7042 Datenbanken

Prof. O. Nierstrasz

Wintersemester 1997/98

1. 7042 Datenbanken

Schedule

What you will be expected to learn:
Definitions?

In Search of a Definition ...

What is a Database?

Example

Why Do We Need Database Systems?
When Do We Need Database Systems?
When Do We Not Need Database Systems?
Kinds of Database Systems

Data Models

E-R Model

Relational Model

OO Model

Schemas and Instances

The Three Schema Architecture

Data Independence

Architecture

Implementation issues

Classification of Database Systems
Summary

2. The Entity-Relationship Model

Entities and Attributes

Entities & Attributes

Attributes

Relationships

Relationships and relationship sets
Attributes vs. Entities

Mapping Constraints

Existence Constraints

E-R Diagrams — Example
One-to-one, one-to-many

©O© 00N Ol WN P

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33

Table of Contents

Ternary Relationships
Roles
Summary

3. Entity-Relationship Diagrams

Primary Keys

Strong & Weak Entity Sets
Relationship keys

ER Diagrams

Generalisation

Aggregation

Reducing E-R Diagrams to Tables
Reducing Weak Entity Sets
Design Decisions

Summary

4. The Relational Model

History

Example: The Bank Database Schema
Relational Databases
Notation

Schemas and instances
Common attributes

Query Languages

Relational Algebra

Example: The Bank Database
Select

Project

Cartesian product

Renaming

Union

Set-difference

Summary

34
35
36

37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

5. The Relational Model (Continued)

Derived operators

Example: The Bank Database
Intersection

Natural Join

Division

Insertions and Deletions
Updates

The Tuple Relational Calculus
Examples

Safety

The Domain Relational Calculus
Examples

Summary

6. SQL

SQL

SQL Syntax Summary: Queries
SQL Syntax Summary: DDL
Basic Structure

Set Operations: Union

Set Operations: Intersection and Minus
Predicates and Joins

Logical Connectives

String matching

Set Membership

Tuples

Tuple Variables

Set comparison

Set containment

Testing for empty relations
Ordering

Summary

Table of Contents

7. SQL, QBE and Quel
Aggregate Functions
Group Predicates
Modification
Restrictions
Updates
Null Values
Views
Data Definition
Summary
Query-by-example
Simple queries
Variable unification
Set Difference
Result Relations
Other features
Quel
Differences between Quel and SQL
Queries
Other Features
Summary

8. Integrity Constraints
Domain Constraints
Foreign keys
Referential Integrity
Referential Integrity in SQL
Functional Dependencies
Example FDs
Example FDs in the Bank Database
Closure of a set of FDs
Example — using closures
Derived Rules
Closure of an attribute set
Finding Keys
Example — finding keys

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131

Canonical Covers
Assertions

Triggers

Summary

9. Database Design
Example
Repetition of Information
Lossy Joins
Lossy Joins
Decomposition
Normalisation
Lossless Join Decomposition
Lossless Join Decomposition
Dependency Preservation
Normal Forms
Boyce-Codd Normal Form
BCNF Decomposition Algorithm
Shortfalls of BCNF
Third Normal Form
3NF Decomposition Algorithm
BCNF vs. 3NF
Summary

10. File and System Structure
Physical Storage Media
Disk Storage
File Organisation
Fixed-length records
Insertions and deletions
Variable length records
Byte String Representation
Fixed-Length Representation
Anchor/overflow block organization
Organizing Records into Blocks
Sequential Files
Mapping Relational Data to Files

132
133
134
135

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

154
155
156
157
158
159
160
161
162
163
164
165
166

Data Dictionary Storage
Buffer Management
Buffer Management
Summary

11. Indexing and Hashing

Basic Concepts

Indexing

Dense and sparse indices
Indices

Secondary indices

B+ Tree Index Files

B+ Tree Insertions

B+ Tree Deletions

B-Tree Index Files

Hash Functions

Static hash functions
Dynamic hash functions
Dynamic Hashing example
Hashing vs. Indexing
Summary

12. Transactions and Concurrency Control

Transactions

Transaction States

Aborted Transactions

Recovery Logs

Deferred Database Modification
Immediate Database Modification
Log Record Buffering

Concurrent and Serializable Schedules
Non-serializable Schedules
Conflict Serializability

Serializing Schedules

Testing for Conflict Serializability
Sorting Precedence Graphs

Locks

fii

167
16¢€
16¢
17C
171
172
17z
174
175
17¢
177
17¢
17¢
18C
181
18-
18¢
184
18¢
18¢
187
18¢
18¢
19C
191
192
192
194
195
19¢
197
19¢
19¢
20C
201

Table of Contents

Two-phase Locking Protocol 202
Locking Protocols 203
Deadlock 204
Deadlock Recovery 205
Summary 206
13. Query Processing 207
Equivalence of Expressions 208
Selection 209
Conjunctions 210
Projections 211
Natural Joins 212
Other transformations 213
Estimation of Query-Processing Cost 214
Joins 215
Indices 216
Query Strategies Using Indices 217
Join Strategies 218
Simple vs. Block-oriented Iteration 219
Merge Join (Sorted Join Attributes) 220
Computing Joins with Indices 221

Summary 222

Datenbanken 7042 — WS 97/98 1.

1. 7042 Datenbanken

Lecturer: Prof. O. Nierstrasz

Schitzenmattstr. 14/103, Tel. 631.4618
Secr.: Frau |. Huber, Tel. 631.4692
Assistants: J.-G. Schneider

S. Kneubuhl
WWW: http://ilamwww.unibe.ch/~scg/Lectures/

Principle Text:

[0 A. Silberschatz, H.F. Korth and S. Sudarshan, Database System Concepts, 3d
edition, McGraw Hill, 1997.

Supplementary texts:

[0 R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, Benjamin/
Cummings, 1994.

O A. Kemper, A. Eickler, Datenbanksysteme, Oldenbourg Verlag, 1996.

0 G. Vossen, Datenmodelle, Datenbanksprachen und Datenbank-Management-
Systeme, Addison-Wesley, 1994.

Universitat Bern 7042 Datenbanken

Datenbanken 7042 — WS 97/98

Schedule
1. 10.22 Introduction
2. 10.29 E-R Model
3. 11.05 E-R Model, continued
4. 11.12 The Relational Model
5. 11.19 The Relational Model, continued
6. 11.26 Query Languages
/7. 12.03 Query Languages
8. 12.10 Integrity Constraints
0 12.12 Midterm Test
9. 12.17 Database Design
10. 01.07 File and System Structure
11. 01.14 Indexing and Hashing
12. 01.21 Transactions and Concurrency Control
13. 01.28 Query processing

[1 02.04 Final Exam

Universitat Bern

7042 Datenbanken

Datenbanken 7042 — WS 97/98 3.

What you will be expected to learn:

How to draw and interpret E-R diagrams

How to realize E-R schemas as relational databases

How to pose queries using relational algebra and the relational tuple calculus
How to write SQL queries

How to express and interpret functional dependencies (FDs)

How to use FDs in database design

How databases are physically organized for optimal performance

How concurrent databases accesses are managed

How queries are evaluated

N I A I B

Universitat Bern 7042 Datenbanken

Datenbanken 7042 — WS 97/98 4.

Definitions?

What is a Database?

[0 Definition?
[0 Examples?

What is a Database System?

[0 Services, functionality?
1 Difference with File Systems?

Universitat Bern 7042 Datenbanken

Datenbanken 7042 — WS 97/98 5.

In Search of a Definition ...

[0 A database is a logically coherent collection of data with some inherent
meaning. A database is designed, built and populated with data for a specific
purpose and represents some aspect of the real world. [Elmasri, p. 3]

[0 A database management system consists of a collection of interrelated data
and a set of programs to access data. The collection of data is usually referred
to as the database. [Korth, p. 1]

[0 A database system is essentially nothing more than a computerized record-
keeping system. The database itself can be regarded as a kind of electronic
filing cabinet — that is, a repository for a collection of computerized data files.
[Date, p. 3]

[0 Adatabase can be defined as a set of master files, organized and administered
in a flexible way, so that the files of the database can be easily adapted to new,
unforeseen tasks.

[0 A database is a structured collection of operational data together with a
description of that data. [Stranczyk, p. 4]

[0 A database system is a collection of programs that run on a computer and that
help the user to get information, to update information, to protect information, in
general to manage information. [Paradaens, p. 1]

Universitat Bern 7042 Datenbanken

Datenbanken 7042 — WS 97/98

What i1s a Database?

Users/Programmers

Database
System

v

Application Programs/Queries

DBMS
Software

v

Software to Proc

Queries/Programs

€SS

v

Software to Access

Stored Data

X

—
v

Stored
Database
Definition

(Meta-Data)

v

H

v

Stored
Database

v

Universitat Bern

7042 Datenbanken

Datenbanken 7042 — WS 97/98

Example

borrow deposit
branch-name loan-number customer-name amount branch-name account-number customer-name balance
Downtown 17 | Jones 100 Downtown 101 | Johnson 50
Redwood 23| Smith 2000 Mianus 215 | Smith 700
Perryridge 15| Hayes 150(Perryridge 102| Hayes 40(
Downtown 14 | Jackson 1500 Round Hill 305 | Turner 350
Mianus 93 | Curry 500 Perryridge 201| Williams 900
Round Hill 11 | Turner 900 Redwood 222 | Lindsay 700
Pownal 29 | Williams 1200 Brighton 217 | Green 750
North Town 16 | Adams 1300 Downtown 105 | Green 850
Downtown 18 | Johnson 2000
Perryridge 25| Glenn 2500 customer
Brighton 10 | Brooks 2200 customer-name street| customer-cgity
Jones Main Harrison
branch Smith North Rye
Hayes Main Harrison
branch-name assets branch-city Curry North Rye
Downtown 9000000| Brooklyn Lindsay Park Pittsfield
Redwood 2100000, Palo Alto Turner Putnham Stamford
Perryridge 1700000] Horseneck client Williams Nassau | Princeton
Mianus 400000| Horseneck Adams Spring Pittsfield
Round Hill 8000000 | Horseneck customer-name banker-narme Johnson Alma Palo Alto
Pownal 300000 Bennington Turner Johnson Glenn Sand Hill Woodside
North Town | 3700000| Rye Hayes Jones Brooks Senator | Brooklyn
Brighton 7100000| Brooklyn Johnson Johnson Green Walnut | Stamford
Universitét Bern 7042 Datenbanken

Datenbanken 7042 — WS 97/98 8.

Why Do We Need Database Systems?

To avoid:
[0 Redundancy

[Inconsistency

O Inflexibility

[0 Concurrent access anomalies
To provide:

[0 Security

0 Integrity

[1 Standards

Universitat Bern 7042 Datenbanken

Datenbanken 7042 — WS 97/98

When Do We Need Database Systems?

N I A A B

Universitat Bern

Large, complex database
Persistent data

Multiple Users

Frequent updates

Ad hoc queries

Large, open class of applications
Security and authorization
Integrity constraints

Backup and recovery

7042 Datenbanken

Datenbanken 7042 — WS 97/98 10.

When Do We Not Need Database Systems?

Costs:
[0 investment in hardware, software and training
[0 generality
[0 overhead for security, concurrency control, recovery and integrity

When not to use:

DB + applications are simple, well-defined, and won’t evolve
very small database

stringent real-time constraints

multiple-use (update?) access not required

N N O I

Universitat Bern 7042 Datenbanken

Datenbanken 7042 — WS 97/98 11.

Kinds of Database Systems

Legacy: Network, Hierarchical...
Relational

Object-Oriented

CAD

Deductive

Knowledge bases

NN Y By

Universitat Bern 7042 Datenbanken

Datenbanken 7042 — WS 97/98 12.

Data Models

“A data model is a set of concepts that can be used to describe the structure
of a database.” (E&N)

data types

relationships

constraints

basic operations (retrieval & update)
behaviour

N I

Universitat Bern 7042 Datenbanken

Datenbanken 7042 — WS 97/98 13.

E-R Model

Formal model and Graphical notation
[0 Entity sets (rectangles)
0 Attributes (ellipses)
[0 Relationship sets (diamonds)

customer CustAcct account

Universitat Bern 7042 Datenbanken

Datenbanken 7042 — WS 97/98

Relational Model

Record-based model

[]

N I I O

Named tables of tuples
Named, typed fields
NoO pointers

No nesting

No behaviour

Universitat Bern

14.

7042 Datenbanken

Datenbanken 7042 — WS 97/98 15.

OO Model

Comparable to, but distinct from objects in OO programming languages
[0 Nested objects

Instance variables

Methods

Classes

Messages

N I I O

Universitat Bern 7042 Datenbanken

Datenbanken 7042 — WS 97/98 16.

Schemas and Instances

Database Schema
[1 describes the structure of the database
[1 consists of “meta-data”

Database Instance (or State)
[J snapshot of a database at some point in time

Universitat Bern 7042 Datenbanken

Datenbanken 7042 — WS 97/98 17.

The Three Schema Architecture

External Level

LJ

External View 1 External View N
o000
Conceptual Level Conceptual Schema
Internal Level Internal Schema

O

Universitat Bern 7042 Datenbanken

Datenbanken 7042 — WS 97/98 18.

Data Independence

Physical data independence

[the ability to modify the physical scheme without affecting client
applications

Logical data independence

[0 the ability to modify the conceptual scheme without affecting client
applications or external schemas

Universitat Bern 7042 Datenbanken

Datenbanken 7042 — WS 97/98 19.

Architecture

Data Definition Language (DDL)
[0 Used by Database Administrator to define schema

[0 Compiled into a data dictionary containing all meta-data and storage details (file
names, mappings, constraints)

[0 A separate Storage Definition Language may exist for specifying the physical
schema...

Data Manipulation Language (DML)
[0 Queries and Updates (insertion, modification, deletion)
[0 Procedural: specifies how to get data (navigational)
[0 Non-procedural: specifies what data to get

Database Interfaces

[0 Menus; graphical interfaces for e.g., schema design; forms; natural language;
canned operations; canned DBA operations

[0 Report generators; 4GLs; Office systems (forms, workflows...)
Database Manager
[0 Data storage, security, concurrency etc.

