
ESE
Einführung in Software Engineering

Prof. O. Nierstrasz

Wintersemester 2001/2002

ESE — W2001/2002 i.

s
now! 31
ese questions? 32

nt 33
ading 34

gement? 35
nagement? 36

37
.. 38
Techniques 39

41
bjectives 42

ives 43
s 44

ues 45
d Estimation 46

mmitment 47
duling 48
duling ... 49
 and Milestones 50
ilestones 51
tions and Dependencies 52

 Network 53
ity Timeline 54

llocation 55
56

s 57
ertainty 58

s 59
s ... 60
ent
 should k
answer th

anageme
nded Re

ct Mana
oject Ma
gement
gement
gement
Scope
pe and O
d Object
 Strategie
 Techniq
ent-base
 and Co

and Sche
and Sche
iverables
les and M
Task Dura
t: Activity
art: Activ
art: Staff A
ays
g problem
under unc
ith Delay
ith Delay
Table of Cont
1. ESE — Einführung in Software Engineering 1

Principle Texts 2
Other Books 3
Schedule 4
Why Software Engineering? 5
What is Software Engineering? (I) 6
What is Software Engineering? (II) 7
What is Software Engineering? (III) 8
Software Development Activities 9
The Classical Software Lifecycle 10
Problems with the Software Lifecycle 11
Iterative Development 12
Iterative and Incremental Development 13
Iterative and Incremental Development 14
The Unified Process 15
Boehm’s Spiral Lifecycle 16
Requirements Collection 17
Changing requirements 18
Requirements Analysis and Specification 19
Object-Oriented Analysis 20
Prototyping (I) 21
Prototyping (II) 22
Design 23
Implementation and Testing 24
Design, Implementation and Testing 25
Maintenance 26
Maintenance activities 27
Maintenance costs 28
Methods and Methodologies 29
Object-Oriented Methods: a brief history 30

What you
Can you

2. Project M
Recomme
Why Proje
What is Pr
Risk Mana
Risk Mana
Risk Mana
Focus on
Myth: Sco
Scope an
Estimation
Estimation
Measurem
Estimation
Planning
Planning
Myth: Del
Deliverab
Example:
Pert Char
Gantt Ch
Gantt Ch
Myth: Del
Schedulin
Planning
Dealing w
Dealing w

ESE — W2001/2002 ii.

ping 94
king 95
ws 96

97
98
99

ow! 100
 following questions? 101

n Design 102
riven Design? 103
riven Design? ... 104
nted Design? 105
nted Design? 106
n 107
sis 108

109
110

uirements Specification 111
n phrases 112
onale 114
onale ... 115
onale ... 116
onale ... 117
onale ... 118

119
120

sses 121
ing Groups 122
ing Groups ... 123

sses 124
125

ibilities 126
Earned Value: Tasks Completed 61
Earned Value ... 62
Gantt Chart: Slip Line 63
Timeline Chart 64
Slip Line vs. Timeline 65
Software Teams 66
Chief Programmer Teams 67
Chief Programmer Teams ... 68
Directing Teams 69
Directing Teams ... 70
Conway’s Law 71
What you should know! 72
Can you answer these questions? 73

3. Requirements Collection 74
The Requirements Engineering Process 75
Requirements Engineering Activities 76
Requirements Analysis 77
Problems of Requirements Analysis 78
Requirements evolution 79
The Requirements Analysis Process 80
Use Cases and Viewpoints 81
Use Cases and Viewpoints ... 82
Unified Modeling Language 83
Writing Requirements Definitions 84
Functional and Non-functional Requirements 85
Non-functional Requirements 86
Types of Non-functional Requirements 87
Examples of Non-functional Requirements 88
Requirements Verifiability 89
Precise Requirements Measures 90
Prototyping Objectives 92
Evolutionary Prototyping 93

Throw-away Prototy
Requirements Chec
Requirements Revie
Review checks
Traceability
Traceability ...
What you should kn
Can you answer the

4. Responsibility-Drive
Why Responsibility-d
Why Responsibility-d
What is Object-Orie
What is Object-Orie
The Initial Exploratio
The Detailed Analy
Finding Classes
Finding Classes ...
Drawing Editor Req
Drawing Editor: nou
Class Selection Rati
Class Selection Rati
Class Selection Rati
Class Selection Rati
Class Selection Rati
Candidate Classes
CRC Cards
Finding Abstract Cla
Identifying and Nam
Identifying and Nam
Recording Supercla
Responsibilities
Identifying Respons

ESE — W2001/2002 iii.

ign: Classes 159
ms and Contracts 160
ow! 161
 following questions? 162

nd Classes 163
164
165
166
167

 of Features 168
rations 169
ws 170
ses 171

172
173
174
175

avigability 176
177

ns 178
179

 For? 180
s ... 181
ollaborations 182

 Patterns 183
184

nts 185
 in UML 186

187
... 188
ow! 189
 following questions? 190
Assigning Responsibilities 127
Assigning Responsibilities ... 128
Relationships Between Classes 129
Relationships Between Classes ... 130
Recording Responsibilities 131
Collaborations 132
Finding Collaborations 133
Finding Collaborations ... 134
Recording Collaborations 135
What you should know! 136
Can you answer the following questions? 137

5. Detailed Design 138
Sharing Responsibilities 139
Multiple Inheritance 140
Building Good Hierarchies 141
Building Good Hierarchies ... 142
Building Kind-Of Hierarchies 143
Building Kind-Of Hierarchies ... 144
Refactoring Responsibilities 145
Identifying Contracts 146
Identifying Contracts ... 147
Applying the Guidelines 148
Applying the Guidelines ... 149
What are Subsystems? 150
Finding Subsystems 151
Subsystem Cards 152
Class Cards 153
Simplifying Interactions 154
Simplifying Interactions ... 155
Protocols 156
Refining Responsibilities 157
Defaults 158

Specifying Your Des
Specifying Subsyste
What you should kn
Can you answer the

6. Modeling Objects a
UML
Why UML?
UML History
Class Diagrams
Visibility and Scope
Attributes and Ope
UML Lines and Arro
Parameterized Clas
Interfaces
Utilities
Objects
Associations
Aggregation and N
Association Classes
Qualified Associatio
Inheritance
What is Inheritance
Inheritance support
Design Patterns as C
Instantiating Design
Constraints
Specifying Constrai
Design by Contract
Using the Notation
Using the Notation
What you should kn
Can you answer the

ESE — W2001/2002 iv.

223
224
225

els 226
227

res 228
odel 229

el 230
ectures 231
ectures ... 232
ectures 233
res 234
ctures 235
ctures ... 236

237
s 238

239
ting 240

241
242

System 243
low Architectures 244
oard Architectures 245
ge Diagram 246
yment Diagram 247
ow! 248
 following questions? 249

n 250
odels 251

252
254

es ... 255
7. Modeling Behaviour 191
Use Case Diagrams 192
Scenarios 193
Sequence Diagrams 194
UML Message Flow Notation 195
Collaboration Diagrams 196
Message Labels 197
Message Labels ... 198
State Diagrams 199
State Diagram Notation 200
State Diagram Notation ... 201
State Box with Regions 202
Transitions 203
Operations and Activities 204
Composite States 205
Sending Events between Objects 206
Concurrent Substates 207
Branching and Merging 208
Branching and Merging ... 209
History Indicator 210
Creating and Destroying Objects 211
Using the Notations 212
What you should know! 213
Can you answer the following questions? 214

8. Software Architecture 215
Sources: 216
What is Software Architecture? 217
What is Software Architecture? 218
How Architecture Drives Implementation 219
How Architecture Drives Implementation ... 220
Sub-systems, Modules and Components 221
Cohesion 222

Coupling
Tight Coupling
Loose Coupling
Architectural Parall
Architectural Styles
Layered Architectu
Abstract Machine M
OSI Reference Mod
Client-Server Archit
Client-Server Archit
Client-Server Archit
Four-Tier Architectu
Blackboard Archite
Blackboard Archite
Repository Model
Event-driven System
Broadcast model
Selective Broadcas
Dataflow Models
Dataflow Models ...
Invoice Processing
Compilers as Dataf
Compilers as Blackb
UML support: Packa
UML support: Deplo
What you should kn
Can you answer the

9. User Interface Desig
Interface Design M
GUI Characteristics
GUI advantages
GUI (dis) advantag

ESE — W2001/2002 v.

ming 290

ming ... 291

lidation 292

lidation ... 293

294

... 295

296

297

298

299

300

301

ox) testing 302

303

ning 304

 Data 305

x) Testing 306

307

od 308

310

he Technique 311

312

313

314

315

316

. 317

318

319

ow! 320

 following questions? 321
User Interface Design Principles 256
Direct Manipulation 258
Direct Manipulation ... 259
Interface Models 260
Menu Systems 261
Menu Systems ... 262
Menu Structuring 263
Command Interfaces 264
Command Interfaces ... 265
Information Presentation Factors 266
Analogue vs. Digital Presentation 267
Colour Use Guidelines 268
User Guidance 269
Design Factors in Message Wording 270
Error Message Guidelines 272
Good and Bad Error Messages 273
Help System Design 274
Help system use 275
User Interface Evaluation 276
Usability attributes 277
What you should know! 278
Can you answer the following questions? 279

10. Software Validation 280
Software Reliability, Failures and Faults 281
Kinds of failures 282
Programming for Reliability 283
Fault Avoidance 284
Common Sources of Software Faults 285
Common Sources of Software Faults ... 286
Fault Tolerance 287
Approaches to Fault Tolerance 288
Approaches to Fault Tolerance ... 289

Defensive Program

Defensive Program

Verification and Va

Verification and Va

The Testing Process

The Testing Process

Regression testing

Test Planning

Top-down Testing

Bottom-up Testing

Defect Testing

Defect Testing ...

Functional (black b

Coverage Criteria

Equivalence partitio

Test Cases and Test

Structural (white bo

Coverage criteria

Binary Search Meth

Path Testing

Basis Path Testing: T

Basis Path Testing ...

Condition Testing

Statistical Testing

Statistical Testing ...

Static Verification

Static Verification ..

When to Stop?

When to Stop? ...

What you should kn

Can you answer the

ESE — W2001/2002 vi.

 Conventions ... 355
356
357

 Model (CMM) 358
ow! 359
 following questions? 360

361
362

tifies concepts 363
cs 364
Metrics? 365
Measures 366

367
368
369

ping 370
s) 371

372
ditions 373
ditions ... 374

375
y Model 376
Quality Model 377
heritance) Metrics 378
 Cohesion Metrics 379
n Metrics 380
ality Metrics (I) 381
ality Metrics (II) 382
ality Metrics (III) 383
ality Metrics (IV) 384
 for QA (I) 385
 for QA (II) 387
11. Software Quality 322
What is Quality? 323
Problems with Software Quality 324
Hierarchical Quality Model 325
Quality Attributes 326
Quality Attributes ... 327
Correctness, Reliability, Robustness 328
Correctness, Reliability, Robustness ... 329
Efficiency, Usability 330
Efficiency, Usability ... 331
Maintainability 332
Maintainability ... 333
Verifiability, Understandability 334
Productivity, Timeliness, Visibility 335
Productivity, Timeliness, Visibility ... 336
Productivity, Timeliness, Visibility ... 337
Quality Control Assumption 338
The Quality Plan 339
The Quality Plan ... 340
Types of Quality Reviews 341
Review Meetings 343
Review Minutes 344
Review Guidelines 345
Sample Review Checklists (I) 346
Sample Review Checklists (II) 347
Sample Review Checklists (III) 348
Sample Review Checklists (IV) 349
Sample Review Checklists (V) 350
Review Results 351
Product and Process Standards 352
Potential Problems with Standards 353
Sample Java Code Conventions 354

Sample Java Code
Quality System
ISO 9000
Capability Maturity
What you should kn
Can you answer the

12. Software Metrics
Why Metrics?
Measurement quan
Why Software Metri
What are Software
Direct and Indirect
Possible Problems
Empirical Relations
Examples
Measurement Map
(Measures vs Metric
Preciseness
Representation Con
Representation Con
GQM
Quantitative Qualit
“Define your own”
Sample Size (and In
Sample Coupling &
Coupling & Cohesio
Sample External Qu
Sample External Qu
Sample External Qu
Sample External Qu
Conclusion: Metrics
Conclusion: Metrics

ESE — W2001/2002 vii.
© O. Nierstrasz — U. Berne

What you should know! 388
Can you answer the following questions? 389

13. TBA ... 390

ESE — W2001/2002 1.

 Einführung in Software Engineering

 Software

e.ch
Tel.631.4618
8
eeberger
4h15-16h00
ching/ESE/
© O. Nierstrasz — U. Berne ESE —

1. ESE — Einführung in
Engineering

Lecturer
Prof. Oscar Nierstrasz
Oscar.Nierstrasz@iam.unib
Schützenmattstr. 14/103,

Assistants Michele Lanza, Tel. 631.486
Michael Locher, Mauricio S

Lectures ExWi B7, Wednesdays @ 1
WWW www.iam.unibe.ch/~scg/Tea

http://www.iam.unibe.ch/~scg/Teaching/ESE/

ESE — W2001/2002 2.

 Einführung in Software Engineering

lle, Addison-Wesley,

ner’s Approach, R.
n., 1997.

re, R. Wirfs-Brock,
all, 1990.

 Demeyer
© O. Nierstrasz — U. Berne ESE —

Principle Texts

❑ Software Engineering, I. Sommervi
Sixth Edn., 2000.

❑ Software Engineering — A Practitio
Pressman, Mc-Graw Hill, Fourth Ed

❑ Designing Object-Oriented Softwa
B. Wilkerson, L. Wiener, Prentice H

Selected material courtesy of Prof. Serge

ESE — W2001/2002 3.

 Einführung in Software Engineering

, Addison-Wesley,

ction, B. Meyer,

tt, Addison Wesley,

rks with UML, D.
, 1999
Frameworks for
nd K. Rubin, Addison-

ing, W. Humphrey,
© O. Nierstrasz — U. Berne ESE —

Other Books
❑ The Mythical Man-Month, F. Brooks

Anniversary Edition 1995.
❑ Object-Oriented Software Constru

Prentice Hall, Second Edn., 1997.
❑ UML Distilled, M. Fowler with K. Sco

Second Edition, 2000
❑ Objects, Components and Framewo

D'Souza, A. Wills, Addison-Wesley
❑ Succeeding with Objects: Decision

Project Management, A. Goldberg a
Wesley, 1995

❑ A Discipline for Software Engineer
Addison Wesley, 1995

ESE — W2001/2002 4.

 Einführung in Software Engineering

oftware Lifecycle

n
esign

Classes

e

© O. Nierstrasz — U. Berne ESE —

Schedule
1. 10 - 24 Introduction — The S
2. 10 - 31 Project Management
3. 11 - 07 Requirements Collectio
4. 11 - 14 Responsibility-Driven D
5. 11 - 21 Detailed Design
6. 11 - 28 Modeling Objects and
7. 12 - 05 Modeling Behaviour
8. 12 - 12 Software Architectur
9. 12 - 19 User Interface Design
10. 01 - 09 Software Validation
11. 01 - 16 Software Quality
12. 01 - 23 Software Metrics
13. 02 - 30 TBA ...
14. 02 - 06 Final Exam

ESE — W2001/2002 5.

 Einführung in Software Engineering

ering?
 Final Program

rom?
correspond to the

e your program?
lly meets the

always work

 change?
ave more than a one-

oding
© O. Nierstrasz — U. Berne ESE —

Why Software Engine
A naive view: Problem Specification
But ...

❑ Where did the specification come f
❑ How do you know the specification

user’s needs?
❑ How did you decide how to structur
❑ How do you know the program actua

specification?
❑ How do you know your program will

correctly?
❑ What do you do if the users’ needs
❑ How do you divide tasks up if you h

person team?

c

ESE — W2001/2002 6.

 Einführung in Software Engineering

ering? (I)

y software on

physical constraints
sues

ctice” + life-long
© O. Nierstrasz — U. Berne ESE —

What is Software Engine
Some Definitions and Issues

“state of the art of developing qualit
time and within budget”

❑ Trade-off between perfection and
☞ SE has to deal with real-world is

❑ State of the art!
☞ Community decides on “best pra

education

ESE — W2001/2002 7.

 Einführung in Software Engineering

ring? (II)

ersion software”
— Parnas

t enough) +

 evolve or perish
eption
© O. Nierstrasz — U. Berne ESE —

What is Software Enginee

“multi-person construction of multi-v

❑ Team-work
☞ Scale issue (“program well” is no

Communication Issue

❑ Successful software systems must
☞ Change is the norm, not the exc

ESE — W2001/2002 8.

 Einführung in Software Engineering

ring? (III)

om other

— Sommerville
© O. Nierstrasz — U. Berne ESE —

What is Software Enginee

“software engineering is different fr
engineering disciplines”

❑ Not constrained by physical laws
☞ limit = human mind

❑ It is constrained by political forces
☞ balancing stake-holders

ESE — W2001/2002 9.

 Einführung in Software Engineering

ctivities

ential phases!

mer’s needs
ify the requirements

ify a solution (“how”)
ution in software
lution against the

and adapt the
requirements
© O. Nierstrasz — U. Berne ESE —

Software Development A

NB: these are ongoing activities, not sequ

Requirements Collection Establish custo

Analysis Model and spec
(“what”)

Design Model and spec
Implementation Construct a sol

Testing Validate the so
requirements

Maintenance Repair defects
solution to new

ESE — W2001/2002 10.

 Einführung in Software Engineering

ifecycle

y reasons, especially:
arly in the life-cycle

re lifecycle models
opment as a step-
l” between the
ent phases.

sting
Maintenance
© O. Nierstrasz — U. Berne ESE —

The Classical Software L

The waterfall model is unrealistic for man
❑ requirements must be “frozen” too e
❑ requirements are validated too late

The classical softwa
the software devel

by-step “waterfal
various developm

Design

Implementation

Te

Analysis

Requirements
Collection

ESE — W2001/2002 11.

 Einführung in Software Engineering

e Lifecycle
ential flow that the
urs and creates
radigm”
er to state all
life cycle requires
g the natural

ning of many

 working version of
ntil late in the
f undetected until
n be disastrous.”
ssman, SE, p. 26
© O. Nierstrasz — U. Berne ESE —

Problems with the Softwar
1. “Real projects rarely follow the sequ

model proposes. Iteration always occ
problems in the application of the pa

2. “It is often difficult for the custom
requirements explicitly. The classic
this and has difficulty accommodatin
uncertainty that exists at the begin
projects.”

3. “The customer must have patience. A
the program(s) will not be available u
project timespan. A major blunder, i
the working program is reviewed, ca

— Pre

ESE — W2001/2002 12.

 Einführung in Software Engineering

ent
ve, and all activities

why is it still the

 on requirements

roughout implementation

 refactoring
© O. Nierstrasz — U. Berne ESE —

Iterative Developm
In practice, development is always iterati
progress in parallel.

✎ If the waterfall model is pure fiction,
standard software process?

Requirements
Collection

Testing

Design

Analysis

Implementation

Validation through prototyping

Testing based

Testing th

Maintenance through iteration

Design through

ESE — W2001/2002 13.

 Einführung in Software Engineering

evelopment

plementation.

ime, so integrate,
s possible.

vered, the more
© O. Nierstrasz — U. Berne ESE —

Iterative and Incremental D

Plan to iterate your analysis, design and im

☞ You won’t get it right the first t
validate and test as frequently a

The later in the lifecycle errors are disco
expensive they are to fix!

ESE — W2001/2002 14.

 Einführung in Software Engineering

evelopment

pe) the system.

g version of the
ty is yet to be

oon as possible.
ainst user
© O. Nierstrasz — U. Berne ESE —

Iterative and Incremental D

Plan to incrementally develop (i.e., prototy

☞ If possible, always have a runnin
system, even if most functionali
implemented.

☞ Integrate new functionality as s
☞ Validate incremental versions ag

requirements.

ESE — W2001/2002 15.

 Einführung in Software Engineering

ss
struction Transition

Iter.
#n-1

Iter.
#n..... ...

s?
© O. Nierstrasz — U. Berne ESE —

The Unified Proce
Inception Elaboration Con

Requirements

Analysis

Design

Implementation

Test

Iter.
#1

Iter.
#2

How do you plan the number of iteration
How do you decide on completion?

ESE — W2001/2002 16.

 Einführung in Software Engineering

ycle

tem

first prototype
go, no-go decision

alysis = Analysis of
tives and identification/
ion of risks

Engineering =
Development of the
“next level” product

 = something that
ll delay project or
crease its cost
© O. Nierstrasz — U. Berne ESE —

Boehm’s Spiral Lifec

evolving sys

initial requirements

alpha demo

completion

Planning = determination
of objectives, alternatives
and constraints

Risk An
alterna
resolut

Customer Evaluation =
Assessment of the
results of engineering

Risk
wi
in

ESE — W2001/2002 17.

 Einführung in Software Engineering

tion

formally:

d in written form,
en incorrect.
© O. Nierstrasz — U. Berne ESE —

Requirements Collec

User requirements are often expressed in
☞ features
☞ usage scenarios

Although requirements may be documente
they may be incomplete, ambiguous, or ev

ESE — W2001/2002 18.

 Einführung in Software Engineering

nts

sed in the first place
nge during the

are lifecycle, not

r project plan

elp clarify
© O. Nierstrasz — U. Berne ESE —

Changing requireme
Requirements will change!

☞ inadequately captured or expres
☞ user and business needs may cha

project

Validation is needed throughout the softw
only when the “final system” is delivered!

☞ build constant feedback into you
☞ plan for change
☞ early prototyping [e.g., UI] can h

requirements

ESE — W2001/2002 19.

 Einführung in Software Engineering

pecification

 a system will do.

ar understanding of
at its underlying

cument.

espond to the users’
© O. Nierstrasz — U. Berne ESE —

Requirements Analysis and S

Analysis is the process of specifying what

☞ The intention is to provide a cle
what the system is about and wh
concepts are.

The result of analysis is a specification do

Does the requirements specification corr
actual needs?

ESE — W2001/2002 20.

 Einführung in Software Engineering

lysis

els of the system

 system

s

d on the system
erations
© O. Nierstrasz — U. Berne ESE —

Object-Oriented Ana

An object-oriented analysis results in mod
which describe:

❑ classes of objects that exist in the
☞ responsibilities of those classes

❑ relationships between those classe
❑ use cases and scenarios describing

☞ operations that can be performe
☞ allowable sequences of those op

ESE — W2001/2002 21.

 Einführung in Software Engineering

ped to test, explore
ks.

 throwaway
ments or explore

rements
al requirements
technical feasibility
© O. Nierstrasz — U. Berne ESE —

Prototyping (I)
A prototype is a software program develo
or validate a hypothesis, i.e. to reduce ris

An exploratory prototype, also known as a
prototype, is intended to validate require
design choices.

❑ UI prototype — validate user requi
❑ rapid prototype — validate function
❑ experimental prototype — validate

ESE — W2001/2002 22.

 Einführung in Software Engineering

volve in steps into a

edesigning and

ast.
© O. Nierstrasz — U. Berne ESE —

Prototyping (II)

An evolutionary prototype is intended to e
finished product.

❑ iteratively “grow” the application, r
refactoring along the way

✔ First do it, then do it right, then do it f

ESE — W2001/2002 23.

 Einführung in Software Engineering

e specified system
components. The
ign documents.

hat describe:
nted by interacting

nd how they are

d to classes

 in parallel with
© O. Nierstrasz — U. Berne ESE —

Design
Design is the process of specifying how th
behaviour will be realized from software
results are architecture and detailed des

Object-oriented design delivers models t
❑ how system operations are impleme

objects
❑ how classes refer to one another a

related by inheritance
❑ attributes and operations associate

Design is an iterative process, proceeding
implementation!

ESE — W2001/2002 24.

 Einführung in Software Engineering

esting
cting a software

e solution meets the

d testing is a fully
on.
© O. Nierstrasz — U. Berne ESE —

Implementation and T
Implementation is the activity of constru
solution to the customer’s requirements.

Testing is the process of validating that th
requirements.

☞ The result of implementation an
documented and validated soluti

ESE — W2001/2002 25.

 Einführung in Software Engineering

d Testing
rative activities

plement the design”,
 documents the

ents specification
-in-hand

precedes design and
© O. Nierstrasz — U. Berne ESE —

Design, Implementation an
Design, implementation and testing are ite

☞ The implementation does not “im
but rather the design document
implementation!

❑ System tests reflect the requirem
❑ Testing and implementation go hand

☞ Ideally, test case specification
implementation

ESE — W2001/2002 26.

