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What you will be expected to 

❑ How to draw and interpret E-R diagrams
❑ How to realize E-R schemas as relational databa
❑ How to pose queries using relational algebra and
❑ How to write SQL queries
❑ How to express and interpret functional depende
❑ How to use FDs in database design
❑ How databases are physically organized for optim
❑ How concurrent databases accesses are manag
❑ How queries are evaluated
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Definitions?

What is a Database?

❑ Definition?
❑ Examples?

What is a Database System?

❑ Services, functionality?
❑ Difference with File Systems?
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In Search of a Definition ...

❑ A database  is a logically coherent collection of d
meaning. A database is designed, built and popu
purpose and represents some aspect of the real 

❑ A database management system  consists of a 
and a set of programs to access data. The collec
to as the database. [Korth, p. 1]

❑ A database system  is essentially nothing more 
keeping system. The database itself can be rega
filing cabinet — that is, a repository for a collectio
[Date, p. 3]

❑ A database  can be defined as a set of master files
in a flexible way, so that the files of the database 
unforeseen tasks.

❑ A database  is a structured collection of operation
description of that data. [Stranczyk, p. 4]

❑ A database system  is a collection of programs th
help the user to get information, to update informa
general to manage information. [Paradaens, p. 1
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What is a Database?

Stored
Database
Definition

(Meta-Data)

Stored
Databas

Software to Access
Stored Data

Software to Process
Queries/Programs

DBMS
Software

Application Programs/Queries
Database
System

Users/Programmers
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customer
customer-name street customer-city

Jones Main Harrison
Smith North Rye
Hayes Main Harrison
Curry North Rye
Lindsay Park Pittsfield
Turner Putnam Stamford
Williams Nassau Princeton
Adams Spring Pittsfield
Johnson Alma Palo Alto
Glenn Sand Hill Woodside
Brooks Senator Brooklyn
Green Walnut Stamford

deposit
e account-number customer-name balance

101 Johnson 500
215 Smith 700
102 Hayes 400
305 Turner 350
201 Williams 900
222 Lindsay 700
217 Green 750
105 Green 850
Universität Bern

Example

branch-nam

Downtown
Mianus
Perryridge
Round Hill
Perryridge
Redwood
Brighton
Downtown

client
customer-name banker-name

Turner Johnson
Hayes Jones
Johnson Johnson

borrow
branch-name loan-number customer-name amount

Downtown 17 Jones 1000
Redwood 23 Smith 2000
Perryridge 15 Hayes 1500
Downtown 14 Jackson 1500
Mianus 93 Curry 500
Round Hill 11 Turner 900
Pownal 29 Williams 1200
North Town 16 Adams 1300
Downtown 18 Johnson 2000
Perryridge 25 Glenn 2500
Brighton 10 Brooks 2200

branch
branch-name assets branch-city

Downtown 9000000 Brooklyn
Redwood 2100000 Palo Alto
Perryridge 1700000 Horseneck
Mianus 400000 Horseneck
Round Hill 8000000 Horseneck
Pownal 300000 Bennington
North Town 3700000 Rye
Brighton 7100000 Brooklyn
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Why Do We Need Database Sy

To avoid:
❑ Redundancy
❑ Inconsistency
❑ Inflexibility
❑ Concurrent access anomalies

To provide:
❑ Security
❑ Integrity
❑ Standards
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Systems?
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When Do We Need Database 

☞ Large, complex database
☞ Persistent data
☞ Multiple Users
☞ Frequent updates
☞ Ad hoc queries
☞ Large, open class of applications
☞ Security and authorization
☞ Integrity constraints
☞ Backup and recovery
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When Do We Not Need Databa

Costs:
☞ investment in hardware, software and trainin
☞ generality
☞ overhead for security, concurrency control, r

When not to use:
☞ DB + applications are simple, well-defined, a
☞ very small database
☞ stringent real-time constraints
☞ multiple-use (update?) access not required



Datenbanken 7042 — WS 97/98 11.

7042 Datenbanken
Universität Bern

Kinds of Database Systems

❑ Legacy: Network, Hierarchical...
❑ Relational
❑ Object-Oriented
❑ CAD
❑ Deductive
❑ Knowledge bases
❑ ...
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Data Models

“A data model is a set of concepts that can be used t
of a database.” (E&N)

❑ data types
❑ relationships
❑ constraints
❑ basic operations (retrieval & update)
❑ behaviour
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account

balancenumber
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E-R Model

Formal model and Graphical notation
❑ Entity sets  (rectangles)
❑ Attributes  (ellipses)
❑ Relationship sets  (diamonds)

customer CustAcct

name city

street
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Relational Model

Record-based model
❑ Named tables of tuples
❑ Named, typed fields
❑ No pointers
❑ No nesting
❑ No behaviour
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OO Model

Comparable to, but distinct from objects in OO programm
❑ Nested objects
❑ Instance variables
❑ Methods
❑ Classes
❑ Messages
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e
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Schemas and Instances

Database Schema
☞ describes the structure of the database
☞ consists of “meta-data”

Database Instance (or State)
☞ snapshot of a database at some point in tim
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e

External View N
Universität Bern

The Three Schema Architectur

External Level

Conceptual Schema

External View 1

Internal Schema

Conceptual Level

Internal Level
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hout affecting client

without affecting client
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Data Independence

Physical data independence
☞ the ability to modify the physical scheme wit

applications

Logical data independence
☞ the ability to modify the conceptual scheme 

applications or external schemas
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Architecture

Data Definition Language (DDL)
❑ Used by Database Administrator to define schem
❑ Compiled into a data dictionary containing all meta

names, mappings, constraints)
❑ A separate Storage Definition Language may exi

schema...
Data Manipulation Language (DML)

❑ Queries and Updates (insertion, modification, de
❑ Procedural: specifies how to get data (navigation
❑ Non-procedural: specifies what data to get

Database Interfaces
❑ Menus; graphical interfaces for e.g., schema des

canned operations; canned DBA operations
❑ Report generators; 4GLs; Office systems (forms,

Database Manager
❑ Data storage, security, concurrency etc.
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Implementation issues

❑ File Organisation
❑ File Re-organisation
❑ Query Processing
❑ Concurrency Control
❑ Transactions
❑ Recovery
❑ Performance monitoring
❑ Data conversion (import/export)
❑ Distribution
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tems
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Classification of Database Sys

❑ Data model
❑ Number of Users
❑ Number of sites
❑ Cost
❑ Types of Access Path
❑ General/Special-purpose
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Summary

You should know the answers to these questions:
❑ What are the distinctions between a database, a

database management system?
❑ When are database systems (not) needed?
❑ What is a data model?
❑ What is a database schema/instance?
❑ What are the main parts of a database system?

Can you answer the following questions?
✎ Would you use a DBMS to implement a personal add
✎ What are the main functions of a database administra
✎ What differences would you expect between a DBMS

large corporation?
✎ What major steps would you go through to set up a da

enterprise?
✎ What is the difference between physical and logical d

examples.
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l

Universität Bern

2. The Entity-Relationship Mode

Overview
❑ Entities, Attributes and Relationships
❑ Attributes vs. Entities
❑ Mapping Constraints
❑ E-R diagrams — an introduction
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 other objects.

&N

mally a function a : E → A
Universität Bern

Entities and Attributes

An entity is an object that exists and is distinguishable from

An entity-set is a set of entities of the same type.
— E

An entity is represented by a set of attributes, which is for
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getown

n

getown

d Rock

arcos

in

259 1000

630 2000

401 700

700 1500

199 500

467 900

115 1200

183 1300

118 2000

225 2500

210 2200
Universität Bern

Entities & Attributes

Customer:  { name, social security, street, city }

Account:  { account-number, balance }

Oliver 654-32-1098 Main Austin

Harris 890-12-3456 North Geor

Marsh 456-78-9012 Main Austi

Pepper 369-12-1518 North Geor

Ratliff 246-80-1214 Park Roun

Brill 121-21-2121 Putnam San M

Evers 135-79-7 Nassau Aust



Datenbanken 7042 — WS 97/98 26.

The Entity-Relationship Model
Universität Bern

Attributes

❑ special value null

❑ multi-valued attributes: A = 2V

❑ atomic and composite attributes
❑ derived attributes
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ities.

.
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Relationships

A relationship is an association among several (n > 2) ent

A relationship set is a set of relationships of the same type

Formally, R ⊆ E1 × E2 × ... × EN
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sets

259 1000

630 2000

401 700

700 1500

199 500

467 900

115 1200

183 1300

118 2000

225 2500

210 2200
Universität Bern

Relationships and relationship 

Oliver 654-32-1098 Main Austin

Harris 890-12-3456 North Georgetown

Marsh 456-78-9012 Main Austin

Pepper 369-12-1518 North Georgetown

Ratliff 246-80-1214 Park Round Rock

Brill 121-21-2121 Putnam San Marcos

Evers 135-79-1357 Nassau Austin



Datenbanken 7042 — WS 97/98 29.

The Entity-Relationship Model
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phone
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Attributes vs. Entities

When should an attribute be modelled as a separate entit

employee phone employee
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tity in B, and vice versa.
er of entities in B. An entity in
. (I.e., a function from B to A)

ber of entities in B, and vice

b1

b2

b3

b4

b5

e-to-many relationship

a1

a2

a3

a4
Universität Bern

Mapping Constraints

One-to-one:  An entity A is associated with at most one en
One-to-many:  An entity in A is associated with any numb
B, however, can be associated with at most one entity in A
Many-to-one:  (reverse of one-to-many)
Many-to-many:  An entity in A is associated with any num
versa.

b1

b2

b3

b4

b5

a1

a2

a3

a4

One-to-one relationship On
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a subordinate entity set.

 relationship with account .

n participation in mutual
Universität Bern

Existence Constraints

A transaction  is existence-dependent on an account .