Universitat Bern 7042 Datenbanken

Datenbanken 7042 — WS 97/98 20.

Implementation issues

File Organisation

File Re-organisation

Query Processing

Concurrency Control
Transactions

Recovery

Performance monitoring

Data conversion (import/export)
Distribution

O O000Ododod

Universitat Bern 7042 Datenbanken

Datenbanken 7042 — WS 97/98 21.

Classification of Database Systems

Data model

Number of Users
Number of sites

Cost

Types of Access Path
General/Special-purpose

N I A I

Universitat Bern 7042 Datenbanken

Datenbanken 7042 — WS 97/98 22.

summary

You should know the answers to these questions:

[0 What are the distinctions between a database, a database system and a
database management system?

When are database systems (not) needed?
What is a data model?

What is a database schema/instance?

What are the main parts of a database system?

N O

Can you answer the following questions?
[0 Would you use a DBMS to implement a personal address database? Why (not)?
[0 What are the main functions of a database administrator?

0 What differences would you expect between a DBMS for a PC user and one for a
large corporation?

0 What major steps would you go through to set up a database system for a particular
enterprise?

[0 What is the difference between physical and logical data independence? Give
examples.

Universitat Bern 7042 Datenbanken

Datenbanken 7042 — WS 97/98 23.

2. The Entity-Relationship Model

Overview
[1 Entities, Attributes and Relationships
Attributes vs. Entities
Mapping Constraints
E-R diagrams — an introduction

OO O

Universitéat Bern The Entity-Relationship Model

Datenbanken 7042 — WS 97/98 24.

Entities and Attributes

An entity is an object that exists and is distinguishable from other objects.

An entity-set is a set of entities of the same type.

— E&N

An entity is represented by a set of attributes, which is formally a functiona :E - A

Universitéat Bern The Entity-Relationship Model

Datenbanken 7042 — WS 97/98 25.

Entities & Attributes

Customer: { name, social security, street, city } 4 259 | 1000 D)
Account: { account-number, balance }
630 | 2000
401 700
/ Oliver | 654-32-1098 Main Austin \ 700 | 1500
Harris | 890-12-3456 North GeorgetoMn 199 500
Marsh | 456-78-9012 Main Austin 467 900
Pepper| 369-12-1518 North Georgetown 115 | 1200
Ratliff | 246-80-1214| Park Round Rogk 183 | 1300
Brill 121-21-2121| Putnam San Marcos 118 | 2000
Evers | 135-79-7 Nassau Austin 225 | 2500
K / 210 | 2200
- /

Universitét Bern The Entity-Relationship Model

Datenbanken 7042 — WS 97/98

Attributes
[0 special value null
O multi-valued attributes: A = 2V
[0 atomic and composite attributes
[0 derived attributes

Universitat Bern

26.

The Entity-Relationship Model

Datenbanken 7042 — WS 97/98 27.

Relationships

A relationship is an association among several (n > 2) entities.

A relationship setis a set of relationships of the same type.

Formally, R 0 Eq X E, X ... X Ep

Universitéat Bern The Entity-Relationship Model

Datenbanken 7042 — WS 97/98 28.

Relationships and relationship sets

/ 259 | 1000 \
630 | 2000
401 700
/ Oliver | 654-32-1098 Main Austin 700 | 1500
Harris | 890-12-3456 North Georgetow‘/ 199 500
Marsh | 456-78-9012 Main Austin 467 900
Pepper| 369-12-1518 North Georgetov% 115 | 1200
Ratliff | 246-80-1214| Park Round Rogk" 1183 | 1300
Brill 121-21-2121| Putnam San Marcos/;/ 118 | 2000
Evers | 135-79-1357 Nassau Austin ; 225 | 2500
- \\ 210 | 2200
- /

Universitét Bern The Entity-Relationship Model

Datenbanken 7042 — WS 97/98

Attributes vs. Entities

-

employee

phone

~

-

employee

~

29.

phone

When should an attribute be modelled as a separate entity?

Universitat Bern

The Entity-Relationship Model

Datenbanken 7042 — WS 97/98 30.

Mapping Constraints

QD
w
~_| =
(@)
w

s
D5
One-to-one relationship One-to-many relationship

One-to-one: An entity A is associated with at most one entity in B, and vice versa.

One-to-many: An entity in A is associated with any number of entities in B. An entity in
B, however, can be associated with at most one entity in A. (l.e., a function from B to A)

Many-to-one: (reverse of one-to-many)

Many-to-many: An entity in A is associated with any number of entities in B, and vice
versa.

Universitéat Bern The Entity-Relationship Model

Datenbanken 7042 — WS 97/98 31.

Existence Constraints

A transaction is existence-dependent on an account .
Account is a dominant entity set whereas transaction is a subordinate entity set.
The entity-set transaction must totally participate in some relationship with account .

(If there is no existence constraint between entity-sets, then participation in mutual
relationships is said to be partial.)

Universitéat Bern The Entity-Relationship Model

Datenbanken 7042 — WS 97/98 32.

E-R Diagrams — Example

social-security
account-number
customer-name
balance

customer account

Rectangles represent entity sets
Ellipses represent attributes
Diamonds represent relationship sets

Lines connect attributes to their entity/relationship sets
and entities to their relationship sets

Universitéat Bern The Entity-Relationship Model

Datenbanken 7042 — WS 97/98 33.

One-to-one, one-to-many

@ One-to-many: Every
account belongs to at
most one customer
NB: can use either arrow
or explicit 1:N labelling

customer account

il

One-to-one: Every
customer has at most
one account, and vice
versa

customer-name
balance

customer account

il

Universitéat Bern The Entity-Relationship Model

Datenbanken 7042 — WS 97/98

Ternary Relationships

34.

Cosen >

social- securlty

customer-name f

customer

Universitat Bern

CAB

account-number

account

The Entity-Relationship Model

Datenbanken 7042 — WS 97/98

Roles

Universitat Bern

employee-name

employee

manager

worker

35.

works-for

The Entity-Relationship Model

Datenbanken 7042 — WS 97/98 36.

summary

You should know the answers to these questions:
[0 What are entities, entity sets, attributes and relationships?
How can these be represented formally?
What are null values?
What does a one-to-many relationship mean?
How can a database schema be represented as an E-R diagram?

N N I O

Can you answer the following questions?
[0 How are existence constraints represented in an E-R diagram?
[0 How should relationships be represented in a database?

Universitéat Bern The Entity-Relationship Model

Datenbanken 7042 — WS 97/98

3. Entity-Relationship Diagrams

Overview

[]

N I Y

Primary Keys

Strong & Weak Entity Sets

E-R Diagrams

Generalisation and Aggregation
Reducing E-R Diagrams to Tables
Design Decisions

Universitat Bern

37.

Entity-Relationship Diagrams

Datenbanken 7042 — WS 97/98 38.

Primary Keys

A superkey is set of attributes that uniquely identifies an entity.

[0 How can you formally define a superkey?

A candidate key is a minimal superkey.
A primary key is chosen by design

Universitét Bern Entity-Relationship Diagrams

Datenbanken 7042 — WS 97/98 39.

Strong & Weak Entity Sets

An entity set that lacks a superkey is a weak entity set, otherwise the entity set is strong.

A weak entity set depends existentially on a strong entity set:
[0 transaction depends on its identifying owner account

social-security Q

date
customer-name

W account transaction

transaction has a partial key transaction-number and primary key (account-number,
transaction-number)

customer

Universitét Bern Entity-Relationship Diagrams

Datenbanken 7042 — WS 97/98 40.

Relationship keys

RDE]_XEZX...XEN

then
attr(R) = prim_key(E4) U ... U prim_key(Ey) U desc_attr(R)

The candidate (i.e., minimal) keys of a relationship will depend on the cardinality
mappings. If these are many-to-many, then all prim_keys will be needed; if some are one-
to-many or many-to-one, then some prim_keys will not be needed!

Universitét Bern Entity-Relationship Diagrams

Datenbanken 7042 — WS 97/98 41.

ER Diagrams

Symbol Meaning

C) Attribute
Entity Type
—@ Key Attribute

@ Multivalued Attribute

: Composite Attribute

Weak Entity Type

Relationship Type

Identifying Relationship Type
-------- 1 ~» Derived Attribute

El R E2 Total Participation of E2 in R

RN
El E2 | Cardinality Ratio 1:N for E1:E2 in R

(R\(mMin, max) Structural Constraint (min, max) on participation of E in R

Universitéat Bern Entity-Relationship Diagrams

Datenbanken 7042 — WS 97/98

Generalisation

Universitat Bern

account-number

balance

account

IS-A

savings-account

@ overdraft-amount

checking-account

42.

Entity-Relationship Diagrams

Datenbanken 7042 — WS 97/98 43.

Aggregation

E-R diagram with
@ @ redundant relationships
employee @ project

employee project
E-R diagram with aggregation ‘

machinery

Universitét Bern Entity-Relationship Diagrams

%

®

Datenbanken 7042 — WS 97/98 44.

Reducing E-R Diagrams to Tables

[0 Strong entity sets: one column per attribute
[0 Relationships: (between strong entity sets) one column per attribute in attr(R)

account-number balance social-security| account-number date

259 1000 654-32-1098 259 17 June 199

630 2000 654-32-1098 630 17 May 1990
401 700 890-12-3456 401 23 May 1990
700 1500 456-78-9012 700 28 May 1990
199 500 369-12-1518 199 13 June 1990
467 900 246-80-1214 467 7 June 1990
115 1200 246-80-1214 115 7 June 1990
183 1300 121-21-2121 183 13 June 1990
118 2000 135-79-1357 118 17 June 1990
225 2500 135-79-1357 225 19 June 1990
210 2200 135-79-1357 210 27 June 1990

Universitét Bern Entity-Relationship Diagrams

Datenbanken 7042 — WS 97/98

Reducing Weak Entity Sets

0 Weak entity sets: (W dependent on S)

one column per attribute in attr(W) U prim_key(S)

45.

account-number transaction-numb date amount
259 5 11 May 1990 +50
630 11 17 May 1990 +70
401 22 23 May 1990 -300
700 69 28 May 1990 -500
199 103 3 June 1990 +900
259 6 7 June 1990 -44
115 53 7 June 1990 +120
199 104 13 June 1990 -200
259 7 17 June 1990 -79

Universitat Bern

Entity-Relationship Diagrams

Datenbanken 7042 — WS 97/98 46.

Design Decisions

ternary vs. pairs of binary relationships?

representing concepts by entity sets or relationships?
representing properties by attributes or entities?
using strong or weak entity sets?

generalisation?

aggregation?

(N I N A I

Universitét Bern Entity-Relationship Diagrams

Datenbanken 7042 — WS 97/98 47.

summary

You should know the answers to these questions:

[]

N N I O

What are keys, superkeys, candidate keys, minimal keys and primary keys?
What are strong and weak entity sets?

How can you determine the keys of a relationship?

When can you use generalization and aggregation?

How can you translate E-R diagrams to tables?

Can you answer the following questions?

N I

Can an entity have more than one minimal key?

When can an entity be inserted into or deleted from a weak entity set?
Is a totally participating entity set necessarily a weak entity set?

When should you use generalization and aggregation?

How many tables will result from an E-R diagram?

Universitét Bern Entity-Relationship Diagrams

Datenbanken 7042 — WS 97/98 48.

4. The Relational Model

Overview
[0 Relations: Schemas and instances
[J Relational Algebra
[1 Basic operators: select, project, product, renaming, union, difference

Universitat Bern The Relational Model

Datenbanken 7042 — WS 97/98 49.

History
0 1970: Proposed by Codd (IBM, San José)
0 1970s: Various research prototypes
0 System R (IBM, San José)
O Ingres (UC Berkeley)
0 Query-by-Example (IBM, TJ Watson) ...
[0 Late 1970s: Relational theory matures
[0 Early 1980s: commercial presence established

Universitat Bern The Relational Model

Datenbanken 7042 — WS 97/98 50.

Example: The Bank Database Schema

account— branch-
number balance city
name name @
deposit ’

customer branch

loan-
number

Universitat Bern The Relational Model

Datenbanken 7042 — WS 97/98 51.

Relational Databases

[0 Relational Database = set of (hamed) tables

[0 Table = set of rows

[0 Rows represent relationships amongst values

0 Columns represent (named, typed) attributes

deposit
branch-namé account-number customer-name balance
Downtown 101 | Johnson 50
Mianus 215 | Smith 700
Perryridge 102| Hayes 400
Round Hill 305 | Turner 350
Perryridge 201| Williams 900
Redwood 222 | Lindsay 700
Brighton 217 | Green 750
Downtown 105 | Green 850
Universitét Bern

The Relational Model

Datenbanken 7042 — WS 97/98 52,

Notation

Formally, a relation:
rdR, R = D;x...x Dy
where each D; is atomic

Each attribute a;:R - D,

But, for t O r we write t[a;] rather than a,(t) ... since t[a;] =t[/]

Universitat Bern The Relational Model

Datenbanken 7042 — WS 97/98 53.

Schemas and instances

A relation ris an instance of a relation scheme R = D, X ... x D,,.

A relation scheme is defined by, e.g.:

Deposit-scheme = (
branch-name : string,
account-number : integer,
customer-name : string,
balance : integer

Universitat Bern The Relational Model

Datenbanken 7042 — WS 97/98

Common attributes

customer
customer-name street| customer-gity
Jones Main Harrison
Smith North Rye
Hayes Main Harrison
Curry North Rye
Lindsay Park Pittsfield
Turner Putnam | Stamford
Williams Nassau | Princeton
Adams Spring Pittsfield
Johnson Alma Palo Alto
Glenn Sand Hill Woodside
Brooks Senator | Brooklyn
Green Walnut | Stamford

54.

deposit
branch-name account-number customer-name balance
Downtown 101 | Johnson 50
Mianus 215 | Smith 700
Perryridge 102| Hayes 400
Round Hill 305 | Turner 350
Perryridge 201 | Williams 900
Redwood 222 | Lindsay 700
Brighton 217 | Green 750
Downtown 105 | Green 850

Customer shares attributes with Deposit, allowing relations to be associated.

Universitat Bern

The Relational Model

Datenbanken 7042 — WS 97/98 55.

