
Reflective Programming 1.

© ogramming and Open Implementations

 Open
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

1. Reflective Programming and
Implementations

Dr. Stéphane Ducasse
Software Composition Group
University of Bern
Switzerland

Winter Semester 2000-2001

Email: ducasse@iam.unibe.ch
Url: http://www.iam.unibe.ch/~ducasse/

Reflective Programming 2.

© ogramming and Open Implementations

ltalk, CLOS)
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Goal of this Lecture
You will learn about

❑ Open Implementations
❑ Reflection: Intercession and Introspection
❑ Reflective Architectures and Kernels (SOM, Smal
❑ Meta Object Protocol: Powering End-Users
❑ Metaclasses
❑ Message Passing Control

Side Effects
❑ Program with a reflective system
❑ Let you implement your own micro kernel
❑ Deeply understanding OO
❑ Experiment with different OO models

Reflective Programming 3.

© ogramming and Open Implementations

Meta Object Protocol, Open

 Kernel (ObjVLisp)

lltalk, Java Comparison)
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Outline of the Lecture
❑ (C) Introduction, Concepts, Definitions, Examples,

Implementations
❑ ok (C) The Study of an Object-Oriented Reflective
❑ ok(Lab) ObjVLisp Implementation (1)
❑ ok(Lab) ObjVLisp Implementation (2)
❑ ok check @@(C) Metaclass Composition Issues
❑ ok(Lab) Metaclass Programming with ObjVlisp
❑

❑ ->~(C) Analysing CLOS and its MOP
❑ You : (C) Reflection in OO Languages (Clos, Sma
❑ ->>>(Lab) Interface Browser
❑ ->>>(C) Message Passing Control in Smalltalk
❑ (Lab) Implementing Actalk
❑ >>>You : (C) Presentation of papers
❑ (Lab) Scaffolding Patterns

Reflective Programming 4.

© ogramming and Open Implementations
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

What we could have made...
❑ MetaCircularity and Infinite Tower: Lisp in Lisp
❑ Different reflective paradigm (relational, actors...)

☞ We will focus on OO reflective programming

R
ef

le
ct

iv
e

P
ro

gr
am

m
in

g
5.

 D
r.

 D
uc

as
se

 S
té

ph
an

e
-U

ni
ve

rs
itä

t B
er

n
R

ef
le

ct
iv

e
P

ro
gr

am
m

in
g

an
d

O
pe

n
Im

pl
em

en
ta

tio
ns
H
is

to
ry

,C
on

ce
p

ts
,D

ef
in

iti
on

s
a

nd
 E

xa
m

p
le

s

©

Reflective Programming 6.

© ogramming and Open Implementations

gramming?

text of execution?

rial MOP & OI OOPSLA’93]

ysis...)
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Why Do We Need Reflective Pro
>Does anyone know why CLOS does not provide a copy protocol?

>Has anybody implemented an inheritance method “a la Eiffel”?

>We need a method dispatch that take into account an external con

[Tuto

Some problems:
❑ data structure allocation, optimization
❑ control of language entities (feedback, trace, anal
❑ UI and API definition
❑ language semantics

In summary
❑ Optimization
❑ Language extensions (control, debugging)
❑ Semantics change

Reflective Programming 7.

© ogramming and Open Implementations

gramming?
r and higher level, its

ne involves more and
tor, about what cases
ases.... the ability to
e language’s scope
2a]

 representation?

ce variables used

sed

ute accesses?
tead of scanning, parsing

the language itself and not
dicaced compiler ?
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Why Do We Need Reflective Pro
“As a programming language becomes highe
implementation in terms of underlying machi
more tradeoffs, on the part of the implemen
to optimize at the expense of waht other c
cleanly integrate something outside of th
becomes more and more limited” [Kiczales’9

❑ Why instances do have to have the same internal

– for Point => maximum speed needed, all instan

☞ array like representation

– for Person => minimize space, few instances u

☞ hash-table like representation
❑ Why can’t I control internal representation or attrib
❑ Why can’t I query the language representation ins

code?
❑ Why can’t we tune a language to fit our needs from

by inventing yet a new language or rebuilding a de

Reflective Programming 8.

© ogramming and Open Implementations

rs

s

iczales92,92b,92c]?
hange tomorow!

)
ion issues)

r)

language to fit your
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Traditional vs Reflective Answe
Traditional Answers at Language Level:

❑ Illusionary complete language
❑ Library of extensions: Eiffel
❑ Macroes: C, Lisp

But do not cover language extensions or semantics change

Traditional Answers in Software development:
What happens if the language does not support our need [K

☞ buy a new one that fits your today need and c
☞ buy an illusionary complete language
☞ code between the lines (danger for portability
☞ create your own layer (probleme with integrat

Reflective Answers
❑ Propose an extensible language or system
❑ Give the power to the end-user (meta-programme

☞ customize your reflective or open
need

Reflective Programming 9.

© ogramming and Open Implementations

are

 years of Lisp development
e -> Indigo Silicon Graphics)

s or introducing his own

s or adapts language
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Role ot Reflective Prog in Softw
Engineering

❑ Allow migration of software:
Ex: Nichimen Corp (http://www.nichimen.com/) 15

(Flavors -> CLOS, From Symbolic Machin
❑ Adaptation to new technologies
❑ Adaptation to new needs

Team organization
❑ Not everybody is changing the language semantic

constructs
❑ One meta-programmer implements new semantic

semantics to the needs of the other developers

Reflective Programming 10.

© ogramming and Open Implementations

on, otherwise deal with itself
ith its primary subject matter.

d MetaLevel Architectures)

something representing the
o aspects of such

refore reason about its own

ecution state or alter its own

tate as data: providing such
ite in Paepke‘92]

m

ter

a part of
the world

represents Domain

reason about
tive system
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Definitions (I)

Reflection: a process's integral ability to represent, operate
in the same way that it represents, operates on and deals w

B.C Smith (OOPSLA’ 90 Workshop on Reflection an

“Reflection is the ability of a program to manipulate as data
state of the program during its own execution. There are tw
manipulation: introspection and intercession.
Introspection is the ability for a program to observe and the
state.
Intercessory is the ability for a program to modify its own ex
interpretation or meaning.
Both aspects require a mechanism for encoding execution s
an encoding is called reification.” [Bobrow, Gabriel and Wh

Data

Program

Executer

a part of
the world

represents Domain

reason about
A non reflective system

Data

Progra

Execu

A reflec

Reflective Programming 11.

© ogramming and Open Implementations

usally connected with this
]

tion of itself.
 the ensurance that its
 to date).
of self-representation and
nization
ction protocol and an
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Consequences
A system having itself as application domain and that is ca
domain can be qualified as a reflective system [Pattie Maes

☞ A reflective system has an internal representa
☞ A reflective system is able to act on itself with

representation will be causally connected (up
☞ A reflective system has some static capacity

dynamic self-modification in constant synchro
☞ A system is said reflective if it has an introspe

intercessory protocol

Reflective Programming 12.

© ogramming and Open Implementations

ming

eme and an OO language

Language

Applications

ta Language

Meta Applications
Customization of
the language
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Meta Programming in Program
Language Context

The meta-language and the language can be different: Sch
The meta-language and the language can be same: CLOS

=> metacircular architecture

Me

Language

Applications

Reflective Programming 13.

© ogramming and Open Implementations

ext level

g

ts allowing the future
eta entities)
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Three Approaches

1. Tower of Metacircular Interpreters
☞ every level is interpreting and controlling the n
ex: 3-Lisp, SRI

2. Meta entities control language entities
ex: Smalltalk, CLOS, FOL, Meta-Prolog, ...

ABCL/R, ACT/R (Concurrent languages)
meta-rules controlling unification in prolo

3. Open Implementation
☞ The implementation specifies some entry poin

modification of the system. (often based on m
ex: CLOS MOP (Meta Object Protocol)

Reflective Programming 14.

© ogramming and Open Implementations

ters
 itself

 semantics

nts

.

 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Infinite Tower of (Meta)Interpre
❑ 3-Lisp: a metacircular interpreter that can evaluate
❑ Scheme like based on continuations
❑ Theory, Basis for reflection
❑ Experimentation with language extension, various

Passing from one level to another one is done using reifier
special functions with three non evaluated argume

– current expression

– environment

– continuation

Interpreter 0 reifies and interpretes interpreter 1
Interpreter 1 reifies and interpretes interpreter 2...

Reflective Programming 15.

© ogramming and Open Implementations

thod, InstanceVariables...)

the semantics

t Protocol

ge implementor

l language and the meta level
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Reflective Languages
CLOS, Smalltalk, Self

❑ Language written in itself
❑ MetaEntities controlling the languages (Class, Me
❑ Really powerfull, full control

In Smalltalk
❑ everything is an object
❑ causally connected: a change in an object impact

☞ Class, Method
☞ Scanner, Parser, Compiler, Decompiler, ...
☞ Scheduler, Process, Semaphore

But
❑ Did not make the effort of specifying a Meta Objec

– Too much to do for the base programmer

– Not enough freedom to optimize for the langua

☞ A solution: declarative model of the base leve

R
ef

le
ct

iv
e

P
ro

gr
am

m
in

g
16

.

 D
r.

 D
uc

as
se

 S
té

ph
an

e
-U

ni
ve

rs
itä

t B
er

n
R

ef
le

ct
iv

e
P

ro
gr

am
m

in
g

an
d

O
pe

n
Im

pl
em

en
ta

tio
ns
O
p

en
 Im

p
le

m
en

ta
tio

n
a

nd
 M

O
Ps
©

Reflective Programming 17.

© ogramming and Open Implementations

mentation

a module interface because
trategy issues that inevitably
e call these issues strategy
o implement a higher-level
as can be broken down into

s to decide how much of a
ping dilemmas, where the
er are implementing onto the

ule should present a simple
deal more to a module than

e opened up to allow clients
open implementations. From
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

The Basic Claim of Open Imple

It is impossible to hide all implementation issues behing
not all of them are details . Instead, some involve crucial s
bias the performance of the resulting implementation. W
dilemmas, because they involve a choice about how t
functionality in terms of a lower level one. Strategy dilemm
resource allocation dilemmas where the implementor ha
shared resource to allocate to each client, and map
implementor has to decide how to map the functionality th
lower-level functionality.
Despite black-box abstraction’s appealing goal that a mod
interface that exposes only functionality, there is a great
acknowleged by that interface.
Our claim is that module implementations must somehow b
control over these issues as well. We call this the need for
http://www.xerox.../oi/ (@@)

Reflective Programming 18.

© ogramming and Open Implementations

anguage that give the
language’s behavior

the ability to write the

 specialization allows the

f specializing their behavior
l

ls =Implementation

= Open System
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Meta Object Protocols
“Meta Object Protocols are interfaces to the l
users the ability to incrementally modify the
(semantics) and implementation, as well as
programs with the language” [Paepcke’92]

❑ MOPs are composed by set of entry points whose
introduction of new behavior.

❑ MOPs are based on meta-objects offering ways o
and representing specific aspects of the base leve

Public MetaLevel Architecture + Public protoco
(structure and static) (dynamic)

Inspect + Modify

Reflective Programming 19.

© ogramming and Open Implementations

Dynamics

Modifiable System
Methods

 Interface

Find Named
MetaObjects
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Meta Programming in CLOS

 Create named
MetaObjects

CLOS Programmer

CLOS Meta Programmer

Statics

MetaObjects
Class
Hierarchy

Protocols

metaobject instances

described by actived by

User Friendly Macro based

Create named Use hidden MetaObjects
MetaObjects (Classes, methods...)

Reflective Programming 20.

© ogramming and Open Implementations

ntation

ctice

of optimization

tensions
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Infinite Tower vs Open Impleme

Infinite Tower vs Mop <=> Theory vs Pra

Open Implementations:
- are more efficient
- are specified declaratevly letting space
- define a region of possible changes
- dependencies between entry points
- allow more control over the possible ex

Infinite Tower:
- are more powerful
- slower
- less secure

Reflective Programming 21.

© ogramming and Open Implementations

le

 servers.
em differently.

nalysis purpose
asses.
 all its instances.

100

ac2
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

A Simple Application as Examp
A LAN Simulator:

- A LAN contains nodes, workstations, printers, file
- Packets are sent in a LAN and the nodes treat th

Problem: We want to know all the nodes of the system for a
❑ We do not want to change the code of the node cl
❑ We would like to ask to the class Node to gave us

mac1 node1 lw

m
pc

Reflective Programming 22.

© ogramming and Open Implementations

lass Context
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Programming in Explicit Metac
CLOS-like

(defclass Node ()

((name :initarg :name :default-value #lulu :reader name)

 (nextNode :default-value ‘() :accessor nextNode))

(:metaclass Set))

(defmethod accept ((n Node) (p Packet))

....)

(defmethod send ((n Node) (p Packet))

...)

(setq n1 (make-instance Node :name “n1”))

(setq n2 (make-instance Node :name “n2” nextNode: n1))

(setq n3 (make-instance Node :name “n3” nextNode: n3))

((setf nextNode) n1 n3)

(allInstances Node)

-> (n1 n2 n3)

Reflective Programming 23.

© ogramming and Open Implementations

ackets
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Reusing Meta Programs
Now imagine that we want to have a log of all the created p

(defclass Packet ()

((addressee :initarg :addressee :accessor addressee)

 (contents :initarg :constents :accessor contents)

 (originator :initarg: originator :accessor originator)

(:metaclass Set))

(defmethod isAddressedTo ((p Packet) (n Node))

....)

(defmethod isOriginatedFrom((p Packet) (n Node))

...)

(map Packet (lambda(x)

(write outputstream

“packet addressed from: %s to %s”

(originator x) (addressee x))

Reflective Programming 24.

© ogramming and Open Implementations

ext
++ or Java defining static

taobjects describe these

d without meta programming
amicIVs,

les

a the net, stored in database)

e, proxies...)
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

MetaProgramming in OO Cont
This simple functionality could have been implemented in C
member and functions [Singleton Pattern]
But

❑ A Meta program is not mixed into objects
❑ Ordinary objects are used to model real world. Me

ordinary objects.
❑ MetaPrograms can be reused
❑ Some other properties cannot easily be implemente

traceMessage, finalClass, PrePostConditions, Dyn
MessageCounting....

We may want to
- change the representation of the instance variab
(indexed for points, hashed for person,)
- change the way attributes are accessed (lazily vi
- change the inheritance semantics
- change the invocation of method semantics (trac

Reflective Programming 25.

© ogramming and Open Implementations
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

MetaProgramming by Example

(defclass Set (class)

((instances :default-value ‘() :reader allInstances)))

(defmethod clear ((c Set))

(setf-slot-value c ‘instances ‘()))

(defmethod map ((c Set) fct)

(map fct (allInstances c)))

(defmethod new ((c Set) initarg)

(let ((newInstance (call-next-method))

(cons newInstance (slot-value c ‘instances))

newInstance))

Reflective Programming 26.

© ogramming and Open Implementations

g

t impose an excessive
tercession. What is not used
 case should retain the
in Paepke’92]

gument gives same result)

ic entry point)
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Costs of Reflective Programmin
Design Cost

Reflective languages need more care and iteration
Use Cost

Concepts are more complex
Run-time Cost
“A key aspect of intercession is that reflective capability no
performance burden simply to provide for the possibility of in
should not affect the cost of what is used; and the common
possibility of being optimised” [Bobrow, Gabriel and White

Clever implementations
❑ we only pay what we need, but we NEED it!
❑ Default behavior is optimized
❑ Do no rely on full runtime interpretation

☞ Having entry point purely functional (same ar
☞ Optimization at compile-time
☞ Memoization (decomposing static from dynam

Reflective Programming 27.

© ogramming and Open Implementations

nvironment

flexion
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Designing Reflective Systems
❑ Which model

– which kind of language?

– which degre of reflection?

– reflective language or open implementation?

❑ Which entry points?

– Data, Entities, Control Structures, Interpreter, E

❑ Data Structure

– simples, efficient, easliy modifiable

❑ Changing Level

– Managing causal connection, reification and re

❑ Uniformity between meta-level

– Syntax, data structure, extensions

Reflective Programming 28.

© ogramming and Open Implementations

ystem
ing

 between levels
n the original designer
s of change
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Meta-Problems

❑ Stability: Potentially an end-user can change the s
☞ But not everybody should be meta-programm

❑ Several levels of complexity
☞ Entity, meta entity, coherence and connection

❑ Uniformity: same design conception problems tha
☞ Open implementations narrow the possibilitie

Reflective Programming 29.

© ogramming and Open Implementations

 to

es representing (aspects of)

g upon itself.
es (OOPSLA’ 87)
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Meta and Open are not Limited
Programming Languages

A reflective system is a system which incorporates structur
itself.
Reflection is the processus of reasoning about and/or actin

P.Ma

❑ Network
❑ Workflow system
❑ Operating Systems (Apertos, Synthesis)
❑ Parallel Systems
❑ Library of

About Metaclass Evolution 30.

© imal Object-Oriented Reflective Kernel

t-Oriented
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

2. The Study of a Minimal Objec
Reflective Kernel

Dr. Stéphane Ducasse
Software Composition Group
University of Bern
Switzerland

Email: ducasse@iam.unibe.ch
Url: http://www.iam.unibe.ch/~ducasse/

About Metaclass Evolution 31.

© imal Object-Oriented Reflective Kernel

ltalk, CLOS)
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Goals of this Lecture

❑ Metaclass concept
❑ Reflective Architectures and Kernels (SOM, Smal
❑ What are Object and Class classes?
❑ Semantics of inheritance, semantics of super
❑ Metaclass power

About Metaclass Evolution 32.

© imal Object-Oriented Reflective Kernel
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Outline
☞ Metaclasses?

❑ Examples of usefull metaclasses
❑ Towards a unified approach: Loops, Smalltalk
❑ ObjVlisp in 5 postulates
❑ Instance Structure and Behavior
❑ Class Structure
❑ Message Passing
❑ Object allocation & Initialization
❑ Class creation
❑ Inheritance Semantics
❑ Bootstrapping
❑ Examples: Playing with ObjVlisp

About Metaclass Evolution 33.

© imal Object-Oriented Reflective Kernel

rogramming

Language

Applications

eta Language

Meta Applications
Customization of
the language
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Recall: Meta Programming in P
Language Context

M

Language

Applications

About Metaclass Evolution 34.

© imal Object-Oriented Reflective Kernel

has been repeatedly
se concepts belong to
tains classes; at run-
pproach. One of the
, influenced by

lasses as object
run-time. ”
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Class as Objects
“The difference between classes and objects
emphasized. In the view presented here, the
different worlds: the program text only con
time, only objects exist. This is not the only a
subcultures of object-oriented programming
Lisp and exemplified by Smalltalk, views c
themselves, which still have an existence at

Bertrand Meyer in Object-Oriented Software Construction

About Metaclass Evolution 35.

© imal Object-Oriented Reflective Kernel

re

atically its accessors

subclassed

ain number of instances

ariables

me interfaces

uperclasses

encies

base
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Some Class Properties
– Abstract: a class cannot have any instance

– Set: a class that knows all its instances

– DynamicIVs: Lazy allocation of instance structu

– LazyAccess: only fetch the value if needed

– AutomaticAccessor: a class that defines autom

– Released/Final: Class cannot be changed and

– Limited/Singleton: a class can only have a cert

– IndexedIVs: Instances have indexed instance v

– InterfaceImplementor: class must implement so

– MultipleInheritance: a class can have multiple s

– Trace: Logs attribute accesses, allocation frequ

– ExternalIVs: Instance variables stored into data

About Metaclass Evolution 36.

© imal Object-Oriented Reflective Kernel

s

ditions

 a method is called

zed
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Some Method based Propertie
– Trace: Logs method calls

– PrePostConditions: methods with pre/post con

– MessageCounting: Counts the number of times

– BreakPoint: some methods are not run

– FinalMethods: Methods that cannot be speciali

About Metaclass Evolution 37.

© imal Object-Oriented Reflective Kernel

ecture” [Cointe’87]

, instance variables, method

urs, hash-table,...)
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Metaclass Responsibilities
“Metaclasses provide metatools to build open-ended archit

Metaclasses are one of the possible meta-entities (method
combination,...)
Metaclasses allow the structural extension of the language
They may control

❑ Inheritance
❑ Internal representation of the objects (listes, vecte
❑ Method access ("caches" possibility)
❑ Instance variable access

Separation of Concerns
❑ Ordinary objects are used to model real world
❑ Metaobjects describe these ordinary objects
❑ Meta/Base level functionality is not mixed

About Metaclass Evolution 38.

© imal Object-Oriented Reflective Kernel
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Outline
❑ Metaclasses?
❑ Examples of usefull metaclasses

☞ Towards a unified approach: Loops, Smalltalk
❑ ObjVlisp in 5 postulates
❑ Instance Structure and Behavior
❑ Class Structure
❑ Message Passing
❑ Object allocation & Initialization
❑ Class creation
❑ Inheritance Semantics
❑ Bootstrapping
❑ Examples: Playing with ObjVlisp

About Metaclass Evolution 39.

© imal Object-Oriented Reflective Kernel

bject and Class
ct and a metaclass is a class

s of Scheme or 30 Smalltalk

and reflective programming
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Why ObjVlisp?
❑ Minimal (only two classes)
❑ Reflective: ObjVlisp self-described: definition of O
❑ Unified: Only one kind of object: a class is an obje

that creates classes
❑ Open
❑ Simple: can be implemented with less than 300 line

methods.
❑ Equivalent of Closette (Art of MOP example)
❑ Really good for understanding dynamic languages

(D-SOM, CLOS, Smalltalk kernel)

About Metaclass Evolution 40.

© imal Object-Oriented Reflective Kernel

control over the creation of
a types to represent classes
heir metaclass, usually the

st be instance of MetaClass

ok

taSet

b A is instance of B
BA

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

The Loops Approach
“For some special cases, the user may want ot have more
instances. For example, Loops itself uses different Lisp dat
and instances. The new message for classes is fielded by t
object MetaClass.” [Bobrow83]

❑ Explict metaclass as a subclass of another but mu

MetaClass

Class

Point Object Bo

Me

About Metaclass Evolution 41.

© imal Object-Oriented Reflective Kernel

roach
 is to provide protocol for
es of the metaclasse’sole

 class

 the class inheritance
er (instance of Class) and
 of metaclasses)

s

Point

Object

Class
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

The Smalltalk Pragmatical App
“The primary role of a metaclass in the Smalltalk-80 system
initializing class variables and for creating initialized instanc
instance“ [Goldberg84]

❑ A class is the sole instance of a metaclass
❑ Every metaclass is an instance of the Metaclass

☞ metaclasses are not true classes
☞ number of metalevels is fixed

❑ Metaclass hierarchy inheritance is fixed: parallel to
☞ dichotomy between classes defined by the us

metaclasses defined by the system (instance

Metaclass class Metaclass

Point class

Object clas

Class class

About Metaclass Evolution 42.

© imal Object-Oriented Reflective Kernel

(slots or instance variables)
 their class.

nce of another class

tion

Class
name...
new
allocate

the class Class

A is instance of B
BA
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

ObjVlisp in 5 Postulates (i)
P1: object = <data, behavior>
P3: Every object belongs to a class that specifies its data
 and its behavior. Objects are created dynamically from

P4: Following P3, a class is also an object therefore insta
 its metaclass (that describes the behavior of a class).

#mac1 a workstation instance of the class Worksta

P1&P3

the class P4

Workstation
Workstation

send: aPacket
accept: a Packet

«instance-of»

«instance-of»

|mac1|
mac := Workstation new name: #mac1

About Metaclass Evolution 43.

© imal Object-Oriented Reflective Kernel

etaclass that is an object too
of another a

A is instance of B
BA
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

How to Stop Infinite Recursion?
Aclass is an object therefore instance of another class its m
instance of a metametaclass that is an object too instance
metametametaclass......

To stop this potential infinite recursion
❑ Class is the initial class and metaclass
❑ Class is instance of itself and
❑ all other metaclasses are instances of Class .

Class
name...
new
allocate

the class Class

About Metaclass Evolution 44.

© imal Object-Oriented Reflective Kernel

ct

other classes.
ring of instance

esents the behavior shared

mac1

[mac1 accept: pck2]

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

ObjVlisp in 5 Postulates (ii)
P2: Message passing is the only means to activate an obje

[object selector args]

P5: A class can be defined as a subclass of one or many
 This mechanism is called inheritance. It allows the sha
 instance variable and methods. The class Object repr
 by all the objects.

Workstation
send: aPacket
accept: a Packet

Node
name
nextNode
send: aPacket
accept: a Packet«inherits from»

About Metaclass Evolution 45.

© imal Object-Oriented Reflective Kernel

d Instances
ass allowing a greater clarity

n classes and final instances.
tion message: new. Only a

.

 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Unification between Classes an
“We claim that a class must be an object defined by a real cl
and expressive power” [Cointe’87]

❑ Every object is instance of a class
❑ A class is an object instance of a metaclass (P4)

☞ But all the objects are not classes

❑ Only one kind of objects without distinction betwee
❑ Sole difference is the ability to respond to the crea

class knows how to deal with it.
❑ A metaclass is only a class that generates classes

About Metaclass Evolution 46.