 Einführung in Software Engineering

system after it has

 and repairing

 existing solution to

ing new requirements

 delivery and
 considered
© O. Nierstrasz — U. Berne ESE —

Maintenance
Maintenance is the process of changing a
been deployed.

❑ Corrective maintenance: identifying
defects

❑ Adaptive maintenance: adapting the
new platforms

❑ Perfective maintenance: implement

In a spiral lifecycle, everything after the
deployment of the first prototype can be
“maintenance”!

ESE — W2001/2002 27.

 Einführung in Software Engineering

ies

ent

ctoring)

r documentation

tion and refactoring
© O. Nierstrasz — U. Berne ESE —

Maintenance activit
“Maintenance” entails:

❑ configuration and version managem

❑ reengineering (redesigning and refa

❑ updating all analysis, design and use

Repeatable, automated tests enable evolu

ESE — W2001/2002 28.

 Einführung in Software Engineering

s

User
ts

Emergency
Fixes

outine
ebugging

Changes in
Data Formats

1.8

17.4

12.4
9

© O. Nierstrasz — U. Berne ESE —

Maintenance cost

Changes in
Requiremen

Documentation

Hardware
Changes R

D

Other

Efficiency
Improvements

4

6.2

5.5

4

3.4

Breakdown of
maintenance costs.
Source: Lientz 1979

ESE — W2001/2002 29.

 Einführung in Software Engineering

logies
esirable properties
e activity
l than method
chniques packaged

hezzi et al. 1991
© O. Nierstrasz — U. Berne ESE —

Methods and Methodo
Principle = general statement describing d
Method = general guidelines governing som
Technique = more technical and mechanica
Methodology = package of methods and te

— G

Principle

Methods and Techniques

Methodologies

Tools

ESE — W2001/2002 30.

 Einführung in Software Engineering

brief history

R diagrams, state
nd Mellor, ...

 design; design by

l methods

+ Use Cases + ...
. Catalysis)
© O. Nierstrasz — U. Berne ESE —

Object-Oriented Methods: a
First generation:

❑ Adaptation of existing notations (E
diagrams ...): Booch, OMT, Shlaer a

❑ Specialized design techniques:
☞ CRC cards; responsibility-driven

contract
Second generation:

❑ Fusion: Booch + OMT + CRC + forma
Third generation:

❑ Unified Modeling Language:
☞ uniform notation: Booch + OMT
☞ various UML-based methods (e.g

ESE — W2001/2002 31.

 Einführung in Software Engineering

ow!
 from programming?
ic?
sis and design?
ementally?
f the cost of a “real”

dvantages of object-
© O. Nierstrasz — U. Berne ESE —

What you should kn
✎ How does Software Engineering differ
✎ Why is the “waterfall” model unrealist
✎ What is the difference between analy
✎ Why plan to iterate? Why develop incr
✎ Why is programming only a small part o

software project?
✎ What are the key advantages and disa

oriented methods?

ESE — W2001/2002 32.

 Einführung in Software Engineering

estions?
odel?

odel captures users’

art?
© O. Nierstrasz — U. Berne ESE —

Can you answer these qu
✎ What is the appeal of the “waterfall” m
✎ Why do requirements change?
✎ How can you validate that an analysis m

real needs?
✎ When does analysis stop and design st
✎ When can implementation start?

ESE — W2001/2002 33.

Project Management

ment

d scheduling

lle, Addison-Wesley,

ner’s Approach, R.
., 1994.
© O. Nierstrasz — U. Berne

2. Project Manage

Overview:
❑ Risk management
❑ Scoping and estimation, planning an
❑ Dealing with delays
❑ Staffing, directing, teamwork

Sources:
❑ Software Engineering, I. Sommervi

Sixth Edn., 2000.
❑ Software Engineering — A Practitio

Pressman, Mc-Graw Hill, Third Edn

ESE — W2001/2002 34.

Project Management

ing
, Addison-Wesley,

ks, 1993
Frameworks for
nd K. Rubin, Addison-

brace Change, Kent
© O. Nierstrasz — U. Berne

Recommended Read
❑ The Mythical Man-Month, F. Brooks

1975
❑ Object Lessons, T. Love, SIGS Boo
❑ Succeeding with Objects: Decision

Project Management, A. Goldberg a
Wesley, 1995

❑ Extreme Programming Explained: Em
Beck, Addison Wesley, 1999

ESE — W2001/2002 35.

Project Management

ent?
ined via projects.
roducts)

 within budget

ct Team is the
 Resource!

 Resources
© O. Nierstrasz — U. Berne

Why Project Managem
Almost all software products are obta

(as opposed to manufactured p

Project Concern = Deliver on time and

The Proje
primary

LimitedAchieve Interdependent &
Conflicting Goals

ESE — W2001/2002 36.

Project Management

ement?

ources

 personnel
ole
n deviations +

and work the plan
© O. Nierstrasz — U. Berne

What is Project Manag

Management Functions
❑ Planning: Estimate and schedule res
❑ Organization: Who does what
❑ Staffing: Recruiting and motivating
❑ Directing: Ensure team acts as a wh
❑ Monitoring (Controlling): Detect pla

corrective actions

Project Management = Plan the work

ESE — W2001/2002 37.

Project Management

y will actively

— Tom Gilb

e, personnel, morale

ication, maintenance

mitment ...
© O. Nierstrasz — U. Berne

Risk Management

If you don’t actively attack risks, the
attack you.

Project risks
☞ budget, schedule, resources, siz

...
Technical risks

☞ implementation technology, verif
...

Business risks
☞ market, sales, management, com

ESE — W2001/2002 38.

Project Management

..

e
 and manage risks
ion, ...
ct
© O. Nierstrasz — U. Berne

Risk Management

Management must:
❑ identify risks as early as possible
❑ assess whether risks are acceptabl
❑ take appropriate action to mitigate

☞ e.g., training, prototyping, iterat
❑ monitor risks throughout the proje

ESE — W2001/2002 39.

Project Management

niques
ent Techniques
 talent; team
aining; pre-
ople
rce cost &

on; incremental
e; re-scoping
totyping; early

hold; information
al development
© O. Nierstrasz — U. Berne

Risk Management Tech
Risk Items Risk Managem

Personnel shortfalls Staffing with top
building; cross-tr
scheduling key pe

Unrealistic schedules
and budgets

Detailed multi-sou
schedule estimati
development; reus

Developing the wrong
software functions

User-surveys; pro
users’s manuals

Continuing stream of
requirements changes

High change thres
hiding; increment

ESE — W2001/2002 40.

Project Management

marking; modeling;
umentation; tuning

; cost-benefit
ing; reference

ent Techniques
© O. Nierstrasz — U. Berne

Real time
performance
shortfalls

Simulation; bench
prototyping; instr

Straining computer
science capabilities

Technical analysis
analysis; prototyp
checking

Risk Items Risk Managem

ESE — W2001/2002 41.

Project Management

 whining, “The
t. When we give
on’t like it.” Get
oftware
ever clear at
actly what they

— Kent Beck
© O. Nierstrasz — U. Berne

Focus on Scope

For decades, programmers have been
customers can’t tell us what they wan
them what they say they want, they d
over it. This is an absolute truth of s
development. The requirements are n
first. Customers can never tell you ex
want.

ESE — W2001/2002 42.

Project Management

ctives

 enough to start

ause of project
© O. Nierstrasz — U. Berne

Myth: Scope and Obje

Myth
“A general statement of objectives is
coding.”

Reality
Poor up-front definition is the major c
failure.

ESE — W2001/2002 43.

Project Management

es
 & objectives
ls of the project, not

ions that the
ds these functions in

 be explicitly stated
© O. Nierstrasz — U. Berne

Scope and Objectiv
In order to plan, you must set clear scope

❑ Objectives identify the general goa
how they will be achieved.

❑ Scope identifies the primary funct
software is to accomplish, and boun
a quantitative manner.

Goals must be realistic and measurable
Constraints, performance, reliability must
Customer must set priorities

ESE — W2001/2002 44.

Project Management

ies

re estimates

cts in the same

ime available
 strategy

the budget available
 parties
© O. Nierstrasz — U. Berne

Estimation Strateg
These strategies are simple but risky:

Expert
judgement

Consult experts and compa
☞ cheap, but unreliable

Estimation by
analogy

Compare with other proje
application domain
☞ limited applicability

Parkinson's
Law

Work expands to fill the t
☞ pessimistic management

Pricing to win You do what you can with
☞ requires trust between

ESE — W2001/2002 45.

Project Management

ues
deling” are used

nents + integration

p estimation
rical facts to map

ata
© O. Nierstrasz — U. Berne

Estimation Techniq
“Decomposition” and “Algorithmic cost mo
together

Decomposition
Estimate costs for compo

☞ top-down or bottom-u

Algorithmic
cost modeling

Exploit database of histo
size on costs

☞ requires correlation d

ESE — W2001/2002 46.

Project Management

imation

s

erpret
 the effort with
t to a specific
pment project plan
© O. Nierstrasz — U. Berne

Measurement-based Est

A. Measure
Develop a system model
and measure its size

B. Estimate
Determine the effort with
respect to an empirical
database of measurement
from similar projects

C. Int
Adapt
respec
develo

ESE — W2001/2002 47.

Project Management

tment

rewrite stories
 factor, the ratio of
dar

s calculate budget,
that number, or
ers calculate date
sk to reduce scope,
educe scope anyway)
© O. Nierstrasz — U. Berne

Estimation and Commi
Example: The XP process

1. a. Customers write stories and
b. Programmers estimate stories
☞ else ask the customers to split/

2. Programmers measure the team load
ideal programming time to the calen

3. Customers sort stories by priority
4. Programmers sort stories by risk
5. a. Customers pick date, programmer

customers pick stories adding up to
b. Customers pick stories, programm
(customers complain, programmers a
customers complain some more but r

ESE — W2001/2002 48.

Project Management

ling
manager’s intuition

liable estimation.
 milestone.
t must be met after

e a necessity!
ingless statement)

...
© O. Nierstrasz — U. Berne

Planning and Schedu
Good planning depends largely on project
and experience!

❑ Split project into tasks.
☞ Tasks into subtasks etc.

❑ For each task, estimate the time.
☞ Define tasks small enough for re

❑ Significant tasks should end with a
☞ Milestone = A verifiable goal tha

task completion
☞ Clear unambiguous milestones ar

(“80% coding finished” is a mean
☞ Monitor progress via milestones

ESE — W2001/2002 49.

Project Management

g ...
ct tasks
 critical) path in

void delays
e optimal use of

ing the project!
© O. Nierstrasz — U. Berne

Planning and Schedulin
❑ Define dependencies between proje

☞ Total time depends on longest (=
activity graph

☞ Minimize task dependencies to a
❑ Organize tasks concurrently to mak

workforce

Planning is iterative
⇒ monitor and revise schedules dur

ESE — W2001/2002 50.

Project Management

ilestones

l project is the

are development
© O. Nierstrasz — U. Berne

Myth: Deliverables and M

Myth
“The only deliverable for a successfu
working program.”

Reality
Documentation of all aspects of softw
are needed to ensure maintainability.

ESE — W2001/2002 51.

Project Management

tones
delivered to the

 monitor progress
ry 2-3 weeks

ct progresses!
© O. Nierstrasz — U. Berne

Deliverables and Miles
Project deliverables are results that are
customer.

❑ E.g.:
☞ initial requirements document
☞ UI prototype
☞ architecture specification

❑ Milestones and deliverables help to
☞ Should be scheduled roughly eve

NB: Deliverables must evolve as the proje

ESE — W2001/2002 52.

Project Management

Dependencies

 this project?

Dependencies

T1

T2, T4
T1, T2

T1
T4

T3, T6
T5, T7

T9
T11
© O. Nierstrasz — U. Berne

Example: Task Durations and

✎ What is the minimum total duration of

Task Duration (days)
T1 8
T2 15
T3 15
T4 10
T5 10
T6 5
T7 20
T8 25
T9 15
T10 15
T11 7
T12 10

ESE — W2001/2002 53.

Project Management

etwork
© O. Nierstrasz — U. Berne

Pert Chart: Activity N

ESE — W2001/2002 54.

Project Management

imeline
© O. Nierstrasz — U. Berne

Gantt Chart: Activity T

ESE — W2001/2002 55.

Project Management

ocation

g, ... are difficult to

D J F M A M J J A

4. Integrate&Test

4. Integrate&Test

4. Integrate&Test

4. Integrate&Test

5. Manual

5. Manual

7

7

© O. Nierstrasz — U. Berne

Gantt Chart: Staff All

(Overall tasks such as reviewing, reportin
incorporate)

Tobias

Marta

Leo

Ryan

Sylvia

Laura

F M A M J J A S O NJ

Free timeOccupied time

1

1 2. Design

2. Design

3.3. Code Gen.2. Design

2. Design3.3. Code Gen.

3.1

3.1

3.1 3.2. Parser

3.2. Parser

3.2. Parser

ESE — W2001/2002 56.

Project Management

d more

project down.
© O. Nierstrasz — U. Berne

Myth: Delays

Myth
“If we get behind schedule, we can ad
programmers and catch up.”

Reality
Adding more people typically slows a

ESE — W2001/2002 57.

Project Management

s

ms and the cost of

he number of people

es it later due to

ways allow

g is a recipe for

m benefits!
© O. Nierstrasz — U. Berne

Scheduling problem

❑ Estimating the difficulty of proble
developing a solution is hard

❑ Productivity is not proportional to t
working on a task

❑ Adding people to a late project mak
communication overhead

❑ The unexpected always happens. Al
contingency in planning

❑ Cutting back in testing and reviewin
disaster

❑ Working overnight? Only short ter

ESE — W2001/2002 58.

Project Management

ainty

n’t know

minate unknowns

 can be met
© O. Nierstrasz — U. Berne

Planning under uncert

❑ State clearly what you know and do

❑ State clearly what you will do to eli

❑ Make sure that all early milestones

❑ Plan to replan

ESE — W2001/2002 59.

Project Management

s

er

et
ited to the project

...
© O. Nierstrasz — U. Berne

Dealing with Delay
Spot potential delays as soon as possible

... then you have more time to recov

How to spot?
❑ Earned value analysis

☞ planned time is the project budg
☞ time of a completed task is cred

budget

ESE — W2001/2002 60.

Project Management

 ...

ied tasks
mmunication

 incrementally
ality on time
if customer
© O. Nierstrasz — U. Berne

Dealing with Delays
How to recover?
A combination of following 3 actions

❑ Adding senior staff for well-specif
☞ outside critical path to avoid co

overhead
❑ Prioritize requirements and deliver

☞ deliver most important function
☞ testing remains a priority (even

disagrees)
❑ Extend the deadline

ESE — W2001/2002 61.

Project Management

mpleted

ompleted
pleted

ted
pleted

n

© O. Nierstrasz — U. Berne

Earned Value: Tasks Co
The 0/100 Technique

❑ earned value := 0% when task not c
❑ earned value := 100% when task com

☞ tasks should be rather small
☞ gives a pessimistic impression

The 50/50 Technique
❑ earned value := 50% when task star
❑ earned value := 100% when task com

☞ tasks are rather large
☞ may give an optimistic impressio

❑ variant with 20/80

ESE — W2001/2002 62.

Project Management

es completed / total

f intermediate

btasks and fall back
© O. Nierstrasz — U. Berne

Earned Value ...
The Milestone Technique

❑ earned value := number of mileston
number of milestones
☞ tasks should be large with lots o

milestones
☞ better to split task in several su

on 0/100

ESE — W2001/2002 63.

Project Management

ine

mpleted
necting endpoints of

schedule

D J F M A M J J A

ahead of schedule
© O. Nierstrasz — U. Berne

Gantt Chart: Slip L
Visualize slippage

❑ Shade time line = portion of task co
❑ Draw a slip line at current date, con

the shaded areas
☞ bending to the right = ahead of
☞ to the left = behind schedule

1.Start
2.Design
3.Implementation

3.1.build scanner
3.2.build parser
3.3. build code generator

4.Integrate & Test
5.Write manual
6. Reviewing
7. Finish

F M A M J J A S O NJ

behind

ESE — W2001/2002 64.

Project Management

ompletion time as

nt completed tasks
J

Planned Time

Today

edule
© O. Nierstrasz — U. Berne

Timeline Chart
Visualise slippage evolution

❑ downward lines represent planned c
they vary in current time

❑ bullets at the end of a line represe
F M A M J J A S O N D J F M A M JJ

M
J

J
A

S
O

N
D

A
ctual T

im
e

3.1.scanner

3.2 parser

3.3 code generator

on time

ahead of behind sch
schedule

ESE — W2001/2002 65.

Project Management

ine
f project tasks

 the past to

f project tasks

r the figure
 more tasks
© O. Nierstrasz — U. Berne

Slip Line vs. Timel

Slip Line

Monitors current slip status o
❏ many tasks
❏ only for 1 point in time
☞ include a few slip lines from
illustrate evolution

Timeline

Monitors how the slip status o
evolves
❏ few tasks
☞ crossing lines quickly clutte
☞ colours can be used to show
❏ complete time scale

ESE — W2001/2002 66.

Project Management

8 members)
d
veloped
her
property (“egoless

embers leave
le smaller projects
nformal, democratic

e the most effective
© O. Nierstrasz — U. Berne

Software Teams
Team organisation

❑ Teams should be relatively small (<
☞ minimize communication overhea
☞ team quality standard can be de
☞ members can work closely toget
☞ programs are regarded as team

programming”)
☞ continuity can be maintained if m

❑ Break big projects down into multip
❑ Small teams may be organised in an i

way
❑ Chief programmer teams try to mak

use of skills and experience

ESE — W2001/2002 67.

Project Management

ams
lped by others as

ponsibility for
d installation of

 of CP’s work and

nistrator, toolsmith,
system expert,
s

...
© O. Nierstrasz — U. Berne

Chief Programmer Te
❑ Consist of a kernel of specialists he

required
☞ chief programmer takes full res

design, programming, testing an
system

☞ backup programmer keeps track
develops test cases

☞ librarian manages all information
☞ others may include: project admi

documentation editor, language/
tester, and support programmer

ESE — W2001/2002 68.

Project Management

ms ...

s are:
programmers
nal structures
 not chief
© O. Nierstrasz — U. Berne

Chief Programmer Tea

❑ Reportedly successful but problem
☞ Difficult to find talented chief
☞ Disrupting to normal organisatio
☞ De-motivating for those who are

programmers

ESE — W2001/2002 69.

Project Management

 necessary

e people work, it
rk”

— Tom DeMarco

will trust you.
...
© O. Nierstrasz — U. Berne

Directing Teams
Managers serve their team

❑ Managers ensure that team has the
information and resources

“The manager’s function is not to mak
is to make it possible for people to wo

Responsibility demands authority
❑ Managers must delegate

☞ Trust your own people and they

ESE — W2001/2002 70.

Project Management

..

the critical path
l managers

to which the
© O. Nierstrasz — U. Berne

Directing Teams .

Managers manage
❑ Managers cannot perform tasks on

☞ Especially difficult for technica

Developers control deadlines
❑ A manager cannot meet a deadline

developers have not agreed

ESE — W2001/2002 71.

Project Management

e constrained to
e communication
© O. Nierstrasz — U. Berne

Conway’s Law

“Organizations that design systems ar
produce designs that are copies of th
structures of these organizations”

ESE — W2001/2002 72.

Project Management

ow!
k in a project?
 important?
twork? An activity

100; the 50/50 and
 the earned value.
o more than about 8
© O. Nierstrasz — U. Berne

What you should kn
✎ How can prototyping help to reduce ris
✎ What are milestones, and why are they
✎ What can you learn from an activity ne

timeline?
✎ What’s the difference between the 0/

the milestone technique for calculating
✎ Why should programming teams have n

members?

ESE — W2001/2002 73.

Project Management

estions?
t the customers, set

 of a project (based

he customer?
 a good sign or a bad

 perfect software

aw in action?
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ What will happen if the developers, no

the project priorities?
✎ What is a good way to measure the size

on requirements alone)?
✎ When should you sign a contract with t
✎ Would you consider bending slip lines as

sign? Why?
✎ How would you select and organize the

development team?
✎ What are good examples of Conway’s L

ESE — W2001/2002 74.

Requirements Collection

lection

ess

rements
yping

lle, 1996.
ner’s Approach, R.

., 1994.
rks with UML, D.
, 1999
© O. Nierstrasz — U. Berne

3. Requirements Col

Overview:
❑ The Requirements Engineering Proc
❑ Use cases and scenarios
❑ Functional and non-functional requi
❑ Evolutionary and throw-away protot
❑ Requirements checking and reviews

Sources:
❑ Software Engineering, I. Sommervi
❑ Software Engineering — A Practitio

Pressman, Mc-Graw Hill, Third Edn
❑ Objects, Components and Framewo

D'Souza, A. Wills, Addison-Wesley

ESE — W2001/2002 75.

Requirements Collection

ing Process
© O. Nierstrasz — U. Berne

The Requirements Engineer

ESE — W2001/2002 76.

Requirements Collection

Activities

ns are for analysts

ds can be satisfied
ogy and budget.
eholders require

in a form
tomer.

in detail.
tween client and
© O. Nierstrasz — U. Berne

Requirements Engineering

“Requirements are for users; specificatio
and developers.”

Feasibility
study

Determine if the user nee
with the available technol

Requirements
analysis

Find out what system stak
from the system.

Requirements
definition

Define the requirements
understandable to the cus

Requirements
specification

Define the requirements
(Written as a contract be
contractor.)

ESE — W2001/2002 77.

Requirements Collection

sis
 or requirements

etermine

d provide and
s.

s involved in
 unions, etc.
© O. Nierstrasz — U. Berne

Requirements Analy
Sometimes called requirements elicitation
discovery

Technical staff work with customers to d
❑ the application domain,
❑ the services that the system shoul
❑ the system’s operational constraint

Involves various stakeholders:
❑ e.g., end-users, managers, engineer

maintenance, domain experts, trade

ESE — W2001/2002 78.

Requirements Collection

 Analysis

 really want
s in their own terms
onflicting

 may influence the

e analysis process.
© O. Nierstrasz — U. Berne

Problems of Requirements

Various problems typically arise:

❑ Stakeholders don’t know what they
❑ Stakeholders express requirement
❑ Different stakeholders may have c

requirements
❑ Organisational and political factors

system requirements
❑ The requirements change during th

New stakeholders may emerge.

ESE — W2001/2002 79.

Requirements Collection

ion

ter understanding of
organisation’s

the requirements as
sed
© O. Nierstrasz — U. Berne

Requirements evolut

❑ Requirements always evolve as a bet
user needs is developed and as the
objectives change

❑ It is essential to plan for change in
the system is being developed and u

ESE — W2001/2002 80.

Requirements Collection

s Process
© O. Nierstrasz — U. Berne

The Requirements Analysi

ESE — W2001/2002 81.

Requirements Collection

oints

nce of actions,
 entity) can perform,

rnet

ccurrences, starting

to the “search” page
...
© O. Nierstrasz — U. Berne

Use Cases and Viewp

A use case is the specification of a seque
including variants, that a system (or other
interacting with actors of the system”.

☞ e.g., buy a DVD through the inte

A scenario is a particular trace of action o
from a known initial state.

☞ e.g., connect to myDVD.com, go

ESE — W2001/2002 82.

Requirements Collection

nts ...
m viewpoints.
of stakeholders as

es or “stories” about
 set of actors (users

ical and exceptional

s of “features”.
es involving those

 if the requirements
© O. Nierstrasz — U. Berne

Use Cases and Viewpoi
Stakeholders represent different proble

❑ Interview as many different kinds
possible/necessary

❑ Translate requirements into use cas
the desired system involving a fixed
and system objects)

❑ For each use case, capture both typ
usage scenarios

Users tend to think about systems in term
❑ You must get them to tell you stori

features.
❑ Use cases and scenarios can tell you

are complete and consistent!

ESE — W2001/2002 83.

Requirements Collection

uage
ting OO models.

f system
s and relationships
se cases they

 ordering of a
 case
bjects exchanging
nario
s of an object and
e states
© O. Nierstrasz — U. Berne

Unified Modeling Lang
UML is an industry standard for documen

Class
Diagrams

visualize logical structure o
in terms of classes, object

Use Case
Diagrams

show external actors and u
participate in

Sequence
Diagrams

visualize temporal message
concrete scenario of a use

Collaboration
Diagrams

visualize relationships of o
messages in a concrete sce

State
Diagrams

specify the abstract state
the transitions between th

ESE — W2001/2002 84.

