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Goal of this Lecture
You will learn about

❑ Open Implementations
❑ Reflection: Intercession and Introspection
❑ Reflective Architectures and Kernels (SOM, Smal
❑ Meta Object Protocol: Powering End-Users
❑ Metaclasses
❑ Message Passing Control

Side Effects
❑ Program with a reflective system
❑ Let you implement your own micro kernel
❑ Deeply understanding OO
❑ Experiment with different OO models
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Outline of the Lecture
❑ (C) Introduction, Concepts, Definitions, Examples,

Implementations
❑ ok (C) The Study of an Object-Oriented Reflective
❑ ok(Lab) ObjVLisp Implementation (1)
❑ ok(Lab) ObjVLisp Implementation (2)
❑ ok check @@(C) Metaclass Composition Issues
❑ ok(Lab) Metaclass Programming with ObjVlisp
❑

❑ ->~(C) Analysing CLOS and its MOP
❑ You : (C) Reflection in OO Languages (Clos, Sma
❑ ->>>(Lab) Interface Browser
❑ ->>>(C) Message Passing Control in Smalltalk
❑ (Lab) Implementing Actalk
❑ >>>You : (C) Presentation of papers
❑ (Lab) Scaffolding Patterns
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What we could have made...
❑ MetaCircularity and Infinite Tower: Lisp in Lisp
❑ Different reflective paradigm (relational, actors...)

☞ We will focus on OO reflective programming
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Why Do We Need Reflective Pro
>Does anyone know why CLOS does not provide a copy protocol?

>Has anybody implemented an inheritance method “a la Eiffel”?

>We need a method dispatch that take into account an external con

[Tuto

Some problems:
❑ data structure allocation, optimization
❑ control of language entities (feedback, trace, anal
❑ UI and API definition
❑ language semantics

In summary
❑ Optimization
❑ Language extensions (control, debugging)
❑ Semantics change
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 representation?

ce variables used

sed

ute accesses?
tead of scanning, parsing
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Why Do We Need Reflective Pro
“As a programming language becomes highe
implementation in terms of underlying machi
more tradeoffs, on the part of the implemen
to optimize at the expense of waht other c
cleanly integrate something outside of th
becomes more and more limited” [Kiczales’9

❑ Why instances do have to have the same internal

– for Point => maximum speed needed, all instan

☞ array like representation

– for Person => minimize space, few instances u

☞ hash-table like representation
❑ Why can’t I control internal representation or attrib
❑ Why can’t I query the language representation ins

code?
❑ Why can’t we tune a language to fit our needs from

by inventing yet a new language or rebuilding a de
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Traditional vs Reflective Answe
Traditional Answers at Language Level:

❑ Illusionary complete language
❑ Library of extensions: Eiffel
❑ Macroes: C, Lisp

But do not cover language extensions or semantics change

Traditional Answers in Software development:
What happens if the language does not support our need [K

☞ buy a new one that fits your today need and c
☞ buy an illusionary complete language
☞ code between the lines (danger for portability
☞ create your own layer (probleme with integrat

Reflective Answers
❑ Propose an extensible language or system
❑ Give the power to the end-user (meta-programme

☞ customize your reflective or open 
need
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Role ot Reflective Prog in Softw
Engineering

❑ Allow migration of software:
Ex: Nichimen Corp (http://www.nichimen.com/) 15

(Flavors -> CLOS, From Symbolic Machin
❑ Adaptation to new technologies
❑ Adaptation to new needs

Team organization
❑ Not everybody is changing the language semantic

constructs
❑ One meta-programmer implements new semantic

semantics to the needs of the other developers
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Definitions (I)

Reflection: a process's integral ability to represent, operate
in the same way that it represents, operates on and deals w

B.C Smith (OOPSLA’ 90 Workshop on Reflection an

“Reflection is the ability of a program to manipulate as data
state of the program during its own execution. There are tw
manipulation: introspection and intercession.
Introspection is the ability for a program to observe and the
state.
Intercessory is the ability for a program to modify its own ex
interpretation or meaning.
Both aspects require a mechanism for encoding execution s
an encoding is called reification.” [Bobrow, Gabriel and Wh

Data

Program

Executer

a part of
the world

represents Domain

reason about
A non reflective system

Data

Progra

Execu

A reflec
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Consequences
A system having itself as application domain and that is ca
domain can be qualified as a reflective system [Pattie Maes

☞ A reflective system has an internal representa
☞ A reflective system is able to act on itself with

representation will be causally connected (up
☞ A reflective system has some static capacity 

dynamic self-modification in constant synchro
☞ A system is said reflective if it has an introspe

intercessory protocol
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eme and an OO language

Language

Applications

ta Language

Meta Applications
Customization of
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Meta Programming in Program
Language Context

The meta-language and the language can be different: Sch
The meta-language and the language can be same: CLOS

=> metacircular architecture

Me

Language

Applications
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Three Approaches

1. Tower of Metacircular Interpreters
☞ every level is interpreting and controlling the n
ex: 3-Lisp, SRI

2. Meta entities control language entities
ex: Smalltalk, CLOS, FOL, Meta-Prolog, ...

ABCL/R, ACT/R (Concurrent languages)
meta-rules controlling unification in prolo

3. Open Implementation
☞ The implementation specifies some entry poin

modification of the system. (often based on m
ex: CLOS MOP (Meta Object Protocol)
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Infinite Tower of (Meta)Interpre
❑ 3-Lisp: a metacircular interpreter that can evaluate
❑ Scheme like based on continuations
❑ Theory, Basis for reflection
❑ Experimentation with language extension, various

Passing from one level to another one is done using reifier
special functions with three non evaluated argume

– current expression

– environment

– continuation

Interpreter 0 reifies and interpretes interpreter 1
Interpreter 1 reifies and interpretes interpreter 2...



Reflective Programming 15.

© ogramming and Open Implementations

thod, InstanceVariables...)

the semantics

t Protocol

ge implementor

l language and the meta level
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Reflective Languages
CLOS, Smalltalk, Self

❑ Language written in itself
❑ MetaEntities controlling the languages (Class, Me
❑ Really powerfull, full control

In Smalltalk
❑ everything is an object
❑ causally connected: a change in an object impact 

☞ Class, Method
☞ Scanner, Parser, Compiler, Decompiler, ...
☞ Scheduler, Process, Semaphore

But
❑ Did not make the effort of specifying a Meta Objec

– Too much to do for the base programmer

– Not enough freedom to optimize for the langua

☞ A solution: declarative model of the base leve
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a module interface because
trategy issues that inevitably
e call these issues strategy
o implement a higher-level
as can be broken down into

s to decide how much of a
ping dilemmas, where the
er are implementing onto the

ule should present a simple
deal more to a module than

e opened up to allow clients
open implementations. From
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

The Basic Claim of Open Imple

It is impossible to hide all implementation issues behing
not all of them are details . Instead, some involve crucial s
bias the performance of the resulting implementation. W
dilemmas, because they involve a choice about how t
functionality in terms of a lower level one. Strategy dilemm
resource allocation dilemmas where the implementor ha
shared resource to allocate to each client, and map
implementor has to decide how to map the functionality th
lower-level functionality.
Despite black-box abstraction’s appealing goal that a mod
interface that exposes only functionality, there is a great
acknowleged by that interface.
Our claim is that module implementations must somehow b
control over these issues as well. We call this the need for
http://www.xerox.../oi/ (@@)
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anguage that give the
language’s behavior

the ability to write the

 specialization allows the

f specializing their behavior
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ls =Implementation

= Open System
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Meta Object Protocols
“Meta Object Protocols are interfaces to the l
users the ability to incrementally modify the
(semantics) and implementation, as well as
programs with the language” [Paepcke’92]

❑ MOPs are composed by set of entry points whose
introduction of new behavior.

❑ MOPs are based on meta-objects offering ways o
and representing specific aspects of the base leve

Public MetaLevel Architecture + Public protoco
(structure and static) (dynamic)

Inspect + Modify
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Dynamics

Modifiable System
Methods

 Interface

Find Named
MetaObjects
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Meta Programming in CLOS

 Create named
MetaObjects

CLOS Programmer

CLOS Meta Programmer

Statics

MetaObjects
Class
Hierarchy

Protocols

metaobject instances

described by actived by

User Friendly Macro based

Create named Use hidden MetaObjects
MetaObjects (Classes, methods...)
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Infinite Tower vs Open Impleme

Infinite Tower vs Mop <=> Theory vs Pra

Open Implementations:
- are more efficient
- are specified declaratevly letting space 
- define a region of possible changes
- dependencies between entry points
- allow more control over the possible ex

Infinite Tower:
- are more powerful
- slower
- less secure
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A Simple Application as Examp
A LAN Simulator:

- A LAN contains nodes, workstations, printers, file
- Packets are sent in a LAN and the nodes treat th

Problem: We want to know all the nodes of the system for a
❑ We do not want to change the code of the node cl
❑ We would like to ask to the class Node to gave us

mac1 node1 lw

m
pc
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Programming in Explicit Metac
CLOS-like

(defclass Node ()

((name :initarg :name :default-value #lulu :reader name)

 (nextNode :default-value ‘() :accessor nextNode))

( :metaclass Set ))

(defmethod accept ((n Node) (p Packet))

....)

(defmethod send ((n Node) (p Packet))

...)

(setq n1 (make-instance Node :name “n1”))

(setq n2 (make-instance Node :name “n2” nextNode: n1))

(setq n3 (make-instance Node :name “n3” nextNode: n3))

((setf nextNode) n1 n3)

(allInstances Node)

-> (n1 n2 n3)
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Reusing Meta Programs
Now imagine that we want to have a log of all the created p

(defclass Packet ()

((addressee :initarg :addressee :accessor addressee)

 (contents :initarg :constents :accessor contents)

 (originator :initarg: originator :accessor originator)

( :metaclass Set ))

(defmethod isAddressedTo ((p Packet) (n Node))

....)

(defmethod isOriginatedFrom((p Packet) (n Node))

...)

(map Packet (lambda(x)

(write outputstream

“packet addressed from: %s to %s”

(originator x) (addressee x))
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MetaProgramming in OO Cont
This simple functionality could have been implemented in C
member and functions [Singleton Pattern]
But

❑ A Meta program is not mixed into objects
❑ Ordinary objects are used to model real world. Me

ordinary objects.
❑ MetaPrograms can be reused
❑ Some other properties cannot easily be implemente

traceMessage, finalClass, PrePostConditions, Dyn
MessageCounting....

We may want to
- change the representation of the instance variab
(indexed for points, hashed for person,)
- change the way attributes are accessed (lazily vi
- change the inheritance semantics
- change the invocation of method semantics (trac
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MetaProgramming by Example

(defclass Set (class)

((instances :default-value ‘() :reader allInstances)))

(defmethod clear ((c Set))

(setf-slot-value c ‘instances ‘()))

(defmethod map ((c Set) fct)

(map fct (allInstances c)))

(defmethod new ((c Set) initarg)

(let ((newInstance (call-next-method))

(cons newInstance (slot-value c ‘instances))

newInstance))
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Costs of Reflective Programmin
Design Cost

Reflective languages need more care and iteration
Use Cost

Concepts are more complex
Run-time Cost
“A key aspect of intercession is that reflective capability no
performance burden simply to provide for the possibility of in
should not affect the cost of what is used; and the common
possibility of being optimised” [Bobrow, Gabriel and White 

Clever implementations
❑ we only pay what we need, but we NEED it!
❑ Default behavior is optimized
❑ Do no rely on full runtime interpretation

☞ Having entry point purely functional (same ar
☞ Optimization at compile-time
☞ Memoization (decomposing static from dynam
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Designing Reflective Systems
❑ Which model

– which kind of language?

– which degre of reflection?

– reflective language or open implementation?

❑ Which entry points?

– Data, Entities, Control Structures, Interpreter, E

❑ Data Structure

– simples, efficient, easliy modifiable

❑ Changing Level

– Managing causal connection, reification and re

❑ Uniformity between meta-level

– Syntax, data structure, extensions
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Meta-Problems

❑ Stability: Potentially an end-user can change the s
☞ But not everybody should be meta-programm

❑ Several levels of complexity
☞ Entity, meta entity, coherence and connection

❑ Uniformity: same design conception problems tha
☞ Open implementations narrow the possibilitie
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Meta and Open are not Limited
Programming Languages

A reflective system is a system which incorporates structur
itself.
Reflection is the processus of reasoning about and/or actin

P.Ma

❑ Network
❑ Workflow system
❑ Operating Systems (Apertos, Synthesis)
❑ Parallel Systems
❑ Library of
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2. The Study of a Minimal Objec
Reflective Kernel

Dr. Stéphane Ducasse
Software Composition Group
University of Bern
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Goals of this Lecture

❑ Metaclass concept
❑ Reflective Architectures and Kernels (SOM, Smal
❑ What are Object and Class classes?
❑ Semantics of inheritance, semantics of super
❑ Metaclass power
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Outline
☞ Metaclasses?

❑ Examples of usefull metaclasses
❑ Towards a unified approach: Loops, Smalltalk
❑ ObjVlisp in 5 postulates
❑ Instance Structure and Behavior
❑ Class Structure
❑ Message Passing
❑ Object allocation & Initialization
❑ Class creation
❑ Inheritance Semantics
❑ Bootstrapping
❑ Examples: Playing with ObjVlisp



About Metaclass Evolution 33.

© imal Object-Oriented Reflective Kernel

rogramming

Language

Applications
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Meta Applications
Customization of
the language
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Recall: Meta Programming in P
Language Context

M

Language

Applications
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Class as Objects
“The difference between classes and objects
emphasized. In the view presented here, the
different worlds: the program text only con
time, only objects exist. This is not the only a
subcultures of object-oriented programming
Lisp and exemplified by Smalltalk, views c
themselves, which still have an existence at 

Bertrand Meyer in Object-Oriented Software Construction
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Some Class Properties
– Abstract: a class cannot have any instance

– Set: a class that knows all its instances

– DynamicIVs: Lazy allocation of instance structu

– LazyAccess: only fetch the value if needed

– AutomaticAccessor: a class that defines autom

– Released/Final: Class cannot be changed and 

– Limited/Singleton: a class can only have a cert

– IndexedIVs: Instances have indexed instance v

– InterfaceImplementor: class must implement so

– MultipleInheritance: a class can have multiple s

– Trace: Logs attribute accesses, allocation frequ

– ExternalIVs: Instance variables stored into data
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Some Method based Propertie
– Trace: Logs method calls

– PrePostConditions: methods with pre/post con

– MessageCounting: Counts the number of times

– BreakPoint: some methods are not run

– FinalMethods: Methods that cannot be speciali
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Metaclass Responsibilities
“Metaclasses provide metatools to build open-ended archit

Metaclasses are one of the possible meta-entities (method
combination,...)
Metaclasses allow the structural extension of the language
They may control

❑ Inheritance
❑ Internal representation of the objects (listes, vecte
❑ Method access ("caches" possibility)
❑ Instance variable access

Separation of Concerns
❑ Ordinary objects are used to model real world
❑ Metaobjects describe these ordinary objects
❑ Meta/Base level functionality is not mixed
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Outline
❑ Metaclasses?
❑ Examples of usefull metaclasses

☞ Towards a unified approach: Loops, Smalltalk
❑ ObjVlisp in 5 postulates
❑ Instance Structure and Behavior
❑ Class Structure
❑ Message Passing
❑ Object allocation & Initialization
❑ Class creation
❑ Inheritance Semantics
❑ Bootstrapping
❑ Examples: Playing with ObjVlisp
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Why ObjVlisp?
❑ Minimal (only two classes)
❑ Reflective: ObjVlisp self-described: definition of O
❑ Unified: Only one kind of object: a class is an obje

that creates classes
❑ Open
❑ Simple: can be implemented with less than 300 line

methods.
❑ Equivalent of Closette (Art of MOP example)
❑ Really good for understanding dynamic languages

(D-SOM, CLOS, Smalltalk kernel)
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control over the creation of
a types to represent classes
heir metaclass, usually the

st be instance of MetaClass

ok

taSet

b A is instance of B
BA

A B
A inherits from B
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The Loops Approach
“For some special cases, the user may want ot have more 
instances. For example, Loops itself uses different Lisp dat
and instances. The new message for classes is fielded by t
object MetaClass.” [Bobrow83]

❑ Explict metaclass as a subclass of another but mu

MetaClass

Class

Point Object Bo

Me
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 class

 the class inheritance
er (instance of Class) and
 of metaclasses)

s

Point

Object

Class
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The Smalltalk Pragmatical App
“The primary role of a metaclass in the Smalltalk-80 system
initializing class variables and for creating initialized instanc
instance“ [Goldberg84]

❑ A class is the sole instance of a metaclass
❑ Every metaclass is an instance of the Metaclass

☞ metaclasses are not true classes
☞ number of metalevels is fixed

❑ Metaclass hierarchy inheritance is fixed: parallel to
☞ dichotomy between classes defined by the us

metaclasses defined by the system (instance

Metaclass class Metaclass

Point class

Object clas

Class class
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(slots or instance variables)
 their class.

nce of another class

tion

Class
name...
new
allocate

the class Class

A is instance of B
BA
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

ObjVlisp in 5 Postulates (i)
P1:   object = <data, behavior>
P3:   Every object belongs to a class that specifies its data 
        and its behavior. Objects are created dynamically from

P4:    Following P3, a class is also an object therefore insta
         its metaclass (that describes the behavior of a class).

