ?* _ > print ! "it’s still false" }
run { unknowncase ?* _ > print ! "it’s unknown" }

// create the boolean channel
new b
new c

b ! <true = truecase><false = falsecase><unknown = unknowncase>
| Not ! <in = c><out = b>
| Unknown! c

}

✎ If we encoded Not  as
Not ?* a > a.out ? X > a.in ! <true = X.false><fa
what would change?
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age...
l, where the receiver of the

long print  the value of

tion of an abstraction. The
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Towards a programming langu
Often, we like to send an agent abstraction along a channe
abstraction can invoke it:
This is an abstraction: when it receives a form a, it sends a
a.val :

\a > print ! a.val

new x
run {

x ! \a > print ! a.val
x ? f > f ! <val = “A String”>

}

But, we can’t send abstractions. We can only send the loca
location is the channel, at which the agent listens:

new x
run {

run { new f x ! f | f ?* a > print ! a.val }
x ? f > f ! <val = “A String”>

}

✎ Why is it necessary to use a replicated Agent at f?
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s we communicate
 thing.

ite therefore x.val !  E

apped to

<val = f> | f
* x > A

 x.reply ! E

<reply = r>

!  E | r ? x > A
niversität Bern

Functions, Assignment...

➪ Instead of communicating complex thing
(restricted) channels giving access to the

If x, f etc. is a form, we cannot send something along it. Wr
instead of x ! E.

Syntax M

Sending an Abstraction r!  \x > A
new f r!

?

Function \x . E \x >

Send the Result r!  f(x) f !  x

Assignment let x:=  E; A new r r
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es agents that wait on some
long another channel.
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Example
extern "extern.Concat" ++
extern "extern.StdOut" pr
extern "extern.Subtraction" -
extern "extern.Smaller" lt
extern "extern.Addition" +

def fib x > if (x lt 3)
then x.reply ! 1
else x.reply ! fib(x - 2) + (fib(x - 1));

let result := fib(8);
pr(“It’s " ++ result);

Prints out: It’s 21

Although the code is purely sequential, the translation creat
channels, create new agents, and finally send something a
Some statistics: approx.: 800 ms

287 threads
➪ We should try to optimize this...
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fter put() , which is the
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Java-Threads and Pi-Process
a !  x | a? y > B

– Reader executes get()  on channel a -> threa

– Java thread context switch

– Sender executed put()  -> notify of Reader

– Java thread context switch

– Reader receives value x and continues

Idea: reader stores his Running on the channel when get
is empty. The sender then returns this Running  instance a
natural continuation.

➪ channel is more complex
➪ No wait(), notify()  needed in chan
➪ Fib(8) in 600 ms, but still as many thread

But we still have a lot of threads...
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 pattern like

l r, and B is an agent doing
 ? x > B in two threads is a
ent something along r.

ne get()  on the (empty)

tial agent, that does not start
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Java-Threads and Pi-Process II
The translation of higher order expression often contains a

new r A | r ? x > B
where A is an Agent sending a form along the reply channe
something with the form received from r. Executing A and r
waste, since the reader cannot proceed until A has really s
Idea:

– iter()  the reader agent. This just performs o
channel

– then execute agent A.

So, instead of instantiating a parallel agent, we use a sequen
a new thread for r ? x > B

➪ needs a subclass of a parallel agent
➪ Fib(8) now in 400 ms, with 2 threads
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Concurrent Queue in Pil
new get new put
def head x > { get ? y > { y ! <val = x> | x.next !<>}};
def cell x > x.ready ? _ > head ! <val = x><next = x.next>;

def tail _ > {
new link new init run {link ! init}
put ?* x > {

link ? ready > {
new next
cell ! x<ready = ready><next = next>
| link ! next
| x.reply ! <>}

}
| init ! <>

};

run {
new r
tail ! <>
| {put("one"); put("good"); put("turn"); put("deserves"); put("another")
| get ! r | get ! r | get ! r | get ! r | get ! r
| r ?* x > print ! x

}

Uses 50 threads
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see the agents at

ait for some forms
 an agent that
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Interested?
❑ Visualizing agents

using Java-GUI/Applet techniques to
work

❑ Debugging (visually) running agents

❑ Using agents to script WWW-Servers
viewing http-demons as agents that w
and return Information. Then build up
communicates with these...

❑ ...
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