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Principle Texts

❑ Software Engineering, I. Sommervi
Sixth Edn., 2000. 

❑ Software Engineering — A Practitio
Pressman, Mc-Graw Hill, Fourth Ed

❑ Designing Object-Oriented Softwa
B. Wilkerson, L. Wiener, Prentice H

Selected material courtesy of Prof. Serge
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Other Books
❑ The Mythical Man-Month, F. Brooks

Anniversary Edition 1995.
❑ Object-Oriented Software Constru

Prentice Hall, Second Edn., 1997.
❑ UML Distilled, M. Fowler with K. Sco

Second Edition, 2000
❑ Objects, Components and Framewo

D'Souza, A. Wills, Addison-Wesley
❑ Succeeding with Objects: Decision 

Project Management, A. Goldberg a
Wesley, 1995

❑ A Discipline for Software Engineer
Addison Wesley, 1995
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Schedule
1. 10 - 24 Introduction — The S
2. 10 - 31 Project Management
3. 11 - 07 Requirements Collectio
4. 11 - 14 Responsibility-Driven D
5. 11 - 21 Detailed Design
6. 11 - 28 Modeling Objects and 
7. 12 - 05 Modeling Behaviour
8. 12 - 12 Software Architectur
9. 12 - 19 User Interface Design
10. 01 - 09 Software Validation
11. 01 - 16 Software Quality
12. 01 - 23 Software Metrics
13. 02 - 30 TBA ...
14. 02 - 06 Final Exam
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Why Software Engine
A naive view: Problem Specification 
But ...

❑ Where did the specification come f
❑ How do you know the specification 

user’s needs?
❑ How did you decide how to structur
❑ How do you know the program actua

specification?
❑ How do you know your program will 

correctly?
❑ What do you do if the users’ needs
❑ How do you divide tasks up if you h

person team?

c
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What is Software Engine
Some Definitions and Issues

“state of the art of developing qualit
time and within budget”

❑ Trade-off between perfection and 
☞ SE has to deal with real-world is

❑ State of the art!
☞ Community decides on “best pra

education
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ersion software”
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t enough) + 
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What is Software Enginee

“multi-person construction of multi-v

❑ Team-work
☞ Scale issue (“program well” is no

Communication Issue

❑ Successful software systems must
☞ Change is the norm, not the exc
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om other 

— Sommerville 
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What is Software Enginee

“software engineering is different fr
engineering disciplines” 

❑ Not constrained by physical laws
☞ limit = human mind

❑ It is constrained by political forces
☞ balancing stake-holders
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mer’s needs
ify the requirements 

ify a solution (“how”)
ution in software
lution against the 

and adapt the 
requirements
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Software Development A

NB: these are ongoing activities, not sequ

Requirements Collection Establish custo

Analysis Model and spec
(“what”)

Design Model and spec
Implementation Construct a sol

Testing Validate the so
requirements

Maintenance Repair defects 
solution to new 
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y reasons, especially:
arly in the life-cycle

re lifecycle models 
opment as a step-
l” between the 
ent phases.

sting
Maintenance
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The Classical Software L

The waterfall model is unrealistic for man
❑ requirements must be “frozen” too e
❑ requirements are validated too late

The classical softwa
the software devel

by-step “waterfal
various developm

Design

Implementation

Te

Analysis

Requirements
Collection
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urs and creates 
radigm”
er to state all 
life cycle requires 
g the natural 

ning of many 

 working version of 
ntil late in the 
f undetected until 
n be disastrous.”
ssman, SE, p. 26
© O. Nierstrasz — U. Berne ESE —

Problems with the Softwar
1. “Real projects rarely follow the sequ

model proposes. Iteration always occ
problems in the application of the pa

2. “It is often difficult for the custom
requirements explicitly. The classic 
this and has difficulty accommodatin
uncertainty that exists at the begin
projects.”

3. “The customer must have patience. A
the program(s) will not be available u
project timespan. A major blunder, i
the working program is reviewed, ca

— Pre
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ent
ve, and all activities 

why is it still the 

 on requirements

roughout implementation

 refactoring
© O. Nierstrasz — U. Berne ESE —

Iterative Developm
In practice, development is always iterati
progress in parallel.

✎ If the waterfall model is pure fiction, 
standard software process?

Requirements 
Collection

Testing

Design

Analysis

Implementation

Validation through prototyping

Testing based

Testing th

Maintenance through iteration

Design through
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evelopment

plementation.

ime, so integrate, 
s possible.

vered, the more 
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Iterative and Incremental D

Plan to iterate your analysis, design and im

☞ You won’t get it right the first t
validate and test as frequently a

The later in the lifecycle errors are disco
expensive they are to fix!
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evelopment

pe) the system.

g version of the 
ty is yet to be 

oon as possible.
ainst user 
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Iterative and Incremental D

Plan to incrementally develop (i.e., prototy

☞ If possible, always have a runnin
system, even if most functionali
implemented.

☞ Integrate new functionality as s
☞ Validate incremental versions ag

requirements.
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struction Transition

Iter.
#n-1

Iter.
#n..... ...

s? 
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The Unified Proce
Inception Elaboration Con

Requirements

Analysis

Design

Implementation

Test

Iter.
#1

Iter.
#2 ... ... ... .

How do you plan the number of iteration
How do you decide on completion?



ESE — W2001/2002 16.

 Einführung in Software Engineering

ycle

tem

first prototype
go, no-go decision

alysis = Analysis of 
tives and identification/
ion of risks

Engineering = 
Development of the 
“next level” product

 = something that 
ll delay project or 
crease its cost
© O. Nierstrasz — U. Berne ESE —

Boehm’s Spiral Lifec

evolving sys

initial requirements

alpha demo

completion

Planning = determination 
of objectives, alternatives 
and constraints

Risk An
alterna
resolut

Customer Evaluation = 
Assessment of the 
results of engineering

Risk
wi
in
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formally:

d in written form, 
en incorrect.
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Requirements Collec

User requirements are often expressed in
☞ features
☞ usage scenarios

Although requirements may be documente
they may be incomplete, ambiguous, or ev
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nts

sed in the first place
nge during the 

are lifecycle, not 

r project plan

elp clarify 
© O. Nierstrasz — U. Berne ESE —

Changing requireme
Requirements will change!

