Communicatig and Mobile
Systems - ther-calculus

Markus Lumpe

Institute of Computer Science and Applied Mathematics (IAM)

University of Berne
Neubrtickstrasse 10, CH-3012 Bern
E-mail: lumpe@iam.unibe.ch

WWW: http://lwww.iam.unibe.ch/~lumpe

Theprogrammirg model

« Communication is a fundamental and integral part of computing,
whether between different computers on a network, or between
components within a single computer.

e Robin Milner’'s view: Programs are built from communicating
parts, rather than adding communication as an extra level of
activity.

,

Programs proceed by means of communication.

Evolving Automata

Link moved

Automata

Starting point: The components of a system are interacting automata.

An automaton is a quintupke= (%, Q, q,, o, F) with:
» a se of actions(sometimes called an alphabet),

e asetQ={0qyq,...} of states
» a subseF of Q called theaccepting states

e a subset of Q x Ax Q called theransitions
 a designated start staig

A transition €, a, 9') € o is usually writteng—2-q'.
The automator is said to be finite I is finite.

Behaviour of Automata

An automaton is deterministic if for each pajg@) € Q x X
there is exactly one transiti@p2.q'.

deterministic automata: non-deterministic automata:

@

Vending machine

A tea/coffee vending machine
IS Implemented as black box
with a three-symbol alphabet
{1Fr, teg coffeel.

Internal transition digrams

Deterministic system S1. Non-deterministic system S2:

Are both systems equivalent?

S1 =527

S1: S2:
qO=1Fr-dql+¢ gO=1Fr-ql+1Fr-g2+¢
gl=tea-qO+1Fr-g2 gl=teaq0
q2=coffeeq0 02=1Fr-g3

g3=coffeeq0

gl=tea qO+1Fr -coffeeq0

q0=1Fr -(tea q0+1Fr -coffeeq0) + ¢ q2=1Fr -coffeeq0
qO=1Fr -(tea+1Fr -coffed-q0+¢ g0=1Fr -tea-g0+1Fr -1Fr -coffeeq0+¢
0= (1Fr - (tea+1Fr -coffed)* qO=1Fr -(tea qO+1Fr-coffeeq0)+¢

g0=1Fr -(tea+1Fr -coffe@-q0+¢
gO0=(1Fr -(tea+1Fr -coffed)*

The systems S1 and S2 are language-equivalent,
but theobservable behavious not the same.

Automata - Summar

Language-equivalence is not suitable for all purposes. If
we are interested in interactive behaviour, then a non-
deterministic automaton cannot correctly be equated
behaviourally with a deterministic one.

A different theory is required!

Labelled transitionystems

A labelled transition system over actiohstis a pair Q, T)
consisting of:

e aselQ={dqyq,...} of states
e a ternary relatiom < (Q x Actx Q), known as dransition
relation.

If (0, o, 0) € T we write g-2.q" , and we cajlthe source
andq’ the target of the transition.

10

States and Actions

Important conceptual changes:

* What matters about a strisg a sequence of actions - is not
whether it drives the automaton into an accepting state (since
we cannot detect this by interaction) but whether the
automaton is able to perform the sequenceinferactively.

A labelled transition system can be thought of as an
automaton without a start or accepting states.

* Any state can be considered as the start.

Actions consist of a sét of labelsand a sdt afo-labels with
L={alacL}. We use, 3, ... to range over actiomsct

11

Strorg Simulation - Idea

e In 1981 D. Park proposed a new approach to define the
equivalence of automatons - bisimulation.

 Given a labelled transition system there exists a standard
definition of bisimulation equivalence that can be applied to
this labelled transition system.

e The definition of bisimulation is given in @inductivestyle
that is, two systems are bisimular if we cannot show that they
are not.

 Informally, to say a ‘system S1 simulates system S2’ means
that S1’s observable behaviour is at least as rich as that of S2.

12

Strorg Simulation - Definition

Let (Q, T) be an labelled transition system, anddéte a binary
relation overQ. Then S is called a strong simulation ov@y 1)
If, whenever [1q,

if P-°>p' then there exists € Q such thag-%-0d amiSq.

We say thaf) strongly simulatep if there exists a strong
simulationS such thap&q.

13

Strorg Simulation - Exarple

ere

The states qO0 and pO are different.
Therefore, the systems S1 and S2 are
not considered to be equivalent.

coffee

14

Strorg Simulation - Exarple |

Define S by

S={(p0, q0), (p1, ql), (p3, ql1), (P2, g4), (P4, d2), (p3, q3)}

thenSis a strong simulation; hence g0 strongly simulates p0.
To verify this, for every pairg, g) € S we have to consider
each transition of p, and show that it is properly matched by
some transition of q.

