
The Need for Customizable Operating Systems

Gregor Kiczales, John Lamping, Chris Maeda, David Keppel, and Dylan McNamee

Published in Proceedings of the Fourth Workshop on Workstation Operating Systems, pages 165  169.
IEEE Computer Society Technical Committee on Operating Systems and Applications Environment, IEEE
Computer Society Press, October 1993.

© Copyright 1993 IEEE

This material is posted here with permission of the IEEE. Such permission of the IEEE does
not in any way imply IEEE endorsement of any of Xerox's products or services. Internal or
personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for
resale or redistribution must be obtained from the IEEE by sending a blank email message
to info.pub.permission@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.



(Appears in the proceedings of WWOS’93.)

The Need for Customizable Operating Systems

Gregor Kiczales�, John Lamping
Xerox Palo Alto Research Center

Chris Maeda
Carnegie Mellon University

David Keppel, Dylan McNamee
University of Washington

Although modern operating systems provide
powerful abstractions to application programs, they
often fail to implement those abstractions in a way
that provides applications programs, especially spe-
cialized application programs, with the best uti-
lization of the physical resources of the computer
system[And92].

The operating system community has implic-
itly recognized this problem by providing mech-
anisms that give client programmers more access
to the physical substrate. The Mach External
Pager allows clients to replace the paging mech-
anism. More recent work, [MA90], [HC92] and
[KLVA93], allows client replacement of the paging
policy as well. Scheduler activations share the job
of thread management between clients and the sys-
tem. Apertos[Yok92] allows these and other aspects
of operating system implementation to be client-
controlled. Object-oriented operating systems un-
der development also provide these kinds of control.

We contend that there is a very general issue here,
which operating systems have been among the first

�3333 Coyote Hill Rd., Palo Alto, CA 94304; (415)812-
4888; Gregor@parc.xerox.com.

kinds of software to have to face head-on: some
implementation decisions are crucial strategy deci-
sions whose resolution will invariably bias the per-
formance of the resulting implementation. Explic-
itly recognizing this issue helps to make sense of cur-
rent trends and suggests new directions to explore.
We consider the implications of this issue for op-
erating systems, providing a framework with which
to analyze systems such as those mentioned above,
and suggesting connections with similar problems
in other domains.

1 Mapping Dilemmas

Operating systems are in the business of providing
abstractions for services that hide the arbitrary de-
tails of raw hardware and that mediate the resource
contention among different tasks. This is a laudable
goal, and one that intuitively feels like it ought to
reduce complexity, so why all the effort to expose
more of the implementation issues to clients?

The answer is intuitively accessible, but surpris-
ing when given explicit voice:



It isn’t possible to hide all implemen-
tation issues behind an abstraction barrier
because not all of them are mere details,
some are instead crucial strategy issues
whose resolution will invariably bias the
performance of the resulting implementa-
tion.

We call these implementation issues mapping dilem-
mas because they involve how an abstraction is
mapped onto the underlying hardware. That is,
they involve what hardware resources constitute the
implementation of the abstraction. The mapping
dilemmas are those mappings that present substan-
tial strategy issues. We call the decisions on how to
resolve them mapping decisions. When a service’s
client performs poorly because the implementation
embodies an inappropriate mapping decision, we
call it a mapping conflict.

Many operating system implementation issues
can be crisply stated in terms of mapping dilem-
mas:

� Virtual Memory — The base abstraction of
virtual memory is simply a region of memory
addresses that can be read or written. The map-
ping dilemmas are primarily about how to asso-
ciate virtual addresses with secondary storage,
and which of that storage to cache in physical
memory at any given time. (This second con-
cern breaks down into individual issues of page
replacement policy, page ahead policy etc.)

A classic example of mapping conflict in this
domain is when a client, such as a database sys-
tem, does a “scan” of one portion of its memory,
while doing random access to another portion.
A virtual memory implementation based on an
LRU replacement policy will perform poorly
on the scanned memory.

� File Systems — The base abstraction provided

by file systems is a system of named files to
which data can be read or written in a stream-
ing or random access way. Classic mapping
dilemmas include: buffer and buffer pool size,
cache management, read ahead, write-through
etc. Different applications perform better un-
der different policies.