☞ inadequately captured or expres
☞ user and business needs may cha

project

Validation is needed throughout the softw
only when the “final system” is delivered!

☞ build constant feedback into you
☞ plan for change
☞ early prototyping [e.g., UI] can h

requirements
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pecification

 a system will do. 

ar understanding of 
at its underlying 

cument.

espond to the users’ 
© O. Nierstrasz — U. Berne ESE —

Requirements Analysis and S

Analysis is the process of specifying what

☞ The intention is to provide a cle
what the system is about and wh
concepts are. 

The result of analysis is a specification do

Does the requirements specification corr
actual needs?
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els of the system 

 system

s

d on the system
erations
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Object-Oriented Ana

An object-oriented analysis results in mod
which describe:

❑ classes of objects that exist in the
☞ responsibilities of those classes

❑ relationships between those classe
❑ use cases and scenarios describing

☞ operations that can be performe
☞ allowable sequences of those op
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ped to test, explore 
ks.

 throwaway 
ments or explore 

rements
al requirements
technical feasibility
© O. Nierstrasz — U. Berne ESE —

Prototyping (I)
A prototype is a software program develo
or validate a hypothesis, i.e. to reduce ris

An exploratory prototype, also known as a
prototype, is intended to validate require
design choices.

❑ UI prototype — validate user requi
❑ rapid prototype — validate function
❑ experimental prototype — validate 
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volve in steps into a 

edesigning and 

ast.
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Prototyping (II)

An evolutionary prototype is intended to e
finished product.

❑ iteratively “grow” the application, r
refactoring along the way

✔ First do it, then do it right, then do it f
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e specified system 
components. The 
ign documents.

hat describe:
nted by interacting 

nd how they are 

d to classes

 in parallel with 
© O. Nierstrasz — U. Berne ESE —

Design
Design is the process of specifying how th
behaviour will be realized from software 
results are architecture and detailed des

Object-oriented design delivers models t
❑ how system operations are impleme

objects
❑ how classes refer to one another a

related by inheritance
❑ attributes and operations associate

Design is an iterative process, proceeding
implementation!
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esting
cting a software 

e solution meets the 

d testing is a fully 
on.
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Implementation and T
Implementation is the activity of constru
solution to the customer’s requirements.

Testing is the process of validating that th
requirements.

☞ The result of implementation an
documented and validated soluti
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d Testing
rative activities

plement the design”, 
 documents the 

ents specification
-in-hand

precedes design and 
© O. Nierstrasz — U. Berne ESE —

Design, Implementation an
Design, implementation and testing are ite

☞ The implementation does not “im
but rather the design document
implementation!

❑ System tests reflect the requirem
❑ Testing and implementation go hand

☞ Ideally, test case specification 
implementation
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system after it has 

 and repairing 

 existing solution to 

ing new requirements

 delivery and 
 considered 
© O. Nierstrasz — U. Berne ESE —

Maintenance
Maintenance is the process of changing a 
been deployed.

❑ Corrective maintenance: identifying
defects

❑ Adaptive maintenance: adapting the
new platforms

❑ Perfective maintenance: implement

In a spiral lifecycle, everything after the
deployment of the first prototype can be
“maintenance”!
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ies

ent

ctoring)

r documentation

tion and refactoring
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Maintenance activit
“Maintenance” entails:

❑ configuration and version managem

❑ reengineering (redesigning and refa

❑ updating all analysis, design and use

Repeatable, automated tests enable evolu
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s

User
ts

Emergency
Fixes

outine
ebugging

Changes in
Data Formats

1.8

17.4

12.4
9

© O. Nierstrasz — U. Berne ESE —

Maintenance cost

Changes in 
Requiremen

Documentation

Hardware
Changes R

D

Other

Efficiency
Improvements

4

6.2

5.5

4

3.4

Breakdown of 
maintenance costs.
Source: Lientz 1979
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logies
esirable properties
e activity
l than method
chniques packaged 

hezzi et al. 1991
© O. Nierstrasz — U. Berne ESE —

Methods and Methodo
Principle = general statement describing d
Method = general guidelines governing som
Technique = more technical and mechanica
Methodology = package of methods and te

— G

Principle

Methods and Techniques

Methodologies

Tools
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brief history

R diagrams, state 
nd Mellor, ...

 design; design by 

l methods

+ Use Cases + ...
. Catalysis)
© O. Nierstrasz — U. Berne ESE —

Object-Oriented Methods: a 
First generation:

❑ Adaptation of existing notations (E
diagrams ...): Booch, OMT, Shlaer a

❑ Specialized design techniques:
☞ CRC cards; responsibility-driven

contract
Second generation:

❑ Fusion: Booch + OMT + CRC + forma
Third generation:

❑ Unified Modeling Language:
☞ uniform notation: Booch + OMT 
☞ various UML-based methods (e.g
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ow!
 from programming?
ic?
sis and design?
ementally?
f the cost of a “real” 

dvantages of object-
© O. Nierstrasz — U. Berne ESE —

What you should kn
✎ How does Software Engineering differ
✎ Why is the “waterfall” model unrealist
✎ What is the difference between analy
✎ Why plan to iterate? Why develop incr
✎ Why is programming only a small part o

software project?
✎ What are the key advantages and disa

oriented methods?
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odel captures users’ 

art?
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Can you answer these qu
✎ What is the appeal of the “waterfall” m
✎ Why do requirements change?
✎ How can you validate that an analysis m

real needs?
✎ When does analysis stop and design st
✎ When can implementation start?
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ment

d scheduling

lle, Addison-Wesley, 

ner’s Approach, R. 
., 1994.
© O. Nierstrasz — U. Berne

2. Project Manage

Overview:
❑ Risk management
❑ Scoping and estimation, planning an
❑ Dealing with delays
❑ Staffing, directing, teamwork

Sources:
❑ Software Engineering, I. Sommervi

Sixth Edn., 2000.
❑ Software Engineering — A Practitio

Pressman, Mc-Graw Hill, Third Edn
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ing
, Addison-Wesley, 

ks, 1993
Frameworks for 
nd K. Rubin, Addison-

brace Change, Kent 
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Recommended Read
❑ The Mythical Man-Month, F. Brooks

1975
❑ Object Lessons, T. Love, SIGS Boo
❑ Succeeding with Objects: Decision 

Project Management, A. Goldberg a
Wesley, 1995

❑ Extreme Programming Explained: Em
Beck, Addison Wesley, 1999
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ent?
ined via projects.
roducts)

 within budget

ct Team is the 
 Resource!