Requirements Collection

finitions
f natural language,
 tables.

ents that are both
d.

tional requirements

ements may be
© O. Nierstrasz — U. Berne

Writing Requirements De
Requirements definitions usually consist o
supplemented by (e.g., UML) diagrams and

Three types of problem can arise:

Lack of clarity: It is hard to write docum
precise and easy-to-rea

Requirements
confusion:

Functional and non-func
tend to be intertwined.

Requirements
amalgamation:

Several different requir
expressed together.

ESE — W2001/2002 85.

Requirements Collection

 Requirements

services or functions

nts on the system or

 critical than

ss!
© O. Nierstrasz — U. Berne

Functional and Non-functional

Functional requirements describe system

Non-functional requirements are constrai
the development process

Non-functional requirements may be more
functional requirements.
If these are not met, the system is usele

ESE — W2001/2002 86.

Requirements Collection

ments
 product must

bility, etc.
nisational policies

d, implementation

are external to the
nt process
rements, legislative
© O. Nierstrasz — U. Berne

Non-functional Require

Product
requirements:

specify that the delivered
behave in a particular way
e.g. execution speed, relia

Organisational
requirements:

are a consequence of orga
and procedures
e.g. process standards use
requirements, etc.

External
requirements:

arise from factors which
system and its developme
e.g. interoperability requi
requirements, etc.

ESE — W2001/2002 87.

Requirements Collection

quirements
© O. Nierstrasz — U. Berne

Types of Non-functional Re

ESE — W2001/2002 88.

Requirements Collection

Requirements
l necessary
he APSE and the
he standard Ada

process and
all conform to the
defined in XYZCo-

facilities that allow
nal data is
. A procedure must
in the software that
personal data and to
 data.
© O. Nierstrasz — U. Berne

Examples of Non-functional

Product
requirement

It shall be possible for al
communication between t
user to be expressed in t
character set.

Organisational
requirement

The system development
deliverable documents sh
process and deliverables
SP-STAN-95.

External
requirement

The system shall provide
any user to check if perso
maintained on the system
be defined and supported
will allow users to inspect
correct any errors in that

ESE — W2001/2002 89.

Requirements Collection

bility
y can be objectively

o use by
 organised in
ised.

 be minimised” are

uld be able to
tal of two hours
age number of
ould not exceed
© O. Nierstrasz — U. Berne

Requirements Verifia
Requirements must be written so that the
verified.
Imprecise: The system should be easy t

experienced controllers and should be
such a way that user errors are minim

Terms like “easy to use” and “errors shall
useless as specifications.

Verifiable: Experienced controllers sho
use all the system functions after a to
training. After this training, the aver
errors made by experienced users sh
two per day.

ESE — W2001/2002 90.

Requirements Collection

easures
e
econd

 chips

rained users

ty
e

© O. Nierstrasz — U. Berne

Precise Requirements M
Property Measur

Speed Processed transactions/s
User/Event response time
Screen refresh time

Size K Bytes; Number of RAM
Ease of use Training time

Rate of errors made by t
Number of help frames

Reliability Mean time to failure
Probability of unavailabili
Rate of failure occurrenc

ESE — W2001/2002 91.

Requirements Collection

lure
sing failure
tion on failure

endent statements
s

e

© O. Nierstrasz — U. Berne

Robustness Time to restart after fai
Percentage of events cau
Probability of data corrup

Portability Percentage of target dep
Number of target system

Property Measur

ESE — W2001/2002 92.

Requirements Collection

ves
 is to deliver a

ments that are best

is to validate or

ements that are
© O. Nierstrasz — U. Berne

Prototyping Objecti
The objective of evolutionary prototyping
working system to end-users.

❑ Development starts with the require
understood.

The objective of throw-away prototyping
derive the system requirements.

❑ Prototyping starts with that requir
poorly understood.

ESE — W2001/2002 93.

Requirements Collection

ping

e specification

ce systems

id system iterations.
guages, VHL
kits

is no specification.
 the adequacy of the
© O. Nierstrasz — U. Berne

Evolutionary Prototy

❑ Must be used for systems where th
cannot be developed in advance.
☞ e.g. AI systems and user interfa

❑ Based on techniques which allow rap
☞ e.g., executable specification lan

languages, 4GLs, component tool

❑ Verification is impossible as there
☞ Validation means demonstrating

system.

ESE — W2001/2002 94.

Requirements Collection

ping

 initial specification,
arded

ot be considered as

y have been left out
 be ignored)
g-term maintenance
ured and difficult to
© O. Nierstrasz — U. Berne

Throw-away Prototy

❑ Used to reduce requirements risk

❑ The prototype is developed from an
delivered for experiment then disc

❑ The throw-away prototype should n
a final system
☞ Some system characteristics ma

(e.g., platform requirements may
☞ There is no specification for lon
☞ The system will be poorly struct

maintain

ESE — W2001/2002 95.

Requirements Collection

ing

de the functions
e customer’s needs?
ments conflicts?
red by the

be implemented
 and technology?
© O. Nierstrasz — U. Berne

Requirements Check

Validity: Does the system provi
which best support th

Consistency: Are there any require

Completeness: Are all functions requi
customer included?

Realism: Can the requirements
given available budget

ESE — W2001/2002 96.

Requirements Collection

ws

e the requirements

ould be involved in

ted documents) or

lopers,
oblems at an
© O. Nierstrasz — U. Berne

Requirements Revie

❑ Regular reviews should be held whil
definition is being formulated

❑ Both client and contractor staff sh
reviews

❑ Reviews may be formal (with comple
informal.
Good communications between deve
customers and users can resolve pr
early stage

ESE — W2001/2002 97.

Requirements Collection

alistically testable?
operly understood?
quirement clearly

e changed without a
requirements?
© O. Nierstrasz — U. Berne

Review checks
Verifiability Is the requirement re

Comprehensibility Is the requirement pr

Traceability Is the origin of the re
stated?

Adaptability Can the requirement b
large impact on other

ESE — W2001/2002 98.

Requirements Collection

 able to trace back
nal requirement that

... ... Co
m

p
m

x

x

x

© O. Nierstrasz — U. Berne

Traceability
To protect against changes you should be
from every system component to the origi
caused its presence.

Co
m

p
1

Co
m

p
2

...

Req 1 x x
Req 2 x
...
... x x
...
... x
... x
Req n

ESE — W2001/2002 99.

Requirements Collection

 keeping this virtual

able (naming
© O. Nierstrasz — U. Berne

Traceability ...

❑ A software process should help you
table up-to-date

❑ Simple techniques may be quite valu
conventions, ...)

ESE — W2001/2002 100.

Requirements Collection

ow!
ements analysis and

equirements?

ional and non-

ays a product should

ionary and throw-
© O. Nierstrasz — U. Berne

What you should kn
✎ What is the difference between requir

specification?
✎ Why is it hard to define and specify r
✎ What are use cases and scenarios?
✎ What is the difference between funct

functional requirements?
✎ What’s wrong with a requirement that s

be “user-friendly”?
✎ What’s the difference between evolut

away prototyping?

ESE — W2001/2002 101.

Requirements Collection

g questions?
ents as a set of

ments: natural

ace for a web-based

way prototype?
e prototype?

r “adaptability”?
© O. Nierstrasz — U. Berne

Can you answer the followin
✎ Why isn’t it enough to specify requirem

desired features?
✎ Which is better for specifying require

language or diagrams?
✎ How would you prototype a user interf

ordering system?
✎ Would it be an evolutionary or throw-a
✎ What would you expect to gain from th
✎ How would you check a requirement fo

ESE — W2001/2002 102.

Responsibility-Driven Design

n Design

re, R. Wirfs-Brock,
all, 1990.
© O. Nierstrasz — U. Berne

4. Responsibility-Drive

Overview:
❑ What is Object-Oriented Design?
❑ Finding Classes
❑ Identifying Responsibilities
❑ Finding Collaborations

Source:
❑ Designing Object-Oriented Softwa

B. Wilkerson, L. Wiener, Prentice H

ESE — W2001/2002 103.

Responsibility-Driven Design

 Design?

le requirements and

re than one function
volve ⇒ redesign

ther system is

ons
© O. Nierstrasz — U. Berne

Why Responsibility-driven

Functional Decomposition
❑ Good in a “waterfall” approach: stab

one monolithic function
However

❑ Naive: Modern systems perform mo
❑ Maintainability: system functions e

affect whole system
❑ Interoperability: interfacing with o

difficult

Functional Decomposition

Decompose according to the functi
a system is supposed to perform.

ESE — W2001/2002 104.

Responsibility-Driven Design

Design? ...

stems

ion

cts
te.
© O. Nierstrasz — U. Berne

Why Responsibility-driven

Object-Oriented Decomposition
❑ Better for complex and evolving sy

However
❑ How to find the objects?

Object-Oriented Decomposit

Decompose according to the obje
a system is supposed to manipula

ESE — W2001/2002 105.

Responsibility-Driven Design

 Design?

n is the process
urned into a

s specification
e respective
nd how they
© O. Nierstrasz — U. Berne

What is Object-Oriented

“Object-oriented [analysis and] desig
by which software requirements are t
detailed specification of objects. Thi
includes a complete description of th
roles and responsibilities of objects a
communicate with each other.”

ESE — W2001/2002 106.

Responsibility-Driven Design

 Design?
 not a final product:
d, even after

ic:
ines, not fixed rules
ps produce clean,
make a lot of sense
”

sis and) design
n with various
© O. Nierstrasz — U. Berne

What is Object-Oriented
❑ The result of the design process is

☞ design decisions may be revisite
implementation

☞ design is not linear but iterative

❑ The design process is not algorithm
☞ a design method provides guidel
☞ “a good sense of style often hel

elegant designs — designs that
from the engineering standpoint

✔ Responsibility-driven design is an (analy
technique that works well in combinatio
methods and notations.

ESE — W2001/2002 107.

Responsibility-Driven Design

ion

ch class
racts?
ith each other to

s?
© O. Nierstrasz — U. Berne

The Initial Explorat

1. Find the classes in your system
2. Determine the responsibilities of ea

☞ What are the client-server cont
3. Determine how objects collaborate w

fulfil their responsibilities
☞ What are the client-server role

ESE — W2001/2002 108.

Responsibility-Driven Design

sis

ild class hierarchies
bjects
s of the system?
te with everybody?
te with nobody?
t can be seen as

specified signatures
© O. Nierstrasz — U. Berne

The Detailed Analy

1. Factor common responsibilities to bu
2. Streamline collaborations between o

☞ Is message traffic heavy in part
☞ Are there classes that collabora
☞ Are there classes that collabora
☞ Are there groups of classes tha

subsystems?
3. Turn class responsibilities into fully

ESE — W2001/2002 109.

Responsibility-Driven Design

eing designed, its
ses?

certain candidates,
© O. Nierstrasz — U. Berne

Finding Classes
Start with requirements specification:

❑ What are the goals of the system b
expected inputs and desired respon

1. Look for noun phrases:
☞ separate into obvious classes, un

and nonsense

ESE — W2001/2002 110.

Responsibility-Driven Design

.
 Some guidelines are:
sks, printers
. windows, files
t — what does it

lly a separate class?
subjects — rephrase

elay modelling of

 — e.g., user

ibutes — e.g., Point
© O. Nierstrasz — U. Berne

Finding Classes ..
2. Refine to a list of candidate classes.

☞ Model physical objects — e.g. di
☞ Model conceptual entities — e.g
☞ Choose one word for one concep

mean within the system
☞ Be wary of adjectives — is it rea
☞ Be wary of missing or misleading

in active voice
☞ Model categories of classes — d

inheritance
☞ Model interfaces to the system

interface, program interfaces
☞ Model attribute values, not attr

vs. Centre

ESE — W2001/2002 111.

Responsibility-Driven Design

Specification
e user clicks the mouse button outside the text

 points for a text element are the four corners of
ch the text is formatted. Dragging the control
egion. The other creation tools allow the
angles and ellipses. They change the shape of
 crosshair. The appropriate element starts to be
use button is pressed, and is completed when
released. These two events create the start
int.

l creates a line from the start point to the stop
control points of a line. Dragging a control point
int.

n tool creates a rectangle such that these
 opposite corners. These points and the other
ol points. Dragging a control point changes the

ool creates an ellipse fitting within the rectangle
ints described above. The major radius is one
ectangle, and the minor radius is one half the
le. The control points are at the corners of the
Dragging control points changes the
© O. Nierstrasz — U. Berne

Drawing Editor Requirements
The drawing editor is an interactive graphics editor. With it, users can
create and edit drawings composed of lines, rectangles, ellipses and
text.

Tools control the mode of operation of the editor. Exactly one tool is
active at any given time.

Two kinds of tools exist: the selection tool and creation tools. When
the selection tool is active, existing drawing elements can be
selected with the cursor. One or more drawing elements can be
selected and manipulated; if several drawing elements are selected,
they can be manipulated as if they were a single element. Elements
that have been selected in this way are referred to as the current
selection. The current selection is indicated visually by displaying the
control points for the element. Clicking on and dragging a control
point modifies the element with which the control point is associated.

When a creation tool is active, the current selection is empty. The
cursor changes in different ways according to the specific creation
tool, and the user can create an element of the selected kind. After
the element is created, the selection tool is made active and the
newly created element becomes the current selection.

The text creation tool changes the shape of the cursor to that of an I-
beam. The position of the first character of text is determined by
where the user clicks the mouse button. The creation tool is no

longer active when th
element. The control
the region within whi
points changes this r
creation of lines, rect
the cursor to that of a
created when the mo
the mouse button is
point and the stop po

The line creation too
point. These are the
changes the end po

The rectangle creatio
points are diagonally
corners are the contr
associated corner.

The ellipse creation t
defined by the two po
half the width of the r
height of the rectang
bounding rectangle.
associated corner.

ESE — W2001/2002 112.

Responsibility-Driven Design

hrases
ith it, users can create and
d text.
tly one tool is active at any

 tools. When the selection
d with the cursor. One or
; if several drawing
ey were a single element.
red to as the current
displaying the control
ol point modifies the

empty. The cursor changes
l, and the user can create
eated, the selection tool is
e current selection.

...
© O. Nierstrasz — U. Berne

Drawing Editor: noun p
The drawing editor is an interactive graphics editor. W
edit drawings composed of lines, rectangles, ellipses an
Tools control the mode of operation of the editor. Exac
given time.
Two kinds of tools exist: the selection tool and creation
tool is active, existing drawing elements can be selecte
more drawing elements can be selected and manipulated
elements are selected, they can be manipulated as if th
Elements that have been selected in this way are refer
selection. The current selection is indicated visually by
points for the element. Clicking on and dragging a contr
element with which the control point is associated.
When a creation tool is active, the current selection is
in different ways according to the specific creation too
an element of the selected kind. After the element is cr
made active and the newly created element becomes th

ESE — W2001/2002 113.

Responsibility-Driven Design

 to that of an I-beam. The
y where the user clicks the
n the user clicks the mouse
 a text element are the
atted. Dragging the control
w the creation of lines,
rsor to that of a crosshair.
 mouse button is pressed,
ese two events create the

t to the stop point. These
 changes the end point.
at these points are
 corners are the control
 corner.
n the rectangle defined by
 half the width of the
 the rectangle. The control
agging control points
© O. Nierstrasz — U. Berne

The text creation tool changes the shape of the cursor
position of the first character of text is determined b
mouse button. The creation tool is no longer active whe
button outside the text element. The control points for
four corners of the region within which the text is form
points changes this region. The other creation tools allo
rectangles and ellipses. They change the shape of the cu
The appropriate element starts to be created when the
and is completed when the mouse button is released. Th
start point and the stop point.
The line creation tool creates a line from the start poin
are the control points of a line. Dragging a control point
The rectangle creation tool creates a rectangle such th
diagonally opposite corners. These points and the other
points. Dragging a control point changes the associated
The ellipse creation tool creates an ellipse fitting withi
the two points described above. The major radius is one
rectangle, and the minor radius is one half the height of
points are at the corners of the bounding rectangle. Dr
changes the associated corner.

ESE — W2001/2002 114.

Responsibility-Driven Design

nale

e]

tion Tool, Line
n Tool, Selection

...
© O. Nierstrasz — U. Berne

Class Selection Ratio
Model physical objects:

☞ mouse button [event or attribut
Model conceptual entities:

☞ ellipse, line, rectangle
☞ Drawing, Drawing Element
☞ Tool, Creation Tool, Ellipse Crea

Creation Tool, Rectangle Creatio
Tool, Text Creation Tool

☞ text, Character
☞ Current Selection

ESE — W2001/2002 115.

Responsibility-Driven Design

ale ...

ctive graphics editor

ectangle Element

...
© O. Nierstrasz — U. Berne

Class Selection Ration
Choose one word for one concept:

☞ Drawing Editor ⇒ editor, intera
☞ Drawing Element ⇒ element
☞ Text Element ⇒ text
☞ Ellipse Element, Line Element, R

⇒ ellipse, line, rectangle

ESE — W2001/2002 116.

Responsibility-Driven Design

ale ...

ion Tool, Rectangle
ext Creation Tool
ts
egion ⇒ Rectangle
nt from Rectangle

top point
a coordinate
gonally opposite

...
© O. Nierstrasz — U. Berne

Class Selection Ration
Be wary of adjectives:

☞ Ellipse Creation Tool, Line Creat
Creation Tool, Selection Tool, T
— all have different requiremen

☞ bounding rectangle, rectangle, r
— common meaning, but differe
Element

☞ Point ⇒ end point, start point, s
☞ Control Point — more than just
☞ corner ⇒ associated corner, dia

corner — no new behaviour

ESE — W2001/2002 117.

Responsibility-Driven Design

ale ...
isleading subjects:
ed visually by
 the element.”
itor ...

 explicitly
by operating system

...
© O. Nierstrasz — U. Berne

Class Selection Ration
Be wary of sentences with missing or m

☞ “The current selection is indicat
displaying the control points for
— by what? Assume Drawing Ed

Model categories:
☞ Tool, Creation Tool

Model interfaces to the system:
☞ user — don’t need to model user
☞ cursor — cursor motion handled

ESE — W2001/2002 118.

Responsibility-Driven Design

ale ...
es themselves:
f the rectangle

er; probably Point

f Drawing Editor
sshair — attributes

he system
© O. Nierstrasz — U. Berne

Class Selection Ration
Model values of attributes, not attribut

☞ height of the rectangle, width o
☞ major radius, minor radius
☞ position — of first text charact

attribute
☞ mode of operation — attribute o
☞ shape of the cursor, I-beam, cro

of Cursor
☞ corner — attribute of Rectangle
☞ time — an implicit attribute of t

ESE — W2001/2002 119.

Responsibility-Driven Design

s
 candidates:

sses.

eation Tool
ement
ol
n Tool
t
© O. Nierstrasz — U. Berne

Candidate Classe
Preliminary analysis yields the following

Expect the list to evolve as design progre

Character Line Element
Control Point Point
Creation Tool Rectangle
Current Selection Rectangle Cr
Drawing Rectangle El
Drawing Editor Selection To
Drawing Element Text Creatio
Ellipse Creation Tool Text Elemen
Ellipse Element Tool
Line Creation Tool

ESE — W2001/2002 120.

Responsibility-Driven Design

ses:

the card
y to modify or

es

orations>
© O. Nierstrasz — U. Berne

CRC Cards
Use CRC cards to record candidate clas

Write a short description on the back of
☞ compact, easy to manipulate, eas

discard!
☞ easy to arrange, reorganize
☞ easy to retrieve discarded class

Class: Drawing
<superclasses>
<subclasses>
<responsibilities ...> <collab

ESE — W2001/2002 121.

Responsibility-Driven Design

sses
haviour shared by

attributes
 represent the group
r abstract classes

ation; your hierarchy

ool Text Tool
© O. Nierstrasz — U. Berne

Finding Abstract Cla
Abstract classes factor out common be
other classes

❑ group related classes with common
❑ introduce abstract superclasses to
❑ “categories” are good candidates fo

✔ Warning: beware of premature classific
will evolve

Tool

Ellipse Tool Line Tool Rectangle T

Selection Tool Creation Tool

ESE — W2001/2002 122.

Responsibility-Driven Design

 Groups

o derive the name
 subcategories
rd the group and

...
© O. Nierstrasz — U. Berne

Identifying and Naming
If you have trouble naming a group:

☞ enumerate common attributes t
☞ divide into more clearly defined
☞ if you still cannot name it, disca

search for others.

ESE — W2001/2002 123.

Responsibility-Driven Design

roups ...
ve to distinguish

 distinctions.

ication is incomplete

 Cut Buffer
© O. Nierstrasz — U. Berne

Identifying and Naming G
Attributes of abstract classes should ser
subgroups

☞ Physical vs. conceptual
☞ Active vs. passive
☞ Temporary vs. permanent
☞ Generic vs. specific
☞ Shared vs. unshared

Ignore attributes that don’t help to make

Classes may be missing because the specif
or imprecise

☞ editing ⇒ undoing ⇒ need for a

ESE — W2001/2002 124.

Responsibility-Driven Design

ses
ll class cards:

 Tool, Text
© O. Nierstrasz — U. Berne

Recording Superclas
Record superclasses and subclasses on a

Class: Creation Tool
Tool
Ellipse Tool, Line Tool, Rectangle
Tool

ESE — W2001/2002 125.

Responsibility-Driven Design

ins and provides

ices an object may
 those services may

t how it does it
, only conceptual
© O. Nierstrasz — U. Berne

Responsibilities
What are responsibilities?

☞ the knowledge an object mainta
☞ the actions it can perform

Responsibilities represent the public serv
provide to clients (but not the way in which
be implemented)

☞ specify what an object does, no
☞ don’t describe the interface yet

responsibilities

ESE — W2001/2002 126.

Responsibility-Driven Design

ilities
on:
hich represent

stem
s possible
m input to the

bilities
s ⇒ responsibilities
© O. Nierstrasz — U. Berne

Identifying Responsib
❑ Study the requirements specificati

☞ highlight verbs and determine w
responsibilities

☞ perform a walk-though of the sy
➪ exploring as many scenarios a
➪ identify actions resulting fro

system

❑ Study the candidate classes:
☞ class names ⇒ roles ⇒ responsi
☞ recorded purposes on class card

ESE — W2001/2002 127.

Responsibility-Driven Design

ities
e

of responsibilities
jects rather than

s possible
rectangle etc.”

elated information

...
© O. Nierstrasz — U. Berne

Assigning Responsibil
❑ Evenly distribute system intelligenc

☞ avoid procedural centralization
☞ keep responsibilities close to ob

their clients

❑ State responsibilities as generally a
☞ “draw yourself” vs. “draw a line/

❑ Keep behaviour together with any r
☞ principle of encapsulation

ESE — W2001/2002 128.

Responsibility-Driven Design

ies ...
 one place
to the same

ed to manage the

 candidate, or
ed to be collapsed

d objects
ties
© O. Nierstrasz — U. Berne

Assigning Responsibilit
❑ Keep information about one thing in

☞ if multiple objects need access
information
(i) a new object may be introduc
information, or
(ii) one object may be an obvious
(iii) the multiple objects may ne
into a single one

❑ Share responsibilities among relate
☞ break down complex responsibili

ESE — W2001/2002 129.

Responsibility-Driven Design

Classes
red by examining
:

ute often share a

mmon

nt, a Creation

ented in subclass

ented in subclass
© O. Nierstrasz — U. Berne

Relationships Between
Additional responsibilities can be uncove
relationships between classes, especially

❑ The “Is-Kind-Of” Relationship:
☞ classes sharing a common attrib

common superclass
☞ common superclasses suggest co

responsibilities
e.g., to create a new Drawing Eleme
Tool must:

1. accept user input implem
2. determine location

to place it
generic

3. instantiate the
element

implem

ESE — W2001/2002 130.

Responsibility-Driven Design

asses ...
:
gest as-yet-

ibilities of part and

suggest:

sses
© O. Nierstrasz — U. Berne

Relationships Between Cl
❑ The “Is-Analogous-To” Relationship

☞ similarities between classes sug
undiscovered superclasses

❑ The “Is-Part-Of” Relationship:
☞ distinguish (don’t share) respons

of whole

Difficulties in assigning responsibilities
☞ missing classes in design, or
☞ free choice between multiple cla

ESE — W2001/2002 131.

Responsibility-Driven Design

lities
sible:

gests over-

ses or collaborators
ble and maintainable
 consolidated.
© O. Nierstrasz — U. Berne

Recording Responsibi
List responsibilities as succinctly as pos

Too many responsibilities for one card sug
centralization:

☞ Try to redistribute to superclas
Having more classes leads to a more flexi
design. If necessary, classes can later be

Class: Drawing

Know which elements it contains

ESE — W2001/2002 132.