However, there exists no strong simulatiRrthat contains

the pair (g1, pl), because one of ql's transition could never

be matched by pl. Therefore, the states qO and pO are
different, and the systems S1 and S2 are not considered to be
equivalent.

15

Strorg Bisimulation

The convers&k! of any binary relatiofR is the set of pairs (y, X)
such that (X, Y R.

Let (Q, T) be an labelled transition system, and3die a binary
relation overQ. ThenS s called a strong bisimulation ove),(T)
If both S and its conversg&1!are strong simulations. We say tpat
andq are strongly bisimular or strongly equivalent, writfer g,

If there exists a strong bisimulation S such &t

16

Checkirg Bisimulation

31 S1~S2?

To construct start with (p0O, gq0) and check whether S2 can
match all transitions of S1.:

S={(p0, q0) (p1, q1) (p3, 1) (p2, g2) (p4, q3)}

System S2 can simulate system S1. Now check, whé&her
IS a simulation or not:

S-lz{]]]] }

Start with e S,

1: g0 has one transition ‘a’ that can be matched by two
transitions of S1 (target pl and p3, respectively) and
we have e S-1and e S,

2: g1 has two transitions ‘b’ and ‘c’, which, however,
cannot appropriately be matched by the related states pl
and p3 of system S1 (p1 has only a ‘b’ transition whilst
p3 has only a ‘c’ transition).
We have, therefore, §1 ~ S2. 17

Some Facts on Bisimulations

~ IS an equivalence relation.

If S,1=1, 2,... Is a family of strong bisimulations, then the following
relations are also strong bisimulations:

. Idp
¢S,-S,={(P,Q) e PxP if RexistswithP,R € S,, (R Q) € S,}
oS'l

18

Some Facts on Bisimulations |1

S:5={P,Q ePxP ifRexistswithP,R) € S, (R Q) € S, }
Proof:

Let (P, Q) € S;-S,. Then there existsRwith (P, R) € S;
and(R, Q) € S..
(—) If P_%, P, then sinc®(R) € S, there exist®R and
R % R andX,R’) e S,. Furthermore, since
R Q) € S, there exists & withQ %, Q" and
R’, Q) € S,. Due to the definition 0%, - S, it holds
thatP’,Q’) € S;- S, as required.
(«) similar to).

19

Bisimulation - Summar

Bisimulation is an equivalence relation defined over a labelled
transition system which respects non-determinism. The
bisimulation technique can therefore be used to compare the
observable behaviour of interacting systems.

Note: Strong bisimulation does not cover unobservable behaviour

which is present in systems that have operators to define reaction
(.e., internal actions).

20

Ther-Calculus

 The n-calculus i1s a model of concurrent computation based
upon the notion ohiaming

« The m-calculus is a calculus in which the topology of
communication can evolve dynamically during evaluation.

* In the m-calculus communication links are identified by
names and computation is represented purely as the
communication of names across links.

 The r-calculus i1s an extension of the process algebra CCS,
following the work by Engberg and Nielsen who added
mobility to CCS while preserving its algebraic properties.

e The most popular versions of thecalculus are the monadic
n-calculus, the polyadig-calculus, and the simplified polyadic
n-calculus.

21

Ther-Calculus - Basic ldeas

« The most primitive in ther-calculus is aname Names,
Infinitely many, are X, vy,..e N; they have no structure.

* In the n-calculus we only have one other kind of entity: a
processWe use P, Q, ... to range over processes.

Polyadic prefixes:

o input prefix:x(y)
“Input some namey,,...,y, along the link namexg’

e output prefixx{y)
“‘output the namey,,...,y, along the link namexg’

22

Then-Calculus - $ntax

Note: We only consider the simplified polyadic version.

P,Q = P|P Parallelcomposition
(LX) P Restrictian
x(yl,...,yn).P Input
X(yl,...,yn> Output
P Replication (input-only)
0 Null

23

Reduction Semantics

Milner proposed first a reduction semantics technique. Using the
reduction semantics technigue allows us to separate the laws
which govern the neighbourhood relation among processes from

the rules that specify their interaction.