 Resources
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Why Project Managem
Almost all software products are obta

(as opposed to manufactured p

Project Concern = Deliver on time and

The Proje
primary

LimitedAchieve Interdependent & 
Conflicting Goals
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ement?
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 personnel
ole
n deviations + 

and work the plan
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What is Project Manag

Management Functions
❑ Planning: Estimate and schedule res
❑ Organization: Who does what
❑ Staffing: Recruiting and motivating
❑ Directing: Ensure team acts as a wh
❑ Monitoring (Controlling): Detect pla

corrective actions

Project Management = Plan the work 
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y will actively 

— Tom Gilb

e, personnel, morale 

ication, maintenance 

mitment ...
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Risk Management

If you don’t actively attack risks, the
attack you.

Project risks
☞ budget, schedule, resources, siz

...
Technical risks

☞ implementation technology, verif
...

Business risks
☞ market, sales, management, com
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..

e
 and manage risks
ion, ...
ct
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Risk Management 

Management must:
❑ identify risks as early as possible
❑ assess whether risks are acceptabl
❑ take appropriate action to mitigate

☞ e.g., training, prototyping, iterat
❑ monitor risks throughout the proje
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niques
ent Techniques
 talent; team 
aining; pre-
ople 
rce cost & 

on; incremental 
e; re-scoping
totyping; early 

hold; information 
al development
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Risk Management Tech
Risk Items Risk Managem

Personnel shortfalls Staffing with top
building; cross-tr
scheduling key pe

Unrealistic schedules 
and budgets 

Detailed multi-sou
schedule estimati
development; reus

Developing the wrong 
software functions

User-surveys; pro
users’s manuals

Continuing stream of 
requirements changes

High change thres
hiding; increment
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marking; modeling; 
umentation; tuning

; cost-benefit 
ing; reference 

ent Techniques
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Real time 
performance 
shortfalls

Simulation; bench
prototyping; instr

Straining computer 
science capabilities

Technical analysis
analysis; prototyp
checking

Risk Items Risk Managem
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 whining, “The 
t. When we give 
on’t like it.” Get 
oftware 
ever clear at 
actly what they 

— Kent Beck
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Focus on Scope

For decades, programmers have been
customers can’t tell us what they wan
them what they say they want, they d
over it. This is an absolute truth of s
development. The requirements are n
first. Customers can never tell you ex
want.
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ctives

 enough to start 

ause of project 
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Myth: Scope and Obje

Myth
“A general statement of objectives is
coding.”

Reality
Poor up-front definition is the major c
failure.
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es
 & objectives
ls of the project, not 

ions that the 
ds these functions in 

 be explicitly stated
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Scope and Objectiv
In order to plan, you must set clear scope

❑ Objectives identify the general goa
how they will be achieved.

❑ Scope identifies the primary funct
software is to accomplish, and boun
a quantitative manner.

Goals must be realistic and measurable 
Constraints, performance, reliability must
Customer must set priorities 
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ies

re estimates

cts in the same 

ime available
 strategy

the budget available
 parties
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Estimation Strateg
These strategies are simple but risky:

Expert 
judgement

Consult experts and compa
☞  cheap, but unreliable

Estimation by 
analogy

Compare with other proje
application domain
☞  limited applicability

Parkinson's 
Law

Work expands to fill the t
☞  pessimistic management

Pricing to win You do what you can with 
☞  requires trust between
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ues
deling” are used 

nents + integration 

p estimation
rical facts to map 

ata
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Estimation Techniq
“Decomposition” and “Algorithmic cost mo
together

Decomposition 
Estimate costs for compo

☞  top-down or bottom-u

Algorithmic 
cost modeling

Exploit database of histo
size on costs

☞  requires correlation d
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imation

 

s 

erpret
 the effort with 
t to a specific 
pment project plan
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Measurement-based Est

A. Measure
Develop a system model 
and measure its size

B. Estimate
Determine the effort with
respect to an empirical 
database of measurement
from similar projects

C. Int
Adapt
respec
develo
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tment

rewrite stories
 factor, the ratio of 
dar

s calculate budget, 
that number, or
ers calculate date 
sk to reduce scope, 
educe scope anyway)
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Estimation and Commi
Example: The XP process

1. a. Customers write stories and
b. Programmers estimate stories
☞ else ask the customers to split/

2. Programmers measure the team load
ideal programming time to the calen

3. Customers sort stories by priority
4. Programmers sort stories by risk
5. a. Customers pick date, programmer

customers pick stories adding up to 
b. Customers pick stories, programm
(customers complain, programmers a
customers complain some more but r
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ling
manager’s intuition 

liable estimation.
 milestone.
t must be met after 

e a necessity!
ingless statement)

...
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Planning and Schedu
Good planning depends largely on project 
and experience!

❑ Split project into tasks.
☞ Tasks into subtasks etc.

❑ For each task, estimate the time.
☞ Define tasks small enough for re

❑ Significant tasks should end with a
☞ Milestone = A verifiable goal tha

task completion
☞ Clear unambiguous milestones ar

(“80% coding finished” is a mean
☞ Monitor progress via milestones
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g ...
ct tasks 
 critical) path in 

void delays 
e optimal use of 

ing the project!
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Planning and Schedulin
❑ Define dependencies between proje

☞ Total time depends on longest (=
activity graph

☞ Minimize task dependencies to a
❑ Organize tasks concurrently to mak

workforce

Planning is iterative
⇒  monitor and revise schedules dur
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ilestones

l project is the 

are development 
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Myth: Deliverables and M

Myth
“The only deliverable for a successfu
working program.”