© imal Object-Oriented Reflective Kernel

te
s describe these ordinary

Object’s class
s.

bles of object’class!
lass information not instance

 objects

ables.
ble that stores structure that
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

About the 6th ObjVlisp’s Postula
“Ordinary objects are used to model real world. Metaobject
objects” [Rivard 96]

The ObjVlisp 6th postulate is:
class variable of anObject =instance variable of an

So class variables are shared by all the instances of a clas

We disagree with it.
❑ Semantically class variables are not instance varia
❑ Instance variable of metaclass should represent c

information.
Metaclass information should represent classes not domain

CLOS offers the :class instance variable qualifier class vari
We could imagine that a class possesses an instance varia
represents shared-variable and their values.

About Metaclass Evolution 47.

© imal Object-Oriented Reflective Kernel

riables

d by a class

lass (inherited from Object)

A is instance of B
BA

c3
xtnode
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Instance Structure: Instance Va
Instance variables:

❑ an ordered sequence of instance variables define
❑ shared by all its instances
❑ values specific to each instance

In particular, every object possesses an instance variable c
that points to its class.

Node
name
nextNode

#mac1
mac2

#mac2
mac3

#ma
none

About Metaclass Evolution 48.

© imal Object-Oriented Reflective Kernel

ss
e method selector) and the

class is the value of
ss Class .
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Instance Behavior: Methods

A method
❑ belongs to a class
❑ defines the behavior of all the instances of the cla
❑ is stored into a dictionary that associates a key (th

method body

To unify instances and classes, the method dictionary of a
the instance variable methodDict defined on the metacla

About Metaclass Evolution 49.

© imal Object-Oriented Reflective Kernel

ance variable class inherited
etaclass that creates it).

stance

ssesses 4 instance variables

 inheritance)

lass

bject
ance variables
ds
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Class as an Object: Structure
❑ Considered as an object, a class possesses an inst

from Object that refers to its class (here to the m

– class an identifier of the class of the in

❑ But as an instance factory the metaclass Class po
that describe a class:
 - name the class name
 - super its superclass (we limit to single
 - i-v the list of its instance variables
 - methodDict a method dictionary

Example: class Node
class: Class instance of C
name: Node named Node
super: Object inherits from O
i-v: (name nextNode) defines 2 inst
methods: defines metho

About Metaclass Evolution 50.

© imal Object-Oriented Reflective Kernel

ss

nce of Class
ed Class
rits from Object
ribes any class
vior of a class
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

The class Class: a Reflective cla

❑ Initial metaclass
❑ Defines the behavior of all the metaclasses
❑ Instance of itself to avoid an infinite regression

class: Class insta
name: Class nam
super: Object inhe
i-v: (name supers i-v methodDict) desc
methods: (new allocate initialize..... beha

About Metaclass Evolution 51.

© imal Object-Oriented Reflective Kernel

dDict)

Class is instance
of itself

t
)
 (x: y: display)

the class Point

A is instance of B
BA
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

A Complete Example

class: Class
the class Class

name: Class
super: Object
iv: (class name super iv metho
methodDict: (new initialize ...)

class: Class
name: Workstation
super: Object
iv: (class name nextNode)
methodDict: (accept: send:)

class: Class
name: Point
super: Objec
iv: (class x y
methodDict:

the class Workstation

#mac1
mac2

#mac2
pc1

10
15

About Metaclass Evolution 52.

© imal Object-Oriented Reflective Kernel
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Outline
❑ Metaclasses?
❑ Examples of usefull metaclasses
❑ Towards a unified approach: Loops, Smalltalk
❑ ObjVlisp in 5 postulates
❑ Instance Structure and Behavior
❑ Class Structure

☞ Message Passing
❑ Object allocation & Initialization
❑ Class creation
❑ Inheritance Semantics
❑ Bootstrapping
❑ Examples: Playing with ObjVlisp

About Metaclass Evolution 53.

© imal Object-Oriented Reflective Kernel

ct
nd its behavior.

Node
name: aString
nextNode: aNode
end: aPacket

accept: a Packet

A is instance of B
BA

#mac1
pc1
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Message Passing (i)
P2: Message passing is the only means to activate an obje
P3: Every object belongs to a class that specifies its data a

Node
name: aString
nextNode: aNode
send: aPacket
accept: a Packet

Node
name: aString
nextNode: aNode
send: aPacket
accept: a Packet

s

[mac1 nextNode: pc1]

#mac1
nonode

#mac1
nonode

About Metaclass Evolution 54.

© imal Object-Oriented Reflective Kernel

p

message in the class of the

f the receiver)

) receiver)
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Message Passing (ii)

send message = apply O looku

We lookup the method associated with the selector of the
receiver then we apply it to the receiver .

[receiver selector args]
<=>

apply (found method starting from the class o
 on the receiver and the args

<=>
in functional style

(apply (lookup selector (class-of receiver
receiver args)

About Metaclass Evolution 55.

© imal Object-Oriented Reflective Kernel
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Object Creation by Example

Creation of instances of the class Point
[Point new :x 24 :y 6]

[Point new]

[Point new :y 10 :y 15]

Creation of the class Point instance of Class

[Class new

 :name Point

 :super Object

 :i-v (x y)

 :methods (x ...

display ...)

]

About Metaclass Evolution 56.

© imal Object-Oriented Reflective Kernel

ew

cation

ions:

tion aClass) args)

e args]
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Object Creation: the Method n

Object Creation = initialisation O allo

❑ Creating an instance is the composition of two act
☞ memory allocation: allocate method
☞ object intialisation: initialize method

(new aClass args) = (initialization (alloca
<=>

[aClass new args] = [[aClass allocate] initializ

❑ new creates an object: class or final instances
❑ new is a class method

About Metaclass Evolution 57.

© imal Object-Oriented Reflective Kernel

etaclass Class
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Object Allocation
❑ Object allocation should return:

☞ Object with empty instance variables
☞ Object with an identifier to its class

❑ Done by the method allocate defined on the m
❑ allocate method is a class method

example:
[Point allocate] => #(Point nil nil)

for x and y

[Workstation allocate] => #(Workstation nil nil)

for name and nextNode

[Class allocate] => #(Class nil nil nil....)

About Metaclass Evolution 58.

© imal Object-Oriented Reflective Kernel

stance variables by means of
riables.

y -> 6, x -> 24)
 the created object.
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Object Initialization
❑ Initialization allows one to specify the value of the in

keywords (:x ,:y) associated with the instances va
Example:

[Point new :y 6 :x 24]

=> [#(Point nil nil) initialize (:y 6 :x 24)]

==> #(Point 24 6)

❑ initialize : two steps
☞ get the values specified during the creation. (
☞ assign the values to the instance variables of

About Metaclass Evolution 59.

© imal Object-Oriented Reflective Kernel

 Role
message in the class of the

aString
de: aNode
Packet

: a Packet

A is instance of B
BA

#mac1
nonode
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Object Creation: the Metaclass
We lookup the method associated with the selector of the
receiver then we apply it to the receiver .

Node
name: aString
nextNode: aNode
send: aPacket
accept: a Packet

[Node withName: #mac1]

Class
name

new
initialize ...

super
iv
methodDict

Class
name

new
initialize ...

super
iv
methodDict

1

2

Node
name:
nextNo
send: a
accept

About Metaclass Evolution 60.

© imal Object-Oriented Reflective Kernel

Node
name: aString
nextNode: aNode
send: aPacket
accept: a Packet

 ...

Dict
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Class Creation

Class
name

new
initialize ...

super
iv
methodDict

 [Class new
:name Node
:supers Object
:iv (name nextNode)
:methods
(send:))]

1

2

Class
name

new
initialize

super
iv
method

A is instance of B
BA

About Metaclass Evolution 61.

© imal Object-Oriented Reflective Kernel

avior of an object

A is instance of B
BA

Object
class
error
class?
iv-set...
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

A Simple Instantiation Graph

❑ Class is the root of instantiaton graph
❑ Object is a class that represents the minimal beh
❑ Object is a class so it is instance of Class

#mac1
nonode

#mac2
pc1

15
10

Class
name

new
initialize ...

super
iv
methodDict

Node
name
nextNode

send: aPacket
accept: a Packet

name Point
x
y

x
y

display

About Metaclass Evolution 62.

© imal Object-Oriented Reflective Kernel

hared by all

d by all the objects:

ss (uses a primitive for

ation)
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

What is the minimal behavior s
the objects?

The class Object represents the common behavior share
☞ classes
☞ final instances.

❑ every object knows its class: instance variable cla
accessing else that loops!)

❑ methods:
 - initialize (instance variable initializ
 - error

 - class

 - metaclass ?
 - class ?

Meta operations:
 - iv-set

 - iv-ref

About Metaclass Evolution 63.

© imal Object-Oriented Reflective Kernel
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Outline
❑ Metaclasses?
❑ Examples of usefull metaclasses
❑ Towards a unified approach: Loops, Smalltalk
❑ ObjVlisp in 5 postulates
❑ Instance Structure and Behavior
❑ Class Structure
❑ Message Passing
❑ Object allocation & Initialization
❑ Class creation

☞ Inheritance Semantics
❑ Bootstrapping
❑ Examples: Playing with ObjVlisp

About Metaclass Evolution 64.

© imal Object-Oriented Reflective Kernel

 the union of the instance
les defined in C.

e-variables(C))
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Two Forms of Inheritance
❑ Static for the instances variables

☞ Done once at the class creation
☞ When C is created, its instances variables are
variables of its superclass with the instance variab

final-instance-variables (C) =
union (union (iv (super C)), local-instanc

About Metaclass Evolution 65.

© imal Object-Oriented Reflective Kernel

ses using the super

ctor is found

]
s of the class

dle the error.
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Dynamic Method Inheritance

❑ Walks through the inheritance graph between clas
instance variable

lookup (selector class receiver):
if the method associated with the the sele
then return it
else

if receiver class == Object

then [receiver error selector

else we lookup in the superclas

☞ the error method can be specialized to han

About Metaclass Evolution 66.

© imal Object-Oriented Reflective Kernel

nd the minimal behavior), so

bject class
from Object class.

ColoredPoint
class
x
y
color

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

A Simple Inheritance Graph

❑ Object class is the root of the hierarchy.
❑ a Workstation is an object (should at least understa

Workstation class inherits from Object class
❑ a class is an object so Class class inherits from O
❑ In particular, class instance variable is inherited

ClassObject

Node
Point
class
x
y

class

class
name
nextNode

error
class?
iv-set...

class
supers

methodDict
iv

About Metaclass Evolution 67.

© imal Object-Oriented Reflective Kernel

ion
cket
Packet

t]

2

mac2 name]

a

b

#mac2
pc1
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Method Lookup Example (i)

Workstat
send: aPa
accept: a

Node
name
nextNode

send: aPacket
accept: a Packet

Object
class
error
class?
iv-set...

[mac2 send: aPacke

1

name

[

c

A is instance of B
BA

A B
A inherits from B

About Metaclass Evolution 68.

© imal Object-Oriented Reflective Kernel

tation
acket

a Packet

ucou]

1

2

coucou

error

5

6

7

A is instance of B
BA

A B
A inherits from B

#mac2
pc1
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Method Lookup Example (ii)

Works
send: aP
accept:

Node
name
nextNode

send: aPacket
accept: a Packet

Object
class
error
class?
iv-set...

[mac2 co

name

coucou
3

coucou
4

[mac2 error coucou]

error

error
8

About Metaclass Evolution 69.

© imal Object-Oriented Reflective Kernel

the receiver of the message.

e class of the receiver .

he superclass of the class of
OT in the superclass of the

egin searching in the
uper
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Semantics of super
❑ As self , super is a pseudo-variable that refers to

Used to invoke overriden methods.
❑ Using self the lookup of the method begins in th
❑ self is dynamic

❑ Using super the lookup of the method begins in t
the method containing the super expression and N
receiver class.

❑ super is static
❑ Other said: super causes the method lookup to b

superclass of the class of the method containing s

About Metaclass Evolution 70.

© imal Object-Oriented Reflective Kernel

uperclass

iver class.

m1
A

m1
B

C

aC

super m1
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Let us be Absurb!
Let us suppose the WRONG hypothesis:
"IF super semantics = starting the lookup of method in the s
of the receiver class"

What will happen for the following message: aC m1
m1 is not defined in C
m1 is found in B

By Hypothesis: super = lookup in the superclass of the rece
And we know that the superclass of the receiver class = B

=> That's loop
So Hypothesis is WRONG !!

About Metaclass Evolution 71.

© imal Object-Oriented Reflective Kernel

10

A is instance of B
BA

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

A Simple Uniform Kernel

#mac1-> nil

Class

Object

Workstation

15 ; #mac2->mac2

Point

About Metaclass Evolution 72.

© imal Object-Oriented Reflective Kernel

 Process
t :
nd assigned to the allocated

t nil nil) : Point

..)]
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Class initialization: a Two Steps
initialize is defined on both classes Class and Objec

❑ on Object : values are extracted from initarg list a
instance

[#(Point nil nil) initialize (:y 6 :x 24)]

=> #(Point 6 24)

Initialize is lookup in class of #(Poin
Then in its superclass: Object

❑ on Class :
[Class new :name Point :super Object :i-v (x y)...]

[#(Class nil nil nil...) initialize (:name Point :super Object :i-v (x y)...]

☞ a class is an object
[#(Class Point Object (x y) nil #(x: (mkmethod...) y: (mkmethod .

☞ a class is at minimum a class
inheritance of instance variables,
keyword definition,
method compilation

[#(Class Point Object (class x y) (:x :y) #(x: (...) y: (...)]

About Metaclass Evolution 73.

© imal Object-Oriented Reflective Kernel

stance variables of any

words, method compilation)
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Recap: Class class

❑ Initial metaclass
❑ Reflective: its instance variable values describe in

classes in the system (itself too)
❑ Defines the behavior of all the classes
❑ Inherits from Object class
❑ Root of the instantiation graph
❑ Instance variables: name, super, iv, methodDict

❑ Methods
- new

- allocate

- initialize (instance variable inheritance, key
- class ?
- subclass-of ?

About Metaclass Evolution 74.

© imal Object-Oriented Reflective Kernel

he system

 directly or indirectly from

s d'instance)
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Recap: Object class
❑ Defines the behavior shared by all the objects of t
❑ Instance of Class

❑ Root of the inheritance tree: all the classes inherit
Object

❑ Its instance variable: class

❑ Its methods:
 - initialize (initialisation les variable
 - error

 - class

 - metaclass ?
 - class ?
 - iv-set

 - iv-ref

About Metaclass Evolution 75.

© imal Object-Oriented Reflective Kernel
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Outline
❑ Metaclasses?
❑ Examples of usefull metaclasses
❑ Towards a unified approach: Loops, Smalltalk
❑ ObjVlisp in 5 postulates
❑ Instance Structure and Behavior
❑ Class Structure
❑ Message Passing
❑ Object allocation & Initialization
❑ Class creation
❑ Inheritance Semantics

☞ Bootstrapping
❑ Examples: Playing with ObjVlisp

About Metaclass Evolution 76.

© imal Object-Oriented Reflective Kernel

 define itself
s already exists as instance
bject and Class as normal

 class Class avec with
 from Object class)
f the classes (new and

ct....]

.]
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Bootstrapping the Kernel
❑ Mandatory to have Class instance of itself
❑ Be lazy: Use as much as possible of the system to
❑ Idea: Cheat the system so that it believes that Clas

of itself and inheriting from Object , then create O
classes

Three Steps:
1. manual creation of the instance that represents the

☞ inheritance simulation (class instance variable
☞ only the necessary methods for the creation o

initialize)
2. creation of the class Object [Class new :name Obje

☞ definition of all the method of Object

3. redefinition of Class

[Class new :name Class :super Object....

☞ definition of all the methods of Class

About Metaclass Evolution 77.

© imal Object-Oriented Reflective Kernel

a previous one” [Cointe’87]

s %s“ self name))]
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Abstract Classes
“The rule to define a new metaclass is to make it inherit from

Prb. Abstract classes should not create instances
Sol. Redefine the new method

Metaclass Definition:
[Class new

:name Abstract

:super Class

:methods (new (lambda (self initargs)

(self error "Cannot create instance of clas

Metaclass Use:
[Abstract new :name Node :super Object]

[Node new]

-> Cannot create instance of class Node

[Abstract new :name Abstract-Stack :super Object]

About Metaclass Evolution 78.

© imal Object-Oriented Reflective Kernel

lass

ac2

Abstract
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Abstract
❑ Abstract is a class -> It is instance of Class

❑ Abstract define class behavior -> It inherits from C

#mac1-> nil

Class

Object

Workstation

#mac2->m

Node

A is instance of B
BA

A B
A inherits from B

About Metaclass Evolution 79.

© imal Object-Oriented Reflective Kernel

kup

Abstract
new: No instance

A is instance of B
BA

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Abstract Class and Method Loo

Class

Object

Workstation

Node

new:
 initialize (allocate)

[Node new]

[Workstation new]

a

b

1

2

About Metaclass Evolution 80.

© f an Object-Oriented Reflective Kernel

 Reflective
 Dr. Ducasse Stéphane -Universität Bern Study o

3. Study of an Object-Oriented
Kernel

Dr. Stéphane Ducasse
Software Composition Group
University of Bern
Switzerland

Email: ducasse@iam.unibe.ch
Url: http://www.iam.unibe.ch/~ducasse/

About Metaclass Evolution 81.

© f an Object-Oriented Reflective Kernel

ltalk, CLOS)
 Dr. Ducasse Stéphane -Universität Bern Study o

Goals of this Lecture

❑ Metaclass concept
❑ Reflective Architectures and Kernels (SOM, Smal
❑ What are Object and Class classes?
❑ Semantics of inheritance, semantics of super
❑ Metaclass power
❑ Metaclass limits
❑ Metaclass composibility solution

About Metaclass Evolution 82.

© f an Object-Oriented Reflective Kernel

t / metaprogrammer)
 Dr. Ducasse Stéphane -Universität Bern Study o

Outline
❑ Examples of usefull metaclasses
❑ Examples of programming with metaclasses (clien
❑ Towards a unified approach: Loops, Smalltalk
❑ Building your own metaclass kernel: ObjVlisp
❑ Examples: Playing with ObjVlisp
❑ Metaclasses are powerful but
❑ Problems with composition
❑ Problems with property propagation
❑ Clos’s solution
❑ Smalltalk’s solution
❑ SOM’s solution
❑ NeoClasstalk’s solution
❑ Conclusion
❑ Bibliography

About Metaclass Evolution 83.

© f an Object-Oriented Reflective Kernel

rogramming

Language

Applications

eta Language

Meta Applications
Customization of
the language
 Dr. Ducasse Stéphane -Universität Bern Study o

Recall: Meta Programming in P
Language Context

M

Language

Applications

About Metaclass Evolution 84.

© f an Object-Oriented Reflective Kernel

t / metaprogrammer)
 Dr. Ducasse Stéphane -Universität Bern Study o

Outline
☞ Examples of usefull metaclasses

❑ Examples of programming with metaclasses (clien
❑ Towards a unified approach: Loops, Smalltalk
❑ Building your own metaclass kernel: ObjVlisp
❑ Examples: Playing with ObjVlisp
❑ Metaclasses are powerful but
❑ Problems with composition
❑ Problems with property propagation
❑ Clos’s solution
❑ Smalltalk’s solution
❑ SOM’s solution
❑ NeoClasstalk’s solution
❑ Conclusion
❑ Bibliography

About Metaclass Evolution 85.

© f an Object-Oriented Reflective Kernel

has been repeatedly
e concepts belong to

ins classes; at run-
pproach. One of the
 influenced by
sses as object
run-time. ”
 Dr. Ducasse Stéphane -Universität Bern Study o

Class as Objects
“The difference between classes and objects
emphasized. In the view presented here, thes
different worlds: the program text only conta
time, only objects exist. This is not the only a
subcultures of object-oriented programming,
Lisp and exemplified by Smalltalk, views cla
themselves, which still have an existence at

Bertrand Meyer in Object-Oriented Software Construction

About Metaclass Evolution 86.

© f an Object-Oriented Reflective Kernel

pened

ccessors

of instances

es

s called (missing method
 Dr. Ducasse Stéphane -Universität Bern Study o

Some Class Properties
Abstract: a class cannot have any instance
Set: a class that knows all its instances
BreakPoint: some methods are not run and a debugger is o
DynamicIVs: Lazy allocation of instance structure
LazyAccess: only fetch the value if needed
AutomaticAccessor: a class that defines automatically its a
Final: Class cannot be changed and subclassed
FinalMethods: Methods that cannot be specialized
Limited/Singleton: a class can only have a certain number
IndexedIVs: Instances have indexed instance variables
InterfaceImplementor: class must implement some interfac
MultipleInheritance: a class can have multiple superclasses
Released: a class that cannot changed anymore
Trace: Logs method calls, attribute accesses
PrePostConditions: methods with pre/post conditions
MessageCounting: Counts the number of times a method i
metaobject)

About Metaclass Evolution 87.

© f an Object-Oriented Reflective Kernel

le

 servers.
em differently.

asses.

100

ac2
 Dr. Ducasse Stéphane -Universität Bern Study o

A Simple Application as Examp
A LAN Simulator:

- A LAN contains nodes, workstations, printers, file
- Packets are sent in a LAN and the nodes treat th

Problem: We want to analysis all the messages sent
But:

❑ We do not want to change the code of the node cl

mac1 node1 lw

m
pc

About Metaclass Evolution 88.

© f an Object-Oriented Reflective Kernel

xplicit
 Dr. Ducasse Stéphane -Universität Bern Study o

@@stay??@@ Programming in E
Metaclass Context

CLOS-like
(defclass Node ()

((name :initarg :name :default-value #lulu :reader name)

 (nextNode :default-value ‘() :accessor nextNode)))

(defmethod accept ((n Node) (p Packet))

....)

(defmethod send ((n Node) (p Packet))

...)

@@Check counting Kiczales here@@

A
bo

ut
 M

et
ac

la
ss

 E
vo

lu
tio

n
89

.

 D
r.

 D
uc

as
se

 S
té

ph
an

e
-U

ni
ve

rs
itä

t B
er

n
S

tu
dy

 o
f a

n
O

bj
ec

t-
O

rie
nt

ed
 R

ef
le

ct
iv

e
K

er
ne

l

Re
us

in
g

 M
et

a
 P

ro
g

ra
m

s@
@

st
a

y?
?@

@

©

About Metaclass Evolution 90.

© f an Object-Oriented Reflective Kernel

ext

taobjects describe these

d without meta programming
amicIVs,

s (indexed for points, hashed

 the net)

)

 Dr. Ducasse Stéphane -Universität Bern Study o

MetaProgramming in OO Cont
❑ A MetaProgram is not mixed into objects
❑ Ordinary objects are used to model real world. Me

ordinary objects.
❑ MetaPrograms can be reused.
❑ Some other properties cannot easily be implemente

traceMessage, finalClass, PrePostConditions, Dyn
MessageCounting....

We may want to:
❑ change the representation of the instance variable

for person)
❑ change the way attributes are accessed (lazily via
❑ change the inheritance semantics
❑ change the invocation of method (trace, proxies...

About Metaclass Evolution 91.

© f an Object-Oriented Reflective Kernel

ecture” [Cointe’87]

ethod combination,...)

urs, hash-table,...)
 Dr. Ducasse Stéphane -Universität Bern Study o

Metaclass Responsibilities
“Metaclasses provide metatools to build open-ended archit

Metaclass are one of the possible meta-entities (method, m
Metaclass allows the structural extension of the language
They may control

❑ Inheritance
❑ Internal representation of the objects (listes, vecte
❑ Method access ("caches" possibility)
❑ Instance variable access

Separation of Concerns
❑ Ordinary objects are used to model real world
❑ Metaobjects describe these ordinary objects
❑ Meta/Base level functionality is not mixed

About Metaclass Evolution 92.

© f an Object-Oriented Reflective Kernel
 Dr. Ducasse Stéphane -Universität Bern Study o

On the Road Again
❑ Towards ObjVlisp
❑ ObjVlisp in 5 postulates
❑ Instance Structure and Behavior
❑ Class Structure
❑ Message Passing
❑ Object allocation & Initialization
❑ Inheritance Semantics
❑ Bootstrapping

About Metaclass Evolution 93.

© f an Object-Oriented Reflective Kernel

bject and Class
ct and a metaclass is a class

s of Scheme or 30 Smalltalk

and reflective programming
 Dr. Ducasse Stéphane -Universität Bern Study o

Why ObjVlisp?
❑ Minimal (only two classes)
❑ Reflective: ObjVlisp self-described: definition of O
❑ Unified: Only one kind of object: a class is an obje

that creates classes
❑ Open
❑ Simple: can be implemented with less than 300 line

methods.
❑ Equivalent of Closette
❑ Really good for understanding dynamic languages

(D-SOM, CLOS, Smalltalk kernel)

About Metaclass Evolution 94.

© f an Object-Oriented Reflective Kernel

control over the creation of
a types to represent classes
their metaclass, usually the

st be instance of MetaClass

ok

taSet

b A is instance of B
BA

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern Study o

The Loops Approach
“For some special cases, the user may want ot have more
instances. For example, Loops itself uses different Lisp dat
and instances. The New message for classes is fielded by
object MetaClass.” [Bobrow83]

❑ Explict metaclass as a sublcass of another but mu

MetaClass

Class

Point Object Bo

Me

About Metaclass Evolution 95.