Query Languages

[0 Procedural vs. non-procedural

0 Formal vs. commercial
[0 relational algebra, tuple & domain relation calculi
0 SQL, QBE, Quel ...

Universitat Bern The Relational Model

Datenbanken 7042 — WS 97/98 56.

Relational Algebra

Basic unary & binary operators over relations: rids =u
O Select: g ,(r)

Project: 1 ,r

Cartesian product: r x s

Renaming: p(r)

Union: rJ s

OO O 0O O

Set-difference: r —s

Other operators

[0 Assignment: temp — [expressionl(for intermediate expressions)
[0 Derived: intersection, natural join, division

Universitat Bern The Relational Model

Datenbanken 7042 — WS 97/98

Example: The Bank Database

customer
customer-name street| customer-¢
Jones Main Harrison
Smith North Rye
Hayes Main Harrison
Curry North Rye
Lindsay Park Pittsfield
Turner Putnam | Stamford
Williams Nassau | Princeton
Adams Spring Pittsfield
Johnson Alma Palo Alto
Glenn Sand Hill Woodside
Brooks Senator | Brooklyn
Green Walnut | Stamford
Universitét Bern

it

deposit
branch-name account- customer-name balan¢
number
Downtown 101 | Johnson 50
Mianus 215 | Smith 700
Perryridge 102| Hayes 40(
Round Hill 305 | Turner 350
Perryridge 201 | Williams 900
Redwood 222 | Lindsay 700
Brighton 217 | Green 750
Downtown 105 | Green 850
borrow
branch-name loan- customer-name amouLmt
number

Downtown 17 | Jones 100
Redwood 23| Smith 2000
Perryridge 15| Hayes 150(
Downtown 14 | Jackson 150(
Mianus 93 | Curry 500
Round Hill 11 | Turner 900
Pownal 29 | Williams 1200
North Town 16 | Adams 1300
Downtown 18 | Johnson 200(
Perryridge 25| Glenn 2500
Brighton 10 | Brooks 2200

57.

branch
branch-namg assets| branch-city
Downtown 9000000 Brooklyn
Redwood 2100000; Palo Alto
Perryridge 1700000, Horseneck
Mianus 400000| Horseneck
Round Hill 8000000 | HorseneckK
Pownal 300000| Bennington
North Town | 3700000| Rye
Brighton 7100000| Brooklyn

The Relational Model

Datenbanken 7042 — WS 97/98

Select

a,(r) selects tin rsatisfying predicate p

58.

(where pis a Boolean expression using comparisons =, #, <, <, >, = over
attributes and values, and connectives [(and) and I (or))

Express the following queries:

[1 What are all the branches in Horseneck?

[0 Which loans at Perryridge are over 12007?

[1 Which bankers have accounts at their own branches?
client

customer-name

banker-nar

Turner

Johnson

Hayes

Jones

Johnson

Johnson

Universitat Bern

The Relational Model

Datenbanken 7042 — WS 97/98 59.

Project

[1,r projects attributes in A from all tuples in r

Express the following queries:

What are the account numbers of all deposits?

Who are our customers?

Which customers have loans?

In which cities do we have branches?

Which bankers have accounts at their own branches?

NN I By

Universitat Bern The Relational Model

Datenbanken 7042 — WS 97/98 60.

Cartesian product

r x s generates the set of tuples obtained by concatenating each possible pair of tuples
from rand s.

Express the following queries:
[0 What are the home towns of the customers with deposits at the Downtown branch?
[0 What are the names and home cities of all the clients of Johnson?

Universitat Bern The Relational Model

Datenbanken 7042 — WS 97/98 61.

Renaming

p(r) renames relation ras s

Express the following queries:
[0 Which branches are in the same city as the Perryridge branch?

0 What are the names of all customers who live on the same street of the same city
as Smith?

Universitat Bern The Relational Model

Datenbanken 7042 — WS 97/98 62.

Union

r 0 s generates the union of rand s

Express the following queries:
[0 Who are the customers of the Perryridge branch?

Universitat Bern The Relational Model

Datenbanken 7042 — WS 97/98 63.

Set-difference

r — s generates the set of tuples in rbut notin s

Express the following queries:

[0 Which customers have loans out but no deposits?

[0 Which customers do not have branches in their home cities?
[0 Which customer has the largest balance?

Universitat Bern The Relational Model

Datenbanken 7042 — WS 97/98 64.

summary

You should know the answers to these questions:
0 What are relations, tables, relation schemes?
What are the operators of the relational algebra?
How can operators be combined to express queries over multiple relations?
What is a join operation?

(I O

Can you answer the following questions?

How can the relational operators be defined formally?

What are the cardinalities and the relation schemes of the results of each operator?
Why do we need the renaming operator?

Can union be expressed in terms of the other operators? (Why, or why not?)

How can you formulate the query: “Which customers have exactly one deposit?”

N I N

Universitat Bern The Relational Model

Datenbanken 7042 — WS 97/98 65.

5. The Relational Model (Continued)

Overview
[0 Relational Algebra
[0 Derived operators: intersect, join, division, assignment

[0 Deletions, Insertion and Updates
0 Views, view updates and null values
[0 The Tuple and Domain Relational Calculi

Universitét Bern The Relational Model (Continued)

Datenbanken 7042 — WS 97/98 66.

Derived operators

[1 Intersection: rn s
[1 Natural Join: r™<'s
[1 Division: r+s

Universitét Bern The Relational Model (Continued)

Datenbanken 7042 — WS 97/98

Example: The Bank Database

customer
customer-name street| customer-¢
Jones Main Harrison
Smith North Rye
Hayes Main Harrison
Curry North Rye
Lindsay Park Pittsfield
Turner Putnam | Stamford
Williams Nassau | Princeton
Adams Spring Pittsfield
Johnson Alma Palo Alto
Glenn Sand Hill Woodside
Brooks Senator | Brooklyn
Green Walnut | Stamford
Universitét Bern

it

deposit
branch-name account- customer-name balan¢
number
Downtown 101 | Johnson 50
Mianus 215 | Smith 700
Perryridge 102| Hayes 40(
Round Hill 305 | Turner 350
Perryridge 201 | Williams 900
Redwood 222 | Lindsay 700
Brighton 217 | Green 750
Downtown 105 | Green 850
borrow
branch-name loan- customer-name amouLmt
number

Downtown 17 | Jones 100
Redwood 23| Smith 2000
Perryridge 15| Hayes 150(
Downtown 14 | Jackson 150(
Mianus 93 | Curry 500
Round Hill 11 | Turner 900
Pownal 29 | Williams 1200
North Town 16 | Adams 1300
Downtown 18 | Johnson 200(
Perryridge 25| Glenn 2500
Brighton 10 | Brooks 2200

67.

branch
branch-namg assets| branch-city
Downtown 9000000 Brooklyn
Redwood 2100000; Palo Alto
Perryridge 1700000, Horseneck
Mianus 400000| Horseneck
Round Hill 8000000 | HorseneckK
Pownal 300000| Bennington
North Town | 3700000| Rye
Brighton 7100000| Brooklyn

The Relational Model (Continued)

Datenbanken 7042 — WS 97/98 68.

Intersection

r n s extracts all tuples in both rand s

Express the following queries:
[0 Which customers have both deposits and loans at Perryridge?

Universitét Bern The Relational Model (Continued)

Datenbanken 7042 — WS 97/98 69.

Natural Join

r > s extracts pairs of tuples from rand s with common attributes and forms new tuples
with those attributes identified

Express the following queries:

[0 What are the names and home cities of all customers with a loan?

0 What are the assets and names of branches with depositors in Stamford?
[0 Which customers have both deposits and loans at Perryridge?

Universitét Bern The Relational Model (Continued)

Datenbanken 7042 — WS 97/98 70.

Division

r + s yields the remainder of tuples in rwhose product with sisin r

NB: (r +s) xsUr always holds. r + s is the maximal such relation.

Express the following queries:
0 Which customers have an account at all branches in Brooklyn?

Universitét Bern The Relational Model (Continued)

Datenbanken 7042 — WS 97/98 71.

Insertions and Deletions

Insertion: r « rd E

0 Open a new account 9732 for Smith with $1200 at Perryridge

Deletion: r « r—E

[1 Delete all of Smith’s accounts
[1 Delete all accounts at branches in Needham

Universitét Bern The Relational Model (Continued)

Datenbanken 7042 — WS 97/98 72.

Updates

Updates: 0, _ £(r)

Express the following updates:
[0 Add 5% interest to accounts with balance over $1000
[0 Add 6% interest to accounts with a balance over $10,000, and %5 to the rest

Universitét Bern The Relational Model (Continued)

Datenbanken 7042 — WS 97/98 73.

The Tuple Relational Calculus

{t|P(t)} selects all tuples t such that P(t) holds

Atoms:
— sUr
- s[x]orly]
— S[x]Gc
Formulae P; :
— atoms

— OsOr(P(s), UsUOr(P(s)) , sfreein P(s)

Universitét Bern The Relational Model (Continued)

Datenbanken 7042 — WS 97/98 74.

Examples

Which loans are over $12007?
{t|t U borrow Ut[amount] > 1200}
What are the names of customers with loans over $12007?
{t|Us U borrow(t[cn]=s[cn] Us[amount] >1200)}

Express the following queries:

What are the names and home cities of customers with loans at Perryridge?
Which customers have either deposits or loans at Perryridge?

Which customers have both deposits and loans at Perryridge?

Which customers have deposits but no loans at Perryridge?

Which customers have deposits at all branches in Brooklyn?

N I B B

Universitét Bern The Relational Model (Continued)

Datenbanken 7042 — WS 97/98 75.

Safety

Consider: {t|-~(tU borrow)}

This expression is not safe since it includes a potentially infinite number of tuples.
Formally, the domain of a formula is the set of all values it references. If the result
generates values outside the domain, the formula is unsafe.

Universitét Bern The Relational Model (Continued)

Datenbanken 7042 — WS 97/98 76.

The Domain Relational Calculus

{ Xy, ..., XU P(xy, ..., Xp)} selects all tuples [k, ..., x,lsuch that P(x, ..., X,,) holds

Atoms:
— Xy, ..o x,Udr
— XOy
— XOc
Formulae P; :
— atoms

— =P, (P),P,0P,, P,OP,, P,O P,
- x(P(x)) , Ox(P(x))

Universitét Bern The Relational Model (Continued)

Datenbanken 7042 — WS 97/98 77.

Examples

Which loans are over $12007?

{[b, 1, c,aljlb, I, c,alll] borrow 1a> 1200}

What are the names of customers with loans over $1200?

{ CLeQib,l,a(b, 1, ¢, allld borrow Ua> 1200}

Express the following queries:

[]

(I O I

What are the names and home cities of customers with loans at Perryridge?
Which customers have either deposits or loans at Perryridge?

Which customers have both deposits and loans at Perryridge?

Which customers have deposits at all branches in Brooklyn?

Universitét Bern The Relational Model (Continued)

Datenbanken 7042 — WS 97/98 78.

summary

You should know the answers to these questions:

[0 How can intersection, natural join and division be derived from the basic
operators of the relational algebra?

When are joins useful? Division?

How are modifications expressed in the relational algebra?

How can updates be made to views?

How can queries be expressed in the tuple and domain relational calculi?

N O

Can you answer the following questions?

[0 Could set difference be replaced by intersection as a basic operator of the relational
algebra? (Would it still be possible to express the same queries?)

What is the join of a relation with itself?

How can a join be efficiently implemented?

Does selection distribute over join? (l.e., can the evaluation order be swapped?)
How can relational algebra queries be transformed to the tuple/domain calculi?

N I B

Universitét Bern The Relational Model (Continued)

Datenbanken 7042 — WS 97/98 79.

6. SOL

Overview
0 SQL
[1 Basic structure: product, select and project
Union, Intersection, Minus
Predicates and Joins
Set membership
Ordering

I N I I

To be continued ...

Universitét Bern SOL

Datenbanken 7042 — WS 97/98

SQL

Not “just a query language”

[]

(N I A I

Data Definition Language
Data Manipulation Language
Embedded DML

View Definition

Authorization

Integrity

Transaction Control

Universitat Bern

80.

SOL

Datenbanken 7042 — WS 97/98 81.

SQL Syntax Summary: Queries

Queries and updates:

select [distinct | attribute-list
from table-name { alias } { , table-name { alias } }
[where condition]
[group by grouping-attributes [having group-selection-condition |]
[order by column-name [order] {, column-name [order]}]

attribute-list = (*]| (column-name | function (([distinct] column-name | *)))

{, (column-name | function (([distinct] column-name | *))) }
grouping-attributes .= column-name {, column-name }
order = (asc |desc)

insert into table-name [(column-name {, column-name }) |
(values (constant-value { , constant-value }) {, (constant-value { , constant-value}) }
| select-statement)

delete from table-name [where selection-condition]

update table-name
set column-name = value-expression { , column-name = value-expression }
[where selection-condition |

Universitét Bern SOL

Datenbanken 7042 — WS 97/98 82.

SQL Syntax Summary: DDL

DDL operations:

create table table-name (column-name column-type [attribute-constraint]
{, column-name column-type [attribute-constraint] }
[table-constraint { , table-constraint}])

drop table table-name
alter table table-name add column-name column-type

create [unique]index index-name
on table-name (column-name [order] {, column-name [order]})
[cluster]

drop index [index-name]

create view view-name [(column-name {, column-name}) |
as select-statement

drop view view-name

Adapted from Elmasri and Navathe, p. 226
NB: this is only a summary; differences may exist between different versions of SQL

Universitét Bern SOL

Datenbanken 7042 — WS 97/98 83.

Basic Structure

select Aj A, ..., Ay
from rg, o, ... , I'm
where P

equivalent to: Ty a, . a (Op(ryXryx...xry))

Examples:
select branch-name
from deposit
select distinct branch-name
from deposit

Universitét Bern SOL

Datenbanken 7042 — WS 97/98 84.

Set Operations: Union

Find all customers with accounts or loans at Perryridge

(select customer-name

from deposit

where branch-name = "Perryridge”
)

union

(select customer-name

from borrow

where branch-name = "Perryridge”

Universitét Bern SOL

Datenbanken 7042 — WS 97/98 85.