Account  is a dominant entity set whereas transaction  is 

The entity-set transaction  must totally participate in some

(If there is no existence constraint between entity-sets, the
relationships is said to be partial.)
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account

nt-number

balance
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E-R Diagrams — Example

Rectangles  represent entity sets
Ellipses  represent attributes
Diamonds  represent relationship sets
Lines  connect attributes to their entity/relationship sets

and entities to their relationship sets

customer CustAcct

social-security customer-city

street

customer-name
date

accou
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ustAcct

r-city

date

account-number

balance

1
account

One-to-many:  Every
account belongs to at
most one customer

NB: can use either arrow
or explicit 1:N labelling
Universität Bern

One-to-one, one-to-many

CustAcct

social-security customer-city

street

customer-name
date

account-number

balance

1 N
account

C

social-security custome

street

customer-name

1

One-to-one:  Every
customer has at most
one account, and vice
versa

customer

customer
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account

nt-number

balance

ssets
Universität Bern

Ternary Relationships

customer CAB

social-security customer-city

street

customer-name

branch-name

accou

branch

a

branch-city
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works-for
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Roles

employee

phone-numberemployee-name

manager

worker
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an E-R diagram?

 diagram?
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Summary

You should know the answers to these questions:
❑ What are entities, entity sets, attributes and relat
❑ How can these be represented formally?
❑ What are null values?
❑ What does a one-to-many relationship mean?
❑ How can a database schema be represented as 

Can you answer the following questions?
✎ How are existence constraints represented in an E-R
✎ How should relationships be represented in a databa
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3. Entity-Relationship Diagrams

Overview
❑ Primary Keys
❑ Strong & Weak Entity Sets
❑ E-R Diagrams
❑ Generalisation and Aggregation
❑ Reducing E-R Diagrams to Tables
❑ Design Decisions
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ntity.
Universität Bern

Primary Keys

A superkey is set of attributes that uniquely identifies an e

✎ How can you formally define a superkey?

A candidate key is a minimal superkey.
A primary key is chosen by design
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Entity-Relationship Diagrams

erwise the entity set is strong.

set:
r account

imary key (account-number,

nsaction-number

amount

transaction

date

log
Universität Bern

Strong & Weak Entity Sets
An entity set that lacks a superkey is a weak entity set, oth

A weak entity set depends existentially on a strong entity 
☞ transaction depends on its identifying owne

transaction  has a partial key transaction-number and pr
transaction-number)

CustAcct

date

account-number

balance

account

social-security customer-city

street

customer-name

customer

tra
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sc_attr(R)

pend on the cardinality
ill be needed; if some are one-
 needed!
Universität Bern

Relationship keys

If
R ⊆ E1 × E2 × ... × EN

then
attr(R) = prim_key(E1) U ... U prim_key(EN) U de

The candidate (i.e., minimal) keys of a relationship will de
mappings. If these are many-to-many, then all prim_keys w
to-many or many-to-one, then some prim_keys will not be
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Attribute

Key Attribute

Multivalued Attribute

Composite Attribute

Derived Attribute

2 in R

r E1:E2 in R

in, max) on participation of E in R
Universität Bern

ER Diagrams

Entity Type

Symbol Meaning

Weak Entity Type

Relationship Type

Identifying Relationship Type

E1 E2R

E1 E2R1 N

ER (min, max)

Total Participation of E

Cardinality Ratio 1:N fo

Structural Constraint (m
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unt

unt
Universität Bern

Generalisation

savings-account

interest-rate

checking-acco

overdraft-amo

IS-A

account

account-number balance
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machinery

uses

id

work project

hours number

am with
lationships
Universität Bern

Aggregation

machinery

uses

id

workemployee project

hours numberidname

employee

idname

E-R diagr
redundant re

E-R diagram with aggregation
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les

 column per attribute in attr(R)

nt-number date

259 17 June 1990
630 17 May 1990
401 23 May 1990
700 28 May 1990
199 13 June 1990
467 7 June 1990
115 7 June 1990
183 13 June 1990
118 17 June 1990
225 19 June 1990
210 27 June 1990
Universität Bern

Reducing E-R Diagrams to Tab

❑ Strong entity sets:  one column per attribute
❑ Relationships: (between strong entity sets) one

account-number balance

259 1000
630 2000
401 700
700 1500
199 500
467 900
115 1200
183 1300
118 2000
225 2500
210 2200

social-security accou

654-32-1098
654-32-1098
890-12-3456
456-78-9012
369-12-1518
246-80-1214
246-80-1214
121-21-2121
135-79-1357
135-79-1357
135-79-1357
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)

amount

0 +50
0 +70
0 -300
0 -500
0 +900
0 -44
0 +120
90 -200
90 -79
Universität Bern

Reducing Weak Entity Sets

❑ Weak entity sets: (W dependent on S)
one column per attribute in attr(W) U prim_key(S

account-number transaction-number date

259 5 11 May 199
630 11 17 May 199
401 22 23 May 199
700 69 28 May 199
199 103 3 June 199
259 6 7 June 199
115 53 7 June 199
199 104 13 June 19
259 7 17 June 19
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ips?
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Design Decisions

❑ ternary vs. pairs of binary relationships?
❑ representing concepts by entity sets or relationsh
❑ representing properties by attributes or entities?
❑ using strong or weak entity sets?
❑ generalisation?
❑ aggregation?
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al keys and primary keys?

?
n?

 weak entity set?
entity set?
?
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Summary

You should know the answers to these questions:
❑ What are keys, superkeys, candidate keys, minim
❑ What are strong and weak entity sets?
❑ How can you determine the keys of a relationship
❑ When can you use generalization and aggregatio
❑ How can you translate E-R diagrams to tables?

Can you answer the following questions?
✎ Can an entity have more than one minimal key?
✎ When can an entity be inserted into or deleted from a
✎ Is a totally participating entity set necessarily a weak 
✎ When should you use generalization and aggregation
✎ How many tables will result from an E-R diagram?
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4. The Relational Model

Overview
❑ Relations: Schemas and instances
❑ Relational Algebra

☞ Basic operators: select, project, product, ren
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History

❑ 1970: Proposed by Codd (IBM, San José)
❑ 1970s: Various research prototypes

☞ System R (IBM, San José)
☞ Ingres (UC Berkeley)
☞ Query-by-Example (IBM, TJ Watson) ...

❑ Late 1970s: Relational theory matures
❑ Early 1980s: commercial presence established
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Example: The Bank Database 

borrow

deposit

customer

customer-

street

name
customer-

city
bra
na

account-
balancenumber

amountloan-
number
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400

350
900
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750
850
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Relational Databases

❑ Relational Database = set of (named) tables
❑ Table = set of rows
❑ Rows represent relationships amongst values
❑ Columns represent (named, typed) attributes

deposit
branch-name account-number customer-nam

Downtown 101 Johnson
Mianus 215 Smith
Perryridge 102 Hayes
Round Hill 305 Turner
Perryridge 201 Williams
Redwood 222 Lindsay
Brighton 217 Green
Downtown 105 Green
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Notation

Formally, a relation:

,

where each  is atomic

Each attribute

But, for  we write  rather than  ... since

r R⊆ R D1 … DN××=

Di

ai :R Di→

t r∈ t ai[ ] ai t( ) t a[
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Schemas and instances

A relation r is an instance of a relation scheme

A relation scheme is defined by, e.g.:

Deposit-scheme = (
branch-name : string,
account-number : integer,
customer-name : string,
balance : integer

)

R D1 ×=
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s to be associated.

posit
number customer-name balance

101 Johnson 500
215 Smith 700
102 Hayes 400
305 Turner 350
201 Williams 900
222 Lindsay 700
217 Green 750
105 Green 850
Universität Bern

Common attributes

Customer shares attributes with Deposit, allowing relation

de
branch-name account-

Downtown
Mianus
Perryridge
Round Hill
Perryridge
Redwood
Brighton
Downtown

customer
customer-name street customer-city

Jones Main Harrison
Smith North Rye
Hayes Main Harrison
Curry North Rye
Lindsay Park Pittsfield
Turner Putnam Stamford
Williams Nassau Princeton
Adams Spring Pittsfield
Johnson Alma Palo Alto
Glenn Sand Hill Woodside
Brooks Senator Brooklyn
Green Walnut Stamford
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Query Languages

❑ Procedural vs. non-procedural
❑ Formal vs. commercial

☞ relational algebra, tuple & domain relation ca
☞ SQL, QBE, Quel ...
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Relational Algebra

Basic unary & binary operators over relations:

❑ Select:

❑ Project:

❑ Cartesian product:

❑ Renaming:

❑ Union:

❑ Set-difference:

Other operators
❑ Assignment:  (for intermedia
❑ Derived: intersection, natural join, division

r s⊗ =

σp r( )

ΠAr

r s×
ρs r( )

r s∪
r s–

temp expression〈 〉←
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branch
branch-name assets branch-city

Downtown 9000000 Brooklyn
Redwood 2100000 Palo Alto
Perryridge 1700000 Horseneck
Mianus 400000 Horseneck
Round Hill 8000000 Horseneck
Pownal 300000 Bennington
North Town 3700000 Rye
Brighton 7100000 Brooklyn

alance

500
700
400

350
900
700
750
850

ount

000
000
500
500
00
00
00

300
000
500
00
Universität Bern

Example: The Bank Database

customer
customer-name street customer-city

Jones Main Harrison
Smith North Rye
Hayes Main Harrison
Curry North Rye
Lindsay Park Pittsfield
Turner Putnam Stamford
Williams Nassau Princeton
Adams Spring Pittsfield
Johnson Alma Palo Alto
Glenn Sand Hill Woodside
Brooks Senator Brooklyn
Green Walnut Stamford

deposit

branch-name
account-
number

customer-name b

Downtown 101 Johnson
Mianus 215 Smith
Perryridge 102 Hayes
Round Hill 305 Turner
Perryridge 201 Williams
Redwood 222 Lindsay
Brighton 217 Green
Downtown 105 Green

borrow

branch-name
loan-

number
customer-name am

Downtown 17 Jones 1
Redwood 23 Smith 2
Perryridge 15 Hayes 1
Downtown 14 Jackson 1
Mianus 93 Curry 5
Round Hill 11 Turner 9
Pownal 29 Williams 12
North Town 16 Adams 1
Downtown 18 Johnson 2
Perryridge 25 Glenn 2
Brighton 10 Brooks 22
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Select

 selects t in r satisfying predicate p

(where p is a Boolean expression using comparis
attributes and values, and connectives ∧ (and) a

Express the following queries:
✎ What are all the branches in Horseneck?
✎ Which loans at Perryridge are over 1200?
✎ Which bankers have accounts at their own branches?

client
customer-name banker-name

Turner Johnson
Hayes Jones
Johnson Johnson

σp r( )
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Project

 projects attributes in A from all tuples in r

Express the following queries:
✎ What are the account numbers of all deposits?
✎ Who are our customers?
✎ Which customers have loans?
✎ In which cities do we have branches?
✎ Which bankers have accounts at their own branches?

ΠAr
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Cartesian product

 generates the set of tuples obtained by concatenatin
from r and s.

Express the following queries:
✎ What are the home towns of the customers with depo
✎ What are the names and home cities of all the clients

r s×
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Renaming

 renames relation r as s

Express the following queries:
✎ Which branches are in the same city as the Perryridg
✎ What are the names of all customers who live on the 

as Smith?