#mac1 a workstation instance of the class Worksta

P1&P3

the class P4

Workstation
Workstation

send: aPacket
accept: a Packet

«instance-of»

«instance-of»

|mac1|
mac := Workstation new name: #mac1
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A is instance of B
BA
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How to Stop Infinite Recursion?
Aclass is an object therefore instance of another class its m
instance of a metametaclass that is an object too instance 
metametametaclass......

To stop this potential infinite recursion
❑ Class  is the initial class and metaclass
❑ Class  is instance of itself and
❑ all other metaclasses are instances of Class .

Class
name...
new
allocate

the class Class
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ct

other classes.
ring of instance

esents the behavior shared

mac1

[mac1 accept: pck2]

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

ObjVlisp in 5 Postulates (ii)
P2: Message passing is the only means to activate an obje

[object selector args]

P5:   A class can be defined as a subclass of one or many 
        This mechanism is called inheritance. It allows the sha
        instance variable and methods. The class Object repr
        by all the objects.

Workstation
send: aPacket
accept: a Packet

Node
name
nextNode
send: aPacket
accept: a Packet«inherits from»
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Unification between Classes an
“We claim that a class must be an object defined by a real cl
and expressive power” [Cointe’87]

❑ Every object is instance of a class
❑ A class is an object instance of a metaclass (P4)

☞ But all the objects are not classes

❑ Only one kind of objects without distinction betwee
❑ Sole difference is the ability to respond to the crea

class knows how to deal with it.
❑ A metaclass is only a class that generates classes
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About the 6th ObjVlisp’s Postula
“Ordinary objects are used to model real world. Metaobject
objects” [Rivard 96]

The ObjVlisp 6th postulate is:
class variable of anObject =instance variable of an

So class variables are shared by all the instances of a clas

We disagree with it.
❑ Semantically class variables are not instance varia
❑ Instance variable of metaclass should represent c

information.
Metaclass information should represent classes not domain

CLOS offers the :class instance variable qualifier class vari
We could imagine that a class possesses an instance varia
represents shared-variable and their values.
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riables

d by a class

lass (inherited from Object)

A is instance of B
BA

c3
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Instance Structure: Instance Va
Instance variables:

❑ an ordered sequence of instance variables define
❑ shared by all its instances
❑ values specific to each instance

In particular, every object possesses an instance variable c
that points to its class.

Node
name
nextNode

#mac1
mac2

#mac2
mac3

#ma
none
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Instance Behavior: Methods

A method
❑ belongs to a class
❑ defines the behavior of all the instances of the cla
❑ is stored into a dictionary that associates a key (th

method body

To unify instances and classes, the method dictionary of a 
the instance variable methodDict  defined on the metacla



About Metaclass Evolution 49.

© imal Object-Oriented Reflective Kernel

ance variable class inherited
etaclass that creates it).

stance

ssesses 4 instance variables

 inheritance)

lass

bject
ance variables
ds
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Class as an Object: Structure
❑ Considered as an object, a class possesses an inst

from Object  that refers to its class (here to the m

– class an identifier of the class of the in

❑ But as an instance factory the metaclass Class po
that describe a class:
 - name the class name
 - super its superclass (we limit to single
 - i-v the list of its instance variables
 - methodDict a method dictionary

Example: class Node
class: Class instance of C
name: Node named Node
super:  Object inherits from O
i-v: (name nextNode) defines 2 inst
methods: ..... defines metho
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The class Class: a Reflective cla

❑ Initial metaclass
❑ Defines the behavior of all the metaclasses
❑ Instance of itself to avoid an infinite regression

class: Class insta
name: Class nam
super:  Object inhe
i-v: (name supers i-v methodDict) desc
methods: (new allocate initialize..... beha
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dDict)

Class is instance
of itself

t
)
 (x: y: display)

the class Point

A is instance of B
BA
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A Complete Example

class: Class
the class Class

name: Class
super: Object
iv: (class name super iv metho
methodDict: (new initialize ...)

class: Class
name: Workstation
super: Object
iv: (class name nextNode)
methodDict: (accept: send:)

class: Class
name: Point
super: Objec
iv: (class x y
methodDict:

the class Workstation

#mac1
mac2

#mac2
pc1

10
15
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Outline
❑ Metaclasses?
❑ Examples of usefull metaclasses
❑ Towards a unified approach: Loops, Smalltalk
❑ ObjVlisp in 5 postulates
❑ Instance Structure and Behavior
❑ Class Structure

☞ Message Passing
❑ Object allocation & Initialization
❑ Class creation
❑ Inheritance Semantics
❑ Bootstrapping
❑ Examples: Playing with ObjVlisp
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ct
nd its behavior.

Node
name: aString
nextNode: aNode
end: aPacket

accept: a Packet

A is instance of B
BA

#mac1
pc1
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Message Passing (i)
P2: Message passing is the only means to activate an obje
P3: Every object belongs to a class that specifies its data a

Node
name: aString
nextNode: aNode
send: aPacket
accept: a Packet

Node
name: aString
nextNode: aNode
send: aPacket
accept: a Packet

s

[mac1 nextNode: pc1]

#mac1
nonode

#mac1
nonode
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Message Passing (ii)

send message = apply O looku

We lookup the method associated with the selector of the
receiver then we apply it to the receiver .

[receiver selector args]
<=>

apply (found method starting from the class o
 on the receiver and the args

<=>
in functional style

(apply (lookup selector (class-of receiver
receiver args)
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Object Creation by Example

Creation of instances of the class Point
[Point new :x 24 :y 6]

[Point new]

[Point new :y 10 :y 15]

Creation of the class Point instance of Class

[Class new

           :name Point

           :super Object

           :i-v (x y)

           :methods (x ...

display ...)

]
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Object Creation: the Method n

Object Creation = initialisation O allo

❑ Creating an instance is the composition of two act
☞ memory allocation: allocate  method
☞ object intialisation: initialize   method

(new aClass args) = (initialization (alloca
<=>

[aClass new args]  = [[aClass allocate] initializ

❑ new creates an object: class or final instances
❑ new is a class method
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Object Allocation
❑ Object allocation should return:

☞ Object with empty instance variables
☞ Object with an identifier to its class

❑ Done by the method allocate  defined on the m
❑ allocate  method is a class method

example:
[Point allocate]  => #(Point nil nil)

for x and y

[Workstation allocate] => #(Workstation nil nil)

for name and nextNode

[Class allocate]  => #(Class nil nil nil....)
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Object Initialization
❑ Initialization allows one to specify the value of the in

keywords (:x ,:y) associated with the instances va
Example:

[ Point new :y 6  :x 24]

=> [ #(Point nil nil) initialize (:y 6 :x 24)]

==> #(Point 24 6)

❑ initialize  : two steps
☞ get the values specified during the creation. (
☞ assign the values to the instance variables of
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 Role
message in the class of the

aString
de: aNode
Packet

: a Packet

A is instance of B
BA

#mac1
nonode
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Object Creation: the Metaclass
We lookup the method associated with the selector of the
receiver then we apply it to the receiver .

Node
name: aString
nextNode: aNode
send: aPacket
accept: a Packet

[Node withName: #mac1]

Class
name

new
initialize ...

super
iv
methodDict

Class
name

new
initialize ...

super
iv
methodDict

1

2

Node
name: 
nextNo
send: a
accept
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Node
name: aString
nextNode: aNode
send: aPacket
accept: a Packet

 ...

Dict
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Class Creation

Class
name

new
initialize ...

super
iv
methodDict

 [Class new
:name Node
:supers Object
:iv (name nextNode)
:methods
(send: ....))]

1

2

Class
name

new
initialize

super
iv
method

A is instance of B
BA
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A is instance of B
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Object
class
error
class?
iv-set...
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A Simple Instantiation Graph

❑ Class  is the root of instantiaton graph
❑ Object  is a class that represents the minimal beh
❑ Object  is a class so it is instance of Class

#mac1
nonode

#mac2
pc1

15
10

Class
name

new
initialize ...

super
iv
methodDict

Node
name
nextNode

send: aPacket
accept: a Packet

name Point
x
y

x
y

display
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What is the minimal behavior s
the objects?

The class Object  represents the common behavior share
☞ classes
☞ final instances.

❑ every object knows its class: instance variable cla
accessing else that loops!)

❑ methods:
 - initialize  (instance variable initializ
 - error

 - class

 - metaclass ?
 - class ?

Meta operations:
 - iv-set

 - iv-ref
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Outline
❑ Metaclasses?
❑ Examples of usefull metaclasses
❑ Towards a unified approach: Loops, Smalltalk
❑ ObjVlisp in 5 postulates
❑ Instance Structure and Behavior
❑ Class Structure
❑ Message Passing
❑ Object allocation & Initialization
❑ Class creation

☞ Inheritance Semantics
❑ Bootstrapping
❑ Examples: Playing with ObjVlisp
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Two Forms of Inheritance
❑ Static for the instances variables

☞ Done once at the class creation
☞ When C is created, its instances variables are
variables of its superclass with the instance variab

final-instance-variables (C) =
union (union ( iv (super C)), local-instanc
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Dynamic Method Inheritance

❑ Walks through the inheritance graph between clas
instance variable

lookup (selector class receiver):
if the method associated with the the sele
then return it
else

if receiver class == Object

then [receiver error selector

else we lookup in the superclas

☞ the error  method can be specialized to han
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ColoredPoint
class
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y
color

A B
A inherits from B
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A Simple Inheritance Graph

❑ Object  class is the root of the hierarchy.
❑ a Workstation is an object (should at least understa

Workstation class inherits from Object  class
❑ a class is an object so Class  class inherits from O
❑ In particular, class  instance variable is inherited 

ClassObject

Node
Point
class
x
y

class

class
name
nextNode

error
class?
iv-set...

class
supers

methodDict
iv
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#mac2
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Method Lookup Example (i)

Workstat
send: aPa
accept: a 

Node
name
nextNode

send: aPacket
accept: a Packet

Object
class
error
class?
iv-set...

[mac2 send: aPacke

1

name

[

c

A is instance of B
BA

A B
A inherits from B
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1

2

coucou

error

5

6

7

A is instance of B
BA

A B
A inherits from B

#mac2
pc1
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Method Lookup Example (ii)

Works
send: aP
accept: 

Node
name
nextNode

send: aPacket
accept: a Packet

Object
class
error
class?
iv-set...

[mac2 co

name

coucou
3

coucou
4

[mac2 error coucou]

error

error
8
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Semantics of super
❑ As self , super is a pseudo-variable that refers to

Used to invoke overriden methods.
❑ Using self  the lookup of the method begins in th
❑ self  is dynamic

❑ Using super the lookup of the method begins in t
the method containing the super expression and N
receiver class.

❑ super  is static
❑ Other said: super  causes the method lookup to b

superclass of the class of the method containing s
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iver class.

m1
A

m1
B

C

aC

super m1
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Let us be Absurb!
Let us suppose the WRONG hypothesis:
"IF super semantics = starting the lookup of method in the s
of the receiver class"

What will happen for the following message:     aC m1
m1 is not defined in C
m1 is found in B

By Hypothesis: super = lookup in the superclass of the rece
And we know that the superclass of the receiver class = B

=> That's loop
So Hypothesis is WRONG !!
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A Simple Uniform Kernel

#mac1-> nil

Class

Object

Workstation

15 ; #mac2->mac2

Point
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Class initialization: a Two Steps
initialize  is defined on both classes Class  and Objec

❑ on Object : values are extracted from initarg list a
instance

[#(Point nil nil) initialize (:y 6 :x 24)]

=> #(Point 6 24)

Initialize  is lookup in class of #(Poin
Then in its superclass: Object

❑ on Class :
[Class new :name Point :super Object :i-v (x y)...]

[#(Class nil nil nil...) initialize (:name Point :super Object :i-v (x y)...]

☞ a class is an object
[#(Class Point Object (x y) nil #(x: (mkmethod...) y: (mkmethod .

☞ a class is at minimum a class
inheritance of instance variables,
keyword definition,
method compilation

[#(Class Point Object (class x y) (:x :y) #(x: (...) y: (...)]
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Recap: Class class

❑ Initial metaclass
❑ Reflective: its instance variable values describe in

classes in the system (itself too)
❑ Defines the behavior of all the classes
❑ Inherits from Object  class
❑ Root of the instantiation graph
❑ Instance variables: name, super, iv, methodDict

❑ Methods
- new

- allocate

- initialize  (instance variable inheritance, key
- class ?
- subclass-of ?
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Recap: Object class
❑ Defines the behavior shared by all the objects of t
❑ Instance of Class

❑ Root of the inheritance tree: all the classes inherit
Object

❑ Its instance variable: class

❑ Its methods:
 - initialize  (initialisation les variable
 - error

 - class

 - metaclass ?
 - class ?
 - iv-set

 - iv-ref
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Outline
❑ Metaclasses?
❑ Examples of usefull metaclasses
❑ Towards a unified approach: Loops, Smalltalk
❑ ObjVlisp in 5 postulates
❑ Instance Structure and Behavior
❑ Class Structure
❑ Message Passing
❑ Object allocation & Initialization
❑ Class creation
❑ Inheritance Semantics

☞ Bootstrapping
❑ Examples: Playing with ObjVlisp
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s already exists as instance
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 class Class  avec with
 from Object  class)
f the classes (new and
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Bootstrapping the Kernel
❑ Mandatory to have Class  instance of itself
❑ Be lazy: Use as much as possible of the system to
❑ Idea: Cheat the system so that it believes that Clas

of itself and inheriting from Object , then create O
classes

Three Steps:
1. manual creation of the instance that  represents the

☞ inheritance simulation (class instance variable
☞ only the necessary methods for the creation o

initialize)
2. creation of the class Object [Class new :name Obje

☞ definition of all the method of Object

3. redefinition of Class

[Class new :name Class :super Object....

☞ definition of all the methods of Class
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Abstract Classes
“The rule to define a new metaclass is to make it inherit from

Prb. Abstract classes should not create instances
Sol. Redefine the new method

Metaclass Definition:
[Class new

:name Abstract

:super Class

:methods (new (lambda (self initargs)

(self error "Cannot create instance of clas

Metaclass Use:
[ Abstract new :name Node :super Object ....]

[ Node new ]

-> Cannot create instance of class Node

[ Abstract new :name Abstract-Stack  :super Object ....]
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Abstract
❑ Abstract is a class -> It is instance of Class

❑ Abstract define class behavior -> It inherits from C

#mac1-> nil

Class

Object

Workstation

#mac2->m

Node

A is instance of B
BA

A B
A inherits from B
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Abstract
new: No instance
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BA
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Abstract Class and Method Loo

Class

Object

Workstation

Node

new:
 initialize (allocate)

[Node new]

[Workstation new]

a

b

1

2
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3. Study of an Object-Oriented
Kernel

Dr. Stéphane Ducasse
Software Composition Group
University of Bern
Switzerland

Email: ducasse@iam.unibe.ch
Url: http://www.iam.unibe.ch/~ducasse/
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Goals of this Lecture

❑ Metaclass concept
❑ Reflective Architectures and Kernels (SOM, Smal
❑ What are Object and Class classes?
❑ Semantics of inheritance, semantics of super
❑ Metaclass power
❑ Metaclass limits
❑ Metaclass composibility solution
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Outline
❑ Examples of usefull metaclasses
❑ Examples of programming with metaclasses (clien
❑ Towards a unified approach: Loops, Smalltalk
❑ Building your own metaclass kernel: ObjVlisp
❑ Examples: Playing with ObjVlisp
❑ Metaclasses are powerful but
❑ Problems with composition
❑ Problems with property propagation
❑ Clos’s solution
❑ Smalltalk’s solution
❑ SOM’s solution
❑ NeoClasstalk’s solution
❑ Conclusion
❑ Bibliography
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Recall: Meta Programming in P
Language Context

M

Language

Applications
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Outline
☞ Examples of usefull metaclasses

❑ Examples of programming with metaclasses (clien
❑ Towards a unified approach: Loops, Smalltalk
❑ Building your own metaclass kernel: ObjVlisp
❑ Examples: Playing with ObjVlisp
❑ Metaclasses are powerful but
❑ Problems with composition
❑ Problems with property propagation
❑ Clos’s solution
❑ Smalltalk’s solution
❑ SOM’s solution
❑ NeoClasstalk’s solution
❑ Conclusion
❑ Bibliography



About Metaclass Evolution 85.