Reality
Documentation of all aspects of softw
are needed to ensure maintainability.
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tones
delivered to the 

 monitor progress
ry 2-3 weeks

ct progresses!
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Deliverables and Miles
Project deliverables are results that are 
customer.

❑ E.g.:
☞ initial requirements document
☞ UI prototype
☞ architecture specification

❑ Milestones and deliverables help to
☞ Should be scheduled roughly eve

NB: Deliverables must evolve as the proje
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Dependencies

 this project?

Dependencies

T1

T2, T4
T1, T2

T1
T4

T3, T6
T5, T7

T9
T11
© O. Nierstrasz — U. Berne

Example: Task Durations and 

✎ What is the minimum total duration of

Task Duration (days)
T1 8
T2 15
T3 15
T4 10
T5 10
T6 5
T7 20
T8 25
T9 15
T10 15
T11 7
T12 10
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etwork
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Pert Chart: Activity N
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imeline
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Gantt Chart: Activity T
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ocation

g, ... are difficult to 

D J F M A M J J A

4. Integrate&Test

4. Integrate&Test

4. Integrate&Test

4. Integrate&Test

5. Manual

5. Manual

7

7
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Gantt Chart: Staff All

(Overall tasks such as reviewing, reportin
incorporate)

Tobias

Marta

Leo

Ryan

Sylvia

Laura

F M A M J J A S O NJ

Free timeOccupied time

1

1 2. Design

2. Design

3.3. Code Gen.2. Design

2. Design3.3. Code Gen.

3.1

3.1

3.1 3.2. Parser

3.2. Parser

3.2. Parser
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d more 

project down.
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Myth: Delays

Myth
“If we get behind schedule, we can ad
programmers and catch up.”

Reality
Adding more people typically slows a 
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s

ms and the cost of 

he number of people 

es it later due to 

ways allow 

g is a recipe for 

m benefits!
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Scheduling problem

❑ Estimating the difficulty of proble
developing a solution is hard

❑ Productivity is not proportional to t
working on a task

❑ Adding people to a late project mak
communication overhead

❑ The unexpected always happens. Al
contingency in planning

❑ Cutting back in testing and reviewin
disaster

❑ Working overnight? Only short ter
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ainty

n’t know

minate unknowns

 can be met
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Planning under uncert

❑ State clearly what you know and do

❑ State clearly what you will do to eli

❑ Make sure that all early milestones

❑ Plan to replan
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s

er

et
ited to the project 

...
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Dealing with Delay
Spot potential delays as soon as possible

... then you have more time to recov

How to spot?
❑ Earned value analysis

☞ planned time is the project budg
☞ time of a completed task is cred

budget
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ied tasks
mmunication 

 incrementally
ality on time
if customer 
© O. Nierstrasz — U. Berne

Dealing with Delays
How to recover?
A combination of following 3 actions

❑ Adding senior staff for well-specif
☞ outside critical path to avoid co

overhead
❑ Prioritize requirements and deliver

☞ deliver most important function
☞ testing remains a priority (even 

disagrees)
❑ Extend the deadline
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mpleted

ompleted
pleted

ted
pleted

n
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Earned Value: Tasks Co
The 0/100 Technique

❑ earned value := 0% when task not c
❑ earned value := 100% when task com

☞ tasks should be rather small
☞ gives a pessimistic impression

The 50/50 Technique
❑ earned value := 50% when task star
❑ earned value := 100% when task com

☞ tasks are rather large
☞ may give an optimistic impressio

❑ variant with 20/80
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es completed / total 

f intermediate 

btasks and fall back 
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Earned Value ...
The Milestone Technique

❑ earned value := number of mileston
number of milestones
☞ tasks should be large with lots o

milestones
☞ better to split task in several su

on 0/100
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mpleted
necting endpoints of 

schedule

D J F M A M J J A

ahead of schedule
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Gantt Chart: Slip L
Visualize slippage

❑ Shade time line = portion of task co
❑ Draw a slip line at current date, con

the shaded areas
☞ bending to the right = ahead of 
☞ to the left = behind schedule

1.Start
2.Design
3.Implementation

3.1.build scanner
3.2.build parser
3.3. build code generator

4.Integrate & Test
5.Write manual
6. Reviewing
7. Finish

F M A M J J A S O NJ

behind
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ompletion time as 

nt completed tasks
J

Planned Time

Today

edule
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Timeline Chart
Visualise slippage evolution

❑ downward lines represent planned c
they vary in current time

❑ bullets at the end of a line represe
F M A M J J A S O N D J F M A M JJ

M
J

J
A

S
O

N
D

A
ctual T

im
e

3.1.scanner

3.2 parser

3.3 code generator

on time

ahead of behind sch
schedule
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ine
f project tasks

 the past to 

f project tasks 

r the figure
 more tasks
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Slip Line vs. Timel

Slip Line

Monitors current slip status o
❏ many tasks
❏ only for 1 point in time
☞  include a few slip lines from
illustrate evolution

Timeline

Monitors how the slip status o
evolves
❏ few tasks
☞  crossing lines quickly clutte
☞  colours can be used to show
❏ complete time scale
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8 members)
d
veloped
her
property (“egoless 

embers leave
le smaller projects
nformal, democratic 

e the most effective 
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Software Teams
Team organisation

❑ Teams should be relatively small (< 
☞ minimize communication overhea
☞ team quality standard can be de
☞ members can work closely toget
☞ programs are regarded as team 

programming”)
☞ continuity can be maintained if m

❑ Break big projects down into multip
❑ Small teams may be organised in an i

way
❑ Chief programmer teams try to mak

use of skills and experience
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lped by others as 

ponsibility for 
d installation of 

 of CP’s work and 

nistrator, toolsmith, 
system expert, 
s

...
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Chief Programmer Te
❑ Consist of a kernel of specialists he

required
☞ chief programmer takes full res

design, programming, testing an
system

☞ backup programmer keeps track
develops test cases

☞ librarian manages all information
☞ others may include: project admi

documentation editor, language/
tester, and support programmer
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ms ...

s are:
programmers
nal structures
 not chief 
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Chief Programmer Tea

❑ Reportedly successful but problem
☞ Difficult to find talented chief 
☞ Disrupting to normal organisatio
☞ De-motivating for those who are

programmers
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 necessary 

e people work, it 
rk” 

— Tom DeMarco

will trust you.
...
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Directing Teams
Managers serve their team

❑ Managers ensure that team has the
information and resources

“The manager’s function is not to mak
is to make it possible for people to wo

Responsibility demands authority
❑ Managers must delegate

☞ Trust your own people and they 
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..

the critical path
l managers

to which the 
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Directing Teams .