IP=P|'P

P=P|0

P[Q=QJ|P
(PIQIR=P|(QIR)
LX)P[Q=(vx)(P|Q), xen(Q)

Q R P=P P _.Q Q=Q P.Q
QP —R|P P—Q (LX)P —(ox)Q

x(yl,...,yn).P|7<<zl,...,;,> SN P{yl,...,yn\zl,...,;]}

24

Evolution

XYY | X(U)IKV) | X(z) can evolveto YWV)|X(z) or XYy)|ZV)

(L X)(XY) | X(W)IKV)) | X(z) can evolveto YWV)|X(2)

X Y) [Ix(u)IKV) | X(2) can evolveto

YW IIX(U)IKV) [X(2) or Xy) [IX(U) V) [ZV)

and
YW IIX(U) V) [ZV)

25

Church’s Encodig of Booleans

True(b) = Db, f)I
Falseb) = bt f).f
Not(b,c) = b, f)g(f,t)

(v ©)(Not(b,c) [True(c)) = False(b) ’7
0Ot F)e(f.|ct,) =bt,)T 4

26

Actions:

a(b)
ab)

(v X)a(b)

Input actionxx is the name at which it occurs,
bis the tuple of names which are received

Output actionx is the name at which it occurs,
b is the tuple of names which are emitted

Output actionx is the name at which it occurs,
b is the tuple of names which are emittedx)
denotes private names which are carried out
from their current scopeg¢ope extrusion

Silent action: this action denotes unobservable
Internal communication.

27

L abelled Transition Semantics

fn(a(b)) ={a}

IN:a(X).P_20) , p(x\b} OUT:ab) &P, g fn(a()) ={ab}
fn((v X)a(b)) ={a,b} -{x}
open P2 Xab) ,p' yra yeb-X () =2

(v y)P _LYyXab) | pr

bn(a(h)) ={b}
bn@&b)) =2

comP=ELP 0 0),q bn(© X)a(b)) ={X}

P|Q— P'|Q’ bn(r) =
cLosE P (vX)ab) pr T Q Ei(b) 'Q" X ¢ fn(Q) RES P_%,P X ¢ N(a)
P|Q— (b X)(P'|Q’) (v X)P -2 (v X)P'
paR: PP bn@)nfn(@Q =2 ~EpL: a().P_2b), a(b) P{)?\B}

PIQ_%,P'|Q 1a(x).P_20) , P{x\b} | 1a(x).P

28

Some Facts

* The side conditions in the transition rules ensure that names do
not become accidentally be bound or captured.
In the rule RES the side condition prevents transitions like

(v ¥a(b).P 2, (b X)P{b\%
which would violate the static binding assumed for restriction.

* In the given system bound names of an input are instantiated as
soon as possible, namely in the rule for input - it is therefore an
early transition system. Late instantiation is done in the rule for
communication.

e The given system implements an asynchronous variant af the
calculus. Therefore, output action are not directly observable.

e There Is no rule fosi-conversion. It Is assumed thatconversion
IS always possible.

29

Experiments

(v ©)(Not(b,) | True(c)) = False(b) ’7
OB DS (et D) =bt,)T 4

Experiment 1. Experiment 2:

B (vo)(b(t, f)c(f,t)|c(t, f)i) B b(t, f).f
DOy, ety e, 1)) by, y

- (L e)(y) Y0, 0

y()

A, 0

Using strong bisimulation, the systems are not equivalent.
Furthermore, an asynchronous observer can only indirectly

see that an output message has been consumed.
30

Bisimulation - A Board Game

The central idea of bisimulation is that an external observer
performs experiments with both proces®eand Q observing

the results in turn in order to match each others process
behaviour step-by-step.

Checking the equivalence of processes this way one can think
of this as a game played between two personsyribeliever

who thinks thatP and Q are not equivalent, and theeliever

who thinks thaP andQ are equivalent. The underlying strategy
of this game is that the unbeliever is trying to perform a process
transition which cannot be matched by the believer.

31

Synchronous Interactions

There exists two kinds of experiments to check process equivalence:
Input-experimentsand output-experimentsBoth experiments are
triggered by their corresponding opposite action.

In the synchronous case, input actions for a proé€esse only
generated if there exists a matching receiver that is enabled Rithin
The existence of an input transition such fhaolves tdP’ reflects

precisely the fact that a message offered by the observer has actually
been consumed.

32

Asynchronous Interactions

In an synchronous system the sender of an output message does not
know when the message is actually consumed. In other words, at the
time of consumption of the message, its sender is not participating in
the event anymore. Therefore, an asynchronous observer, in contrast
to a synchronous one, cannot directly detect the input actions of the
observed process. We need therefore a different notion of input-
experiment.