Set Operations: Intersection and Minus

Find all customers with both deposits and loans at Perryridge.

(select distinct customer-name
from deposit
where branch-name = “Perryridge”
)
intersect
(select distinct customer-name
from borrow
where branch-name = “Perryridge”

Universitét Bern SOL

Datenbanken 7042 — WS 97/98

Predicates and Joins

Recall:
Find names and home cities of all customers with a loan

I customer —name, customer — city (bOI’I’OW [><] Customer)

Express as:
select distinct customer.customer-name, customer-city
from borrow, customer
where borrow.customer-name = customer.customer-name

Comparisons may be: <, <, =, #, 2, >

Universitat Bern

86.

SoL

Datenbanken 7042 — WS 97/98

Logical Connectives

select distinct customer.customer-name, customer-city
from borrow, customer
where borrow.customer-name = customer.customer-name
and
branch-name = "“Perryridge”

Differences with Relational Algebra:
[0 Connectives: and, or, not
[0 Comparisons: between
[0 Arithmetic operators: +, -, *,/

Universitat Bern

87.

SOQL

Datenbanken 7042 — WS 97/98 88.

String matching

0 % — (percent) matches arbitrary substrings
O — (underscore) matches any character
O\ — (backslash) escapes “%”, “ " or “\”

select customer-name

from customer

where street like “%Main%”

Universitét Bern SOL

Datenbanken 7042 — WS 97/98

Set Membership

[0 What does the following query represent?

select distinct customer-name
from borrow
where branch-name = “Perryridge”
and customer-name in
(select distinct customer-name
from deposit
where branch-name = *“Perryridge”

Universitat Bern

89.

SoL

Datenbanken 7042 — WS 97/98

Tuples

[0 What does the following query represent?

select distinct customer-name
from borrow
where branch-name = “Perryridge”
and <branch-name, customer-name> in
(select branch-name, customer-name
from deposit

)

Universitat Bern

90.

SoL

Datenbanken 7042 — WS 97/98 91.

Tuple Variables

select distinct C.customer-name, customer-city
from borrow B, customer C
where B.customer-name = C.customer-name

Express the following query:
[1 Find all customers who have an account at some branch where Johnson has an
account

Universitét Bern SOL

Datenbanken 7042 — WS 97/98 92.

Set comparison

Can compare attributes against sets of values (compare all or compare some):

select branch-name
from branch
where assets > some
(select assets
from branch
where branch-city = “Brooklyn”

Universitét Bern SOL

Datenbanken 7042 — WS 97/98

Set containment

[0 What does the following query represent?

select distinct S.customer-name
from deposit S
where (select T.branch-name
from deposit T
where S.customer-name = T.customer-name
) .
contains
(select branch-name
from branch
where branch-city = “Brooklyn”

Universitat Bern

93.

SoL

Datenbanken 7042 — WS 97/98 94.

Testing for empty relations

select distinct customer-name
from customer
where exists
(select *
from deposit
where customer.customer-name = deposit.customer-name
and branch-name = “Perryridge”
)
and exists

(select *

from borrow
where customer.customer-name = borrow.customer-name
and branch-name = “Perryridge”

Universitét Bern SOL

Datenbanken 7042 — WS 97/98

Ordering

Query results may be sorted in ascending or descending order by selected attributes:

select *
from borrow
order by

amount desc,
loan-number asc

95.

Universitat Bern

SoL

Datenbanken 7042 — WS 97/98 96.

summary

You should know the answers to these questions:

[0 How do you express selections, projections and joins?
How can you compare relations? (union, intersection, etc.)
How do you form complex predicates?

How do you express string matching predicates?
When are tuple variables needed?
How can query results be sorted?

N I B

Can you answer the following questions?

[0 How can a relational algebra query be translated to SQL?
[0 When is the distinct keyword needed?

[0 How do you express the RA division operator in SQL?

Universitét Bern SOL

Datenbanken 7042 — WS 97/98 97.

/. SQL, OBE and Quel

Overview

0 SQL
[1 Aggregate functions and group predicates
[0 Restrictions, null values and views
Query-by-Example
Quel

1 O

Universitét Bern SOQL, OBE and Quel

Datenbanken 7042 — WS 97/98 98.

Aggregate Functions

Aggregate functions apply to groups with common attributes:

[0 avg — average

0 min — minimum
[0 max — maximum
[0 sum — total

[0 count — cardinality

Find the average account balance at each branch

select branch-name, avg (balance)
from deposit
group by branch-name

Find the number of depositors for each branch

select branch-name, count (distinct customer-name)
from deposit
group by branch-name

Universitét Bern SOQL, OBE and Quel

Datenbanken 7042 — WS 97/98 99.

Group Predicates

select branch-name, avg (balance)
from deposit

group by branch-name

having avg (balance) > 1200

May not compose aggregate functions!

select branch-name
from deposit
group by branch-name

having avg (balance) =2all (select avg (balance)
from deposit
group by branch-name)

0 Find the average balance of all depositors who live in Harrison and have at least
three accounts

Universitét Bern SOQL, OBE and Quel

Datenbanken 7042 — WS 97/98

Modification

Deletion: delete r where P

delete deposit
where customer-name = “Smith”
delete borrow
Insertion:
insert into deposit

values (“Perryridge”, 9732, “Smith”, 1200)

insert into deposit (account-number,
customer-name,
branch-name,
balance)
values (9732, “Smith”, “Perryridge”, 1200)

Universitat Bern

100.

SOQL, OBE and Quel

Datenbanken 7042 — WS 97/98 101.

Restrictions

A deletion or insertion may not include an embedded select that accesses the re-
lation being modified

INVALID SQL:

[0 delete deposit
where balance < (select avg (balance)
from deposit)

INVALID SQL:

[0 insertinto deposit
select * from deposit

Universitét Bern SOQL, OBE and Quel

Datenbanken 7042 — WS 97/98 102.

Updates

update deposit
set balance = balance * 1.05

update deposit
set balance = balance * 1.06
where balance > 10000

update deposit
set balance = balance * 1.05

where balance < 10000

INVALID SQL:
[0 update deposit
set balance = balance * 1.05

where balance > select avg (balance)
from deposit

Universitét Bern SOQL, OBE and Quel

Datenbanken 7042 — WS 97/98

Null Values

insert into deposit
values (“Perryridge”, null, “Smith”, 1200)
select *
from deposit
where account-number =1700
select distinct customer-name
from borrow
where amount is null

select
from

sum (amount)
borrow

Universitat Bern

103.

SOQL, OBE and Quel

Datenbanken 7042 — WS 97/98 104.

Views

create view <view-name>as <query-expression>
View names may be used anywhere that relation names appear
EXCEPT

modifications may only be applied to views constructed from a single base relation.

create view loan-info as

select branch-name, loan-number, customer-name
from borrow
insert into loan-info

values (“Perryridge”, 3, “Ruth”)

Universitét Bern SOQL, OBE and Quel

Datenbanken 7042 — WS 97/98

Data Definition

Defining new tables:

create table r(A; Dy, ...

Removing tables:
drop table r

Adding new attributes:
alter table radd A D

Universitat Bern

105.

SOQL, OBE and Quel

Datenbanken 7042 — WS 97/98 106.

summary

You should know the answers to these questions:

[]

(N I A I

How to compute (aggregate) functions over sets of values in SQL?
What is the difference between a where clause and a having clause?
How do you express deletion, insertions and updates in SQL?

What restrictions must be obeyed in update commands?

What test can be performed with null values?

How do you define a view?

What kind of views may be updated? How?

Can you answer the following questions?
[0 How can you compute the average of the maximum balance at each branch?

0 Why can’t views defined over multiple relations be updated by simply propagating
the update to the base relations?

0 What is the difference between delete r and drop table r ?

Universitét Bern SOQL, OBE and Quel

Datenbanken 7042 — WS 97/98 107.

Query-by-example

Developed by Zloof & de Jong, IBM TJ Watson, early 1970s

Two-dimensional syntax representing tables

Queries expressed “by example” by entering constraints into “skeleton” tables
Domain variables preceded by underscores: _x

Complex queries via variable unification

Explicit print command (P.) to obtain results

N I B

Universitét Bern SOQL, OBE and Quel

Datenbanken 7042 — WS 97/98 108.

Simple queries

In QBE:

deposit| branch-name account-number customer-name balance

“Perryridge” P. x

In the domain relational calculus:

{ x4, I, a(b, I, x, alld deposit Ub = "Perryridge’)}

Universitét Bern SQL, OBE and Quel

Datenbanken 7042 — WS 97/98 1009.

Variable unification

Which customers have accounts at both Perryridge and Redwood?

deposit| branch-name account-number customer-name balance

“Perryridge” P. X

“Redwood” X

Which customers have accounts at either Perryridge or Redwood (or both)

deposit| branch-name account-number customer-name balance

“Perryridge” P. x

“Redwood” P.y

Universitét Bern SQL, OBE and Quel

Datenbanken 7042 — WS 97/98 110.

Set Difference

[0 What does this query express?

deposit| branch-name account-number customer-name balance

“Perryridge” P.x

borrow | branch-name loan-number customer-na|me amount

= “Perryridge” X

0 What would it mean if the negation were removed?

Universitét Bern SQL, OBE and Quel

Datenbanken 7042 — WS 97/98

Result Relations

[0 What does this query express?

Universitat Bern

deposit| branch-name account-number

customer-name bal

ance

“Perryridge” z

X

customer| customer-name strget customer-city

X

-y

result customer_nam

E customer-c

ty account-nun

P. X

-y

z

ber

111.

SQL, OBE and Quel

Datenbanken 7042 — WS 97/98 112.

Other features

Condition boxes

Ordering display of tuples

Aggregate operations

Deletion, Insertion and Update operators (D., |. and U.)

N I A

Universitét Bern SOQL, OBE and Quel

Datenbanken 7042 — WS 97/98

Quel

Based on tuple relational calculus:

range of t;is ry
range of t,is r,

range of t,is ry,
retrieve (tj3.Ajz, - tin-Ajn)
where P

Universitat Bern

113.

SOQL, OBE and Quel

Datenbanken 7042 — WS 97/98 114.

Differences between Quel and SQL

Equivalent expressive power, but:

[0 No set operations (intersection, union, minus)
[0 No nested retrieve-where clauses

Universitét Bern SOQL, OBE and Quel

Datenbanken 7042 — WS 97/98 115.

Queries

range of s is borrow
range of t is deposit

retrieve unique (s.customer-name)
where t.branch-name = *“Perryridge”
and s.branch-name = “Perryridge”
and tcustomer-name = S.customer-name

Universitét Bern SOQL, OBE and Quel

Datenbanken 7042 — WS 97/98 116.

Other Features

Aggregate functions:
[1 count, sum, avg, any ...

Deletion:

[0 delete t[where P]
Updates:

0 replace t[where P]
Temporary relations:

[retrieve into , append to

Universitét Bern SOQL, OBE and Quel

Datenbanken 7042 — WS 97/98 117.

summary

You should know the answers to these questions:

[0 What are QBE and Quel?
How can a query in the tuple relational calculus be expressed in QBE?
How do you express selections, projections, products, joins etc. in QBE?
How can a query in the domain relational calculus be expressed in Quel?

(I O

Can you answer the following questions?
[1 Are there queries that are easier to express in QBE than in SQL? Vice versa?

Universitét Bern SOQL, OBE and Quel

Datenbanken 7042 — WS 97/98

8. Inteqrity Constraints

Kinds of integrity constraints:

[]

N I B

Key declarations
Mapping constraints
Domain constraints
Functional dependencies
Assertions

Triggers

Universitat Bern

118.

Integrity Constraints

Datenbanken 7042 — WS 97/98

Domain Constraints

SQL types

0 fixed length strings

0 fixed point numbers

0 integers

[0 small integers

[0 floating point numbers

[floating and double-precision
Null values

[0 not null declaration

Universitat Bern

119.

Integrity Constraints

Datenbanken 7042 — WS 97/98 120.

Foreign keys

Suppose s(S) and r(R) are relations with key attributes Kg and Kg

Then a O S is a foreign key if

for every t; in s there is a (unique) t, in r such that t{[a] = t,[KR].

Alternatively, if M ,(s) U1 KR(r).

Universitét Bern Integrity Constraints

Datenbanken 7042 — WS 97/98 121.

Referential Inteqgrity

A referential integrity constraint requires that a foreign key in one relation refers to an
actual, existing tuple in another relation:

insertion

deletion

updates

Universitét Bern Integrity Constraints

Datenbanken 7042 — WS 97/98 122.

Referential Integrity in SQL

Table creation constraints:
0 primary key — list of attributes

[0 unique key — list of attributes
[0 foreign key — list of attributes referenced relation name
create table deposit

(branch-name char(15) notnull
account-number char(10),
customer-name char(20) notnull
primary key (account-number, customer-name),
foreign key (branch-name) references branch,
foreign key (customer-name) references customer

Universitét Bern Integrity Constraints

Datenbanken 7042 — WS 97/98 123.

Functional Dependencies

Leta,BU0R.
Then the functional dependency

holds on R if for all t1, t; in r(R)

blal=tla] O t,[B]=t,[]

Universitét Bern Integrity Constraints

Datenbanken 7042 — WS 97/98

Example FDs

Universitat Bern

124.