Responsibility-Driven Design

o servers needed to

formation flow and,

responsibilities
 can reveal
© O. Nierstrasz — U. Berne

Collaborations
What are collaborations?

❑ collaborations are client requests t
fulfil responsibilities

❑ collaborations reveal control and in
ultimately, subsystems

❑ collaborations can uncover missing
❑ analysis of communication patterns

misassigned responsibilities

ESE — W2001/2002 133.

Responsibility-Driven Design

ns

y by itself?
hat other class can

tion or results?

ers should be

...
© O. Nierstrasz — U. Berne

Finding Collaboratio
For each responsibility:

1. Can the class fulfil the responsibilit
2. If not, what does it need, and from w

it obtain what it needs?

For each class:
1. What does this class know?
2. What other classes need its informa

Check for collaborations.
3. Classes that do not interact with oth

discarded. (Check carefully!)

ESE — W2001/2002 134.

Responsibility-Driven Design

s ...

ip
© O. Nierstrasz — U. Berne

Finding Collaboration

Check for these relationships:
❑ The “Is-Part-Of” Relationship
❑ The “Has-Knowledge-Of” Relationsh
❑ The “Depends-Upon” Relationship

ESE — W2001/2002 135.

Responsibility-Driven Design

ions
sibilities.

esponsibility:

sponsibility.
.
her walk-through.

Drawing Element
© O. Nierstrasz — U. Berne

Recording Collaborat
Collaborations exist only to fulfil respon
Put the server class next to the client’s r

Note each collaboration required for a re
Include also collaborations between peers
Validate your preliminary design with anot

Class: Drawing

Know which elements it contains
Maintain ordering between elements

ESE — W2001/2002 136.

Responsibility-Driven Design

ow!
otential classes?

is and design?

w can you identify

es help in identifying

hey relate to
© O. Nierstrasz — U. Berne

What you should kn
✎ What criteria can you use to identify p
✎ How can class cards help during analys
✎ How can you identify abstract classes?
✎ What are class responsibilities, and ho

them?
✎ How can identification of responsibiliti

classes?
✎ What are collaborations, and how do t

responsibilities?

ESE — W2001/2002 137.

Responsibility-Driven Design

g questions?
 to a class?
o a hierarchy?
l the responsibilities
© O. Nierstrasz — U. Berne

Can you answer the followin
✎ When should an attribute be promoted
✎ Why is it useful to organize classes int
✎ How can you tell if you have captured al

and collaborations?

ESE — W2001/2002 138.

Detailed Design

ign

s

ces)

re, R. Wirfs-Brock,
all, 1990
© O. Nierstrasz — U. Berne

5. Detailed Des

Overview:
❑ Structuring Inheritance Hierarchie
❑ Identifying Subsystems
❑ Specifying Class Protocols (Interfa

Source:
❑ Designing Object-Oriented Softwa

B. Wilkerson, L. Wiener, Prentice H

ESE — W2001/2002 139.

Detailed Design

ties

n Diagrams can be
 to visualize shared
onsibilities.
rning: not part of
L!)

Tool
{ abstract }

Creation Tool
{ abstract }
© O. Nierstrasz — U. Berne

Sharing Responsibili

Concrete classes may be
both instantiated and
inherited from.
Abstract classes may only
be inherited from.
Note on class cards and on class diagram.

Ven
used
resp
(Wa
UM

Selection Tool

Tool Creation ToolSelection Tool

ESE — W2001/2002 140.

Detailed Design

ce

de whether a class
e instantiated to
rmine if it is
ract or concrete.

DateMagnitude

String
© O. Nierstrasz — U. Berne

Multiple Inheritan

Deci
will b
dete
abst

Responsibilities
of subclasses are
larger than those
of superclasses.
Intersections
represent
common
superclasses.

Ordered Collection Indexable Collection

Array

Matrix String Date

Magnitude

Array

Ordered
Collection

Matrix

Indexable
Collection

ESE — W2001/2002 141.

Detailed Design

chies

ited responsibilities,

s possible:
ibilities should
erclass; introduce

...
© O. Nierstrasz — U. Berne

Building Good Hierar
Model a “kind-of” hierarchy:

❑ Subclasses should support all inher
and possibly more

Factor common responsibilities as high a
❑ Classes that share common respons

inherit from a common abstract sup
any that are missing

ESE — W2001/2002 142.

Detailed Design

ies ...
 inherit from con-

stract superclass:
ponsibilities in an

ionality:
onsibilities, or a
rited ones
© O. Nierstrasz — U. Berne

Building Good Hierarch
Make sure that abstract classes do not
crete classes:

❑ Eliminate by introducing common ab
abstract classes should support res
implementation-independent way

Eliminate classes that do not add funct
❑ Classes should either add new resp

particular way of implementing inhe

ESE — W2001/2002 143.

Detailed Design

rchies
ies:

A and B

...

BC
© O. Nierstrasz — U. Berne

Building Kind-Of Hiera
Correctly Formed Subclass Responsibilit

C assumes all the responsibilities of both

A B

C
A

ESE — W2001/2002 144.

Detailed Design

hies ...

sulate common

E G

G

© O. Nierstrasz — U. Berne

Building Kind-Of Hierarc
Incorrect Subclass/Superclass
Relationships
G assumes only some of the
responsibilities inherited from E

Revised Inheritance Relationships
Introduce abstract superclasses to encap
responsibilities

E

G

E D
E G

D

ESE — W2001/2002 145.

Detailed Design

ilities

gle
nt

Group
Element

ing Element
{ abstract }

Rectangle
Element

Group
Element

Ellipse
lement

ar Element
{ abstract }
© O. Nierstrasz — U. Berne

Refactoring Responsib

Lines, Ellipses and
Rectangles are
responsible for keeping
track of the width and
colour of the lines they
are drawn with.
This suggests a common
superclass.

Drawing Element
{ abstract }

Rectan
Eleme

Text
Element

Line
Element

Ellipse
Element

Draw

Text
Element

Line
Element E

Line

ESE — W2001/2002 146.

Detailed Design

ts
 a client can make of
ly-related

raction, and help to

...
© O. Nierstrasz — U. Berne

Identifying Contrac
A contract defines a set of requests that
a server related to a cohesive set of close
responsibilities.

Contracts introduce another level of abst
simplify your design.

ESE — W2001/2002 147.

Detailed Design

s ...
lients:
t separate contracts

asses

igh in the hierarchy
© O. Nierstrasz — U. Berne

Identifying Contract
Group responsibilities used by the same c

❑ conversely, separate clients sugges

Maximize the cohesiveness of classes:
❑ unrelated contracts belong in subcl

Minimize the number of contracts:
❑ unify responsibilities and move as h

as appropriate

ESE — W2001/2002 148.

Detailed Design

nes
op of your

bclasses that add

t new functionality,
ted functionality?

...
© O. Nierstrasz — U. Berne

Applying the Guideli
1. Start by defining contracts at the t

hierarchies

2. Introduce new contracts only for su
significant new functionality
☞ do new responsibilities represen

or do they just specialize inheri

ESE — W2001/2002 149.

Detailed Design

s ...
ilities to an

nd assign a unique

g to the associated

 card, determine

ions in class diagrams
© O. Nierstrasz — U. Berne

Applying the Guideline
3. For each class card, assign responsib

appropriate contract
☞ briefly describe each contract a

number
☞ number responsibilities accordin

contract

4. For each collaboration on each class
which contract represents it
☞ model collaborations as associat

(AKA “collaboration graphs”)

ESE — W2001/2002 150.

Detailed Design

ms?
llaborate to support

ing abstraction

ed responsibilities,
ations

nsibilities rather
onsibilities
© O. Nierstrasz — U. Berne

What are Subsyste
Subsystems are groups of classes that co
a set of contracts.

❑ Subsystems simplify design by rais
levels:
☞ subsystems group logically relat

and encapsulate related collabor

❑ Don’t confuse with superclasses:
☞ subsystems group related respo

than factoring out common resp

ESE — W2001/2002 151.

Detailed Design

s
oupled classes:

strong inter-

unication paths

tracts. Identify the
ubsystem to
© O. Nierstrasz — U. Berne

Finding Subsystem
Find subsystems by looking for strongly-c

❑ list the collaborations and identify
dependencies

❑ identify frequently-travelled comm

Subsystems, like classes, also support con
services provided to clients outside the s
determine the subsystem contracts.

ESE — W2001/2002 152.

Detailed Design

ts contracts, and,
ubsystem that sup-

ing
ing Element
ing
© O. Nierstrasz — U. Berne

Subsystem Cards
For each subsystem, record its name, i
for each contract, the internal class or s
ports it:

Subsystem: Drawing Subsystem
Access a drawing Draw
Modify part of a drawing Draw
Display a drawing Draw

ESE — W2001/2002 153.

Detailed Design

ent, change the
n with the

e delegation to the

 (Abstract)

 File

 Subsystem
© O. Nierstrasz — U. Berne

Class Cards
For each collaboration from an outside cli
client’s class card to record a collaboratio
subsystem:

NB: Also record on the subsystem card th
agent class.

Class: File

Document File, Graphics File, Text
Knows its contents
Print its contents Printing

ESE — W2001/2002 154.

Detailed Design

ions
able systems.
ucture.
ons a class has with

 a subsystem eases

which a subsystem

s reduce complexity

...
© O. Nierstrasz — U. Berne

Simplifying Interact
Complex collaborations lead to unmaintain
Exploit subsystems to simplify overall str

❑ Minimize the number of collaborati
other classes:
☞ centralizing communications into

evolution

❑ Minimize the number of classes to
delegates:
☞ centralized subsystem interface

ESE — W2001/2002 155.

Detailed Design

ns ...
ontracts supported

cess to common

s in class diagrams
class hierarchies

 collaborations
© O. Nierstrasz — U. Berne

Simplifying Interactio
❑ Minimize the number of different c

by a class:
☞ group contracts that require ac

information

Checking Your Design:
❑ Model collaborations as association
❑ Update class/subsystem cards and
❑ Walk through scenarios:

☞ Has coupling been reduced? Are
simpler?

ESE — W2001/2002 156.

Detailed Design

nterface) to which a

or public

s should be specified
 by subclasses

h class and

h contract
© O. Nierstrasz — U. Berne

Protocols
A protocol is a set of signatures (i.e., an i
class will respond.

❑ Generally, protocols are specified f
responsibilities

❑ Protocols for private responsibilitie
if they will be used or implemented

1. Construct protocols for each class
2. Write a design specification for eac

subsystem
3. Write a design specification for eac

ESE — W2001/2002 157.

Detailed Design

ties

ual operation in the

tion with each

xplicit in the

ossible:
ssages that should
© O. Nierstrasz — U. Berne

Refining Responsibili
Select method names carefully:

❑ Use a single name for each concept
system

❑ Associate a single conceptual opera
method name

❑ Common responsibilities should be e
inheritance hierarchy

Make protocols as generally useful as p
❑ The more general it is, the more me

be specified

ESE — W2001/2002 158.

Detailed Design

th all possible

ere appropriate
ly on the defaults
© O. Nierstrasz — U. Berne

Defaults
Define reasonable defaults:

1. Define the most general message wi
parameters

2. Provide reasonable default values wh
3. Define specialized messages that re

ESE — W2001/2002 159.

Detailed Design

 Classes

ses
nd class diagrams

erited contracts and

es, method
 collaborations

fied further, also

 possible algorithms,
ror conditions etc.
© O. Nierstrasz — U. Berne

Specifying Your Design:
Specifying Classes

1. Class name; abstract or concrete
2. Immediate superclasses and subclas
3. Location in inheritance hierarchies a
4. Purpose and intended use
5. Contracts supported (as server); inh

ancestor
6. For each contract, list responsibiliti

signatures, brief description and any
7. List private responsibilities; if speci

give method signatures etc.
8. Note implementation considerations,

real-time or memory constraints, er

ESE — W2001/2002 160.

Detailed Design

 Contracts

d classes and

le class or subsystem
© O. Nierstrasz — U. Berne

Specifying Subsystems and
Specifying Subsystems

1. Subsystem name; list all encapsulate
subsystems

2. Purpose of the subsystem
3. Contracts supported
4. For each contract, list the responsib

Formalizing Contracts
1. Contract name and number
2. Server(s)
3. Clients
4. A description of the contract

ESE — W2001/2002 161.

Detailed Design

ow!

ood class hierarchy?
lp to improve a class

acts and

d how can you find

cols and contracts?
© O. Nierstrasz — U. Berne

What you should kn
✎ How can you identify abstract classes?
✎ What criteria can you use to design a g
✎ How can refactoring responsibilities he

hierarchy?
✎ What is the difference between contr

responsibilities?
✎ What are subsystems (“categories”) an

them?
✎ What is the difference between proto

ESE — W2001/2002 162.

Detailed Design

g questions?
g design if your
t it?
g and maximize

n design together
© O. Nierstrasz — U. Berne

Can you answer the followin
✎ What use is multiple inheritance durin

programming language does not suppor
✎ Why should you try to minimize couplin

cohesion?
✎ How would you use Responsibility Drive

with the Unified Modeling Language?

ESE — W2001/2002 163.

Modeling Objects and Classes

d Classes

tion Guide, version
 1997.
all Scott, Addison-
© O. Nierstrasz — U. Berne

6. Modeling Objects an

❑ Classes, attributes and operations
❑ Visibility of Features
❑ Parameterized Classes
❑ Objects, Associations, Inheritance
❑ Constraints

Sources
❑ Unified Modeling Language — Nota

1.3, Rational Software Corporation,
❑ UML Distilled, Martin Fowler, Kend

Wesley, Second Editon, 2000.

ESE — W2001/2002 164.

Modeling Objects and Classes

se Cases (+ state

ess is

in team
e
users
rds”

 same software
© O. Nierstrasz — U. Berne

UML
What is UML?

❑ uniform notation: Booch + OMT + U
charts)
☞ UML is not a method or process
☞ .. The Unified Development Proc

Why a Graphical Modeling Language?
❑ Software projects are carried out
❑ Team members need to communicat

☞ ... sometimes even with the end
❑ “One picture conveys a thousand wo

☞ the question is only which words
☞ Need for different views on the

artifact

ESE — W2001/2002 165.

Modeling Objects and Classes

understand your

tions and dialects

ts to extend basic

nced extensions
© O. Nierstrasz — U. Berne

Why UML?
Why UML

❑ Represents de-facto standard
☞ more tool support, more people

diagrams, less education
❑ Is reasonably well-defined

☞ ... although there are interpreta
❑ Is open

☞ stereotypes, tags and constrain
constructs

☞ has a meta-meta-model for adva

ESE — W2001/2002 166.

Modeling Objects and Classes

 + James Rumbaugh

ses) joined Rational

 to support UML
o OMG by consortium
 as OMG standard

leans up standard in

 up standard in
© O. Nierstrasz — U. Berne

UML History
❑ 1994: Grady Booch (Booch method)

(OMT) at Rational
❑ 1994: Ivar Jacobson (OOSE, use ca

☞ “The three amigos”
❑ 1996: Rational formed a consortium
❑ January, 1997: UML1.0 submitted t
❑ November, 1997: UML 1.1 accepted

☞ However, OMG names it UML1.0
❑ December, 1998: UML task force c

UML1.2
❑ June, 1999: UML task force cleans

UML1.3
❑ ...: Major revision to UML2.0

ESE — W2001/2002 167.

Modeling Objects and Classes

ions of possible
articular
ehaviour.”

ively called features.

Polygon
entre: Point
ertices: List of Point
orderColour: Colour
illColour: Colour
isplay (on: Surface)
otate (angle: Integer)
rase ()
estroy ()
elect (p: Point): Boolean
© O. Nierstrasz — U. Berne

Class Diagrams
“Class diagrams show generic descript
systems, and object diagrams show p
instantiations of systems and their b

Class name, attributes and operations:

A collapsed class view:

Class with Package name:

Attributes and operations are also collect

c
v
b
f
d
r
e
d
s

Polygon

ZWindows::Window

ESE — W2001/2002 168.

Modeling Objects and Classes

eatures

ract }

ow*)

User-defined
properties
(e.g., readonly,
owner = “Pingu”)

italic
attributes
are abstract

ies are not shown
© O. Nierstrasz — U. Berne

Visibility and Scope of F

«user interface»
Window

{ abst

+size: Area = (100, 100)
#visibility: Boolean = false
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindow*
+display ()
+hide ()
+create ()
-attachXWindow (xwin: Xwind
...

Stereotype
(what “kind”
of class is it?)

underlined
attributes
have class
scope

+ = “public”
= “protected”
− = “private”

An ellipsis signals that further entr

ESE — W2001/2002 169.

Modeling Objects and Classes

tions

 string }

..) : resultType
© O. Nierstrasz — U. Berne

Attributes and Opera
Attributes are specified as:

name: type = initialValue { property

Operations are specified as:

name (param: type = defaultValue, .

ESE — W2001/2002 170.

Modeling Objects and Classes

ows
Association
e.g., «uses»

Navigable
association
e.g., part-of

“Generalization”
., specialization (!)
., class/superclass,
rete/abstract class

“Composition”
i.e., containment
© O. Nierstrasz — U. Berne

UML Lines and Arr
Constraint

(usually annotated)

Dependency
e.g., «requires»,

«imports» ...

Realization
e.g., class/template,

class/interface

Aggregation
i.e., “consists of”

i.e
e.g

conc

ESE — W2001/2002 171.

Modeling Objects and Classes

ses
”) classes are
 dashed box.

me) or values (name:

an be shown by a

o from the client to

ist

ger

Address,24)
© O. Nierstrasz — U. Berne

Parameterized Clas
Parameterized (aka “template” or “generic
depicted with their parameters shown in a
Parameters may be either types (just a na
Type).

Instantiation of a class from a template c
dashed arrow (Realization).
NB: All forms of arrows (directed arcs) g
the supplier!

FArray

FArray<Point, 3> AddressL

T, n: Inte

«bind»(

ESE — W2001/2002 172.

Modeling Objects and Classes

 with no attributes,
type «interface» or,
:

 Boolean

omparable
String

ashTable
© O. Nierstrasz — U. Berne

Interfaces
Interfaces, equivalent to abstract classes
are represented as classes with the stereo
alternatively, with the “Lollipop-Notation”

HashTable

«interface»
Comparable

isEqual(String):
Boolean
hash(): Integer

String
...
isEqual(String):
hash(): Integer
...

C
«use»

HNB: Interfaces cannot have
(navigable) associations!

ESE — W2001/2002 173.

Modeling Objects and Classes

and operations. It is
e «utility». Utilities

rpreted as being in
e them.
h a view, and
ner folded over.

sin (angle + pi/2.0);
© O. Nierstrasz — U. Berne

Utilities
A utility is a grouping of global attributes
represented as a class with the stereotyp
may be parameterized.

NB: A utility’s attributes are already inte
class scope, so it is redundant to underlin
A “note” is a text comment associated wit
represented as box with the top right cor

«utility»
MathPack

randomSeed : long = 0
pi : long = 3.14158265358979
sin (angle : double) : double
cos (angle : double) : double
random () : double

return

ESE — W2001/2002 174.

Modeling Objects and Classes

ir name and type
ute values,

ngle1: Polygon

: Polygon

triangle1

ne of the name or
 must be present.
© O. Nierstrasz — U. Berne

Objects
Objects are shown as rectangles with the
underlined in one compartment, and attrib
optionally, in a second compartment.

triangle1: Polygon
centre = (0, 0)
vertices = ((0,0), (4,0), (4,3))
borderColour = black
fillColour = white

tria

At least o
the type

ESE — W2001/2002 175.

Modeling Objects and Classes

rson
e
 Nr.
ess

sband

wife

Married-to

0..1
0..1

0..1
boss

rker *
Manages

nships

c.)

 at end-points
ions
ss
© O. Nierstrasz — U. Berne

Associations

Company
name
address

Pe
nam
AHV
addr

**
Works-for

Employs
employeeemployer

hu

wo

Associations represent structural relatio
between objects of different classes.

☞ usually binary (but may be ternary et
☞ optional name and direction
☞ (unique) role names and multiplicities
☞ can traverse using navigation express
e.g., Sandoz.employee[name = “Pingu”].bo

ESE — W2001/2002 176.

Modeling Objects and Classes

ability

hen one can navigate

e marked as

ontains

{ ordered }
Point

3..*

GraphicsBundle
colour
texture
density
© O. Nierstrasz — U. Berne

Aggregation and Navig
Aggregation is denoted by
a diamond and indicates a
part-whole dependency:

A hollow diamond
indicates a reference; a
solid diamond an
implementation.

If the link terminates with an arrowhead, t
from the whole to the part.

If the multiplicity of a role is > 1, it may b
{ordered}, or as {sorted}.

Polygon
1 C

1

1

ESE — W2001/2002 177.

Modeling Objects and Classes

s
sociation class:

ores attributes, and

Workstation

y

© O. Nierstrasz — U. Berne

Association Classe
An association may be an instance of an as

In many cases the association class only st
its name can be left out.

Authorization
priority
privileges
start session

User * *Authorized on

*

Directory
home director1

ESE — W2001/2002 178.

Modeling Objects and Classes

ons

et role denotes
f target objects
ject and a

, not the class

Catalogue
part number

Part

1

0..1
nger
© O. Nierstrasz — U. Berne

Qualified Associati

A qualified association
uses a special qualifier
value to identify the
object at the other end
of the association.

“The multiplicity attached to the targ
the possible cardinalities of the set o
selected by the pairing of a source ob
qualifier value.”

NB: Qualifiers are part of the association

Airline
frequent flyer #

Person

*

0..1
isPasse

ESE — W2001/2002 179.

Modeling Objects and Classes

perclasses:

Spline
control
points
display ()

Drawing
© O. Nierstrasz — U. Berne

Inheritance
A subclass inherits the features of its su

Figure1dim
{ abstract }

colour
display ()

Line
endpoints
display ()

Arc
radius
start
angle
arc angle
display ()

*

. . .

ESE — W2001/2002 180.

Modeling Objects and Classes

For?

e by imitation,

ializations or
© O. Nierstrasz — U. Berne

What is Inheritance

New software often builds on old softwar
refinement or combination.

Similarly, classes may be extensions, spec
combinations of existing classes.

ESE — W2001/2002 181.

Modeling Objects and Classes

 ...

 organized into a

s, data structures or

ses may be uniformly
© O. Nierstrasz — U. Berne

Inheritance supports
Conceptual hierarchy:

❑ conceptually related classes can be
specialization hierarchy
☞ people, employees, managers
☞ geometric objects ...

Software reuse:
❑ related classes may share interface

behaviour
☞ geometric objects ...

Polymorphism:
❑ objects of distinct, but related clas

treated by clients
☞ array of geometric objects

ESE — W2001/2002 182.

Modeling Objects and Classes

orations
arameterized

Adaptee
SpecificRequest ()

ee.SpecificRequest()
© O. Nierstrasz — U. Berne

Design Patterns as Collab
Design Patterns can be represented as “p
collaborations”:

Target
Request()

Adapter
Request ()

Client

adapt

adaptee

Adapter

ESE — W2001/2002 183.

Modeling Objects and Classes

tterns

an be described with

extView
Extent()

apter

Adaptee
© O. Nierstrasz — U. Berne

Instantiating Design Pa

A Design Pattern in use (an instantiation) c
a dashed oval:

Shape
boudingBox()

T
get

TextShape
boudingBox() AdAdapter

ESE — W2001/2002 184.

Modeling Objects and Classes

Person
birthdate
/age

Person

Committee

er-of Chair-of{subset}*

* *

1

 currentDate - birthdate }
© O. Nierstrasz — U. Berne

Constraints
Constraints are restrictions on
values attached to classes or
associations.

❑ Binary constraints may be
shown as dashed lines
between elements

❑ Derived values and
associations can be marked
with a “/”

Memb

{ age =

ESE — W2001/2002 185.

Modeling Objects and Classes

nts
, either free or

Company0..1
er

s.employer }
© O. Nierstrasz — U. Berne

Specifying Constrai
Constraints are specified between braces
within a note:

Person

employee
*

employworker

boss

*
0..1

{ Person.employer = Person.bos

ESE — W2001/2002 186.

Modeling Objects and Classes

 UML

tcondition» are

isEmpty ())

lf.size in

-1

d

(OCL)
© O. Nierstrasz — U. Berne

Design by Contract in
Combine constraints with stereotypes:

NB: «invariant», «precondition», and «pos
predefined in UML.