© f an Object-Oriented Reflective Kernel

has been repeatedly
e concepts belong to

ins classes; at run-
pproach. One of the
 influenced by
sses as object
run-time. ”
 Dr. Ducasse Stéphane -Universität Bern Study o

Class as Objects
“The difference between classes and objects
emphasized. In the view presented here, thes
different worlds: the program text only conta
time, only objects exist. This is not the only a
subcultures of object-oriented programming,
Lisp and exemplified by Smalltalk, views cla
themselves, which still have an existence at 

Bertrand Meyer in Object-Oriented Software Construction
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Some Class Properties
Abstract: a class cannot have any instance
Set: a class that knows all its instances
BreakPoint: some methods are not run and a debugger is o
DynamicIVs: Lazy allocation of instance structure
LazyAccess: only fetch the value if needed
AutomaticAccessor: a class that defines automatically its a
Final: Class cannot be changed and subclassed
FinalMethods: Methods that cannot be specialized
Limited/Singleton: a class can only have a certain number 
IndexedIVs: Instances have indexed instance variables
InterfaceImplementor: class must implement some interfac
MultipleInheritance: a class can have multiple superclasses
Released: a class that cannot changed anymore
Trace: Logs method calls, attribute accesses
PrePostConditions: methods with pre/post conditions
MessageCounting: Counts the number of times a method i
metaobject)
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A Simple Application as Examp
A LAN Simulator:

- A LAN contains nodes, workstations, printers, file
- Packets are sent in a LAN and the nodes treat th

Problem: We want to analysis all the messages sent
But:

❑ We do not want to change the code of the node cl

mac1 node1 lw

m
pc
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xplicit
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@@stay??@@ Programming in E
Metaclass Context

CLOS-like
(defclass Node ()

((name :initarg :name :default-value #lulu :reader name)

 (nextNode :default-value ‘() :accessor nextNode)))

(defmethod accept ((n Node) (p Packet))

....)

(defmethod send ((n Node) (p Packet))

...)

@@Check counting Kiczales here@@
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taobjects describe these

d without meta programming
amicIVs,

s (indexed for points, hashed

 the net)
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MetaProgramming in OO Cont
❑ A MetaProgram is not mixed into objects
❑ Ordinary objects are used to model real world. Me

ordinary objects.
❑ MetaPrograms can be reused.
❑ Some other properties cannot easily be implemente

traceMessage, finalClass, PrePostConditions, Dyn
MessageCounting....

We may want to:
❑ change the representation of the instance variable

for person)
❑ change the way attributes are accessed (lazily via
❑ change the inheritance semantics
❑ change the invocation of method (trace, proxies...
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ethod combination,...)

urs, hash-table,...)
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Metaclass Responsibilities
“Metaclasses provide metatools to build open-ended archit

Metaclass are one of the possible meta-entities (method, m
Metaclass allows the structural extension of the language
They may control

❑ Inheritance
❑ Internal representation of the objects (listes, vecte
❑ Method access ("caches" possibility)
❑ Instance variable access

Separation of Concerns
❑ Ordinary objects are used to model real world
❑ Metaobjects describe these ordinary objects
❑ Meta/Base level functionality is not mixed
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On the Road Again
❑ Towards ObjVlisp
❑ ObjVlisp in 5 postulates
❑ Instance Structure and Behavior
❑ Class Structure
❑ Message Passing
❑ Object allocation & Initialization
❑ Inheritance Semantics
❑ Bootstrapping
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bject and Class
ct and a metaclass is a class

s of Scheme or 30 Smalltalk

and reflective programming
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Why ObjVlisp?
❑ Minimal (only two classes)
❑ Reflective: ObjVlisp self-described: definition of O
❑ Unified: Only one kind of object: a class is an obje

that creates classes
❑ Open
❑ Simple: can be implemented with less than 300 line

methods.
❑ Equivalent of Closette
❑ Really good for understanding dynamic languages

(D-SOM, CLOS, Smalltalk kernel)
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control over the creation of
a types to represent classes
their metaclass, usually the

st be instance of MetaClass

ok

taSet

b A is instance of B
BA

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern Study o

The Loops Approach
“For some special cases, the user may want ot have more 
instances. For example, Loops itself uses different Lisp dat
and instances. The New message for classes is fielded by 
object MetaClass.” [Bobrow83]

❑ Explict metaclass as a sublcass of another but mu

MetaClass

Class

Point Object Bo

Me
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roach
 is to provide protocol for
es of the metaclasse’sole

 class

 the class inheritance
er (instance of Class) and
 of metaclasses)

s

Point

Object

Class
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The Smalltalk Pragmatical App
“The primary role of a metaclass in the Smalltalk-80 system
initializing class variables and for creating initialized instanc
instance“ [Goldberg84]

❑ A class is the sole instance of a metaclass
❑ Every metaclass is an instance of the Metaclass

☞ metaclasses are not true classes
☞ number of metalevels is fixed

❑ Metaclass hierarchy inheritance is fixed: parallel to
☞ dichotomy between classes defined by the us

metaclasses defined by the system (instance

Metaclass class Metaclass

Point class

Object clas

Class class
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(slots or instance variables)
 their class.

nce of another class

tion

Class
name...
new
allocate

the class Class

A is instance of B
BA
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ObjVlisp in 5 Postulates (i)
P1:   object = <data, behavior>
P3:   Every object belongs to a class that specifies its data 
        and its behavior. Objects are created dynamically from

P4:    Following P3, a class is also an object therefore insta
         its metaclass (that describes the behavior of a class).

mac1 a workstation instance of the class Worksta

P1&P3

the class P4

Workstation
Workstation

send: aPacket
accept: a Packet

«instance-of»

«instance-of»
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etaclass that is an object too
of another a

A is instance of B
BA
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How to Stop Infinite Recursion?
Aclass is an object therefore instance of another class its m
instance of a metametaclass that is an object too instance 
metametametaclass......

To stop this potential infinite recursion
❑ Class  is the initial class and metaclass
❑ Class  is instance of itself and
❑ all other metaclasses are instances of Class .

Class
name...
new
allocate

the class Class
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ect

other classes.
ring of instance

esents the behavior shared

mac1

[mac1 accept: pck2]

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern Study o

ObjVlisp in 5 Postulates (ii)
P2:   Message passing is the only means to activate an obj

[objet selecteur args]

P5:   A class can be defined as a subclass of one or many 
        This mechanism is called inheritance. It allows the sha
        instance variable and methods. The class Object repr
        by all the objects.

Workstation
send: aPacket
accept: a Packet

Node
name
nextNode
send: aPacket
accept: a Packet«inherits from»
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d Instances
ass allowing a greater clarity

n classes and final instances.
tion message: new. Only a

.
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Unification between Classes an
“We claim that a class must be an object defined by a real cl
and expressive power” [Cointe’87]

❑ Every object is instance of a class
❑ A class is an object instance of a metaclass (P4)

☞ But all the objects are not classes

❑ Only one kind of objects without distinction betwee
❑ Sole difference is the ability to respond to the crea

class knows how to deal with it.
❑ A metaclass is only a class that generates classes
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About the 6th ObjVlisp’s Postula
“Ordinary objects are used to model real world. Metaobject
objects” [Rivard 96]

ObjVlisp 6th postulate:
class variable (anObject) = instance variable (anO

So class variables are shared by all the instances of a clas

❑ But semantically class variables are not instance v
❑ Instance variable of metaclass should represent c

information.
Metaclass information should represent classes not domain

CLOS offers the :class instance variable qualifier class vari
We could imagine that a class possesses an instance varia
represents shared-variable and their values.
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riables

d by a class

lass (inherited from Object)

 -> nil

A is instance of B
BA
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Instance Structure: Instance Va
Instance variables:

❑ an ordered sequence of instance variables define
❑ shared by all its instances
❑ values specific to each instance

In particular, every object possesses an instance variable c
that points to its class.

Node
name
nextNode

#mac1 -> mac2 #mac2 -> mac3 #mac3
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class is the value of
ss Class .
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Instance Behavior: Methods

A method
❑ belongs to a class
❑ defines the behavior of all the instances of the cla
❑ is stored into a dictionary that associates a key (th

method body

To unify instances and classes, the method dictionary of a 
the instance variable methodDict  defined on the metacla
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Class as an Object: Structure
❑ Considered as an object, a class possesses an inst

from Object  that refers to its class (here to the m
❑ But as an instance factory the metaclass Class po

that describe a class:

 - name the class name
 - supers the list of its superclasses
 - i-v the list of its instance variables
 - methodDict a method dictionary

Example: class Node

class: Class instance of C
name: "Node" named Node
supers:  '(Object) inherits from O
i-v: '(name nextNode) defines 2 inst
methods: ..... defines metho
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The class Class: a Reflective cla

❑ Initial metaclass
❑ Defines the behavior of all the metaclasses
❑ Instance of itself to avoid an infinite regression

class: Class insta
name: "Class" nam
supers:  '(Object) inhe
i-v: '(name supers i-v methodDict)

describes the instance variables of any c
methods: ‘(new allocate initialize.....
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odDict)

Class is instance
of itself

’
ject)
)
 (x: y: display)

 10

the class Point

A is instance of B
BA
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A Complete Example

#mac1-> nil

class: Class
the class Class

name: ‘Class’
supers: ‘(Object)
iv: (class name supers iv meth
methodDict: (new initialize ...)

class: Class
name: ‘Workstation’
supers: ‘(Object)
iv: (class name nextNode)
methodDict: (accept: send:)

class: Class
name: ‘Point
supers: ‘(Ob
iv: (class x y
methodDict:

15 ;#mac2->mac2

the class Workstation
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ct
nd its behavior.

Node
name: aString
nextNode: aNode
end: aPacket

accept: a Packet

#mac1-> mac2

A is instance of B
BA
 Dr. Ducasse Stéphane -Universität Bern Study o

Message Passing (i)
P2: Message passing is the only means to activate an obje
P3: Every object belongs to a class that specifies its data a

Node
name: aString
nextNode: aNode
send: aPacket
accept: a Packet

#mac1-> nil

Node
name: aString
nextNode: aNode
send: aPacket
accept: a Packet

#mac1-> nil

s

[mac1 nextNode: mac2]
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Message Passing (ii)

We lookup the method associated with the selector of the
receiver then we apply it to the receiver .

[receiver selector args]
<=>

apply (found method starting from the cla
 on the receiver and the args

<=>
in Scheme

(apply (lookup selecteur (class-of receive
receiver args)
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Object Creation by Example

Creation of instances of the class Point
[Point new :x 24 :y 6]

[Point new]

[Point new :y 10 :y 15]

Creation of the class Point instance of Class

[send Class 'new

           :name Point

           :supers '(Object)

           :i-v '(x y)

           :methods '(x (lambda (self)...)

display (lambda (self)...))

]
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Object Creation: the Method n
❑ new creates an object: class or final instances
❑ new is a class method
❑ Creating an instance is the composition of two act

☞ memory allocation: allocate method
☞ object intialisation: initialize  method

(new aClass args) = (initialization (alloca
<=>

[aClass new args] = [[send aClass allocate] initiali
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class Class
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Object Allocation
❑ Object allocation should return:

☞ Object with empty instance variables
☞ Object with an identifier to its class

❑ Done by the method allocate defined on the meta
❑ Allocate method is a class method

example:
[Point  'allocate]  => #(Point nil nil)

for x and y

[Workstation ‘allocate] => #(Workstation nil nil)

for name and nextNode

[Class 'allocate]  => #(Class nil nil nil....)



About Metaclass Evolution 111.

© f an Object-Oriented Reflective Kernel

stance variables by means of
riables.

y -> 6, x -> 24)
 the created object.
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Object Initialization
❑ Initialization allows one to specify the value of the in

keywords (:x ,:y) associated with the instances va
Example:

[ Point 'new :y 6  :x 24]  =>

[ #(Point nil nil) initialize ‘(:y 6 :x 24)] =>

#(Point 24 6)

❑ initialize two steps
☞ get the values specified during the creation. (
☞ assign the values to the instance variables of
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 Role
message in the class of the

aString
de: aNode
Packet

: a Packet

#mac1-> nil

A is instance of B
BA
 Dr. Ducasse Stéphane -Universität Bern Study o

Object Creation: the Metaclass
We lookup the method associated with the selector of the
receiver then we apply it to the receiver .

Node
name: aString
nextNode: aNode
send: aPacket
accept: a Packet

[Node withName: #mac1]

Class
name

new
initialize ...

supers
iv
methodDict

Class
name

new
initialize ...

supers
iv
methodDict

1

2

Node
name: 
nextNo
send: a
accept
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Node
name: aString
nextNode: aNode
send: aPacket
accept: a Packet

 ...

Dict
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Class Creation

Class
name

new
initialize ...

supers
iv
methodDict

 [Class ‘new
:name Node
:supers ‘(Object)
:iv ‘(name nextNode)
:methods
‘(send: (lambda(self aPack)....))]

1

2

Class
name

new
initialize

supers
iv
method

A is instance of B
BA
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vior of an object.

A is instance of B
BA
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A Simple Instantiation Graph

❑ Object is a class that represents the minimal beha
❑ Object is a class so it is instance of class

#mac1-> nil

Class

Object

Workstation

15 ; 10#mac2->mac2

Point
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What is the minimal behavior s
the objects?

The class Object represents the common behavior shared 
☞ classes
☞ final instances.

❑ every object knows its class: instance variable cla
accessing else that loops!)

❑ methods:
 - initialize (instance variable initialization
 - error
 - class
 - metaclass?
 - class?
 - iv-set
 - iv-ref
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 the union of the instance
les defined in C.

(C))
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Two Forms of Inheritance
❑ Static for the instances variables

☞ Done once at the class creation
☞ When C is created, its instances variables are
variables of its superclass with the instance variab

i-v(C) = union (union ( iv (supers C)), :i-v
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 error.
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Dynamic Method Inheritance
❑ Walks through the inheritance graph between clas

instance variable

lookup (selector class receiver):
if the method associated with the the sele
then return it
else

if receiver class == Object
then [receiver 'error selector]
else we lookup in the superclas

the error method can be specialized to handle the
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bject class
om Object  class.

ColoredPoint
class
x
y
color

A B
A inherits from B
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A Simple Inheritance Graph

❑ Object  class is the root of the hierarchy
❑ a Workstation is an object (should at least understa

Workstation class inherits from Object  class
❑ a class is an object so Class  class inherits from O
❑ In particular, class instance variable is inherited fr

ClassObject

Node
Point
class
x
y

class

class
name
nextNode

error
class?
iv-set...

class
supers

methodDict
iv
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#mac2->mac2

2

ac2 name]

a

b
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Method Lookup Example (i)

Workstat
send: aPa
accept: a 

Node
name
nextNode

send: aPacket
accept: a Packet

Object
class
error
class?
iv-set...

[mac2 send: aPacket]

1

name

[m

c

A is instance of B
BA

A B
A inherits from B
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tation
acket

a Packet

#mac2->mac2

2

coucou

error

5

6

7

A is instance of B
BA

A B
A inherits from B
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Method Lookup Example (ii)

Works
send: aP
accept: 

Node
name
nextNode

send: aPacket
accept: a Packet

Object
class
error
class?
iv-set...

[mac2 coucou]

1

name

coucou
3

coucou
4

[mac2 error coucou]

error

error
8
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the receiver of the message.

e class of the receiver .

he superclass of the class of
OT in the superclass of the

egin searching in the
uper
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Semantics of super
❑ As self , super is a pseudo-variable that refers to

Used to invoke overriden methods.
❑ Using self  the lookup of the method begins in th
❑ self  is dynamic

❑ Using super the lookup of the method begins in t
the method containing the super expression and N
receiver class.

❑ super  is static
❑ Other said: super  causes the method lookup to b

superclass of the class of the method containing s
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uperclass

iver class.

A

B

C

m1
super m1

m1
  ...

aC
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Let us be Absurb!
Let us suppose the WRONG hypothesis:
"IF super semantics = starting the lookup of method in the s
of the receiver class"

What will happen for the following message:     aC m1
m1 is not defined in C
m1 is found in B

By Hypothesis: super = lookup in the superclass of the rece
And we know that the superclass of the receiver class = B

=> That's loop
So Hypothesis is WRONG !!

@@Stef redo the pictuire with the right arrow@@
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10

A is instance of B
BA

A B
A inherits from B
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A Simple Uniform Kernel

#mac1-> nil

Class

Object

Workstation

15 ; #mac2->mac2

Point
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 Process
t :
nd assigned to the allocated

t nil nil) : Point

)...]

kmethod ...)]

bda ...)]
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Class initialization: a Two Steps
initialize  is defined on both classes Class  and Objec

❑ on Object : values are extracted from initarg list a
instance

[#(Point nil nil) initialize ‘(:y 6 :x 24)]

=> #(Point 6 24)

Initialize  is lookup in class of #(Poin
Then in its superclass: Object

❑ on Class :
[send Class 'new :name “Point” :supers '(Object) :i-v '(x y)...]

[#(Class nil nil nil...) initialize ‘(:name Point :supers '(Object) :i-v '(x y

☞ a class is an object
[#(Class “Point” ‘(Object) ‘(x y) nil #(x: (mkmethod...) y: (m

☞ a class is at minimum a class
inheritance of instance variables,
keyword definition,
method compilation

[#(Class “Point” ‘(Object) ‘(class x y) (:x :y) #(x: (lambda...) y: (lam
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Recap: Class class

❑ Initial metaclass
❑ Reflective: its instance variable values describe in

classes in the system (itself too)
❑ Defines the behavior of all the classes
❑ Inherits from Object  class
❑ Root of the instantiation graph
❑ Instance variables: name, supers, iv, methodDict

❑ Methods
- new
- allocate
- initialize (instance variable inheritance, keywords
- class?
- subclass-of?
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 directly or indirectly from
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Recap: Object class
❑ Defines the behavior shared by all the objects of t
❑ Instance of Class

❑ Root of the inheritance tree: all the classes inherit
Object

❑ Its instance variable: class

❑ Its methods:
 - initialize (initialisation les variables d'in
 - error
 - class
 - metaclass?
 - class?
 - iv-set
 - iv-ref
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 define itself
s already exists as instance
bject and Class as normal

 class Class  avec with
 from Object  class)
f the classes (new and

ct....]