ρs r( )
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Union

 generates the union of r and s

Express the following queries:
✎ Who are the customers of the Perryridge branch?

r s∪
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Set-difference

 generates the set of tuples in r but not in s

Express the following queries:
✎ Which customers have loans out but no deposits?
✎ Which customers do not have branches in their home
✎ Which customer has the largest balance?

r s–
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ies over multiple relations?

f the results of each operator?

rs? (Why, or why not?)
have exactly one deposit?”
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Summary

You should know the answers to these questions:
❑ What are relations, tables, relation schemes?
❑ What are the operators of the relational algebra?
❑ How can operators be combined to express quer
❑ What is a join operation?

Can you answer the following questions?
✎ How can the relational operators be defined formally?
✎ What are the cardinalities and the relation schemes o
✎ Why do we need the renaming operator?
✎ Can union be expressed in terms of the other operato
✎ How can you formulate the query: “Which customers 
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5. The Relational Model (Conti

Overview
❑ Relational Algebra

☞ Derived operators: intersect, join, division, a
❑ Deletions, Insertion and Updates
❑ Views, view updates and null values
❑ The Tuple and Domain Relational Calculi
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Derived operators

❑ Intersection:
❑ Natural Join: r  s
❑ Division:

r s∩

r s÷
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branch
branch-name assets branch-city

Downtown 9000000 Brooklyn
Redwood 2100000 Palo Alto
Perryridge 1700000 Horseneck
Mianus 400000 Horseneck
Round Hill 8000000 Horseneck
Pownal 300000 Bennington
North Town 3700000 Rye
Brighton 7100000 Brooklyn

alance

500
700
400

350
900
700
750
850

ount

000
000
500
500
00
00
00

300
000
500
00
Universität Bern

Example: The Bank Database

customer
customer-name street customer-city

Jones Main Harrison
Smith North Rye
Hayes Main Harrison
Curry North Rye
Lindsay Park Pittsfield
Turner Putnam Stamford
Williams Nassau Princeton
Adams Spring Pittsfield
Johnson Alma Palo Alto
Glenn Sand Hill Woodside
Brooks Senator Brooklyn
Green Walnut Stamford

deposit

branch-name
account-
number

customer-name b

Downtown 101 Johnson
Mianus 215 Smith
Perryridge 102 Hayes
Round Hill 305 Turner
Perryridge 201 Williams
Redwood 222 Lindsay
Brighton 217 Green
Downtown 105 Green

borrow

branch-name
loan-

number
customer-name am

Downtown 17 Jones 1
Redwood 23 Smith 2
Perryridge 15 Hayes 1
Downtown 14 Jackson 1
Mianus 93 Curry 5
Round Hill 11 Turner 9
Pownal 29 Williams 12
North Town 16 Adams 1
Downtown 18 Johnson 2
Perryridge 25 Glenn 2
Brighton 10 Brooks 22
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Intersection

 extracts all tuples in both r and s

Express the following queries:
✎ Which customers have both deposits and loans at Pe

r s∩
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Natural Join

r  s extracts pairs of tuples from r and s with common at
with those attributes identified

Express the following queries:
✎ What are the names and home cities of all customers
✎ What are the assets and names of branches with dep
✎ Which customers have both deposits and loans at Pe
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Division

 yields the remainder of tuples in r whose product wit

NB:  always holds.  is the maximal suc

Express the following queries:
✎ Which customers have an account at all branches in 

r s÷

r s÷( ) s× r⊆ r s÷

r

r s÷
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Insertions and Deletions

Insertion:

✎ Open a new account 9732 for Smith with $1200 at Pe

Deletion:

✎ Delete all of Smith’s accounts
✎ Delete all accounts at branches in Needham

r r E∪←

r r E–←



Datenbanken 7042 — WS 97/98 72.

The Relational Model (Continued)

000, and %5 to the rest
Universität Bern

Updates

Updates:

Express the following updates:
✎ Add 5% interest to accounts with balance over $1000
✎ Add 6% interest to accounts with a balance over $10,

δA E← r( )
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The Tuple Relational Calculus
 selects all tuples t such that P(t) holds

Atoms:

–

–

–

Formulae Pi :

– atoms

– , , , ,

– , , s free in P(s)

t P t( ){ }

s r∈

s x[ ]Θr y[ ]

s x[ ]Θc

P¬ P( ) P1 P2∧ P1 P2∨ P1 P2⇒

s∃ r P s( )( )∈ s∀ r P s( )( )∈
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Examples

Which loans are over $1200?

What are the names of customers with loans over $1200?

Express the following queries:
✎ What are the names and home cities of customers wi
✎ Which customers have either deposits or loans at Pe
✎ Which customers have both deposits and loans at Pe
✎ Which customers have deposits but no loans at Perry
✎ Which customers have deposits at all branches in Bro

t t borrow∈ t amount[ ] 1200>∧{ }

t s∃ borrow t cn[ ]=s cn[ ] s amount[ ] 1>∧(∈{
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Safety

Consider:

This expression is not safe since it includes a potentially in
Formally, the domain of a formula is the set of all values it
generates values outside the domain, the formula is unsa

t t borrow∈( )¬{ }
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The Domain Relational Calculu

 selects all tuples  

Atoms:

–

–

–

Formulae Pi :

– atoms

– , , , ,

– ,

x 1 … x n, ,〈 〉 P x 1 … x n, ,( ){ } x 1 … x n, ,〈 〉

x 1 … x n, ,〈 〉 r∈

xΘy

xΘc

P¬ P( ) P1 P2∧ P1 P2∨ P1 P2⇒

x P x( )( )∃ x P x( )( )∀
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Examples

Which loans are over $1200?

What are the names of customers with loans over $1200?

Express the following queries:
✎ What are the names and home cities of customers wi
✎ Which customers have either deposits or loans at Pe
✎ Which customers have both deposits and loans at Pe
✎ Which customers have deposits at all branches in Bro

b l c a, , ,〈 〉 b l c a, , ,〈 〉 borrow∈ a 1200>∧{ }

c〈 〉 b ,l ,a b l c a, , ,〈 〉 borrow∈ a 1200>∧( )∃{ }



Datenbanken 7042 — WS 97/98 78.

The Relational Model (Continued)

 derived from the basic

l algebra?

omain relational calculi?

asic operator of the relational
e queries?)

uation order be swapped?)
 the tuple/domain calculi?
Universität Bern

Summary

You should know the answers to these questions:
❑ How can intersection, natural join and division be

operators of the relational algebra?
❑ When are joins useful? Division?
❑ How are modifications expressed in the relationa
❑ How can updates be made to views?
❑ How can queries be expressed in the tuple and d

Can you answer the following questions?
✎ Could set difference be replaced by intersection as a b

algebra? (Would it still be possible to express the sam
✎ What is the join of a relation with itself?
✎ How can a join be efficiently implemented?
✎ Does selection distribute over join? (I.e., can the eval
✎ How can relational algebra queries be transformed to
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6. SQL

Overview
❑ SQL

☞ Basic structure: product, select and project
☞ Union, Intersection, Minus
☞ Predicates and Joins
☞ Set membership
☞ Ordering

To be continued ...
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SQL

Not “just a query language”
❑ Data Definition Language
❑ Data Manipulation Language
❑ Embedded DML
❑ View Definition
❑ Authorization
❑ Integrity
❑ Transaction Control
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 (( [ distinct  ] column-name | * ))) }
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SQL Syntax Summary: Queries

Queries and updates:

select  [ distinct  ] attribute-list
from table-name { alias } { , table-name { alias } }
[ where  condition ]
[ group by  grouping-attributes [ having  group-selection-
[ order by column-name [ order ] { , column-name [ orde

attribute-list ::= ( * | ( column-name | function (( [
{ , ( column-name | function

grouping-attributes ::= column-name { , column-name }
order ::= ( asc  | desc  )

insert into table-name [ ( column-name { , column-name } ) ]
( values  ( constant-value { , constant-value } ) { , ( consta
| select-statement )

delete from table-name [ where selection-condition ]
update  table-name

set column-name = value-expression { , column-name =
[ where selection-condition ]
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)

[ order ] } )
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SQL Syntax Summary: DDL

DDL operations:

create table  table-name ( column-name column-type [ attribut
{ , column-name column-type [ attribute
[ table-constraint { , table-constraint } ] 

drop table table-name
alter table  table-name add  column-name column-type

create  [ unique  ] index index-name
on table-name ( column-name [ order ] { , column-name 
[ cluster  ]

drop index  [ index-name ]

create view view-name [ ( column-name { , column-name } ) ]
as select-statement

drop view view-name

Adapted from Elmasri and Navathe, p. 226
NB: this is only a summary; differences may exist between
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Basic Structure

select A1, A2, ... , AN
from r1, r2, ... , rm
where P

equivalent to:

Examples:
select branch-name
from deposit

select distinct branch-name
from deposit

ΠA1 A2 … An, , , σP r 1 r 2× …× r m×( )( )
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Set Operations: Union

Find all customers with accounts or loans at Perryrid

( select customer-name
from deposit
where branch-name  = “Perryridge”

)

union

( select customer-name
from borrow
where branch-name  = “Perryridge”

)
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Set Operations: Intersection an

Find all customers with both deposits and loans at P

( select distinct customer-name
from deposit
where branch-name = “Perryridge”

)

intersect

( select distinct customer-name
from borrow
where branch-name = “Perryridge”

)
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Predicates and Joins

Recall:

Find names and home cities of all customers with a

(borrow  customer)

Express as:
select distinct customer.customer-name, customer-city
from borrow, customer
where borrow.customer-name  = customer.customer-name

Comparisons may be: <, ≤, =, ≠, ≥, >

Πcustomer name– customer city–,



Datenbanken 7042 — WS 97/98 87.

SQL
Universität Bern

Logical Connectives

select distinct  customer.customer-name, customer-city
from borrow, customer
where borrow.customer-name = customer.customer-name

and
branch-name = “Perryridge”

Differences with Relational Algebra:
☞ Connectives: and, or, not
☞ Comparisons: between
☞ Arithmetic operators: +, - , *, /
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String matching

❑ % — (percent) matches arbitrary substring
❑ _ — (underscore) matches any character
❑ \ — (backslash) escapes “%”, “_” or “\”

select customer-name
from customer
where street like “%Main%”
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Set Membership

✎ What does the following query represent?

select distinct customer-name
from borrow
where branch-name = “Perryridge”
and customer-name  in

( select distinct customer-name
from deposit
where branch-name = “Perryridge”

)
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Tuples

✎ What does the following query represent?

select distinct customer-name
from borrow
where branch-name = “Perryridge”

and <branch-name, customer-name> in
( select branch-name, customer-name

from deposit
)
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Tuple Variables

select distinct C.customer-name, customer-city
from borrow B, customer C
where B.customer-name  = C.customer-name

Express the following query:
✎ Find all customers who have an account at some bra

account
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Set comparison

Can compare attributes against sets of values (compare a

select branch-name
from branch
where assets > some

( select assets
from branch
where branch-city = “Brooklyn”

)
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Set containment

✎ What does the following query represent?

select distinct  S.customer-name
from deposit  S
where ( select T.branch-name

from deposit T
where S.customer-name = T.customer-name

)
contains

( select branch-name
from branch
where branch-city = “Brooklyn”

)
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Testing for empty relations

select distinct customer-name
from customer
where exists

( select *
from deposit
where customer.customer-name  = deposit.c

and  branch-name = “Perryridge”
)
and exists

( select *
from borrow
where customer.customer-name  = borrow.c

and  branch-name = “Perryridge”
)



Datenbanken 7042 — WS 97/98 95.