© f an Object-Oriented Reflective Kernel

roach
 is to provide protocol for
es of the metaclasse’sole

 class

 the class inheritance
er (instance of Class) and
 of metaclasses)

s

Point

Object

Class
 Dr. Ducasse Stéphane -Universität Bern Study o

The Smalltalk Pragmatical App
“The primary role of a metaclass in the Smalltalk-80 system
initializing class variables and for creating initialized instanc
instance“ [Goldberg84]

❑ A class is the sole instance of a metaclass
❑ Every metaclass is an instance of the Metaclass

☞ metaclasses are not true classes
☞ number of metalevels is fixed

❑ Metaclass hierarchy inheritance is fixed: parallel to
☞ dichotomy between classes defined by the us

metaclasses defined by the system (instance

Metaclass class Metaclass

Point class

Object clas

Class class

About Metaclass Evolution 96.

© f an Object-Oriented Reflective Kernel

(slots or instance variables)
 their class.

nce of another class

tion

Class
name...
new
allocate

the class Class

A is instance of B
BA
 Dr. Ducasse Stéphane -Universität Bern Study o

ObjVlisp in 5 Postulates (i)
P1: object = <data, behavior>
P3: Every object belongs to a class that specifies its data
 and its behavior. Objects are created dynamically from

P4: Following P3, a class is also an object therefore insta
 its metaclass (that describes the behavior of a class).

mac1 a workstation instance of the class Worksta

P1&P3

the class P4

Workstation
Workstation

send: aPacket
accept: a Packet

«instance-of»

«instance-of»

About Metaclass Evolution 97.

© f an Object-Oriented Reflective Kernel

etaclass that is an object too
of another a

A is instance of B
BA
 Dr. Ducasse Stéphane -Universität Bern Study o

How to Stop Infinite Recursion?
Aclass is an object therefore instance of another class its m
instance of a metametaclass that is an object too instance
metametametaclass......

To stop this potential infinite recursion
❑ Class is the initial class and metaclass
❑ Class is instance of itself and
❑ all other metaclasses are instances of Class .

Class
name...
new
allocate

the class Class

About Metaclass Evolution 98.

© f an Object-Oriented Reflective Kernel

ect

other classes.
ring of instance

esents the behavior shared

mac1

[mac1 accept: pck2]

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern Study o

ObjVlisp in 5 Postulates (ii)
P2: Message passing is the only means to activate an obj

[objet selecteur args]

P5: A class can be defined as a subclass of one or many
 This mechanism is called inheritance. It allows the sha
 instance variable and methods. The class Object repr
 by all the objects.

Workstation
send: aPacket
accept: a Packet

Node
name
nextNode
send: aPacket
accept: a Packet«inherits from»

About Metaclass Evolution 99.

© f an Object-Oriented Reflective Kernel

d Instances
ass allowing a greater clarity

n classes and final instances.
tion message: new. Only a

.

 Dr. Ducasse Stéphane -Universität Bern Study o

Unification between Classes an
“We claim that a class must be an object defined by a real cl
and expressive power” [Cointe’87]

❑ Every object is instance of a class
❑ A class is an object instance of a metaclass (P4)

☞ But all the objects are not classes

❑ Only one kind of objects without distinction betwee
❑ Sole difference is the ability to respond to the crea

class knows how to deal with it.
❑ A metaclass is only a class that generates classes

About Metaclass Evolution 100.

© f an Object-Oriented Reflective Kernel

te
s describe these ordinary

bject’s class)

s.

ariables of object’class!
lass information not instance

 objects

ables.
ble that stores structure that
 Dr. Ducasse Stéphane -Universität Bern Study o

About the 6th ObjVlisp’s Postula
“Ordinary objects are used to model real world. Metaobject
objects” [Rivard 96]

ObjVlisp 6th postulate:
class variable (anObject) = instance variable (anO

So class variables are shared by all the instances of a clas

❑ But semantically class variables are not instance v
❑ Instance variable of metaclass should represent c

information.
Metaclass information should represent classes not domain

CLOS offers the :class instance variable qualifier class vari
We could imagine that a class possesses an instance varia
represents shared-variable and their values.

About Metaclass Evolution 101.

© f an Object-Oriented Reflective Kernel

riables

d by a class

lass (inherited from Object)

 -> nil

A is instance of B
BA
 Dr. Ducasse Stéphane -Universität Bern Study o

Instance Structure: Instance Va
Instance variables:

❑ an ordered sequence of instance variables define
❑ shared by all its instances
❑ values specific to each instance

In particular, every object possesses an instance variable c
that points to its class.

Node
name
nextNode

#mac1 -> mac2 #mac2 -> mac3 #mac3

About Metaclass Evolution 102.

© f an Object-Oriented Reflective Kernel

ss
e method selector) and the

class is the value of
ss Class .
 Dr. Ducasse Stéphane -Universität Bern Study o

Instance Behavior: Methods

A method
❑ belongs to a class
❑ defines the behavior of all the instances of the cla
❑ is stored into a dictionary that associates a key (th

method body

To unify instances and classes, the method dictionary of a
the instance variable methodDict defined on the metacla

About Metaclass Evolution 103.

© f an Object-Oriented Reflective Kernel

ance variable class inherited
etaclass that creates it).
ssesses 4 instance variables

lass

bject
ance variables
ds
 Dr. Ducasse Stéphane -Universität Bern Study o

Class as an Object: Structure
❑ Considered as an object, a class possesses an inst

from Object that refers to its class (here to the m
❑ But as an instance factory the metaclass Class po

that describe a class:

 - name the class name
 - supers the list of its superclasses
 - i-v the list of its instance variables
 - methodDict a method dictionary

Example: class Node

class: Class instance of C
name: "Node" named Node
supers: '(Object) inherits from O
i-v: '(name nextNode) defines 2 inst
methods: defines metho

About Metaclass Evolution 104.

© f an Object-Oriented Reflective Kernel

ss

nce of Class
ed Class
rits from Object

lass
 Dr. Ducasse Stéphane -Universität Bern Study o

The class Class: a Reflective cla

❑ Initial metaclass
❑ Defines the behavior of all the metaclasses
❑ Instance of itself to avoid an infinite regression

class: Class insta
name: "Class" nam
supers: '(Object) inhe
i-v: '(name supers i-v methodDict)

describes the instance variables of any c
methods: ‘(new allocate initialize.....

About Metaclass Evolution 105.

© f an Object-Oriented Reflective Kernel

odDict)

Class is instance
of itself

’
ject)
)
 (x: y: display)

 10

the class Point

A is instance of B
BA
 Dr. Ducasse Stéphane -Universität Bern Study o

A Complete Example

#mac1-> nil

class: Class
the class Class

name: ‘Class’
supers: ‘(Object)
iv: (class name supers iv meth
methodDict: (new initialize ...)

class: Class
name: ‘Workstation’
supers: ‘(Object)
iv: (class name nextNode)
methodDict: (accept: send:)

class: Class
name: ‘Point
supers: ‘(Ob
iv: (class x y
methodDict:

15 ;#mac2->mac2

the class Workstation

About Metaclass Evolution 106.

© f an Object-Oriented Reflective Kernel

ct
nd its behavior.

Node
name: aString
nextNode: aNode
end: aPacket

accept: a Packet

#mac1-> mac2

A is instance of B
BA
 Dr. Ducasse Stéphane -Universität Bern Study o

Message Passing (i)
P2: Message passing is the only means to activate an obje
P3: Every object belongs to a class that specifies its data a

Node
name: aString
nextNode: aNode
send: aPacket
accept: a Packet

#mac1-> nil

Node
name: aString
nextNode: aNode
send: aPacket
accept: a Packet

#mac1-> nil

s

[mac1 nextNode: mac2]

About Metaclass Evolution 107.

© f an Object-Oriented Reflective Kernel

message in the class of the

ss of the receiver)

r) receiver)
 Dr. Ducasse Stéphane -Universität Bern Study o

Message Passing (ii)

We lookup the method associated with the selector of the
receiver then we apply it to the receiver .

[receiver selector args]
<=>

apply (found method starting from the cla
 on the receiver and the args

<=>
in Scheme

(apply (lookup selecteur (class-of receive
receiver args)

About Metaclass Evolution 108.

© f an Object-Oriented Reflective Kernel
 Dr. Ducasse Stéphane -Universität Bern Study o

Object Creation by Example

Creation of instances of the class Point
[Point new :x 24 :y 6]

[Point new]

[Point new :y 10 :y 15]

Creation of the class Point instance of Class

[send Class 'new

 :name Point

 :supers '(Object)

 :i-v '(x y)

 :methods '(x (lambda (self)...)

display (lambda (self)...))

]

About Metaclass Evolution 109.

© f an Object-Oriented Reflective Kernel

ew

ions:

tion aClass) args)

ze args]
 Dr. Ducasse Stéphane -Universität Bern Study o

Object Creation: the Method n
❑ new creates an object: class or final instances
❑ new is a class method
❑ Creating an instance is the composition of two act

☞ memory allocation: allocate method
☞ object intialisation: initialize method

(new aClass args) = (initialization (alloca
<=>

[aClass new args] = [[send aClass allocate] initiali

About Metaclass Evolution 110.

© f an Object-Oriented Reflective Kernel

class Class
 Dr. Ducasse Stéphane -Universität Bern Study o

Object Allocation
❑ Object allocation should return:

☞ Object with empty instance variables
☞ Object with an identifier to its class

❑ Done by the method allocate defined on the meta
❑ Allocate method is a class method

example:
[Point 'allocate] => #(Point nil nil)

for x and y

[Workstation ‘allocate] => #(Workstation nil nil)

for name and nextNode

[Class 'allocate] => #(Class nil nil nil....)

About Metaclass Evolution 111.

© f an Object-Oriented Reflective Kernel

stance variables by means of
riables.

y -> 6, x -> 24)
 the created object.
 Dr. Ducasse Stéphane -Universität Bern Study o

Object Initialization
❑ Initialization allows one to specify the value of the in

keywords (:x ,:y) associated with the instances va
Example:

[Point 'new :y 6 :x 24] =>

[#(Point nil nil) initialize ‘(:y 6 :x 24)] =>

#(Point 24 6)

❑ initialize two steps
☞ get the values specified during the creation. (
☞ assign the values to the instance variables of

About Metaclass Evolution 112.

© f an Object-Oriented Reflective Kernel

 Role
message in the class of the

aString
de: aNode
Packet

: a Packet

#mac1-> nil

A is instance of B
BA
 Dr. Ducasse Stéphane -Universität Bern Study o

Object Creation: the Metaclass
We lookup the method associated with the selector of the
receiver then we apply it to the receiver .

Node
name: aString
nextNode: aNode
send: aPacket
accept: a Packet

[Node withName: #mac1]

Class
name

new
initialize ...

supers
iv
methodDict

Class
name

new
initialize ...

supers
iv
methodDict

1

2

Node
name:
nextNo
send: a
accept

About Metaclass Evolution 113.

© f an Object-Oriented Reflective Kernel

Node
name: aString
nextNode: aNode
send: aPacket
accept: a Packet

 ...

Dict
 Dr. Ducasse Stéphane -Universität Bern Study o

Class Creation

Class
name

new
initialize ...

supers
iv
methodDict

 [Class ‘new
:name Node
:supers ‘(Object)
:iv ‘(name nextNode)
:methods
‘(send: (lambda(self aPack)....))]

1

2

Class
name

new
initialize

supers
iv
method

A is instance of B
BA

About Metaclass Evolution 114.

© f an Object-Oriented Reflective Kernel

vior of an object.

A is instance of B
BA
 Dr. Ducasse Stéphane -Universität Bern Study o

A Simple Instantiation Graph

❑ Object is a class that represents the minimal beha
❑ Object is a class so it is instance of class

#mac1-> nil

Class

Object

Workstation

15 ; 10#mac2->mac2

Point

About Metaclass Evolution 115.

© f an Object-Oriented Reflective Kernel

hared by all

by all the objects:

ss (uses a primitive for

)

 Dr. Ducasse Stéphane -Universität Bern Study o

What is the minimal behavior s
the objects?

The class Object represents the common behavior shared
☞ classes
☞ final instances.

❑ every object knows its class: instance variable cla
accessing else that loops!)

❑ methods:
 - initialize (instance variable initialization
 - error
 - class
 - metaclass?
 - class?
 - iv-set
 - iv-ref

About Metaclass Evolution 116.

© f an Object-Oriented Reflective Kernel

 the union of the instance
les defined in C.

(C))
 Dr. Ducasse Stéphane -Universität Bern Study o

Two Forms of Inheritance
❑ Static for the instances variables

☞ Done once at the class creation
☞ When C is created, its instances variables are
variables of its superclass with the instance variab

i-v(C) = union (union (iv (supers C)), :i-v

About Metaclass Evolution 117.

© f an Object-Oriented Reflective Kernel

ses using the super

ctor is found

s of the class

 error.
 Dr. Ducasse Stéphane -Universität Bern Study o

Dynamic Method Inheritance
❑ Walks through the inheritance graph between clas

instance variable

lookup (selector class receiver):
if the method associated with the the sele
then return it
else

if receiver class == Object
then [receiver 'error selector]
else we lookup in the superclas

the error method can be specialized to handle the

About Metaclass Evolution 118.

© f an Object-Oriented Reflective Kernel

nd the minimal behavior), so

bject class
om Object class.

ColoredPoint
class
x
y
color

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern Study o

A Simple Inheritance Graph

❑ Object class is the root of the hierarchy
❑ a Workstation is an object (should at least understa

Workstation class inherits from Object class
❑ a class is an object so Class class inherits from O
❑ In particular, class instance variable is inherited fr

ClassObject

Node
Point
class
x
y

class

class
name
nextNode

error
class?
iv-set...

class
supers

methodDict
iv

About Metaclass Evolution 119.

© f an Object-Oriented Reflective Kernel

ion
cket
Packet

#mac2->mac2

2

ac2 name]

a

b

 Dr. Ducasse Stéphane -Universität Bern Study o

Method Lookup Example (i)

Workstat
send: aPa
accept: a

Node
name
nextNode

send: aPacket
accept: a Packet

Object
class
error
class?
iv-set...

[mac2 send: aPacket]

1

name

[m

c

A is instance of B
BA

A B
A inherits from B

About Metaclass Evolution 120.

© f an Object-Oriented Reflective Kernel

tation
acket

a Packet

#mac2->mac2

2

coucou

error

5

6

7

A is instance of B
BA

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern Study o

Method Lookup Example (ii)

Works
send: aP
accept:

Node
name
nextNode

send: aPacket
accept: a Packet

Object
class
error
class?
iv-set...

[mac2 coucou]

1

name

coucou
3

coucou
4

[mac2 error coucou]

error

error
8

About Metaclass Evolution 121.

© f an Object-Oriented Reflective Kernel

the receiver of the message.

e class of the receiver .

he superclass of the class of
OT in the superclass of the

egin searching in the
uper
 Dr. Ducasse Stéphane -Universität Bern Study o

Semantics of super
❑ As self , super is a pseudo-variable that refers to

Used to invoke overriden methods.
❑ Using self the lookup of the method begins in th
❑ self is dynamic

❑ Using super the lookup of the method begins in t
the method containing the super expression and N
receiver class.

❑ super is static
❑ Other said: super causes the method lookup to b

superclass of the class of the method containing s

About Metaclass Evolution 122.

© f an Object-Oriented Reflective Kernel

uperclass

iver class.

A

B

C

m1
super m1

m1
 ...

aC
 Dr. Ducasse Stéphane -Universität Bern Study o

Let us be Absurb!
Let us suppose the WRONG hypothesis:
"IF super semantics = starting the lookup of method in the s
of the receiver class"

What will happen for the following message: aC m1
m1 is not defined in C
m1 is found in B

By Hypothesis: super = lookup in the superclass of the rece
And we know that the superclass of the receiver class = B

=> That's loop
So Hypothesis is WRONG !!

@@Stef redo the pictuire with the right arrow@@

About Metaclass Evolution 123.

© f an Object-Oriented Reflective Kernel

10

A is instance of B
BA

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern Study o

A Simple Uniform Kernel

#mac1-> nil

Class

Object

Workstation

15 ; #mac2->mac2

Point

About Metaclass Evolution 124.

© f an Object-Oriented Reflective Kernel

 Process
t :
nd assigned to the allocated

t nil nil) : Point

)...]

kmethod ...)]

bda ...)]
 Dr. Ducasse Stéphane -Universität Bern Study o

Class initialization: a Two Steps
initialize is defined on both classes Class and Objec

❑ on Object : values are extracted from initarg list a
instance

[#(Point nil nil) initialize ‘(:y 6 :x 24)]

=> #(Point 6 24)

Initialize is lookup in class of #(Poin
Then in its superclass: Object

❑ on Class :
[send Class 'new :name “Point” :supers '(Object) :i-v '(x y)...]

[#(Class nil nil nil...) initialize ‘(:name Point :supers '(Object) :i-v '(x y

☞ a class is an object
[#(Class “Point” ‘(Object) ‘(x y) nil #(x: (mkmethod...) y: (m

☞ a class is at minimum a class
inheritance of instance variables,
keyword definition,
method compilation

[#(Class “Point” ‘(Object) ‘(class x y) (:x :y) #(x: (lambda...) y: (lam

About Metaclass Evolution 125.

© f an Object-Oriented Reflective Kernel

stance variables of any

, method compilation)
 Dr. Ducasse Stéphane -Universität Bern Study o

Recap: Class class

❑ Initial metaclass
❑ Reflective: its instance variable values describe in

classes in the system (itself too)
❑ Defines the behavior of all the classes
❑ Inherits from Object class
❑ Root of the instantiation graph
❑ Instance variables: name, supers, iv, methodDict

❑ Methods
- new
- allocate
- initialize (instance variable inheritance, keywords
- class?
- subclass-of?

About Metaclass Evolution 126.

© f an Object-Oriented Reflective Kernel

he system

 directly or indirectly from

stance)
 Dr. Ducasse Stéphane -Universität Bern Study o

Recap: Object class
❑ Defines the behavior shared by all the objects of t
❑ Instance of Class

❑ Root of the inheritance tree: all the classes inherit
Object

❑ Its instance variable: class

❑ Its methods:
 - initialize (initialisation les variables d'in
 - error
 - class
 - metaclass?
 - class?
 - iv-set
 - iv-ref

About Metaclass Evolution 127.

© f an Object-Oriented Reflective Kernel

 define itself
s already exists as instance
bject and Class as normal

 class Class avec with
 from Object class)
f the classes (new and

ct....]

....]
 Dr. Ducasse Stéphane -Universität Bern Study o

Bootstrapping the Kernel
❑ Mandatory to have Class instance of itself
❑ Be lazy: Use as much as possible of the system to
❑ Idea: Cheat the system so that it believes that Clas

of itself and inheriting from Object , then create O
classes

Three Steps:
1. manual creation of the instance that represents the

☞ inheritance simulation (class instance variable
☞ only the necessary methods for the creation o

initialize)
2. creation of the class Object [Class new :name Obje

☞ definition of all the method of Object

3. redefinition of Class

[Class new :name Class :super '(Object).

☞ definition of all the methods of Class

About Metaclass Evolution 128.

© f an Object-Oriented Reflective Kernel
 Dr. Ducasse Stéphane -Universität Bern Study o

On The Road
☞ Context
☞ Examples of metaclasses
☞ Examples of programming with metaclasses
☞ Previous Approaches: Loops, Smalltalk
☞ Building your own metaclass kernel: ObjVlisp
☞ Examples: Playing with ObjVlisp

❑ Metaclasses are powerful but
❑ Problems with composition
❑ Problems with property propagation
❑ Clos’s solution
❑ SOM’s solution
❑ Smalltalk’s solution
❑ NeoClasstalk’s solution
❑ Conclusion
❑ Bibliography

About Metaclass Evolution 129.

© f an Object-Oriented Reflective Kernel

a previous one” [Cointe’87]

s %s“ self name))]
 Dr. Ducasse Stéphane -Universität Bern Study o

Abstract Classes
“The rule to define a new metaclass is to make it inherit from

Prb. Abstract classes should not create instances
Sol. Redefine the new method

Metaclass Definition:
[Class new

:name Abstract

:supers ' (Class)

:methods '(new (lambda (self initargs)

(self error "Cannot create instance of clas

Metaclass Use:
[Abstract new :name Node :supers '(Object)]

[Node new]

-> Cannot create instance of class Node

[Abstract new :name Abstract-Stack :supers '(Object)]

About Metaclass Evolution 130.

© f an Object-Oriented Reflective Kernel

lass

ac2

Abstract
 Dr. Ducasse Stéphane -Universität Bern Study o

Abstract
❑ Abstract is a class -> It is instance of Class

❑ Abstract define class behavior -> It inherits from C

#mac1-> nil

Class

Object

Workstation

#mac2->m

Node

A is instance of B
BA

A B
A inherits from B

About Metaclass Evolution 131.

© f an Object-Oriented Reflective Kernel

kup

Abstract
new: No instance

A is instance of B
BA

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern Study o

Abstract Class and Method Loo

Class

Object

Workstation

Node

new:
 initialize (allocate)

[Node new]

[Workstation new]

a

b

1

2

About Metaclass Evolution 132.

© f an Object-Oriented Reflective Kernel
 Dr. Ducasse Stéphane -Universität Bern Study o

The Metaclass Set
Prb. How to access to all the instances of a certain class
Sol. Store the instances when there are created.

[Class new

:name “Set”

:supers '(Class)

:iv '(instances)

:methods ‘(

instances (lambda (self) (self iv-ref ‘instances))

instances! (lambda (self newInstances)

(self iv-set! ‘instances newInstances))

initialize (lambda (self initargs)

(super initialize initargs)

(self instances! ()))

new (lambda (self initargs)

(let ((n-i (super new)))]

 (self instances! (cons n-i (self instances)))]

About Metaclass Evolution 133.

© f an Object-Oriented Reflective Kernel

Set

Memo-Workstation

#mac3-> nil

instances:

instances

(mac3)
 Dr. Ducasse Stéphane -Universität Bern Study o

Sets

#mac1-> nil

Class

Object

Workstation

#mac2->mac2

Node

Abstract

A is instance of B
BA

A B
A inherits from B

About Metaclass Evolution 134.

© f an Object-Oriented Reflective Kernel

kstation

ac3-> nil

s

mac3) Memo-Point

A is instance of B
BA

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern Study o

Sharing Metaclasses

#mac1-> nil

Class

Object

Workstation

#mac2->mac2

Set

Node

Memo-Wor

Abstract

#m

instances:

instance

(

Point

About Metaclass Evolution 135.

© f an Object-Oriented Reflective Kernel

Point (i)
ceveur)

Point :supers '(Point)))
upers '(Point)))

'(Point))]

t) Set)
 Dr. Ducasse Stéphane -Universität Bern Study o

Zooming in: Creation of Memo-
Remember: (apply (lookup selecteur (class-of receveur) re

 receveur args)

[Set new :name Memory-Point :supers '(Point)]
(apply (lookup 'new (class-of Set) Set) Set '(:name Memo-
(apply (lookup 'new Class Set) Set '(:name Memo-Point :s

New : [[Set allocate] initialize '(:name Memo-Point :supers

[Set allocate]
(apply (lookup 'allocate (class-of Set) Se
(apply (lookup 'allocate Class Set) Set)
Allocate -> #(Set nil nil nil nil nil nil)

About Metaclass Evolution 136.

© f an Object-Oriented Reflective Kernel

Point (ii)
]
il)
y-Point :supers '(Point)))

 in supers Set : Class

as of Class (Class in whihc

ry-Point :supers '(Point)))
 Dr. Ducasse Stéphane -Universität Bern Study o

Zooming in: Creation of Memo-
[#(Set ()...()) initialize '(:name Memo-Point :supers '(Point))
(apply (lookup 'initialize (class-of #(Set nil...nil) #(Set nil...n
 #(Set nil...nil) '(:name Memor

.... (lookup 'initialize Set #(Set nil...nil)
initialize method is not found in the class Set => we search

.... (lookup 'initialize Class #(Set nil...nil)

Initialize:
[super initialize ...] 2

Memory-Point class is an object. super looks in the supercl
we found it) and not in Set
 (inherit-iv ...) 3
Memory-Point is a class
 2 (apply (lookup 'initialize Object #(Set nil...nil))
 #(Set nil...nil) '(:name Memo
 -> #(Set Memory-Point '(Point) nil nil nil)

3 #(Set Memory-Point '(Point) (class x y) nil nil)

About Metaclass Evolution 137.

© f an Object-Oriented Reflective Kernel

ages..definitions)
ct....)

(client point of view)
 Dr. Ducasse Stéphane -Universität Bern Study o

On The Road
☞ Context (differences between compiled langu
☞ Examples of usefull metaclasses (final, abstra
☞ Examples of programming with metaclasses
☞ Previous Approaches: Loops, Smalltalk
☞ Building your own metaclass kernel: ObjVlisp
☞ Examples
☞ Metaclasses are powerful but
☞ Problems with composition

❑ Problems with property propagation
❑ Clos’s solution
❑ SOM’s solution
❑ Smalltalk’s solution
❑ NeoClasstalk’s solution
❑ Conclusion
❑ Bibliography

About Metaclass Evolution 138.

© lementation: the CLOS MOP Example

LOS MOP
 Dr. Ducasse Stéphane -Universität Bern Open Imp

4. Open Implementation: the C
Example

Dr. Stéphane Ducasse
Software Composition Group
University of Bern
Switzerland

Email: ducasse@iam.unibe.ch
Url: http://www.iam.unibe.ch/~ducasse/

About Metaclass Evolution 139.