Solution: Asynchronous input-experiments are incorporated into the
definition of bisimulation such that inputs of processes have to be
simulated only indirectly by observing the output behaviour of the
process in context of arbitrary messages (Bja(b)).

33

The Silent Action

Strong bisimulation does not respect silent actiosigafisitions).

Silent transitions denote unobservable internal communication.
From the observer’'s point of view we can only notice that the
system takes more time to respond.

Silent actions do not denote any interacting behaviour. Therefore,
we may consider two systerRsandQ to be equivalent if they
only differ in the number of internal communications.

We writeP = P iP (L)%, (¢ P . In other words, a given
observable action can have an arbitrary number of preceding or
following internal communications.

34

Asynchronous Bisimulation

A binary relation S over processed and Q is a weak
(observable) bisimulation if it is symmetric aRdb Q implies

« wheneveP_2,P' , wheteis eithert or output with
bn@)fn(P|Q)=T , thé exists such tha® = Q" and
P'SQ.

. (P|ab)) S(Q|ab)) for all messagds)

Two processeR andQ are weakly bisimular, writte®~=Q , If
there is a weak bisimulatidggwith P S Q.

35

Some Facts

 ~ IS an equivalence relation.
e ~ IS @ congruence relation.
| eadingr-transitions are significant, i.e., they cannot be omitted.

e Asynchronous bisimulation is the framework that enables us to
stateP = Q iff P~ Q and vice versa.

36

An Sinmple Ohect Model

Reference€@ll=(vv,s,q)
(V0)
ISURIA @ INAOIIEN
1'g(r).v() (V) | <))

37

A List

A list is eitherNil or Consof value and a list.

Vv

C e

The constanil, the constructio®ong V, L), and a list oh values
are defined as follows:

Nil h(n,c).n
CongV,L) = (vv,1l)(h(n,c).c(v,l)|V{v)|LI))
[Vl,...Vn] = Cons(\/l,Cons(...,Cons(Vn, Nil)..))

38

A Concurrent Laguage

D :
E::

I-1...]10]1]...

C:C
If E thenC elseC
whileE doC
letD in C end
C parC
iInputy
output
skip

=varV

=V
F(E,...,E)

Variable

Function symbols
Assignment
Sequential Composition
Conditional Statement
While Statement
Declaration
Parallel Composition
Input
Output

Variable Declaration
Variable Expression
Function Call

39

Ambiguous Meanig

X =0;
X=X+1par X=X+2

What is the value of X at the end of the second statement?

40

Basic Elements

 We assume that each element of the source language is assigned
a process expression.

Variables: X(init) = (v v,setXgetX)
(V(init)
I'setX(n,r).M_)(V{n)|T{))
|fgetX(r).v(i)(vi) [<)))
SKip: don€)

Ci;C= (v c)(Cf{donac} |c().C)

_ (l,r,)(trug |C{donal} |[C{dondar}

C,parC, = _
(10).t(b).(if bthenr().Skipelsd () |t(false)|
(r().t(b).(if bthenl().Skipelser{) |t(false))é)11

EXxpressions

X = (v ack)(getX(ack) | ack(v) FegVv))
F(E,....E) = arg,(x).....arg,(%, JF (X, ... X,.res)

MIF(Es.....E)] =

0 argy,....arg)(M[E|{ resarg,} | ...
MIE.{ resarg,} | M[F])

42

Operation Squence

X =0;
X=X+1parX=X+2

What is the value of X at the end of the second statement?
According to the former definitions the value of X is either
1, 2, or 3. The three values are possible since every atomic

action can occur in an arbitrary and meshed order.

To guarantee a specific result (e.g., 1 or 2), we need to
employ semaphors.

43

What have we learned?

e Classical automata theory does not cope correctly with
Interacting behaviour

 Bisimulation is an equivalence relation defined over a labelled
transition system which respects non-determinism andcan
therefore be used to compare the observable behaviour of
Interacting systems.

e The n-calculus is a name-passing system in which program
progress is expressed by communication.

« Which the rn-calculus we can model higher-level
programming abstractions like objects and lists.

« A concurrent programming language can be assigned a
semantics based on thecalculus.

44

ACiaae

University of Berng

Research:
 Piccola - a small composition language
 The nl-calculus - a formal foundation for software

composition.
« COORDINA - coordination models and languages

Resources: http://www.lam.unibe.ch/~sc ¢

45

Evolving Automata

Static system

Node deleted

7 S

/ S
’
4

Node divided

Link moved

46