«invariant»
(isEmpty ()) or (!

Stack
/size
...
push (char)
pop (): char
isEmpty(): boolean letoldSize:Integer = se

pre:oldSize > 0
post:self.size = oldSize

«postcondition»
(!isEmpty ()) an
(top() = char)

ESE — W2001/2002 187.

Modeling Objects and Classes

n

ilities
tions

...
© O. Nierstrasz — U. Berne

Using the Notatio
During Analysis:

❑ Capture classes visible to users
❑ Document attributes and responsib
❑ Identify associations and collabora
❑ Identify conceptual hierarchies
❑ Capture all visible features

ESE — W2001/2002 188.

Modeling Objects and Classes

...

functionalities

analysis or design
cataloguing and
ociations, etc. must
© O. Nierstrasz — U. Berne

Using the Notation
During Design:

❑ Specify contracts and operations
❑ Decompose complex objects
❑ Factor out common interfaces and

The graphical notation is only part of the
document. For example, a data dictionary
describing all names of classes, roles, ass
be maintained throughout the project.

ESE — W2001/2002 189.

Modeling Objects and Classes

ow!
 and associations?
tributes and

? How is it similar?
ns and roles?

In design?
© O. Nierstrasz — U. Berne

What you should kn
✎ How do you represent classes, objects
✎ How do you specify the visibility of at

operations to clients?
✎ How is a utility different from a class
✎ Why do we need both named associatio
✎ Why is inheritance useful in analysis?
✎ How are constraints specified?

ESE — W2001/2002 190.

Modeling Objects and Classes

g questions?
 class scope?
 when depicting an

rowheads?
 other kind of

lementation
© O. Nierstrasz — U. Berne

Can you answer the followin
✎ Why would you want a feature to have
✎ Why don’t you need to show operations

object?
✎ Why aren’t associations drawn with ar
✎ How is aggregation different from any

association?
✎ How are associations realized in an imp

language?

ESE — W2001/2002 191.

Modeling Behaviour

iour

tion Guide, version
 1997.
e Fusion Method, D.
© O. Nierstrasz — U. Berne

7. Modeling Behav

❑ Use Case Diagrams
❑ Sequence Diagrams
❑ Collaboration Diagrams
❑ State Diagrams

Sources:
❑ Unified Modeling Language — Nota

1.1, Rational Software Corporation,
❑ Object-Oriented Development — Th

Coleman, et al., Prentice Hall, 1994.

ESE — W2001/2002 192.

Modeling Behaviour

s

ify
Clerk

Loan Officer

Clear
checks

are
ents

ounter
nsaction

an
ation

Audit

«include»

«include»
© O. Nierstrasz — U. Berne

Use Case Diagram
A use case is a generic
description of an entire
transaction involving
several actors.

A use case diagram
presents a set of use
cases (ellipses) and the
external actors that
interact with the
system.
Dependencies and
associations between
use cases may be
indicated.

Ident
Customer

Auditor

Bank

Prep
statem

C
tra

Lo
applic

ESE — W2001/2002 193.

Modeling Behaviour

wing a typical

either sequence

ample of a use case,
© O. Nierstrasz — U. Berne

Scenarios
A scenario is an instance of a use case sho
example of its execution.

Scenarios can be presented in UML using
diagrams or collaboration diagrams.

Note that a scenario only describes an ex
so conditionality cannot be expressed!

ESE — W2001/2002 194.

Modeling Behaviour

s

 also be expressed.

eiver
s

phone rings
answer phone
ringing stops

Phone Line Callee
© O. Nierstrasz — U. Berne

Sequence Diagram
A sequence diagram
depicts a scenario by
showing the
interactions among a
set of objects in
temporal order.

Objects (not classes!)
are shown as vertical
bars. Events or message
dispatches are shown as
horizontal (or slanted)
arrows from the sender
to the receiver.
Temporal constraints between events may

caller lifts rec
dial tone begin
dial (1)
dial tone ends
dial (2)
dial (2)
ringing tone

tone stops

ti
m

e

Caller

ESE — W2001/2002 195.

Modeling Behaviour

tation

ed control flow

etween objects
© O. Nierstrasz — U. Berne

UML Message Flow No
Filled solid arrowhead
procedure call or other nest

Stick arrowhead
flat, sequential control flow

Half-stick arrowhead
asynchronous control flow b
within a procedural sequence

ESE — W2001/2002 196.

Modeling Behaviour

ms
s flows of messages

w

 temp } 1.1.3.1: add(self)

contents

te(r0, r1)
dow)

n()

: Window

: Line { new }

ter»

{ new }
© O. Nierstrasz — U. Berne

Collaboration Diagra
Collaboration diagrams depict scenarios a
between objects:

redisplay()

1: displayPositions(window)

windo

{

1.1*[i=1..n]: drawSegment(i)

«self»
1.1.2: line := crea
1.1.3: display(win

i-1 i

{ temp }

1.1.1a: r0 := position() 1.1.1b: r1 := positio

: Controller

wire : Wire

left : Bead right : Bead

wire

«local» line

«parame
window

ESE — W2001/2002 197.

Modeling Behaviour

 labelled with text
low and information

(e.g. “[A1.3, B6.7.1]”)
w of control
ments
 invoked by “3.1” and

eads (e.g., “1.2a” and

..n]”)
#items = 0]”)

...
© O. Nierstrasz — U. Berne

Message Labels
Messages from one object to another are
strings showing the direction of message f
indicating the message sequence.

1. Prior messages from other threads
☞ only needed with concurrent flo

2. Dot-separated list of sequencing ele
☞ sequencing integer (e.g., “3.1.2” is

follows “3.1.1”)
☞ letter indicating concurrent thr

“1.2b”)
☞ iteration indicator (e.g., “1.1*[i=1
☞ conditional indicator (e.g., “2.3 [

ESE — W2001/2002 198.

Modeling Behaviour

..
”)
© O. Nierstrasz — U. Berne

Message Labels .
3. Return value binding (e.g., “status :=
4. Message name

☞ event or operation name
5. Argument list

ESE — W2001/2002 199.

Modeling Behaviour

Dialing

Ringing
do/play ringing tone

Connecting

ech

after
dial digit(n)
[incomplete]

lid]

connected

dial digit(n) [valid]
/connect

busy

15 sec.
© O. Nierstrasz — U. Berne

State Diagrams

Idle

Pinned

Talking

callee
answers

callee
hangs up

Timeout
do/play message

DialTone
do/play dial tone

Invalid
do/play message

Busy
do/play busy tone

Active

callee answers/enable spe

dial digit(n)
after 15 sec.

dial digit(n) [inva

caller
hangs up
/disconnect

lift receiver
/get dial tone

ESE — W2001/2002 200.

Modeling Behaviour

tion
volution of an object
s with other objects

munication from one

 real-world objects
lapsed time, ...
pe, ...)
ion between states

...
© O. Nierstrasz — U. Berne

State Diagram Nota
A State Diagram describes the temporal e
of a given class in response to interaction
inside or outside the system.

An event is a one-way (asynchronous) com
object to another:

❑ atomic (non-interruptible)
❑ includes events from hardware and

e.g., message receipt, input event, e
❑ notation: eventName(parameter: ty
❑ may cause object to make a transit

ESE — W2001/2002 201.

Modeling Behaviour

on ...
 object is waiting for

o) three sections:

value (valid only for

 transitions and
© O. Nierstrasz — U. Berne

State Diagram Notati
A state is a period of time during which an
an event to occur:

❑ depicted as rounded box with (up t
☞ name — optional
☞ state variables — name: type =

that state)
☞ triggered operations — internal

ongoing operations
❑ may be nested

ESE — W2001/2002 202.

Modeling Behaviour

ions

g Password

 / set echo invisible
 set echo normal
cter / handle character

/ display help

name

internal operations
© O. Nierstrasz — U. Berne

State Box with Reg
The entry event occurs whenever a
transition is made into this state,
and the exit operation is triggered
when a transition is made out of
this state.
The help and character events
cause internal transitions with no
change of state, so the entry and
exit operations are not performed.

Typin

entry
exit /
chara
help

ESE — W2001/2002 203.

Modeling Behaviour

event received by an

he object to change

bject
onal):

n(arguments)
een states
 triggered
© O. Nierstrasz — U. Berne

Transitions
A transition is an response to an external
object in a given state

❑ May invoke an operation, and cause t
state

❑ May send an event to an external o
❑ Transition syntax (each part is opti

event(arguments) [condition]
/ ^target.sendEvent operatio

❑ External transitions label arcs betw
❑ Internal transitions are part of the

operations of a state

ESE — W2001/2002 204.

Modeling Behaviour

ities
y a transition
sociated with states

kes place while

belled with the
© O. Nierstrasz — U. Berne

Operations and Activ
An operation is an atomic action invoked b

❑ Entry and exit operations can be as

An activity is an ongoing operation that ta
object is in a given state

❑ Modelled as “internal transitions” la
pseudo-event do

ESE — W2001/2002 205.

Modeling Behaviour

igh-level or low-level

ce of internal states:

s black spots and

Connecting
umber)

[number.isValid()]
/^dialedNumber(number)
© O. Nierstrasz — U. Berne

Composite States
Composite states may depicted either as h
views.
“Stubbed transitions” indicate the presen

Initial and terminal substates are shown a
“bulls-eyes”:

Idle Dialing
lift receiver dialedNumber(n

Dialing
number : String = “”

digit(n)

digit(n)

Partial Dial
entry/number.append(n)

Start
do / play dial tone

ESE — W2001/2002 206.

Modeling Behaviour

Objects

CR mode

Power button

On

On

toggle Power
© O. Nierstrasz — U. Berne

Sending Events between

TV mode V
VCR button

TV button
Power button

Remote Control

Off
toggle Power

toggle PowerVCR

Off
toggle Power

toggle PowerTelevision

toggle Power

ESE — W2001/2002 207.

Modeling Behaviour

es

done

Failed

Passed

Taking Class
© O. Nierstrasz — U. Berne

Concurrent Substat

Lab1

Term Project

Final Test

Lab2
lab done lab

project done

pass

Incomplete

fail

ESE — W2001/2002 208.

Modeling Behaviour

ing

s means that each of
e logical thread per

tates terminates all

l state waits for all

...
© O. Nierstrasz — U. Berne

Branching and Merg
Entering concurrent states:
Entering a state with concurrent substate
the substates is entered concurrently (on
substate).

Leaving concurrent states:
A labelled transition out of any of the subs
of the substates.
An unlabelled transition out of the overal
substates to terminate.

ESE — W2001/2002 209.

Modeling Behaviour

g ...
ing and merging uses

Cleanup

e’/a’
© O. Nierstrasz — U. Berne

Branching and Mergin
An alternative notation for explicit branch
a “synchronization bar”:

A2A1

B2B1

Startup

e/a

ESE — W2001/2002 210.

Modeling Behaviour

r
te that the current
on an external
 transition should

C
rrupt

sume
© O. Nierstrasz — U. Berne

History Indicato
A “history indicator” can be used to indica
composite state should be remembered up
transition. To return to the saved state, a
point explicitly to the history icon:

A2

A1

H

A
inte

re

ESE — W2001/2002 211.

Modeling Behaviour

Objects
e depicted by using
el states:

adOnly
© O. Nierstrasz — U. Berne

Creating and Destroying
Creation and destruction of objects can b
the start and terminal symbols as top-lev

Writeable
lock

Re
unlock

modify

destroy

create

CreatedFile
File

ESE — W2001/2002 212.

Modeling Behaviour

ns
t class and object

n diagrams document
g requirements

s can be used to
 or refine use case

ehaviour of classes
pecified use cases
© O. Nierstrasz — U. Berne

Using the Notatio
The diagrams introduced here complemen
diagrams.
During Analysis:

❑ Use case, sequence and collaboratio
use cases and their scenarios durin
specification

During Design:
❑ Sequence and collaboration diagram

document implementation scenarios
scenarios

❑ State diagrams document internal b
and must be validated against the s

ESE — W2001/2002 213.

Modeling Behaviour

ow!
ram?
ot classes?
ed in scenarios?
age labels in a

 to model object

rnal” and “internal”

n state diagrams for
© O. Nierstrasz — U. Berne

What you should kn
✎ What is the purpose of a use case diag
✎ Why do scenarios depict objects but n
✎ How can timing constraints be express
✎ How do you specify and interpret mess

scenario?
✎ How do you use nested state diagrams

behaviour?
✎ What is the difference between “exte

transitions?
✎ How can you model interaction betwee

several classes?

ESE — W2001/2002 214.

Modeling Behaviour

g questions?
slated to an

sage labels rather

ates?
© O. Nierstrasz — U. Berne

Can you answer the followin
✎ Can a sequence diagram always be tran

collaboration diagram?
✎ Or vice versa?
✎ Why are arrows depicted with the mes

than with links?
✎ When should you use concurrent subst

ESE — W2001/2002 215.

Software Architecture

ecture

ard, Dataflow, ...
© O. Nierstrasz — U. Berne

8. Software Archit

Overview:
❑ What is Software Architecture?
❑ Coupling and Cohesion
❑ Architectural styles:

☞ Layered, Client-Server, Blackbo
❑ UML diagrams for architectures

ESE — W2001/2002 216.

Software Architecture

lle, Addison-Wesley,

rks with UML, D.
, 1999
ecture — A System
ohn Wiley, 1996
es on an Emerging
tice-Hall, 1996
© O. Nierstrasz — U. Berne

Sources:
❑ Software Engineering, I. Sommervi

Fifth Edn., 1996.
❑ Objects, Components and Framewo

D'Souza, A. Wills, Addison-Wesley
❑ Pattern-Oriented Software Archit

of Patterns, F. Buschmann, et al., J
❑ Software Architecture: Perspectiv

Discipline, M. Shaw, D. Garlan, Pren

ESE — W2001/2002 217.

Software Architecture

tecture?

, circles, and
Word, does not

 D’Souza & Wills
© O. Nierstrasz — U. Berne

What is Software Archi

A neat-looking drawing of some boxes
lines, laid out nicely in Powerpoint or
constitute an architecture.

—

ESE — W2001/2002 218.

Software Architecture

tecture?

, and run-time

 those parts
re units, objects

etween them

ny system (or
tors and maintainers
y”.
© O. Nierstrasz — U. Berne

What is Software Archi
The architecture of a system consists of:

❑ the structure(s) of its parts
☞ including design-time, test-time

hardware and software parts
❑ the externally visible properties of

☞ modules with interfaces, hardwa
❑ the relationships and constraints b

in other words:
❑ The set of design decisions about a

subsystem) that keeps its implemen
from exercising “needless creativit

ESE — W2001/2002 219.

Software Architecture

plementation

ture: all business
sentation and

vices on the server;
on server processing

 Corba event
orba relationship
aging service as it is

...
© O. Nierstrasz — U. Berne

How Architecture Drives Im

❑ Use a 3-tier client-server architec
logic must be in the middle tier, pre
dialogue on the client, and data ser
that way you can scale the applicati
independently of persistent store.

❑ Use Corba for all distribution, using
channels for notification and the C
service; do not use the Corba mess
not yet mature.

ESE — W2001/2002 220.

Software Architecture

ementation ...

or representing any
t class, or document

 explicit
ct any UI to the
© O. Nierstrasz — U. Berne

How Architecture Drives Impl

❑ Use Collection Galore’s collections f
collections; by default use their Lis
your reason otherwise.

❑ Use Model-View-Controller with an
ApplicationModel object to conne
business logic and objects.

ESE — W2001/2002 221.

Software Architecture

Components

 right whose
vices provided by

at provides services
 normally be

liverable unit of
ign and
s to the out-side, by

er components to
© O. Nierstrasz — U. Berne

Sub-systems, Modules and

❑ A sub-system is a system in its own
operation is independent of the ser
other sub-systems.

❑ A module is a system component th
to other components but would not
considered as a separate system.

❑ A component is an independently de
software that encapsulates its des
implementation and offers interface
which it may be composed with oth
form a larger whole.

ESE — W2001/2002 222.

Software Architecture

ts of a component

dled simply because
ctions (e.g.,

eeded for the
.lang.String).

ability and
f changes to small

tions of cohesion.
adequate!
© O. Nierstrasz — U. Berne

Cohesion
Cohesion is a measure of how well the par
“belong together”.

❑ Cohesion is weak if elements are bun
they perform similar or related fun
java.lang.Math).

❑ Cohesion is strong if all parts are n
functioning of other parts (e.g. java

❑ Strong cohesion promotes maintain
adaptability by limiting the scope o
numbers of components.

There are many definitions and interpreta
Most attempts to formally define it are in

ESE — W2001/2002 223.

Software Architecture

he interconnections

ts if they depend
is a lot of

pendencies between

ility and adaptability
 less likely to affect
© O. Nierstrasz — U. Berne

Coupling
Coupling is a measure of the strength of t
between system components.

❑ Coupling is tight between componen
heavily on one another, (e.g., there
communication between them).

❑ Coupling is loose if there are few de
components.

❑ Loose coupling promotes maintainab
since changes in one component are
others.

ESE — W2001/2002 224.

Software Architecture
© O. Nierstrasz — U. Berne

Tight Coupling

ESE — W2001/2002 225.

Software Architecture
© O. Nierstrasz — U. Berne

Loose Coupling

ESE — W2001/2002 226.

Software Architecture

lels

ace between the
ng the system

ilding cannot be
e same is true for

ding and software

ing and software
© O. Nierstrasz — U. Berne

Architectural Paral

❑ Architects are the technical interf
customer and the contractor buildi

❑ A bad architectural design for a bu
rescued by good construction — th
software

❑ There are specialized types of buil
architects

❑ There are schools or styles of build
architecture

ESE — W2001/2002 227.

Software Architecture

es

ly of systems in
nization. More
fines a
tor types, and a
 combined.
Shaw and Garlan
© O. Nierstrasz — U. Berne

Architectural Styl

An architectural style defines a fami
terms of a pattern of structural orga
specifically, an architectural style de
vocabulary of components and connec
set of constraints on how they can be

—

ESE — W2001/2002 228.

Software Architecture

res
 into a set of layers
 the layer “above”.

elements only see
, or

ate to higher layers
ent of sub-systems

, only the adjacent
© O. Nierstrasz — U. Berne

Layered Architectu
A layered architecture organises a system
each of which provide a set of services to

❑ Normally layers are constrained so
—other elements in the same layer
—elements of the layer below

❑ Callbacks may be used to communic
❑ Supports the incremental developm

in different layers.
☞ When a layer interface changes

layer is affected

ESE — W2001/2002 229.

Software Architecture

odel
© O. Nierstrasz — U. Berne

Abstract Machine M

ESE — W2001/2002 230.

Software Architecture

del
© O. Nierstrasz — U. Berne

OSI Reference Mo

ESE — W2001/2002 231.

Software Architecture

ctures

pplication logic and
t and server sub-
ferent machine and
by RPC).

ard
ystems. May require

 existing servers

...
© O. Nierstrasz — U. Berne

Client-Server Archite

A client-server architecture distributes a
services respectively to a number of clien
systems, each potentially running on a dif
communicating through the network (e.g,

Advantages
❑ Distribution of data is straightforw
❑ Makes effective use of networked s

cheaper hardware
❑ Easy to add new servers or upgrade

ESE — W2001/2002 232.

Software Architecture

ures ...

s use different data

t
ver
ames and services —
ers and services are
© O. Nierstrasz — U. Berne

Client-Server Architect

Disadvantages
❑ No shared data model so sub-system

organisation.
Data interchange may be inefficien

❑ Redundant management in each ser
❑ May require a central registry of n

it may be hard to find out what serv
available

ESE — W2001/2002 233.

Software Architecture

ctures
© O. Nierstrasz — U. Berne

Client-Server Archite

ESE — W2001/2002 234.

Software Architecture

ures
© O. Nierstrasz — U. Berne

Four-Tier Architect

ESE — W2001/2002 235.

Software Architecture

ures

plication logic to a
manages all data in a
).

ts of data
d with how data is

epository schema

...
© O. Nierstrasz — U. Berne

Blackboard Architect

A blackboard architecture distributes ap
number of independent sub-systems, but
single, shared repository (or “blackboard”

Advantages
❑ Efficient way to share large amoun
❑ Sub-systems need not be concerne

produced, backed up etc.
❑ Sharing model is published as the r

ESE — W2001/2002 236.

Software Architecture

res ...

itory data model
nsive
policies
© O. Nierstrasz — U. Berne

Blackboard Architectu

Disadvantages
❑ Sub-systems must agree on a repos
❑ Data evolution is difficult and expe
❑ No scope for specific management
❑ Difficult to distribute efficiently

ESE — W2001/2002 237.

Software Architecture

l

© O. Nierstrasz — U. Berne

Repository Mode

ESE — W2001/2002 238.

Software Architecture

ms

ts perform services
y other components.

oadcast to all sub-
 handle the event

e interrupts are
nd passed to some
© O. Nierstrasz — U. Berne

Event-driven Syste

In an event-driven architecture componen
in reaction to external events generated b

❑ In broadcast models an event is br
systems. Any sub-system which can
may do so.

❑ In interrupt-driven models real-tim
detected by an interrupt handler a
other component for processing.

ESE — W2001/2002 239.

Software Architecture

s on different

er-subscriber

t in specific events
nsferred to the

e event and message
nts of interest to

 or when an event will
© O. Nierstrasz — U. Berne

Broadcast model
❑ Effective in integrating sub-system

computers in a network
❑ Can be implemented using a publish

pattern:
☞ Sub-systems register an interes
☞ When these occur, control is tra

subscribed sub-systems
❑ Control policy is not embedded in th

handler. Sub-systems decide on eve
them

❑ However, sub-systems don’t know if
be handled

ESE — W2001/2002 240.

Software Architecture

ing
© O. Nierstrasz — U. Berne

Selective Broadcast

ESE — W2001/2002 241.

Software Architecture

t performs
o produce outputs.

cy in parallel or

or slower ones

systems
les

...
© O. Nierstrasz — U. Berne

Dataflow Models
In a dataflow architecture each componen
functional transformations on its inputs t

❑ Highly effective for reducing laten
distributed systems
☞ No call/reply overhead
☞ But, fast processes must wait f

❑ Not really suitable for interactive
☞ Dataflows should be free of cyc

ESE — W2001/2002 242.

Software Architecture

..

nt is known as pipes

 Web-content

Data sink
 picasso dd

Data sink
ted HTML page
© O. Nierstrasz — U. Berne

Dataflow Models .
Examples:

❑ The single-input, single-output varia
and filters
☞ e.g., UNIX (Bourne) shell

☞ e.g., CGI Scripts for interactive

Data source Filter
tar cf - . gzip -9 rsh

Data source Filter
HTML Form CGI Script genera

ESE — W2001/2002 243.

Software Architecture

stem
© O. Nierstrasz — U. Berne

Invoice Processing Sy

ESE — W2001/2002 244.

Software Architecture

hitectures
© O. Nierstrasz — U. Berne

Compilers as Dataflow Arc

ESE — W2001/2002 245.

Software Architecture

chitectures
© O. Nierstrasz — U. Berne

Compilers as Blackboard Ar

ESE — W2001/2002 246.

Software Architecture

iagram

Customer
Management

Interface
()

Customer
© O. Nierstrasz — U. Berne

UML support: Package D
Decompose system
into packages
(containing any
other UML
element, incl.
packages)

Processing Orders

RDB
query

Database Layer

Domain Layer

Application Layer

Order

ESE — W2001/2002 247.

Software Architecture

 Diagram
 hardware nodes.

ixHost

WebServer

ixHost

:Database

rnet»
© O. Nierstrasz — U. Berne

UML support: Deployment
Physical layout of run-time components on

myMac: Mac

:Netscape

aPC: PC

:IExplorer

:Un

:

:Un

«internet»

«internet»
«ethe

ESE — W2001/2002 248.

Software Architecture

ow!
rain a system?
plify design?

layer “see” the layer

to event-driven
© O. Nierstrasz — U. Berne

What you should kn
✎ How does software architecture const
✎ How does choosing an architecture sim
✎ What are coupling and cohesion?
✎ What is an architectural style?
✎ Why shouldn’t elements in a software

above?
✎ What kinds of applications are suited

architectures?

ESE — W2001/2002 249.

Software Architecture

g questions?
in client” in a 4-tier

supported by the

een software layers?
rchitecture in Java?
rchitecture or an

racteristics of each
© O. Nierstrasz — U. Berne

Can you answer the followin
✎ What is meant by a “fat client” or a “th

architecture?
✎ What kind of architectural styles are

Java AWT? by RMI?
✎ How do callbacks reduce coupling betw
✎ How would you implement a dataflow a
✎ Is it easier to understand a dataflow a

event-driven one?
✎ What are the coupling and cohesion cha

architectural style?