© lementation: the CLOS MOP Example

pen language
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Goals of this Lecture

❑ CLOS in a Nutshell
❑ CLOS MOP overview and example
❑ Difference between a reflective language and an o
❑ Lessons learnt in the MOP Design
❑ Open Implementation Design Guidelines

About Metaclass Evolution 140.

© lementation: the CLOS MOP Example

le
not receiver and message

lavors, Loops)

are externalised
 Dr. Ducasse Stéphane -Universität Bern Open Imp

CLOS
❑ Integration of object-orientation and functional sty

☞ Generic function, multiple discrimination and
based, types and classes

❑ Take into account other Lisp OO like languages (F
☞ migration path

❑ Small (they failed a bit) but extensible
☞ CLOS MOP: essential language entry points

About Metaclass Evolution 141.

© lementation: the CLOS MOP Example

tion

e “name”

)
 of classes for method

e redefinable via inheritance)

f the methods selected for a

 variables
 Dr. Ducasse Stéphane -Universität Bern Open Imp

CLOS in a nutshell
Essential

❑ Class based
❑ Multiple Inheritance (with graph linerization)
❑ Multiple argument discrimination for method selec
❑ Methods associated with multiple classes
❑ Methods combined to be executed
❑ Generic function: group of method having the sam

Too much details:
❑ specializers (eql instance based method selection
❑ argument-precedence-order (changing the weight

selection)
❑ default-initargs (default values for instance variabl
❑ auxillary methods (around, before, after methods)
❑ method combination (how to compose the results o

given set of arguments)
❑ automatic accessors and initialization per instance

About Metaclass Evolution 142.

© lementation: the CLOS MOP Example
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Class Definition

❑ In its simplest form:
(defclass rectangle ()

((height :initarg :start-height

:initform 5

:accessor height)

 (width :initform 8

:writer width)))

❑ Other possibilities
:allocation (per instance, shared among all instances)

specification of class defautl values inherited

About Metaclass Evolution 143.

© lementation: the CLOS MOP Example
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Instance Creation
(setq r1 (make-instance ‘rectangle

:start-height 25))

(height r1)

-> 25

(width r1)

-> 8

About Metaclass Evolution 144.

© lementation: the CLOS MOP Example

cesses

e

 Dr. Ducasse Stéphane -Universität Bern Open Imp

Encapsulation and Attribute Ac

❑ Accessors can be created automatically
☞ :accessor

(height r1)

(setf (height r1 75)

❑ Attributes can always be accessed using slot-valu
(slot-value r1 ‘height)

(setf (slot-value r1 ‘height) 75)

❑ Accessors are defined in terms of slot-value
❑ Accessors are preferred style

About Metaclass Evolution 145.

© lementation: the CLOS MOP Example
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Inheritance
❑ Simple

(defclass color-rectangle (rectangle)

((color :initform ‘red

:initarg :color

:accessor color)

 (clearp :initform nil

:initarg :clearp

:reader clearp)

 (height :initform 100)))

❑ Multiple
(defclass color-mixin ()

((color :initform ‘red :initarg :color :accessor color)))

(defclass color-rectangle (color-mixin rectangle)

(clearp :initform nil

:initarg :clearp

:accessor clearp)

 (height :initform 100)))

About Metaclass Evolution 146.

© lementation: the CLOS MOP Example

solution
oked using call-next-method

ce graph are accessed? (if
indow still only has one)

y-object colored-
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Multiple Inheritance Conflict Re
❑ Which methods of the superclasses should be inv

(super equivelant)
❑ How multiple instance variables over the inheritan

window has an instance variable, colored-noisy-w
☞ graph linearization

(class-precedence-list (find-class ‘colored-noisy-window))

-> (colored-noisy-window colored-window noisy-window window nois
object standard-object t)

colored-object

colored-window

colored-noisy-window

noisy-window

window noisy-object

About Metaclass Evolution 147.

© lementation: the CLOS MOP Example

taking two arguments

umber of argument but
ed, before, after around,

e discrimination
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Generic Function

A generic function describing all the methods named paint

(defgeneric paint (shape medium))

❑ Holding bag of methods having the same name, n
different types and different qualifier (instance bas
normal method)

❑ Not strongly defined in classes because of multipl

About Metaclass Evolution 148.

© lementation: the CLOS MOP Example

Java, Smalltalk like
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Method Definition (i)
1 (defmethod paint ((shape rectangle) medium)

(vertical-stroke (height shape) (width shape) medium))

2 (defmethod paint ((shape circle) medium)

(draw-circle (radius shape) medium))

(paint r1 *standard-display*) -> 1

☞ Discriminating only on one single argument ->
3 (defmethod paint ((shape color-rectangle) medium)

(if (not (clearp shape))

(call-next-method))

☞ invoking an overriden method

About Metaclass Evolution 149.

© lementation: the CLOS MOP Example

plication

))

 arguments
 Dr. Ducasse Stéphane -Universität Bern Open Imp

(Method) Generic Function Ap
4 (defmethod paint ((shape rectangle) (medium vector-display))

...)

5 (defmethod paint ((shape rectangle) (medium bitmap-display))

...)

6 (defmethod paint ((shape rectangle) (medium optimized-bitmap-stream

...)

7 (defmethod paint ((shape circle) (medium ps-stream))

...)

8 (defmethod paint :after ((shape rectangle) medium)

(log paint rectangle))

☞ 1,2,3,4,5,6,7 are primary methods
☞ 8 is an auxiliary method

Applying a generic function:
From all the methods, an effective method is created:

❑ Selecting the applicable methods to a given set of
❑ Ordering them
❑ Applying them

About Metaclass Evolution 150.

© lementation: the CLOS MOP Example

eir first argument, then they

order
), other if call-next-method is

er
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Method Selection
❑ The methods are sorted according to the type of th

ordered according to the second argument....
(paint r1 *bitmap*)

-> selction of 5 1

(paint r1 *optimized-bitmap*)

-> selection 6 5 1

Effective method application leads to execute:
❑ All the before methods are invoked in decreasing
❑ Most specific primary method (6 in the second call

used
❑ All the after methods are invoked in increasing ord

About Metaclass Evolution 151.

© lementation: the CLOS MOP Example

ed to be viewed as
ve no control over the
ractions. The CLOS
S abstraction, and its
rogrammer can, for

tion strategy such as
language semantics
design of the CLOS

pose the programmer
nor does it tie the
essential structureof

a]
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Why CLOS MOP?
“Traditionally, languages have been design
black box abstractions; end programmers ha
semantics or implementationof these abst
Mopon the other hand, “opens up” the CLO
implementation to the programmer. The p
example, adjust aspects of the implementa
instance representation, or aspects of the
such as multiple inheritance behavior. The
MOP is such that this opening up does not ex
to arbitrary details of the implementation,
implementor’s hand unnecessarily-- only the
the implementation is exposed” [Kiczales’92

About Metaclass Evolution 152.

© lementation: the CLOS MOP Example

Dynamics

Modifiable System
Methods

ved by

 Interface

Find Named
MetaObjects
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Meta Programming in CLOS

 Create named
MetaObjects

CLOS Programmer

CLOS Meta Programmer

Statics

MetaObjects
Class
Hierarchy

Protocols

metaobject instances
described by acti

User Friendly Macro based

Create named Use hidden MetaObjects
MetaObjects (Classes, methods...)

About Metaclass Evolution 153.

© lementation: the CLOS MOP Example

 using the CLOS MOP
 Dr. Ducasse Stéphane -Universität Bern Open Imp

CLOS was too big!

Lot of could have been dropped and reintroduced if wanted
❑ Instance based methods (eql) , auxiliary
❑ Method combination,
❑ argument-precedence-order option,

.

.
❑ slot-filing initargs, default initargs

.

.

.

.
❑ multiple inheritance, multi methods

About Metaclass Evolution 154.

© lementation: the CLOS MOP Example

alue-using-class, (setf
 Dr. Ducasse Stéphane -Universität Bern Open Imp

5 MetaObjects
❑ Classes

– instance creation: make-instance

– instance allocation: allocate-instance

– class initialization: initialize-instance

– instance variables storage and accesses: slot-v
slot-value-using-class)

– finalize-inheritance

❑ Methods

– apply method

– extra-method-bindings

❑ Generic Functions

– apply-generic-function

❑ Slots

– slot-boundp

❑ Method combinations

About Metaclass Evolution 155.

© lementation: the CLOS MOP Example

 calls regarding inheritance)

d

ndard-method

dard-accessor-method

od standard-writer-method

method-combination
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Static Elements
5 Metaobjects:

❑ Class, Method Combination (Semantics of method
❑ Method and Generic Function
❑ Slot (attribute)

t

standard-object

generic-function metho

sta

stan

standard-reader-meth

class

built-in-class

standard-class

forward-referenced-class

slot-definition

standard-slot-definition

standard-direct-slot-definition
standard-effective-slot-definition

standard-generic-function

About Metaclass Evolution 156.

© lementation: the CLOS MOP Example
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Structure Protocols (i)
❑ global queries not attached to any meta-entities

find-class, find-generic-function, find-method

ensure-generic-function, ensure-class, ensure-method,

❑ User interfaces
defclass, defgeneric, defmethod

Structural queries associated with meta-entities
❑ Object

class-of, print-object, reinitialize-instance, slot-makeunbound

❑ Class
class-name, class-slots,

class-direct-subclasses, class-direct-superclasses

class-direct-slots, class-direct-methods,

compute-class-precedence-list, compute-slots,

compute-effective-slot-definition

class-finalized-p,

About Metaclass Evolution 157.

© lementation: the CLOS MOP Example

-function-name,

more-specific-p,

orm,
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Structure Protocols (ii)
❑ Generic Function

add-method, add-reader-method, generic-function-methods, generic

❑ Method
method-body,method-environment,method-generic-function,method-
method-qualifiers, method-specializers,

❑ Slot
slot-definition-initfunction, slot-definition-initargs, slot-definition-initf

slot-definition-name, slot-definition-readers, slot-definition-writers

slot-boundp, slot-boundp-using-class,

slot-exists-p,

About Metaclass Evolution 158.

© lementation: the CLOS MOP Example

anceslot-

) instance
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Extension Example
(defclass hash-table-representation-class (standard-class)

()) ; no extra instance variables

(defmethod allocate-instance ((c hash-table-representation-class))

...allocate a small hash-table to store the slot)

(defmethodslot-value-using-class((chash-table-representation-class)inst
name))

...)

(defmethodsetfslot-value-using-class((chash-table-representation-class
slot-name newvalue))

...)

(defclass person ()

(name age address...)

(:metaclass hash-table-representation-class))

About Metaclass Evolution 159.

© lementation: the CLOS MOP Example

ols
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Dynamic Elements
❑ instance initialization and creation,
❑ class-change, instance updating
❑ finalization (inheritance)
❑ method selection, method invocation,
❑ slot access

☞ are controlled by metaobjects and their protoc

About Metaclass Evolution 160.

© lementation: the CLOS MOP Example

ss

)
rror checking
idate-superclass)
ss metaobject

ject class

etaobjects
e)

-subclass)

riate)

aobjects
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Class Definition: Defclass
1 Syntax error checking
2 Canonicalize information
3 Obtain class metaobjects

(ensure-class, ensure-class-using-class)
3.1 Find or make instance of proper class metaobject cla
(make-instance, the :metaclass option)

3.2 (Re)initialize the class metaobject ((re)initialize
3.2.1 Default unsupilied keyword arguments/e
3.2.2 Check compatibility with superclass (val
3.2.3 Associate superclasses with this new cla
3.2.4 Determine proper slot-definition metaob

(direct-slot-definition-class)
3.2.5 Create and initialize the slot-definition m

(make-instance , initialize-instanc
3.2.6 Maintain subclass lists of superclasses

(add-direct-subclass, remove-direct
3.2.7 Check default-initargs
3.2.8 Initiate inheritance finalization (if approp

(finalize-inheritance)
3.2.9 Create reader/writer methods
3.2.10 Associate them with the new class met

About Metaclass Evolution 161.

© lementation: the CLOS MOP Example

e (for class creation)
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Instance creation
❑ Class responsibility:

make-instance, allocate-instance, initialize-instanc
(make-instance class)

=> (initialize (allocate-instance class))

❑ Object responsibility
(initialize-instance anObject)

❑ Changing class and updating instance
change-class

update-instance-for-different-class

About Metaclass Evolution 162.

© lementation: the CLOS MOP Example

i)

ic-function,

n-using-class)
tion metaobject

)

ents/error checking
 existing methods
 spec against lambda list

iscriminating function
n)
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Method Creation: Defmethod (
1. Syntax error checking
2. Obtain target generic function metaobject (ensure-gener

ensure-generic-functio

2.1. Find or make instance of proper generic-func
(make-instance,:generic-function-class

2.2 (Re)initialize the generic function metaobject
((re)initialize-instance)
2.2.1 Default unsupplied keyword argum
2.2.2 Check lambda list congruence with
2.2.3 Check argument precedence order
2.2.4 (Re)define any old ‘initial methods’
2.2.5 Recompute the generic function’s d

(compute-discriminating-functio

3 Build method function (make-method-lambda)

About Metaclass Evolution 163.

© lementation: the CLOS MOP Example

lass
-class)

ent/error checking

set
ing function

)

 to methods
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Defmethod (ii)
4 Obtain method metaobject

4.1 Make instance of proper method metaobject c
(make-instance, generic-function-method

4.2 Initialize the method metaobject
(initialize-instance)
4.2.1 Default unsupplied keyword argum

5 Add the method to the generic function
(add-method)
5.1. Add method to the generic function’s method
5.2. Recompute the generic function’s discriminat

(compute-discriminating-function

5.3. Update discriminating function
5.4. Maintain mapping from specializers (classes)

(add-direct-method)

About Metaclass Evolution 164.

© lementation: the CLOS MOP Example

ocol

 given arguments

,

)

 Dr. Ducasse Stéphane -Universität Bern Open Imp

Method lookup and apply prot

generic function call
(apply-generic-function)

1 invoke the generic function’s discriminating function
1.1 Find out which methods are applicable for the

(compute-applicable-using-classes,

compute-applicable-methods,

methods-more-specific-p)
1.2 Combine the methods into one piece of code

(compute-effective-method)
1.3 Execute the combined method

(method-function-applier, apply-methods

apply-method, extra-function-bindings

About Metaclass Evolution 165.

© lementation: the CLOS MOP Example

apply-method

g on the implementation)
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Apply Protocol Example
❑ Counting the calls of a method

☞ Define a new class of method and specialise
(defclass counting-method (standard-method)

((numberOfCalls :initform 0 :accessor numberOfCalls)))

(defmethod apply-method :before ((method counting-method) args next-methods)

(incf (numberOfCalls method)))

❑ Define new method of the right class or (dependin
change the class of certain methods

(defgeneric ack (x)

(:method-class counting-method)))

(defmethod ack (x)

t)

(defmethod ack ((i integer))

1)

(ack 1) -> 1

(ack anObject) -> t

(numberOfCalls (find-generic-function #’ack)) -> 2

(numberOfCalls (find-method (find-generic-function #’ack) ((integer)) ()) -> 1

About Metaclass Evolution 166.

© lementation: the CLOS MOP Example

s methods specification
ethod level
ion was not allowed (at leats
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Apply Protocol Remark
❑ The generic function has the responsibility of clas
❑ We cannot specify the class of a method at the m
❑ Dynamically changing the class of a generic funct

in the MOP description)

:generic-function-class

:method-class

are only associated with defgeneric

About Metaclass Evolution 167.

© lementation: the CLOS MOP Example
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Slot Access Protocol
The class has the control over its attributes

❑ How to store and access them
(slot-value object slotname)

calls or has semantics defined by
(slot-value-using-class class instance slotname)

((setf slot-value) value object slotname)

calls or has semantics defined by
((setf slot-value-using-class) value class instance slotname)

1. Check for existence of slot
slot-exists-p, slot-missing

2. Check for slot being unbound
slot-unboundp, slot-boundp-using-class

3. Making a slot unbound
slot-makunbound, slot-makeunbound-using-class

About Metaclass Evolution 168.

© lementation: the CLOS MOP Example

me
bject class

)

)

)

 Dr. Ducasse Stéphane -Universität Bern Open Imp

Finalize Inheritance
1 Compute the class precedence list

(compute-class-precedence-list)
2 Resolve conflicts among inherited slots with the same na

2.1Determine proper effective slot definition metao
(effective-slot-definition-class

2.2Create the effective slot definition metaobjects
(make-instance)

2.3 Initialize the effective slot definitions
(initialize-instance ,
compute-effective-slot-definition

2.4 Associate them with the class metaobject
3Enable/Disable slot access optimizations

(slot-definition-elide-access-method-p

About Metaclass Evolution 169.

© lementation: the CLOS MOP Example

ective

ed
ethod dictionary is not

formation.

ly.
 environments
 hello world took 10 k
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Open Implementation and Refl
Languages

Smalltalk is reflective but
❑ does not have a MOP

☞ Programming and meta-programming are mix
☞ e.g., knowing that methods are stored into a m

necessary for programming. This is a meta-in
☞ Stripping image is difficult.
☞ Implementor of VM cannot optimize complete
☞ Implementors could provide several optimized
☞ Firewall 93 was a declarative Smalltalk where

About Metaclass Evolution 170.

© Open Implementation Design Issues

n Issues
 Dr. Ducasse Stéphane -Universität Bern

5. Open Implementation Desig

Dr. Stéphane Ducasse
Software Composition Group
University of Bern
Switzerland

Email: ducasse@iam.unibe.ch
Url: http://www.iam.unibe.ch/~ducasse/

About Metaclass Evolution 171.

© Open Implementation Design Issues
 Dr. Ducasse Stéphane -Universität Bern

Goals of this Lecture

❑ Lessons learnt in the MOP Design
❑ Open Implementation Design Guidelines

About Metaclass Evolution 172.

© Open Implementation Design Issues

res of the base language

ing convenient reference
ld like to be different

plementation on a per-

dual parts of the

ode proprotional to the
plementation must be
describe their extension
 Dr. Ducasse Stéphane -Universität Bern

Locality in MOP Design
❑ Feature Locality

– MOP should provide access to individual featu

❑ Textual Locality

– The programmer should be able to indicate, us
to their base program, what behavior they wou

❑ Object Locality

– The programmer should be able to affect the im
object basis.

❑ Strategy Locality

– The programmer should be able to affect indivi
implementation strategy.

❑ Implementation Locality

– Extension of an implementation ought ot take c
size of the change. A resonably good default im
provided and the programmer should be able to
as an incremental deviation from that default.

About Metaclass Evolution 173.

© Open Implementation Design Issues

uidelines

but hide its implementation

entation, open
ction of their implementation
ntation. [Kiczales 97]
 Dr. Ducasse Stéphane -Universität Bern

Open Implementation Design G
Stepping back from CLOS and its MOP and generalization

Black-box abstraction:
A module should expose its functionality

Pros
❑ Localization of changes
❑ Level of abstraction
❑ Modularization easier
❑ Reuse easier

Cons
❑ Performance problems
❑ Needs to code around

Whereas black-box modules hide all aspects of their implem
implmentation modules allow clients some control over sele
strategy while still hiding many true details of their impleme

About Metaclass Evolution 174.

© Open Implementation Design Issues

t the same place)
 way)

n)
ule has been implemented)
 Dr. Ducasse Stéphane -Universität Bern

Quality in interface designs
from [Hoffman 90]

❑ consistent (e.g., same parameter passed always a
❑ essential (e.g., each service is offered in only one
❑ general
❑ minimal (e.g, each function provides one operatio
❑ opaque (e.g., the interface hides the way the mod

About Metaclass Evolution 175.

© Open Implementation Design Issues

paque
 Dr. Ducasse Stéphane -Universität Bern

Set Module: Design A
makeSet()

insert(item, set)

delete(item, set)

isIn(item, set)

map(function, state, set)

❑ Simple, Consistent, Essential, General, Minimal, O
But is the implementation performing well for?

– few/many elements

– frequent/unfrequent removal

– frequent/unfrequent addition

About Metaclass Evolution 176.

© Open Implementation Design Issues

lementation

all affected)
s one: distinction between
 Dr. Ducasse Stéphane -Universität Bern

Set Module: Design B
makeSet(usage)

makeSet()

insert(item, set)

delete(item, set)

isIn(item, set)

map(function, state, set)

Use
makeSet (“n=10000,insert=lo,delete=lo,isIn=hi”)

makeSet (“n=5,insert=hi,delete=hi”)

❑ Same property than design A and still hidding imp
❑ Only a small change in the interface
❑ New functionality optional
❑ Well-bounded effect (only the set created by the c
❑ Use of the new functionality orthogonal to previou

client use and implementation strategy

About Metaclass Evolution 177.

© Open Implementation Design Issues

ategy Control

uld support a clear
uses the module’s
controls the module’s
 Dr. Ducasse Stéphane -Universität Bern

First Guideline

Separation of Use from Implementation Str

Open Implementation module interfaces sho
separation between client code that
functionality (use code) and client code that
implementation strategy (ISC code)

About Metaclass Evolution 178.

© Open Implementation Design Issues

uld be designed to
ode easy to disable,
ece of use code.

rocessing)

e piece of code but easy to
 Dr. Ducasse Stéphane -Universität Bern

Second Guideline

Open implementation module interfaces sho
make the ISC code optional, make the ISC c
and support alternative ISC codes for one pi

Example: High Performance Fortran (for efficient parallel p

Real A(1000,1000) B (998,998)

!HPF$ ALIGN B(I,J) WITH A(I+1,J+1)

ISC coded into comments

☞ use/ISC code has clear separation
☞ ISC code is optional
☞ ISC code easy to disable
☞ HPF doesnot support multiple ISC for the sam

implement

About Metaclass Evolution 179.

© Open Implementation Design Issues

ould be designed to
e controlled in a way
ed
 Dr. Ducasse Stéphane -Universität Bern

Third Guideline
Scope control

Open implementation module interfaces sh
allow the scope of influence of ISC code to b
that is both natural and sufficiently fine-grain

s1 = makeSte(“n=1000“)

for i = 1 to 700 do

insert(s1 , i +1)

s2 = makeSet(“n=5“)

insert(s2, 5)

insert(s2,6)

About Metaclass Evolution 180.

© Open Implementation Design Issues

lution worse than the default
tation strategy

lementation strategy

dule implementation strategy
 Dr. Ducasse Stéphane -Universität Bern

Subject Matter
Design B has some weaknesses

❑ client programmer can mis-describes and get a so
❑ no garantee that they will get an optimal implemen

Design C
makeSet(strategy)

Use
makeSet(“LinkedList”), makeSet(“BTree”)

ICS can be about different subject matter

– the client program’s behavior (design B),

– module implementation strategy (design C), or

– performance requirements

No automatic solution
☞ Analysis steps in the process of selecting imp
client use code ---> client usage profile --->

client performance requirements ---> mo

About Metaclass Evolution 181.

© Open Implementation Design Issues

uld be designed to
information
 Dr. Ducasse Stéphane -Universität Bern

Fourth Guideline

Implementation Details must be hidden

Open Implementation module interfaces sho
pass only essential implementation strategy

About Metaclass Evolution 182.

© Open Implementation Design Issues

s provided by the module
 Dr. Ducasse Stéphane -Universität Bern

Design D
❑ Design C is limited to the implementation strategie
❑ Might be not flexible enough

class mySet (Set) {

method insert...

method delete...

method isIn...}

Use
makeSet(“mySet”)

❑ Programmatic interfaces tend to be less robust
☞ locality is extremlly important
☞ Layered interface

About Metaclass Evolution 183.

© Open Implementation Design Issues

es

scribe strategies that
t it is impractical to
terface, then the

s

!!
 Dr. Ducasse Stéphane -Universität Bern

Last Guideline: Layered Interfac
Client

❑ No ISC code -> get default one
❑ Select from built-in ones
❑ Provide a new strategy

When there is a simple interface that can de
will satisfy a significant fraction of clients, bu
accomodate all important strategies in that in
interfaces should be layered

90%/10% Rule
90% of the clients use the default strategy
10% write new ISC code

90% of 10% select in the built-in strategie
1% should provide a new strategy

But this is a really needed one!!

Reflective Programming 184.

© eflection in CLOS, Smalltalk and Java

S, Smalltalk
 Dr. Ducasse Stéphane -Universität Bern Comparing R

6. Comparing Reflection in CLO
and Java

Dr. Stéphane Ducasse
Software Composition Group
University of Bern
Switzerland

Winter Semester 2000-2001

Email: ducasse@iam.unibe.ch
Url: http://www.iam.unibe.ch/~ducasse/

Reflective Programming 185.

© eflection in CLOS, Smalltalk and Java

talk 80 the Language,

cke Paper,
 Dr. Ducasse Stéphane -Universität Bern Comparing R

Sorry but this is your work!

Material you can use
❑ Java: Reflection API, OpenJava
❑ Smalltalk: Smalltalk a Reflective Language, Small

VisualWorks
❑ CLOS: The Art of the MetaObject Protocols, Paep

☞ www.franz.com download a trial version.
❑ Other documents available for you in my office

Reflective Programming 186.