Managers manage
❑ Managers cannot perform tasks on 

☞ Especially difficult for technica

Developers control deadlines
❑ A manager cannot meet a deadline 

developers have not agreed
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e constrained to 
e communication 
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Conway’s Law

“Organizations that design systems ar
produce designs that are copies of th
structures of these organizations”
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ow!
k in a project?
 important?
twork? An activity 

100; the 50/50 and 
 the earned value.
o more than about 8 
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What you should kn
✎ How can prototyping help to reduce ris
✎ What are milestones, and why are they
✎ What can you learn from an activity ne

timeline?
✎ What’s the difference between the 0/

the milestone technique for calculating
✎ Why should programming teams have n

members?
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estions?
t the customers, set 

 of a project (based 

he customer?
 a good sign or a bad 

 perfect software 

aw in action?
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Can you answer these qu
✎ What will happen if the developers, no

the project priorities?
✎ What is a good way to measure the size

on requirements alone)?
✎ When should you sign a contract with t
✎ Would you consider bending slip lines as

sign? Why?
✎ How would you select and organize the

development team?
✎ What are good examples of Conway’s L
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yping

lle, 1996.
ner’s Approach, R. 
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3. Requirements Col

Overview:
❑ The Requirements Engineering Proc
❑ Use cases and scenarios
❑ Functional and non-functional requi
❑ Evolutionary and throw-away protot
❑ Requirements checking and reviews

Sources:
❑ Software Engineering, I. Sommervi
❑ Software Engineering — A Practitio

Pressman, Mc-Graw Hill, Third Edn
❑ Objects, Components and Framewo

D'Souza, A. Wills, Addison-Wesley
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The Requirements Engineer



ESE — W2001/2002 76.

Requirements Collection

Activities
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ds can be satisfied 
ogy and budget.
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in a form 
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in detail.
tween client and 
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Requirements Engineering 

“Requirements are for users; specificatio
and developers.”

Feasibility 
study

Determine if the user nee
with the available technol

Requirements 
analysis

Find out what system stak
from the system.

Requirements 
definition

Define the requirements 
understandable to the cus

Requirements 
specification

Define the requirements 
(Written as a contract be
contractor.)
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sis
 or requirements 

etermine 

d provide and
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s involved in 
 unions, etc.
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Requirements Analy
Sometimes called requirements elicitation
discovery

Technical staff work with customers to d
❑ the application domain, 
❑ the services that the system shoul
❑ the system’s operational constraint

Involves various stakeholders:
❑ e.g., end-users, managers, engineer

maintenance, domain experts, trade
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 Analysis

 really want
s in their own terms
onflicting 

 may influence the 

e analysis process.
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Problems of Requirements

Various problems typically arise:

❑ Stakeholders don’t know what they
❑ Stakeholders express requirement
❑ Different stakeholders may have c

requirements
❑ Organisational and political factors

system requirements
❑ The requirements change during th

New stakeholders may emerge.
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ter understanding of 
organisation’s 

the requirements as 
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Requirements evolut

❑ Requirements always evolve as a bet
user needs is developed and as the 
objectives change

❑ It is essential to plan for change in 
the system is being developed and u
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The Requirements Analysi
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Use Cases and Viewp

A use case is the specification of a seque
including variants, that a system (or other
interacting with actors of the system”.

☞ e.g., buy a DVD through the inte

A scenario is a particular trace of action o
from a known initial state.

☞ e.g., connect to myDVD.com, go 
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nts ...
m viewpoints.
of stakeholders as 

es or “stories” about 
 set of actors (users 

ical and exceptional 

s of “features”.
es involving those 

 if the requirements 
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Use Cases and Viewpoi
Stakeholders represent different proble

❑ Interview as many different kinds 
possible/necessary

❑ Translate requirements into use cas
the desired system involving a fixed
and system objects)

❑ For each use case, capture both typ
usage scenarios

Users tend to think about systems in term
❑ You must get them to tell you stori

features.
❑ Use cases and scenarios can tell you

are complete and consistent!
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f system
s and relationships
se cases they 

 ordering of a 
 case
bjects exchanging 
nario
s of an object and 
e states
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Unified Modeling Lang
UML is an industry standard for documen

Class 
Diagrams

visualize logical structure o
in terms of classes, object

Use Case 
Diagrams

show external actors and u
participate in

Sequence 
Diagrams

visualize temporal message
concrete scenario of a use

Collaboration 
Diagrams

visualize relationships of o
messages in a concrete sce

State 
Diagrams

specify the abstract state
the transitions between th
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f natural language, 
 tables.

ents that are both 
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tional requirements 

ements may be 
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Writing Requirements De
Requirements definitions usually consist o
supplemented by (e.g., UML) diagrams and

Three types of problem can arise:

Lack of clarity: It is hard to write docum
precise and easy-to-rea

Requirements 
confusion:

Functional and non-func
tend to be intertwined.

Requirements 
amalgamation:

Several different requir
expressed together.
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 Requirements

services or functions

nts on the system or 

 critical than 

ss!
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Functional and Non-functional

Functional requirements describe system 

Non-functional requirements are constrai
the development process

Non-functional requirements may be more
functional requirements. 
If these are not met, the system is usele
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ments
 product must 
 
bility, etc.
nisational policies 

d, implementation 

are external to the 
nt process 
rements, legislative 
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Non-functional Require

Product 
requirements:

specify that the delivered
behave in a particular way
e.g. execution speed, relia

Organisational 
requirements:

are a consequence of orga
and procedures 
e.g. process standards use
requirements, etc.