ESE — W2001/2002 250.

User Interface Design

esign

lle, Addison-Wesley,

ner’s Approach, R.
., 1994.
© O. Nierstrasz — U. Berne

9. User Interface D

Overview:
❑ Interface design models
❑ Design principles
❑ Information presentation
❑ User Guidance
❑ Evaluation

Sources:
❑ Software Engineering, I. Sommervi

Fifth Edn., 1996.
❑ Software Engineering — A Practitio

Pressman, Mc-Graw Hill, Third Edn

ESE — W2001/2002 251.

User Interface Design

dels

n:

tware design.
e of the end users.
kground, etc.)
rception of the

nifestation of the
on etc.)
© O. Nierstrasz — U. Berne

Interface Design Mo

Four different models occur in HCI desig

1. The design model expresses the sof
2. The user model describes the profil

(i.e., novices vs. experts, cultural bac
3. The user’s model is the end users’ pe

system.
4. The system image is the external ma

system (look and feel + documentati

ESE — W2001/2002 252.

User Interface Design

cs
ion

different
ayed
ser’s screen.
 files (including
), but they may
s (e.g., printer

ize commands
r a command
© O. Nierstrasz — U. Berne

GUI Characteristi
Characteristic Descript

Windows
Multiple windows allow
information to be displ
simultaneously on the u

Icons

Usually icons represent
folders and applications
also stand for processe
drivers).

Menus
Menus bundle and organ
(eliminating the need fo
language).

ESE — W2001/2002 253.

User Interface Design

as a mouse is used
rom a menu or
rest in a window.
 be commands on

ion
© O. Nierstrasz — U. Berne

Pointing
A pointing device such
for commands choices f
indicating items of inte

Graphics Graphical elements can
the same display.

Characteristic Descript

ESE — W2001/2002 254.

User Interface Design

arn to use the

een tasks and

s own window when

ible with immediate

...
© O. Nierstrasz — U. Berne

GUI advantages
❑ They are easy to learn and use.

☞ Users without experience can le
system quickly.

❑ The user may switch attention betw
applications.
☞ Information remains visible in it

attention is switched.

❑ Fast, full-screen interaction is poss
access to the entire screen

ESE — W2001/2002 255.

User Interface Design

s ...

nterface
er used due to poor

a user to make
© O. Nierstrasz — U. Berne

GUI (dis) advantage

But
❑ A GUI is not automatically a good i

☞ Many software systems are nev
UI design

☞ A poorly designed UI can cause
catastrophic errors

ESE — W2001/2002 256.

User Interface Design

rinciples
tion
 familiar to the

should be activated
nds and menus

ormat, etc.
 in a known way, the
redict the

e commands.
isual and auditory
wo-way
© O. Nierstrasz — U. Berne

User Interface Design P
Principle Descrip

User familiarity Use terms and concepts
user.

Consistency
Comparable operations
in the same way. Comma
should have the same f

Minimal surprise
If a command operates
user should be able to p
operation of comparabl

Feedback
Provide the user with v
feedback, maintaining t
communication.

ESE — W2001/2002 257.

User Interface Design

nformation that
etween actions.
ad.
gue, motion and
trokes and mouse

from their errors.
 confirmation of
ft' deletes, etc.
 of context-
 and assistance.

tion
© O. Nierstrasz — U. Berne

Memory load
Reduce the amount of i
must be remembered b
Minimize the memory lo

Efficiency
Seek efficiency in dialo
thought. Minimize keys
movements.

Recoverability
Allow users to recover
Include undo facilities,
destructive actions, 'so

User guidance Incorporate some form
sensitive user guidance

Principle Descrip

ESE — W2001/2002 258.

User Interface Design

n
he user with a model
d by direct action.

editors

...
© O. Nierstrasz — U. Berne

Direct Manipulatio
A direct manipulation interface presents t
of the information space which is modifie

Examples
❑ forms (direct entry)
❑ WYSIWYG document and graphics

ESE — W2001/2002 259.

User Interface Design

 ...

ely to be intimidated

rt
heir actions
d and corrected

y be difficult
tly in a large

emanding to execute
© O. Nierstrasz — U. Berne

Direct Manipulation
Advantages

❑ Users feel in control and are less lik
by the system

❑ User learning time is relatively sho
❑ Users get immediate feedback on t

☞ mistakes can be quickly detecte

Problems
❑ Finding the right user metaphor ma
❑ It can be hard to navigate efficien

information space.
❑ It can be complex to program and d

ESE — W2001/2002 260.

User Interface Design

ktop” with icons

ware control panel

 displays, sliders etc.
© O. Nierstrasz — U. Berne

Interface Models
Desktop metaphor.

❑ The model of an interface is a “des
representing files, cabinets, etc.

Control panel metaphor.
❑ The model of an interface is a hard

with interface entities including:
☞ buttons, switches, menus, lights,

ESE — W2001/2002 261.

User Interface Design

tion from a list of
tem by pointing and
 by typing (part of)

...
© O. Nierstrasz — U. Berne

Menu Systems

Menu systems allow users to make a selec
possibilities presented to them by the sys
clicking with a mouse, using cursor keys or
the name of the selection.

ESE — W2001/2002 262.

User Interface Design

.

mand names

erface
vided (based on the

 (and) or disjunction

nu structuring

er than command
© O. Nierstrasz — U. Berne

Menu Systems ..
Advantages

❑ Users don’t need to remember com
❑ Typing effort is minimal
❑ User errors are trapped by the int
❑ Context-dependent help can be pro

current menu selection)
Problems

❑ Actions involving logical conjunction
(or) are awkward to represent

❑ If there are many choices, some me
facility must be used

❑ Experienced users find menus slow
language

ESE — W2001/2002 263.

User Interface Design

 additional choices
e number of choices

nu to be replaced by

enu to be revealed

ntrol panel pops-up
© O. Nierstrasz — U. Berne

Menu Structuring
Scrolling menus

❑ The menu can be scrolled to reveal
❑ Not practical if there is a very larg

Hierarchical menus
❑ Selecting a menu item causes the me

a sub-menu
Walking menus

❑ A menu selection causes another m
Associated control panels

❑ When a menu item is selected, a co
with further options

ESE — W2001/2002 264.

User Interface Design

es
 commands to give

rminals
niques
can be created by

l typing can be

...
© O. Nierstrasz — U. Berne

Command Interfac
With a command language, the user types
instructions to the system

❑ May be implemented using cheap te
❑ Easy to process using compiler tech
❑ Commands of arbitrary complexity

command combination
❑ Concise interfaces requiring minima

created

ESE — W2001/2002 265.

User Interface Design

 ...

t quickly with the

a command language
erienced users
stem is required
© O. Nierstrasz — U. Berne

Command Interfaces
Advantages

❑ Allow experienced users to interac
system

❑ Commands can be scripted (!)

Problems
❑ Users have to learn and remember
❑ Not suitable for occasional or inexp
❑ An error detection and recovery sy
❑ Typing ability is required

ESE — W2001/2002 266.

User Interface Design

 Factors
formation or data

hange?
diately?
esponse to a change?
face?
ric? Are relative
© O. Nierstrasz — U. Berne

Information Presentation
❑ Is the user interested in precise in

relationships?
❑ How quickly do information values c

Must the change be indicated imme
❑ Must the user take some action in r
❑ Is there a direct manipulation inter
❑ Is the information textual or nume

values important?

ESE — W2001/2002 267.

User Interface Design

entation

ace

ssion of a value

es
© O. Nierstrasz — U. Berne

Analogue vs. Digital Pres
Digital presentation

❑ Compact — takes up little screen sp
❑ Precise values can be communicated

Analogue presentation
❑ Easier to get an 'at a glance' impre
❑ Possible to show relative values
❑ Easier to see exceptional data valu

ESE — W2001/2002 268.

User Interface Design

es
lex information

ate meaning!
r-blindness, cultural

d colour
asks

ing
hange

h

© O. Nierstrasz — U. Berne

Colour Use Guidelin
Colour can help the user understand comp
structures.

❑ Don’t use (only) colour to communic
☞ Open to misinterpretation (colou

differences ...)
☞ Design for monochrome then ad

❑ Use colour coding to support user t
☞ highlight exceptional events
☞ allow users to control colour cod

❑ Use colour change to show status c
❑ Don't use too many colours

☞ Avoid colour pairings which clas
❑ Use colour coding consistently

ESE — W2001/2002 269.

User Interface Design

h the user interface
about the system or

essages
© O. Nierstrasz — U. Berne

User Guidance
The user guidance system is integrated wit
to help users when they need information
when they make some kind of error.

User guidance covers:
❑ System messages, including error m
❑ Documentation provided for users
❑ On-line help

ESE — W2001/2002 270.

User Interface Design

 Wording

ould be aware of
ould adjust the

nt context.
ould provide both
 for beginners, and

perienced users.
 to the user’s skills

ology which is
© O. Nierstrasz — U. Berne

Design Factors in Message

Context
The user guidance system sh
what the user is doing and sh
output message to the curre

Experience
The user guidance system sh
longer, explanatory messages
more terse messages for ex

Skill level

Messages should be tailored
as well as their experience.
I.e., depending on the termin
familiar to the reader.

ESE — W2001/2002 271.

User Interface Design

 rather than
be insulting or try

gner of messages
ulture of the
ere the system is
r one culture might
© O. Nierstrasz — U. Berne

Style
Messages should be positive
negative. They should never
to be funny.

Culture

Wherever possible, the desi
should be familiar with the c
country (or environment) wh
used. (A suitable message fo
be unacceptable in another!)

ESE — W2001/2002 272.

User Interface Design

lines

ring from the error
the error (e.g.,
© O. Nierstrasz — U. Berne

Error Message Guide

❑ Speak the user’s language
❑ Give constructive advice for recove
❑ Indicate negative consequences of

possibly corrupted files)
❑ Give an audible or visual cue
❑ Don’t make the user feel guilty!

ESE — W2001/2002 273.

User Interface Design

ssages
© O. Nierstrasz — U. Berne

Good and Bad Error Me

ESE — W2001/2002 274.

User Interface Design

gn

formation.”

ual
ell onto paper pages
can improve

ding screens as they
© O. Nierstrasz — U. Berne

Help System Desi

Help? means “Please help. I want in
Help! means “HELP. I'm in trouble.”

Help information
❑ Should not simply be an on-line man

☞ Screens or windows don't map w
❑ Dynamic characteristics of display

information presentation
☞ but people are not so good at rea

are text.

ESE — W2001/2002 275.

User Interface Design

vided
elp from different

ere the user is

ust be provided
© O. Nierstrasz — U. Berne

Help system use
❑ Multiple entry points should be pro

☞ the user should be able to get h
places

❑ The help system should indicate wh
positioned

❑ Navigation and traversal facilities m

ESE — W2001/2002 276.

User Interface Design

ation

 to assess its
© O. Nierstrasz — U. Berne

User Interface Evalu

User interface design should be evaluated
suitability and usability.

ESE — W2001/2002 277.

User Interface Design

s
iption
e a new user to
ith the system?
stem response
k practice?
ystem of user

em at recovering

stem tied to a
?

© O. Nierstrasz — U. Berne

Usability attribute
Attribute Descr

Learnability How long does it tak
become productive w

Speed of operation How well does the sy
match the user’s wor

Robustness How tolerant is the s
error?

Recoverability How good is the syst
from user errors?

Adaptability How closely is the sy
single model of work

ESE — W2001/2002 278.

User Interface Design

ow!
mind in UI design?
se?
 direct manipulation

u systems and

I?
ext sensitive?
© O. Nierstrasz — U. Berne

What you should kn
✎ What models are important to keep in
✎ What is the principle of minimal surpri
✎ What problems arise in designing a good

interface?
✎ What are the trade-offs between men

command languages?
✎ How can you use colour to improve a U
✎ In what way can a help system be cont

ESE — W2001/2002 279.

User Interface Design

g questions?
d short-cuts” for

d on the system?

 Which design

recently? How would

rd help system?
© O. Nierstrasz — U. Berne

Can you answer the followin
✎ Why is it important to offer “keyboar

equivalent mouse actions?
✎ How would you present the current loa

Over time?
✎ What is the worst UI you every used?

principles did it violate?
✎ What’s the worst web site you’ve used

you fix it?
✎ What’s good or bad about the MS-Wo

ESE — W2001/2002 280.

Software Validation

ation

hite box testing

lle, Addison-Wesley,
© O. Nierstrasz — U. Berne

10. Software Valid

Overview:
❑ Reliability, Failures and Faults
❑ Fault Tolerance
❑ Software Testing: Black box and w
❑ Static Verification

Source:
❑ Software Engineering, I. Sommervi

Fifth Edn., 1996.

ESE — W2001/2002 281.

Software Validation

s and Faults
easure of how well it
rs, expressed in

vent where the
 or undesirable way.

rtion of a software
 occur if it is run in a
inputs.
© O. Nierstrasz — U. Berne

Software Reliability, Failure
The reliability of a software system is a m
provides the services expected by its use
terms of software failures.

❑ A software failure is an execution e
software behaves in an unexpected

❑ A software fault is an erroneous po
system which may cause failures to
particular state, or with particular

ESE — W2001/2002 282.

Software Validation

iption
rtain inputs
ts
 without operator

on is needed to

rupt data
tem data
© O. Nierstrasz — U. Berne

Kinds of failures
Failure class Descr

Transient Occurs only with ce
Permanent Occurs with all inpu

Recoverable System can recover
intervention

Unrecoverable Operator interventi
recover from failure

Non-corrupting Failure does not cor
Corrupting Failure corrupts sys

ESE — W2001/2002 283.

Software Validation

bility

he number of faults

te despite the
© O. Nierstrasz — U. Berne

Programming for Relia
Fault avoidance:

❑ development techniques to reduce t
in a system

Fault tolerance:
❑ developing programs that will opera

presence of faults

ESE — W2001/2002 284.

Software Validation

erably formal)
on hiding and

he development

o drive the software

ults and assess
© O. Nierstrasz — U. Berne

Fault Avoidance
Fault avoidance depends on:

1. A precise system specification (pref
2. Software design based on informati

encapsulation
3. Extensive validation reviews during t

process
4. An organizational quality philosophy t

process
5. Planned system testing to expose fa

reliability

ESE — W2001/2002 285.

Software Validation

are Faults
es and systems are
tems:
tured programming
understand, reason

nstructs
ly imprecise and may

r exact comparisons
aliasing, and the risk

 to abstract data

...
© O. Nierstrasz — U. Berne

Common Sources of Softw
Several features of programming languag
common sources of faults in software sys

❑ Goto statements and other unstruc
constructs make programs hard to
about and modify.
☞ Use structured programming co

❑ Floating point numbers are inherent
lead to invalid comparisons.
☞ Fixed point numbers are safer fo

❑ Pointers are dangerous because of
of corrupting memory
☞ Pointer usage should be confined

type implementations

ESE — W2001/2002 286.

Software Validation

e Faults ...
ing differences can
 hard-to-predict

ncies
ic, and may exhaust

y, within a controlled

l independent of the
itical operation to be

prefer disciplined
© O. Nierstrasz — U. Berne

Common Sources of Softwar
❑ Parallelism is dangerous because tim

affect overall program behaviour in
ways.
☞ Minimize inter-process depende

❑ Recursion can lead to convoluted log
(stack) memory.
☞ Use recursion in a disciplined wa

scope
❑ Interrupts force transfer of contro

current context, and may cause a cr
terminated.
☞ Minimize the use of interrupts;

exceptions

ESE — W2001/2002 287.

Software Validation

ur activities:

ystem has reached a
stem failure
arts of the system

lure
o a known, “safe”
ged state, or backing

the fault does not
© O. Nierstrasz — U. Berne

Fault Tolerance
A fault-tolerant system must carry out fo

1. Failure detection: detect that the s
particular state or will result in a sy

2. Damage assessment: detect which p
state have been affected by the fai

3. Fault recovery: restore the state t
state (either by correcting the dama
up to a previous, safe state)

4. Fault repair: modify the system so
recur (!)

ESE — W2001/2002 288.

Software Validation

lerance

 are implemented

g system, and
ast three versions

...
© O. Nierstrasz — U. Berne

Approaches to Fault To
N-version Programming:

Multiple versions of the software system
independently by different teams.
The final system:

❑ runs all the versions in parallel,
❑ compares their results using a votin
❑ rejects inconsistent outputs. (At le

should be available!)

ESE — W2001/2002 289.

Software Validation

rance ...

am unit contains a
code to back up and

ce, not in parallel
 by voting)
© O. Nierstrasz — U. Berne

Approaches to Fault Tole
Recovery Blocks:

A finer-grained approach in which a progr
test to check for failure, and alternative
try in case of failure.

❑ alternatives are executed in sequen
❑ the failure test is independent (not

ESE — W2001/2002 290.

Software Validation

ing

sible to ensure that
 invalid values.
nd raise exceptions.
ants for abstract
itions of procedures
rs to recover from

, where appropriate,
ave been affected,
e.

...
© O. Nierstrasz — U. Berne

Defensive Programm
Failure detection:

❑ Use the type system as much as pos
state variables do not get assigned

❑ Use assertions to detect failures a
Explicitly state and check all invari
data types, and pre- and post-cond
as assertions. Use exception handle
failures.

❑ Use damage assessment procedures
to assess what parts of the state h
before attempting to fix the damag

ESE — W2001/2002 291.

Software Validation

g ...

vious, consistent

ndant information to
 corrupted data
© O. Nierstrasz — U. Berne

Defensive Programmin
Fault recovery:

❑ Backward recovery: backup to a pre
state

❑ Forward recovery: make use of redu
reconstruct a consistent state from

ESE — W2001/2002 292.

Software Validation

ation

...
© O. Nierstrasz — U. Berne

Verification and Valid
Verification:

❑ Are we building the product right?
—i.e., does it conform to specs?

Validation:
❑ Are we building the right product?

—i.e., does it meet expectations?

ESE — W2001/2002 293.

Software Validation

tion ...

ion, analysis and

ting and defect

Programtailed
esign

Dynamic
validation
© O. Nierstrasz — U. Berne

Verification and Valida

Static techniques include program inspect
formal verification.
Dynamic techniques include statistical tes
testing ...

Requirements
specification

High-level
design

Formal
specifications

De
d

Prototype

Static
verification

ESE — W2001/2002 294.

Software Validation

ss

ents are tested to
tly.

nts (a module) is

 integrated as a sub-
 problems in large
interface
on testing these

...
© O. Nierstrasz — U. Berne

The Testing Proce
1. Unit testing:

☞ Individual (stand-alone) compon
ensure that they operate correc

2. Module testing:
☞ A collection of related compone

tested as a group.
3. Sub-system testing:

☞ The phase tests a set of modules
system. Since the most common
systems arise from sub-system
mismatches, this phase focuses
interfaces.

ESE — W2001/2002 295.

Software Validation

 ...

etecting errors
actions between sub-
the complete
n-functional

ing):
ther than simulated

 performed when
© O. Nierstrasz — U. Berne

The Testing Process
4. System testing:

☞ This phase concentrates on (i) d
resulting from unexpected inter
systems, and (ii) validating that
systems fulfils functional and no
requirements.

5. Acceptance testing (alpha/beta test
☞ The system is tested with real ra

data.

Testing is iterative! Regression testing is
defects are repaired.

ESE — W2001/2002 296.

Software Validation

g
rything that used to
o the system!

peatable

 go wrong!

nt, but they pay off
© O. Nierstrasz — U. Berne

Regression testin
Regression testing means testing that eve
work still works after changes are made t

❑ tests must be deterministic and re
❑ should test “all” functionality

☞ every interface
☞ all boundary situations
☞ every feature
☞ every line of code
☞ everything that can conceivably

It costs extra work to define tests up fro
in debugging & maintenance!

ESE — W2001/2002 297.

Software Validation

gin when the system
 should be developed

tests should be
re process iterates.

Detailed
design

Module and unit
code and test

Sub-system
integration test
© O. Nierstrasz — U. Berne

Test Planning
The preparation of the test plan should be
requirements are formulated, and the plan
in detail as the software is designed.

The plan should be revised regularly, and
repeated and extended where the softwa

Acceptance
test plan

System
integration
test plan

Requirements
specification

Sub-system
integration
test plan

System
specification

System design

System
integration test

Acceptance
testService

ESE — W2001/2002 298.

Software Validation

g
ules are represented

g functions as stubs
as a single activity
y on, avoiding

ystem!

to simulate complex
© O. Nierstrasz — U. Berne

Top-down Testin
❑ Start with sub-systems, where mod

by “stubs”
❑ Similarly test modules, representin
❑ Coding and testing are carried out
❑ Design errors can be detected earl

expensive redesign
❑ Always have a running (if limited) s

❑ BUT: may be impractical for stubs
components

ESE — W2001/2002 299.

Software Validation

g

ercise lower-level

s to be shared with

t uncover
software process

ottom-up testing is
© O. Nierstrasz — U. Berne

Bottom-up Testin
❑ Start by testing units and modules
❑ Test drivers must be written to ex

components
❑ Works well for reusable component

other projects

❑ BUT: pure bottom-up testing will no
architectural faults till late in the

Typically a combination of top-down and b
best.

ESE — W2001/2002 300.

Software Validation

 of defects in the

, but in practice can

ystem.

s for a particular
© O. Nierstrasz — U. Berne

Defect Testing
Tests are designed to reveal the presence
system.

Testing should, in principle, be exhaustive
only be representative.

Test data are inputs devised to test the s

Test cases are input/output specification
function being tested.

ESE — W2001/2002 301.

Software Validation

.

ore important than

tify situations that
eir job.

ortant than testing

s when the system is

portant than testing

on typical usage
© O. Nierstrasz — U. Berne

Defect Testing ..
Petschenik (1985) proposes:

1. “Testing a system’s capabilities is m
testing its components.”
☞ Choose test cases that will iden

may prevent users from doing th
2. “Testing old capabilities is more imp

new capabilities.”
☞ Always perform regression test

modified.
3. “Testing typical situations is more im

boundary value cases.”
☞ If resources are limited, focus

patterns.

ESE — W2001/2002 302.

Software Validation

testing
a “black box” whose
ying its inputs and

causing
us
ur

puts
ealing the
sence of
ects
© O. Nierstrasz — U. Berne

Functional (black box)
Functional testing treats a component as
behaviour can be determined only by stud
outputs.

Ie
Input set

Oe
Output set

Component

Inputs
anomalo
behavio

Out
rev
pre
def

ESE — W2001/2002 303.

Software Validation

 specification of the

ting different

ent’s interface, by
similarly for all
© O. Nierstrasz — U. Berne

Coverage Criteria
Test cases are derived from the external
component and should cover:

❑ all exceptions
❑ all data ranges (incl. invalid) genera

classes of output
❑ all boundary values

Test cases can be derived from a compon
assuming that the component will behave
members of an equivalence partition ...

ESE — W2001/2002 304.

Software Validation

ning

 }

ons?
..

ce classes

e array?
t all combinations
© O. Nierstrasz — U. Berne

Equivalence partitio
private int[] elements_;
public boolean find(int key) { ...

Check input partitions:
❑ Do the inputs fulfil the pre-conditi

☞ is the array sorted, non-empty .
❑ Is the key in the array?

☞ leads to (at least) 2x2 equivalen
Check boundary conditions:

❑ Is the array of length 1?
❑ Is the key at the start or end of th

☞ leads to further subdivisions (no
make sense)

ESE — W2001/2002 305.

Software Validation

Data
ful equivalence

est Data
nts = { }
nts = { 33, 20, 17, 18 }
nts = { 17 }
ts = { 17 }
nts = { 17, 18, 20, 33 }

ents = { 17, 18, 20, 33 }
ents = { 17, 18, 20, 33 }
ents = { 17, 18, 20, 33 }
© O. Nierstrasz — U. Berne

Test Cases and Test
Generate test data that cover all meaning
partitions.

Test Cases T
Array length 0 key = 17, eleme
Array not sorted key = 17, eleme
Array size 1, key in array key = 17, eleme
Array size 1, key not in array key = 0, elemen
Array size > 1, key is first element key = 17, eleme
Array size > 1, key is last element key = 33, elem
Array size > 1, key is in middle key = 20, elem
Array size > 1, key not in array key = 50, elem
...

ESE — W2001/2002 306.

Software Validation

Testing

t

Test
data

Test
outputs

a

Run tests
© O. Nierstrasz — U. Berne

Structural (white box)
Structural testing
treats a component
as a “white box” or
“glass box” whose
structure can be
examined to
generate test cases.