....]
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Bootstrapping the Kernel
❑ Mandatory to have Class  instance of itself
❑ Be lazy: Use as much as possible of the system to
❑ Idea: Cheat the system so that it believes that Clas

of itself and inheriting from Object , then create O
classes

Three Steps:
1. manual creation of the instance that  represents the

☞ inheritance simulation (class instance variable
☞ only the necessary methods for the creation o

initialize)
2. creation of the class Object [Class new :name Obje

☞ definition of all the method of Object

3. redefinition of Class

[Class new :name Class :super '(Object).

☞ definition of all the methods of Class
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On The Road
☞ Context
☞ Examples of metaclasses
☞ Examples of programming with metaclasses
☞ Previous Approaches: Loops, Smalltalk
☞ Building your own metaclass kernel: ObjVlisp
☞ Examples: Playing with ObjVlisp

❑ Metaclasses are powerful but
❑ Problems with composition
❑ Problems with property propagation
❑ Clos’s solution
❑ SOM’s solution
❑ Smalltalk’s solution
❑ NeoClasstalk’s solution
❑ Conclusion
❑ Bibliography
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a previous one” [Cointe’87]

s %s“ self name))]
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Abstract Classes
“The rule to define a new metaclass is to make it inherit from

Prb. Abstract classes should not create instances
Sol. Redefine the new method

Metaclass Definition:
[Class new

:name Abstract

:supers ' (Class)

:methods '(new (lambda (self initargs)

(self error "Cannot create instance of clas

Metaclass Use:
[ Abstract new :name Node :supers '(Object) ....]

[ Node new ]

-> Cannot create instance of class Node

[ Abstract new :name Abstract-Stack  :supers '(Object) ....]
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ac2

Abstract
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Abstract
❑ Abstract is a class -> It is instance of Class

❑ Abstract define class behavior -> It inherits from C

#mac1-> nil

Class

Object

Workstation

#mac2->m

Node

A is instance of B
BA

A B
A inherits from B
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kup

Abstract
new: No instance

A is instance of B
BA

A B
A inherits from B
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Abstract Class and Method Loo

Class

Object

Workstation

Node

new:
 initialize (allocate)

[Node new]

[Workstation new]

a

b

1

2
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The Metaclass Set
Prb. How to access to all the instances of a certain class
Sol. Store the instances when there are created.

[Class new

:name “Set”

:supers '(Class)

:iv '(instances)

:methods ‘(

instances (lambda (self) (self iv-ref ‘instances))

instances! (lambda (self newInstances)

(self iv-set! ‘instances newInstances))

initialize (lambda (self initargs)

(super initialize initargs)

(self instances! ()))

new (lambda (self initargs)

(let ((n-i (super new)))]

 (self instances! (cons n-i (self instances )))]
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Set

Memo-Workstation

#mac3-> nil

instances:

instances

(mac3)
 Dr. Ducasse Stéphane -Universität Bern Study o

Sets

#mac1-> nil

Class

Object

Workstation

#mac2->mac2

Node

Abstract

A is instance of B
BA

A B
A inherits from B
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kstation

ac3-> nil

s

mac3) Memo-Point

A is instance of B
BA

A B
A inherits from B
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Sharing Metaclasses

#mac1-> nil

Class

Object

Workstation

#mac2->mac2

Set

Node

Memo-Wor

Abstract

#m

instances:

instance

(

Point
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Point (i)
ceveur)

Point :supers '(Point)))
upers '(Point)))

'(Point))]

t)  Set)
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Zooming in: Creation of Memo-
Remember:  (apply (lookup selecteur (class-of receveur) re

  receveur args)

[ Set new  :name Memory-Point  :supers '(Point)]
(apply (lookup 'new (class-of Set) Set) Set  '(:name Memo-
(apply  (lookup 'new Class Set)  Set '(:name Memo-Point :s

New : [[Set allocate] initialize '(:name Memo-Point :supers 

[Set allocate]
(apply (lookup 'allocate (class-of Set) Se
(apply (lookup 'allocate Class Set)  Set)
Allocate -> #(Set nil nil nil nil nil nil)
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Point (ii)
]
il)
y-Point :supers '(Point)))

 in supers Set : Class

as of Class (Class in whihc

ry-Point :supers '(Point)))
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Zooming in: Creation of Memo-
[#(Set ()...()) initialize '(:name Memo-Point :supers '(Point))
(apply (lookup 'initialize (class-of #(Set nil...nil) #(Set nil...n
                                               #(Set nil...nil) '(:name Memor

.... (lookup 'initialize Set #(Set nil...nil) ....
initialize method is not found in the class Set => we search

.... (lookup 'initialize Class #(Set nil...nil) ....

Initialize:
[super initialize ...] 2

Memory-Point class is an object. super looks in the supercl
we found it) and not in Set
            (inherit-iv ...) 3
Memory-Point is a class
                2 (apply (lookup 'initialize Object #(Set nil...nil))
                                                 #(Set nil...nil) '(:name Memo
           -> #(Set Memory-Point '(Point) nil nil nil)

3 #(Set Memory-Point '(Point) (class x  y) nil nil)
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ages..definitions)
ct....)

(client point of view)
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On The Road
☞ Context (differences between compiled langu
☞ Examples of usefull metaclasses (final, abstra
☞ Examples of programming with metaclasses 
☞ Previous Approaches: Loops, Smalltalk
☞ Building your own metaclass kernel: ObjVlisp
☞ Examples
☞ Metaclasses are powerful but
☞ Problems with composition

❑ Problems with property propagation
❑ Clos’s solution
❑ SOM’s solution
❑ Smalltalk’s solution
❑ NeoClasstalk’s solution
❑ Conclusion
❑ Bibliography
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4. Open Implementation: the C
Example

Dr. Stéphane Ducasse
Software Composition Group
University of Bern
Switzerland

Email: ducasse@iam.unibe.ch
Url: http://www.iam.unibe.ch/~ducasse/
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Goals of this Lecture

❑ CLOS in a Nutshell
❑ CLOS MOP overview and example
❑ Difference between a reflective language and an o
❑ Lessons learnt in the MOP Design
❑ Open Implementation Design Guidelines
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not receiver and message

lavors, Loops)

are externalised
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CLOS
❑ Integration of object-orientation and functional sty

☞ Generic function, multiple discrimination and 
based, types and classes

❑ Take into account other Lisp OO like languages (F
☞ migration path

❑ Small (they failed a bit) but extensible
☞ CLOS MOP: essential language entry points 



About Metaclass Evolution 141.

© lementation: the CLOS MOP Example

tion

e “name”

)
 of classes for method

e redefinable via inheritance)

f the methods selected for a

 variables
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CLOS in a nutshell
Essential

❑ Class based
❑ Multiple Inheritance (with graph linerization)
❑ Multiple argument discrimination for method selec
❑ Methods associated with multiple classes
❑ Methods combined to be executed
❑ Generic function: group of method having the sam

Too much details:
❑ specializers (eql instance based method selection
❑ argument-precedence-order (changing the weight

selection)
❑ default-initargs (default values for instance variabl
❑ auxillary methods (around, before, after methods)
❑ method combination (how to compose the results o

given set of arguments)
❑ automatic accessors and initialization per instance
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Class Definition

❑ In its simplest form:
(defclass rectangle ()

((height :initarg :start-height

:initform 5

:accessor height)

 (width :initform 8

:writer width)))

❑ Other possibilities
:allocation (per instance, shared among all instances)

specification of class defautl values inherited
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Instance Creation
(setq r1 (make-instance ‘rectangle

:start-height 25))

(height r1)

-> 25

(width r1)

-> 8
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cesses
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Encapsulation and Attribute Ac

❑ Accessors can be created automatically
☞ :accessor

(height r1)

(setf (height r1 75)

❑ Attributes can always be accessed using slot-valu
(slot-value r1 ‘height)

(setf (slot-value r1 ‘height) 75)

❑ Accessors are defined in terms of slot-value
❑ Accessors are preferred style
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Inheritance
❑ Simple

(defclass color-rectangle (rectangle)

((color :initform ‘red

:initarg :color

:accessor color)

 (clearp :initform nil

:initarg :clearp

:reader  clearp)

 (height :initform 100)))

❑ Multiple
(defclass color-mixin ()

((color :initform ‘red :initarg :color :accessor color)))

(defclass color-rectangle (color-mixin rectangle)

(clearp :initform nil

:initarg :clearp

:accessor clearp)

 (height :initform 100)))
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solution
oked using call-next-method

ce graph are accessed? (if
indow still only has one)

y-object colored-
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Multiple Inheritance Conflict Re
❑ Which methods of the superclasses should be inv

(super equivelant)
❑ How multiple instance variables over the inheritan

window has an instance variable, colored-noisy-w
☞ graph linearization

(class-precedence-list (find-class ‘colored-noisy-window))

-> (colored-noisy-window colored-window noisy-window window nois
object standard-object t)

colored-object

colored-window

colored-noisy-window

noisy-window

window noisy-object
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taking two arguments

umber of argument but
ed, before, after around,

e discrimination
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Generic Function

A generic function describing all the methods named paint 

(defgeneric paint (shape medium))

❑ Holding bag of methods having the same name, n
different types and different qualifier (instance bas
normal method)

❑ Not strongly defined in classes because of multipl
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Java, Smalltalk like
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Method Definition (i)
1 (defmethod paint ((shape rectangle) medium)

(vertical-stroke (height shape) (width shape) medium))

2 (defmethod paint ((shape circle) medium)

(draw-circle (radius shape) medium))

(paint r1 *standard-display*) -> 1

☞ Discriminating only on one single argument ->
3 (defmethod paint ((shape color-rectangle) medium)

(if (not (clearp shape))

(call-next-method))

☞ invoking an overriden method
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plication

))

 arguments
 Dr. Ducasse Stéphane -Universität Bern Open Imp

(Method) Generic Function Ap
4 (defmethod paint ((shape rectangle) (medium vector-display))

...)

5 (defmethod paint ((shape rectangle) (medium bitmap-display))

...)

6 (defmethod paint ((shape rectangle) (medium optimized-bitmap-stream

...)

7 (defmethod paint ((shape circle) (medium ps-stream))

...)

8 (defmethod paint :after ((shape rectangle) medium)

(log paint rectangle))

☞ 1,2,3,4,5,6,7 are primary methods
☞ 8 is an auxiliary method

Applying a generic function:
From all the methods, an effective method is created:

❑ Selecting the applicable methods to a given set of
❑ Ordering them
❑ Applying them
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eir first argument, then they

order
), other if call-next-method is

er
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Method Selection
❑ The methods are sorted according to the type of th

ordered according to the second argument....
(paint r1 *bitmap*)

-> selction of 5 1

(paint r1 *optimized-bitmap*)

-> selection 6 5 1

Effective method application leads to execute:
❑ All the before methods are invoked in decreasing 
❑ Most specific primary method (6 in the second call

used
❑ All the after methods are invoked in increasing ord
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ed to be viewed as
ve no control over the
ractions. The CLOS
S abstraction, and its
rogrammer can, for

tion strategy such as
language semantics
design of the CLOS

pose the programmer
nor does it tie the
essential structureof

a]
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Why CLOS MOP?
“Traditionally, languages have been design
black box abstractions; end programmers ha
semantics or implementationof these abst
Mopon the other hand, “opens up” the CLO
implementation to the programmer. The p
example, adjust aspects of the implementa
instance representation, or aspects of the
such as multiple inheritance behavior. The
MOP is such that this opening up does not ex
to arbitrary details of the implementation,
implementor’s hand unnecessarily-- only the
the implementation is exposed” [Kiczales’92
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Dynamics

Modifiable System
Methods

ved by

 Interface

Find Named
MetaObjects
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Meta Programming in CLOS

 Create named
MetaObjects

CLOS Programmer

CLOS Meta Programmer

Statics

MetaObjects
Class
Hierarchy

Protocols

metaobject instances
described by acti

User Friendly Macro based

Create named Use hidden MetaObjects
MetaObjects (Classes, methods...)
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CLOS was too big!

Lot of could have been dropped and reintroduced if wanted
❑ Instance based methods (eql) , auxiliary
❑ Method combination,
❑ argument-precedence-order option,

.

.
❑ slot-filing initargs, default initargs

.

.

.

.
❑ multiple inheritance, multi methods
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alue-using-class, (setf
 Dr. Ducasse Stéphane -Universität Bern Open Imp

5 MetaObjects
❑ Classes

– instance creation: make-instance

– instance allocation: allocate-instance

– class initialization: initialize-instance

– instance variables storage and accesses: slot-v
slot-value-using-class)

– finalize-inheritance

❑ Methods

– apply method

– extra-method-bindings

❑ Generic Functions

– apply-generic-function

❑ Slots

– slot-boundp

❑ Method combinations
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 calls regarding inheritance)

d

ndard-method

dard-accessor-method

od standard-writer-method

method-combination
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Static Elements
5 Metaobjects:

❑ Class, Method Combination (Semantics of method
❑ Method and Generic Function
❑ Slot (attribute)

t

standard-object

generic-function metho

sta

stan

standard-reader-meth

class

built-in-class

standard-class

forward-referenced-class

slot-definition

standard-slot-definition

standard-direct-slot-definition
standard-effective-slot-definition

standard-generic-function
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Structure Protocols (i)
❑ global queries not attached to any meta-entities

find-class, find-generic-function, find-method

ensure-generic-function, ensure-class, ensure-method,

❑ User interfaces
defclass, defgeneric, defmethod

Structural queries associated with meta-entities
❑ Object

class-of, print-object, reinitialize-instance, slot-makeunbound

❑ Class
class-name, class-slots,

class-direct-subclasses, class-direct-superclasses

class-direct-slots, class-direct-methods,

compute-class-precedence-list, compute-slots,

compute-effective-slot-definition

class-finalized-p,
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more-specific-p,
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Structure Protocols (ii)
❑ Generic Function

add-method, add-reader-method, generic-function-methods, generic

❑ Method
method-body,method-environment,method-generic-function,method-
method-qualifiers, method-specializers,

❑ Slot
slot-definition-initfunction, slot-definition-initargs, slot-definition-initf

slot-definition-name, slot-definition-readers, slot-definition-writers

slot-boundp, slot-boundp-using-class,

slot-exists-p,
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Extension Example
(defclass hash-table-representation-class (standard-class)

()) ; no extra instance variables

(defmethod allocate-instance ((c hash-table-representation-class))

...allocate a small hash-table to store the slot)

(defmethodslot-value-using-class((chash-table-representation-class)inst
name))

...)

(defmethodsetfslot-value-using-class((chash-table-representation-class
slot-name newvalue))

...)

(defclass person ()

(name age address...)

(:metaclass hash-table-representation-class))
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ols
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Dynamic Elements
❑ instance initialization and creation,
❑ class-change, instance updating
❑ finalization (inheritance)
❑ method selection, method invocation,
❑ slot access

☞ are controlled by metaobjects and their protoc
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Class Definition: Defclass
1 Syntax error checking
2 Canonicalize information
3 Obtain class metaobjects

(ensure-class, ensure-class-using-class)
3.1 Find or make instance of proper class metaobject cla
(make-instance, the :metaclass option)

3.2 (Re)initialize the class metaobject ((re)initialize
3.2.1 Default unsupilied keyword arguments/e
3.2.2 Check compatibility with superclass (val
3.2.3 Associate superclasses with this new cla
3.2.4 Determine proper slot-definition metaob

(direct-slot-definition-class)
3.2.5 Create and initialize the slot-definition m

(make-instance , initialize-instanc
3.2.6 Maintain subclass lists of superclasses

(add-direct-subclass, remove-direct
3.2.7 Check default-initargs
3.2.8 Initiate inheritance finalization (if approp

(finalize-inheritance )
3.2.9 Create reader/writer methods
3.2.10 Associate them with the new class met
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e (for class creation)
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Instance creation
❑ Class responsibility:

make-instance, allocate-instance, initialize-instanc
(make-instance class)

=> (initialize (allocate-instance class))

❑ Object responsibility
(initialize-instance anObject)

❑ Changing class and updating instance
change-class

update-instance-for-different-class
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i)

ic-function,

n-using-class )
tion metaobject

)

ents/error checking
 existing methods
 spec against lambda list

iscriminating function
n )
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Method Creation: Defmethod (
1. Syntax error checking
2. Obtain target generic function metaobject (ensure-gener

ensure-generic-functio

2.1. Find or make instance of proper generic-func
(make-instance,:generic-function-class

2.2 (Re)initialize the generic function metaobject
((re)initialize-instance )
2.2.1 Default unsupplied keyword argum
2.2.2 Check lambda list congruence with
2.2.3 Check argument precedence order
2.2.4 (Re)define any old ‘initial methods’
2.2.5 Recompute the generic function’s d

(compute-discriminating-functio

3 Build method function (make-method-lambda )



About Metaclass Evolution 163.