© eflection in CLOS, Smalltalk and Java

f data or can we affect them?

n an instance of the class
alled
 Dr. Ducasse Stéphane -Universität Bern Comparing R

Some Criterias

❑ Which entities?
❑ Introspection and/or Intercessory?
❑ Which aspects?
❑ Is the causal link respected? Only representation o
❑ Level of power,

– for example try to invoke method m of class A o
B subclass of A in Java => m defined on B is c

– Use valueWithReceiver... in VW

R
ef

le
ct

iv
e

P
ro

gr
am

m
in

g
18

7.

 D
r.

 D
uc

as
se

 S
té

ph
an

e
-U

ni
ve

rs
itä

t B
er

n
C

om
pa

rin
g

R
ef

le
ct

io
n

in
 C

LO
S

, S
m

al
lta

lk
 a

nd
 J

av
a

©

About Metaclass Evolution 188.

© e Passing Control in Smalltalk: an Anal-

ing Control in
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

7. Implementing Message Pass
Smalltalk: an Analysis

Dr. Stéphane Ducasse
Software Composition Group
University of Bern
Switzerland

Email: ducasse@iam.unibe.ch
Url: http://www.iam.unibe.ch/~ducasse/

About Metaclass Evolution 189.

© e Passing Control in Smalltalk: an Anal-
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Outline
❑ Limited Survey
❑ Method Wrappers in Use
❑ Opening the Box
❑ DoesNotUnderstand
❑ Method Wrapper
❑ Instance based Behavior

About Metaclass Evolution 190.

© e Passing Control in Smalltalk: an Anal-

ine in C++!!!)
nts for distribution
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Why Controling Message?

❑ Application Analysis and introspection
☞ Do not require program instrumentation (imag
☞ Dynamic traces, analysis of collaborations, hi

❑ Language Extension
☞ Distribution
☞ Security
☞ Atomic Data Types
☞ Multiple inheritance
☞ Instance based programming
☞ Object connections

❑ New objects models
☞ Active object model
☞ Concurrent Smalltalk
☞ Composition Filters
☞ New Meta Models (codA)

About Metaclass Evolution 191.

© e Passing Control in Smalltalk: an Anal-

age!
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Controling What Exactly!
Which objects are controlled?

❑ Instance based: One instance
❑ Group based: A group of objects
❑ Class-based All instances of a class

What methods are controlled?
❑ All methods
❑ Unknown methods
❑ Selected methods

Technical quality of the control?
❑ Existing Smalltalk systems and tools
❑ Not another interpreter with an explicit send mess
❑ Not only pre and post methods
❑ Changing arguments (marshalling...)

Who does the control?
❑ The receiver
❑ Another object

About Metaclass Evolution 192.

© e Passing Control in Smalltalk: an Anal-

brant/)

recompiler based)
per @@
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

A Limited Survey

❑ CLOS Mop: clean, integrated into the MOP
❑ Smalltalk: everythign is there but not polished

☞ do it yourself syndrome!
☞ MethodWrappers (http://st-www.cs.uiuc.edu/~
☞ Some well-known techniques

❑ Open C++ (first version, runtime, second version p
❑ OpenJava (class loader annotations) @@Find pa

About Metaclass Evolution 193.

© e Passing Control in Smalltalk: an Anal-

ecialise apply-generic-

apply-method

-methods)
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

CLOS Example (i)
❑ Counting the calls of a generic function

☞ Define a new class of generic function and sp
function

(defclass counting-gf (standard-generic-function)

((numberOfCalls :initform 0 :accessor numberOfCalls)))

(defmethod apply-generic-function :before ((gf counting-gf) args)

(incf (numberOfCalls gf)))

❑ Counting the calls of a method
☞ Define a new class of method and specialise

(defclass counting-method (standard-method)

((numberOfCalls :initform 0 :accessor numberOfCalls)))

(defmethod apply-method :before ((method counting-method) args next

(incf (numberOfCalls method)))

About Metaclass Evolution 194.

© e Passing Control in Smalltalk: an Anal-

g on the implementation)
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

CLOS Example (ii)
❑ Define new method of the right class or (dependin

change the class of certain methods
(defgeneric ack (x)

(:generic-function-class counting-gf)

(:method-class counting-method)))

(defmethod ack (x)

t)

(defmethod ack ((i integer))

1)

(ack 1)

-> 1

(ack anObject)

-> t

(numberOfCalls #’ack)

-> 2

About Metaclass Evolution 195.

© e Passing Control in Smalltalk: an Anal-

mmer job

hange from part that don’t
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

CLOS Example (iii)
❑ Separation between programmer and meta progra
❑ MOP entry points

apply-generic-function

compute-applicable-methods-using-classes

method-more-specific-p

apply-methods

apply-method

extra-function-bindings

❑ Optimized the following way: separate parts that c
(apply-methods gf args methods)

<=>

(funcall (compute-effective-method-function gf methods) args)

(apply-method method args next-methods)

<=>

(funcall (compute-method-function methods) args next-methods)

About Metaclass Evolution 196.

© e Passing Control in Smalltalk: an Anal-
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

A Coverage Tool in Smalltalk

@@MW or Michel tools@@

About Metaclass Evolution 197.

© e Passing Control in Smalltalk: an Anal-

me

programmer

 with bits
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Smalltalk: Do It Yourself Syndro

❑ Reflective sure !!
❑ But not a well defined MOP
❑ Full implementation details on the shoulder of the

Extra Criteria
❑ Reproductible easily
❑ Cost of implementation

☞ at the normal level of programming or fighting
❑ Cost of activation

☞ (recompile or not)
❑ Run-time cost
❑ Integration into the programming environment

☞ is control visible for the programmer?

About Metaclass Evolution 198.

© e Passing Control in Smalltalk: an Anal-

ble...)

ecomeOneWay:)

er:arguments:)
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Smalltalk Basic Reflective Tools
Reflective but the VM has the control

❑ the way the objects are represented in memory
❑ how messages are handled.

Programmer possibilities
❑ Instance variable access (instVarAt:)
❑ Compiling class on the fly (subclass:instanceVaria
❑ Compiling method on the fly (compile:notifying:)
❑ Changing inheritance chain (superclass:)
❑ Changing reference between objects (become:, b
❑ Changing class (changeClassToThatOf:)
❑ Message reification (only for error handling)
❑ Stack Reification (sender, receiver...)
❑ Methods are objects (mclass, sourceCode, bytes)
❑ Object methods can be invoked (valueWithReceiv
❑ Lookup can be called (perform:with:)

About Metaclass Evolution 199.

© e Passing Control in Smalltalk: an Anal-

ntallation

de of the method)
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

6 Techniques
❑ Source code modification

setX: t1 setY: t2

...

Original Code

...

☞ reparsed, recompiled for installation and desi
☞ not applicable to stripped image

❑ Byte code extension
(add a new byte code in the VM)

☞ dialect specific
❑ Byte code modification

(insert a new byte code directly in the co
☞ dialect specific

Deeply evaluated
❑ Error handling specialisation
❑ Anonymous classes
❑ Method Wrappers

About Metaclass Evolution 200.

© e Passing Control in Smalltalk: an Anal-

t sends doesNotUnderstand:

stand: for every message

NotUnderstand: method

controlled
 object

aMessage
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Unknown Messages
Context: When an object does not understand a message, i
with a reification of the message
Solution:

❑ define a minimal object that raises doesNotUnder
❑ wrap an object in a minimal object
❑ specify control semantics by specializing the does

myObject myObject
myObject m

myObject
doesNotUnderstand:

About Metaclass Evolution 201.

© e Passing Control in Smalltalk: an Anal-

ss: MinimalObject

g, print....

ss inspect ba-
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Creating a MinimalObject
❑ Object that does not inherit from Object nil subcla

☞ does really not work because we cannot debu
The trick: (1) creating a normal class

Object subclass: MinimalObject

instanceVariableNames: ‘controlledObject’

(2) setting the inheritance to nil ,
(3) copying some minimal behavior from Object.

MinimalObject class>>initialize

superclass := nil.

#(doesNotUnderstand: error: ~~ isNil = == printString printOn: cla
sicInspect basicSize instVarAt: instVarAt:put:)

do: [:sel | self recompile: selector from: Object]

❑ Example of possible control
MinimalObject>>doesNotUnderstand: aMessage

...

controlledObject perform: aMessage selector

withArguments: aMessage arguments

...

About Metaclass Evolution 202.

© e Passing Control in Smalltalk: an Anal-
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Wrapping anObject
Wrapping

MinimalObject class>>newOn: anObject

| x e |

x := anObject.

e := self new.

x become: e.

x object: e.

^x

Unwrapping
MinimalObject>>uninstall

| x |

x := controlledObject.

controlledObject := nil.

x become: self

About Metaclass Evolution 203.

© e Passing Control in Smalltalk: an Anal-

en not known a priori)

ain VM

ontrollable

y an object
inimalObject and not the
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Evaluation

❑ Instance based control controlling all methods (ev
❑ Simple
❑ Slowest solution

☞ Message reified + Exception Handling
☞ even if doesNotUnderstand: is cached in cert

❑ Installation: no recompilation

Known Problems

❑ Messages sent to self by the object itself are not c
❑ Messages sent to the object via reference to self
❑ Class control is impossible, cannot swap a class b
❑ Interpretation of minimal set of messages by the m

controlled object.
anObject inspect => anObject controlledObject inspect

About Metaclass Evolution 204.

© e Passing Control in Smalltalk: an Anal-

rayOfObjects

bjects
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Method Wrappers: an Example

MethodWrapper variableSubclass: #CountMethodWrapper

instanceVariableNames: 'count '

CountMethodWrapper>>class: aClass selector: aSymbol

count := 0.

^super class: aClass selector: aSymbol

CountMethodWrapper>>valueWithReceiver: anObject arguments: anAr

count := count + 1.

^clientMethod valueWithReceiver: anObject arguments: anArrayOfO

CountMethodWrapper>>count

^ count

About Metaclass Evolution 205.

© e Passing Control in Smalltalk: an Anal-

nce to the original method
al method

mclass
clientMethod
sourceCode

t1setY: t2
x := t1.
y := t2

aMethodWrapper

1

 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Method Wrappers
The idea:

❑ substitute a method by a wrapper that has a refere
❑ wrapper has as source code the code of the origin

☞ transparent for the programmer

Point
methodDict setX:setY:

printOn:

aCompiledMethod

24@6 15@10

setX:
mclass

sourceCode
bytes

About Metaclass Evolution 206.

© e Passing Control in Smalltalk: an Anal-

t if you want just a

ing code is automatically

receiver of the message #()
 the method wrapper being
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Control
MethodWrapper>>valueWithReceiver: object arguments: args

"This is the general case where you want both a before and after method, bu

before method, you might want to override this method for optimization."

self beforeMethod.

^[clientMethod valueWithReceiver: object arguments: args]

valueNowOrOnUnwindDo: [self afterMethod]

To control the method originalSelector: on aClass the follow
generated
aClass>>originalSelector: t1

|t2|

(t2:=Array new: 1) at: 1 put: t1.

^#() valueWithReceiver: self arguments: t2.

To have a way to refer to the method object itself and not the
reserves some place byte code that is then latter filled with
installed.

About Metaclass Evolution 207.

© e Passing Control in Smalltalk: an Anal-

ters and then copy them

s]) copy.
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

MethodWrapper Optimization
Create method skeletons depending on number of parame

☞ no compilation needed
MethodWrapper class>>on: selector inClass: class

| wrapper |

(self canWrap: selector inClass: class) ifFalse: [^nil].

wrapper := (self methods at: selector numArgs

ifAbsentPut: [self createMethodFor: selector numArg

wrapper class: class selector: selector.

^wrapper

MethodWrapperclass>>createMethodFor: numArgs

^((MethodWrapperCompiler new) methodClass: self;

compile: (self codeStringFor: numArgs)

in: self

notifying: nil

ifFail: []) generate

About Metaclass Evolution 208.

© e Passing Control in Smalltalk: an Anal-

lf arguments: t'

e: [';']) , ' at: '
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

MW method body
'valuevalue: t1 value: t2

| t |

(t := #Array new: 2) at: 1 put: t1; at: 2 put: t2.

^#''The method wrapper should be inserted in this position'' valueWithReceiver: se

MethodWrapper class>>codeStringFor: numArgs

"self codeStringFor: 2"

| nameString tempsString |

nameString := 'value'.

tempsString := numArgs == 0

ifTrue: ['t := #()']

ifFalse: ['(t := #Array new: ' , numArgs printString , ') '].

1 to: numArgs do: [:i |

nameString := nameString , 'value: t' , i printString , ' '.

tempsString := tempsString , (i == 1 ifTrue: [''] ifFals

, i printString , ' put: t' , i printString].

^nameString , '

| t |

' , tempsString , '.

^'

, self methodWrapperSymbol printString

, ' valueWithReceiver: self arguments: t'

About Metaclass Evolution 209.

© e Passing Control in Smalltalk: an Anal-
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Installation
(MethodWrapper on: #blop inClass: Test) install

MethodWrapper>>class: aClass selector: sel

| position |

self at: self methodPosition put: self.

position := self arrayPosition.

position == 0 ifFalse: [self at: position put: Array].

mclass := aClass.

selector := sel

MethodWrapper>>install

| definingClass method |

definingClass := mclass whichClassIncludesSelector: selector.

definingClass isNil ifTrue: [^self].

method := definingClass compiledMethodAt: selector.

method == self ifTrue: [^self].

clientMethod := method.

sourceCode := clientMethod sourcePointer.

mclass addSelector: selector withMethod: self

About Metaclass Evolution 210.

© e Passing Control in Smalltalk: an Anal-

)

rary
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

MW Evaluation
❑ Transparent fro the programmer
❑ Class-based (all instance of a class are controlled
❑ Selective (only certain methods are controlled)
❑ Run-Time Cost: less than doesNotUnderstand:
❑ Coding cost: Tricky so this is better to reuse the lib

About Metaclass Evolution 211.

© e Passing Control in Smalltalk: an Anal-

s that specializes certain

trolled instance
thod control
lasses
g classes the programmer is

ss
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Exploiting VM Lookup Algorithm
The idea:

❑ Interposing between the object and its class a clas
methods to introduce the control.

Solution 1
❑ Explicit subclassing + change the class of the con

☞ Instance, group or class based, Selective me
☞ Without optimization: compile methods and c
☞ Polution of the class namespace for controlin

aware of the control
Solution 2

❑ Implicit subclassing: creation of an anonymous cla

About Metaclass Evolution 212.

© e Passing Control in Smalltalk: an Anal-

etY:
n:

:setY:
rol:

aCompiled

aControlling

aControllingMethod
aCompiled

Method

Method

«inherits from»

Method

tance of»
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Let’s view it
Point
methodDict setX:s

printO

‘’
methodDict

setX
cont

‘’
methodDict

setX:setY:
control:

Interceptor

Point class

«inherits from»

«ins
15@1024@6

8@8

19@68

About Metaclass Evolution 213.

© e Passing Control in Smalltalk: an Anal-

s
ior
interceptor

eding control
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Interceptor: Anonymous Classe
❑ Create an interceptor (a class): instance of Behav
❑ Copy class description of the original class in the
❑ interceptor inherits from original class
❑ Compile in interceptor class class the methods ne

InterceptorClass class>>takeControlOf: anObject

| interceptor |

(anObject isControlled)

ifFalse: [interceptor := self new.

interceptor conformsToThatClass: anObject class.

interceptor installEssentialMethods.

anObject changeClassToThatOf: interceptor new.].

^anObject

InterceptorClass>>conformsToThatClass: aClass

"Return an instance of an anonymous class that is conforms to the class <aClass>"

self setInstanceFormat: (aClass format) ;

superclass: aClass ;

methodDictionary: (MethodDictionary new).

About Metaclass Evolution 214.

© e Passing Control in Smalltalk: an Anal-
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Let us think a bit
From the implementor point of view

❑ How to access the original class?
anObject class superclass

❑ How to access the anonymous class?
anObject class

But how can we access them in a conceptual manner?
❑ original class?

anObject class

anInterceptor>>class

^super class superclass

❑ interceptor?
anObject interceptor

anInterceptor interceptor

^ super class

About Metaclass Evolution 215.

© e Passing Control in Smalltalk: an Anal-

tor,
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Essential Methods
InterceptorClass>>installEssentialMethods

"all the necessary methods to ensure right behavior of an interceptor class.

It should be always invoked: Can be specialize but not overriden"

self basicCompile: 'class ^super class superclass'.

self basicCompile: 'isControlled ^ true'.

self basicCompile: 'interceptor ^ super class'.

self basicCompile: 'addSpecificMethod: aString

self interceptor compile: aString notifying: nil'.

self basicCompile: 'removeSpecificMethodWith: aSymbol

self removeSelector: aSymbol'

InterceptorClass>>compile: code notifying: requestor ifFail: failBlock

"we redefine this method to ensure that essential methods such as #class, #intercep

#isControlled will be never recompile on an interceptor class instance"

|selector|

selector := Parser new parseSelector: code.

(self isEssentialMethod: selector)

ifFalse: [self basicCompile: code]

InterceptorClass>>basicCompile: code

super compile: code notifying: requestor ifFail: failBlock

About Metaclass Evolution 216.

© e Passing Control in Smalltalk: an Anal-

(i)

for a given method
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Naive Control Implementation
Naive because we compile all the times (see optimization).
We want to generate the following code on the interceptor

'setX: t1 setY: t2

^self interceptor control: self

receiving: #setX:setY:

withArgs: (Array with: t1 with: t2)

originalCall: [super setX: t1 setY: t2]'

Interceptor>>installControlledMethod: aSymbol

"control the method with selector <aSymbol>"

self compile: (self generateSourceOfControlledMethod: aSymbol) contents

notifying: nil ifFail: []

Interceptor>>generateSourceOfControlledMethod: aSymbol

"generate the source of a controlled method"

|methodCode signature|

methodCode := WriteStream on: (String new: 32).

signature := self generateSignature: aSymbol on: methodCode.

methodCode cr ; tab.

self generateBody: aSymbol withSignature: signature on: methodCode.

^methodCode

About Metaclass Evolution 217.

© e Passing Control in Smalltalk: an Anal-

(ii)

meters"

ace.
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Naive Control Implementation
Interceptor>>generateSignature: aSelector on: methodCode

"Return anArray containing at:1 signature and at:2 a string representing formal para

"self new generateSignature: #setX:setY: on: (WriteStream on: (String new: 32))

-> #('setX: t1 setY: t2 ' ' with: t1 with: t2 ')"

| numArgs keywords parameters|

parameters := WriteStream on: (String new: 10).

keywords := aSelector keywords.

methodCode nextPutAll: (keywords at: 1).

(numArgs := aSelector numArgs) >= 1

ifTrue:[parameters nextPutAll: ' with: t1'.

methodCode nextPutAll: ' t1 '.

2 to: numArgs do:

[:i | parameters nextPutAll: ' with: t'; nextPutAll: (i printString) ; sp

methodCode nextPutAll: (keywords at: i) ;

nextPutAll: ' t'; nextPutAll: (i printString) ; space]].

^ Array with: (methodCode contents) with: (parameters contents).

About Metaclass Evolution 218.

© e Passing Control in Smalltalk: an Anal-

(iii)
: t2'

tY: t2]

nextPut: $) ;

 1) ;

y happen that another object
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Naive Control Implementation
Interceptor new generateBody: #setX:setY: withSignature: #'with: t1 with

->
^self interceptor control: self receiving: #setX:setY:

withArgs: (Array with: t1 with: t2) originalCall: [super setX: t1 se

Interceptor>>generateBody: aSelector withSignature: aSignature on: methodCode

methodCode cr; tab;

nextPutAll: '^self interceptor control: self receiving: ';

nextPut: $# ; nextPutAll: (aSelector asString) ; cr ;

tab; tab; nextPutAll:'withArgs: (Array '; nextPutAll: (aSignature at: 2) ;

tab; tab ; nextPutAll: 'originalCall: [super ' ; nextPutAll: (aSignature at:

nextPutAll: '] '; cr .

^ methodCode contents

❑ The original call could be called via super but it ma
than the interceptor defines the control.

❑ [super setX...] is costly

About Metaclass Evolution 219.

© e Passing Control in Smalltalk: an Anal-

ethods containing a call to
and adjusted (change

 them
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Possible Optimization

Like Method Wrapper implementation
❑ To avoid compilation when installing the control

☞ for each number of parameters skeletons of m
the control can be created once, then copied
selector) in the instantiated interceptor class.

☞ copy essential method instead of recompiling

About Metaclass Evolution 220.

© e Passing Control in Smalltalk: an Anal-

 methods
 the system

le
ass)
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Evaluation
❑ Instance, group and class based control selective
❑ Simple but bugs during implementation may crash
❑ Efficient solution
❑ Installation: compilation but optimization is possib
❑ Good integration in the system (class is still the cl

About Metaclass Evolution 221.

© e Passing Control in Smalltalk: an Anal-

ded?

code
o MOP
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Why A Mop for Smalltalk is Nee

❑ Free the developer from doing everything himself
❑ Free the VM or meta-programmer to optimize the
❑ ANSI Normalization -> declarative Smalltalk but n
❑ MOP

☞ instance variable representation
☞ instance variable access
☞ method control

About Metaclass Evolution 222.

© e Passing Control in Smalltalk: an Anal-
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Pratice
❑ Lab session: Implement Actalk [Briot89]
❑ Play with the MethodWrappers

☞ Look at the coverage tools
❑ Play with anonymous class

☞ Implement an instance based language

Reflective Programming 223.

©

 Manual, Xerox Parc, 1983.
talk-80: The Language”,

s: the ObjVlisp Model”,

OOPSLA'89, 1989.
with Explicit Metaclasses

n on Metaclass

taclasses as a Tool for
'96, LNCS 1049,1996
owing Both Explicit and
shop Extending the

x and F. Rivard: “Safe
 Dr. Ducasse Stéphane -Universität Bern

Selected Bibliography
Metaclasses

❑ [Bobrow’83] D.Bobrow and M. Stefik: “The LOOPS
❑ [Goldberg’83] A. Goldberg and D. Robson: “Small

Addison-Welsey, 1983.
❑ [Cointe’87] P. Cointe: “Metaclasses are First Clas

OOPSLA’87.
❑ [Graube’89] N. Graube: “Metaclass compatibility”,
❑ [Briot’89]J.-P. Briot and P. Cointe, “Programming

inSmalltalk-80”, OOPSLA'89.
❑ [Danforth’94] S. Danforth and I. Forman: “Reflectio

Programming in SOM”, OOPSLA’94.
❑ [Ledoux’96] T. Ledoux and P. Cointe, “Explicit Me

Improving the Design of Class Libraries”, ISOTAS
❑ [Rivard’96] F. Rivard, “A New Smalltalk Kernel All

Implicit Metclass Programming” OOPSLA’96 Work
Smalltalk Language, 1996

❑ [Bouraqadi’98] M.N. Bouraqadi-Saadani, T. Ledou
Metaclass Programming”, OOPSLA’98

Reflective Programming 224.

©

obrow : “The Art of the

LOS Perspective, MIT Press,

why we want them and what
: the CLOS Perspective, MIT

l of Abstraction in the
hop on Reflection and Meta-

pes, A. Mendhekar and G.

terfaces, IEEE Transactions
 16(5), 537--542

ds a Methodology for Explicit
5, 1995
 Dr. Ducasse Stéphane -Universität Bern

Open Implementations
❑ [Kiczales’91] G. Kiczales, J. des Rivieres and D. B

Metaobject Protocol”, MIT Press, 1991
❑ [Paepke’92] Object-Oriented Programming: The C

1992
❑ [Kiczales’92a] G. Kiczales: “Metaobject protocols -

else they can do”, in Object oriented Programming
Press, 1992

❑ [Kiczales’92b] G. Kiczales: “Towards a New Mode
Engineering of Software”, Proc. of IMSA'92 Works
Level Architecture,1992

❑ [Kiczale’97] G. Kiczales, J. Lamping, C. Videira Lo
Murphy, Open Implementation Design Guidelines

❑ [Hoffman 90] D. Hoffman, On Criteria for Module In
on Software Engineering and Methodology, 1990,

Other Related
❑ Maes OOPSLA’87
❑ [Mulet’94] P. Mulet, J. Malenfant P. Cointe, “Towar

Composition of MetaObjects”, Proc. of OOPSLA'9

Reflective Programming 225.

©

rol Techniques in Smalltalk”,

uage, REFLECTION'96,1996
 Dr. Ducasse Stéphane -Universität Bern

Intercessory
❑ [Ducasse’99] S. Ducasse, “Message Passing Cont

JOOP, 1999
❑ [Rivard’96] F. Rivard, Smalltalk : a Reflective Lang
❑ []Wrappers To The Rescue, ECOOP’98, 1998

Use of Message-Passing Control
❑ [] CodA, Ecoop’95
❑ Actalk, OOPSLA’89
❑ Proxies
❑ OpenC++
❑ Jassist
❑ Fabre paper

Reflective Programming 226.

©

/
/

squeak.org/
 Dr. Ducasse Stéphane -Universität Bern

Web pages
CLOS:

http://www.franz.com/

Open Implementation:
http://

Languages:
- NeoClasstalk: http://www.emn.fr/cs/neoclasstalk
- VisualWorks: http://www.objectshare.com/VWNC
- Smalltalk Archive: http://www-st.cs.uiuc.edu/
- Squeak: The Smalltalk Open Source http://www.
- OpenC++
- JavaAssist

R
ef

le
ct

iv
e

P
ro

gr
am

m
in

g
22

7.

 D
r.