SQL

rder by selected attributes:
Universität Bern

Ordering

Query results may be sorted in ascending or descending o

select *
from borrow
order by

amount desc ,
loan-number asc
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Summary

You should know the answers to these questions:
❑ How do you express selections, projections and 
❑ How can you compare relations? (union, intersec
❑ How do you form complex predicates?
❑ How do you express string matching predicates?
❑ When are tuple variables needed?
❑ How can query results be sorted?

Can you answer the following questions?
✎ How can a relational algebra query be translated to S
✎ When is the distinct  keyword needed?
✎ How do you express the RA division operator in SQL
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7. SQL, QBE and Quel

Overview
❑ SQL

☞ Aggregate functions and group predicates
☞ Restrictions, null values and views

❑ Query-by-Example
❑ Quel
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Aggregate Functions

Aggregate functions apply to groups with common attribut
❑ avg — average
❑ min — minimum
❑ max — maximum
❑ sum — total
❑ count — cardinality

Find the average account balance at each branch
select branch-name, avg (balance)
from deposit
group by branch-name

Find the number of depositors for each branch
select branch-name, count ( distinct  customer-name )
from deposit
group by branch-name
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Group Predicates

select branch-name, avg (balance)
from deposit
group by branch-name
having avg  (balance) > 1200

May not compose aggregate functions!
select branch-name
from deposit
group by branch-name

having avg ( balance ) ≥ all ( select avg ( balance )
from deposit
group by branch-name )

✎ Find the average balance of all depositors who live in
three accounts
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Modification

Deletion: delete r where P

delete deposit
where customer-name = “Smith”

delete borrow

Insertion:

insert into  deposit
values  (“Perryridge”, 9732, “Smith”, 1200)

insert into  deposit ( account-number,
customer-name,
branch-name,
balance )

values  (9732, “Smith”, “Perryridge”, 1200)
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Restrictions

A deletion or insertion may not include an embedded sele
lation being modified

INVALID SQL:
☞ delete deposit

where balance < ( select avg  (balance)
from deposit )

INVALID SQL:
☞ insert into deposit

select * from deposit
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Updates

update deposit
set balance = balance * 1.05

update deposit
set balance = balance * 1.06
where balance > 10000

update deposit
set balance = balance * 1.05

where balance ≤ 10000

INVALID SQL:
☞ update deposit

set balance = balance * 1.05
where balance > select avg (balance)

from deposit
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Null Values

insert into  deposit
values  (“Perryridge”, null,  “Smith”, 1200)

select *
from deposit
where account-number = 1700

select distinct customer-name
from borrow

where amount is null

select sum  (amount)
from borrow
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Views

create view  <view-name> as <query-expression

View names may be used anywhere that relation names a
EXCEPT

modifications may only be applied to views constructed fro

create view loan-info as
select branch-name, loan-number, customer-nam
from borrow

insert into  loan-info
values  (“Perryridge”, 3, “Ruth”)
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Data Definition

Defining new tables:
create table  r ( A1 D1, ... , An Dn )

Removing tables:
drop table  r

Adding new attributes:
alter table  r add A D
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Summary

You should know the answers to these questions:
❑ How to compute (aggregate) functions over sets 
❑ What is the difference between a where  clause a
❑ How do you express deletion, insertions and upd
❑ What restrictions must be obeyed in update com
❑ What test can be performed with null values?
❑ How do you define a view?
❑ What kind of views may be updated? How?

Can you answer the following questions?
✎ How can you compute the average of the maximum b
✎ Why can’t views defined over multiple relations be up

the update to the base relations?
✎ What is the difference between delete r  and drop tab
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Query-by-example

Developed by Zloof & de Jong, IBM TJ Watson, early 197

❑ Two-dimensional syntax representing tables
❑ Queries expressed “by example” by entering con
❑ Domain variables preceded by underscores: _x
❑ Complex queries via variable unification
❑ Explicit print command (P.) to obtain results
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Simple queries

In QBE:

In the domain relational calculus:

deposit branch-name account-number custome

“Perryridge” P._x

x〈 〉 b∃ l a b l x a, , ,〈 〉 deposit∈ b =  "Perr∧(, ,{
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r-name balance

r-name balance
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Variable unification

Which customers have accounts at both Perryridge 

Which customers have accounts at either Perryridge

deposit branch-name account-number custome

“Perryridge” P._x

“Redwood” _x

deposit branch-name account-number custome

“Perryridge” P._x

“Redwood” P._y
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Set Difference

✎ What does this query express?

✎ What would it mean if the negation were removed?

deposit branch-name account-number custome

“Perryridge” P._x

borrow branch-name loan-number customer-n

“Perryridge” _x¬
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Result Relations

✎ What does this query express?

deposit branch-name account-number custome

“Perryridge” _z _x

customer customer-name street custom

_x _y

result customer_name customer-city accou

P. _x _y _z
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Other features

❑ Condition boxes
❑ Ordering display of tuples
❑ Aggregate operations
❑ Deletion, Insertion and Update operators (D., I. a
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Quel

Based on tuple relational calculus:

range of t1 is  r1
range of t2 is  r2

.

.

.
range of tm is  rm
retrieve  (ti1.Aj1, ... tin.Ajn)
where  P
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Differences between Quel and

Equivalent expressive power, but:

❑ No set operations (intersection, union, minus)
❑ No nested retrieve-where  clauses
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Queries

range of  s  is  borrow
range of  t is  deposit
retrieve unique  ( s.customer-name )
where t.branch-name  = “Perryridge”

and s.branch-name  = “Perryridge”
and t.customer-name  = s.customer-name
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Other Features

Aggregate functions:
☞ count , sum , avg , any  ...

Deletion:
☞ delete t [ where P ]

Updates:
☞ replace t [ where P ]

Temporary relations:
☞ retrieve into , append to
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Summary

You should know the answers to these questions:
❑ What are QBE and Quel?
❑ How can a query in the tuple relational calculus b
❑ How do you express selections, projections, prod
❑ How can a query in the domain relational calculu

Can you answer the following questions?
✎ Are there queries that are easier to express in QBE th



Datenbanken 7042 — WS 97/98 118.

Integrity Constraints
Universität Bern

8. Integrity Constraints

Kinds of integrity constraints:
❑ Key declarations
❑ Mapping constraints
❑ Domain constraints
❑ Functional dependencies
❑ Assertions
❑ Triggers
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Domain Constraints

SQL types
❑ fixed length strings
❑ fixed point numbers
❑ integers
❑ small integers
❑ floating point numbers
❑ floating and double-precision

Null values
❑ not null  declaration
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Foreign keys

Suppose s(S) and r(R) are relations with key attributes KS

Then  is a foreign key if

for every t1 in s there is a (unique) t2 in r such tha

Alternatively, if .

α S⊆

Πα s( ) ΠK R
r( )⊆
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Referential Integrity
A referential integrity constraint requires that a foreign key
actual, existing tuple in another relation:

α

s

insertion

deletion

updates
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Referential Integrity in SQL

Table creation constraints:
❑ primary key  — list of attributes
❑ unique key  — list of attributes
❑ foreign key  — list of attributes referenced relatio

create table  deposit
( branch-name char(15) not null ,

account-number char(10),
customer-name char(20) not null ,
primary key  ( account-number, customer-name ),
foreign key  ( branch-name ) references branch,
foreign key  ( customer-name ) references  customer

)
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Functional Dependencies

Let .
Then the functional dependency

holds on R if for all t1, t2 in r(R)

α β, R⊆

α β→

t 1 α[ ]=t 2 α[ ] t 1 β[ ]=t 2 β[ ]⇒
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d1

d2

d2

d3

d4
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Example FDs

A B C

a1 b1 c1

a1 b2 c1

a2 b2 c2

a2 b3 c2

a3 b3 c2
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branch
branch-name assets branch-city

Downtown 9000000 Brooklyn
Redwood 2100000 Palo Alto
Perryridge 1700000 Horseneck
Mianus 400000 Horseneck
Round Hill 8000000 Horseneck
Pownal 300000 Bennington
North Town 3700000 Rye
Brighton 7100000 Brooklyn

alance

500
700
400

350
900
700
750
850

ount

000
000
500
500
00
00
00

300
000
500
00
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Example FDs in the Bank Datab

customer
customer-name street customer-city

Jones Main Harrison
Smith North Rye
Hayes Main Harrison
Curry North Rye
Lindsay Park Pittsfield
Turner Putnam Stamford
Williams Nassau Princeton
Adams Spring Pittsfield
Johnson Alma Palo Alto
Glenn Sand Hill Woodside
Brooks Senator Brooklyn
Green Walnut Stamford

deposit

branch-name
account-
number

customer-name b

Downtown 101 Johnson
Mianus 215 Smith
Perryridge 102 Hayes
Round Hill 305 Turner
Perryridge 201 Williams
Redwood 222 Lindsay
Brighton 217 Green
Downtown 105 Green

borrow

branch-name
loan-

number
customer-name am

Downtown 17 Jones 1
Redwood 23 Smith 2
Perryridge 15 Hayes 1
Downtown 14 Jackson 1
Mianus 93 Curry 5
Round Hill 11 Turner 9
Pownal 29 Williams 12
North Town 16 Adams 1
Downtown 18 Johnson 2
Perryridge 25 Glenn 2
Brighton 10 Brooks 22
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Closure of a set of FDs

The closure of a set F of FDs is the set F+ of all FDs logic

Armstrong’s Axioms
❑ Reflexivity:

❑ Augmentation:

❑ Transitivity:

β α⊆ α β→⇒
α β→ αγ βγ→⇒
α β→ β γ→, α γ→⇒
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Example — using closures

Consider:

A → B (1)
A → C (2)
CG → H (3)
CG → I (4)
BC → H (5)

✎ Can we also conclude A→H?
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βγ
γ
δ

Universität Bern

Derived Rules

The following rules can be derived from Armstrong’s Axiom

❑ Union:

❑ Decomposition:

❑ Pseudotransitivity:

α β→ α γ→, α →⇒
α βγ→ α β→ α →,⇒
α β→ βγ δ→, αγ →⇒



Datenbanken 7042 — WS 97/98 129.