© lementation: the CLOS MOP Example

lass
-class )

ent/error checking

set
ing function

)

 to methods
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Defmethod (ii)
4 Obtain method metaobject

4.1 Make instance of proper method metaobject c
(make-instance, generic-function-method

4.2 Initialize the method metaobject
(initialize-instance )
4.2.1 Default unsupplied keyword argum

5 Add the method to the generic function
(add-method )
5.1. Add method to the generic function’s method 
5.2. Recompute the generic function’s discriminat

(compute-discriminating-function

5.3. Update discriminating function
5.4. Maintain mapping from specializers (classes)

(add-direct-method )
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,
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Method lookup and apply prot

generic function call
(apply-generic-function )

1 invoke the generic function’s discriminating function
1.1 Find out which methods are applicable for the

(compute-applicable-using-classes,

compute-applicable-methods,

methods-more-specific-p )
1.2 Combine the methods into one piece of code

(compute-effective-method )
1.3 Execute the combined method

(method-function-applier, apply-methods

apply-method, extra-function-bindings
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apply-method

g on the implementation)
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Apply Protocol Example
❑ Counting the calls of a method

☞ Define a new class of method and specialise 
(defclass counting-method (standard-method)

((numberOfCalls :initform 0 :accessor numberOfCalls)))

(defmethod apply-method :before ((method counting-method) args next-methods)

(incf (numberOfCalls method)))

❑ Define new method of the right class or (dependin
change the class of certain methods

(defgeneric ack (x)

(:method-class counting-method)))

(defmethod ack (x)

t)

(defmethod ack ((i integer))

1)

(ack 1) -> 1

(ack anObject) -> t

(numberOfCalls (find-generic-function #’ack)) -> 2

(numberOfCalls (find-method (find-generic-function #’ack) ((integer)) ()) -> 1
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Apply Protocol Remark
❑ The generic function has the responsibility of clas
❑ We cannot specify the class of a method at the m
❑ Dynamically changing the class of a generic funct

in the MOP description)

:generic-function-class

:method-class

are only associated with defgeneric
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Slot Access Protocol
The class has the control over its attributes

❑ How to store and access them
(slot-value object slotname)

calls or has semantics defined by
(slot-value-using-class class instance slotname)

((setf slot-value) value object slotname)

calls or has semantics defined by
((setf slot-value-using-class) value class instance slotname)

1. Check for existence of slot
slot-exists-p, slot-missing

2. Check for slot being unbound
slot-unboundp, slot-boundp-using-class

3. Making a slot unbound
slot-makunbound, slot-makeunbound-using-class
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Finalize Inheritance
1 Compute the class precedence list

(compute-class-precedence-list )
2 Resolve conflicts among inherited slots with the same na

2.1Determine proper effective slot definition metao
(effective-slot-definition-class

2.2Create the effective slot definition metaobjects
(make-instance  )

2.3 Initialize the effective slot definitions
(initialize-instance ,
compute-effective-slot-definition

2.4 Associate them with the class metaobject
3Enable/Disable slot access optimizations

(slot-definition-elide-access-method-p
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Open Implementation and Refl
Languages

Smalltalk is reflective but
❑ does not have a MOP

☞ Programming and meta-programming are mix
☞ e.g., knowing that methods are stored into a m

necessary for programming. This is a meta-in
☞ Stripping image is difficult.
☞ Implementor of VM cannot optimize complete
☞ Implementors could provide several optimized
☞ Firewall 93 was a declarative Smalltalk where
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5. Open Implementation Desig

Dr. Stéphane Ducasse
Software Composition Group
University of Bern
Switzerland

Email: ducasse@iam.unibe.ch
Url: http://www.iam.unibe.ch/~ducasse/
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Goals of this Lecture

❑ Lessons learnt in the MOP Design
❑ Open Implementation Design Guidelines
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ing convenient reference
ld like to be different

plementation on a per-
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Locality in MOP Design
❑ Feature Locality

– MOP should provide access to individual featu

❑ Textual Locality

– The programmer should be able to indicate, us
to their base program, what behavior they wou

❑ Object Locality

– The programmer should be able to affect the im
object basis.

❑ Strategy Locality

– The programmer should be able to affect indivi
implementation strategy.

❑ Implementation Locality

– Extension of an implementation ought ot take c
size of the change. A resonably good default im
provided and the programmer should be able to
as an incremental deviation from that default.
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Open Implementation Design G
Stepping back from CLOS and its MOP and generalization

Black-box abstraction:
A module should expose its functionality 

Pros
❑ Localization of changes
❑ Level of abstraction
❑ Modularization easier
❑ Reuse easier

Cons
❑ Performance problems
❑ Needs to code around

Whereas black-box modules hide all aspects of their implem
implmentation modules allow clients some control over sele
strategy while still hiding many true details of their impleme
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Quality in interface designs
from [Hoffman 90]

❑ consistent (e.g., same parameter passed always a
❑ essential (e.g., each service is offered in only one
❑ general
❑ minimal (e.g, each function provides one operatio
❑ opaque (e.g., the interface hides the way the mod
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Set Module: Design A
makeSet()

insert(item, set)

delete(item, set)

isIn(item, set)

map(function, state, set)

❑ Simple, Consistent, Essential, General, Minimal, O
But is the implementation performing well for?

– few/many elements

– frequent/unfrequent removal

– frequent/unfrequent addition
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Set Module: Design B
makeSet(usage)

makeSet()

insert(item, set)

delete(item, set)

isIn(item, set)

map(function, state, set)

Use
makeSet (“n=10000,insert=lo,delete=lo,isIn=hi”)

makeSet (“n=5,insert=hi,delete=hi”)

❑ Same property than design A and still hidding imp
❑ Only a small change in the interface
❑ New functionality optional
❑ Well-bounded effect (only the set created by the c
❑ Use of the new functionality orthogonal to previou

client use and implementation strategy
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First Guideline

Separation of Use from Implementation Str

Open Implementation module interfaces sho
separation between client code that
functionality (use code) and client code that
implementation strategy (ISC code)
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Second Guideline

Open implementation module interfaces sho
make the ISC code optional, make the ISC c
and support alternative ISC codes for one pi

Example: High Performance Fortran (for efficient parallel p

Real A(1000,1000) B (998,998)

!HPF$ ALIGN B(I,J) WITH A(I+1,J+1)

ISC coded into comments

☞ use/ISC code has clear separation
☞ ISC code is optional
☞ ISC code easy to disable
☞ HPF doesnot support multiple ISC for the sam

implement
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Third Guideline
Scope control

Open implementation module interfaces sh
allow the scope of influence of ISC code to b
that is both natural and sufficiently fine-grain

s1 = makeSte(“n=1000“)

for i = 1 to 700 do

insert(s1 , i +1)

s2 = makeSet(“n=5“)

insert(s2, 5)

insert(s2,6)
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Subject Matter
Design B has some weaknesses

❑ client programmer can mis-describes and get a so
❑ no garantee that they will get an optimal implemen

Design C
makeSet(strategy)

Use
makeSet(“LinkedList”), makeSet(“BTree”)

ICS can be about different subject matter

– the client program’s behavior (design B),

– module implementation strategy (design C), or

– performance requirements

No automatic solution
☞ Analysis steps in the process of selecting imp
client use code ---> client usage profile --->

client performance requirements ---> mo
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Fourth Guideline

Implementation Details must be hidden

Open Implementation module interfaces sho
pass only essential implementation strategy 
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Design D
❑ Design C is limited to the implementation strategie
❑ Might be not flexible enough

class mySet (Set) {

method insert...

method delete...

method isIn...}

Use
makeSet(“mySet”)

❑ Programmatic interfaces tend to be less robust
☞ locality is extremlly important
☞ Layered interface
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Last Guideline: Layered Interfac
Client

❑ No ISC code -> get default one
❑ Select from built-in ones
❑ Provide a new strategy

When there is a simple interface that can de
will satisfy a significant fraction of clients, bu
accomodate all important strategies in that in
interfaces should be layered

90%/10% Rule
90% of the clients use the default strategy
10% write new ISC code

90% of 10% select in the built-in strategie
1% should provide a new strategy

But this is a really needed one!!
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6. Comparing Reflection in CLO
and Java

Dr. Stéphane Ducasse
Software Composition Group
University of Bern
Switzerland

Winter Semester 2000-2001

Email: ducasse@iam.unibe.ch
Url: http://www.iam.unibe.ch/~ducasse/
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Sorry but this is your work!

Material you can use
❑ Java: Reflection API, OpenJava
❑ Smalltalk: Smalltalk a Reflective Language, Small

VisualWorks
❑ CLOS: The Art of the MetaObject Protocols, Paep

☞ www.franz.com download a trial version.
❑ Other documents available for you in my office
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Some Criterias

❑ Which entities?
❑ Introspection and/or Intercessory?
❑ Which aspects?
❑ Is the causal link respected? Only representation o
❑ Level of power,

– for example try to invoke method m of class A o
B subclass of A in Java => m defined on B is c

– Use valueWithReceiver... in VW
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7. Implementing Message Pass
Smalltalk: an Analysis

Dr. Stéphane Ducasse
Software Composition Group
University of Bern
Switzerland

Email: ducasse@iam.unibe.ch
Url: http://www.iam.unibe.ch/~ducasse/
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Outline
❑ Limited Survey
❑ Method Wrappers in Use
❑ Opening the Box
❑ DoesNotUnderstand
❑ Method Wrapper
❑ Instance based Behavior
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Why Controling Message?

❑ Application Analysis and introspection
☞ Do not require program instrumentation (imag
☞ Dynamic traces, analysis of collaborations, hi

❑ Language Extension
☞ Distribution
☞ Security
☞ Atomic Data Types
☞ Multiple inheritance
☞ Instance based programming
☞ Object connections

❑ New objects models
☞ Active object model
☞ Concurrent Smalltalk
☞ Composition Filters
☞ New Meta Models (codA)
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Controling What Exactly!
Which objects are controlled?

❑ Instance based: One instance
❑ Group based: A group of objects
❑ Class-based All instances of a class

What methods are controlled?
❑ All methods
❑ Unknown methods
❑ Selected methods

Technical quality of the control?
❑ Existing Smalltalk systems and tools
❑ Not another interpreter with an explicit send mess
❑ Not only pre and post methods
❑ Changing arguments (marshalling...)

Who does the control?
❑ The receiver
❑ Another object
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A Limited Survey

❑ CLOS Mop: clean, integrated into the MOP
❑ Smalltalk: everythign is there but not polished

☞ do it yourself syndrome!
☞ MethodWrappers (http://st-www.cs.uiuc.edu/~
☞ Some well-known techniques

❑ Open C++ (first version, runtime, second version p
❑ OpenJava (class loader annotations) @@Find pa
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CLOS Example (i)
❑ Counting the calls of a generic function

☞ Define a new class of generic function and sp
function

(defclass counting-gf (standard-generic-function)

((numberOfCalls :initform 0 :accessor numberOfCalls)))

(defmethod apply-generic-function :before ((gf counting-gf) args)

(incf (numberOfCalls gf)))

❑ Counting the calls of a method
☞ Define a new class of method and specialise 

(defclass counting-method (standard-method)

((numberOfCalls :initform 0 :accessor numberOfCalls)))

(defmethod apply-method :before ((method counting-method) args next

(incf (numberOfCalls method)))
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CLOS Example (ii)
❑ Define new method of the right class or (dependin

change the class of certain methods
(defgeneric ack (x)

(:generic-function-class counting-gf)

(:method-class counting-method)))

(defmethod ack (x)

t)

(defmethod ack ((i integer))

1)

(ack 1)

-> 1

(ack anObject)

-> t

(numberOfCalls #’ack)

-> 2
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CLOS Example (iii)
❑ Separation between programmer and meta progra
❑ MOP entry points

apply-generic-function

compute-applicable-methods-using-classes

method-more-specific-p

apply-methods

apply-method

extra-function-bindings

❑ Optimized the following way: separate parts that c
(apply-methods gf args methods)

<=>

(funcall (compute-effective-method-function gf methods) args)

(apply-method method args next-methods)

<=>

(funcall (compute-method-function methods) args next-methods)
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A Coverage Tool in Smalltalk

@@MW or Michel tools@@
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Smalltalk: Do It Yourself Syndro

❑ Reflective sure !!
❑ But not a well defined MOP
❑ Full implementation details on the shoulder of the 

Extra Criteria
❑ Reproductible easily
❑ Cost of implementation

☞ at the normal level of programming or fighting
❑ Cost of activation

☞ (recompile or not)
❑ Run-time cost
❑ Integration into the programming environment

☞ is control visible for the programmer?
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Smalltalk Basic Reflective Tools
Reflective but the VM has the control

❑ the way the objects are represented in memory
❑ how messages are handled.

Programmer possibilities
❑ Instance variable access (instVarAt:)
❑ Compiling class on the fly (subclass:instanceVaria
❑ Compiling method on the fly (compile:notifying:)
❑ Changing inheritance chain (superclass:)
❑ Changing reference between objects (become:, b
❑ Changing class (changeClassToThatOf:)
❑ Message reification (only for error handling)
❑ Stack Reification (sender, receiver...)
❑ Methods are objects (mclass, sourceCode, bytes)
❑ Object methods can be invoked (valueWithReceiv
❑ Lookup can be called (perform:with:)
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6 Techniques
❑ Source code modification

setX: t1 setY: t2

...

Original Code

...

☞ reparsed, recompiled for installation and desi
☞ not applicable to stripped image

❑ Byte code extension
(add a new byte code in the VM)

☞ dialect specific
❑ Byte code modification

(insert a new byte code directly in the co
☞ dialect specific

Deeply evaluated
❑ Error handling specialisation
❑ Anonymous classes
❑ Method Wrappers
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Unknown Messages
Context: When an object does not understand a message, i
with a reification of the message
Solution:

❑ define a minimal object that raises doesNotUnder
❑ wrap an object in a minimal object
❑ specify control semantics by specializing the does

myObject myObject
myObject m

myObject
doesNotUnderstand: 
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Creating a MinimalObject
❑ Object that does not inherit from Object nil subcla

☞ does really not work because we cannot debu
The trick: (1) creating a normal class

Object subclass: MinimalObject

instanceVariableNames: ‘controlledObject’

(2) setting the inheritance to nil ,
(3) copying some minimal behavior from Object.

MinimalObject class>>initialize

superclass := nil.

#(doesNotUnderstand: error: ~~ isNil = == printString printOn: cla
sicInspect basicSize instVarAt: instVarAt:put:)

do: [:sel | self recompile: selector from: Object]

❑ Example of possible control
MinimalObject>>doesNotUnderstand: aMessage

...

controlledObject perform: aMessage selector

withArguments: aMessage arguments

...



About Metaclass Evolution 202.

© e Passing Control in Smalltalk: an Anal-
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Wrapping anObject
Wrapping

MinimalObject class>>newOn: anObject

| x e |

x := anObject.

e := self new.

x become: e.

x object: e.

^x

Unwrapping
MinimalObject>>uninstall

| x |

x := controlledObject.

controlledObject := nil.

x become: self
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Evaluation

❑ Instance based control controlling all methods (ev
❑ Simple
❑ Slowest solution

☞ Message reified + Exception Handling
☞ even if doesNotUnderstand: is cached in cert

❑ Installation: no recompilation

Known Problems

❑ Messages sent to self by the object itself are not c
❑ Messages sent to the object via reference to self
❑ Class control is impossible, cannot swap a class b
❑ Interpretation of minimal set of messages by the m

controlled object.
anObject inspect => anObject controlledObject inspect
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Method Wrappers: an Example

MethodWrapper variableSubclass: #CountMethodWrapper

instanceVariableNames: 'count '

CountMethodWrapper>>class: aClass selector: aSymbol

count := 0.

^super class: aClass selector: aSymbol

CountMethodWrapper>>valueWithReceiver: anObject arguments: anAr

count := count + 1.

^clientMethod valueWithReceiver: anObject arguments: anArrayOfO

CountMethodWrapper>>count

^ count
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mclass
clientMethod
sourceCode

t1setY: t2
x := t1.
y := t2

aMethodWrapper

1
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Method Wrappers
The idea:

❑ substitute a method by a wrapper that has a refere
❑ wrapper has as source code the code of the origin

☞ transparent for the programmer

Point
methodDict setX:setY:

printOn:

aCompiledMethod

24@6 15@10

setX: 
mclass

sourceCode
bytes
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Control
MethodWrapper>>valueWithReceiver: object arguments: args

"This is the general case where you want both a before and after method, bu

before method, you might want to override this method for optimization."

self beforeMethod.

^[clientMethod valueWithReceiver: object arguments: args]

valueNowOrOnUnwindDo: [self afterMethod]

To control the method originalSelector: on aClass the follow
generated
aClass>>originalSelector: t1

|t2|

(t2:=Array new: 1) at: 1 put: t1.

^#() valueWithReceiver: self arguments: t2.

To have a way to refer to the method object itself and not the
reserves some place byte code that is then latter filled with
installed.
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MethodWrapper Optimization
Create method skeletons depending on number of parame

☞ no compilation needed
MethodWrapper class>>on: selector inClass: class

| wrapper |

(self canWrap: selector inClass: class) ifFalse: [^nil].

wrapper := (self methods at: selector numArgs

ifAbsentPut: [self createMethodFor: selector numArg

wrapper class: class selector: selector.

^wrapper

MethodWrapperclass>>createMethodFor: numArgs

^((MethodWrapperCompiler new) methodClass: self;

compile: (self codeStringFor: numArgs)

in: self

notifying: nil

ifFail: []) generate
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MW method body
'valuevalue: t1 value: t2

| t |

(t := #Array new: 2)  at: 1 put: t1; at: 2 put: t2.