A B C D
al bl cl dl
al b2 cl d2
a2 b2 c2 d2
a2 b3 c2 d3
a3 b3 c2 d4

Integrity Constraints

Datenbanken 7042 — WS 97/98

Example FDs in the Bank Database

customer
customer-name street| customer-¢
Jones Main Harrison
Smith North Rye
Hayes Main Harrison
Curry North Rye
Lindsay Park Pittsfield
Turner Putnam | Stamford
Williams Nassau | Princeton
Adams Spring Pittsfield
Johnson Alma Palo Alto
Glenn Sand Hill Woodside
Brooks Senator | Brooklyn
Green Walnut | Stamford
Universitét Bern

it

deposit
branch-name account- customer-name balan¢
number
Downtown 101 | Johnson 50
Mianus 215 | Smith 700
Perryridge 102| Hayes 40(
Round Hill 305 | Turner 350
Perryridge 201 | Williams 900
Redwood 222 | Lindsay 700
Brighton 217 | Green 750
Downtown 105 | Green 850
borrow
branch-name loan- customer-name amouLmt
number

Downtown 17 | Jones 100
Redwood 23| Smith 2000
Perryridge 15| Hayes 150(
Downtown 14 | Jackson 150(
Mianus 93 | Curry 500
Round Hill 11 | Turner 900
Pownal 29 | Williams 1200
North Town 16 | Adams 1300
Downtown 18 | Johnson 200(
Perryridge 25| Glenn 2500
Brighton 10 | Brooks 2200

125.
branch

branch-namg assets| branch-city
Downtown 9000000 Brooklyn
Redwood 2100000; Palo Alto
Perryridge 1700000, Horseneck
Mianus 400000| Horseneck
Round Hill 8000000 | HorseneckK
Pownal 300000| Bennington
North Town | 3700000| Rye
Brighton 7100000| Brooklyn

Integrity Constraints

Datenbanken 7042 — WS 97/98 126.

Closure of a set of FDs

The closure of a set F of FDs is the set F' of all FDs logically implied by F

Armstrong’s Axioms
[0 Reflexivity: BUOaoO a - P
0 Augmentation: o - 0 ay - By
[Transitivity: a-BB-vyvyOa-y

Universitét Bern Integrity Constraints

Datenbanken 7042 — WS 97/98

Example — using closures

Consider:

A-B
A-C
CG - H
CG - |
BC - H

[1 Can we also conclude A - H?

Universitat Bern

(1)
(2)
(3)
(4)
(5)

127.

Integrity Constraints

Datenbanken 7042 — WS 97/98 128.

Derived Rules

The following rules can be derived from Armstrong’s Axioms:

[0 Union: a-B,a-yda- By
[Decomposition: a->Byda-fpa-y
[0 Pseudotransitivity: a-BPRy-o00ay - 9o

Universitét Bern Integrity Constraints

Datenbanken 7042 — WS 97/98

Closure of an attribute set

129.

The closure of an attribute set a is the set a™ of all attributes functionally determined by a

Example:
AG - ABG
- ABCG
- ABCGH
N ABCGHI
Problem:

Given a set F of FDs, show that a - Bisin F".

Solution:
Compute a* and check that B O d'.

Universitat Bern

(1)
(2)
(3)
(4)

Integrity Constraints

Datenbanken 7042 — WS 97/98 130.

Finding Keys

We can now redefine a key of a relation R as a set of attributes K such that K" = R.
A candidate key is a minimal such K (i.e., for any A O K, (K{A})" # R)

Problem:
Given a relation R with FDs F, find a candidate key for R.

Solution:
Start with K = R. Remove elements from K until a minimal key is identified.

Alternative solution:
Find the set M of all attributes not appearing on the RHS of any FD in F.
If M = R, done
else let K =M O (RWM™)

Clearly K™ = R. Remove elements from K until a minimal key is identified.

Universitét Bern Integrity Constraints

Datenbanken 7042 — WS 97/98

Example — finding keys

Consider:
AB - C
B-D
E-F
CE - A

Does BE - DF?
Does BE - FC?
Is BE a superkey?

O O0O0Of-dano

Universitat Bern

(1)
(2)
(3)
(4)

Is BE a candidate key?
What are all the candidate keys?
Can you prove that you have found all of them?

131.

Integrity Constraints

Datenbanken 7042 — WS 97/98 132.

Canonical Covers

A canonical cover F. of F, is a set of FDs such that

1.

2.
3.
4

FC+ — F+
Each a - 3 in F, contains no extraneous attributes in a
Each a - 3 in F; contains no extraneous attributes in 3
Foreach a-Bin F., a is unique

[Attributes are extraneous if they can be removed without affecting the closure.]

To compute the canonical cover, use the union rule repeatedly to join common a - [3; (4).
Then check each a - 3 for extraneous attributes in a or 3 (2,3). Repeat until stable.

[1 Find the canonical cover for: A-BC, B-C,A-B, AB-C

Universitét Bern Integrity Constraints

Datenbanken 7042 — WS 97/98 133.

Assertions

Assertions in SQL:
assertion assertion-name on relation-name . predicate

assertion banker-constraint on client:
customer-name Z employee-name

assertion address-constraint on insertion to deposit :
exists (select*
from customer
where customer . customer-name = deposit . customer-name

Universitét Bern Integrity Constraints

Datenbanken 7042 — WS 97/98 134.

Triggers

define trigger overdraft
on update of deposit T
(ifnew T.balance<0

then (insert into borrow
values (T.branch-name, T.account-number,
T.customer-name, - new T.balance)
update deposit S
set S.balance =0
where S.account-number = T.acount-number
)

Universitét Bern Integrity Constraints

Datenbanken 7042 — WS 97/98 135.

summary

You should know the answers to these questions:

[]

N N A I

What kinds of integrity constraints are important in database systems?
What is a foreign key?

What is referential integrity, and how is it guaranteed?

How is referential integrity specified in SQL?

What is a functional dependency?

How do you compute the closure of a set of FDs? Of an attribute set?
How can you show that a particular FD holds?

How can you test if a set of FDs is a canonical cover?

How do you compute a canonical cover for a set of FDs?

Can you answer the following questions?

[0 Can you tell what functional dependencies hold just by examining the database?
[0 How would you prove Armstrong’s Axioms?

[0 What is an efficient algorithm for computing the closure of an attribute set?

[0 How can you find a candidate key for a relation?

Universitét Bern Integrity Constraints

Datenbanken 7042 — WS 97/98

9. Database Design

Seek to avoid:

[0 Repetition of information
[1 Inability to represent certain information
[1 Loss of information
Overview
[J Lossless joins
[0 Normalization
[Dependency preservation
[0 Boyce-Codd Normal Form (BCNF)
[0 Third Normal Form (3NF)

Universitat Bern

136.

Database Design

Datenbanken 7042 — WS 97/98 137.

Example

Borrow-Scheme Branch-Scheme

borrow branch

branch-name loan-number customer-name amount branch-name assets| branch-city
Downtown 17 | Jones 100 Downtown 9000000 Brooklyn
Redwood 23| Smith 2000 Redwood 2100000 Palo Alto
Perryridge 15| Hayes 150(Perryridge 1700000, Horseneck
Downtown 14 | Jackson 150(Mianus 400000| Horseneck
Mianus 93 | Curry 500 Round Hill 8000000 | Horseneck
Round Hill 11 | Turner 900 Pownal 300000(Bennington
Pownal 29 | Williams 1200 North Town | 3700000| Rye
North Town 16 | Adams 1300 Brighton 7100000| Brooklyn
Downtown 18 | Johnson 200(
Perryridge 25| Glenn 2500
Brighton 10 | Brooks 2200

Universitét Bern Database Design

Datenbanken 7042 — WS 97/98

Repetition of Information

Lending-Scheme

branch p< borrow

138.

branch-namg assets| branch-cijty loan-numper customer-name amount
Downtown 9000000| Brooklyn 17, Jones 10Q0
Redwood 2100000; Palo Alto 23 Smith 2000
Perryridge 1700000, Horseneck 15 Hayes 1500
Downtown 9000000| Brooklyn 14 Jackson 1500
Mianus 400000| Horseneck 98 Curry 500
Round Hill 8000000 | HorseneckK 11 Turner 900
Pownal 300000| Benningtop 29 Williams 1200
North Town | 3700000| Rye 14§ Adams 1300
Downtown 9000000| Brooklyn 18 Johnson 2000
Perryridge 1700000 Horseneck 25 Glenn 2500
Brighton 7100000| Brooklyn 10, Brooks 2200

Universitat Bern

Database Design

Datenbanken 7042 — WS 97/98 139.

Lossy Joins

Consider decomposing Borrow-Scheme as follows:

Amt-Scheme Loan-Scheme
amt loan

branch-name loan-number amount amount customer-name
Downtown 17] 1000 1000 | Jones
Redwood 23| 2000 2000 | Smith
Perryridge 15| 1500 1500 | Hayes
Downtown 14 | 1500 1500 | Jackson
Mianus 93 500 500 | Curry
Round Hill 11 900 900 | Turner
Pownal 29 1200 1200 | Williams
North Town 16| 1300 1300 | Adams
Downtown 18 | 2000 2000 | Johnson
Perryridge 25| 2500 2500 | Glenn
Brighton 10 | 2200 2200 | Brooks

Universitét Bern Database Design

Datenbanken 7042 — WS 97/98

Lossy Joins

Universitat Bern

amt P loan

branch-name loan-number customer-name amount
Downtown 17 | Jones 100
Redwood 23| Smith 2000
Perryridge 15| Hayes 150¢
Downtown 14 | Jackson 150(
Mianus 93 | Curry 500
Round Hill 11 | Turner 900
Pownal 29 | Williams 1200
North Town 16 | Adams 1300
Downtown 18 | Johnson 2000
Perryridge 25| Glenn 2500
Brighton 10 | Brooks 2200
Perryridge 15 | Jackson 150(¢
Downtown 14 | Hayes 1500
Redwood 23| Johnson 2000
Downtown 18 | Smith 2000

140.

Database Design

Datenbanken 7042 — WS 97/98 141.

Decomposition

A decomposition of a relation scheme R is a set of relation schemes { R4, ..., R, } such
that R = [R;.
/

Let C be a set of constraints (e.g., functional dependencies) over a database. A
decomposition { Ry, ..., R, } of relation scheme R is a lossless-join decomposition if for

every relation r that satisfies C, it is true that

r="MNg (r)DMg (r) P... DT (1)

Universitéat Bern Database Design

Datenbanken 7042 — WS 97/98 142.

Normalisation

Lending-scheme = (branch-name, assets, branch-city,
loan-number, customer-name, amount)

with FDs:
branch-name - assets branch-city
loan-number — amount branch-name

Decompose into:
Branch-scheme = (branch-name, assets, branch-city)

Loan-info-scheme = (branch-name, loan-number, amount)
Customer-loan-scheme = (loan-number, customer-name)

Universitéat Bern Database Design

Datenbanken 7042 — WS 97/98 143.

Lossless Join Decomposition

Suppose Fis a set of functional dependencies over R.
Then R = R, U R, is a lossless-join decomposition if either of

0 R,NnR,- R,
0 R,NR,- R,

isin F™.

S

Universitéat Bern Database Design

Datenbanken 7042 — WS 97/98 144.

Lossless Join Decomposition

Use
branch-name - assets branch-city

to decompose Lending-scheme into
Branch-scheme = (branch-name, assets, branch-city)
Borrow-scheme = (branch-name, loan-number, customer-name, amount)

Then, use
loan-number - amount branch-name

to decompose Borrow-scheme into
Loan-info-scheme = (branch-name, loan-number, amount)
Customer-loan-scheme = (loan-number, customer-name)

Universitéat Bern Database Design

Datenbanken 7042 — WS 97/98 145.

Dependency Preservation

Goal:
[0 avoid taking joins to check integrity constraints upon updates

Approach:

[0 ensure that functional dependencies restricted to individual relation
schemes are equivalent to the original set of FDs

The restriction of Fto R;, where {R;, ... R, } is a decomposition of R, is the set F; of FDs
in F* including only attributes in R; .

{R;, ... R,}is a dependency-preserving decomposition of R if the closure of [| F; is equal
I

to the closure F* of F.

Universitéat Bern Database Design

Datenbanken 7042 — WS 97/98 146.

Normal Forms

Repetition of information typically occurs when FDs a - 3 and 3 - y occur within the same
relation. Various normal forms have been introduced to avoid these problems.

Boyce-Codd Normal Form
[J only allow superkey FDs to occur in relation schemes

Third Normal Form
[1 also allow transitive FDs

Fourth Normal Form
0 like BCNF, but applied to “multivalued dependencies”

Universitéat Bern Database Design

Datenbanken 7042 — WS 97/98 147.

Boyce-Codd Normal Form

A relation scheme R is in Boyce-Codd Normal Form if for every FD a - 3 holding over R,
either

1. a-PBisatrivial FD (i.e., 0 a), or
2. dis asuperkey for R

A database schema is in BCNEF if each relation scheme is in BCNF.

Branch-scheme = (branch-name, assets, branch-city)
branch-name - assets branch-city

Borrow-scheme = (branch-name, loan-number, customer-name, amount)
loan-number — amount branch-name

Universitéat Bern Database Design

Datenbanken 7042 — WS 97/98 148.

BCNF Decomposition Algorithm

while some R is not in BCNF
select non-trivial a - 3 holding on R where
a-Risnotin Frand anB =0
replace R by allf3 and (R-p)

KRR L RLRLRK

00200200 %2002

R 0202020202202 %%

eFﬂaIKE IR

KRR K RLRLRK

00200200 % %002

b 0202020202202 %%

y 62026222 %%%%
and

The algorithm terminates, generates a BCNF schema, and satisfies
lossless join.

Universitéat Bern Database Design

Datenbanken 7042 — WS 97/98 149.

Shortfalls of BCNF

BCNF schemas are not necessarily dependency preserving! ...

Consider:
Banker-scheme = (branch-name, customer-name, banker-name)
banker-name - branch-name
customer-name branch-name - banker-name
Decompositions are not necessarily unique.
Consider:a - bc,bd - a

Universitéat Bern Database Design

Datenbanken 7042 — WS 97/98 150.

Third Normal Form

A relation scheme R is in Third Normal Form if for every FD a - [3 holding over R, either

1. a-PBisatrivial FD (i.e., 0a), or
2. O is asuperkey for R, or
3. each attribute Ain (3 is contained in a candidate key for R.

A database schema is in 3NF if each relation scheme is in 3NF.

Universitéat Bern Database Design

Datenbanken 7042 — WS 97/98

3NF Decomposition Algorithm

Given F in canonical form for relation scheme R:
D=0
foreacha-pBinF
if no scheme in D contains af
then add afto D
if no scheme in D contains a candidate key for R
then add any candidate key for R to D

Guarantees 3NF, lossless join, and dependency preservation.

Universitat Bern

151.

Database Design

Datenbanken 7042 — WS 97/98 152,

BCNF vs. 3NF

[0 BCNF is preferable if the resulting schema is also dependency-preserving.

[0 Otherwise 3NF is preferable, to reduce the cost of maintaining integrity
constraints.