Derive test cases to
maximize coverage of
that structure, yet
minimize number of
test cases.

Componen
code

Derive test dat

Produce output

ESE — W2001/2002 307.

Software Validation

 once
ditions at least once
ce
es:

h exercises every
ponent.
© O. Nierstrasz — U. Berne

Coverage criteria
❑ every statement at least once
❑ all portions of control flow at least
❑ all possible values of compound con
❑ all portions of data flow at least on
❑ for all loops L, with n allowable pass

(i) skip the loop;
(ii) 1 pass through the loop
(iii) 2 passes
(iv) m passes where 2 < m < n
(v) n-1, n, n+1 passes

Path testing is a white-box strategy whic
independent execution path through a com

ESE — W2001/2002 308.

Software Validation

od

// (1)
tion

[lastIndex];

) { // (2) (3)
invariant
© O. Nierstrasz — U. Berne

Binary Search Meth
public boolean find(int key)

throws assertionViolation {
assert(isSorted()); // pre-condi
if (isEmpty()) { return false; }
int bottom = 0;
int top = elements_.length-1;
int lastIndex = (bottom+top)/2;
int mid;
boolean found = key == elements_

while ((bottom <= top) && !found
assert(bottom <= top); // loop
mid = (bottom + top) / 2;
found = key == elements_[mid];

ESE — W2001/2002 309.

Software Validation

// (5)
// (6)

// (7)
// (8)
// (9)

p - bottom
// (4)

ex]) || !found);
© O. Nierstrasz — U. Berne

if (found) {
lastIndex = mid;

} else {
if (elements_[mid] < key) {
bottom = mid + 1;

} else { top = mid - 1; }
} // loop variant decreases: to

}
assert((key == elements_[lastInd
// post-condition
return found;

}

ESE — W2001/2002 310.

Software Validation

ndependent paths

11,2,12,13},
1,2,12,13} ...

ents_[mid])

ements_[mid] < key)
© O. Nierstrasz — U. Berne

Path Testing
Test cases should be chosen to cover all i
through a routine:

e.g., {1,2,12,13}, {1,2,3,4,12,13}, {1,2,3,5,6,
{1,2,3,5,7,8,10,11,2,12,13}, {1,2,3,5,7,9,10,1

1

2

3
4

6
5

7
8

13

9
10

11
12

while (bottom <= top)

if (key == elem

if (el

if (! found)

ESE — W2001/2002 311.

Software Validation

echnique

ments; edges

of conditions + 1

and / or
© O. Nierstrasz — U. Berne

Basis Path Testing: The T
See [Press92a]

1. Draw a control flow graph
Nodes represent nonbranching state
represent control flow.

2. Compute the Cyclomatic Complexity
= #(edges) - #(nodes) + 2 = number

...

if-then-else while case-of

ESE — W2001/2002 312.

Software Validation

...
s

Cyclomatic

of these paths
ontrol the branches.
 and/or exceptions
© O. Nierstrasz — U. Berne

Basis Path Testing
3. Determine a set of independent path

Several possibilities. Upper bound =
Complexity

4. Prepare test cases that force each
Choose values for all variables that c
Predict the result in terms of values
raised

5. Write test driver for each test case

ESE — W2001/2002 313.

Software Validation

th Testing is not
4, y=3} will exercise

t x, int y)
ionViolation {

- y;

- x;

> 0); // post-condition
© O. Nierstrasz — U. Berne

Condition Testing
For complex boolean expressions, Basis Pa
enough! Input values {x = 3, y=4} and {x =
all paths, but consider {x = 3, y=3} ...

❑ Condition
Testing
exercises all
logical conditions

❑ Domain Testing:
for each
occurrence of <,
<=, =, <>, >= 3
tests

public int abs (in
throws assert

int result;
if (x > y) {

result = x
} else {

result = y
}

assert (result
return result;

}

ESE — W2001/2002 314.

Software Validation

g
etermine the
 discover faults.

lecom systems
© O. Nierstrasz — U. Berne

Statistical Testin
The objective of statistical testing is to d
reliability of the software, rather than to

Reliability may be expressed as:
❑ probability of failure on demand

☞ i.e., for safety-critical systems
❑ rate of failure occurrence

☞ i.e., #failures/time unit
❑ mean time to failure

☞ i.e., for a stable system
❑ availability

☞ i.e., fraction of time, for e.g. te

ESE — W2001/2002 315.

Software Validation

...
cy of actual user
imate of the
e made:

tem (classes of input

ponding to these

ution time to failure
umber of test runs,
© O. Nierstrasz — U. Berne

Statistical Testing
Tests are designed to reflect the frequen
inputs and, after running the tests, an est
operational reliability of the system can b

1. Determine usage patterns of the sys
and probabilities)

2. Select or generate test data corres
patterns

3. Apply the test cases, recording exec
4. Based on a statistically significant n

compute reliability

ESE — W2001/2002 316.

Software Validation

n

rogram code
his activity
 post-conditions

 common errors
ation
© O. Nierstrasz — U. Berne

Static Verificatio
Program Inspections:

❑ Small team systematically checks p
❑ Inspection checklist often drives t

☞ e.g., “Are all invariants, pre- and
checked?” ...

Static Program Analysers:
❑ Complements compiler to check for

☞ e.g., variable use before initializ

...

ESE — W2001/2002 317.

Software Validation

...

onstrate that

ted, that loops
© O. Nierstrasz — U. Berne

Static Verification
Mathematically-based Verification:

❑ Use mathematical reasoning to dem
program meets specification
☞ e.g., that invariants are not viola

terminate, etc.

Cleanroom Software Development:
❑ Systematically use:

(i) incremental development,
(ii) formal specification,
(iii) mathematical verification, and
(iv) statistical testing

ESE — W2001/2002 318.

Software Validation

ave enough tests?

system is a new test
nied by a new

e/money
lan AND DO NOT

e

© O. Nierstrasz — U. Berne

When to Stop?
When are we done testing? When do we h

Cynical Answers (sad but true)
❑ You’re never done: each run of the

☞ Each bug-fix should be accompa
regression test

❑ You’re done when you are out of tim
☞ Include testing in the project p

GIVE IN TO PRESSURE
☞ ... in the long run, tests save tim

...

ESE — W2001/2002 319.

Software Validation

.

e rate to fall below

any calculating risks
© O. Nierstrasz — U. Berne

When to Stop? ..
Statistical Testing

❑ Test until you’ve reduced the failur
the risk threshold
☞ Testing is like an insurance comp

Errors per
test hour

Execution Time

ESE — W2001/2002 320.

Software Validation

ow!
ure and a fault?
rtant?
ault-tolerant?
re more reliable?
ion and verification?

cases and test data?
ur programs?
© O. Nierstrasz — U. Berne

What you should kn
✎ What is the difference between a fail
✎ What kinds of failure classes are impo
✎ How can a software system be made f
✎ How do assertions help to make softwa
✎ What are the goals of software validat
✎ What is the difference between test
✎ How can you develop test cases for yo
✎ What is the goal of path testing?

ESE — W2001/2002 321.

Software Validation

g questions?
ting with bottom-up

ting with white-box

at is not 100%
© O. Nierstrasz — U. Berne

Can you answer the followin
✎ When would you combine top-down tes

testing?
✎ When would you combine black-box tes

testing?
✎ Is it acceptable to deliver a system th

reliable?

ESE — W2001/2002 322.

Software Quality

ality

viewing

lle, Addison-Wesley,

ner’s Approach, R.
., 1994.
ring, C. Ghezzi, M.
l 1991
© O. Nierstrasz — U. Berne

11. Software Qu

Overview:
❑ What is quality?
❑ Quality Attributes
❑ Quality Assurance: Planning and Re
❑ Quality System and Standards

Sources:
❑ Software Engineering, I. Sommervi

Fifth Edn., 1996.
❑ Software Engineering — A Practitio

Pressman, Mc-Graw Hill, Third Edn
❑ Fundamentals of Software Enginee

Jazayeri, D. Mandroli, Prentice-Hal

ESE — W2001/2002 323.

Software Quality

formance

 standards,

pected of all
© O. Nierstrasz — U. Berne

What is Quality?
Software Quality is conformance to:

❑ explicitly stated functional and per
requirements,

❑ explicitly documented development

❑ implicit characteristics that are ex
professionally developed software.

ESE — W2001/2002 324.

Software Quality

 Quality
 incomplete and

efficiency,

(maintainability,

 to specify in an

g., errors/KLOC),
e.g., usability).

ucing defects!
© O. Nierstrasz — U. Berne

Problems with Software
❑ Software specifications are usually

often inconsistent
❑ There is tension between:

☞ customer quality requirements (
reliability, etc.)

☞ developer quality requirements
reusability, etc.)

❑ Some quality requirements are hard
unambiguous way
☞ directly measurable qualities (e.
☞ indirectly measurable qualities (

Quality management is not just about red

ESE — W2001/2002 325.

Software Quality

odel
el, i.e. number of
uality aspects, ...)

epending on the

ay be further
efined into
ubattributes

uality attribute
© O. Nierstrasz — U. Berne

Hierarchical Quality M
Define quality via hierarchical quality mod
quality attributes (a.k.a. quality factors, q

Choose quality attributes (and weights) d
project context

Software
Quality

...

Reliability

Efficiency

Usability

Maintainability

Portability

m
r
s

Q

ESE — W2001/2002 326.

Software Quality

s
uct and the process.

duct

require resources)
 process leads to a

lines)
© O. Nierstrasz — U. Berne

Quality Attribute
Quality attributes apply both to the prod

❑ product: delivered to the customer
❑ process: produces the software pro
❑ resources:

(both the product and the process
☞ Underlying assumption: a quality

quality product
(cf. metaphor of manufacturing

ESE — W2001/2002 327.

Software Quality

...
rnal.

ship between the
 process).
ust run)
ustness

 the product or

he description)
quality leads to

es)
© O. Nierstrasz — U. Berne

Quality Attributes
Quality attributes can be external or inte

❑ External: Derived from the relation
environment and the system (or the
(To derive, the system or process m
☞ e.g. Correctness, Reliability, Rob

❑ Internal: Derived immediately from
process description
(To derive, it is sufficient to have t
☞ Underlying assumption: internal

external quality
(cfr. metaphor manufacturing lin

☞ e.g. Efficiency, Usability

ESE — W2001/2002 328.

Software Quality

obustness

ccording to its

em cannot be “almost

able

having properly
e system will operate
al
s a mean time
© O. Nierstrasz — U. Berne

Correctness, Reliability, R
Correctness

❑ A system is correct if it behaves a
specification
☞ An absolute property (i.e., a syst

correct”)
☞ ... in theory and practice undecid

Reliability
❑ The user may rely on the system be
❑ Reliability is the probability that th

as expected over a specified interv
☞ A relative property (a system ha

between failure of 3 weeks)

ESE — W2001/2002 329.

Software Quality

bustness ...

asonably even in
ied
ify the abnormal
 of the
© O. Nierstrasz — U. Berne

Correctness, Reliability, Ro
Robustness

❑ A system is robust if it behaves re
circumstances that were not specif
☞ A vague property (once you spec

circumstances they become part
requirements)

ESE — W2001/2002 330.

Software Quality

ty

 time, memory
calability
st!

 it right, then do it

er, time and money
a process
© O. Nierstrasz — U. Berne

Efficiency, Usabili
Efficiency. (Performance)

❑ Use of resources such as computing
☞ Affects user-friendliness and s
☞ Hardware technology changes fa
☞ (Remember: First do it, then do

fast)

❑ For process, resources are manpow
☞ relates to the “productivity” of

ESE — W2001/2002 331.

Software Quality

 ...
ctors)

rs find the system
eful
ience (novices vs.

s of users (end-

f time to learn the
© O. Nierstrasz — U. Berne

Efficiency, Usability
Usability. (User Friendliness, Human Fa

❑ The degree to which the human use
(process) both “easy to use” and us
☞ Depends a lot on the target aud

experts)
☞ Often a system has various kind

users, operators, installers)
☞ Typically expressed in “amount o

system”

ESE — W2001/2002 332.

Software Quality

ity also applies to

ter its initial release
lity gradually
© O. Nierstrasz — U. Berne

Maintainability
external product attributes (evolvabil

process)

Maintainability
❑ How easy it is to change a system af

☞ software entropy ⇒ maintainabi
decreases over time

ESE — W2001/2002 333.

Software Quality

.

t a defect

to changing
cess)

 new environment or
© O. Nierstrasz — U. Berne

Maintainability ..
Is often refined into ...
Repairability

❑ How much work is needed to correc

Evolvability (Adaptability)
❑ How much work is needed to adapt

requirements (both system and pro

Portability
❑ How much work is needed to port to

platforms

ESE — W2001/2002 334.

Software Quality

dability
 attribute

sired attributes are

nts, code inspections
cy

stem
inability

lity
© O. Nierstrasz — U. Berne

Verifiability, Understan
internal (and external) product

Verifiability
❑ How easy it is to verify whether de

there?
☞ internally: e.g., verify requireme
☞ externally: e.g., testing, efficien

Understandability
❑ How easy it is to understand the sy

☞ internally: contributes to mainta
☞ externally: contributes to usabi

ESE — W2001/2002 335.

Software Quality

Visibility
y also internal)

rocess for a given

aries a lot
s) < ∑ productivity
© O. Nierstrasz — U. Berne

Productivity, Timeliness,
external process attribute (visibilit

Productivity
❑ Amount of product produced by a p

number of resources
☞ productivity among individuals v
☞ often: productivity (∑ individual

(individuals)

ESE — W2001/2002 336.

Software Quality

isibility ...

Time

er needs System
capability

t1 t2 t3 t4
initial redesigndelivery
© O. Nierstrasz — U. Berne

Productivity, Timeliness, V
Timeliness

❑ Ability to deliver the
product on time
☞ important for

marketing (“short time
to market”)

☞ often a reason to
sacrifice other quality
attributes

☞ incremental
development may
provide an answer

Function

Us

t0

ESE — W2001/2002 337.

Software Quality

isibility ...

status are accessible
© O. Nierstrasz — U. Berne

Productivity, Timeliness, V
Visibility. (Transparency, Glasnost)

❑ Current process steps and project
☞ important for management
☞ also deal with staff turn-over

ESE — W2001/2002 338.

Software Quality

ption
 within budget

s Attributes

quality
uality

tain after project
© O. Nierstrasz — U. Berne

Quality Control Assum

Assumptions:

Otherwise, quality is mere coincidence!

Project Concern = Deliver on time and

External (and Internal)
Product Attributes

Proces

Internal quality ⇒⇒⇒⇒ External
Process quality ⇒⇒⇒⇒ Product q

Control during project Ob

ESE — W2001/2002 339.

Software Quality

t Plan

lan
© O. Nierstrasz — U. Berne

The Quality Plan

Projec
Schedule
Budget
Quality P

Plan Time
Plan Money
Plan Quality

ESE — W2001/2002 340.

Software Quality

..

d how these are

ity attributes
ess
 quality
rds should be applied
f new tools or

te from project
© O. Nierstrasz — U. Berne

The Quality Plan .
A quality plan should:

❑ set out desired product qualities an
assessed
☞ define the most significant qual

❑ define the quality assessment proc
☞ i.e., the controls used to ensure

❑ set out which organisational standa
☞ may define new standards, i.e., i

methods are used

NB: Quality Management should be separa
management to ensure independence

ESE — W2001/2002 341.

Software Quality

iews
of people who
e system and its

 purpose

iled errors in any

between
s and product
er standards have
d.
© O. Nierstrasz — U. Berne

Types of Quality Rev
A quality review is carried out by a group
carefully examine part or all of a softwar
associated documentation.

Review type Principal
Formal Technical
Reviews
(a.k.a. design or
program
inspections)

Driven by checklist
❑ detect deta

product
❑ mismatches

requirement
❑ check wheth

been followe

ESE — W2001/2002 342.

Software Quality

cords maintained
“signed off” at a

nt stage is thereby

 plans and

er project runs
 plan
cise milestones
ss and a product

 purpose
© O. Nierstrasz — U. Berne

❑ Reviews should be recorded and re
☞ Software or documents may be

review
☞ Progress to the next developme

approved

Progress reviews Driven by budgets,
schedules

❑ check wheth
according to

❑ requires pre
❑ both a proce

review

Review type Principal

ESE — W2001/2002 343.

Software Quality

nce preparation
© O. Nierstrasz — U. Berne

Review Meetings
Review meetings should:

❑ typically involve 3-5 people

❑ require a maximum of 2 hours adva

❑ last less than 2 hours

ESE — W2001/2002 344.

Software Quality

ons?

roduct is:

rrections (no follow-

 follow-up review
© O. Nierstrasz — U. Berne

Review Minutes
The review report should summarize:

1. What was reviewed
2. Who reviewed it?
3. What were the findings and conclusi

The review should conclude whether the p
1. Accepted without modification
2. Provisionally accepted, subject to co

up review)
3. Rejected, subject to corrections and

ESE — W2001/2002 345.

Software Quality

r

tempt to solve every

 insist upon advance

 that is likely to be

e for reviews
eviewers
© O. Nierstrasz — U. Berne

Review Guidelines
1. Review the product, not the produce
2. Set an agenda and maintain it
3. Limit debate and rebuttal
4. Identify problem areas, but don’t at

problem noted
5. Take written notes
6. Limit the number of participants and

preparation
7. Develop a checklist for each product

reviewed
8. Allocate resources and time schedul
9. Conduct meaningful training for all r
10. Review your early reviews

ESE — W2001/2002 346.

Software Quality

sts (I)

fined and bounded?

s been defined?
enced?
sonable?
lity data been used?
© O. Nierstrasz — U. Berne

Sample Review Checkli
Software Project Planning

1. Is software scope unambiguously de
2. Are resources adequate for scope?
3. Have risks in all important categorie
4. Are tasks properly defined and sequ
5. Is the basis for cost estimation rea
6. Have historical productivity and qua
7. Is the schedule consistent?

...

ESE — W2001/2002 347.

Software Quality

ts (II)

lete, consistent and

t data objects,

stem level?
 the user/customer?
hedule, resources
© O. Nierstrasz — U. Berne

Sample Review Checklis
Requirements Analysis

1. Is information domain analysis comp
accurate?

2. Does the data model properly reflec
attributes and relationships?

3. Are all requirements traceable to sy
4. Has prototyping been conducted for
5. Are requirements consistent with sc

and budget?

...

ESE — W2001/2002 348.

Software Quality

ts (III)

and external system

ith the information

with the

?

© O. Nierstrasz — U. Berne

Sample Review Checklis
Design

1. Has modularity been achieved?
2. Are interfaces defined for modules

elements?
3. Are the data structures consistent w

domain?
4. Are the data structures consistent

requirements?
5. Has maintainability been considered

...

ESE — W2001/2002 349.

Software Quality

ts (IV)

cumentation?
ons been made?
d?
mments?
© O. Nierstrasz — U. Berne

Sample Review Checklis
Code

1. Does the code reflect the design do
2. Has proper use of language conventi
3. Have coding standards been observe
4. Are there incorrect or ambiguous co

...

ESE — W2001/2002 350.

Software Quality

sts (V)

identified and

 been specified?
 been tested?
listed with expected

sted?
© O. Nierstrasz — U. Berne

Sample Review Checkli
Testing

1. Have test resources and tools been
acquired?

2. Have both white and black box tests
3. Have all the independent logic paths
4. Have test cases been identified and

results?
5. Are timing and performance to be te

ESE — W2001/2002 351.

Software Quality

be classified.

ocumentation is

orrect an identified

view impacts other

 have to be referred
© O. Nierstrasz — U. Berne

Review Results
Comments made during the review should

❑ No action.
☞ No change to the software or d

required.
❑ Refer for repair.

☞ Designer or programmer should c
fault.

❑ Reconsider overall design.
☞ The problem identified in the re

parts of the design.

Requirements and specification errors may
to the client.

ESE — W2001/2002 352.

Software Quality

andards
 that all components

e process should be

ss standards
iew conduct
 of documents

lease process
n approval process
trol process
ding process
© O. Nierstrasz — U. Berne

Product and Process St
Product standards define characteristics
should exhibit.
Process standards define how the softwar
enacted.

Product standards Proce
Design review form Design rev
Document naming standards Submission
Procedure header format Version re
Java conventions Project pla
Project plan format Change con
Change request form Test recor

ESE — W2001/2002 353.

Software Quality

tandards

to-date by software

form filling

 unsupported by
© O. Nierstrasz — U. Berne

Potential Problems with S

❑ Not always seen as relevant and up-
engineers

❑ May involve too much bureaucratic

❑ May require tedious manual work if
software tools

ESE — W2001/2002 354.

Software Quality

entions

 line, break it

-level breaks.
g of the expression

ne.
g code or to code
 margin, just indent
© O. Nierstrasz — U. Berne

Sample Java Code Conv
4.2 Wrapping Lines
When an expression will not fit on a single
according to these general principles:

❑ Break after a comma.
❑ Break before an operator.
❑ Prefer higher-level breaks to lower
❑ Align the new line with the beginnin

at the same level on the previous li
❑ If the above rules lead to confusin

that’s squished up against the right
8 spaces instead.

ESE — W2001/2002 355.

Software Quality

tions ...

be coded directly,
 a for loop as counter
© O. Nierstrasz — U. Berne

Sample Java Code Conven
10.3 Constants
Numerical constants (literals) should not
except for -1, 0, and 1, which can appear in
values.

ESE — W2001/2002 356.

Software Quality

 organization’s

wed quality system

Quality Standards
(ISO 9001, CMM)

External Body

Accreditation
Body

certification
request

Certification
© O. Nierstrasz — U. Berne

Quality System
A Quality Plan should be an instance of an
Quality System

Customers may require an externally revie

Quality System

Quality Manual

Standards &
Procedures

Project Plan x
Quality plan x

instantiates

feedback &
improve

Quality Assurance

influences

audit

ESE — W2001/2002 357.

Software Quality

ards for quality
nisations from

y process, applicable
s range all the way
on, installation and

 each organisation
or the software

tandardization

176.org/
© O. Nierstrasz — U. Berne

ISO 9000
ISO 9000 is an international set of stand
management applicable to a range of orga
manufacturing to service industries.
ISO 9001 is a generic model of the qualit
to organisations whose business processe
from design and development, to producti
servicing;

❑ ISO 9001 must be instantiated for
❑ ISO 9000-3 interprets ISO 9001 f

developer

ISO = International Organisation for S
❑ ISO main site: http://www.iso.ch/
❑ ISO 9000 main site: http://www.tc

ESE — W2001/2002 358.

Software Quality

l (CMM)
s how well

tionalized

aged
e data collection

: Optimizing
ed back into QA process

Quality depends
on individual

project managers!
Quality depends
on individuals!
© O. Nierstrasz — U. Berne

Capability Maturity Mode
The SEI process maturity model classifie
contractors manage software processes

Level 1: Initial (Ad Hoc)
No effective QA procedures, quality is luck

Level 2: Repeatable
Formal QA procedures in place

Level 3: Defined
QA process is defined and institu

Level 4: Man
QA Process + quantitativ

Level 5
Improvement is f

Quantitative data
are necessary for

improvement!

ESE — W2001/2002 359.

Software Quality

ow!
tware still have poor

ernal and an internal

attribute?
arate from project

iew meeting?
in the review
© O. Nierstrasz — U. Berne

What you should kn
✎ Can a correctly functioning piece of sof

quality?
✎ What’s the difference between an ext

quality attribute?
✎ And between a product and a process
✎ Why should quality management be sep

management?
✎ How should you organize and run a rev
✎ What information should be recorded

minutes?

ESE — W2001/2002 360.

Software Quality

g questions?
?

tion review

d?
y an ISO 9000
© O. Nierstrasz — U. Berne

Can you answer the followin
✎ Why does a project need a quality plan
✎ Why are coding standards important?
✎ What would you include in a documenta

checklist?
✎ How often should reviews be schedule
✎ Would you trust software developed b

certified company?
✎ And if it were CMM level 5?

ESE — W2001/2002 361.

Software Metrics

rics

lle, Addison-Wesley,

ner’s Approach, R.
., 1994.
, “Software Metrics:
hompson Computer
© O. Nierstrasz — U. Berne

12. Software Met

Overview:
❑ Measurement Theory
❑ GQM Paradigm
❑ Quantitative Quality Model
❑ Sample Quality Metrics

Sources:
❑ Software Engineering, I. Sommervi

Fifth Edn., 1996.
❑ Software Engineering — A Practitio

Pressman, Mc-Graw Hill, Third Edn
❑ Norman E. Fenton, Shari l. Pfleeger

A rigorous & Practical Approach”, T
Press, 1996.