^#''The method wrapper should be inserted in this position'' valueWithReceiver: se

MethodWrapper class>>codeStringFor: numArgs

"self codeStringFor: 2"

| nameString tempsString |

nameString := 'value'.

tempsString := numArgs == 0

ifTrue: ['t := #()']

ifFalse: ['(t := #Array new: ' , numArgs printString , ') '].

1 to: numArgs do: [:i |

nameString := nameString , 'value: t' , i printString , ' '.

tempsString := tempsString , (i == 1 ifTrue: [''] ifFals

, i printString , ' put: t' , i printString].

^nameString , '

| t |

' , tempsString , '.

^'

, self methodWrapperSymbol printString

, ' valueWithReceiver: self arguments: t'
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Installation
(MethodWrapper on: #blop inClass: Test) install

MethodWrapper>>class: aClass selector: sel

| position |

self at: self methodPosition put: self.

position := self arrayPosition.

position == 0 ifFalse: [self at: position put: Array].

mclass := aClass.

selector := sel

MethodWrapper>>install

| definingClass method |

definingClass := mclass whichClassIncludesSelector: selector.

definingClass isNil ifTrue: [^self].

method := definingClass compiledMethodAt: selector.

method == self ifTrue: [^self].

clientMethod := method.

sourceCode := clientMethod sourcePointer.

mclass addSelector: selector withMethod: self



About Metaclass Evolution 210.

© e Passing Control in Smalltalk: an Anal-

)

rary
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

MW Evaluation
❑ Transparent fro the programmer
❑ Class-based (all instance of a class are controlled
❑ Selective (only certain methods are controlled)
❑ Run-Time Cost: less than doesNotUnderstand:
❑ Coding cost: Tricky so this is better to reuse the lib
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Exploiting VM Lookup Algorithm
The idea:

❑ Interposing between the object and its class a clas
methods to introduce the control.

Solution 1
❑ Explicit subclassing + change the class of the con

☞ Instance, group or class based, Selective me
☞ Without optimization: compile methods and c
☞ Polution of the class namespace for controlin

aware of the control
Solution 2

❑ Implicit subclassing: creation of an anonymous cla
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aCompiled

aControlling

aControllingMethod
aCompiled

Method

Method

«inherits from»

Method

tance of»
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Let’s view it
Point
methodDict setX:s

printO

‘’
methodDict

setX
cont

‘’
methodDict

setX:setY:
control:

Interceptor

Point class

«inherits from»

«ins
15@1024@6

8@8

19@68
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Interceptor: Anonymous Classe
❑ Create an interceptor (a class): instance of Behav
❑ Copy class description of the original class in the 
❑ interceptor inherits from original class
❑ Compile in interceptor class class the methods ne

InterceptorClass class>>takeControlOf: anObject

| interceptor |

(anObject isControlled)

ifFalse: [interceptor := self new.

interceptor conformsToThatClass: anObject class.

interceptor installEssentialMethods.

anObject changeClassToThatOf: interceptor new.].

^anObject

InterceptorClass>>conformsToThatClass: aClass

"Return an instance of an anonymous class that is conforms to the class <aClass>"

self setInstanceFormat:  (aClass format) ;

superclass: aClass ;

methodDictionary: (MethodDictionary new).
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Let us think a bit
From the implementor point of view

❑ How to access the original class?
anObject class superclass

❑ How to access the anonymous class?
anObject class

But how can we access them in a conceptual manner?
❑ original class?

anObject class

anInterceptor>>class

^super class superclass

❑ interceptor?
anObject interceptor

anInterceptor interceptor

^ super class
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Essential Methods
InterceptorClass>>installEssentialMethods

"all the necessary methods to ensure right behavior of an interceptor class.

It should be always invoked: Can be specialize but not overriden"

self basicCompile: 'class  ^super class superclass'.

self basicCompile: 'isControlled  ^ true'.

self basicCompile: 'interceptor ^ super class'.

self basicCompile: 'addSpecificMethod: aString

self interceptor compile: aString notifying: nil'.

self  basicCompile: 'removeSpecificMethodWith: aSymbol

self removeSelector: aSymbol'

InterceptorClass>>compile: code notifying: requestor ifFail: failBlock

"we redefine this method to ensure that essential methods such as #class, #intercep

#isControlled will be never recompile on an interceptor class instance"

|selector|

selector :=  Parser new parseSelector: code.

(self isEssentialMethod: selector)

ifFalse: [ self basicCompile: code]

InterceptorClass>>basicCompile: code

super compile: code notifying: requestor ifFail: failBlock
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Naive Control Implementation 
Naive because we compile all the times (see optimization).
We want to generate the following code on the interceptor 

'setX: t1 setY:  t2

^self interceptor control: self

receiving: #setX:setY:

withArgs: (Array  with: t1 with:  t2 )

originalCall: [super setX: t1 setY:  t2]'

Interceptor>>installControlledMethod: aSymbol

"control the method with selector <aSymbol>"

self compile: (self generateSourceOfControlledMethod: aSymbol) contents

notifying: nil ifFail: []

Interceptor>>generateSourceOfControlledMethod: aSymbol

"generate the source of a controlled method"

|methodCode signature|

methodCode := WriteStream on: (String new: 32).

signature := self generateSignature: aSymbol on: methodCode.

methodCode cr ; tab.

self generateBody: aSymbol withSignature: signature on: methodCode.

^methodCode
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Naive Control Implementation 
Interceptor>>generateSignature: aSelector on: methodCode

"Return anArray containing at:1 signature and at:2 a string representing formal para

"self new generateSignature: #setX:setY: on: (WriteStream on: (String new: 32))

-> #('setX: t1 setY:  t2 ' ' with: t1 with:  t2 ')"

|  numArgs keywords parameters|

parameters := WriteStream on: (String new: 10).

keywords := aSelector keywords.

methodCode nextPutAll: (keywords at: 1).

(numArgs := aSelector numArgs) >= 1

ifTrue:[parameters nextPutAll: ' with: t1'.

methodCode  nextPutAll: ' t1 '.

2 to: numArgs do:

[:i | parameters nextPutAll: ' with:  t'; nextPutAll: (i printString) ; sp

methodCode nextPutAll: (keywords at: i) ;

nextPutAll: '  t'; nextPutAll: (i printString) ; space]].

^ Array with: (methodCode contents) with: (parameters contents).
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 1) ;

y happen that another object
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Naive Control Implementation 
Interceptor new generateBody: #setX:setY: withSignature: #'with: t1 with

->
^self interceptor control: self receiving: #setX:setY:

withArgs: (Array  with: t1 with: t2) originalCall: [super setX: t1 se

Interceptor>>generateBody: aSelector withSignature: aSignature  on: methodCode

methodCode cr; tab;

nextPutAll:  '^self interceptor control: self receiving: ';

nextPut: $# ; nextPutAll: (aSelector asString) ; cr ;

tab; tab; nextPutAll:'withArgs: (Array '; nextPutAll: (aSignature at: 2) ;

tab; tab ; nextPutAll:  'originalCall: [super ' ; nextPutAll: (aSignature at:

nextPutAll: ' ] '; cr .

^ methodCode contents

❑ The original call could be called via super but it ma
than the interceptor defines the control.

❑ [super setX...] is costly
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ethods containing a call to
and adjusted (change

 them
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Possible Optimization

Like Method Wrapper implementation
❑ To avoid compilation when installing the control

☞ for each number of parameters skeletons of m
the control can be created once, then copied 
selector) in the instantiated interceptor class.

☞ copy essential method instead of recompiling
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 methods
 the system

le
ass)
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Evaluation
❑ Instance, group and class based control selective
❑ Simple but bugs during implementation may crash
❑ Efficient solution
❑ Installation: compilation but optimization is possib
❑ Good integration in the system (class is still the cl
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ded?

code
o MOP
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Why A Mop for Smalltalk is Nee

❑ Free the developer from doing everything himself
❑ Free the VM or meta-programmer to optimize the 
❑ ANSI Normalization -> declarative Smalltalk but n
❑ MOP

☞ instance variable representation
☞ instance variable access
☞ method control



About Metaclass Evolution 222.

© e Passing Control in Smalltalk: an Anal-
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Pratice
❑ Lab session: Implement Actalk [Briot89]
❑ Play with the MethodWrappers

☞ Look at the coverage tools
❑ Play with anonymous class

☞ Implement an instance based language
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Web pages
CLOS:

http://www.franz.com/

Open Implementation:
http://

Languages:
- NeoClasstalk: http://www.emn.fr/cs/neoclasstalk
- VisualWorks: http://www.objectshare.com/VWNC
- Smalltalk Archive: http://www-st.cs.uiuc.edu/
- Squeak: The Smalltalk Open Source http://www.
- OpenC++
- JavaAssist
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	Why can’t I control internal representation or attribute accesses?
	Why can’t I query the language representation instead of scanning, parsing code?
	Why can’t we tune a language to fit our needs from the language itself and not by inventing yet a...


	Traditional vs Reflective Answers
	Traditional Answers at Language Level:
	Illusionary complete language
	Library of extensions: Eiffel
	Macroes: C, Lisp

	But do not cover language extensions or semantics changes
	Traditional Answers in Software development:
	What happens if the language does not support our need [Kiczales92,92b,92c]?
	buy a new one that fits your today need and change tomorow!
	buy an illusionary complete language
	code between the lines (danger for portability)
	create your own layer (probleme with integration issues)

	Reflective Answers
	Propose an extensible language or system
	Give the power to the end-user (meta-programmer)
	customize your reflective or open language to fit your need



	Role ot Reflective Prog in Software Engineering
	Allow migration of software:
	Ex: Nichimen Corp (http://www.nichimen.com/) 15 years of Lisp development
	(Flavors -> CLOS, From Symbolic Machine -> Indigo Silicon Graphics)
	Adaptation to new technologies
	Adaptation to new needs

	Team organization
	Not everybody is changing the language semantics or introducing his own constructs
	One meta-programmer implements new semantics or adapts language semantics to the needs of the oth...


	Definitions (I)
	Reflection: a process's integral ability to represent, operate on, otherwise deal with itself in ...
	B.C Smith (OOPSLA’ 90 Workshop on Reflection and MetaLevel Architectures)
	“Reflection is the ability of a program to manipulate as data something representing the state of...
	Introspection is the ability for a program to observe and therefore reason about its own state.
	Intercessory is the ability for a program to modify its own execution state or alter its own inte...
	Both aspects require a mechanism for encoding execution state as data: providing such an encoding...

	Consequences
	A system having itself as application domain and that is causally connected with this domain can ...
	A reflective system has an internal representation of itself.
	A reflective system is able to act on itself with the ensurance that its representation will be c...
	A reflective system has some static capacity of self-representation and dynamic self-modification...
	A system is said reflective if it has an introspection protocol and an intercessory protocol


	Meta Programming in Programming Language Context
	The meta-language and the language can be different: Scheme and an OO language
	The meta-language and the language can be same: CLOS
	=> metacircular architecture

	Three Approaches
	1. Tower of Metacircular Interpreters
	every level is interpreting and controlling the next level
	ex: 3-Lisp, SRI

	2. Meta entities control language entities
	ex: Smalltalk, CLOS, FOL, Meta-Prolog, ...
	ABCL/R, ACT/R (Concurrent languages)
	meta-rules controlling unification in prolog

	3. Open Implementation
	The implementation specifies some entry points allowing the future modification of the system. (o...
	ex: CLOS MOP (Meta Object Protocol)


	Infinite Tower of (Meta)Interpreters
	3-Lisp: a metacircular interpreter that can evaluate itself
	Scheme like based on continuations
	Theory, Basis for reflection
	Experimentation with language extension, various semantics
	Passing from one level to another one is done using reifier
	special functions with three non evaluated arguments
	– current expression
	– environment
	– continuation

	Interpreter 0 reifies and interpretes interpreter 1
	Interpreter 1 reifies and interpretes interpreter 2....

	Reflective Languages
	CLOS, Smalltalk, Self
	Language written in itself
	MetaEntities controlling the languages (Class, Method, InstanceVariables...)
	Really powerfull, full control

	In Smalltalk
	everything is an object
	causally connected: a change in an object impact the semantics
	Class, Method
	Scanner, Parser, Compiler, Decompiler, ...
	Scheduler, Process, Semaphore


	But
	Did not make the effort of specifying a Meta Object Protocol
	– Too much to do for the base programmer
	– Not enough freedom to optimize for the language implementor
	A solution: declarative model of the base level language and the meta level




	Open Implementation and MOPs
	The Basic Claim of Open Implementation
	It is impossible to hide all implementation issues behing a module interface because not all of t...
	Despite black-box abstraction’s appealing goal that a module should present a simple interface th...
	Our claim is that module implementations must somehow be opened up to allow clients control over ...

	Meta Object Protocols
	“Meta Object Protocols are interfaces to the language that give the users the ability to incremen...
	MOPs are composed by set of entry points whose specialization allows the introduction of new beha...
	MOPs are based on meta-objects offering ways of specializing their behavior and representing spec...

	Public MetaLevel Architecture + Public protocols = Implementation
	(structure and static) (dynamic)
	Inspect + Modify = Open System

	Meta Programming in CLOS
	Create named
	MetaObjects

	Infinite Tower vs Open Implementation
	Infinite Tower vs Mop <=> Theory vs Practice
	Open Implementations:
	- are more efficient
	- are specified declaratevly letting space of optimization
	- define a region of possible changes
	- dependencies between entry points
	- allow more control over the possible extensions
	Infinite Tower:
	- are more powerful
	- slower
	- less secure

	A Simple Application as Example
	A LAN Simulator:
	- A LAN contains nodes, workstations, printers, file servers.
	- Packets are sent in a LAN and the nodes treat them differently.
	Problem: We want to know all the nodes of the system for analysis purpose
	We do not want to change the code of the node classes.
	We would like to ask to the class Node to gave us all its instances.


	Programming in Explicit Metaclass Context
	CLOS-like
	(defclass Node ()
	((name :initarg :name :default-value #lulu :reader name)
	(nextNode :default-value ‘() :accessor nextNode))
	(:metaclass Set))
	(defmethod accept ((n Node) (p Packet))
	....)
	(defmethod send ((n Node) (p Packet))
	...)
	(setq n1 (make-instance Node :name “n1”))
	(setq n2 (make-instance Node :name “n2” nextNode: n1))
	(setq n3 (make-instance Node :name “n3” nextNode: n3))
	((setf nextNode) n1 n3)
	(allInstances Node)
	-> (n1 n2 n3)


	Reusing Meta Programs
	Now imagine that we want to have a log of all the created packets
	(defclass Packet ()
	((addressee :initarg :addressee :accessor addressee)
	(contents :initarg :constents :accessor contents)
	(originator :initarg: originator :accessor originator)
	(:metaclass Set))
	(defmethod isAddressedTo ((p Packet) (n Node))
	....)
	(defmethod isOriginatedFrom((p Packet) (n Node))
	...)�
	(map Packet (lambda(x)
	(write outputstream
	“packet addressed from: %s to %s”
	(originator x) (addressee x))


	MetaProgramming in OO Context
	This simple functionality could have been implemented in C++ or Java defining static member and f...
	But
	A Meta program is not mixed into objects
	Ordinary objects are used to model real world. Metaobjects describe these ordinary objects.
	MetaPrograms can be reused
	Some other properties cannot easily be implemented without meta programming traceMessage, finalCl...

	We may want to
	- change the representation of the instance variables
	(indexed for points, hashed for person,)
	- change the way attributes are accessed (lazily via the net, stored in database)
	- change the inheritance semantics
	- change the invocation of method semantics (trace, proxies...)

	MetaProgramming by Example
	(defclass Set (class)
	((instances :default-value ‘() :reader allInstances)))
	(defmethod clear ((c Set))
	(setf-slot-value c ‘instances ‘()))
	(defmethod map ((c Set) fct)
	(map fct (allInstances c)))
	(defmethod new ((c Set) initarg)
	(let ((newInstance (call-next-method))
	(cons newInstance (slot-value c ‘instances))
	newInstance))

	Costs of Reflective Programming
	Design Cost
	Reflective languages need more care and iteration
	Use Cost
	Concepts are more complex
	Run-time Cost
	“A key aspect of intercession is that reflective capability not impose an excessive performance b...
	Clever implementations
	we only pay what we need, but we NEED it!
	Default behavior is optimized
	Do no rely on full runtime interpretation
	Having entry point purely functional (same argument gives same result)
	Optimization at compile-time
	Memoization (decomposing static from dynamic entry point)



	Designing Reflective Systems
	Which model
	– which kind of language?
	– which degre of reflection?
	– reflective language or open implementation?