[Inthe presence of transitive FDs, 3NF may introduce redundancies and may
require null values.

Goal:
[0 BCNF + lossless join + dependency preservation

If not possible, accept:
[3NF + lossless join + dependency preservation

Universitéat Bern Database Design

Datenbanken 7042 — WS 97/98 153.

summary

You should know the answers to these questions:

[]

N N I O

What is a lossy join? What is lost in a lossy join?

What is a lossless-join decomposition?

What is dependency preservation?

What is BCNF? How does the BCNF decomposition algorithm work?
What is 3NF? How does the 3NF decomposition algorithm work?

Can you answer the following questions?

N N A

Why does lossless join decomposition work correctly?

Why is the BCNF decomposition algorithm correct?

Is it possible for a relation scheme to be in BCNF yet not guarantee a lossless join?
What about 3NF?

Does BCNF imply 3NF?

Why is it always possible to find a 3NF decomposition that is lossless-join and

dependency preserving , but not always a BCNF one?

]

Are 3NF schemas necessarily dependency preserving?

Universitéat Bern Database Design

Datenbanken 7042 — WS 97/98 154.

10. File and System Structure

Overview
[Storage media
[J File Organization
[0 Buffer Management

Universitét Bern File and System Structure

Datenbanken 7042 — WS 97/98

Physical Storage Media

Main memory:
[0 fast, small, volatile, expensive

Disk storage:
[0 slower, large, persistent

Tape storage:
0 slow, sequential, archival, cheap

Universitat Bern

155.

File and System Structure

Datenbanken 7042 — WS 97/98 156.

Disk Storage

track O track n
armO

actuator

platter 0 @ | -

platter m-1

arm n-1 A Disk Pack

Universitét Bern File and System Structure

Datenbanken 7042 — WS 97/98 157.

File Organisation

Blocks are fixed-size units of memory on a disk.

A file is organized logically as a sequence of records mapped onto disk blocks. Records
within a given file may be either fixed or variable length.

0 Fixed-length records: simple and efficient to implement; inflexible for
representing complex information

[0 Variable length records: more flexible; problems with memory fragmentation,
wasted storage, slower searching

Universitét Bern File and System Structure

Datenbanken 7042 — WS 97/98

Fixed-length records

type deposit =
record
branch-name : char (20) ;
account-number : integer ;
customer-name : char (20) ;
balance :real;
end

Record length = 52 bytes (20 + 4 + 20 + 8)
[0 alignment with block boundaries?
[0 insertions and deletions?

Universitat Bern

158.

File and System Structure

Datenbanken 7042 — WS 97/98 159.

Insertions and deletions

Rather than moving data when records are deleted, a free list of deleted records is
maintained: deletions and insertions occur at the head of the list. When the list is empty,
new records are inserted at the end of the file.

header

record O - | Downtown 101f Johnson 500
record 1 - | Mianus 215/ Smith 700
record 2

record 3 - | Round Hil] 305 Turner| 350
record 4 - | Perryridge 201 Williams 900
record 5

record 6 - | Brighton | 217 Green 750
record 7 - | Downtown 105 Green 850

Universitéat Bern File and System Structure

Datenbanken 7042 — WS 97/98

Variable length records

[0 multiple record types per file
[0 repeating fields
[0 variable length fields

type deposit-list

record
branch-name : char (20) ;
account-info » array [1..] of
record
account-number : integer
customer-name : char (20) ;
balance :real;
end
end

Universitat Bern

160.

File and System Structure

Datenbanken 7042 — WS 97/98

Byte String Representation

gaa b~ W NEFEL O

161.

Perryridge

102

Hayes

40(

L Wilianjs 900 218 Lyle 7p0 |

Round Hill

305

Turner

350

Mianus

215

Smith

700

Downtown

101

Johnson 50(

D

Peterspn qcm)

Redwood

222

Lindsa

700

Brighton

217

Green

750

Use special end-of-record marker (L)
[0 Hard to reuse space; can lead to fragmentation
[0 Costly to handle record growth

Universitat Bern

File and System Structure

Datenbanken 7042 — WS 97/98

Fixed-Length Representation

Reserved space: requires fixed maximum space for records

162.

Perryridge| 102| Hayes| 400 201 Williams 900 218 Lyle
Round Hill| 305 | Turner | 350| [0 O [0 0
Mianus 215 | Smith | 700 O O O [O O
Downtown| 101 | Johnson 500 110 Peterspn 600 U U
Redwood | 222| Lindsay 700 0 0 [0 0
Brighton | 217 | Green | 7500 O O [O O

Pointers: represent variable length record by chain of fixed-length records

1.
0
1
2
3
4
5

2.

Universitat Bern

0O ~NOOlLh WNBEFE O

)

Perryridge| 102| Hayes 40(
Round Hill| 305 | Turner 350
Mianus 215| Smith 700
Downtown| 101 | Johnson| 50(
Redwood | 222| Lindsay| 70C
A 201 | Williams | 900
Brighton 217 | Green 750
A 110 | Peterson| 600
W 218 | Lyle 700

File and System Structure

Datenbanken 7042 — WS 97/98 163.

Anchor/overflow block organization

To save space, records can be separated into anchor blocks and overflow blocks:

Perryridge| 102| Hayes 40(
Round Hill| 305 | Turner 350
Mianus 215 | Smith 700
Anchor block Downtown| 101 | Johnson| 50(
Redwood | 222| Lindsay| 70(Q
Brighton 217 | Green 750

201 | Williams| 900
110 | Peterson 600
218 | Lyle 700

Overflow block (

MIEN

Universitéat Bern File and System Structure

Datenbanken 7042 — WS 97/98 164.

Organizing Records into Blocks

| Perryridge

To reduce seek-time for retrieving related
Block O records, organize into chained blocks.

Related blocks should be stored on the
same, or nearby cylinders.

Block 1 Need separate free lists to maintain
Rourd il closeness with insertions and updates.

Trade-off between time and space efficiency.

Block 2

Block 3

Block 4

Universitét Bern File and System Structure

Datenbanken 7042 — WS 97/98

Seqguential Files

165.

([[Brighton [217] Green [750 Sequential files are pre-sorted to
Downtown| 101 | Johnson| 509 support fast retrieval by a search key.
4 Downtown| 110 | Peterson 600
4 Mianus 215 | Smith 700
g Perryridge| 102| Hayes 40(
Perryridge| 201| Williams| 900
Py
< Perryridge| 218| Lyle 700
- Redwood | 222| Lindsay| 70(Q
{ Round Hill| 305 | Turner 350
& Brighton 217 | Green 750
| Downtown| 101 | Johnson| 50(
§, Downtown| 110 | Peterson 600
Deletions are kept on a free list for each - [Mianus | 215] Smith | 700
block. Insertions are made to free slots on < |Permyridge| 102 Hayes | 40C
the same block if possible, otherwise to an {__[Permyridge| 201] Williams| 900
flow block & Perryridge| 218| Lyle 700
over . & Redwood | 222| Lindsay| 700
Requires occasional reorganisation. Round Hill] 305 | Turner | 350
[\ |Mianus | 888| Adams | 800|
Universitét Bern File and System Structure

Datenbanken 7042 — WS 97/98 166.

Mapping Relational Data to Files

[0 Tuples are usually fixed-length records, and relations can be mapped to
simple file structures.

[0 For very large databases assignments of records to blocks can have a
critical impact on performance, and more complex file structures may be
needed.

[J Large-scale database systems may bypass the operating system'’s file
management by storing the entire database in a single system file.
Related tuples in separate relations may be clusteredtogether to efficiently
implement commonly expected joins — e.g., deposit ><] customer —
though this may slow down other queries ...

Universitét Bern File and System Structure

Datenbanken 7042 — WS 97/98

Data Dictionary Storage

The Data Dictionary may itself be accessed as a database

Database schema:
[0 Names of relations; names and domains of attributes
[0 Names and definitions of views
[0 Integrity constraints for each relation (e.g., keys)

Users:
[0 User names and authorization; accounting information

Statistics and Technical details:
[0 Number of tuples per relation; types of queries
[0 Storage method used per relation (e.g., clustered)
[0 Indexed relations and attributes; types of indices

Universitat Bern

167.

File and System Structure

Datenbanken 7042 — WS 97/98 168.

Buffer Management

Modified blocks must be written out in a
controlled fashion to maintain consistency.
Output may be forced, or even restricted for
L | S p—— temporarily pinned blocks.

Main memory (buffer)

What strategy should be used (L
MRU ...)?

Permanent Storage

Universitét Bern File and System Structure

Datenbanken 7042 — WS 97/98 169.

Buffer Management

[0 Commonly accessed information (data dictionary, indices) should remain in
memory.

[Statistics may help to determine which relations are likely to be accessed.

[0 The way in which queries are processed may affect the order in which blocks
should be read and replaced.

[0 Inthe presence of concurrent users, certain requests may need to be delayed
to maintain consistency — loading of blocks needed by these requests can
therefore be delayed.

0 Writing of modified blocks must be coordinated by the crash recovery system.
(Updates must be atomic in the presence of system failures.)

Universitét Bern File and System Structure

Datenbanken 7042 — WS 97/98 170.

summary

You should know the answers to these questions:

[]

(N I A I

How should related disk blocks be organized to speed up access?
Why are variable-length records harder to manage than fixed-length?
What is a free list? How is it used?

What is fragmentation? How does it arise?

What are “anchor” and “overflow” blocks? Why are they useful?

How can sequential files speed up access time?

What is the role and function of the database buffer?

Can you answer the following questions?

N I N A [

How is a free list initialized?

Can variable length records arise in relational databases?

Why must one often trade-off time against space efficiency?

Why do many database systems need to bypass the file system?

What kind of information can be used to fine-tune database performance?
How must modified blocks be written to disk to guarantee atomicity?

Universitét Bern File and System Structure

Datenbanken 7042 — WS 97/98 171.

11. Indexing and Hashing

Overview
[0 Index Sequential Files; primary and secondary indices

0 B'-trees and B-trees
[0 Hashing; static and dynamic hashing

Universitéat Bern Indexing and Hashing

Datenbanken 7042 — WS 97/98 172.

Basic Concepts

Access time:
[0 How long does it take to find items?

Insertion time:

[0 How long does it take to insert items
(including time to update index structure)?

Deletion time:
[0 How long to delete items (and update index structure)?

Space overhead.:
[0 What is the cost of extra space?

Universitéat Bern Indexing and Hashing

Datenbanken 7042 — WS 97/98

Indexing

Primary index:

[0 file is sorted by primary search key

[0 all matching records are in the same or nearby blocks
Secondary index:

[0 index on other attributes

[0 matching records may be in arbitrary blocks

0 “buckets” of pointers point to actual records

Dense index:
[0 index record for every search-key value
Sparse index:

[index record only for selected search-key values
e.g., first record of each block/bucket

Universitat Bern

173.

Indexing and Hashing

Datenbanken 7042 — WS 97/98

Dense and sparse indices

A=

Dense index

Brighton =1 T4 Brighton | 217 | Green 750
Downtown| — 1 * & Downtown| 101 | Johnson| 50(
Mianus —— Downtown| 110 | Peterson 60(
Perryridge 4 Mianus 215 | Smith 700
Redwood L Perryridge| 102| Hayes 40(
Round Hill \2‘ Perryridge| 201| Williams| 900
- Perryridge| 218| Lyle 700
\‘(~ Redwood | 222| Lindsay| 70(Q
Round Hill| 305 | Turner 350

Sparse index
Brighton =1 T4 Brighton | 217 | Green 750
Mianus ~ & Downtown| 101 | Johnson| 50(
Redwood \ i Downtown| 110 | Peterson 60(
i Mianus 215 | Smith 700
" Perryridge| 102| Hayes 40(
Perryridge| 201| Williams| 900
\(‘ Perryridge| 218| Lyle 700
i Redwood | 222| Lindsay| 70(Q
Round Hill| 305 | Turner 350

Universitat Bern

Deletion: Look up and delete
record; If this is the last record
with this search value, also delete
search key in index

Insertion: Lookup and insert
record; add search-key to index if
needed

Deletion: Look up and delete
record; replace search key in
index by that of next record (or
delete if already in index)

Insertion: Lookup and insert
record; add new search key to
index only if new block is created

Indexing and Hashing

Datenbanken 7042 — WS 97/98 175.

Indices

[0 Records can be retrieved more quickly with dense indices, but these may take
up a great deal of space.

[1 Cost of searching in memory is low compared to cost of reading a block; so
sparse indices are used to locate blocks to read. (One search-key entry per
block.)

[If the primary index does not fit into memory, a second-level sparse index may
be constructed (even for very large databases, two levels usually suffice)

Universitéat Bern Indexing and Hashing

Datenbanken 7042 — WS 97/98 176.

Secondary indices

bucket 1
Green —_) > Brighton | 217 | Green 750
Lindsay Downtown| 101 | Johnson| 500
Smith i Downtown| 110 | Peterson 600
\ Mianus 215 | Smith 700
~ Perryridge| 102| Hayes 400
bucket 2] Perryridge| 201| Williams| 900
Perryridge| 218| Lyle 700
Redwood | 222| Lindsay| 70(Q
Round Hill| 305 | Turner 350
bucket 3 y

Buckets group together pointers to records with nearby secondary “keys”.

Bucket entries may also contain the search key value to reduce the cost of retrieving
individual records.

Universitét Bern Indexing and Hashing

Datenbanken 7042 — WS 97/98 177.

B+ Tree Index Files

Index-sequential files perform poorly as database grows;
B™ Trees perform better under frequent modifications

[0 Tree of ranges of search key values

Nodes contain search keys and pointers to nodes/records

Each node has m children, between [n/2] and n (n is fixed)
Py [Ki [P, | |Pna |Kma |Pm |~ |Phs |Knz |Pn |

Search key values are in sort order

Leaf nodes point to records (for primary keys) or to buckets

Pointer P, is also used to chain together leaf nodes

Insertions/deletions may cause nodes to split/coalesce if m leaves the range
([n/21],n)

O O

N I B Oy

Universitéat Bern Indexing and Hashing

Datenbanken 7042 — WS 97/98 178.