Integrity Constraints

s functionally determined by α
Universität Bern

Closure of an attribute set

The closure of an attribute set α is the set α+ of all attribute

Example:
AG → ABG (1)

→ ABCG (2)
→ ABCGH (3)
→ ABCGHI (4)

Problem:

Given a set F of FDs, show that α→β is in F+.

Solution:

Compute α+ and check that β ⊆ α+.
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Finding Keys

We can now redefine a key of a relation R as a set of attri

A candidate key is a minimal such K (i.e., for any A ∈ K, (

Problem:
Given a relation R with FDs F, find a candidate k

Solution:
Start with K = R. Remove elements from K until a 

Alternative solution:
Find the set M of all attributes not appearing on t

If M+ = R, done

else let K = M ∪ (R\M+)

Clearly K+ = R. Remove elements from K until a m



Datenbanken 7042 — WS 97/98 131.

Integrity Constraints
Universität Bern

Example — finding keys

Consider:
AB → C (1)
B → D (2)
E → F (3)
CE → A (4)

✎ Does BE → DF?
✎ Does BE → FC?
✎ Is BE a superkey?
✎ Is BE a candidate key?
✎ What are all the candidate keys?
✎ Can you prove that you have found all of them?
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 in β

affecting the closure.]

edly to join common α→βi (4).

(2,3). Repeat until stable.

→C
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Canonical Covers

A canonical cover Fc of F, is a set of FDs such that

1. Fc
+ = F +

2. Each α→β in Fc contains no extraneous attributes

3. Each α→β in Fc contains no extraneous attributes

4. For each α→β in Fc , α is unique

[Attributes are extraneous if they can be removed without 

To compute the canonical cover, use the union rule repeat

Then check each α→β for extraneous attributes in α or β 

✎ Find the canonical cover for: A→BC, B→C, A→B, AB
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Assertions

Assertions in SQL:

assertion  assertion-name on  relation-name : pre

assertion banker-constraint on client :

customer-name ≠ employee-name

assertion address-constraint on insertion to deposit
exists  ( select*

from customer
where customer . customer-name = d

)
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Triggers

define trigger overdraft
on update of  deposit T

( if new  T.balance < 0
then  ( insert into  borrow

values ( T.branch-name, T.account-num
T.customer-name, - new T

update deposit S
set S.balance = 0
where S.account-number = T.acount-num

)
)
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Summary

You should know the answers to these questions:
❑ What kinds of integrity constraints are important 
❑ What is a foreign key?
❑ What is referential integrity, and how is it guaran
❑ How is referential integrity specified in SQL?
❑ What is a functional dependency?
❑ How do you compute the closure of a set of FDs
❑ How can you show that a particular FD holds?
❑ How can you test if a set of FDs is a canonical co
❑ How do you compute a canonical cover for a set

Can you answer the following questions?
✎ Can you tell what functional dependencies hold just b
✎ How would you prove Armstrong’s Axioms?
✎ What is an efficient algorithm for computing the closu
✎ How can you find a candidate key for a relation?



Datenbanken 7042 — WS 97/98 136.

Database Design
Universität Bern

9. Database Design

Seek to avoid:
❑ Repetition of information
❑ Inability to represent certain information
❑ Loss of information

Overview
❑ Lossless joins
❑ Normalization
❑ Dependency preservation
❑ Boyce-Codd Normal Form (BCNF)
❑ Third Normal Form (3NF)
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Example

borrow
branch-name loan-number customer-name amount

Downtown 17 Jones 1000
Redwood 23 Smith 2000
Perryridge 15 Hayes 1500
Downtown 14 Jackson 1500
Mianus 93 Curry 500
Round Hill 11 Turner 900
Pownal 29 Williams 1200
North Town 16 Adams 1300
Downtown 18 Johnson 2000
Perryridge 25 Glenn 2500
Brighton 10 Brooks 2200

branch-

Downtow
Redwoo
Perryrid
Mianus
Round H
Pownal
North To
Brighton

Borrow-Scheme Bran
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Repetition of Information

branch  borrow
branch-name assets branch-city loan-number c

Downtown 9000000 Brooklyn 17 Jon
Redwood 2100000 Palo Alto 23 Sm
Perryridge 1700000 Horseneck 15 Ha
Downtown 9000000 Brooklyn 14 Jac
Mianus 400000 Horseneck 93 Cu
Round Hill 8000000 Horseneck 11 Tu
Pownal 300000 Bennington 29 Wi
North Town 3700000 Rye 16 Ada
Downtown 9000000 Brooklyn 18 Joh
Perryridge 1700000 Horseneck 25 G
Brighton 7100000 Brooklyn 10 Bro

Lending-Scheme
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ount customer-name

00 Jones
00 Smith
00 Hayes
00 Jackson
00 Curry
00 Turner
00 Williams
00 Adams
00 Johnson
00 Glenn
00 Brooks

n-Scheme
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Lossy Joins

Consider decomposing Borrow-Scheme as follows:

amt
branch-name loan-number amount

Downtown 17 1000
Redwood 23 2000
Perryridge 15 1500
Downtown 14 1500
Mianus 93 500
Round Hill 11 900
Pownal 29 1200
North Town 16 1300
Downtown 18 2000
Perryridge 25 2500
Brighton 10 2200

Amt-Scheme

am

10
20
15
15
5
9

12
13
20
25
22

Loa



Datenbanken 7042 — WS 97/98 140.

Database Design

mount

00
00

500
500
00
00
00
00

000
00
00
00
00
000
00
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Lossy Joins
amt  loan

branch-name loan-number customer-name a

Downtown 17 Jones 10
Redwood 23 Smith 20
Perryridge 15 Hayes 1
Downtown 14 Jackson 1
Mianus 93 Curry 5
Round Hill 11 Turner 9
Pownal 29 Williams 12
North Town 16 Adams 13
Downtown 18 Johnson 2
Perryridge 25 Glenn 25
Brighton 10 Brooks 22
Perryridge 15 Jackson 15
Downtown 14 Hayes 15
Redwood 23 Johnson 2
Downtown 18 Smith 20
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Decomposition

A decomposition of a relation scheme R is a set of relation
that .

Let C be a set of constraints (e.g., functional dependencie
decomposition { R1, ..., Rn } of relation scheme R is a loss
every relation r that satisfies C, it is true that

r = ...

R Ri
i

∪=

ΠR1
r( ) ΠR2

r( ) Π
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Normalisation

Lending-scheme = (branch-name, assets, branch
loan-number, custom

with FDs:
branch-name → assets branch-city
loan-number → amount branch-name

Decompose into:

Branch-scheme = (branch-name, assets, branch
Loan-info-scheme = (branch-name, loan-number
Customer-loan-scheme = (loan-number, custome
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Lossless Join Decomposition

Suppose F is a set of functional dependencies over R.

Then  is a lossless-join decomposition if eith

❑

❑

is in F +.

R R1 R2∪=

R1 R2∩ R1→

R1 R2∩ R2→

R

R1

R2
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Lossless Join Decomposition

Use
branch-name → assets branch-city

to decompose Lending-scheme into
Branch-scheme = (branch-name, assets, branch
Borrow-scheme = (branch-name, loan-number, c

Then, use
loan-number → amount branch-name

to decompose Borrow-scheme into
Loan-info-scheme = (branch-name, loan-number
Customer-loan-scheme = (loan-number, custome
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Dependency Preservation

Goal:
☞ avoid taking joins to check integrity constrain

Approach:
☞ ensure that functional dependencies restrict

schemes are equivalent to the original set of

The restriction of F to Ri , where {R1, ... Rn } is a decompos

in F + including only attributes in Ri .

{R1, ... Rn } is a dependency-preserving decomposition of R

to the closure F + of F.
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Normal Forms

Repetition of information typically occurs when FDs α→β a
relation. Various normal forms have been introduced to av

Boyce-Codd Normal Form
☞ only allow superkey FDs to occur in relation 

Third Normal Form
☞ also allow transitive FDs

Fourth Normal Form
☞ like BCNF, but applied to “multivalued depen
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Boyce-Codd Normal Form

A relation scheme R is in Boyce-Codd Normal Form if for e
either

1. α→β is a trivial FD (i.e., ), or
2. α is a superkey for R

A database schema is in BCNF if each relation scheme is

Branch-scheme = (branch-name, assets, branch
branch-name → assets branch-city

Borrow-scheme = (branch-name, loan-number, c
loan-number → amount branch-name

β α⊆
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BCNF Decomposition Algorithm

while some R is not in BCNF
select non-trivial α→β holding on R whe

α→R is not in F+ and α∩β = ∅
replace R by α∪β and (R-β)

The algorithm terminates, generates a BCNF sch
lossless join.

Replace

by

and
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Shortfalls of BCNF

BCNF schemas are not necessarily dependency preservin

Consider:
Banker-scheme = (branch-name, customer-nam

banker-name → branch-name
customer-name branch-name → banker-name

Decompositions are not necessarily unique.
Consider: a → b c, b d → a
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Third Normal Form

A relation scheme R is in Third Normal Form if for every F

1. α→β is a trivial FD (i.e., ), or
2. α is a superkey for R, or
3. each attribute A in β is contained in a candidate ke

A database schema is in 3NF if each relation scheme is in

β α⊆
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3NF Decomposition Algorithm

Given F in canonical form for relation scheme R:
D = ∅
for each α→β in F

if no scheme in D contains αβ
then add αβ to D

if no scheme in D contains a candidate key for R
then add any candidate key for R to D

Guarantees 3NF, lossless join, and dependency preserva
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BCNF vs. 3NF

❑ BCNF is preferable if the resulting schema is als

❑ Otherwise 3NF is preferable, to reduce the cost o
constraints.

❑ In the presence of transitive FDs, 3NF may introd
require null values.