	Which entry points?
	– Data, Entities, Control Structures, Interpreter, Environment

	Data Structure
	– simples, efficient, easliy modifiable

	Changing Level
	– Managing causal connection, reification and reflexion

	Uniformity between meta-level
	– Syntax, data structure, extensions


	Meta-Problems
	Stability: Potentially an end-user can change the system
	But not everybody should be meta-programming

	Several levels of complexity
	Entity, meta entity, coherence and connection between levels

	Uniformity: same design conception problems than the original designer
	Open implementations narrow the possibilities of change


	Meta and Open are not Limited to Programming Languages
	A reflective system is a system which incorporates structures representing (aspects of) itself.
	Reflection is the processus of reasoning about and/or acting upon itself.
	P.Maes (OOPSLA’ 87)
	Network
	Workflow system
	Operating Systems (Apertos, Synthesis)
	Parallel Systems
	Library of
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	Goals of this Lecture
	Metaclass concept
	Reflective Architectures and Kernels (SOM, Smalltalk, CLOS)
	What are Object and Class classes?
	Semantics of inheritance, semantics of super
	Metaclass power

	Outline
	Metaclasses?
	Examples of usefull metaclasses
	Towards a unified approach: Loops, Smalltalk
	ObjVlisp in 5 postulates
	Instance Structure and Behavior
	Class Structure
	Message Passing
	Object allocation & Initialization
	Class creation
	Inheritance Semantics
	Bootstrapping
	Examples: Playing with ObjVlisp

	Recall: Meta Programming in Programming Language Context
	Class as Objects
	“The difference between classes and objects has been repeatedly emphasized. In the view presented...
	Bertrand Meyer in Object-Oriented Software Construction

	Some Class Properties
	– Abstract: a class cannot have any instance
	– Set: a class that knows all its instances
	– DynamicIVs: Lazy allocation of instance structure
	– LazyAccess: only fetch the value if needed
	– AutomaticAccessor: a class that defines automatically its accessors
	– Released/Final: Class cannot be changed and subclassed
	– Limited/Singleton: a class can only have a certain number of instances
	– IndexedIVs: Instances have indexed instance variables
	– InterfaceImplementor: class must implement some interfaces
	– MultipleInheritance: a class can have multiple superclasses
	– Trace: Logs attribute accesses, allocation frequencies
	– ExternalIVs: Instance variables stored into database

	Some Method based Properties
	– Trace: Logs method calls
	– PrePostConditions: methods with pre/post conditions
	– MessageCounting: Counts the number of times a method is called
	– BreakPoint: some methods are not run
	– FinalMethods: Methods that cannot be specialized

	Metaclass Responsibilities
	“Metaclasses provide metatools to build open-ended architecture” [Cointe’87]
	Metaclasses are one of the possible meta-entities (method, instance variables, method combination...
	Metaclasses allow the structural extension of the language
	They may control
	Inheritance
	Internal representation of the objects (listes, vecteurs, hash-table,...)
	Method access ("caches" possibility)
	Instance variable access

	Separation of Concerns
	Ordinary objects are used to model real world
	Metaobjects describe these ordinary objects
	Meta/Base level functionality is not mixed


	Outline
	Metaclasses?
	Examples of usefull metaclasses
	Towards a unified approach: Loops, Smalltalk

	ObjVlisp in 5 postulates
	Instance Structure and Behavior
	Class Structure
	Message Passing
	Object allocation & Initialization
	Class creation
	Inheritance Semantics
	Bootstrapping
	Examples: Playing with ObjVlisp

	Why ObjVlisp?
	Minimal (only two classes)
	Reflective: ObjVlisp self-described: definition of Object and Class
	Unified: Only one kind of object: a class is an object and a metaclass is a class that creates cl...
	Open
	Simple: can be implemented with less than 300 lines of Scheme or 30 Smalltalk methods.
	Equivalent of Closette (Art of MOP example)
	Really good for understanding dynamic languages and reflective programming (D-SOM, CLOS, Smalltal...

	The Loops Approach
	“For some special cases, the user may want ot have more control over the creation of instances. F...
	Explict metaclass as a subclass of another but must be instance of MetaClass


	The Smalltalk Pragmatical Approach
	“The primary role of a metaclass in the Smalltalk-80 system is to provide protocol for initializi...
	A class is the sole instance of a metaclass
	Every metaclass is an instance of the Metaclass class
	metaclasses are not true classes
	number of metalevels is fixed

	Metaclass hierarchy inheritance is fixed: parallel to the class inheritance
	dichotomy between classes defined by the user (instance of Class) and metaclasses defined by the ...



	ObjVlisp in 5 Postulates (i)
	P1: object = <data, behavior>
	P3: Every object belongs to a class that specifies its data (slots or instance variables)
	and its behavior. Objects are created dynamically from their class.
	P4: Following P3, a class is also an object therefore instance of another class
	its metaclass (that describes the behavior of a class).
	|mac1|
	mac := Workstation new name: #mac1

	How to Stop Infinite Recursion?
	Aclass is an object therefore instance of another class its metaclass that is an object too insta...
	To stop this potential infinite recursion
	Class is the initial class and metaclass
	Class is instance of itself and
	all other metaclasses are instances of Class.


	ObjVlisp in 5 Postulates (ii)
	P2: Message passing is the only means to activate an object
	[object selector args]
	P5: A class can be defined as a subclass of one or many other classes.
	This mechanism is called inheritance. It allows the sharing of instance
	instance variable and methods. The class Object represents the behavior shared
	by all the objects.

	Unification between Classes and Instances
	“We claim that a class must be an object defined by a real class allowing a greater clarity and e...
	Every object is instance of a class
	A class is an object instance of a metaclass (P4)
	But all the objects are not classes

	Only one kind of objects without distinction between classes and final instances.
	Sole difference is the ability to respond to the creation message: new. Only a class knows how to...
	A metaclass is only a class that generates classes.


	About the 6th ObjVlisp’s Postulate
	“�Ordinary objects are used to model real world. Metaobjects describe these ordinary objects” [Ri...
	The ObjVlisp 6th postulate is:
	class variable of anObject = instance variable of anObject’s class
	So class variables are shared by all the instances of a class.
	We disagree with it.
	Semantically class variables are not instance variables of object’class!
	Instance variable of metaclass should represent class information not instance information.

	Metaclass information should represent classes not domain objects
	CLOS offers the :class instance variable qualifier class variables.
	We could imagine that a class possesses an instance variable that stores structure that represent...

	Instance Structure: Instance Variables
	Instance variables:
	an ordered sequence of instance variables defined by a class
	shared by all its instances
	values specific to each instance

	In particular, every object possesses an instance variable class (inherited from Object) that poi...

	Instance Behavior: Methods
	A method
	belongs to a class
	defines the behavior of all the instances of the class
	is stored into a dictionary that associates a key (the method selector) and the method body

	To unify instances and classes, the method dictionary of a class is the value of
	the instance variable methodDict defined on the metaclass Class.

	Class as an Object: Structure
	Considered as an object, a class possesses an instance variable class inherited from Object that ...
	– class an identifier of the class of the instance

	But as an instance factory the metaclass Class possesses 4 instance variables that describe a class:
	- name the class name
	- super its superclass (we limit to single inheritance)
	- i-v the list of its instance variables
	- methodDict a method dictionary
	Example: class Node
	class: Class instance of Class
	name: Node named Node
	super: Object inherits from Object
	i-v: (name nextNode) defines 2 instance variables
	methods: ..... defines methods

	The class Class: a Reflective class
	Initial metaclass
	Defines the behavior of all the metaclasses
	Instance of itself to avoid an infinite regression
	class: Class instance of Class
	name: Class named Class
	super: Object inherits from Object
	i-v: (name supers i-v methodDict) describes any class
	methods: (new allocate initialize..... behavior of a class

	A Complete Example
	Outline
	Metaclasses?
	Examples of usefull metaclasses
	Towards a unified approach: Loops, Smalltalk
	ObjVlisp in 5 postulates
	Instance Structure and Behavior
	Class Structure
	Message Passing

	Object allocation & Initialization
	Class creation
	Inheritance Semantics
	Bootstrapping
	Examples: Playing with ObjVlisp

	Message Passing (i)
	P2: Message passing is the only means to activate an object
	P3: Every object belongs to a class that specifies its data and its behavior.

	Message Passing (ii)
	send message = apply O lookup
	We lookup the method associated with the selector of the message in the class of the receiver the...
	[receiver selector args]
	<=>
	apply (found method starting from the class of the receiver)
	on the receiver and the args
	<=>
	in functional style
	(apply (lookup selector (class-of receiver) receiver)
	receiver args)

	Object Creation by Example
	Creation of instances of the class Point
	[Point new :x 24 :y 6]
	[Point new]
	[Point new :y 10 :y 15]

	Creation of the class Point instance of Class
	[Class new
	:name Point
	:super Object
	:i-v (x y)
	:methods (x ...
	display ...)
	]


	Object Creation: the Method new
	Object Creation = initialisation O allocation
	Creating an instance is the composition of two actions:
	memory allocation: allocate method
	object intialisation: initialize method


	(new aClass args) = (initialization (allocation aClass) args)
	<=>
	[aClass new args] = [[aClass allocate] initialize args]
	new creates an object: class or final instances
	new is a class method


	Object Allocation
	Object allocation should return:
	Object with empty instance variables
	Object with an identifier to its class

	Done by the method allocate defined on the metaclass Class
	allocate method is a class method
	example:
	[Point allocate] => #(Point nil nil)
	for x and y
	[Workstation allocate] => #(Workstation nil nil)
	for name and nextNode
	[Class allocate] => #(Class nil nil nil....)


	Object Initialization
	Initialization allows one to specify the value of the instance variables by means of keywords (:x...
	Example:
	[ Point new :y 6 :x 24]
	=> [ #(Point nil nil) initialize (:y 6 :x 24)]
	==> #(Point 24 6)
	initialize : two steps
	get the values specified during the creation. (y -> 6, x -> 24)
	assign the values to the instance variables of the created object.



	Object Creation: the Metaclass Role
	We lookup the method associated with the selector of the message in the class of the receiver the...

	Class Creation
	A Simple Instantiation Graph
	Class is the root of instantiaton graph
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	(defgeneric paint (shape medium))
	Holding bag of methods having the same name, number of argument but different types and different...
	Not strongly defined in classes because of multiple discrimination


	Method Definition (i)
	1 (defmethod paint ((shape rectangle) medium)
	(vertical-stroke (height shape) (width shape) medium))
	2 (defmethod paint ((shape circle) medium)
	(draw-circle (radius shape) medium))
	(paint r1 *standard-display*) -> 1
	Discriminating only on one single argument ->Java, Smalltalk like
	3 (defmethod paint ((shape color-rectangle) medium)
	(if (not (clearp shape))
	(call-next-method))

	invoking an overriden method

	(Method) Generic Function Application
	4 (defmethod paint ((shape rectangle) (medium vector-display))
	...)
	5 (defmethod paint ((shape rectangle) (medium bitmap-display))
	...)
	6 (defmethod paint ((shape rectangle) (medium optimized-bitmap-stream))
	...)
	7 (defmethod paint ((shape circle) (medium ps-stream))
	...)
	8 (defmethod paint :after ((shape rectangle) medium)
	(log paint rectangle))
	1,2,3,4,5,6,7 are primary methods
	8 is an auxiliary method
	Applying a generic function:
	From all the methods, an effective method is created:
	Selecting the applicable methods to a given set of arguments
	Ordering them
	Applying them


	Method Selection
	The methods are sorted according to the type of their first argument, then they ordered according...
	(paint r1 *bitmap*)
	-> selction of 5 1
	(paint r1 *optimized-bitmap*)
	-> selection 6 5 1

	Effective method application leads to execute:
	All the before methods are invoked in decreasing order
	Most specific primary method (6 in the second call), other if call-next-method is used
	All the after methods are invoked in increasing order


	Why CLOS MOP?
	“Traditionally, languages have been designed to be viewed as black box abstractions; end programm...

	Meta Programming in CLOS
	Create named
	MetaObjects

	CLOS was too big!
	Lot of could have been dropped and reintroduced if wanted using the CLOS MOP
	Instance based methods (eql) , auxiliary
	Method combination,
	argument-precedence-order option,

	.
	.
	slot-filing initargs, default initargs

	.
	.
	.
	.
	multiple inheritance, multi methods


	5 MetaObjects
	Classes
	– instance creation: make-instance
	– instance allocation: allocate-instance
	– class initialization: initialize-instance
	– instance variables storage and accesses: slot-value-using-class, (setf slot-value-using-class)
	– finalize-inheritance

	Methods
	– apply method
	– extra-method-bindings

	Generic Functions
	– apply-generic-function

	Slots
	– slot-boundp

	Method combinations

	Static Elements
	5 Metaobjects:
	Class, Method Combination (Semantics of method calls regarding inheritance)
	Method and Generic Function
	Slot (attribute)


	Structure Protocols (i)
	global queries not attached to any meta-entities
	find-class, find-generic-function, find-method
	ensure-generic-function, ensure-class, ensure-method,

	User interfaces
	defclass, defgeneric, defmethod

	Structural queries associated with meta-entities
	Object
	class-of, print-object, reinitialize-instance, slot-makeunbound

	Class
	class-name, class-slots,
	class-direct-subclasses, class-direct-superclasses
	class-direct-slots, class-direct-methods,
	compute-class-precedence-list, compute-slots,
	compute-effective-slot-definition
	class-finalized-p,



	Structure Protocols (ii)
	Generic Function
	add-method, add-reader-method, generic-function-methods, generic-function-name,

	Method
	method-body, method-environment, method-generic-function, method-more-specific-p, method-qualifie...

	Slot
	slot-definition-initfunction, slot-definition-initargs, slot-definition-initform,
	slot-definition-name, slot-definition-readers, slot-definition-writers
	slot-boundp, slot-boundp-using-class,
	slot-exists-p,


	Extension Example
	(defclass hash-table-representation-class (standard-class)
	()) ; no extra instance variables
	(defmethod allocate-instance ((c hash-table-representation-class))
	...allocate a small hash-table to store the slot)
	(defmethod slot-value-using-class ((c hash-table-representation-class) instance slot- name))
	...)
	(defmethod setf slot-value-using-class ((c hash-table-representation-class) instance slot-name ne...
	...)
	(defclass person ()
	(name age address...)
	(:metaclass hash-table-representation-class))

	Dynamic Elements
	instance initialization and creation,
	class-change, instance updating
	finalization (inheritance)
	method selection, method invocation,
	slot access
	are controlled by metaobjects and their protocols


	Class Definition: Defclass
	1 Syntax error checking
	2 Canonicalize information
	3 Obtain class metaobjects (ensure-class, ensure-class-using-class)
	3.1 Find or make instance of proper class metaobject class
	(make-instance, the :metaclass option)

	3.2 (Re)initialize the class metaobject ((re)initialize)
	3.2.1 Default unsupilied keyword arguments/error checking
	3.2.2 Check compatibility with superclass (validate-superclass)
	3.2.3 Associate superclasses with this new class metaobject
	3.2.4 Determine proper slot-definition metaobject class
	(direct-slot-definition-class)
	3.2.5 Create and initialize the slot-definition metaobjects
	(make-instance, initialize-instance)
	3.2.6 Maintain subclass lists of superclasses
	(add-direct-subclass, remove-direct-subclass)
	3.2.7 Check default-initargs
	3.2.8 Initiate inheritance finalization (if appropriate)
	(finalize-inheritance)
	3.2.9 Create reader/writer methods
	3.2.10 Associate them with the new class metaobjects

	Instance creation
	Class responsibility:
	make-instance, allocate-instance, initialize-instance (for class creation)
	(make-instance class)
	=> (initialize (allocate-instance class))
	Object responsibility
	(initialize-instance anObject)

	Changing class and updating instance
	change-class
	update-instance-for-different-class



	Method Creation: Defmethod (i)
	1. Syntax error checking
	2. Obtain target generic function metaobject (ensure-generic-function,
	ensure-generic-function-using-class)
	2.1. Find or make instance of proper generic-function metaobject
	(make-instance,:generic-function-class)
	2.2 (Re)initialize the generic function metaobject
	((re)initialize-instance)
	2.2.1 Default unsupplied keyword arguments/error checking
	2.2.2 Check lambda list congruence with existing methods
	2.2.3 Check argument precedence order spec against lambda list
	2.2.4 (Re)define any old ‘initial methods’
	2.2.5 Recompute the generic function’s discriminating function
	(compute-discriminating-function)
	3 Build method function (make-method-lambda)

	Defmethod (ii)
	4 Obtain method metaobject
	4.1 Make instance of proper method metaobject class
	(make-instance, generic-function-method-class)
	4.2 Initialize the method metaobject
	(initialize-instance)
	4.2.1 Default unsupplied keyword argument/error checking
	5 Add the method to the generic function
	(add-method)
	5.1. Add method to the generic function’s method set
	5.2. Recompute the generic function’s discriminating function
	(compute-discriminating-function)
	5.3. Update discriminating function
	5.4. Maintain mapping from specializers (classes) to methods
	(add-direct-method)

	Method lookup and apply protocol
	generic function call
	(apply-generic-function)
	1 invoke the generic function’s discriminating function
	1.1 Find out which methods are applicable for the given arguments
	(compute-applicable-using-classes,
	compute-applicable-methods,
	methods-more-specific-p)
	1.2 Combine the methods into one piece of code
	(compute-effective-method)
	1.3 Execute the combined method
	(method-function-applier, apply-methods,
	apply-method, extra-function-bindings)

	Apply Protocol Example
	Counting the calls of a method
	Define a new class of method and specialise apply-method

	Define new method of the right class or (depending on the implementation) change the class of cer...
	Apply Protocol Remark

	The generic function has the responsibility of class methods specification
	We cannot specify the class of a method at the method level
	Dynamically changing the class of a generic function was not allowed (at leats in the MOP descrip...
	:generic-function-class
	:method-class

	are only associated with defgeneric

	Slot Access Protocol
	The class has the control over its attributes
	How to store and access them
	(slot-value object slotname)


	calls or has semantics defined by
	(slot-value-using-class class instance slotname)
	((setf slot-value) value object slotname)

	calls or has semantics defined by
	((setf slot-value-using-class) value class instance slotname)

	1. Check for existence of slot
	slot-exists-p, slot-missing

	2. Check for slot being unbound
	slot-unboundp, slot-boundp-using-class

	3. Making a slot unbound
	slot-makunbound, slot-makeunbound-using-class


	Finalize Inheritance
	1 Compute the class precedence list
	(compute-class-precedence-list)
	2 Resolve conflicts among inherited slots with the same name
	2.1Determine proper effective slot definition metaobject class
	(effective-slot-definition-class)
	2.2Create the effective slot definition metaobjects
	(make-instance )
	2.3 Initialize the effective slot definitions
	(initialize-instance,
	compute-effective-slot-definition)
	2.4 Associate them with the class metaobject
	3Enable/Disable slot access optimizations
	(slot-definition-elide-access-method-p)

	Open Implementation and Reflective Languages
	Smalltalk is reflective but
	does not have a MOP
	Programming and meta-programming are mixed
	e.g., knowing that methods are stored into a method dictionary is not necessary for programming. ...
	Stripping image is difficult.
	Implementor of VM cannot optimize completely.
	Implementors could provide several optimized environments
	Firewall 93 was a declarative Smalltalk where hello world took 10 k




	5. Open Implementation Design Issues
	Dr. Stéphane Ducasse
	Software Composition Group
	University of Bern
	Switzerland
	Email: ducasse@iam.unibe.ch
	Url: http://www.iam.unibe.ch/~ducasse/
	Goals of this Lecture
	Lessons learnt in the MOP Design
	Open Implementation Design Guidelines

	Locality in MOP Design
	Feature Locality
	– MOP should provide access to individual features of the base language

	Textual Locality
	– The programmer should be able to indicate, using convenient reference to their base program, wh...