External 
requirements:

arise from factors which 
system and its developme
e.g. interoperability requi
requirements, etc.
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Types of Non-functional Re
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Requirements 
l necessary 
he APSE and the 
he standard Ada 

process and 
all conform to the 
defined in XYZCo-

facilities that allow 
nal data is 
. A procedure must 
in the software that 
personal data and to 
 data.
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Examples of Non-functional 

Product 
requirement

It shall be possible for al
communication between t
user to be expressed in t
character set.

Organisational 
requirement

The system development 
deliverable documents sh
process and deliverables 
SP-STAN-95.

External 
requirement

The system shall provide 
any user to check if perso
maintained on the system
be defined and supported 
will allow users to inspect 
correct any errors in that
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bility
y can be objectively 

o use by 
 organised in 
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 be minimised” are 

uld be able to 
tal of two hours 
age number of 
ould not exceed 
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Requirements Verifia
Requirements must be written so that the
verified.
Imprecise: The system should be easy t

experienced controllers and should be
such a way that user errors are minim

Terms like “easy to use” and “errors shall
useless as specifications.

Verifiable: Experienced controllers sho
use all the system functions after a to
training. After this training, the aver
errors made by experienced users sh
two per day.
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 chips

rained users
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Precise Requirements M
Property Measur

Speed Processed transactions/s
User/Event response time
Screen refresh time

Size K Bytes; Number of RAM
Ease of use Training time

Rate of errors made by t
Number of help frames

Reliability Mean time to failure
Probability of unavailabili
Rate of failure occurrenc
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lure
sing failure
tion on failure

endent statements
s

e
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Robustness Time to restart after fai
Percentage of events cau
Probability of data corrup

Portability Percentage of target dep
Number of target system

Property Measur
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ves
 is to deliver a 

ments that are best 

is to validate or 

ements that are 
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Prototyping Objecti
The objective of evolutionary prototyping
working system to end-users. 

❑ Development starts with the require
understood.

The objective of throw-away prototyping 
derive the system requirements.

❑ Prototyping starts with that requir
poorly understood.
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ping

e specification 

ce systems

id system iterations.
guages, VHL 
kits

is no specification. 
 the adequacy of the 
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Evolutionary Prototy

❑ Must be used for systems where th
cannot be developed in advance.
☞ e.g. AI systems and user interfa

❑ Based on techniques which allow rap
☞ e.g., executable specification lan

languages, 4GLs, component tool

❑ Verification is impossible as there 
☞ Validation means demonstrating

system.
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ping

 initial specification, 
arded

ot be considered as 

y have been left out 
 be ignored)
g-term maintenance
ured and difficult to 
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Throw-away Prototy

❑ Used to reduce requirements risk

❑ The prototype is developed from an
delivered for experiment then disc

❑ The throw-away prototype should n
a final system
☞ Some system characteristics ma

(e.g., platform requirements may
☞ There is no specification for lon
☞ The system will be poorly struct

maintain
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ing

de the functions 
e customer’s needs?
ments conflicts?
red by the 

be implemented 
 and technology?
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Requirements Check

Validity: Does the system provi
which best support th

Consistency: Are there any require

Completeness: Are all functions requi
customer included?

Realism: Can the requirements 
given available budget
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ws

e the requirements 

ould be involved in 

ted documents) or 

lopers, 
oblems at an 
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Requirements Revie

❑ Regular reviews should be held whil
definition is being formulated

❑ Both client and contractor staff sh
reviews

❑ Reviews may be formal (with comple
informal. 
Good communications between deve
customers and users can resolve pr
early stage
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alistically testable?
operly understood?
quirement clearly 

e changed without a 
requirements?
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Review checks
Verifiability Is the requirement re

Comprehensibility Is the requirement pr

Traceability Is the origin of the re
stated?

Adaptability Can the requirement b
large impact on other 
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 able to trace back 
nal requirement that 

... ... Co
m

p 
m

x

x

x
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Traceability
To protect against changes you should be
from every system component to the origi
caused its presence.

Co
m

p 
1

Co
m

p 
2

... ... ... ... ...

Req 1 x x
Req 2 x
...
... x x
...
... x
... x
Req n
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 keeping this virtual 

able (naming 
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Traceability ...

❑ A software process should help you
table up-to-date

❑ Simple techniques may be quite valu
conventions, ...)
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ow!
ements analysis and 

equirements?

ional and non-

ays a product should 

ionary and throw-
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What you should kn
✎ What is the difference between requir

specification?
✎ Why is it hard to define and specify r
✎ What are use cases and scenarios?
✎ What is the difference between funct

functional requirements?
✎ What’s wrong with a requirement that s

be “user-friendly”?
✎ What’s the difference between evolut

away prototyping?
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g questions?
ents as a set of 

ments: natural 

ace for a web-based 

way prototype? 
e prototype?

r “adaptability”?
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Can you answer the followin
✎ Why isn’t it enough to specify requirem

desired features?
✎ Which is better for specifying require

language or diagrams?
✎ How would you prototype a user interf

ordering system? 
✎ Would it be an evolutionary or throw-a
✎ What would you expect to gain from th
✎ How would you check a requirement fo
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n Design

re, R. Wirfs-Brock, 
all, 1990.
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4. Responsibility-Drive

Overview:
❑ What is Object-Oriented Design?
❑ Finding Classes
❑ Identifying Responsibilities
❑ Finding Collaborations

Source:
❑ Designing Object-Oriented Softwa

B. Wilkerson, L. Wiener, Prentice H
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 Design?

le requirements and 

re than one function
volve ⇒  redesign 

ther system is 

ons 
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Why Responsibility-driven

Functional Decomposition
❑ Good in a “waterfall” approach: stab

one monolithic function
However

❑ Naive: Modern systems perform mo
❑ Maintainability: system functions e

affect whole system
❑ Interoperability: interfacing with o

difficult

Functional Decomposition

Decompose according to the functi
a system is supposed to perform.
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Design? ...
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cts 
te.
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Why Responsibility-driven 

Object-Oriented Decomposition
❑ Better for complex and evolving sy

However
❑ How to find the objects?