 D
uc

as
se

 S
té

ph
an

e
-U

ni
ve

rs
itä

t B
er

n

©

	1. Reflective Programming and Open Implementations
	Dr. Stéphane Ducasse
	Software Composition Group
	University of Bern
	Switzerland
	Winter Semester 2000-2001
	Email: ducasse@iam.unibe.ch
	Url: http://www.iam.unibe.ch/~ducasse/
	Goal of this Lecture
	You will learn about
	Open Implementations
	Reflection: Intercession and Introspection
	Reflective Architectures and Kernels (SOM, Smalltalk, CLOS)
	Meta Object Protocol: Powering End-Users
	Metaclasses
	Message Passing Control

	Side Effects
	Program with a reflective system
	Let you implement your own micro kernel
	Deeply understanding OO
	Experiment with different OO models

	Outline of the Lecture
	(C) Introduction, Concepts, Definitions, Examples, Meta Object Protocol, Open Implementations
	ok (C) The Study of an Object-Oriented Reflective Kernel (ObjVLisp)
	ok(Lab) ObjVLisp Implementation (1)
	ok(Lab) ObjVLisp Implementation (2)
	ok check @@(C) Metaclass Composition Issues
	ok(Lab) Metaclass Programming with ObjVlisp
	->~(C) Analysing CLOS and its MOPˆ
	You : (C) Reflection in OO Languages (Clos, Smalltalk, Java Comparison)
	->>>(Lab) Interface Browser
	->>>(C) Message Passing Control in Smalltalk
	(Lab) Implementing Actalk
	>>>You : (C) Presentation of papers
	(Lab) Scaffolding Patterns

	What we could have made...
	MetaCircularity and Infinite Tower: Lisp in Lisp
	Different reflective paradigm (relational, actors...)
	We will focus on OO reflective programming

	History,Concepts,Definitions and Examples
	Why Do We Need Reflective Programming?
	>Does anyone know why CLOS does not provide a copy protocol?
	>Has anybody implemented an inheritance method “a la Eiffel”?
	>We need a method dispatch that take into account an external context of execution?
	[Tutorial MOP & OI OOPSLA’93]
	Some problems:
	data structure allocation, optimization
	control of language entities (feedback, trace, analysis...)
	UI and API definition
	language semantics

	In summary
	Optimization
	Language extensions (control, debugging)
	Semantics change

	Why Do We Need Reflective Programming?
	“As a programming language becomes higher and higher level, its implementation in terms of underl...
	Why instances do have to have the same internal representation?
	– for Point => maximum speed needed, all instance variables used
	array like representation

	– for Person => minimize space, few instances used
	hash-table like representation

	Why can’t I control internal representation or attribute accesses?
	Why can’t I query the language representation instead of scanning, parsing code?
	Why can’t we tune a language to fit our needs from the language itself and not by inventing yet a...

	Traditional vs Reflective Answers
	Traditional Answers at Language Level:
	Illusionary complete language
	Library of extensions: Eiffel
	Macroes: C, Lisp

	But do not cover language extensions or semantics changes
	Traditional Answers in Software development:
	What happens if the language does not support our need [Kiczales92,92b,92c]?
	buy a new one that fits your today need and change tomorow!
	buy an illusionary complete language
	code between the lines (danger for portability)
	create your own layer (probleme with integration issues)

	Reflective Answers
	Propose an extensible language or system
	Give the power to the end-user (meta-programmer)
	customize your reflective or open language to fit your need

	Role ot Reflective Prog in Software Engineering
	Allow migration of software:
	Ex: Nichimen Corp (http://www.nichimen.com/) 15 years of Lisp development
	(Flavors -> CLOS, From Symbolic Machine -> Indigo Silicon Graphics)
	Adaptation to new technologies
	Adaptation to new needs

	Team organization
	Not everybody is changing the language semantics or introducing his own constructs
	One meta-programmer implements new semantics or adapts language semantics to the needs of the oth...

	Definitions (I)
	Reflection: a process's integral ability to represent, operate on, otherwise deal with itself in ...
	B.C Smith (OOPSLA’ 90 Workshop on Reflection and MetaLevel Architectures)
	“Reflection is the ability of a program to manipulate as data something representing the state of...
	Introspection is the ability for a program to observe and therefore reason about its own state.
	Intercessory is the ability for a program to modify its own execution state or alter its own inte...
	Both aspects require a mechanism for encoding execution state as data: providing such an encoding...

	Consequences
	A system having itself as application domain and that is causally connected with this domain can ...
	A reflective system has an internal representation of itself.
	A reflective system is able to act on itself with the ensurance that its representation will be c...
	A reflective system has some static capacity of self-representation and dynamic self-modification...
	A system is said reflective if it has an introspection protocol and an intercessory protocol

	Meta Programming in Programming Language Context
	The meta-language and the language can be different: Scheme and an OO language
	The meta-language and the language can be same: CLOS
	=> metacircular architecture

	Three Approaches
	1. Tower of Metacircular Interpreters
	every level is interpreting and controlling the next level
	ex: 3-Lisp, SRI

	2. Meta entities control language entities
	ex: Smalltalk, CLOS, FOL, Meta-Prolog, ...
	ABCL/R, ACT/R (Concurrent languages)
	meta-rules controlling unification in prolog

	3. Open Implementation
	The implementation specifies some entry points allowing the future modification of the system. (o...
	ex: CLOS MOP (Meta Object Protocol)

	Infinite Tower of (Meta)Interpreters
	3-Lisp: a metacircular interpreter that can evaluate itself
	Scheme like based on continuations
	Theory, Basis for reflection
	Experimentation with language extension, various semantics
	Passing from one level to another one is done using reifier
	special functions with three non evaluated arguments
	– current expression
	– environment
	– continuation

	Interpreter 0 reifies and interpretes interpreter 1
	Interpreter 1 reifies and interpretes interpreter 2....

	Reflective Languages
	CLOS, Smalltalk, Self
	Language written in itself
	MetaEntities controlling the languages (Class, Method, InstanceVariables...)
	Really powerfull, full control

	In Smalltalk
	everything is an object
	causally connected: a change in an object impact the semantics
	Class, Method
	Scanner, Parser, Compiler, Decompiler, ...
	Scheduler, Process, Semaphore

	But
	Did not make the effort of specifying a Meta Object Protocol
	– Too much to do for the base programmer
	– Not enough freedom to optimize for the language implementor
	A solution: declarative model of the base level language and the meta level

	Open Implementation and MOPs
	The Basic Claim of Open Implementation
	It is impossible to hide all implementation issues behing a module interface because not all of t...
	Despite black-box abstraction’s appealing goal that a module should present a simple interface th...
	Our claim is that module implementations must somehow be opened up to allow clients control over ...

	Meta Object Protocols
	“Meta Object Protocols are interfaces to the language that give the users the ability to incremen...
	MOPs are composed by set of entry points whose specialization allows the introduction of new beha...
	MOPs are based on meta-objects offering ways of specializing their behavior and representing spec...

	Public MetaLevel Architecture + Public protocols = Implementation
	(structure and static) (dynamic)
	Inspect + Modify = Open System

	Meta Programming in CLOS
	Create named
	MetaObjects

	Infinite Tower vs Open Implementation
	Infinite Tower vs Mop <=> Theory vs Practice
	Open Implementations:
	- are more efficient
	- are specified declaratevly letting space of optimization
	- define a region of possible changes
	- dependencies between entry points
	- allow more control over the possible extensions
	Infinite Tower:
	- are more powerful
	- slower
	- less secure

	A Simple Application as Example
	A LAN Simulator:
	- A LAN contains nodes, workstations, printers, file servers.
	- Packets are sent in a LAN and the nodes treat them differently.
	Problem: We want to know all the nodes of the system for analysis purpose
	We do not want to change the code of the node classes.
	We would like to ask to the class Node to gave us all its instances.

	Programming in Explicit Metaclass Context
	CLOS-like
	(defclass Node ()
	((name :initarg :name :default-value #lulu :reader name)
	(nextNode :default-value ‘() :accessor nextNode))
	(:metaclass Set))
	(defmethod accept ((n Node) (p Packet))
)
	(defmethod send ((n Node) (p Packet))
	...)
	(setq n1 (make-instance Node :name “n1”))
	(setq n2 (make-instance Node :name “n2” nextNode: n1))
	(setq n3 (make-instance Node :name “n3” nextNode: n3))
	((setf nextNode) n1 n3)
	(allInstances Node)
	-> (n1 n2 n3)

	Reusing Meta Programs
	Now imagine that we want to have a log of all the created packets
	(defclass Packet ()
	((addressee :initarg :addressee :accessor addressee)
	(contents :initarg :constents :accessor contents)
	(originator :initarg: originator :accessor originator)
	(:metaclass Set))
	(defmethod isAddressedTo ((p Packet) (n Node))
)
	(defmethod isOriginatedFrom((p Packet) (n Node))
	...)�
	(map Packet (lambda(x)
	(write outputstream
	“packet addressed from: %s to %s”
	(originator x) (addressee x))

	MetaProgramming in OO Context
	This simple functionality could have been implemented in C++ or Java defining static member and f...
	But
	A Meta program is not mixed into objects
	Ordinary objects are used to model real world. Metaobjects describe these ordinary objects.
	MetaPrograms can be reused
	Some other properties cannot easily be implemented without meta programming traceMessage, finalCl...

	We may want to
	- change the representation of the instance variables
	(indexed for points, hashed for person,)
	- change the way attributes are accessed (lazily via the net, stored in database)
	- change the inheritance semantics
	- change the invocation of method semantics (trace, proxies...)

	MetaProgramming by Example
	(defclass Set (class)
	((instances :default-value ‘() :reader allInstances)))
	(defmethod clear ((c Set))
	(setf-slot-value c ‘instances ‘()))
	(defmethod map ((c Set) fct)
	(map fct (allInstances c)))
	(defmethod new ((c Set) initarg)
	(let ((newInstance (call-next-method))
	(cons newInstance (slot-value c ‘instances))
	newInstance))

	Costs of Reflective Programming
	Design Cost
	Reflective languages need more care and iteration
	Use Cost
	Concepts are more complex
	Run-time Cost
	“A key aspect of intercession is that reflective capability not impose an excessive performance b...
	Clever implementations
	we only pay what we need, but we NEED it!
	Default behavior is optimized
	Do no rely on full runtime interpretation
	Having entry point purely functional (same argument gives same result)
	Optimization at compile-time
	Memoization (decomposing static from dynamic entry point)

	Designing Reflective Systems
	Which model
	– which kind of language?
	– which degre of reflection?
	– reflective language or open implementation?

	Which entry points?
	– Data, Entities, Control Structures, Interpreter, Environment

	Data Structure
	– simples, efficient, easliy modifiable

	Changing Level
	– Managing causal connection, reification and reflexion

	Uniformity between meta-level
	– Syntax, data structure, extensions

	Meta-Problems
	Stability: Potentially an end-user can change the system
	But not everybody should be meta-programming

	Several levels of complexity
	Entity, meta entity, coherence and connection between levels

	Uniformity: same design conception problems than the original designer
	Open implementations narrow the possibilities of change

	Meta and Open are not Limited to Programming Languages
	A reflective system is a system which incorporates structures representing (aspects of) itself.
	Reflection is the processus of reasoning about and/or acting upon itself.
	P.Maes (OOPSLA’ 87)
	Network
	Workflow system
	Operating Systems (Apertos, Synthesis)
	Parallel Systems
	Library of

	2. The Study of a Minimal Object-Oriented Reflective Kernel
	Dr. Stéphane Ducasse
	Software Composition Group
	University of Bern
	Switzerland
	Email: ducasse@iam.unibe.ch
	Url: http://www.iam.unibe.ch/~ducasse/
	Goals of this Lecture
	Metaclass concept
	Reflective Architectures and Kernels (SOM, Smalltalk, CLOS)
	What are Object and Class classes?
	Semantics of inheritance, semantics of super
	Metaclass power

	Outline
	Metaclasses?
	Examples of usefull metaclasses
	Towards a unified approach: Loops, Smalltalk
	ObjVlisp in 5 postulates
	Instance Structure and Behavior
	Class Structure
	Message Passing
	Object allocation & Initialization
	Class creation
	Inheritance Semantics
	Bootstrapping
	Examples: Playing with ObjVlisp

	Recall: Meta Programming in Programming Language Context
	Class as Objects
	“The difference between classes and objects has been repeatedly emphasized. In the view presented...
	Bertrand Meyer in Object-Oriented Software Construction

	Some Class Properties
	– Abstract: a class cannot have any instance
	– Set: a class that knows all its instances
	– DynamicIVs: Lazy allocation of instance structure
	– LazyAccess: only fetch the value if needed
	– AutomaticAccessor: a class that defines automatically its accessors
	– Released/Final: Class cannot be changed and subclassed
	– Limited/Singleton: a class can only have a certain number of instances
	– IndexedIVs: Instances have indexed instance variables
	– InterfaceImplementor: class must implement some interfaces
	– MultipleInheritance: a class can have multiple superclasses
	– Trace: Logs attribute accesses, allocation frequencies
	– ExternalIVs: Instance variables stored into database

	Some Method based Properties
	– Trace: Logs method calls
	– PrePostConditions: methods with pre/post conditions
	– MessageCounting: Counts the number of times a method is called
	– BreakPoint: some methods are not run
	– FinalMethods: Methods that cannot be specialized

	Metaclass Responsibilities
	“Metaclasses provide metatools to build open-ended architecture” [Cointe’87]
	Metaclasses are one of the possible meta-entities (method, instance variables, method combination...
	Metaclasses allow the structural extension of the language
	They may control
	Inheritance
	Internal representation of the objects (listes, vecteurs, hash-table,...)
	Method access ("caches" possibility)
	Instance variable access

	Separation of Concerns
	Ordinary objects are used to model real world
	Metaobjects describe these ordinary objects
	Meta/Base level functionality is not mixed

	Outline
	Metaclasses?
	Examples of usefull metaclasses
	Towards a unified approach: Loops, Smalltalk

	ObjVlisp in 5 postulates
	Instance Structure and Behavior
	Class Structure
	Message Passing
	Object allocation & Initialization
	Class creation
	Inheritance Semantics
	Bootstrapping
	Examples: Playing with ObjVlisp

	Why ObjVlisp?
	Minimal (only two classes)
	Reflective: ObjVlisp self-described: definition of Object and Class
	Unified: Only one kind of object: a class is an object and a metaclass is a class that creates cl...
	Open
	Simple: can be implemented with less than 300 lines of Scheme or 30 Smalltalk methods.
	Equivalent of Closette (Art of MOP example)
	Really good for understanding dynamic languages and reflective programming (D-SOM, CLOS, Smalltal...

	The Loops Approach
	“For some special cases, the user may want ot have more control over the creation of instances. F...
	Explict metaclass as a subclass of another but must be instance of MetaClass

	The Smalltalk Pragmatical Approach
	“The primary role of a metaclass in the Smalltalk-80 system is to provide protocol for initializi...
	A class is the sole instance of a metaclass
	Every metaclass is an instance of the Metaclass class
	metaclasses are not true classes
	number of metalevels is fixed

	Metaclass hierarchy inheritance is fixed: parallel to the class inheritance
	dichotomy between classes defined by the user (instance of Class) and metaclasses defined by the ...

	ObjVlisp in 5 Postulates (i)
	P1: object = <data, behavior>
	P3: Every object belongs to a class that specifies its data (slots or instance variables)
	and its behavior. Objects are created dynamically from their class.
	P4: Following P3, a class is also an object therefore instance of another class
	its metaclass (that describes the behavior of a class).
	|mac1|
	mac := Workstation new name: #mac1

	How to Stop Infinite Recursion?
	Aclass is an object therefore instance of another class its metaclass that is an object too insta...
	To stop this potential infinite recursion
	Class is the initial class and metaclass
	Class is instance of itself and
	all other metaclasses are instances of Class.

	ObjVlisp in 5 Postulates (ii)
	P2: Message passing is the only means to activate an object
	[object selector args]
	P5: A class can be defined as a subclass of one or many other classes.
	This mechanism is called inheritance. It allows the sharing of instance
	instance variable and methods. The class Object represents the behavior shared
	by all the objects.

	Unification between Classes and Instances
	“We claim that a class must be an object defined by a real class allowing a greater clarity and e...
	Every object is instance of a class
	A class is an object instance of a metaclass (P4)
	But all the objects are not classes

	Only one kind of objects without distinction between classes and final instances.
	Sole difference is the ability to respond to the creation message: new. Only a class knows how to...
	A metaclass is only a class that generates classes.

	About the 6th ObjVlisp’s Postulate
	“�Ordinary objects are used to model real world. Metaobjects describe these ordinary objects” [Ri...
	The ObjVlisp 6th postulate is:
	class variable of anObject = instance variable of anObject’s class
	So class variables are shared by all the instances of a class.
	We disagree with it.
	Semantically class variables are not instance variables of object’class!
	Instance variable of metaclass should represent class information not instance information.

	Metaclass information should represent classes not domain objects
	CLOS offers the :class instance variable qualifier class variables.
	We could imagine that a class possesses an instance variable that stores structure that represent...

	Instance Structure: Instance Variables
	Instance variables:
	an ordered sequence of instance variables defined by a class
	shared by all its instances
	values specific to each instance

	In particular, every object possesses an instance variable class (inherited from Object) that poi...

	Instance Behavior: Methods
	A method
	belongs to a class
	defines the behavior of all the instances of the class
	is stored into a dictionary that associates a key (the method selector) and the method body

	To unify instances and classes, the method dictionary of a class is the value of
	the instance variable methodDict defined on the metaclass Class.

	Class as an Object: Structure
	Considered as an object, a class possesses an instance variable class inherited from Object that ...
	– class an identifier of the class of the instance

	But as an instance factory the metaclass Class possesses 4 instance variables that describe a class:
	- name the class name
	- super its superclass (we limit to single inheritance)
	- i-v the list of its instance variables
	- methodDict a method dictionary
	Example: class Node
	class: Class instance of Class
	name: Node named Node
	super: Object inherits from Object
	i-v: (name nextNode) defines 2 instance variables
	methods: defines methods

	The class Class: a Reflective class
	Initial metaclass
	Defines the behavior of all the metaclasses
	Instance of itself to avoid an infinite regression
	class: Class instance of Class
	name: Class named Class
	super: Object inherits from Object
	i-v: (name supers i-v methodDict) describes any class
	methods: (new allocate initialize..... behavior of a class

	A Complete Example
	Outline
	Metaclasses?
	Examples of usefull metaclasses
	Towards a unified approach: Loops, Smalltalk
	ObjVlisp in 5 postulates
	Instance Structure and Behavior
	Class Structure
	Message Passing

	Object allocation & Initialization
	Class creation
	Inheritance Semantics
	Bootstrapping
	Examples: Playing with ObjVlisp

	Message Passing (i)
	P2: Message passing is the only means to activate an object
	P3: Every object belongs to a class that specifies its data and its behavior.

	Message Passing (ii)
	send message = apply O lookup
	We lookup the method associated with the selector of the message in the class of the receiver the...
	[receiver selector args]
	<=>
	apply (found method starting from the class of the receiver)
	on the receiver and the args
	<=>
	in functional style
	(apply (lookup selector (class-of receiver) receiver)
	receiver args)

	Object Creation by Example
	Creation of instances of the class Point
	[Point new :x 24 :y 6]
	[Point new]
	[Point new :y 10 :y 15]

	Creation of the class Point instance of Class
	[Class new
	:name Point
	:super Object
	:i-v (x y)
	:methods (x ...
	display ...)
]

	Object Creation: the Method new
	Object Creation = initialisation O allocation
	Creating an instance is the composition of two actions:
	memory allocation: allocate method
	object intialisation: initialize method

	(new aClass args) = (initialization (allocation aClass) args)
	<=>
	[aClass new args] = [[aClass allocate] initialize args]
	new creates an object: class or final instances
	new is a class method

	Object Allocation
	Object allocation should return:
	Object with empty instance variables
	Object with an identifier to its class

	Done by the method allocate defined on the metaclass Class
	allocate method is a class method
	example:
	[Point allocate] => #(Point nil nil)
	for x and y
	[Workstation allocate] => #(Workstation nil nil)
	for name and nextNode
	[Class allocate] => #(Class nil nil nil....)

	Object Initialization
	Initialization allows one to specify the value of the instance variables by means of keywords (:x...
	Example:
	[Point new :y 6 :x 24]
	=> [#(Point nil nil) initialize (:y 6 :x 24)]
	==> #(Point 24 6)
	initialize : two steps
	get the values specified during the creation. (y -> 6, x -> 24)
	assign the values to the instance variables of the created object.

	Object Creation: the Metaclass Role
	We lookup the method associated with the selector of the message in the class of the receiver the...

	Class Creation
	A Simple Instantiation Graph
	Class is the root of instantiaton graph
	Object is a class that represents the minimal behavior of an object
	Object is a class so it is instance of Class

	What is the minimal behavior shared by all the objects?
	The class Object represents the common behavior shared by all the objects:
	classes
	final instances.
	every object knows its class: instance variable class (uses a primitive for accessing else that l...
	methods:

	- initialize (instance variable initialization)
	- error
	- class
	- metaclass?
	- class?
	Meta operations:
	- iv-set
	- iv-ref

	Outline
	Metaclasses?
	Examples of usefull metaclasses
	Towards a unified approach: Loops, Smalltalk
	ObjVlisp in 5 postulates
	Instance Structure and Behavior
	Class Structure
	Message Passing
	Object allocation & Initialization
	Class creation
	Inheritance Semantics

	Bootstrapping
	Examples: Playing with ObjVlisp

	Two Forms of Inheritance
	Static for the instances variables
	Done once at the class creation
	When C is created, its instances variables are the union of the instance

	variables of its superclass with the instance variables defined in C.
	final-instance-variables (C) =
	union (union (iv (super C)), local-instance-variables(C))

	Dynamic Method Inheritance
	Walks through the inheritance graph between classes using the super
	instance variable
	lookup (selector class receiver):
	if the method associated with the the selector is found
	then return it
	else
	if receiver class == Object
	then [receiver error selector]
	else we lookup in the superclass of the class
	the error method can be specialized to handle the error.

	A Simple Inheritance Graph
	Object class is the root of the hierarchy.
	a Workstation is an object (should at least understand the minimal behavior), so Workstation clas...
	a class is an object so Class class inherits from Object class
	In particular, class instance variable is inherited from Object class.

	Method Lookup Example (i)
	Method Lookup Example (ii)
	Semantics of super
	As self, super is a pseudo-variable that refers to the receiver of the message. Used to invoke ov...
	Using self the lookup of the method begins in the class of the receiver.
	self is dynamic
	Using super the lookup of the method begins in the superclass of the class of the method containi...
	super is static
	Other said: super causes the method lookup to begin searching in the superclass of the class of t...

	Let us be Absurb!
	Let us suppose the WRONG hypothesis:
	"IF super semantics = starting the lookup of method in the superclass of the receiver class"
	What will happen for the following message: aC m1
	m1 is not defined in C
	m1 is found in B
	By Hypothesis: super = lookup in the superclass of the receiver class.
	And we know that the superclass of the receiver class = B
	=> That's loop
	So Hypothesis is WRONG !!

	A Simple Uniform Kernel
	Class initialization: a Two Steps Process
	initialize is defined on both classes Class and Object:
	on Object: values are extracted from initarg list and assigned to the allocated instance
	[#(Point nil nil) initialize (:y 6 :x 24)]
	=> #(Point 6 24)

	Initialize is lookup in class of #(Point nil nil) : Point
	Then in its superclass: Object
	on Class:
	[Class new :name Point :super Object :i-v (x y)...]
	[#(Class nil nil nil...) initialize (:name Point :super Object :i-v (x y)...]
	a class is an object
	[#(Class Point Object (x y) nil #(x: (mkmethod...) y: (mkmethod ...)]

	a class is at minimum a class

	inheritance of instance variables,
	keyword definition,
	method compilation
	[#(Class Point Object (class x y) (:x :y) #(x: (...) y: (...)]

	Recap: Class class
	Initial metaclass
	Reflective: its instance variable values describe instance variables of any classes in the system...
	Defines the behavior of all the classes
	Inherits from Object class
	Root of the instantiation graph
	Instance variables: name, super, iv, methodDict
	Methods
	- new
	- allocate
	- initialize (instance variable inheritance, keywords, method compilation)
	- class?
	- subclass-of?