	Object Locality
	– The programmer should be able to affect the implementation on a per- object basis.

	Strategy Locality
	– The programmer should be able to affect individual parts of the implementation strategy.

	Implementation Locality
	– Extension of an implementation ought ot take code proprotional to the size of the change. A res...


	Open Implementation Design Guidelines
	Stepping back from CLOS and its MOP and generalization
	Black-box abstraction:
	A module should expose its functionality but hide its implementation
	Pros
	Localization of changes
	Level of abstraction
	Modularization easier
	Reuse easier

	Cons
	Performance problems
	Needs to code around

	Whereas black-box modules hide all aspects of their implementation, open implmentation modules al...

	Quality in interface designs
	from [Hoffman 90]
	consistent (e.g., same parameter passed always at the same place)
	essential (e.g., each service is offered in only one way)
	general
	minimal (e.g, each function provides one operation)
	opaque (e.g., the interface hides the way the module has been implemented)


	Set Module: Design A
	makeSet()
	insert(item, set)
	delete(item, set)
	isIn(item, set)
	map(function, state, set)
	Simple, Consistent, Essential, General, Minimal, Opaque
	But is the implementation performing well for?
	– few/many elements
	– frequent/unfrequent removal
	– frequent/unfrequent addition


	Set Module: Design B
	makeSet(usage)
	makeSet()
	insert(item, set)
	delete(item, set)
	isIn(item, set)
	map(function, state, set)
	Use
	makeSet (“n=10000,insert=lo,delete=lo,isIn=hi”)
	makeSet (“n=5,insert=hi,delete=hi”)
	Same property than design A and still hidding implementation
	Only a small change in the interface
	New functionality optional
	Well-bounded effect (only the set created by the call affected)
	Use of the new functionality orthogonal to previous one: distinction between client use and imple...


	First Guideline
	Separation of Use from Implementation Strategy Control
	Open Implementation module interfaces should support a clear separation between client code that ...

	Second Guideline
	Open implementation module interfaces should be designed to make the ISC code optional, make the ...
	Example: High Performance Fortran (for efficient parallel processing)
	Real A(1000,1000) B (998,998)
	!HPF$ ALIGN B(I,J) WITH A(I+1,J+1)
	ISC coded into comments
	use/ISC code has clear separation
	ISC code is optional
	ISC code easy to disable
	HPF doesnot support multiple ISC for the same piece of code but easy to implement


	Third Guideline
	Scope control
	Open implementation module interfaces should be designed to allow the scope of influence of ISC c...
	s1 = makeSte(“n=1000“)
	for i = 1 to 700 do
	insert(s1 , i +1)
	s2 = makeSet(“n=5“)
	insert(s2, 5)
	insert(s2,6)


	Subject Matter
	Design B has some weaknesses
	client programmer can mis-describes and get a solution worse than the default
	no garantee that they will get an optimal implementation strategy

	Design C
	makeSet(strategy)

	Use
	makeSet(“LinkedList”), makeSet(“BTree”)

	ICS can be about different subject matter
	– the client program’s behavior (design B),
	– module implementation strategy (design C), or
	– performance requirements

	No automatic solution
	Analysis steps in the process of selecting implementation strategy

	client use code ---> client usage profile --->
	client performance requirements ---> module implementation strategy

	Fourth Guideline
	Implementation Details must be hidden
	Open Implementation module interfaces should be designed to pass only essential implementation st...

	Design D
	Design C is limited to the implementation strategies provided by the module
	Might be not flexible enough
	class mySet (Set) {
	method insert...
	method delete...
	method isIn...}

	Use
	makeSet(“mySet”)
	Programmatic interfaces tend to be less robust
	locality is extremlly important
	Layered interface



	Last Guideline: Layered Interfaces
	Client
	No ISC code -> get default one
	Select from built-in ones
	Provide a new strategy

	When there is a simple interface that can describe strategies that will satisfy a significant fra...
	90%/10% Rule
	90% of the clients use the default strategy
	10% write new ISC code
	90% of 10% select in the built-in strategies
	1% should provide a new strategy
	ˆ But this is a really needed one!!!!


	6. Comparing Reflection in CLOS, Smalltalk and Java
	Dr. Stéphane Ducasse
	Software Composition Group
	University of Bern
	Switzerland
	Winter Semester 2000-2001
	Email: ducasse@iam.unibe.ch
	Url: http://www.iam.unibe.ch/~ducasse/
	Sorry but this is your work!
	Material you can use
	Java: Reflection API, OpenJava
	Smalltalk: Smalltalk a Reflective Language, Smalltalk 80 the Language, VisualWorks
	CLOS: The Art of the MetaObject Protocols, Paepcke Paper,
	www.franz.com download a trial version.

	Other documents available for you in my office


	Some Criterias
	Which entities?
	Introspection and/or Intercessory?
	Which aspects?
	Is the causal link respected? Only representation of data or can we affect them?
	Level of power,
	– for example try to invoke method m of class A on an instance of the class B subclass of A in Ja...
	– Use valueWithReceiver... in VW



	7. Implementing Message Passing Control in Smalltalk: an Analysis
	Dr. Stéphane Ducasse
	Software Composition Group
	University of Bern
	Switzerland
	Email: ducasse@iam.unibe.ch
	Url: http://www.iam.unibe.ch/~ducasse/
	Outline
	Limited Survey
	Method Wrappers in Use
	Opening the Box
	DoesNotUnderstand
	Method Wrapper
	Instance based Behavior

	Why Controling Message?
	Application Analysis and introspection
	Do not require program instrumentation (imagine in C++!!!)
	Dynamic traces, analysis of collaborations, hints for distribution

	Language Extension
	Distribution
	Security
	Atomic Data Types
	Multiple inheritance
	Instance based programming
	Object connections

	New objects models
	Active object model
	Concurrent Smalltalk
	Composition Filters
	New Meta Models (codA)


	Controling What Exactly!
	Which objects are controlled?
	Instance based: One instance
	Group based: A group of objects
	Class-based All instances of a class

	What methods are controlled?
	All methods
	Unknown methods
	Selected methods

	Technical quality of the control?
	Existing Smalltalk systems and tools
	Not another interpreter with an explicit send message!
	Not only pre and post methods
	Changing arguments (marshalling...)

	Who does the control?
	The receiver
	Another object


	A Limited Survey
	CLOS Mop: clean, integrated into the MOP
	Smalltalk: everythign is there but not polished
	do it yourself syndrome!
	MethodWrappers (http://st-www.cs.uiuc.edu/~brant/)
	Some well-known techniques

	Open C++ (first version, runtime, second version precompiler based)
	OpenJava (class loader annotations) @@Find paper @@

	CLOS Example (i)
	Counting the calls of a generic function
	Define a new class of generic function and specialise apply-generic- function
	(defclass counting-gf (standard-generic-function)
	((numberOfCalls :initform 0 :accessor numberOfCalls)))
	(defmethod apply-generic-function :before ((gf counting-gf) args)
	(incf (numberOfCalls gf)))


	Counting the calls of a method
	Define a new class of method and specialise apply-method
	(defclass counting-method (standard-method)
	((numberOfCalls :initform 0 :accessor numberOfCalls)))
	(defmethod apply-method :before ((method counting-method) args next-methods)
	(incf (numberOfCalls method)))



	CLOS Example (ii)
	Define new method of the right class or (depending on the implementation) change the class of cer...
	(defgeneric ack (x)
	(:generic-function-class counting-gf)
	(:method-class counting-method)))
	(defmethod ack (x)
	t)
	(defmethod ack ((i integer))
	1)
	(ack 1)
	-> 1
	(ack anObject)
	-> t
	(numberOfCalls #’ack)
	-> 2


	CLOS Example (iii)
	Separation between programmer and meta programmer job
	MOP entry points
	apply-generic-function
	compute-applicable-methods-using-classes
	method-more-specific-p
	apply-methods
	apply-method
	extra-function-bindings

	Optimized the following way: separate parts that change from part that don’t
	(apply-methods gf args methods)
	<=>
	(funcall (compute-effective-method-function gf methods) args)
	(apply-method method args next-methods)
	<=>
	(funcall (compute-method-function methods) args next-methods)


	A Coverage Tool in Smalltalk
	@@MW or Michel tools@@

	Smalltalk: Do It Yourself Syndrome
	Reflective sure !!
	But not a well defined MOP
	Full implementation details on the shoulder of the programmer
	Extra Criteria
	Reproductible easily
	Cost of implementation
	at the normal level of programming or fighting with bits

	Cost of activation
	(recompile or not)

	Run-time cost
	Integration into the programming environment
	is control visible for the programmer?



	Smalltalk Basic Reflective Tools
	Reflective but the VM has the control
	the way the objects are represented in memory
	how messages are handled.

	Programmer possibilities
	Instance variable access (instVarAt:)
	Compiling class on the fly (subclass:instanceVariable...)
	Compiling method on the fly (compile:notifying:)
	Changing inheritance chain (superclass:)
	Changing reference between objects (become:, becomeOneWay:)
	Changing class (changeClassToThatOf:)
	Message reification (only for error handling)
	Stack Reification (sender, receiver...)
	Methods are objects (mclass, sourceCode, bytes)
	Object methods can be invoked (valueWithReceiver:arguments:)
	Lookup can be called (perform:with:)


	6 Techniques
	Source code modification
	setX: t1 setY: t2
	...
	Original Code
	...
	reparsed, recompiled for installation and desintallation
	not applicable to stripped image

	Byte code extension
	(add a new byte code in the VM)
	dialect specific
	Byte code modification

	(insert a new byte code directly in the code of the method)
	dialect specific

	Deeply evaluated
	Error handling specialisation
	Anonymous classes
	Method Wrappers


	Unknown Messages
	Context: When an object does not understand a message, it sends doesNotUnderstand: with a reifica...
	Solution:
	define a minimal object that raises doesNotUnderstand: for every message
	wrap an object in a minimal object
	specify control semantics by specializing the doesNotUnderstand: method


	Creating a MinimalObject
	Object that does not inherit from Object nil subclass: MinimalObject
	does really not work because we cannot debug, print....

	The trick: (1) creating a normal class
	Object subclass: MinimalObject
	instanceVariableNames: ‘controlledObject’

	(2) setting the inheritance to nil,
	(3) copying some minimal behavior from Object.
	MinimalObject class>>initialize
	superclass := nil.
	#(doesNotUnderstand: error: ~~ isNil = == printString printOn: class inspect basicInspect basicSi...
	do: [:sel | self recompile: selector from: Object]
	Example of possible control
	MinimalObject>>doesNotUnderstand: aMessage
	...
	controlledObject perform: aMessage selector
	withArguments: aMessage arguments
	...



	Wrapping anObject
	Wrapping
	MinimalObject class>>newOn: anObject
	| x e |
	x := anObject.
	e := self new.
	x become: e.
	x object: e.
	^x

	Unwrapping
	MinimalObject>>uninstall
	| x |
	x := controlledObject.
	controlledObject := nil.
	x become: self


	Evaluation
	Instance based control controlling all methods (even not known a priori)
	Simple
	Slowest solution
	Message reified + Exception Handling
	even if doesNotUnderstand: is cached in certain VM

	Installation: no recompilation
	Known Problems
	Messages sent to self by the object itself are not controllable
	Messages sent to the object via reference to self
	Class control is impossible, cannot swap a class by an object
	Interpretation of minimal set of messages by the minimalObject and not the controlled object.
	anObject inspect => anObject controlledObject inspect



	Method Wrappers: an Example
	MethodWrapper variableSubclass: #CountMethodWrapper
	instanceVariableNames: 'count '
	CountMethodWrapper>>class: aClass selector: aSymbol
	count := 0.
	^super class: aClass selector: aSymbol
	CountMethodWrapper>>valueWithReceiver: anObject arguments: anArrayOfObjects
	count := count + 1.
	^clientMethod valueWithReceiver: anObject arguments: anArrayOfObjects
	CountMethodWrapper>> count
	^ count

	Method Wrappers
	The idea:
	substitute a method by a wrapper that has a reference to the original method
	wrapper has as source code the code of the original method
	transparent for the programmer


	Point
	methodDict

	Control
	To control the method originalSelector: on aClass the following code is automatically generated
	To have a way to refer to the method object itself and not the receiver of the message #() reserv...

	MethodWrapper Optimization
	Create method skeletons depending on number of parameters and then copy them
	no compilation needed


	MW method body
	Installation
	(MethodWrapper on: #blop inClass: Test) install
	MethodWrapper>>class: aClass selector: sel
	| position |
	self at: self methodPosition put: self.
	position := self arrayPosition.
	position == 0 ifFalse: [self at: position put: Array].
	mclass := aClass.
	selector := sel
	MethodWrapper>>install
	| definingClass method |
	definingClass := mclass whichClassIncludesSelector: selector.
	definingClass isNil ifTrue: [^self].
	method := definingClass compiledMethodAt: selector.
	method == self ifTrue: [^self].
	clientMethod := method.
	sourceCode := clientMethod sourcePointer.
	mclass addSelector: selector withMethod: self


	MW Evaluation
	Transparent fro the programmer
	Class-based (all instance of a class are controlled)
	Selective (only certain methods are controlled)
	Run-Time Cost: less than doesNotUnderstand:
	Coding cost: Tricky so this is better to reuse the library

	Exploiting VM Lookup Algorithm
	The idea:
	Interposing between the object and its class a class that specializes certain methods to introduc...

	Solution 1
	Explicit subclassing + change the class of the controlled instance
	Instance, group or class based, Selective method control
	Without optimization: compile methods and classes
	Polution of the class namespace for controling classes the programmer is aware of the control


	Solution 2
	Implicit subclassing: creation of an anonymous class


	Let’s view it
	Point
	methodDict

	Interceptor: Anonymous Classes
	Create an interceptor (a class): instance of Behavior
	Copy class description of the original class in the interceptor
	interceptor inherits from original class
	Compile in interceptor class class the methods needing control

	Let us think a bit
	From the implementor point of view
	How to access the original class?
	anObject class superclass

	How to access the anonymous class?
	anObject class


	But how can we access them in a conceptual manner?
	original class?
	anObject class
	anInterceptor>>class
	^super class superclass

	interceptor?
	anObject interceptor
	anInterceptor interceptor
	^ super class



	Essential Methods
	Naive Control Implementation (i)
	Naive because we compile all the times (see optimization).
	We want to generate the following code on the interceptor for a given method

	Naive Control Implementation (ii)
	Naive Control Implementation (iii)
	Interceptor new generateBody: #setX:setY: withSignature: #'with: t1 with: t2'
	->
	^self interceptor control: self receiving: #setX:setY:
	withArgs: (Array with: t1 with: t2) originalCall: [super setX: t1 setY: t2 ]
	The original call could be called via super but it may happen that another object than the interc...
	[super setX...] is costly


	Possible Optimization
	Like Method Wrapper implementation
	To avoid compilation when installing the control
	for each number of parameters skeletons of methods containing a call to the control can be create...
	copy essential method instead of recompiling them



	Evaluation
	Instance, group and class based control selective methods
	Simple but bugs during implementation may crash the system
	Efficient solution
	Installation: compilation but optimization is possible
	Good integration in the system (class is still the class)

	Why A Mop for Smalltalk is Needed?
	Free the developer from doing everything himself
	Free the VM or meta-programmer to optimize the code
	ANSI Normalization -> declarative Smalltalk but no MOP
	MOP
	instance variable representation
	instance variable access
	method control


	Pratice
	Lab session: Implement Actalk [Briot89]
	Play with the MethodWrappers
	Look at the coverage tools

	Play with anonymous class
	Implement an instance based language
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