� Network Protocols — The base abstraction
provided by a stream-oriented network proto-
col such as TCP is something like that of a
file-system. First, there is a mechanism for
getting a connection (essentially naming it),
then the connection can be treated as a stream.
The mapping dilemmas include such issues as
buffer management and scheduling, and detect-
ing and handling lost transmissions.

The concept of mapping dilemmas makes it possible
to see that analogous problems crop up in other kinds
of systems, including databases and programming
languages.

� Databases — The abstraction presented by a
relational database is just that: a set of rela-
tions. There are important mapping decisions
having to do with how the relations are im-
plemented, such as what search keys to build
indices on.

� Object-oriented Programming — The base
abstraction is objects with named fields and
methods that give rise to behavior. One cru-
cial mapping dilemma is whether to lay the
instances out in memory using a dense or
a sparse structure. Another is how method
lookup should be implemented.

The ways that mapping dilemmas have been ad-
dressed in other contexts can inform operating sys-
tem design, and vica versa, although we don’t have
space to discuss that here.



2 Consequences for Operating Sys-
tems

As the examples above suggest, operating systems
have already encountered mapping dilemmas. As
hardware gets more sophisticated, with multi-level
caches, multi-processors, and multi-level memory
hierarchies, the mapping dilemmas become more
intricate, because mapping decisions have more con-
sequences.

How can these mapping conflicts be resolved?
We want to keep the abstractions that have made op-
erating systems successful, but we want to make sure
that the abstractions are implemented in ways that
are appropriate for each task. There are several dif-
ferent approaches to resolving mapping dilemmas,
and operating system organizations can be charac-
terized in terms of which approaches they take.

The first choice point is whether the mapping
decisions are made completely automatically. The
traditional approach is to make most decisions au-
tomatically, the idea being that if we could make
operating systems smart enough, they could auto-
matically choose good mappings for each task. This
is the goal that adaptive algorithms, like adaptive
schedulers, strive for. But many mapping decisions
are so difficult that the level of intelligence required
to automatically decide them well is not in sight.

2.1 The user must participate

The alternative to completely automatic resolution
of mapping decisions is to have the user (or, in many
cases, the application developer) participate in some
way in making the mapping decisions. This presents
an architectural challenge, because we still want
to keep the mapping decisions separate from the
abstractions. We don’t want to program exclusively
at the low level that the mapping dilemmas expose;
we want to be able to program primarily at the high

level provided by the abstractions while having a
say in how they are implemented.

Arguably the simplest approach is to write a
special-purpose operating system for each applica-
tion. Each special-purpose operating system would
implement the same abstractions, but would make
the mapping decisions most suitable for its intended
application. There are two obvious problems with
this approach: a new operating system has to be
written for each application, and it is hard for dif-
ferent applications to share a single machine.

Rather than start from scratch every time, it makes
more sense to have operating systems that can ac-
comodate intervention, customizable operating sys-
tems. Anderson[And92] suggested one way of
achieving this: “an application-specific structure
where as much of the operating system as possi-
ble is pushed into runtime library routines linked in
with each application”. We want to understand and
evaluate this and other approaches to customizabil-
ity. Mapping dilemmas provide a framework for
the analysis, since they focus on the problems; vari-
ous architectures can be analyzed in terms of which
mapping dilemmas they address.

2.2 Different kinds of mapping dilemmas

We start with the observation that the abstractions
of an operating system do two things: They pro-
vide some conceptual separation from the arbitrary
details of bare hardware, such as paging and disk
layout; and they mediate the resource contention
among competing demands. This distinction is im-
portant both because the different roles present dif-
ferent mapping dilemmas, and because the ways that
customization can be achieved are different for the
two roles.

The Mach external pager focuses on the first role:
providing some conceptual separation from the bare
hardware. The external pager lets users write code



that determines what secondary storage should hold
paged data and how to get data to and from that stor-
age. Notice that the Mach external pager doesn’t
open up any resource contention issues; the system
still decides how many physical pages each task
gets, and even which virtual pages will be mapped
to physical pages and which won’t. The Mach ex-
ternal pager thus opens up one mapping dilemma
associated with virtual memory: how virtual mem-
ory data should be connected to secondary storage.
But it doesn’t open up another, the page replace-
ment policy: which pages should be held in physical
memory.