B+ Tree Insertions

/ | Perryridge| 1\ | |
\

|Mianus | | | || | Redwood H\ | |

\ ' J—

| |Brighton | | Downtown| _|_>| |Mianus | | |_|_>| |Perryridge| | | | |Redwood| | Round H|I' |

Insertion of “Clearview” causes leaf node to split

/ | Perryridge| ‘I\ | |
/|Downtown | MlanusH\A I\ \Redwood | {__ | |
| | Brighton]| | Clearview +—»| [Downtown| | |{—| [Mianus || |{—| [Perryridgel | ||| |Redwood | Round Hiﬂ—|

Universitét Bern Indexing and Hashing

Datenbanken 7042 — WS 97/98

B+ Tree Deletions

Deletion of “Downtown”:

179.

| Perryridge| 4\ | |

|Mianus H\ | |

| |Brighton| | ClearvieV\,H—.| |Mianus | |

Deletion of “Perryridge”:

| -|—>| | Perryridge| |

[\ Redwood []

[} »/ [Redwood | Round Hiﬂ—|

| Mianus

/| Redwood|

| |Brighton| | ClearvieV\,1 I

>| |Mianus | | | |

>| |Redwooc1 | Round Hiﬂ—|

Universitat Bern

Indexing and Hashing

Datenbanken 7042 — WS 97/98 180.

B-Tree Index Files

Similar to B+ Trees, except:

[J Every node contains pointers to records/buckets, not just leaf nodes (additional
pointers needed); so some records can be found more quickly

Leaf nodes are not chained

Deletions are more complicated since non-leaf nodes that become too small will
require local reorganizations

1 O

Advantages are marginal for large indices, so B trees are usually preferred.

Universitéat Bern Indexing and Hashing

Datenbanken 7042 — WS 97/98 181.

Hash Functions

A hash function h maps search keys K to bucket addresses B.

To perform a lookup on search key k;compute h(k;), and scan the bucket for the key
value.

A good hash function assigns search keys to buckets:
0 with uniform distribution (over the entire space K)
0 with random distribution (for arbitrary subsets of K)

Universitéat Bern Indexing and Hashing

Datenbanken 7042 — WS 97/98 182.

Static hash functions

[0 Insertion and deletion are straightforward (lookup the bucket and insert or
delete)

[0 The hash function and number of buckets must be fixed in advance; space is
wasted if too many buckets are chosen, but performance will suffer if the
buckets become too full

[0 choose hash function based on current file size (performance will degrade
with time)

[0 choose hash function based on anticipated file size (initially wastes space)
periodically reorganize the hash structure (time-consuming and disruptive)

]

Universitéat Bern Indexing and Hashing

Datenbanken 7042 — WS 97/98 183.

Dynamic hash functions

[0 Extendible hash function computes a value for a very large number of buckets,
32
e.g., 2

[0 First k bits of hash value are used to look up the actual bucket in a bucket
address table

[0 Multiple entries may point to the same bucket

[0 As buckets grow too big and are split, the bucket address table is modified
accordingly

[0 When the table can no longer accommodate split buckets, kis incremented and
the table is expanded

Universitéat Bern Indexing and Hashing

Datenbanken 7042 — WS 97/98

Dynamic Hashing example

0]

0]

' » Perryridge ...

Hash function

Round Hill ...

1]

» | Round Hill ...

00
01
10
11

Universitat Bern

\ﬂ

Perryridge ...

Downtown ...

1]

Round Hill ...

2]

/

Downtown ...

Redwood ...

2]

Perryridge ...

(abbreviated)
Brighton 0010
Clearview | 1101
Downtown| 1010
Mianus 1000
Perryridge| 1111
Redwood 1011
Round Hill| 0101
000
001
010
011
100
101
110
111

184.

Sample deposit file

Brighton 217 | Green 750
Downtown| 101 | Johnson| 50(
Mianus 215 | Smith 700
Perryridge| 102| Hayes 40(
Redwood | 222| Lindsay| 70(Q
Round Hill| 305 | Turner 350
Clearview | 117 | Throggs| 295
3 K
/1 Round Hill ...
— Brighton ...
3]
——— | Mianus ...
\?I
Downtown ...
Redwood ...
2]
| Perryridge ...
Clearview ...

Indexing and Hashing

Datenbanken 7042 — WS 97/98 185.

Hashing vs. Indexing

What kinds of queries will be most common?

[0 Hashing is more efficient for equality selections (attribute = key value)

[
[

index lookup takes time O(log(n)) for n values
hash lookup is constant time (though worst case is O(n))

[0 Indexes are more efficient for range selections (attribute in range [c1,c2])

[
[

Universitat Bern

since indices use sorted files or buckets, ranges are easy to find

not so for hash structures;
order-preserving hash functions are hard to find (conflicts with uniformity
and randomness!)

Indexing and Hashing

Datenbanken 7042 — WS 97/98 186.

summary

You should know the answers to these questions:

[]

(N I A I

What are primary and secondary indices?

How are insertions and deletions handled with dense/sparse indices?
What is the structure of a valid B+ tree?

When must nodes be split/coalesced in a B+ tree?

How are hash functions used to find key values?

What are the limitations of static hash functions?

What are the relative advantages of indexing and hashing?

Can you answer the following questions?
[0 Why do secondary indices point to buckets rather than individual records?

(B B

When must node values be redistributed in a B+ tree?
What is the space overhead for a B+ tree?
What are examples of good/bad hash functions?

Universitéat Bern Indexing and Hashing

Datenbanken 7042 — WS 97/98 187.

12. Transactions and Concurrency Control

Overview

[1 Transactions
Recovery logs
Serializability
Two-phase locking

(I I O

Universitét Bern Transactions and Concurrency Control

Datenbanken 7042 — WS 97/98

Transactions

A transaction must satisfy the “ACID” properties:

[]

(I O

T:

188.

Atomicity: either all transaction operations must complete or none
Consistency: correct execution must ensure database consistency
Isolation: intermediate states are not visible to other transactions
Durability: once committed, a transaction is resistant to failures

read (A, a)
a:=a-50
write (A,a)
read (B,b)
b:=b+50
write (B,b)

Universitat Bern

read and write operations to memory may
trigger input from disk; output to disk must
ensure database consistency

A =950

— T
¥/
A =1000
input (B)
———— B=2000
¥/

Transactions and Concurrency Control

Datenbanken 7042 — WS 97/98 189.

Transaction States

Active — the initial state

artiallgd

C mmy

Partially committed — after the
last statement has been executed

Failed — after normal execution is
no longer possible

Aborted — after the transaction is
rolled back

failed aborted

Committed — after successful
completion

Universitét Bern Transactions and Concurrency Control

Datenbanken 7042 — WS 97/98 190.

Aborted Transactions

Aborted Transactions must leave the (permanent) database in a consistent state.

Two options after abortion:

[0 Restart: only possible if the transaction was aborted for external reasons (e.g.,
crash, deadlock, etc.)

[0 Kill the transaction: should only occur if it is logically impossible to complete
the transaction (e.g., unavailable data, bad input, etc.)

Universitét Bern Transactions and Concurrency Control

Datenbanken 7042 — WS 97/98 191.

Recovery Logs

Principle idea: Achieve atomicity by logging all modifications and transaction state
changes to stable storage without modifying the database until a transaction commits.

Committed transactions can be safely redone after a crash by re-running the logged
modifications. (Redo must be idempotent.)

Log entries may contain:

[]

N I I O

Transaction name

Data item name

Old value

New value

Transaction state changes (start and commit)

Universitét Bern Transactions and Concurrency Control

Datenbanken 7042 — WS 97/98 192.

Deferred Database Modification

T1: read (A) Log Database
A:=A-50 A = 1000
write (A) B = 2000
read (B) C =700
B:=B+50 <T1l starts >
write (B) <T1, A, 950>

<T1, B, 2050>
<T1l commits >
A =950
T2: read (C)
B = 2050
C:=C-100
: <T2 starts >
write (C)
<T2, C, 600>
<T2 commits >
C =600

Universitét Bern Transactions and Concurrency Control

Datenbanken 7042 — WS 97/98 193.

Immediate Database Modification

Log Database

<T1l starts >

Logged updates can be
<T1, A, 1000, 950>

iImmediately reflected in stable

storage if both old and new A =950
values are logged: after failure, <T1, B, 2000, 2050>
uncompleted transactions must B = 2050

first be undone by restoring old
values, and then completed
transactions must be redone.

<T1 commits >
<T2 starts >
<T2, C, 700, 600>
C =600
<T2 commits >

Universitét Bern Transactions and Concurrency Control

Datenbanken 7042 — WS 97/98 194.

Log Record Buffering

[0 All log records for T must be output to stable storage before the <T commit >
log record is output.

[0 Transaction T enters the commit state afterthe <T commit >log record has
been output to stable storage.

[1 Alllog records pertaining to a block of data in memory must be output to stable
storage before the block itself is output.

NB: if blocks in memory must be swapped out to make room for new blocks, all log
records for the block to be swapped out must first be output to stable storage.

Universitét Bern Transactions and Concurrency Control

Datenbanken 7042 — WS 97/98

195.

Concurrent and Serializable Schedules

T1 T2

read (A)

A:=A-50

write (A)

read (B)

B:=B+50

write (B)
read (A)
temp:=A*0.1
A:=A-temp
write (A)
read (B)
B:= B+ temp
write (B)

Universitat Bern

T1 T2

read (A)

A:=A-50

write (A)
read (A)
temp:=A*0.1
A:=A-temp
write (A)

read (B)

B:=B+50

write (B)
read (B)
B:= B+ temp
write (B)

Transactions and Concurrency Control

Datenbanken 7042 — WS 97/98 196.

Non-serializable Schedules

T1 T2

read (A)

A:=A-50
read (A) A non-serializable schedule is not
temp:=A*0.1 equivalent to any serial schedule,
A=A -temp and leaves the database in an
write (A) inconsistent state.
read (B)

write (A)

read (B)

B:=B+50

write (B)
B:= B+ temp
write (B)

Universitat Bern

Transactions and Concurrency Control

Datenbanken 7042 — WS 97/98

Conflict Serializability

197.

Read and write instructions |; and |; of separate transactions T; and T; within a schedule

may be interchanged if they do not conflict.

I; and I; conflict if they refer to the same data item Q, and one of the two is a write

Tj

operation.
Ti
C read (Q)
T, T, Ti

read (Q))

T T

|
d (Q)
)érea write (Q) ?{ g read (Q)

Universitat Bern

write (Q) 3 éwrite Q)

write (Q) }

Transactions and Concurrency Control

Datenbanken 7042 — WS 97/98

Serializing Schedules

198.

A schedule is conflict-serializable if it can be transformed into a serial schedule by

interchanging non-conflicting instructions

T1 T2
read (A)
ite (A)
@ C @)Wn) read (A)
ite (A)
@ q QC read (B) o D
ite (B)
@ o read (B)
write (B)

Universitat Bern

O
DD

T1 T2

read (A)

write (A)

read (B)

write (B)
read (A)
write (A)
read (B)
write (B)

Transactions and Concurrency Control

Datenbanken 7042 — WS 97/98 199.

Testing for Conflict Serializability

A schedule is conflict serializable if there are no cycles in its precedence graph.

Construct a precedence graph by introducing one node for each transaction, and an
edge from T; to T; if:

[J T executes write (Q) before T; executes read(Q), or
[Tjexecutes read(Q) before T; executes write (Q), or
[T executes write (Q) before T; executes write (Q).

(—(D)

Serializable Not Serializable

Universitét Bern Transactions and Concurrency Control

Datenbanken 7042 — WS 97/98 200.

Sorting Precedence Graphs

A topological sorting of the precedence graph yields a possible serialization.

Universitét Bern Transactions and Concurrency Control

Datenbanken 7042 — WS 97/98 201.

Locks

Serializability can be ensured by locking data items accessed by a transaction according
to a locking protocal ...

Shared (read) locks:
[0 If transaction T obtains a shared lock (lock-S) on Q, it may read but not write Q

[0 A shared lock for Q may be obtained only if no exclusive lock for Q is already
held by another transaction.

Exclusive (write) locks:
[0 If T obtains an exclusive lock (lock-X) on Q, it may both read and write Q

[0 An exclusive lock for Q may only be obtained if no lock for Q is held by another
transaction.

A transaction may upgrade a shared lock to an exclusive lock if no other locks are held
by other transactions.

Universitét Bern Transactions and Concurrency Control

Datenbanken 7042 — WS 97/98 202.

Two-phase Locking Protocol

Two-phase locking ensures serializability by ensuring that inconsistent database states
cannot be seen by other transactions.

[0 Growing phase: first, a transaction may obtain locks, but may not release
them.

[0 Shrinking phase: then, a transaction may release locks, but may not obtain
any new locks.

Two-phase locking guarantees conflict-serializability, but does not avoid deadlock ...

Universitét Bern Transactions and Concurrency Control

Datenbanken 7042 — WS 97/98

Locking Protocols

T1 T2

lock-X (A)

read (A)

write (A)

unlock (A)
lock-X (A)
read(A)
write (A)
unlock (A)
lock-X (B)
read (B)
write (B)
unlock (B)

lock-X (B)

read (B)

write (B)

unlock (B)

Unserializable schedule

Universitat Bern

203.

T1 T2
lock-X (A)
read (A)
write (A)
lock-X (B)
unlock (A)
lock-X (A)
read(A)
read (B)
write (A)
write (B)
unlock (B)
lock-X (B)
unlock (A)
read (B)
write (B)
unlock (B)

Two-phase, serializable

schedule

Transactions and Concurrency Control

Datenbanken 7042 — WS 97/98

Deadlock

T1 T3

lock-X (A)

read(A) lock-X (B)

write (A) read (B)
write (B)
lock-X (A)

lock-X (B)

Two-phase, deadlocking

Universitat Bern

schedule

204.

Two-phase locking is not sufficient to
avoid deadlock.

Deadlock is detected by constructing a
waits-for graph and checking for cycles

Waits-for graph

Transactions and Concurrency Control

Datenbanken 7042 — WS 97/98 205.