	Recap: Object class
	Defines the behavior shared by all the objects of the system
	Instance of Class
	Root of the inheritance tree: all the classes inherit directly or indirectly from Object
	Its instance variable: class
	Its methods:
	- initialize (initialisation les variables d'instance)
	- error
	- class
	- metaclass?
	- class?
	- iv-set
	- iv-ref

	Outline
	Metaclasses?
	Examples of usefull metaclasses
	Towards a unified approach: Loops, Smalltalk
	ObjVlisp in 5 postulates
	Instance Structure and Behavior
	Class Structure
	Message Passing
	Object allocation & Initialization
	Class creation
	Inheritance Semantics
	Bootstrapping

	Examples: Playing with ObjVlisp

	Bootstrapping the Kernel
	Mandatory to have Class instance of itself
	Be lazy: Use as much as possible of the system to define itself
	Idea: Cheat the system so that it believes that Class already exists as instance of itself and in...
	Three Steps:
	1. manual creation of the instance that represents the class Class avec with
	inheritance simulation (class instance variable from Object class)
	only the necessary methods for the creation of the classes (new and initialize)

	2. creation of the class Object [Class new :name Object....]
	definition of all the method of Object

	3. redefinition of Class
	[Class new :name Class :super Object.....]
	definition of all the methods of Class

	Abstract Classes
	“The rule to define a new metaclass is to make it inherit from a previous one” [Cointe’87]
	Prb. Abstract classes should not create instances
	Sol. Redefine the new method
	Metaclass Definition:
	[Class new
	:name Abstract
	:super Class
	:methods (new (lambda (self initargs)
	(self error "Cannot create instance of class %s“ self name))]

	Metaclass Use:
	[Abstract new :name Node :super Object]
	[Node new]
	-> Cannot create instance of class Node
	[Abstract new :name Abstract-Stack :super Object]

	Abstract
	Abstract is a class -> It is instance of Class
	Abstract define class behavior -> It inherits from Class

	Abstract Class and Method Lookup

	3. Study of an Object-Oriented Reflective Kernel
	Dr. Stéphane Ducasse
	Software Composition Group
	University of Bern
	Switzerland
	Email: ducasse@iam.unibe.ch
	Url: http://www.iam.unibe.ch/~ducasse/
	Goals of this Lecture
	Metaclass concept
	Reflective Architectures and Kernels (SOM, Smalltalk, CLOS)
	What are Object and Class classes?
	Semantics of inheritance, semantics of super
	Metaclass power
	Metaclass limits
	Metaclass composibility solution

	Outline
	Examples of usefull metaclasses
	Examples of programming with metaclasses (client / metaprogrammer)
	Towards a unified approach: Loops, Smalltalk
	Building your own metaclass kernel: ObjVlisp
	Examples: Playing with ObjVlisp
	Metaclasses are powerful but
	Problems with composition
	Problems with property propagation
	Clos’s solution
	Smalltalk’s solution
	SOM’s solution
	NeoClasstalk’s solution
	Conclusion
	Bibliography

	Recall: Meta Programming in Programming Language Context
	Outline
	Examples of usefull metaclasses
	Examples of programming with metaclasses (client / metaprogrammer)
	Towards a unified approach: Loops, Smalltalk
	Building your own metaclass kernel: ObjVlisp
	Examples: Playing with ObjVlisp
	Metaclasses are powerful but
	Problems with composition
	Problems with property propagation
	Clos’s solution
	Smalltalk’s solution
	SOM’s solution
	NeoClasstalk’s solution
	Conclusion
	Bibliography

	Class as Objects
	“The difference between classes and objects has been repeatedly emphasized. In the view presented...
	Bertrand Meyer in Object-Oriented Software Construction

	Some Class Properties
	Abstract: a class cannot have any instance
	Set: a class that knows all its instances
	BreakPoint: some methods are not run and a debugger is opened
	DynamicIVs: Lazy allocation of instance structure
	LazyAccess: only fetch the value if needed
	AutomaticAccessor: a class that defines automatically its accessors
	Final: Class cannot be changed and subclassed
	FinalMethods: Methods that cannot be specialized
	Limited/Singleton: a class can only have a certain number of instances
	IndexedIVs: Instances have indexed instance variables
	InterfaceImplementor: class must implement some interfaces
	MultipleInheritance: a class can have multiple superclasses
	Released: a class that cannot changed anymore
	Trace: Logs method calls, attribute accesses
	PrePostConditions: methods with pre/post conditions
	MessageCounting: Counts the number of times a method is called (missing method metaobject)

	A Simple Application as Example
	A LAN Simulator:
	- A LAN contains nodes, workstations, printers, file servers.
	- Packets are sent in a LAN and the nodes treat them differently.
	Problem: We want to analysis all the messages sent
	But:
	We do not want to change the code of the node classes.

	@@stay??@@ Programming in Explicit Metaclass Context
	CLOS-like
	(defclass Node ()
	((name :initarg :name :default-value #lulu :reader name)
	(nextNode :default-value ‘() :accessor nextNode)))
	(defmethod accept ((n Node) (p Packet))
)
	(defmethod send ((n Node) (p Packet))
	...)
	@@Check counting Kiczales here@@

	Reusing Meta Programs@@stay??@@
	MetaProgramming in OO Context
	A MetaProgram is not mixed into objects
	Ordinary objects are used to model real world. Metaobjects describe these ordinary objects.
	MetaPrograms can be reused.
	Some other properties cannot easily be implemented without meta programming traceMessage, finalCl...
	We may want to:
	change the representation of the instance variables (indexed for points, hashed for person)
	change the way attributes are accessed (lazily via the net)
	change the inheritance semantics
	change the invocation of method (trace, proxies...)

	Metaclass Responsibilities
	“Metaclasses provide metatools to build open-ended architecture” [Cointe’87]
	Metaclass are one of the possible meta-entities (method, method combination,...)
	Metaclass allows the structural extension of the language
	They may control
	Inheritance
	Internal representation of the objects (listes, vecteurs, hash-table,...)
	Method access ("caches" possibility)
	Instance variable access

	Separation of Concerns
	Ordinary objects are used to model real world
	Metaobjects describe these ordinary objects
	Meta/Base level functionality is not mixed

	On the Road Again
	Towards ObjVlisp
	ObjVlisp in 5 postulates
	Instance Structure and Behavior
	Class Structure
	Message Passing
	Object allocation & Initialization
	Inheritance Semantics
	Bootstrapping

	Why ObjVlisp?
	Minimal (only two classes)
	Reflective: ObjVlisp self-described: definition of Object and Class
	Unified: Only one kind of object: a class is an object and a metaclass is a class that creates cl...
	Open
	Simple: can be implemented with less than 300 lines of Scheme or 30 Smalltalk methods.
	Equivalent of Closette
	Really good for understanding dynamic languages and reflective programming (D-SOM, CLOS, Smalltal...

	The Loops Approach
	“For some special cases, the user may want ot have more control over the creation of instances. F...
	Explict metaclass as a sublcass of another but must be instance of MetaClass

	The Smalltalk Pragmatical Approach
	“The primary role of a metaclass in the Smalltalk-80 system is to provide protocol for initializi...
	A class is the sole instance of a metaclass
	Every metaclass is an instance of the Metaclass class
	metaclasses are not true classes
	number of metalevels is fixed

	Metaclass hierarchy inheritance is fixed: parallel to the class inheritance
	dichotomy between classes defined by the user (instance of Class) and metaclasses defined by the ...

	ObjVlisp in 5 Postulates (i)
	P1: object = <data, behavior>
	P3: Every object belongs to a class that specifies its data (slots or instance variables)
	and its behavior. Objects are created dynamically from their class.
	P4: Following P3, a class is also an object therefore instance of another class
	its metaclass (that describes the behavior of a class).

	How to Stop Infinite Recursion?
	Aclass is an object therefore instance of another class its metaclass that is an object too insta...
	To stop this potential infinite recursion
	Class is the initial class and metaclass
	Class is instance of itself and
	all other metaclasses are instances of Class.

	ObjVlisp in 5 Postulates (ii)
	P2: Message passing is the only means to activate an object
	[objet selecteur args]
	P5: A class can be defined as a subclass of one or many other classes.
	This mechanism is called inheritance. It allows the sharing of instance
	instance variable and methods. The class Object represents the behavior shared
	by all the objects.

	Unification between Classes and Instances
	“We claim that a class must be an object defined by a real class allowing a greater clarity and e...
	Every object is instance of a class
	A class is an object instance of a metaclass (P4)
	But all the objects are not classes

	Only one kind of objects without distinction between classes and final instances.
	Sole difference is the ability to respond to the creation message: new. Only a class knows how to...
	A metaclass is only a class that generates classes.

	About the 6th ObjVlisp’s Postulate
	“�Ordinary objects are used to model real world. Metaobjects describe these ordinary objects” [Ri...
	ObjVlisp 6th postulate:
	class variable (anObject) = instance variable (anObject’s class)
	So class variables are shared by all the instances of a class.
	But semantically class variables are not instance variables of object’class!
	Instance variable of metaclass should represent class information not instance information.

	Metaclass information should represent classes not domain objects
	CLOS offers the :class instance variable qualifier class variables.
	We could imagine that a class possesses an instance variable that stores structure that represent...

	Instance Structure: Instance Variables
	Instance variables:
	an ordered sequence of instance variables defined by a class
	shared by all its instances
	values specific to each instance

	In particular, every object possesses an instance variable class (inherited from Object) that poi...

	Instance Behavior: Methods
	A method
	belongs to a class
	defines the behavior of all the instances of the class
	is stored into a dictionary that associates a key (the method selector) and the method body

	To unify instances and classes, the method dictionary of a class is the value of
	the instance variable methodDict defined on the metaclass Class.

	Class as an Object: Structure
	Considered as an object, a class possesses an instance variable class inherited from Object that ...
	But as an instance factory the metaclass Class possesses 4 instance variables that describe a class:
	- name the class name
	- supers the list of its superclasses
	- i-v the list of its instance variables
	- methodDict a method dictionary
	Example: class Node
	class: Class instance of Class
	name: "Node" named Node
	supers: '(Object) inherits from Object
	i-v: '(name nextNode) defines 2 instance variables
	methods: defines methods

	The class Class: a Reflective class
	Initial metaclass
	Defines the behavior of all the metaclasses
	Instance of itself to avoid an infinite regression
	class: Class instance of Class
	name: "Class" named Class
	supers: '(Object) inherits from Object
	i-v: '(name supers i-v methodDict)
	describes the instance variables of any class
	methods: ‘(new allocate initialize.....

	A Complete Example
	Message Passing (i)
	P2: Message passing is the only means to activate an object
	P3: Every object belongs to a class that specifies its data and its behavior.

	Message Passing (ii)
	We lookup the method associated with the selector of the message in the class of the receiver the...
	[receiver selector args]
	<=>
	apply (found method starting from the class of the receiver)
	on the receiver and the args
	<=>
	in Scheme
	(apply (lookup selecteur (class-of receiver) receiver)
	receiver args)

	Object Creation by Example
	Creation of instances of the class Point
	[Point new :x 24 :y 6]
	[Point new]
	[Point new :y 10 :y 15]

	Creation of the class Point instance of Class
	[send Class 'new
	:name Point
	:supers '(Object)
	:i-v '(x y)
	:methods '(x (lambda (self)...)
	display (lambda (self)...))
]

	Object Creation: the Method new
	new creates an object: class or final instances
	new is a class method
	Creating an instance is the composition of two actions:
	memory allocation: allocate method
	object intialisation: initialize method

	(new aClass args) = (initialization (allocation aClass) args)
	<=>
	[aClass new args] = [[send aClass allocate] initialize args]

	Object Allocation
	Object allocation should return:
	Object with empty instance variables
	Object with an identifier to its class

	Done by the method allocate defined on the metaclass Class
	Allocate method is a class method
	example:
	[Point 'allocate] => #(Point nil nil)
	for x and y
	[Workstation ‘allocate] => #(Workstation nil nil)
	for name and nextNode
	[Class 'allocate] => #(Class nil nil nil....)

	Object Initialization
	Initialization allows one to specify the value of the instance variables by means of keywords (:x...
	Example:
	[Point 'new :y 6 :x 24] =>
	[#(Point nil nil) initialize ‘(:y 6 :x 24)] =>
	#(Point 24 6)
	initialize two steps
	get the values specified during the creation. (y -> 6, x -> 24)
	assign the values to the instance variables of the created object.

	Object Creation: the Metaclass Role
	We lookup the method associated with the selector of the message in the class of the receiver the...

	Class Creation
	A Simple Instantiation Graph
	Object is a class that represents the minimal behavior of an object.
	Object is a class so it is instance of class

	What is the minimal behavior shared by all the objects?
	The class Object represents the common behavior shared by all the objects:
	classes
	final instances.
	every object knows its class: instance variable class (uses a primitive for accessing else that l...
	methods:

	- initialize (instance variable initialization)
	- error
	- class
	- metaclass?
	- class?
	- iv-set
	- iv-ref

	Two Forms of Inheritance
	Static for the instances variables
	Done once at the class creation
	When C is created, its instances variables are the union of the instance

	variables of its superclass with the instance variables defined in C.
	i-v(C) = union (union (iv (supers C)), :i-v(C))

	Dynamic Method Inheritance
	Walks through the inheritance graph between classes using the super
	instance variable
	lookup (selector class receiver):
	if the method associated with the the selector is found
	then return it
	else
	if receiver class == Object
	then [receiver 'error selector]
	else we lookup in the superclass of the class
	the error method can be specialized to handle the error.

	A Simple Inheritance Graph
	Object class is the root of the hierarchy
	a Workstation is an object (should at least understand the minimal behavior), so Workstation clas...
	a class is an object so Class class inherits from Object class
	In particular, class instance variable is inherited from Object class.

	Method Lookup Example (i)
	Method Lookup Example (ii)
	Semantics of super
	As self, super is a pseudo-variable that refers to the receiver of the message. Used to invoke ov...
	Using self the lookup of the method begins in the class of the receiver.
	self is dynamic
	Using super the lookup of the method begins in the superclass of the class of the method containi...
	super is static
	Other said: super causes the method lookup to begin searching in the superclass of the class of t...

	Let us be Absurb!
	Let us suppose the WRONG hypothesis:
	"IF super semantics = starting the lookup of method in the superclass of the receiver class"
	What will happen for the following message: aC m1
	m1 is not defined in C
	m1 is found in B
	By Hypothesis: super = lookup in the superclass of the receiver class.
	And we know that the superclass of the receiver class = B
	=> That's loop
	So Hypothesis is WRONG !!
	@@Stef redo the pictuire with the right arrow@@

	A Simple Uniform Kernel
	Class initialization: a Two Steps Process
	initialize is defined on both classes Class and Object:
	on Object: values are extracted from initarg list and assigned to the allocated instance
	[#(Point nil nil) initialize ‘(:y 6 :x 24)]
	=> #(Point 6 24)

	Initialize is lookup in class of #(Point nil nil) : Point
	Then in its superclass: Object
	on Class:
	[send Class 'new :name “Point” :supers '(Object) :i-v '(x y)...]
	[#(Class nil nil nil...) initialize ‘(:name Point :supers '(Object) :i-v '(x y)...]
	a class is an object
	[#(Class “Point” ‘(Object) ‘(x y) nil #(x: (mkmethod...) y: (mkmethod ...)]

	a class is at minimum a class

	inheritance of instance variables,
	keyword definition,
	method compilation
	[#(Class “Point” ‘(Object) ‘(class x y) (:x :y) #(x: (lambda...) y: (lambda ...)]

	Recap: Class class
	Initial metaclass
	Reflective: its instance variable values describe instance variables of any classes in the system...
	Defines the behavior of all the classes
	Inherits from Object class
	Root of the instantiation graph
	Instance variables: name, supers, iv, methodDict
	Methods
	- new
	- allocate
	- initialize (instance variable inheritance, keywords, method compilation)
	- class?
	- subclass-of?

	Recap: Object class
	Defines the behavior shared by all the objects of the system
	Instance of Class
	Root of the inheritance tree: all the classes inherit directly or indirectly from Object
	Its instance variable: class
	Its methods:
	- initialize (initialisation les variables d'instance)
	- error
	- class
	- metaclass?
	- class?
	- iv-set
	- iv-ref

	Bootstrapping the Kernel
	Mandatory to have Class instance of itself
	Be lazy: Use as much as possible of the system to define itself
	Idea: Cheat the system so that it believes that Class already exists as instance of itself and in...
	Three Steps:
	1. manual creation of the instance that represents the class Class avec with
	inheritance simulation (class instance variable from Object class)
	only the necessary methods for the creation of the classes (new and initialize)

	2. creation of the class Object [Class new :name Object....]
	definition of all the method of Object

	3. redefinition of Class
	[Class new :name Class :super '(Object).....]
	definition of all the methods of Class

	On The Road
	Context
	Examples of metaclasses
	Examples of programming with metaclasses
	Previous Approaches: Loops, Smalltalk
	Building your own metaclass kernel: ObjVlisp
	Examples: Playing with ObjVlisp
	Metaclasses are powerful but
	Problems with composition
	Problems with property propagation
	Clos’s solution
	SOM’s solution
	Smalltalk’s solution
	NeoClasstalk’s solution
	Conclusion
	Bibliography

	Abstract Classes
	“The rule to define a new metaclass is to make it inherit from a previous one” [Cointe’87]
	Prb. Abstract classes should not create instances
	Sol. Redefine the new method
	Metaclass Definition:
	[Class new
	:name Abstract
	:supers '(Class)
	:methods '(new (lambda (self initargs)
	(self error "Cannot create instance of class %s“ self name))]

	Metaclass Use:
	[Abstract new :name Node :supers '(Object)]
	[Node new]
	-> Cannot create instance of class Node
	[Abstract new :name Abstract-Stack :supers '(Object)]

	Abstract
	Abstract is a class -> It is instance of Class
	Abstract define class behavior -> It inherits from Class

	Abstract Class and Method Lookup
	The Metaclass Set
	Prb. How to access to all the instances of a certain class
	Sol. Store the instances when there are created.
	[Class new
	:name “Set”
	:supers '(Class)
	:iv '(instances)
	:methods ‘(
	instances (lambda (self) (self iv-ref ‘instances))
	instances! (lambda (self newInstances)
	(self iv-set! ‘instances newInstances))
	initialize (lambda (self initargs)
	(super initialize initargs)
	(self instances! ()))
	new (lambda (self initargs)
	(let ((n-i (super new)))]
	(self instances! (cons n-i (self instances)))]

	Sets
	Sharing Metaclasses
	Zooming in: Creation of Memo-Point (i)
	Remember: (apply (lookup selecteur (class-of receveur) receveur)
	receveur args)
	[Set new :name Memory-Point :supers '(Point)]
	(apply (lookup 'new (class-of Set) Set) Set '(:name Memo-Point :supers '(Point)))
	(apply (lookup 'new Class Set) Set '(:name Memo-Point :supers '(Point)))
	New : [[Set allocate] initialize '(:name Memo-Point :supers '(Point))]
	[Set allocate]
	(apply (lookup 'allocate (class-of Set) Set) Set)
	(apply (lookup 'allocate Class Set) Set)
	Allocate -> #(Set nil nil nil nil nil nil)

	Zooming in: Creation of Memo-Point (ii)
	[#(Set ()...()) initialize '(:name Memo-Point :supers '(Point))]
	(apply (lookup 'initialize (class-of #(Set nil...nil) #(Set nil...nil)
	#(Set nil...nil) '(:name Memory-Point :supers '(Point)))
 (lookup 'initialize Set #(Set nil...nil)
	initialize method is not found in the class Set => we search in supers Set : Class
 (lookup 'initialize Class #(Set nil...nil)
	Initialize:
	[super initialize ...] 2
	Memory-Point class is an object. super looks in the superclas of Class (Class in whihc we found i...
	(inherit-iv ...) 3
	Memory-Point is a class
	2 (apply (lookup 'initialize Object #(Set nil...nil))
	#(Set nil...nil) '(:name Memory-Point :supers '(Point)))
	-> #(Set Memory-Point '(Point) nil nil nil)
	3 #(Set Memory-Point '(Point) (class x y) nil nil)

	On The Road
	Context (differences between compiled languages..definitions)
	Examples of usefull metaclasses (final, abstract....)
	Examples of programming with metaclasses (client point of view)
	Previous Approaches: Loops, Smalltalk
	Building your own metaclass kernel: ObjVlisp
	Examples
	Metaclasses are powerful but
	Problems with composition
	Problems with property propagation
	Clos’s solution
	SOM’s solution
	Smalltalk’s solution
	NeoClasstalk’s solution
	Conclusion
	Bibliography

	4. Open Implementation: the CLOS MOP Example
	Dr. Stéphane Ducasse
	Software Composition Group
	University of Bern
	Switzerland
	Email: ducasse@iam.unibe.ch
	Url: http://www.iam.unibe.ch/~ducasse/
	Goals of this Lecture
	CLOS in a Nutshell
	CLOS MOP overview and example
	Difference between a reflective language and an open language
	Lessons learnt in the MOP Design
	Open Implementation Design Guidelines

	CLOS
	Integration of object-orientation and functional style
	Generic function, multiple discrimination and not receiver and message based, types and classes

	Take into account other Lisp OO like languages (Flavors, Loops)
	migration path

	Small (they failed a bit) but extensible
	CLOS MOP: essential language entry points are externalised

	CLOS in a nutshell
	Essential
	Class based
	Multiple Inheritance (with graph linerization)
	Multiple argument discrimination for method selection
	Methods associated with multiple classes
	Methods combined to be executed
	Generic function: group of method having the same “name”

	Too much details:
	specializers (eql instance based method selection)
	argument-precedence-order (changing the weight of classes for method selection)
	default-initargs (default values for instance variable redefinable via inheritance)
	auxillary methods (around, before, after methods)
	method combination (how to compose the results of the methods selected for a given set of arguments)
	automatic accessors and initialization per instance variables

	Class Definition
	In its simplest form:
	(defclass rectangle ()
	((height :initarg :start-height
	:initform 5
	:accessor height)
	(width :initform 8
	:writer width)))

	Other possibilities
	:allocation (per instance, shared among all instances)
	specification of class defautl values inherited

	Instance Creation
	(setq r1 (make-instance ‘rectangle
	:start-height 25))
	(height r1)
	-> 25
	(width r1)
	-> 8

	Encapsulation and Attribute Accesses
	Accessors can be created automatically
	:accessor
	(height r1)
	(setf (height r1 75)

	Attributes can always be accessed using slot-value
	(slot-value r1 ‘height)
	(setf (slot-value r1 ‘height) 75)

	Accessors are defined in terms of slot-value
	Accessors are preferred style

	Inheritance
	Simple
	(defclass color-rectangle (rectangle)
	((color :initform ‘red
	:initarg :color
	:accessor color)
	(clearp :initform nil
	:initarg :clearp
	:reader clearp)
	(height :initform 100)))

	Multiple
	(defclass color-mixin ()
	((color :initform ‘red :initarg :color :accessor color)))
	(defclass color-rectangle (color-mixin rectangle)
	(clearp :initform nil
	:initarg :clearp
	:accessor clearp)
	(height :initform 100)))

	Multiple Inheritance Conflict Resolution
	Which methods of the superclasses should be invoked using call-next-method (super equivelant)
	How multiple instance variables over the inheritance graph are accessed? (if window has an instan...
	graph linearization
	(class-precedence-list (find-class ‘colored-noisy-window))
	-> (colored-noisy-window colored-window noisy-window window noisy-object colored- object standard...

	Generic Function
	A generic function describing all the methods named paint taking two arguments
	(defgeneric paint (shape medium))
	Holding bag of methods having the same name, number of argument but different types and different...
	Not strongly defined in classes because of multiple discrimination

	Method Definition (i)
	1 (defmethod paint ((shape rectangle) medium)
	(vertical-stroke (height shape) (width shape) medium))
	2 (defmethod paint ((shape circle) medium)
	(draw-circle (radius shape) medium))
	(paint r1 *standard-display*) -> 1
	Discriminating only on one single argument ->Java, Smalltalk like
	3 (defmethod paint ((shape color-rectangle) medium)
	(if (not (clearp shape))
	(call-next-method))

	invoking an overriden method

	(Method) Generic Function Application
	4 (defmethod paint ((shape rectangle) (medium vector-display))
	...)
	5 (defmethod paint ((shape rectangle) (medium bitmap-display))
	...)
	6 (defmethod paint ((shape rectangle) (medium optimized-bitmap-stream))
	...)
	7 (defmethod paint ((shape circle) (medium ps-stream))
	...)
	8 (defmethod paint :after ((shape rectangle) medium)
	(log paint rectangle))
	1,2,3,4,5,6,7 are primary methods
	8 is an auxiliary method
	Applying a generic function:
	From all the methods, an effective method is created:
	Selecting the applicable methods to a given set of arguments
	Ordering them
	Applying them

	Method Selection
	The methods are sorted according to the type of their first argument, then they ordered according...
	(paint r1 *bitmap*)
	-> selction of 5 1
	(paint r1 *optimized-bitmap*)
	-> selection 6 5 1

	Effective method application leads to execute:
	All the before methods are invoked in decreasing order
	Most specific primary method (6 in the second call), other if call-next-method is used
	All the after methods are invoked in increasing order

	Why CLOS MOP?
	“Traditionally, languages have been designed to be viewed as black box abstractions; end programm...

	Meta Programming in CLOS
	Create named
	MetaObjects

	CLOS was too big!
	Lot of could have been dropped and reintroduced if wanted using the CLOS MOP
	Instance based methods (eql) , auxiliary
	Method combination,
	argument-precedence-order option,

	.
	.
	slot-filing initargs, default initargs

	.
	.
	.
	.
	multiple inheritance, multi methods

	5 MetaObjects
	Classes
	– instance creation: make-instance
	– instance allocation: allocate-instance
	– class initialization: initialize-instance
	– instance variables storage and accesses: slot-value-using-class, (setf slot-value-using-class)
	– finalize-inheritance

	Methods
	– apply method
	– extra-method-bindings

	Generic Functions
	– apply-generic-function

	Slots
	– slot-boundp

	Method combinations

	Static Elements
	5 Metaobjects:
	Class, Method Combination (Semantics of method calls regarding inheritance)
	Method and Generic Function
	Slot (attribute)

	Structure Protocols (i)
	global queries not attached to any meta-entities
	find-class, find-generic-function, find-method
	ensure-generic-function, ensure-class, ensure-method,

	User interfaces
	defclass, defgeneric, defmethod

	Structural queries associated with meta-entities
	Object
	class-of, print-object, reinitialize-instance, slot-makeunbound

	Class
	class-name, class-slots,
	class-direct-subclasses, class-direct-superclasses
	class-direct-slots, class-direct-methods,
	compute-class-precedence-list, compute-slots,
	compute-effective-slot-definition
	class-finalized-p,

	Structure Protocols (ii)
	Generic Function
	add-method, add-reader-method, generic-function-methods, generic-function-name,

	Method
	method-body, method-environment, method-generic-function, method-more-specific-p, method-qualifie...