ESE — W2001/2002 362.

Software Metrics

peaking about
omething about
n you cannot
e is of a meagre
e beginning of
our thoughts,

— Lord Kelvin
© O. Nierstrasz — U. Berne

Why Metrics?

When you can measure what you are s
and express it in numbers, you know s
it; but when you cannot measure, whe
express it in numbers, your knowledg
and unsatisfactory kind: it may be th
knowledge, but you have scarcely, in y
advanced to the stage of science.

ESE — W2001/2002 363.

Software Metrics

concepts

rol and improvement

 objects, people
re temperature
device is able to
perature

ion allows us to log
e, study trends,
nomena (weather
), ...
ro allows for more
criptions of
nomena
© O. Nierstrasz — U. Berne

Measurement quantifies

Measurement enables understanding, cont

Date Measurement Comment
2000 BC Rankings “hotter

than”
By touching
could compa

1600 AD Thermometer
“hotter than”

A separate
compare tem

1720 AD Fahrenheit scale Quantificat
temperatur
predict phe
forecasting

1742 AD Celsius scale

1854 AD Kelvin scale Absolute ze
precise des
physical phe

ESE — W2001/2002 364.

Software Metrics

rics

educe later

 during development
oduction processes

quality
uality

tain after project
© O. Nierstrasz — U. Berne

Why Software Met
Effort (and Cost) Estimation

❑ Measure early in the life-cycle to d
production efforts

Quality Assessment and Improvement
❑ Control software quality attributes
❑ Compare (and improve) software pr
❑ Remember Quality Assumptions

Internal quality ⇒⇒⇒⇒ External
Process quality ⇒⇒⇒⇒ Product q

Control during project Ob

ESE — W2001/2002 365.

Software Metrics

etrics?

lates to a software
ntation

ility of a piece of

es) +
llables)
 to implement a use-

tical metrics, but
© O. Nierstrasz — U. Berne

What are Software M
Software metrics

❑ Any type of measurement which re
system, process or related docume
☞ Lines of code in a program
☞ the Fog index (calculates readab

documentation)
0.4 *(# words / # sentenc

(percentage of words ≥ 3 sy
☞ number of person-days required

case

NB: “Software metrics” are not mathema
rather measures

ESE — W2001/2002 366.

Software Metrics

asures

observed attribute

 of process, Number

direct measures
r of defects

rom the length of a
© O. Nierstrasz — U. Berne

Direct and Indirect Me
Direct Measures

❑ Measured directly in terms of the
(usually by counting)
☞ Length of source-code, Duration

of defects discovered

Indirect Measures
❑ Calculated from other direct and in

☞ Module Defect Density = Numbe
discovered / Length of source

☞ Temperature is usually derived f
liquid column

ESE — W2001/2002 367.

Software Metrics

time unit.
re?
is the “time unit”?

h the language?
to produce?

s?
ammer?
ctive as Y?
sults?
rammers?
software processes?
© O. Nierstrasz — U. Berne

Possible Problems
Compare productivity in lines of code per

❑ Do we use the same units to compa
☞ What is a “line of code”? What

❑ Is the context the same?
☞ Were programmers familiar wit

❑ Is “code size” really what we want
☞ What about code quality?

❑ How do we want to interpret result
☞ Average productivity of a progr

Programmer X is twice as produ
❑ What do we want to do with the re

☞ Do you reward “productive” prog
Do you compare productivity of

ESE — W2001/2002 368.

Software Metrics

s

ationships between

ed for all possible
© O. Nierstrasz — U. Berne

Empirical Relation

Empirical relations observe true/false rel
(attributes of) real world entities.

Empirical relations are complete, i.e. defin
combinations.

ESE — W2001/2002 369.

Software Metrics

tributes of persons

 unary relationship

Laura
“is tall”

Joe “is
not tall”

higher than
..” ternary
tionship

Frank “is not higher than”
Joe on Laura’s shoulders
© O. Nierstrasz — U. Berne

Examples
Empirical relationships between height at

Frank “is taller
than” Laura

“is taller than” binary relationship

Joe “is not taller
than” Laura

“is tall”

Frank “is
tall”

Frank “is not much
taller than” Laura

Frank “is much
taller than” Joe

“is much taller than” binary relationship “... is
... + .

rela

ESE — W2001/2002 370.

Software Metrics

ing

ed to the real world

ge to draw
in

oe

1.80
1.65

1.73

 measure mapping “height”
e of person on a number
nting “height in meters”.
© O. Nierstrasz — U. Berne

Measurement Mapp
Measure & Measurement
A measure is a function mapping

❑ an attribute of a real
world entity
(= the domain)

onto
❑ a symbol in a set with

known mathematical
relations (= the range).

A measurement is then the symbol assign
attribute by the measure.
Purpose: Manipulate symbol(s) in the ran
conclusions about attribute(s) in the doma

Frank
J

Laura

Example:
attribut
represe

ESE — W2001/2002 371.

Software Metrics

cs)
easuring the

use of terminology,
e measures”.
© O. Nierstrasz — U. Berne

(Measures vs Metri
Mathematically, a metric is a function m m
distance between two objects such that:

1. ∀ x, m(x,x) = 0
2. ∀ x, y, m(x,y) = m(y,x)
3. ∀ x, y, z, m(x,z) ≤ m(x,y) + m(y,z)

So, technically “software metrics” is an ab
and we should instead talk about “softwar

ESE — W2001/2002 372.

Software Metrics

re must specify:

ght or width?

timetres or inches?

 be worn?
© O. Nierstrasz — U. Berne

Preciseness
To be precise, the definition of the measu

❑ domain: do we measure people’s hei

❑ range: do we measure height in cen

❑ mapping rules: do we allow shoes to

ESE — W2001/2002 373.

Software Metrics

tions
presentation

he more difficult it

ical relations
range)
© O. Nierstrasz — U. Berne

Representation Condi
To be valid, a measure must satisfy the re
condition:

In general, the more empirical relations, t
is to find a valid measure.

empirical relations
(in domain)

⇔ mathemat
(in

ESE — W2001/2002 374.

Software Metrics

ons ...
E Measure 2

x > y
F 1.80 > 1.73 true
J 1.70 > 1.73 false
i x > y + .10
F 1.80 > 1.73 + .10 false
F 1.80 > 1.70 + .10 false

1.80
1.70

1.73
© O. Nierstrasz — U. Berne

Representation Conditi
mpirical Relation Measure 1

is-taller-than x > y
rank, Laura true 1.80 > 1.73 true
oe, Laura false 1.65 > 1.73 false

s-much-taller-than x > y + .10
rank, Laura false 1.80 > 1.73 + .10 false
rank, Joe true 1.80 > 1.65 + .10 true

Frank

Joe

Laura

1.80
1.65

1.73

Frank

Joe
LauraM

ea
su

re
 1

M
ea

su
re

 2

ESE — W2001/2002 375.

Software Metrics

. [Basili et al. 1984]

g standard XYZ?”

th/without XYZ?”

YZ

 robustness ...
© O. Nierstrasz — U. Berne

GQM
Goal - Question - Metrics approach

❑ Define Goal
☞ e.g., “How effective is the codin

❑ Break down into Questions
☞ “Who is using XYZ?”
☞ “What is productivity/quality wi

❑ Pick suitable Metrics
☞ Proportion of developers using X
☞ Their experience with XYZ ...
☞ Resulting code size, complexity,

ESE — W2001/2002 376.

Software Metrics

Model
d
ierarchical quality

ng basic attributes

stic Metric

nce

y

y

y

cy

defect density
= #defects / size

correction impact
= #components

changed

correction time
© O. Nierstrasz — U. Berne

Quantitative Quality
Quality according to ISO 9126 standar

❑ Divide-and conquer approach via “h
model”

❑ Leaves are simple metrics, measuri

Software
Quality

Functionality

Reliability

Efficiency

Usability

Maintainability

Portability

ISO 9126 Factor Characteri

Error tolera

Accurac

Simplicit

Modularit

Consisten

ESE — W2001/2002 377.

Software Metrics

y Model
ment team
design principles,

Metric

 number of private
attributes]2, 10[

number of public
attributes]0, 0[

number of public
methods]5, 30[

average number of
arguments [0, 4[
© O. Nierstrasz — U. Berne

“Define your own” Qualit
Define the quality model with the develop

❑ Team chooses the characteristics,
metrics ... and the thresholds

Maintainability

Factor Characteristic Design Principle

Modularity

design class as an
abstract data-type

encapsulate all
attributes

avoid complex
interfaces

ESE — W2001/2002 378.

Software Metrics

ce) Metrics

Attribute

o

Class Size Metrics
methods (NOM)
attributes, instance/class
A, NCA)
Σ of method size (WMC)

These are
Internal Product
Metrics
© O. Nierstrasz — U. Berne

Sample Size (and Inheritan
Inheritance Metrics

- hierarchy nesting level (HNL)
- # immediate children (NOC)
- # inherited methods, unmodified (NMI)
- #overridden methods (NMO)

inherits belongsT

access

invokes

- #
- #
(NI
- #

Method Size Metrics
- # invocations (NOI)
- # statements (NOS)
- # lines of code (LOC)
- # arguments (NOA)

Class

Method

ESE — W2001/2002 379.

Software Metrics

n Metrics
Metrics
 later republished as

en class is coupled
lass requires to

essing same
© O. Nierstrasz — U. Berne

Sample Coupling & Cohesio
These are Internal Product

Following definitions stem from [Chid91a],
[Chid94a]

Coupling Between Objects (CBO)
CBO = number of other class to which giv
Interpret as “number of other classes a c
compile”

Lack of Cohesion in Methods (LCOM)
LCOM = number of disjoint sets (= not acc
attribute) of local methods

ESE — W2001/2002 380.

Software Metrics

etrics

ohesion methods are

esive may have a high

ay have high CBO

thod or inheritance
© O. Nierstrasz — U. Berne

Coupling & Cohesion M
Beware!
Researchers disagree whether coupling/c
valid

❑ Classes that are observed to be coh
LCOM value
☞ due to accessor methods

❑ Classes that are not much coupled m
value
☞ no distinction between data, me

coupling

ESE — W2001/2002 381.

Software Metrics

etrics (I)

ours, weeks, months
 unit does not always

lity of the
© O. Nierstrasz — U. Berne

Sample External Quality M
Productivity (Process Metric)

❑ functionality / time
❑ functionality in LOC or FP; time in h

☞ be careful to compare: the same
represent the same

❑ Does not take into account the qua
functionality!

ESE — W2001/2002 382.

Software Metrics

etrics (II)

ability

account
ce the rest of the
rmulas
failures / time
ar time
ability density

+ mean time to repair
e available, take into

probability
density
function

time

fa
ilu

re
© O. Nierstrasz — U. Berne

Sample External Quality M
Reliability (Product Metric)

❑ mean time to failure = mean of prob
density function PDF
☞ for software one must take into

the fact that repairs will influen
function ⇒ quite complicated fo

❑ average time between failures = #
☞ time in execution time or calend
☞ necessary to calibrate the prob

function
❑ mean time between failure = MTTF

☞ to know when your system will b
account repair

ESE — W2001/2002 383.

Software Metrics

etrics (III)

cannot measure

/ product size

 count!
nless you’re data
© O. Nierstrasz — U. Berne

Sample External Quality M
Correctness (Product Metric)

❑ “a system is correct or not, so one
correctness”

❑ defect density = # known defects
☞ product size in LOC or FP
☞ # known defects is a time based

❑ do NOT compare across projects u
collection is sound!

ESE — W2001/2002 384.

Software Metrics

etrics (IV)

of changes
ime to repair”
 and “average time

ive

istrative delay time
 time + testing &
© O. Nierstrasz — U. Berne

Sample External Quality M
Maintainability (Product Metric)

❑ #time to repair certain categories
❑ “mean time to repair” vs. “average t

☞ similar to “mean time to failure”
between failures”

❑ beware for the units
☞ categories of changes is subject
☞ time =?

problem recognition time + admin
+ problem analysis time + change
reviewing time

ESE — W2001/2002 385.

Software Metrics

 QA (I)
reveal which

s, yet good quality
ts, yet poor quality

e?) a quantitative

rial and error)

imple metrics
© O. Nierstrasz — U. Berne

Conclusion: Metrics for
Question: Can internal product metrics
components have good/poor quality?
Yes, but...
Not reliably

❑ false positives: “bad” measurement
❑ false negatives: “good” measuremen

Heavyweight
❑ Requires team to develop (customiz

quality model
❑ Requires definition of thresholds (t

Difficult to interpret
❑ Requires complex combinations of s

...

ESE — W2001/2002 386.

Software Metrics

del and the

re selected for

mponents first
© O. Nierstrasz — U. Berne

However...
❑ Cheap once you have the quality mo

thresholds
❑ Good focus (± 20% of components a

further inspection)
Note: focus on the most complex co

ESE — W2001/2002 387.

Software Metrics

QA (II)
 metrics reveal

 metrics

ess

 one project to
© O. Nierstrasz — U. Berne

Conclusion: Metrics for
Question: Can external product/process
quality?
Yes, ...

❑ More reliably then internal product

However...
❑ Requires a finished product or proc
❑ It is hard to achieve preciseness

☞ even if measured in same units
☞ beware to compare results from

another

ESE — W2001/2002 388.

Software Metrics

ow!
trics usage in
etrics theory

 you need to say “A
gn error”? And what
r is twice as bad as a

 time to failure” and
 is the difference
© O. Nierstrasz — U. Berne

What you should kn
✎ What are the possible problems of me

software engineering? How does the m
address them?

✎ What kind of measurement scale would
specification error is worse than a desi
if we want to say “A specification erro
design error?”

✎ What’s the difference between “Mean
“Average time between failures”? Why
important?

ESE — W2001/2002 389.

Software Metrics

g questions?
ject would you use

roduct size metrics?
Product Attributes
s during Quality
e of doing that?
ortant? Why then
© O. Nierstrasz — U. Berne

Can you answer the followin
✎ During which phases in a software pro

metrics?
✎ Why is it so important to have “good” p
✎ Why do we prefer measuring Internal

instead of External Product Attribute
Control? What is the main disadvantag

✎ Why are coupling/cohesion metrics imp
are they so rarely used?

ESE — W2001/2002 390.

TBA ...
© O. Nierstrasz — U. Berne

13. TBA ...

	ESE
	Table of Contents
	1. ESE — Einführung in Software Engineering
	Principle Texts
	Other Books
	Schedule
	Why Software Engineering?
	What is Software Engineering? (I)
	What is Software Engineering? (II)
	What is Software Engineering? (III)
	Software Development Activities
	The Classical Software Lifecycle
	Problems with the Software Lifecycle
	Iterative Development
	Iterative and Incremental Development
	Iterative and Incremental Development
	The Unified Process
	Boehm’s Spiral Lifecycle
	Requirements Collection
	Changing requirements
	Requirements Analysis and Specification
	Object-Oriented Analysis
	Prototyping (I)
	Prototyping (II)
	Design
	Implementation and Testing
	Design, Implementation and Testing
	Maintenance
	Maintenance activities
	Maintenance costs
	Methods and Methodologies
	Object-Oriented Methods: a brief history
	What you should know!
	Can you answer these questions?

	2. Project Management
	Recommended Reading
	Why Project Management?
	What is Project Management?
	Risk Management
	Risk Management ..
	Risk Management Techniques
	Focus on Scope
	Myth: Scope and Objectives
	Scope and Objectives
	Estimation Strategies
	Estimation Techniques
	Measurement-based Estimation
	Estimation and Commitment
	Planning and Scheduling
	Planning and Scheduling ...
	Myth: Deliverables and Milestones
	Deliverables and Milestones
	Example: Task Durations and Dependencies
	Pert Chart: Activity Network
	Gantt Chart: Activity Timeline
	Gantt Chart: Staff Allocation
	Myth: Delays
	Scheduling problems
	Planning under uncertainty
	Dealing with Delays
	Dealing with Delays ...
	Earned Value: Tasks Completed
	Earned Value ...
	Gantt Chart: Slip Line
	Timeline Chart
	Slip Line vs. Timeline
	Software Teams
	Chief Programmer Teams
	Chief Programmer Teams ...
	Directing Teams
	Directing Teams ...
	Conway’s Law
	What you should know!
	Can you answer these questions?

	3. Requirements Collection
	The Requirements Engineering Process
	Requirements Engineering Activities
	Requirements Analysis
	Problems of Requirements Analysis
	Requirements evolution
	The Requirements Analysis Process
	Use Cases and Viewpoints
	Use Cases and Viewpoints ...
	Unified Modeling Language
	Writing Requirements Definitions
	Functional and Non-functional Requirements
	Non-functional Requirements
	Types of Non-functional Requirements
	Examples of Non-functional Requirements
	Requirements Verifiability
	Precise Requirements Measures
	Prototyping Objectives
	Evolutionary Prototyping
	Throw-away Prototyping
	Requirements Checking
	Requirements Reviews
	Review checks
	Traceability
	Traceability ...
	What you should know!
	Can you answer the following questions?

	4. Responsibility-Driven Design
	Why Responsibility-driven Design?
	Why Responsibility-driven Design? ...
	What is Object-Oriented Design?
	What is Object-Oriented Design?
	The Initial Exploration
	The Detailed Analysis
	Finding Classes
	Finding Classes ...
	Drawing Editor Requirements Specification
	Drawing Editor: noun phrases
	Class Selection Rationale
	Class Selection Rationale ...
	Class Selection Rationale ...
	Class Selection Rationale ...
	Class Selection Rationale ...
	Candidate Classes
	CRC Cards
	Finding Abstract Classes
	Identifying and Naming Groups
	Identifying and Naming Groups ...
	Recording Superclasses
	Responsibilities
	Identifying Responsibilities
	Assigning Responsibilities
	Assigning Responsibilities ...
	Relationships Between Classes
	Relationships Between Classes ...
	Recording Responsibilities
	Collaborations
	Finding Collaborations
	Finding Collaborations ...
	Recording Collaborations
	What you should know!
	Can you answer the following questions?

	5. Detailed Design
	Sharing Responsibilities
	Multiple Inheritance
	Building Good Hierarchies
	Building Good Hierarchies ...
	Building Kind-Of Hierarchies
	Building Kind-Of Hierarchies ...
	Refactoring Responsibilities
	Identifying Contracts
	Identifying Contracts ...
	Applying the Guidelines
	Applying the Guidelines ...
	What are Subsystems?
	Finding Subsystems
	Subsystem Cards
	Class Cards
	Simplifying Interactions
	Simplifying Interactions ...
	Protocols
	Refining Responsibilities
	Defaults
	Specifying Your Design: Classes
	Specifying Subsystems and Contracts
	What you should know!
	Can you answer the following questions?

	6. Modeling Objects and Classes
	UML
	Why UML?
	UML History
	Class Diagrams
	Visibility and Scope of Features
	Attributes and Operations
	UML Lines and Arrows
	Parameterized Classes
	Interfaces
	Utilities
	Objects
	Associations
	Aggregation and Navigability
	Association Classes
	Qualified Associations
	Inheritance
	What is Inheritance For?
	Inheritance supports ...
	Design Patterns as Collaborations
	Instantiating Design Patterns
	Constraints
	Specifying Constraints
	Design by Contract in UML
	Using the Notation
	Using the Notation ...
	What you should know!
	Can you answer the following questions?

	7. Modeling Behaviour
	Use Case Diagrams
	Scenarios
	Sequence Diagrams
	UML Message Flow Notation
	Collaboration Diagrams
	Message Labels
	Message Labels ...
	State Diagrams
	State Diagram Notation
	State Diagram Notation ...
	State Box with Regions
	Transitions
	Operations and Activities
	Composite States
	Sending Events between Objects
	Concurrent Substates
	Branching and Merging
	Branching and Merging ...
	History Indicator
	Creating and Destroying Objects
	Using the Notations
	What you should know!
	Can you answer the following questions?

	8. Software Architecture
	Sources:
	What is Software Architecture?
	What is Software Architecture?
	How Architecture Drives Implementation
	How Architecture Drives Implementation ...
	Sub-systems, Modules and Components
	Cohesion
	Coupling
	Tight Coupling
	Loose Coupling
	Architectural Parallels
	Architectural Styles
	Layered Architectures
	Abstract Machine Model
	OSI Reference Model
	Client-Server Architectures
	Client-Server Architectures ...
	Client-Server Architectures
	Four-Tier Architectures
	Blackboard Architectures
	Blackboard Architectures ...
	Repository Model
	Event-driven Systems
	Broadcast model
	Selective Broadcasting
	Dataflow Models
	Dataflow Models ...
	Invoice Processing System
	Compilers as Dataflow Architectures
	Compilers as Blackboard Architectures
	UML support: Package Diagram
	UML support: Deployment Diagram
	What you should know!
	Can you answer the following questions?

	9. User Interface Design
	Interface Design Models
	GUI Characteristics
	GUI advantages
	GUI (dis) advantages ...
	User Interface Design Principles
	Direct Manipulation
	Direct Manipulation ...
	Interface Models
	Menu Systems
	Menu Systems ...
	Menu Structuring
	Command Interfaces
	Command Interfaces ...
	Information Presentation Factors
	Analogue vs. Digital Presentation
	Colour Use Guidelines
	User Guidance
	Design Factors in Message Wording
	Error Message Guidelines
	Good and Bad Error Messages
	Help System Design
	Help system use
	User Interface Evaluation
	Usability attributes
	What you should know!
	Can you answer the following questions?

	10. Software Validation
	Software Reliability, Failures and Faults
	Kinds of failures
	Programming for Reliability
	Fault Avoidance
	Common Sources of Software Faults
	Common Sources of Software Faults ...
	Fault Tolerance
	Approaches to Fault Tolerance
	Approaches to Fault Tolerance ...
	Defensive Programming
	Defensive Programming ...
	Verification and Validation
	Verification and Validation ...
	The Testing Process
	The Testing Process ...
	Regression testing
	Test Planning
	Top-down Testing
	Bottom-up Testing
	Defect Testing
	Defect Testing ...
	Functional (black box) testing
	Coverage Criteria
	Equivalence partitioning
	Test Cases and Test Data
	Structural (white box) Testing
	Coverage criteria
	Binary Search Method
	Path Testing
	Basis Path Testing: The Technique
	Basis Path Testing ...
	Condition Testing
	Statistical Testing
	Statistical Testing ...
	Static Verification
	Static Verification ...
	When to Stop?
	When to Stop? ...
	What you should know!
	Can you answer the following questions?

	11. Software Quality
	What is Quality?
	Problems with Software Quality
	Hierarchical Quality Model
	Quality Attributes
	Quality Attributes ...
	Correctness, Reliability, Robustness
	Correctness, Reliability, Robustness ...
	Efficiency, Usability
	Efficiency, Usability ...
	Maintainability
	Maintainability ...
	Verifiability, Understandability
	Productivity, Timeliness, Visibility
	Productivity, Timeliness, Visibility ...
	Productivity, Timeliness, Visibility ...
	Quality Control Assumption
	The Quality Plan
	The Quality Plan ...
	Types of Quality Reviews
	Review Meetings
	Review Minutes
	Review Guidelines
	Sample Review Checklists (I)
	Sample Review Checklists (II)
	Sample Review Checklists (III)
	Sample Review Checklists (IV)
	Sample Review Checklists (V)
	Review Results
	Product and Process Standards
	Potential Problems with Standards
	Sample Java Code Conventions
	Sample Java Code Conventions ...
	Quality System
	ISO 9000
	Capability Maturity Model (CMM)
	What you should know!
	Can you answer the following questions?

	12. Software Metrics
	Why Metrics?
	Measurement quantifies concepts
	Why Software Metrics
	What are Software Metrics?
	Direct and Indirect Measures
	Possible Problems
	Empirical Relations
	Examples
	Measurement Mapping
	(Measures vs Metrics)
	Preciseness
	Representation Conditions
	Representation Conditions ...
	GQM
	Quantitative Quality Model
	“Define your own” Quality Model
	Sample Size (and Inheritance) Metrics
	Sample Coupling & Cohesion Metrics
	Coupling & Cohesion Metrics
	Sample External Quality Metrics (I)
	Sample External Quality Metrics (II)
	Sample External Quality Metrics (III)
	Sample External Quality Metrics (IV)
	Conclusion: Metrics for QA (I)
	Conclusion: Metrics for QA (II)
	What you should know!
	Can you answer the following questions?

	13. TBA ...