Goal:
☞ BCNF + lossless join + dependency preserv

If not possible, accept:
☞ 3NF + lossless join + dependency preservat
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Summary

You should know the answers to these questions:
❑ What is a lossy join? What is lost in a lossy join?
❑ What is a lossless-join decomposition?
❑ What is dependency preservation?
❑ What is BCNF? How does the BCNF decomposi
❑ What is 3NF? How does the 3NF decomposition

Can you answer the following questions?
✎ Why does lossless join decomposition work correctly?
✎ Why is the BCNF decomposition algorithm correct?
✎ Is it possible for a relation scheme to be in BCNF yet 
✎ What about 3NF?
✎ Does BCNF imply 3NF?
✎ Why is it always possible to find a 3NF decomposition

dependency preserving , but not always a BCNF one
✎ Are 3NF schemas necessarily dependency preservin
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10. File and System Structure

Overview
❑ Storage media
❑ File Organization
❑ Buffer Management
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Physical Storage Media

Main memory:
☞ fast, small, volatile, expensive

Disk storage:
☞ slower, large, persistent

Tape storage:
☞ slow, sequential, archival, cheap
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Disk Storage

arm 0

arm n-1

platter 0

platter m-1

track 0 track n
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File Organisation

Blocks are fixed-size units of memory on a disk.

A file is organized logically as a sequence of records mapp
within a given file may be either fixed or variable length.

❑ Fixed-length records: simple and efficient to impl
representing complex information

❑ Variable length records: more flexible; problems 
wasted storage, slower searching
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Fixed-length records

type deposit  =
record

branch-name  : char (20) ;
account-number  : integer ;
customer-name  : char (20) ;
balance  : real ;

end

Record length = 52 bytes (20 + 4 + 20 + 8)
☞ alignment with block boundaries?
☞ insertions and deletions?



Datenbanken 7042 — WS 97/98 159.

File and System Structure

 list of deleted records is
he list. When the list is empty,

500
700

350
900

750
850
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Insertions and deletions

Rather than moving data when records are deleted, a free
maintained: deletions and insertions occur at the head of t
new records are inserted at the end of the file.

header
record 0 - Downtown 101 Johnson
record 1 - Mianus 215 Smith
record 2
record 3 - Round Hill 305 Turner
record 4 - Perryridge 201 Williams
record 5
record 6 - Brighton 217 Green
record 7 - Downtown 105 Green
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Variable length records

❑ multiple record types per file
❑ repeating fields
❑ variable length fields

type deposit-list  =
record

branch-name  : char (20) ;
account-info  : array  [1 .. ] of

record
account-number  : integer ;
customer-name  : char (20) ;
balance  : real ;

end
end
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Byte String Representation

Use special end-of-record marker (⊥)
❑ Hard to reuse space; can lead to fragmentation
❑ Costly to handle record growth

0 Perryridge 102 Hayes 400 201 Williams 900
1 Round Hill 305 Turner 350 ⊥
2 Mianus 215 Smith 700 ⊥
3 Downtown 101 Johnson 500 110 Peterson 600⊥
4 Redwood 222 Lindsay 700 ⊥
5 Brighton 217 Green 750 ⊥
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 of fixed-length records

0 218 Lyle 700
⊥ ⊥ ⊥
⊥ ⊥ ⊥
00⊥ ⊥ ⊥
⊥ ⊥ ⊥
⊥ ⊥ ⊥
Universität Bern

Fixed-Length Representation

1. Reserved space: requires fixed maximum space fo

2. Pointers: represent variable length record by chain

0 Perryridge 102 Hayes 400 201 Williams 90
1 Round Hill 305 Turner 350 ⊥ ⊥ ⊥
2 Mianus 215 Smith 700 ⊥ ⊥ ⊥
3 Downtown 101 Johnson 500 110 Peterson 6
4 Redwood 222 Lindsay 700 ⊥ ⊥ ⊥
5 Brighton 217 Green 750 ⊥ ⊥ ⊥

0 Perryridge 102 Hayes 400
1 Round Hill 305 Turner 350
2 Mianus 215 Smith 700
3 Downtown 101 Johnson 500
4 Redwood 222 Lindsay 700
5 201 Williams 900
6 Brighton 217 Green 750
7 110 Peterson 600
8 218 Lyle 700
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zation

ks and overflow blocks:

es 400
er 350
h 700
son 500
say 700
n 750
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Anchor/overflow block organi

To save space, records can be separated into anchor bloc

Perryridge 102 Hay
Round Hill 305 Turn
Mianus 215 Smit
Downtown 101 John
Redwood 222 Lind
Brighton 217 Gree

201 Williams 900
110 Peterson 600
218 Lyle 700

Anchor block

Overflow block
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s

 for retrieving related
o chained blocks.
ld be stored on the
nders.
lists to maintain
tions and updates.

e and space efficiency.
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Organizing Records into Block

Perryridge
.
.
.

.

.

.

Round Hill

.

.

.

.

.

.

.

.

.

Block 0

Block 1

Block 2

Block 3

Block 4

To reduce seek-time
records, organize int
Related blocks shou
same, or nearby cyli
Need separate free 
closeness with inser
Trade-off between tim
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Brighton 217 Green 750
Downtown 101 Johnson 500
Downtown 110 Peterson 600
Mianus 215 Smith 700
Perryridge 102 Hayes 400
Perryridge 201 Williams 900
Perryridge 218 Lyle 700
Redwood 222 Lindsay 700
Round Hill 305 Turner 350

Mianus 888 Adams 800

re pre-sorted to
val by a search key.
Universität Bern

Sequential Files
Brighton 217 Green 750
Downtown 101 Johnson 500
Downtown 110 Peterson 600
Mianus 215 Smith 700
Perryridge 102 Hayes 400
Perryridge 201 Williams 900
Perryridge 218 Lyle 700
Redwood 222 Lindsay 700
Round Hill 305 Turner 350

Sequential files a
support fast retrie

Deletions are kept on a free list for each
block. Insertions are made to free slots on
the same block if possible, otherwise to an
overflow block.
Requires occasional reorganisation.
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es

 relations can be mapped to

ords to blocks can have a
mplex file structures may be

the operating system’s file
in a single system file.
lustered together to efficiently
, deposit  customer —
Universität Bern

Mapping Relational Data to Fil

☞ Tuples are usually fixed-length records, and
simple file structures.

☞ For very large databases assignments of rec
critical impact on performance, and more co
needed.

☞ Large-scale database systems may bypass 
management by storing the entire database 
Related tuples in separate relations may be c
implement commonly expected joins — e.g.
though this may slow down other queries ...
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utes

ation

)
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Data Dictionary Storage

The Data Dictionary may itself be accessed as a database

Database schema:
❑ Names of relations; names and domains of attrib
❑ Names and definitions of views
❑ Integrity constraints for each relation (e.g., keys)

Users:
❑ User names and authorization; accounting inform

Statistics and Technical details:
❑ Number of tuples per relation; types of queries
❑ Storage method used per relation (e.g., clustered
❑ Indexed relations and attributes; types of indices
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ust be written out in a
 to maintain consistency.
rced, or even restricted for
d blocks.

rmanent Storage
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Buffer Management

When the buffer is full, blocks to be
read in must replace existing blocks.
What strategy should be used (LRU,
MRU ...)?

Modified blocks m
controlled fashion
Output may be fo
temporarily pinne

Main memory (buffer)

Pe
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, indices) should remain in

are likely to be accessed.

ect the order in which blocks

ests may need to be delayed
ded by these requests can

y the crash recovery system.
em failures.)
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Buffer Management

❑ Commonly accessed information (data dictionary
memory.

❑ Statistics may help to determine which relations 

❑ The way in which queries are processed may aff
should be read and replaced.

❑ In the presence of concurrent users, certain requ
to maintain consistency — loading of blocks nee
therefore be delayed.

❑ Writing of modified blocks must be coordinated b
(Updates must be atomic in the presence of syst
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peed up access?
e than fixed-length?

re they useful?

fer?

ses?
iency?
file system?
abase performance?
ntee atomicity?
Universität Bern

Summary

You should know the answers to these questions:
❑ How should related disk blocks be organized to s
❑ Why are variable-length records harder to manag
❑ What is a free list? How is it used?
❑ What is fragmentation? How does it arise?
❑ What are “anchor” and “overflow” blocks? Why a
❑ How can sequential files speed up access time?
❑ What is the role and function of the database buf

Can you answer the following questions?
✎ How is a free list initialized?
✎ Can variable length records arise in relational databa
✎ Why must one often trade-off time against space effic
✎ Why do many database systems need to bypass the 
✎ What kind of information can be used to fine-tune dat
✎ How must modified blocks be written to disk to guara
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dices
Universität Bern

11. Indexing and Hashing

Overview
❑ Index Sequential Files; primary and secondary in

❑ B+-trees and B-trees
❑ Hashing; static and dynamic hashing
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structure)?
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Basic Concepts

Access time:
☞ How long does it take to find items?

Insertion time:
☞ How long does it take to insert items

(including time to update index structure)?

Deletion time:
☞ How long to delete items (and update index 

Space overhead:
☞ What is the cost of extra space?
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locks
Universität Bern

Indexing

Primary index:
❑ file is sorted by primary search key
❑ all matching records are in the same or nearby b

Secondary index:
❑ index on other attributes
❑ matching records may be in arbitrary blocks
❑ “buckets” of pointers point to actual records

Dense index:
❑ index record for every search-key value

Sparse index:
❑ index record only for selected search-key values

e.g., first record of each block/bucket
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n:  Look up and delete
; if this is the last record
is search value, also delete
 key in index

on:  Lookup and insert
; add search-key to index if
d

n:  Look up and delete
; replace search key in
by that of next record (or
 if already in index)
on:  Lookup and insert
; add new search key to
only if new block is created
Universität Bern

Dense and sparse indices

Brighton 217 Green 750
Downtown 101 Johnson 500
Downtown 110 Peterson 600
Mianus 215 Smith 700
Perryridge 102 Hayes 400
Perryridge 201 Williams 900
Perryridge 218 Lyle 700
Redwood 222 Lindsay 700
Round Hill 305 Turner 350

Brighton
Downtown
Mianus
Perryridge
Redwood
Round Hill

Brighton 217 Green 750
Downtown 101 Johnson 500
Downtown 110 Peterson 600
Mianus 215 Smith 700
Perryridge 102 Hayes 400
Perryridge 201 Williams 900
Perryridge 218 Lyle 700
Redwood 222 Lindsay 700
Round Hill 305 Turner 350

Brighton
Mianus
Redwood

Deletio
record
with th
search
Inserti
record
neede

Deletio
record
index 
delete
Inserti
record
index 

Dense index

Sparse index
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e indices, but these may take

 cost of reading a block; so
 (One search-key entry per

cond-level sparse index may
o levels usually suffice)
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Indices

❑ Records can be retrieved more quickly with dens
up a great deal of space.

❑ Cost of searching in memory is low compared to
sparse indices are used to locate blocks to read.
block.)