The Mach external pager also illustrates a phe-
nomenon that is often associated with openning up
a mapping dilemma that spans a conceptual separa-
tion from the bare hardware: the utility of an exist-
ing interface is extended. In the present example,
by letting the user control what the virtual memory
maps onto, the open pager lets users use the virtual
memory interface — read and write to memory — to
access the contents of files, access memory logically
shared across a network, or access anything else for
which the interface makes sense. Thus, the virtual
memory interface goes from being an approxima-
tion to physical RAM to being a convenient way to
access many kinds of data.

The other role, managing resource contention,
logically splits into two sub-roles: managing con-
tention within a protection domain and managing
contention among protection domains. Scheduler
activations are an example of that split being recog-
nized. Each task is aware of how many processors
are allocated to it, and it is responsible for decid-
ing how to utilize them. Contention between tasks
is mediated by the operating system, taking advan-
tage of hints from user tasks about whether they can
profitably utilize more processors.

An important difference between the two sub-
roles, as illustrated by scheduler activations, is that

a protection domain can safely be given complete
control over how to deploy the resources allocated to
it, while inter-domain resource allocation must still
be controlled centrally. This, in turn, affects what
mechanisms can be used to express user influence
over mapping decisions.

The allocation of intra-task resources can be de-
termined by code run inside the tasks’s protection
domain, just as code that provides separation from
the bare hardware can. By being able to write code,
users can express a wide variety of mapping deci-
sions. Of course, it is also important to have facili-
ties that allow simpleor common mapping decisions
to be expressed easily.

But inter-task resource allocation must be done
globally, and protected from untrusted tasks. This
means that user tasks can intervene only by indicat-
ing to the global allocator which resources are more
important to them; no task can have full control.
This also means that the range of mapping deci-
sions that can be expressed will be limited by what
can be expressed to the global allocator. This points
out the importance of splitting intra-task resource
management from inter-task resource management
so that users can be given maximum control over
the resources assigned to them.

3 Conclusion

In conclusion, mapping dilemmas are a principle
reason for wanting to open the implementation of
operating system functionality. An examination of
the mapping dilemmas faced by operating systems
suggests areas which should be opened up. Moving
responsibility into user tasks is one technique for
enabling user control over those issues that can be
isolated on a per-task basis. The remaining resource
allocation issues must remain under central control
to guarantee fairness, but need to be able to accept



guidance from the tasks to provide what is most
important to each task.

Acknowledgements

Gail Murphy contributed to the development the
ideas presented in this paper. We would like to
thank Mike Dixon, Paul Dourish, Angie Hinrichs,
and Anurag Mendhekar for their comments on ear-
lier drafts.

References

[And92] Thomas E. Anderson. The case of
application-specific operating systems.
In 3rd Workshop on Workstation Oper-
ating Systems, April 1992, April 1992.

[HC92] Kieran Harty and David R. Cheriton.
Application-controlled physical mem-
ory using external page-cache manage-
ment. Proceedings of the Fifth Interna-
tional Symposium on Architectural Sup-
port for Programming Languages and
Operating Systems (ASPLOS-V), pages
187–197, 1992.

[KLVA93] Keith Krueger, David Loftesness, Amin
Vahdat, and Thomas Anderson. Tools
for the development of application-
specific virtual memory management.
In Andreas Paepcke, editor, Proceed-
ings of the Conference on Object-
Oriented Programming: Systems, Lan-
guages, and Applications, pages 48–64.
ACM/SIGPLAN, ACM Press, October
1993. Volume 28, Number 10.

[MA90] Dylan McNamee and Katherine Arm-
strong. Extending the mach external

pager interface to allow user-level page
replacement policies. Technical Report
UWCSE 90-09-05, University of Wash-
ington, September 1990.

[Yok92] Yasuhiko Yokote. The apertos reflec-
tive operating system: The concept and
its implementation. In Proceedings of
the Conference on Object-Oriented Pro-
gramming: Systems, Languages, and
Applications, pages 414–434, October
1992.