	Slot
	slot-definition-initfunction, slot-definition-initargs, slot-definition-initform,
	slot-definition-name, slot-definition-readers, slot-definition-writers
	slot-boundp, slot-boundp-using-class,
	slot-exists-p,

	Extension Example
	(defclass hash-table-representation-class (standard-class)
	()) ; no extra instance variables
	(defmethod allocate-instance ((c hash-table-representation-class))
	...allocate a small hash-table to store the slot)
	(defmethod slot-value-using-class ((c hash-table-representation-class) instance slot- name))
	...)
	(defmethod setf slot-value-using-class ((c hash-table-representation-class) instance slot-name ne...
	...)
	(defclass person ()
	(name age address...)
	(:metaclass hash-table-representation-class))

	Dynamic Elements
	instance initialization and creation,
	class-change, instance updating
	finalization (inheritance)
	method selection, method invocation,
	slot access
	are controlled by metaobjects and their protocols

	Class Definition: Defclass
	1 Syntax error checking
	2 Canonicalize information
	3 Obtain class metaobjects (ensure-class, ensure-class-using-class)
	3.1 Find or make instance of proper class metaobject class
	(make-instance, the :metaclass option)

	3.2 (Re)initialize the class metaobject ((re)initialize)
	3.2.1 Default unsupilied keyword arguments/error checking
	3.2.2 Check compatibility with superclass (validate-superclass)
	3.2.3 Associate superclasses with this new class metaobject
	3.2.4 Determine proper slot-definition metaobject class
	(direct-slot-definition-class)
	3.2.5 Create and initialize the slot-definition metaobjects
	(make-instance, initialize-instance)
	3.2.6 Maintain subclass lists of superclasses
	(add-direct-subclass, remove-direct-subclass)
	3.2.7 Check default-initargs
	3.2.8 Initiate inheritance finalization (if appropriate)
	(finalize-inheritance)
	3.2.9 Create reader/writer methods
	3.2.10 Associate them with the new class metaobjects

	Instance creation
	Class responsibility:
	make-instance, allocate-instance, initialize-instance (for class creation)
	(make-instance class)
	=> (initialize (allocate-instance class))
	Object responsibility
	(initialize-instance anObject)

	Changing class and updating instance
	change-class
	update-instance-for-different-class

	Method Creation: Defmethod (i)
	1. Syntax error checking
	2. Obtain target generic function metaobject (ensure-generic-function,
	ensure-generic-function-using-class)
	2.1. Find or make instance of proper generic-function metaobject
	(make-instance,:generic-function-class)
	2.2 (Re)initialize the generic function metaobject
	((re)initialize-instance)
	2.2.1 Default unsupplied keyword arguments/error checking
	2.2.2 Check lambda list congruence with existing methods
	2.2.3 Check argument precedence order spec against lambda list
	2.2.4 (Re)define any old ‘initial methods’
	2.2.5 Recompute the generic function’s discriminating function
	(compute-discriminating-function)
	3 Build method function (make-method-lambda)

	Defmethod (ii)
	4 Obtain method metaobject
	4.1 Make instance of proper method metaobject class
	(make-instance, generic-function-method-class)
	4.2 Initialize the method metaobject
	(initialize-instance)
	4.2.1 Default unsupplied keyword argument/error checking
	5 Add the method to the generic function
	(add-method)
	5.1. Add method to the generic function’s method set
	5.2. Recompute the generic function’s discriminating function
	(compute-discriminating-function)
	5.3. Update discriminating function
	5.4. Maintain mapping from specializers (classes) to methods
	(add-direct-method)

	Method lookup and apply protocol
	generic function call
	(apply-generic-function)
	1 invoke the generic function’s discriminating function
	1.1 Find out which methods are applicable for the given arguments
	(compute-applicable-using-classes,
	compute-applicable-methods,
	methods-more-specific-p)
	1.2 Combine the methods into one piece of code
	(compute-effective-method)
	1.3 Execute the combined method
	(method-function-applier, apply-methods,
	apply-method, extra-function-bindings)

	Apply Protocol Example
	Counting the calls of a method
	Define a new class of method and specialise apply-method

	Define new method of the right class or (depending on the implementation) change the class of cer...
	Apply Protocol Remark

	The generic function has the responsibility of class methods specification
	We cannot specify the class of a method at the method level
	Dynamically changing the class of a generic function was not allowed (at leats in the MOP descrip...
	:generic-function-class
	:method-class

	are only associated with defgeneric

	Slot Access Protocol
	The class has the control over its attributes
	How to store and access them
	(slot-value object slotname)

	calls or has semantics defined by
	(slot-value-using-class class instance slotname)
	((setf slot-value) value object slotname)

	calls or has semantics defined by
	((setf slot-value-using-class) value class instance slotname)

	1. Check for existence of slot
	slot-exists-p, slot-missing

	2. Check for slot being unbound
	slot-unboundp, slot-boundp-using-class

	3. Making a slot unbound
	slot-makunbound, slot-makeunbound-using-class

	Finalize Inheritance
	1 Compute the class precedence list
	(compute-class-precedence-list)
	2 Resolve conflicts among inherited slots with the same name
	2.1Determine proper effective slot definition metaobject class
	(effective-slot-definition-class)
	2.2Create the effective slot definition metaobjects
	(make-instance)
	2.3 Initialize the effective slot definitions
	(initialize-instance,
	compute-effective-slot-definition)
	2.4 Associate them with the class metaobject
	3Enable/Disable slot access optimizations
	(slot-definition-elide-access-method-p)

	Open Implementation and Reflective Languages
	Smalltalk is reflective but
	does not have a MOP
	Programming and meta-programming are mixed
	e.g., knowing that methods are stored into a method dictionary is not necessary for programming. ...
	Stripping image is difficult.
	Implementor of VM cannot optimize completely.
	Implementors could provide several optimized environments
	Firewall 93 was a declarative Smalltalk where hello world took 10 k

	5. Open Implementation Design Issues
	Dr. Stéphane Ducasse
	Software Composition Group
	University of Bern
	Switzerland
	Email: ducasse@iam.unibe.ch
	Url: http://www.iam.unibe.ch/~ducasse/
	Goals of this Lecture
	Lessons learnt in the MOP Design
	Open Implementation Design Guidelines

	Locality in MOP Design
	Feature Locality
	– MOP should provide access to individual features of the base language

	Textual Locality
	– The programmer should be able to indicate, using convenient reference to their base program, wh...

	Object Locality
	– The programmer should be able to affect the implementation on a per- object basis.

	Strategy Locality
	– The programmer should be able to affect individual parts of the implementation strategy.

	Implementation Locality
	– Extension of an implementation ought ot take code proprotional to the size of the change. A res...

	Open Implementation Design Guidelines
	Stepping back from CLOS and its MOP and generalization
	Black-box abstraction:
	A module should expose its functionality but hide its implementation
	Pros
	Localization of changes
	Level of abstraction
	Modularization easier
	Reuse easier

	Cons
	Performance problems
	Needs to code around

	Whereas black-box modules hide all aspects of their implementation, open implmentation modules al...

	Quality in interface designs
	from [Hoffman 90]
	consistent (e.g., same parameter passed always at the same place)
	essential (e.g., each service is offered in only one way)
	general
	minimal (e.g, each function provides one operation)
	opaque (e.g., the interface hides the way the module has been implemented)

	Set Module: Design A
	makeSet()
	insert(item, set)
	delete(item, set)
	isIn(item, set)
	map(function, state, set)
	Simple, Consistent, Essential, General, Minimal, Opaque
	But is the implementation performing well for?
	– few/many elements
	– frequent/unfrequent removal
	– frequent/unfrequent addition

	Set Module: Design B
	makeSet(usage)
	makeSet()
	insert(item, set)
	delete(item, set)
	isIn(item, set)
	map(function, state, set)
	Use
	makeSet (“n=10000,insert=lo,delete=lo,isIn=hi”)
	makeSet (“n=5,insert=hi,delete=hi”)
	Same property than design A and still hidding implementation
	Only a small change in the interface
	New functionality optional
	Well-bounded effect (only the set created by the call affected)
	Use of the new functionality orthogonal to previous one: distinction between client use and imple...

	First Guideline
	Separation of Use from Implementation Strategy Control
	Open Implementation module interfaces should support a clear separation between client code that ...

	Second Guideline
	Open implementation module interfaces should be designed to make the ISC code optional, make the ...
	Example: High Performance Fortran (for efficient parallel processing)
	Real A(1000,1000) B (998,998)
	!HPF$ ALIGN B(I,J) WITH A(I+1,J+1)
	ISC coded into comments
	use/ISC code has clear separation
	ISC code is optional
	ISC code easy to disable
	HPF doesnot support multiple ISC for the same piece of code but easy to implement

	Third Guideline
	Scope control
	Open implementation module interfaces should be designed to allow the scope of influence of ISC c...
	s1 = makeSte(“n=1000“)
	for i = 1 to 700 do
	insert(s1 , i +1)
	s2 = makeSet(“n=5“)
	insert(s2, 5)
	insert(s2,6)

	Subject Matter
	Design B has some weaknesses
	client programmer can mis-describes and get a solution worse than the default
	no garantee that they will get an optimal implementation strategy

	Design C
	makeSet(strategy)

	Use
	makeSet(“LinkedList”), makeSet(“BTree”)

	ICS can be about different subject matter
	– the client program’s behavior (design B),
	– module implementation strategy (design C), or
	– performance requirements

	No automatic solution
	Analysis steps in the process of selecting implementation strategy

	client use code ---> client usage profile --->
	client performance requirements ---> module implementation strategy

	Fourth Guideline
	Implementation Details must be hidden
	Open Implementation module interfaces should be designed to pass only essential implementation st...

	Design D
	Design C is limited to the implementation strategies provided by the module
	Might be not flexible enough
	class mySet (Set) {
	method insert...
	method delete...
	method isIn...}

	Use
	makeSet(“mySet”)
	Programmatic interfaces tend to be less robust
	locality is extremlly important
	Layered interface

	Last Guideline: Layered Interfaces
	Client
	No ISC code -> get default one
	Select from built-in ones
	Provide a new strategy

	When there is a simple interface that can describe strategies that will satisfy a significant fra...
	90%/10% Rule
	90% of the clients use the default strategy
	10% write new ISC code
	90% of 10% select in the built-in strategies
	1% should provide a new strategy
	ˆ But this is a really needed one!!!!

	6. Comparing Reflection in CLOS, Smalltalk and Java
	Dr. Stéphane Ducasse
	Software Composition Group
	University of Bern
	Switzerland
	Winter Semester 2000-2001
	Email: ducasse@iam.unibe.ch
	Url: http://www.iam.unibe.ch/~ducasse/
	Sorry but this is your work!
	Material you can use
	Java: Reflection API, OpenJava
	Smalltalk: Smalltalk a Reflective Language, Smalltalk 80 the Language, VisualWorks
	CLOS: The Art of the MetaObject Protocols, Paepcke Paper,
	www.franz.com download a trial version.

	Other documents available for you in my office

	Some Criterias
	Which entities?
	Introspection and/or Intercessory?
	Which aspects?
	Is the causal link respected? Only representation of data or can we affect them?
	Level of power,
	– for example try to invoke method m of class A on an instance of the class B subclass of A in Ja...
	– Use valueWithReceiver... in VW

	7. Implementing Message Passing Control in Smalltalk: an Analysis
	Dr. Stéphane Ducasse
	Software Composition Group
	University of Bern
	Switzerland
	Email: ducasse@iam.unibe.ch
	Url: http://www.iam.unibe.ch/~ducasse/
	Outline
	Limited Survey
	Method Wrappers in Use
	Opening the Box
	DoesNotUnderstand
	Method Wrapper
	Instance based Behavior

	Why Controling Message?
	Application Analysis and introspection
	Do not require program instrumentation (imagine in C++!!!)
	Dynamic traces, analysis of collaborations, hints for distribution

	Language Extension
	Distribution
	Security
	Atomic Data Types
	Multiple inheritance
	Instance based programming
	Object connections

	New objects models
	Active object model
	Concurrent Smalltalk
	Composition Filters
	New Meta Models (codA)

	Controling What Exactly!
	Which objects are controlled?
	Instance based: One instance
	Group based: A group of objects
	Class-based All instances of a class

	What methods are controlled?
	All methods
	Unknown methods
	Selected methods

	Technical quality of the control?
	Existing Smalltalk systems and tools
	Not another interpreter with an explicit send message!
	Not only pre and post methods
	Changing arguments (marshalling...)

	Who does the control?
	The receiver
	Another object

	A Limited Survey
	CLOS Mop: clean, integrated into the MOP
	Smalltalk: everythign is there but not polished
	do it yourself syndrome!
	MethodWrappers (http://st-www.cs.uiuc.edu/~brant/)
	Some well-known techniques

	Open C++ (first version, runtime, second version precompiler based)
	OpenJava (class loader annotations) @@Find paper @@

	CLOS Example (i)
	Counting the calls of a generic function
	Define a new class of generic function and specialise apply-generic- function
	(defclass counting-gf (standard-generic-function)
	((numberOfCalls :initform 0 :accessor numberOfCalls)))
	(defmethod apply-generic-function :before ((gf counting-gf) args)
	(incf (numberOfCalls gf)))

	Counting the calls of a method
	Define a new class of method and specialise apply-method
	(defclass counting-method (standard-method)
	((numberOfCalls :initform 0 :accessor numberOfCalls)))
	(defmethod apply-method :before ((method counting-method) args next-methods)
	(incf (numberOfCalls method)))

	CLOS Example (ii)
	Define new method of the right class or (depending on the implementation) change the class of cer...
	(defgeneric ack (x)
	(:generic-function-class counting-gf)
	(:method-class counting-method)))
	(defmethod ack (x)
	t)
	(defmethod ack ((i integer))
	1)
	(ack 1)
	-> 1
	(ack anObject)
	-> t
	(numberOfCalls #’ack)
	-> 2

	CLOS Example (iii)
	Separation between programmer and meta programmer job
	MOP entry points
	apply-generic-function
	compute-applicable-methods-using-classes
	method-more-specific-p
	apply-methods
	apply-method
	extra-function-bindings

	Optimized the following way: separate parts that change from part that don’t
	(apply-methods gf args methods)
	<=>
	(funcall (compute-effective-method-function gf methods) args)
	(apply-method method args next-methods)
	<=>
	(funcall (compute-method-function methods) args next-methods)

	A Coverage Tool in Smalltalk
	@@MW or Michel tools@@

	Smalltalk: Do It Yourself Syndrome
	Reflective sure !!
	But not a well defined MOP
	Full implementation details on the shoulder of the programmer
	Extra Criteria
	Reproductible easily
	Cost of implementation
	at the normal level of programming or fighting with bits

	Cost of activation
	(recompile or not)

	Run-time cost
	Integration into the programming environment
	is control visible for the programmer?

	Smalltalk Basic Reflective Tools
	Reflective but the VM has the control
	the way the objects are represented in memory
	how messages are handled.

	Programmer possibilities
	Instance variable access (instVarAt:)
	Compiling class on the fly (subclass:instanceVariable...)
	Compiling method on the fly (compile:notifying:)
	Changing inheritance chain (superclass:)
	Changing reference between objects (become:, becomeOneWay:)
	Changing class (changeClassToThatOf:)
	Message reification (only for error handling)
	Stack Reification (sender, receiver...)
	Methods are objects (mclass, sourceCode, bytes)
	Object methods can be invoked (valueWithReceiver:arguments:)
	Lookup can be called (perform:with:)

	6 Techniques
	Source code modification
	setX: t1 setY: t2
	...
	Original Code
	...
	reparsed, recompiled for installation and desintallation
	not applicable to stripped image

	Byte code extension
	(add a new byte code in the VM)
	dialect specific
	Byte code modification

	(insert a new byte code directly in the code of the method)
	dialect specific

	Deeply evaluated
	Error handling specialisation
	Anonymous classes
	Method Wrappers

	Unknown Messages
	Context: When an object does not understand a message, it sends doesNotUnderstand: with a reifica...
	Solution:
	define a minimal object that raises doesNotUnderstand: for every message
	wrap an object in a minimal object
	specify control semantics by specializing the doesNotUnderstand: method

	Creating a MinimalObject
	Object that does not inherit from Object nil subclass: MinimalObject
	does really not work because we cannot debug, print....

	The trick: (1) creating a normal class
	Object subclass: MinimalObject
	instanceVariableNames: ‘controlledObject’

	(2) setting the inheritance to nil,
	(3) copying some minimal behavior from Object.
	MinimalObject class>>initialize
	superclass := nil.
	#(doesNotUnderstand: error: ~~ isNil = == printString printOn: class inspect basicInspect basicSi...
	do: [:sel | self recompile: selector from: Object]
	Example of possible control
	MinimalObject>>doesNotUnderstand: aMessage
	...
	controlledObject perform: aMessage selector
	withArguments: aMessage arguments
	...

	Wrapping anObject
	Wrapping
	MinimalObject class>>newOn: anObject
	| x e |
	x := anObject.
	e := self new.
	x become: e.
	x object: e.
	^x

	Unwrapping
	MinimalObject>>uninstall
	| x |
	x := controlledObject.
	controlledObject := nil.
	x become: self

	Evaluation
	Instance based control controlling all methods (even not known a priori)
	Simple
	Slowest solution
	Message reified + Exception Handling
	even if doesNotUnderstand: is cached in certain VM

	Installation: no recompilation
	Known Problems
	Messages sent to self by the object itself are not controllable
	Messages sent to the object via reference to self
	Class control is impossible, cannot swap a class by an object
	Interpretation of minimal set of messages by the minimalObject and not the controlled object.
	anObject inspect => anObject controlledObject inspect

	Method Wrappers: an Example
	MethodWrapper variableSubclass: #CountMethodWrapper
	instanceVariableNames: 'count '
	CountMethodWrapper>>class: aClass selector: aSymbol
	count := 0.
	^super class: aClass selector: aSymbol
	CountMethodWrapper>>valueWithReceiver: anObject arguments: anArrayOfObjects
	count := count + 1.
	^clientMethod valueWithReceiver: anObject arguments: anArrayOfObjects
	CountMethodWrapper>> count
	^ count

	Method Wrappers
	The idea:
	substitute a method by a wrapper that has a reference to the original method
	wrapper has as source code the code of the original method
	transparent for the programmer

	Point
	methodDict

	Control
	To control the method originalSelector: on aClass the following code is automatically generated
	To have a way to refer to the method object itself and not the receiver of the message #() reserv...

	MethodWrapper Optimization
	Create method skeletons depending on number of parameters and then copy them
	no compilation needed

	MW method body
	Installation
	(MethodWrapper on: #blop inClass: Test) install
	MethodWrapper>>class: aClass selector: sel
	| position |
	self at: self methodPosition put: self.
	position := self arrayPosition.
	position == 0 ifFalse: [self at: position put: Array].
	mclass := aClass.
	selector := sel
	MethodWrapper>>install
	| definingClass method |
	definingClass := mclass whichClassIncludesSelector: selector.
	definingClass isNil ifTrue: [^self].
	method := definingClass compiledMethodAt: selector.
	method == self ifTrue: [^self].
	clientMethod := method.
	sourceCode := clientMethod sourcePointer.
	mclass addSelector: selector withMethod: self

	MW Evaluation
	Transparent fro the programmer
	Class-based (all instance of a class are controlled)
	Selective (only certain methods are controlled)
	Run-Time Cost: less than doesNotUnderstand:
	Coding cost: Tricky so this is better to reuse the library

	Exploiting VM Lookup Algorithm
	The idea:
	Interposing between the object and its class a class that specializes certain methods to introduc...

	Solution 1
	Explicit subclassing + change the class of the controlled instance
	Instance, group or class based, Selective method control
	Without optimization: compile methods and classes
	Polution of the class namespace for controling classes the programmer is aware of the control

	Solution 2
	Implicit subclassing: creation of an anonymous class

	Let’s view it
	Point
	methodDict

	Interceptor: Anonymous Classes
	Create an interceptor (a class): instance of Behavior
	Copy class description of the original class in the interceptor
	interceptor inherits from original class
	Compile in interceptor class class the methods needing control

	Let us think a bit
	From the implementor point of view
	How to access the original class?
	anObject class superclass

	How to access the anonymous class?
	anObject class

	But how can we access them in a conceptual manner?
	original class?
	anObject class
	anInterceptor>>class
	^super class superclass

	interceptor?
	anObject interceptor
	anInterceptor interceptor
	^ super class

	Essential Methods
	Naive Control Implementation (i)
	Naive because we compile all the times (see optimization).
	We want to generate the following code on the interceptor for a given method

	Naive Control Implementation (ii)
	Naive Control Implementation (iii)
	Interceptor new generateBody: #setX:setY: withSignature: #'with: t1 with: t2'
	->
	^self interceptor control: self receiving: #setX:setY:
	withArgs: (Array with: t1 with: t2) originalCall: [super setX: t1 setY: t2]
	The original call could be called via super but it may happen that another object than the interc...
	[super setX...] is costly

	Possible Optimization
	Like Method Wrapper implementation
	To avoid compilation when installing the control
	for each number of parameters skeletons of methods containing a call to the control can be create...
	copy essential method instead of recompiling them

	Evaluation
	Instance, group and class based control selective methods
	Simple but bugs during implementation may crash the system
	Efficient solution
	Installation: compilation but optimization is possible
	Good integration in the system (class is still the class)

	Why A Mop for Smalltalk is Needed?
	Free the developer from doing everything himself
	Free the VM or meta-programmer to optimize the code
	ANSI Normalization -> declarative Smalltalk but no MOP
	MOP
	instance variable representation
	instance variable access
	method control

	Pratice
	Lab session: Implement Actalk [Briot89]
	Play with the MethodWrappers
	Look at the coverage tools

	Play with anonymous class
	Implement an instance based language

	Selected Bibliography
	Metaclasses
	[Bobrow’83] D.Bobrow and M. Stefik: “The LOOPS Manual, Xerox Parc, 1983.
	[Goldberg’83] A. Goldberg and D. Robson: “Smalltalk-80: The Language”, Addison-Welsey, 1983.
	[Cointe’87] P. Cointe: “Metaclasses are First Class: the ObjVlisp Model”, OOPSLA’87.
	[Graube’89] N. Graube: “Metaclass compatibility”,OOPSLA'89, 1989.
	[Briot’89]J.-P. Briot and P. Cointe, “Programming with Explicit Metaclasses inSmalltalk-80”, OOPS...
	[Danforth’94] S. Danforth and I. Forman: “Reflection on Metaclass Programming in SOM”, OOPSLA’94.
	[Ledoux’96] T. Ledoux and P. Cointe, “Explicit Metaclasses as a Tool for Improving the Design of ...
	[Rivard’96] F. Rivard, “A New Smalltalk Kernel Allowing Both Explicit and Implicit Metclass Progr...
	[Bouraqadi’98] M.N. Bouraqadi-Saadani, T. Ledoux and F. Rivard: “Safe Metaclass Programming”, OOP...

	Open Implementations
	[Kiczales’91] G. Kiczales, J. des Rivieres and D. Bobrow : “The Art of the Metaobject Protocol”, ...
	[Paepke’92] Object-Oriented Programming: The CLOS Perspective, MIT Press, 1992
	[Kiczales’92a] G. Kiczales: “Metaobject protocols - why we want them and what else they can do”, ...
	[Kiczales’92b] G. Kiczales: “Towards a New Model of Abstraction in the Engineering of Software”, ...
	[Kiczale’97] G. Kiczales, J. Lamping, C. Videira Lopes, A. Mendhekar and G. Murphy, Open Implemen...
	[Hoffman 90] D. Hoffman, On Criteria for Module Interfaces, IEEE Transactions on Software Enginee...

	Other Related
	Maes OOPSLA’87
	[Mulet’94] P. Mulet, J. Malenfant P. Cointe, “Towards a Methodology for Explicit Composition of M...

	Intercessory
	[Ducasse’99] S. Ducasse, “Message Passing Control Techniques in Smalltalk”, JOOP, 1999
	[Rivard’96] F. Rivard, Smalltalk : a Reflective Language, REFLECTION'96,1996
	[]Wrappers To The Rescue, ECOOP’98, 1998

	Use of Message-Passing Control
	[] CodA, Ecoop’95
	Actalk, OOPSLA’89
	Proxies
	OpenC++
	Jassist
	Fabre paper

	Web pages
	CLOS:
	http://www.franz.com/
	Open Implementation:
	http://
	Languages:
	- NeoClasstalk: http://www.emn.fr/cs/neoclasstalk/
	- VisualWorks: http://www.objectshare.com/VWNC/
	- Smalltalk Archive: http://www-st.cs.uiuc.edu/
	- Squeak: The Smalltalk Open Source http://www.squeak.org/
	- OpenC++
	- JavaAssist