❑ If the primary index does not fit into memory, a se
be constructed (even for very large databases, tw
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condary “keys”.

duce the cost of retrieving

n 217 Green 750
wn 101 Johnson 500
wn 110 Peterson 600

215 Smith 700
ge 102 Hayes 400
ge 201 Williams 900
ge 218 Lyle 700
d 222 Lindsay 700

Hill 305 Turner 350
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Secondary indices

Buckets group together pointers to records with nearby se

Bucket entries may also contain the search key value to re
individual records.

Brighto
Downto
Downto
Mianus
Perryrid
Perryrid
Perryrid
Redwoo
Round 

Green
Lindsay
Smith

bucket 1

bucket 2

bucket 3
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s/records

n (n is fixed)

 to buckets
es

lesce if m leaves the range

Kn-1 Pn
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B+ Tree Index Files

Index-sequential files perform poorly as database grows;
B+ Trees perform better under frequent modifications

❑ Tree of ranges of search key values
❑ Nodes contain search keys and pointers to node

❑ Each node has m children, between  and

❑ Search key values are in sort order
❑ Leaf nodes point to records (for primary keys) or
❑ Pointer Pn is also used to chain together leaf nod

❑ Insertions/deletions may cause nodes to split/coa

P1 K1 P2 ... Pm-1 Km-1 Pm ... Pn-1

n 2⁄

n 2⁄ n,( )
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Redwood Round Hill

ridge Redwood Round Hill
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B+ Tree Insertions

Perryridge

Mianus Redwood

PerryridgeMianusBrighton Downtown

Perryridge

Downtown Mianus Redwood

PerryMianusBrighton Clearview Downtown

Insertion of “Clearview” causes leaf node to split
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Redwood Round Hill

Redwood Round Hill
Universität Bern

B+ Tree Deletions

Deletion of “Downtown”:

Deletion of “Perryridge”:

Perryridge

Mianus Redwood

PerryridgeMianusBrighton Clearview

Mianus Redwood

MianusBrighton Clearview
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 not just leaf nodes (additional
 more quickly

des that become too small will

 usually preferred.
Universität Bern

B-Tree Index Files

Similar to B+ Trees, except:

❑ Every node contains pointers to records/buckets,
pointers needed); so some records can be found

❑ Leaf nodes are not chained
❑ Deletions are more complicated since non-leaf no

require local reorganizations

Advantages are marginal for large indices, so B+ trees are
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s B.

 scan the bucket for the key

)
K)
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Hash Functions

A hash function h maps search keys K to bucket addresse

To perform a lookup on search key compute , and
value.

A good hash function assigns search keys to buckets:
❑ with uniform distribution (over the entire space K
❑ with random distribution (for arbitrary subsets of 

k i h k i( )
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 the bucket and insert or

e fixed in advance; space is
rmance will suffer if the

ize (performance will degrade

ile size (initially wastes space)
e-consuming and disruptive)
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Static hash functions

❑ Insertion and deletion are straightforward (lookup
delete)

❑ The hash function and number of buckets must b
wasted if too many buckets are chosen, but perfo
buckets become too full

☞ choose hash function based on current file s
with time)

☞ choose hash function based on anticipated f
☞ periodically reorganize the hash structure (tim
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very large number of buckets,

actual bucket in a bucket

 address table is modified

buckets, k is incremented and
Universität Bern

Dynamic hash functions

❑ Extendible hash function computes a value for a 
e.g., 232

❑ First k bits of hash value are used to look up the 
address table

❑ Multiple entries may point to the same bucket

❑ As buckets grow too big and are split, the bucket
accordingly

❑ When the table can no longer accommodate split 
the table is expanded
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Sample deposit file
Brighton 217 Green 750
Downtown 101 Johnson 500
Mianus 215 Smith 700
Perryridge 102 Hayes 400
Redwood 222 Lindsay 700
Round Hill 305 Turner 350
Clearview 117 Throggs 295

3 1
Round Hill ...
Brighton ...

3
Mianus ...

3
Downtown ...
Redwood ...

2
Perryridge ...
Clearview ...
Universität Bern

Dynamic Hashing example
Hash function
(abbreviated)

Brighton 0010
Clearview 1101
Downtown 1010
Mianus 1000
Perryridge 1111
Redwood 1011
Round Hill 0101

0
0

0
Perryridge ...
Round Hill ...

1
0
1

1
Round Hill ...

1
Perryridge ...
Downtown ...

2
00
01
10
11

1
Round Hill ...

2
Downtown ...
Redwood ...

2
Perryridge ...

000
001
010
011
100
101
110
111
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attribute = key value)

s
ase is O(n))

ttribute in range [c1,c2])

ges are easy to find

find (conflicts with uniformity
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Hashing vs. Indexing

What kinds of queries will be most common?

❑ Hashing is more efficient for equality selections (

☞ index lookup takes time O(log(n)) for n value
☞ hash lookup is constant time (though worst c

❑ Indexes are more efficient for range selections (a

☞ since indices use sorted files or buckets, ran
☞ not so for hash structures;

order-preserving hash functions are hard to 
and randomness!)
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nse/sparse indices?

?

 hashing?

n individual records?
?

Universität Bern

Summary

You should know the answers to these questions:
❑ What are primary and secondary indices?
❑ How are insertions and deletions handled with de
❑ What is the structure of a valid B+ tree?
❑ When must nodes be split/coalesced in a B+ tree
❑ How are hash functions used to find key values?
❑ What are the limitations of static hash functions?
❑ What are the relative advantages of indexing and

Can you answer the following questions?
✎ Why do secondary indices point to buckets rather tha
✎ When must node values be redistributed in a B+ tree
✎ What is the space overhead for a B+ tree?
✎ What are examples of good/bad hash functions?
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ncy Control
Universität Bern

12. Transactions and Concurre

Overview
❑ Transactions
❑ Recovery logs
❑ Serializability
❑ Two-phase locking
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omplete or none
base consistency
her transactions
tant to failures

(B)

s to memory may
utput  to disk must
ency

A = 1000

B = 2000
Universität Bern

Transactions

A transaction must satisfy the “ACID” properties:
❑ Atomicity: either all transaction operations must c
❑ Consistency: correct execution must ensure data
❑ Isolation: intermediate states are not visible to ot
❑ Durability: once committed, a transaction is resis

T: read (A, a)
a := a - 50
write (A,a)

read (B,b)
b := b + 50
write (B,b)

A = 950

input

read  and write  operation
trigger input  from disk; o
ensure database consist
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ed

ially committed

aborted

itted
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Transaction States

Active — the initial state

Partially committed — after the
last statement has been executed

Failed — after normal execution is
no longer possible

Aborted — after the transaction is
rolled back

Committed — after successful
completion

fail

part
comm

active
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se in a consistent state.

ted for external reasons (e.g.,

ically impossible to complete
, etc.)
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Aborted Transactions

Aborted Transactions must leave the (permanent) databa

Two options after abortion:

❑ Restart:  only possible if the transaction was abor
crash, deadlock, etc.)

❑ Kill the transaction:  should only occur if it is log
the transaction (e.g., unavailable data, bad input
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ns and transaction state
 until a transaction commits.

h by re-running the logged
Universität Bern

Recovery Logs

Principle idea: Achieve atomicity by logging all modificatio
changes to stable storage without modifying the database

Committed transactions can be safely redone after a cras
modifications. (Redo must be idempotent.)

Log entries may contain:
❑ Transaction name
❑ Data item name
❑ Old value
❑ New value
❑ Transaction state changes (start and commit)
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n

Database

>

>

0>

its >

>

>

its >

A = 1000

B = 2000

C = 700

A = 950

B = 2050

C = 600
Universität Bern

Deferred Database Modificatio

T1: read (A)

A := A - 50

write (A)

read (B)

B := B + 50

write (B)

T2: read (C)

C := C - 100

write (C)

Log

<T1 starts

<T1, A, 950

<T1, B, 205

<T1 comm

<T2 starts

<T2, C, 600

<T2 comm
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tion

Database

50>

050>

>

0>

>

A = 950

B = 2050

C = 600
Universität Bern

Immediate Database Modifica

Log

<T1 starts >

<T1, A, 1000, 9

<T1, B, 2000, 2

<T1 commits

<T2 starts >

<T2, C, 700, 60

<T2 commits

Logged updates can be
immediately reflected in stable
storage if both old and new
values are logged: after failure,
uncompleted transactions must
first be undone by restoring old
values, and then completed
transactions must be redone.
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age before the <T commit >

T commit > log record has

mory must be output to stable

m for new blocks, all log
ut to stable storage.
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Log Record Buffering

❑ All log records for T must be output to stable stor
log record is output.

❑ Transaction T enters the commit state after the <
been output to stable storage.

❑ All log records pertaining to a block of data in me
storage before the block itself is output.

NB: if blocks in memory must be swapped out to make roo
records for the block to be swapped out must first be outp
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hedules

T2

d (A)

 A - 50

te (A)

d (B)

 B + 50

te (B)

read (A)

temp := A * 0.1

A := A - temp

write (A)

read (B)

B:= B+ temp

write (B)
Universität Bern

Concurrent and Serializable Sc

T1 T2

read (A)

A := A - 50

write (A)

read (B)

B := B + 50

write (B)

read (A)

temp := A * 0.1

A := A - temp

write (A)

read (B)

B:= B+ temp

write (B)

T1

rea

A :=

wri

rea

B :=

wri
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izable schedule is not
 any serial schedule,

he database in an
state.
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Non-serializable Schedules

T1 T2

read (A)

A := A - 50

write (A)

read (B)

B := B + 50

write (B)

read (A)

temp := A * 0.1

A := A - temp

write (A)

read (B)

B:= B+ temp

write (B)

A non-serial
equivalent to
and leaves t
inconsistent 
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ns Ti and Tj within a schedule

ne of the two is a write

Ti Tj

write (Q)

write (Q)
Universität Bern

Conflict Serializability

Read and write instructions Ii and Ij of separate transactio
may be interchanged if they do not conflict.

Ii and Ij conflict if they refer to the same data item Q, and o
operation.

Ti Tj

read (Q)

read (Q)

Ti Tj

read (Q)

write (Q)

Ti Tj

read (Q)

write (Q)
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into a serial schedule by

T2

A)

(A)

B)

(B)

read (A)

write (A)

read (B)

write (B)
Universität Bern

Serializing Schedules

A schedule is conflict-serializable if it can be transformed 
interchanging non-conflicting instructions

T1 T2

read (A)

write (A)

read (B)

write (B)

read (A)

write (A)

read (B)

write (B)

T1

read (

write

read (

write

1

3

2

4
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ty

its precedence graph.

r each transaction, and an

, or

, or

.