Deadlock Recovery

Deadlock is resolved by picking a victim to roll back:

[0 The victim should be selected to minimize the overall cost of rolling back and
restarting the victim

[computation time?
0 number of data items used so far? still needed?
[0 how many transactions to roll back?

0 Partial rollback may be sufficient

[1 Starvation must be avoided

Universitét Bern Transactions and Concurrency Control

Datenbanken 7042 — WS 97/98 206.

summary

You should know the answers to these questions:
[0 What properties must a transaction satisfy?
When may an aborted transaction be restarted?
How does a recovery log help to achieve atomicity?
When can transaction updates actually be reflected in the database?
How can you check if two transactions are conflict-serializable?

How can you derive an equivalent serial schedule from a set of interleaved, but
serializable transactions?

How does two-phase locking ensure serializability?
How can you detect and resolve deadlock?

N I B

1 O

Can you answer the following questions?

[0 Can two transactions be unserializable, yet still lead to a consistent database state?
[0 How can you avoid redoing all committed transactions after a failure?

[How can you avoid deadlock in the first place?

Universitét Bern Transactions and Concurrency Control

Datenbanken 7042 — WS 97/98

13. Query Processing

Overview
[0 Equivalence of expressions
[J Estimation of query-processing cost
[J Join strategies

Universitat Bern

207.

Query Processing

Datenbanken 7042 — WS 97/98 208.

Equivalence of Expressions

Textual queries in, e.g., SQL, are parsed and represented internally in a form based on
relational algebra.

[1 Each R.A. expression determines a certain evaluation order
[0 Formally equivalent expressions may differ in efficiency
[0 Various rules can be applied to transform queries to more efficient forms

Universitéat Bern Query Processing

Datenbanken 7042 — WS 97/98 209.

Selection

Customer-Scheme = (customer-name, street, customer-city)
Deposit-Scheme = (branch-name, account-number, customer-name, balance)
Branch-Scheme = (branch-name, assets, branch-city)

Consider:

I branch-name, assets (chstomer-city = "Port Chester" (customer > depOSit > branCh))
VS..
I branch-name, assets(ocustomer-city = "Port Chester" (customer) > depOSit > branCh)

[0 Perform selections as early as possible

[0 How can you formalize this rule?

Universitéat Bern Query Processing

Datenbanken 7042 — WS 97/98 210.

Conjunctions

I branch-name, assets (chstomer-city = "Port Chester" balance > 1000 (customer I><Heposit NranCh))

/

O customer-city = "Port Chester” A balance > 1000 (Customer P<deposit) | Pbranch

\

O-customer-city ="Port Chester" (Ohalance > 1000 (customer [><Hep03it))

/

O customer-city = "Port Chester" (CUstomer) P Opalance > 100dd€POSit))

[0 Replace expressions of the form:
Op1 ~p2(€) by Opi(0p,(€))

Universitét Bern Query Processing

Datenbanken 7042 — WS 97/98 211.

Projections

Consider:

I_Ibranch-name, assets (O customer-city = "Port Chester" (CUstomer) P<deposit Pranch)
VS.

I branch-name, assets ([Myranch-name (O customer-city = "Port Chester" (Customer) P<deposit) P<dranch)

[0 Perform projections early

0 How can you formalize this rule?

Universitéat Bern Query Processing

Datenbanken 7042 — WS 97/98 212.

Natural Joins

Consider:

cjcustomer-city = "Harrison" (customer) > (depOSit > branCh)
VS.

(chstomer-city = "Harrison" (CUStomer) > branCh) > depOSit
VS.

(chstomer-city - "Harison” (CUStOMeET) D deposit) > branch

[J Rearrange multiple joins to minimize temporary results

Universitéat Bern Query Processing

Datenbanken 7042 — WS 97/98 213.

Other transformations

0p(0(r)) = 0o(0p(r))

Op(ri 0 ry) = op(ry) U op(ry)

Op(r1—1ry) = 0p(ry) —r, = 0p(ry) —0p(ry)
T (Ti(... T (1)) = Tia(r)
TA(Oa=u(r)) = 0a=(TTa(r))

rxxxs = sXr

(rydry)0rg = r,0d(r,0ry)

rodry =rydr,

O O OO OO0 O O

Universitéat Bern Query Processing

Datenbanken 7042 — WS 97/98 214.

Estimation of Query-Processing Cost

Need various statistics:

[0 n, — the number of tuples in relation r
[0 s, — the size of a tuple in relation r (in bytes)
O V(A, r) — the number of distinct values for attribute Ain r

n,

V(A)

Can assume that, on average, 0, - ,(r) will have tuples

Universitéat Bern Query Processing

Datenbanken 7042 — WS 97/98 215.

Joins

Consider r; X r,, where r,(R;) and r,(R,)

1. IfR;n R, = 0 then size is n, h,
2. IfR;yn R,isakeyfor R, then size is at most n,

n,

3. If A= R,;n R,isnotakey, then atuple in r, will join with at most ——=—
V(A r,)
tuples in r,. By symmetry, the join contains at most
n, Eh n, Eh

V(A 1) V(A, ra)

min(%) tuples.

Universitéat Bern Query Processing

Datenbanken 7042 — WS 97/98 216.

Indices
Consider:
select account-number
from deposit
where branch-name = “Perryridge”

and customer-name = “Williams”
and balance > 1000

where

20 deposit tuples fit on one block
V(branch-name, deposit) = 50
V(customer-name, deposit) = 200
V(balance, deposit) = 5000

Ngeposic = 10000

there is a clustering B* tree index for branch-name

OO O 00400 d

there is a non-clustering B tree index for customer-name

Universitéat Bern Query Processing

Datenbanken 7042 — WS 97/98 217.

Query Strateqgies Using Indices

1. Use index on branch-name: 12 block accesses

— 50 tuples occupy 3-5 leaf nodes (assume 20 entries per node) for a total
of 2 block accesses (root + leaf)

— 200 clustered tuples occupy 10 blocks

2. Use index on customer-name: 52 block accesses
— 200 tuples occupy 10-20 leaf nodes: 2 block accesses
— 50 non-clustered tuples occupy 50 blocks

3. Use both indices: 5 blocks
— 4 blocks to retrieve pointers to 200 + 50 records

— compute intersection to yield 1 in 50 x 200 = 10000 pointers: 1 more
block to access

Universitéat Bern Query Processing

Datenbanken 7042 — WS 97/98 218.

Join Strateqies

Depends on:
[0 physical order of tuples
[0 presence and type (clustering) of indices
[0 cost of computing a temporary index for a single query

Consider: deposit ™ customer
O Ngeposic = 10000

|:| ncustomer = 200

Universitéat Bern Query Processing

Datenbanken 7042 — WS 97/98 219.

Simple vs. Block-oriented Iteration

Simple Iteration
for each tuple d in deposit

for each tuple ci customer

pare \common attribute

500 blocks + 10000 tuples x 10 blocks = 100500 blocks

Block-Oriented Iteration
for each block in deposit

for each block i customer

compare common attributek\of each pair of tuples in the two blocks

500 blocks + 500 blocks x 10 blocks = 5500 blocks
NB: if customer fits entirely into memory, then:
500 blocks + 10 blocks = 510 blocks

Universitéat Bern Query Processing

Datenbanken 7042 — WS 97/98 220.

Merge Join (Sorted Join Attributes)

customer
dep03|t customer-name street| customer-gity
branch-name account- customer-name balance Adams Spring Pittsfield
number Brooks Senator | Brooklyn
Brighton 217 | Green 750 Curry North Rye
— ™ [Downtown 105 | Green 850 » | Glenn Sand Hill Woodside
Perryridge 102| Hayes 40(Green Walnut | Stamford
Downtown 101 | Johnson 500 Hayes Main Harrison
Redwood 222| Lindsay 700 Johnson Alma Palo Alto
Mianus 215 | Smith 700 Jones Main Harrison
Round Hill 305 | Turner 350 Lindsay Park Pittsfield
Perryridge 201 | Williams 900 Smith North Rye
join all tuples with same customer-name Turner Putnam | Stamford
advance pointer when join attribute falls behind Williams Nassau | Princeton

advance pointer after each join

If relations to be joined are both sorted by their join attribute, the join can be efficiently
computed by reading blocks in sort order.

Universitét Bern Query Processing

Datenbanken 7042 — WS 97/98 221.

Computing Joins with Indices

Assume tuples are physically unclustered;
an unclustered index exists on customer-name for customer:

for each tuple d in deposit
look up matching tuples in customer

10000 blocks + 10000 tuples x 3 blocks = 40000 block accesses
(vs. 100500 block accesses)

(2 index blocks + 1 record block = 3 block accesses)

NB: it may be worthwhile to construct a temporary index to compute large joins.

Universitéat Bern Query Processing

Datenbanken 7042 — WS 97/98 222,

summary

You should know the answers to these questions:

[]

(N I A I

What kinds of query transformation may speed up evaluation?

Why should selections and projections be performed as early as possible?
How can you estimate the cost of evaluating a query?

What kinds of queries will indices help to speed up?

How can multiple indices be used to speed up selections?

When can merge join be used?

When is it worthwhile computing a temporary index?

Can you answer the following questions?

[0 Can you prove that the transformations shown are correct?

[0 When can projection be commuted with natural join?

[0 How should one select the main relation to iterate over when computing a join?

Universitéat Bern Query Processing

	7042 Datenbanken
	Table of Contents
	1. 7042 Datenbanken
	Schedule
	What you will be expected to learn:
	Definitions?
	In Search of a Definition ...
	What is a Database?
	Example
	Why Do We Need Database Systems?
	When Do We Need Database Systems?
	When Do We Not Need Database Systems?
	Kinds of Database Systems
	Data Models
	E-R Model
	Relational Model
	OO Model
	Schemas and Instances
	The Three Schema Architecture
	Data Independence
	Architecture
	Implementation issues
	Classification of Database Systems
	Summary

	2. The Entity-Relationship Model
	Entities and Attributes
	Entities & Attributes
	Attributes
	Relationships
	Relationships and relationship sets
	Attributes vs. Entities
	Mapping Constraints
	Existence Constraints
	E-R Diagrams — Example
	One-to-one, one-to-many
	Ternary Relationships
	Roles
	Summary

	3. Entity-Relationship Diagrams
	Primary Keys
	Strong & Weak Entity Sets
	Relationship keys
	ER Diagrams
	Generalisation
	Aggregation
	Reducing E-R Diagrams to Tables
	Reducing Weak Entity Sets
	Design Decisions
	Summary

	4. The Relational Model
	History
	Example: The Bank Database Schema
	Relational Databases
	Notation
	Schemas and instances
	Common attributes
	Query Languages
	Relational Algebra
	Example: The Bank Database
	Select
	Project
	Cartesian product
	Renaming
	Union
	Set-difference
	Summary

	5. The Relational Model (Continued)
	Derived operators
	Example: The Bank Database
	Intersection
	Natural Join
	Division
	Insertions and Deletions
	Updates
	The Tuple Relational Calculus
	Examples
	Safety
	The Domain Relational Calculus
	Examples
	Summary

	6. SQL
	SQL
	SQL Syntax Summary: Queries
	SQL Syntax Summary: DDL
	Basic Structure
	Set Operations: Union
	Set Operations: Intersection and Minus
	Predicates and Joins
	Logical Connectives
	String matching
	Set Membership
	Tuples
	Tuple Variables
	Set comparison
	Set containment
	Testing for empty relations
	Ordering
	Summary

	7. SQL, QBE and Quel
	Aggregate Functions
	Group Predicates
	Modification
	Restrictions
	Updates
	Null Values
	Views
	Data Definition
	Summary
	Query-by-example
	Simple queries
	Variable unification
	Set Difference
	Result Relations
	Other features
	Quel
	Differences between Quel and SQL
	Queries
	Other Features
	Summary

	8. Integrity Constraints
	Domain Constraints
	Foreign keys
	Referential Integrity
	Referential Integrity in SQL
	Functional Dependencies
	Example FDs
	Example FDs in the Bank Database
	Closure of a set of FDs
	Example — using closures
	Derived Rules
	Closure of an attribute set
	Finding Keys
	Example — finding keys
	Canonical Covers
	Assertions
	Triggers
	Summary

	9. Database Design
	Example
	Repetition of Information
	Lossy Joins
	Lossy Joins
	Decomposition
	Normalisation
	Lossless Join Decomposition
	Lossless Join Decomposition
	Dependency Preservation
	Normal Forms
	Boyce-Codd Normal Form
	BCNF Decomposition Algorithm
	Shortfalls of BCNF
	Third Normal Form
	3NF Decomposition Algorithm
	BCNF vs. 3NF
	Summary

	10. File and System Structure
	Physical Storage Media
	Disk Storage
	File Organisation
	Fixed-length records
	Insertions and deletions
	Variable length records
	Byte String Representation
	Fixed-Length Representation
	Anchor/overflow block organization
	Organizing Records into Blocks
	Sequential Files
	Mapping Relational Data to Files
	Data Dictionary Storage
	Buffer Management
	Buffer Management
	Summary

	11. Indexing and Hashing
	Basic Concepts
	Indexing
	Dense and sparse indices
	Indices
	Secondary indices
	B+ Tree Index Files
	B+ Tree Insertions
	B+ Tree Deletions
	B-Tree Index Files
	Hash Functions
	Static hash functions
	Dynamic hash functions
	Dynamic Hashing example
	Hashing vs. Indexing
	Summary

	12. Transactions and Concurrency Control
	Transactions
	Transaction States
	Aborted Transactions
	Recovery Logs
	Deferred Database Modification
	Immediate Database Modification
	Log Record Buffering
	Concurrent and Serializable Schedules
	Non-serializable Schedules
	Conflict Serializability
	Serializing Schedules
	Testing for Conflict Serializability
	Sorting Precedence Graphs
	Locks
	Two-phase Locking Protocol
	Locking Protocols
	Deadlock
	Deadlock Recovery
	Summary

	13. Query Processing
	Equivalence of Expressions
	Selection
	Conjunctions
	Projections
	Natural Joins
	Other transformations
	Estimation of Query-Processing Cost
	Joins
	Indices
	Query Strategies Using Indices
	Join Strategies
	Simple vs. Block-oriented Iteration
	Merge Join (Sorted Join Attributes)
	Computing Joins with Indices
	Summary