T2

 Serializable
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Testing for Conflict Serializabili

A schedule is conflict serializable if there are no cycles in 

Construct a precedence graph by introducing one node fo
edge from Ti to Tj if:

❑ Ti executes write (Q) before Tj executes read (Q)

❑ Ti executes read (Q) before Tj executes write (Q)

❑ Ti executes write (Q) before Tj executes write (Q)

T1 T2 T1

Serializable Not
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sible serialization.

T1

T4

T2

T3
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Sorting Precedence Graphs
A topological sorting of the precedence graph yields a pos

T1

T4

T2 T3
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ed by a transaction according

 Q, it may read but not write Q
xclusive lock for Q is already

y both read and write Q
 lock for Q is held by another

lock if no other locks are held
Universität Bern

Locks

Serializability can be ensured by locking data items access
to a locking protocol ...

Shared (read) locks:
❑ If transaction T obtains a shared lock (lock-S) on
❑ A shared lock for Q may be obtained only if no e

held by another transaction.

Exclusive (write) locks:
❑ If T obtains an exclusive lock (lock-X) on Q, it ma
❑ An exclusive lock for Q may only be obtained if no

transaction.

A transaction may upgrade a shared lock to an exclusive 
by other transactions.
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 inconsistent database states

ocks, but may not release

e locks, but may not obtain

oes not avoid deadlock ...
Universität Bern

Two-phase Locking Protocol

Two-phase locking ensures serializability by ensuring that
cannot be seen by other transactions.

❑ Growing phase:  first, a transaction may obtain l
them.

❑ Shrinking phase:  then, a transaction may releas
any new locks.

Two-phase locking guarantees conflict-serializability, but d
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o-phase, serializable
schedule

T2

(A)
A)
(A)

(B)
k (A)

B)

(B)
k (B)

lock-X (A)
read (A)

write (A)

lock-X (B)
unlock (A)
read (B)
write (B)
unlock (B)
Universität Bern

Locking Protocols

Unserializable schedule

T1 T2

lock-X (A)
read (A)
write (A)
unlock (A)

lock-X (B)
read (B)
write (B)
unlock (B)

lock-X (A)
read (A)
write (A)
unlock (A)
lock-X (B)
read (B)
write (B)
unlock (B)

Tw

T1

lock-X
read (
write
lock-X
unloc

read (

write
unloc
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ing is not sufficient to
.

ected by constructing a
and checking for cycles

T3

ts-for graph
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Deadlock

Two-phase, deadlocking
schedule

T1 T3

lock-X (A)
read (A)
write (A)

lock-X (B)

lock-X (B)
read (B)
write (B)
lock-X (A)

Two-phase lock
avoid deadlock

Deadlock is det
waits-for graph 

T1

Wai
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erall cost of rolling back and

ed?
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Deadlock Recovery

Deadlock is resolved by picking a victim to roll back:

❑ The victim should be selected to minimize the ov
restarting the victim
☞ computation time?
☞ number of data items used so far? still need
☞ how many transactions to roll back?

❑ Partial rollback may be sufficient

❑ Starvation must be avoided
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ty?
ed in the database?
t-serializable?
 from a set of interleaved, but

y?

 a consistent database state?
s after a failure?
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Summary

You should know the answers to these questions:
❑ What properties must a transaction satisfy?
❑ When may an aborted transaction be restarted?
❑ How does a recovery log help to achieve atomici
❑ When can transaction updates actually be reflect
❑ How can you check if two transactions are conflic
❑ How can you derive an equivalent serial schedule

serializable transactions?
❑ How does two-phase locking ensure serializabilit
❑ How can you detect and resolve deadlock?

Can you answer the following questions?
✎ Can two transactions be unserializable, yet still lead to
✎ How can you avoid redoing all committed transaction
✎ How can you avoid deadlock in the first place?
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13. Query Processing

Overview
❑ Equivalence of expressions
❑ Estimation of query-processing cost
❑ Join strategies
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 internally in a form based on
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Equivalence of Expressions

Textual queries in, e.g., SQL, are parsed and represented
relational algebra.

❑ Each R.A. expression determines a certain evalu
❑ Formally equivalent expressions may differ in eff
❑ Various rules can be applied to transform queries
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Selection

Customer-Scheme = (customer-name, street, customer-c
Deposit-Scheme = (branch-name, account-number, custo
Branch-Scheme = (branch-name, assets, branch-city)

Consider:

( (custome

vs.:

( (custome

☞ Perform selections as early as possible

✎ How can you formalize this rule?

Πbranch-name, assets σcustomer-city = "Port Chester"

Πbranch-name, assets σcustomer-city = "Port Chester"
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Conjunctions

☞ Replace expressions of the form:
by

 (  (cΠbranch-name, assets σcustomer-city = "Port Chester" ^ balance > 1000

(customer  depoσcustomer-city = "Port Chester" ^ balance > 1000

 (  (customer  depσcustomer-city = "Port Chester" σbalance > 1000

(customer) (depσcustomer-city = "Port Chester" σbalance > 1000

σP1 ^ P2 e( ) σP1 σP2 e( )( )
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Projections

Consider:
 ( (customer)

vs.
( ( (cu

☞ Perform projections early

✎ How can you formalize this rule?

Πbranch-name, assets σcustomer-city = "Port Chester"

Πbranch-name, assets Πbranch-name σcustomer-city = "Port Chester"
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Natural Joins

Consider:
(customer)  (deposit  bran

vs.

( (customer)  branch)  dep

vs.

( (customer)  deposit)  bra

☞ Rearrange multiple joins to minimize tempor

σcustomer-city = "Harrison"

σcustomer-city = "Harrison"

σcustomer-city = "Harrison"
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Other transformations

☞

☞

☞

☞

☞

☞ r  s = s  r
☞

☞

σP σQ r( )( ) σQ σP r( )( )=

σP r 1 r 2∪( ) σP r 1( ) σP r 2( )∪=

σP r 1 r 2–( ) σP r 1( ) r 2– σP r 1( ) σP r 2( )–= =

πA πB …πX r( )( )( ) πA r( )=

πA σA v= r( )( ) σA v= πA r( )( )=

r 1 r 2∪( ) r 3∪ r 1 r 2 r 3∪( )∪=

r 2 r 1∪ r 1 r 2∪=
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Estimation of Query-Processing

Need various statistics:

❑  — the number of tuples in relation r

❑  — the size of a tuple in relation r (in bytes)

❑  — the number of distinct values for attri

Can assume that, on average,  will have

nr

sr

V A r,( )

σA = a r( )
nr

V A r,( )
-------------------
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Joins

Consider , where  and

1. If  then size is

2. If  is a key for , then size is at most

3. If  is not a key, then a tuple in  will 

tuples in . By symmetry, the join contains at mos

 tuple

r 1 r 2 r 1 R1( ) r 2 R2( )

R1 R2∩ ∅= nr 1
nr 2

⋅

R1 R2∩ R1 nr 2

A R1 R2∩= r 1

r 2

min
nr 1

nr 2
⋅

V A r 1,( )
---------------------

nr 1
nr 2

⋅
V A r 2,( )
---------------------,( )
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Indices

Consider:
select account-number
from deposit
where branch-name = “Perryridge”

and customer-name = “Williams”
and balance > 1000

where
❑ 20 deposit tuples fit on one block
❑ V(branch-name, deposit) = 50
❑ V(customer-name, deposit) = 200
❑ V(balance, deposit) = 5000

❑

❑ there is a clustering B+ tree index for branch-nam

❑ there is a non-clustering B+ tree index for custom

ndeposit 10000=
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Query Strategies Using Indices

1. Use index on branch-name: 12 block accesses

– 50 tuples occupy 3-5 leaf nodes (assume 20 e
of 2 block accesses (root + leaf)

– 200 clustered tuples occupy 10 blocks

2. Use index on customer-name: 52 block accesses

– 200 tuples occupy 10-20 leaf nodes: 2 block a

– 50 non-clustered tuples occupy 50 blocks

3. Use both indices: 5 blocks

– 4 blocks to retrieve pointers to 200 + 50 recor

– compute intersection to yield 1 in
block to access

50 200× =
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Join Strategies

Depends on:
❑ physical order of tuples
❑ presence and type (clustering) of indices
❑ cost of computing a temporary index for a single 

Consider: deposit  customer
❑

❑

ndeposit 10000=

ncustomer 200=
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Simple vs. Block-oriented Itera

Block-Oriented Iterat
for each block in deposit

for each block in customer

compare common attributes of each pair of tuples in t

500 blocks + 500 blocks x 10 blocks = 5500 bl
NB: if customer fits entirely into memory, then:
500 blocks + 10 blocks = 510 blocks

Simple Iteration
for each tuple d in deposit

for each tuple c in customer

compare common attributes

500 blocks + 10000 tuples x 10 blocks = 100500 blocks
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te, the join can be efficiently

customer

nce pointer after each join

mer-name street customer-city

s Spring Pittsfield
s Senator Brooklyn

North Rye
Sand Hill Woodside

n Walnut Stamford
s Main Harrison
son Alma Palo Alto
s Main Harrison
ay Park Pittsfield

North Rye
r Putnam Stamford
ms Nassau Princeton
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Merge Join (Sorted Join Attribu

If relations to be joined are both sorted by their join attribu
computed by reading blocks in sort order.

adva

custo

Adam
Brook
Curry
Glenn
Gree
Haye
John
Jone
Linds
Smith
Turne
Willia

deposit

join all tuples with same customer-name
advance pointer when join attribute falls behind

branch-name
account-
number

customer-name balance

Brighton 217 Green 750
Downtown 105 Green 850
Perryridge 102 Hayes 400
Downtown 101 Johnson 500
Redwood 222 Lindsay 700
Mianus 215 Smith 700
Round Hill 305 Turner 350
Perryridge 201 Williams 900
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Computing Joins with Indices

Assume tuples are physically unclustered;
an unclustered index exists on customer-name for custom

for each tuple d in deposit
look up matching tuples in customer

10000 blocks + 10000 tuples x 3 blocks = 40000
(vs. 100500 block accesses)

(2 index blocks + 1 record block = 3 block accesses)

NB: it may be worthwhile to construct a temporary index to



Datenbanken 7042 — WS 97/98 222.

Query Processing

p evaluation?
ed as early as possible?

ery?
p?
lections?

ex?

rrect?

r when computing a join?
Universität Bern

Summary

You should know the answers to these questions:
❑ What kinds of query transformation may speed u
❑ Why should selections and projections be perform
❑ How can you estimate the cost of evaluating a qu
❑ What kinds of queries will indices help to speed u
❑ How can multiple indices be used to speed up se
❑ When can merge join be used?
❑ When is it worthwhile computing a temporary ind

Can you answer the following questions?
✎ Can you prove that the transformations shown are co
✎ When can projection be commuted with natural join?
✎ How should one select the main relation to iterate ove
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