Object-Oriented Decomposit

Decompose according to the obje
a system is supposed to manipula
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 Design?

n is the process 
urned into a 

s specification 
e respective 
nd how they 
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What is Object-Oriented

“Object-oriented [analysis and] desig
by which software requirements are t
detailed specification of objects. Thi
includes a complete description of th
roles and responsibilities of objects a
communicate with each other.”
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 Design?
 not a final product:
d, even after 

ic:
ines, not fixed rules
ps produce clean, 
make a lot of sense 
”

sis and) design 
n with various 
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What is Object-Oriented
❑ The result of the design process is

☞ design decisions may be revisite
implementation

☞ design is not linear but iterative

❑ The design process is not algorithm
☞ a design method provides guidel
☞ “a good sense of style often hel

elegant designs — designs that 
from the engineering standpoint

✔ Responsibility-driven design is an (analy
technique that works well in combinatio
methods and notations.
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ion

ch class
racts?
ith each other to 

s?
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The Initial Explorat

1. Find the classes in your system
2. Determine the responsibilities of ea

☞ What are the client-server cont
3. Determine how objects collaborate w

fulfil their responsibilities
☞ What are the client-server role
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sis

ild class hierarchies
bjects
s of the system?
te with everybody?
te with nobody?
t can be seen as 

specified signatures
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The Detailed Analy

1. Factor common responsibilities to bu
2. Streamline collaborations between o

☞ Is message traffic heavy in part
☞ Are there classes that collabora
☞ Are there classes that collabora
☞ Are there groups of classes tha

subsystems?
3. Turn class responsibilities into fully 



ESE — W2001/2002 109.

Responsibility-Driven Design

eing designed, its 
ses?

certain candidates, 
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Finding Classes
Start with requirements specification:

❑ What are the goals of the system b
expected inputs and desired respon

1. Look for noun phrases:
☞ separate into obvious classes, un

and nonsense
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.
 Some guidelines are:
sks, printers
. windows, files
t — what does it 

lly a separate class?
subjects — rephrase 

elay modelling of 

 — e.g., user 

ibutes — e.g., Point 
© O. Nierstrasz — U. Berne

Finding Classes ..
2. Refine to a list of candidate classes.

☞ Model physical objects — e.g. di
☞ Model conceptual entities — e.g
☞ Choose one word for one concep

mean within the system
☞ Be wary of adjectives — is it rea
☞ Be wary of missing or misleading 

in active voice
☞ Model categories of classes — d

inheritance
☞ Model interfaces to the system

interface, program interfaces
☞ Model attribute values, not attr

vs. Centre
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Specification
e user clicks the mouse button outside the text 

 points for a text element are the four corners of 
ch the text is formatted. Dragging the control 
egion. The other creation tools allow the 
angles and ellipses. They change the shape of 
 crosshair. The appropriate element starts to be 
use button is pressed, and is completed when 
released. These two events create the start 
int.

l creates a line from the start point to the stop 
control points of a line. Dragging a control point 
int.

n tool creates a rectangle such that these 
 opposite corners. These points and the other 
ol points. Dragging a control point changes the 

ool creates an ellipse fitting within the rectangle 
ints described above. The major radius is one 
ectangle, and the minor radius is one half the 
le. The control points are at the corners of the 
Dragging control points changes the 
© O. Nierstrasz — U. Berne

Drawing Editor Requirements 
The drawing editor is an interactive graphics editor. With it, users can 
create and edit drawings composed of lines, rectangles, ellipses and 
text.

Tools control the mode of operation of the editor. Exactly one tool is 
active at any given time.

Two kinds of tools exist: the selection tool and creation tools. When 
the selection tool is active, existing drawing elements can be 
selected with the cursor. One or more drawing elements can be 
selected and manipulated; if several drawing elements are selected, 
they can be manipulated as if they were a single element. Elements 
that have been selected in this way are referred to as the current 
selection. The current selection is indicated visually by displaying the 
control points for the element. Clicking on and dragging a control 
point modifies the element with which the control point is associated.

When a creation tool is active, the current selection is empty. The 
cursor changes in different ways according to the specific creation 
tool, and the user can create an element of the selected kind. After 
the element is created, the selection tool is made active and the 
newly created element becomes the current selection.

The text creation tool changes the shape of the cursor to that of an I-
beam. The position of the first character of text is determined by 
where the user clicks the mouse button. The creation tool is no 

longer active when th
element. The control
the region within whi
points changes this r
creation of lines, rect
the cursor to that of a
created when the mo
the mouse button is 
point and the stop po

The line creation too
point. These are the 
changes the end po

The rectangle creatio
points are diagonally
corners are the contr
associated corner.

The ellipse creation t
defined by the two po
half the width of the r
height of the rectang
bounding rectangle. 
associated corner.
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hrases
ith it, users can create and 
d text.
tly one tool is active at any 

 tools. When the selection 
d with the cursor. One or 
; if several drawing 
ey were a single element. 
red to as the current 
displaying the control 
ol point modifies the 

empty. The cursor changes 
l, and the user can create 
eated, the selection tool is 
e current selection.

...
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Drawing Editor: noun p
The drawing editor is an interactive graphics editor. W
edit drawings composed of lines, rectangles, ellipses an
Tools control the mode of operation of the editor. Exac
given time.
Two kinds of tools exist: the selection tool and creation
tool is active, existing drawing elements can be selecte
more drawing elements can be selected and manipulated
elements are selected, they can be manipulated as if th
Elements that have been selected in this way are refer
selection. The current selection is indicated visually by 
points for the element. Clicking on and dragging a contr
element with which the control point is associated.
When a creation tool is active, the current selection is 
in different ways according to the specific creation too
an element of the selected kind. After the element is cr
made active and the newly created element becomes th
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 to that of an I-beam. The 
y where the user clicks the 
n the user clicks the mouse 
 a text element are the 
atted. Dragging the control 
w the creation of lines, 
rsor to that of a crosshair. 
 mouse button is pressed, 
ese two events create the 

t to the stop point. These 
 changes the end point.
at these points are 
 corners are the control 
 corner.
n the rectangle defined by 
 half the width of the 
 the rectangle. The control 
agging control points 
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The text creation tool changes the shape of the cursor
position of the first character of text is determined b
mouse button. The creation tool is no longer active whe
button outside the text element. The control points for
four corners of the region within which the text is form
points changes this region. The other creation tools allo
rectangles and ellipses. They change the shape of the cu
The appropriate element starts to be created when the
and is completed when the mouse button is released. Th
start point and the stop point.
The line creation tool creates a line from the start poin
are the control points of a line. Dragging a control point
The rectangle creation tool creates a rectangle such th
diagonally opposite corners. These points and the other
points. Dragging a control point changes the associated
The ellipse creation tool creates an ellipse fitting withi
the two points described above. The major radius is one
rectangle, and the minor radius is one half the height of
points are at the corners of the bounding rectangle. Dr
changes the associated corner.
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nale

e]

tion Tool, Line 
n Tool, Selection 

...
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Class Selection Ratio
Model physical objects:

☞ mouse button [event or attribut
Model conceptual entities:

☞ ellipse, line, rectangle
☞ Drawing, Drawing Element
☞ Tool, Creation Tool, Ellipse Crea

Creation Tool, Rectangle Creatio
Tool, Text Creation Tool

☞ text, Character
☞ Current Selection
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ale ...

ctive graphics editor

ectangle Element

...
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Class Selection Ration
Choose one word for one concept:

☞ Drawing Editor ⇒  editor, intera
☞ Drawing Element ⇒ element
☞ Text Element ⇒  text
☞ Ellipse Element, Line Element, R

⇒  ellipse, line, rectangle
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ale ...

ion Tool, Rectangle 
ext Creation Tool
ts
egion ⇒  Rectangle 
nt from Rectangle 

top point 
a coordinate
gonally opposite 

...
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Class Selection Ration
Be wary of adjectives:

☞ Ellipse Creation Tool, Line Creat
Creation Tool, Selection Tool, T
— all have different requiremen

☞ bounding rectangle, rectangle, r
— common meaning, but differe
Element

☞ Point ⇒  end point, start point, s
☞ Control Point — more than just 
☞ corner ⇒  associated corner, dia

corner — no new behaviour
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ale ...
isleading subjects:
ed visually by 
 the element.” 
itor ...

 explicitly
by operating system 

...
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Class Selection Ration
Be wary of sentences with missing or m

☞ “The current selection is indicat
displaying the control points for
— by what? Assume Drawing Ed

Model categories:
☞ Tool, Creation Tool

Model interfaces to the system:
☞ user — don’t need to model user
☞ cursor — cursor motion handled 
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ale ...
es themselves:
f the rectangle

er; probably Point 

f Drawing Editor
sshair — attributes 

he system
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Class Selection Ration
Model values of attributes, not attribut

☞ height of the rectangle, width o
☞ major radius, minor radius 
☞ position — of first text charact

attribute
☞ mode of operation — attribute o
☞ shape of the cursor, I-beam, cro

of Cursor
☞ corner — attribute of Rectangle
☞ time — an implicit attribute of t
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 candidates:
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eation Tool
ement
ol
n Tool
t 
© O. Nierstrasz — U. Berne

Candidate Classe
Preliminary analysis yields the following

Expect the list to evolve as design progre

Character Line Element
Control Point Point
Creation Tool Rectangle 
Current Selection Rectangle Cr
Drawing Rectangle El
Drawing Editor Selection To
Drawing Element Text Creatio
Ellipse Creation Tool Text Elemen
Ellipse Element Tool
Line Creation Tool
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ses:

the card
y to modify or 

es

orations>
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CRC Cards
Use CRC cards to record candidate clas

Write a short description on the back of 
☞ compact, easy to manipulate, eas

discard!
☞ easy to arrange, reorganize
☞ easy to retrieve discarded class

Class: Drawing
<superclasses>
<subclasses>
<responsibilities ...> <collab
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sses
haviour shared by 

attributes
 represent the group
r abstract classes

ation; your hierarchy 

ool Text Tool
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Finding Abstract Cla
Abstract classes factor out common be
other classes

❑ group related classes with common 
❑ introduce abstract superclasses to
❑ “categories” are good candidates fo

✔ Warning: beware of premature classific
will evolve

Tool

Ellipse Tool Line Tool Rectangle T

Selection Tool Creation Tool
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 Groups

o derive the name
 subcategories
rd the group and 

...
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Identifying and Naming
If you have trouble naming a group:

☞ enumerate common attributes t
☞ divide into more clearly defined
☞ if you still cannot name it, disca

search for others.
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roups ...
ve to distinguish 

 distinctions.

ication is incomplete 

 Cut Buffer
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Identifying and Naming G
Attributes of abstract classes should ser
subgroups

☞ Physical vs. conceptual
☞ Active vs. passive
☞ Temporary vs. permanent
☞ Generic vs. specific
☞ Shared vs. unshared

Ignore attributes that don’t help to make

Classes may be missing because the specif
or imprecise

☞ editing ⇒  undoing ⇒  need for a
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ses
ll class cards:

 Tool, Text 
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Recording Superclas
Record superclasses and subclasses on a

Class: Creation Tool
Tool
Ellipse Tool, Line Tool, Rectangle
Tool
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ins and provides

ices an object may 
 those services may 

t how it does it
, only conceptual 
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Responsibilities
What are responsibilities?

☞ the knowledge an object mainta
☞ the actions it can perform

Responsibilities represent the public serv
provide to clients (but not the way in which
be implemented)

☞ specify what an object does, no
☞ don’t describe the interface yet

responsibilities
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ilities
on:
hich represent 

stem
s possible
m input to the 

bilities
s ⇒  responsibilities
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Identifying Responsib
❑ Study the requirements specificati

☞ highlight verbs and determine w
responsibilities

☞ perform a walk-though of the sy
➪ exploring as many scenarios a
➪ identify actions resulting fro

system

❑ Study the candidate classes:
☞ class names ⇒  roles ⇒  responsi
☞ recorded purposes on class card
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ities
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of responsibilities
jects rather than 

s possible
rectangle etc.”

elated information

...
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Assigning Responsibil
❑ Evenly distribute system intelligenc

☞ avoid procedural centralization 
☞ keep responsibilities close to ob

their clients

❑ State responsibilities as generally a
☞ “draw yourself” vs. “draw a line/

❑ Keep behaviour together with any r
☞ principle of encapsulation
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ies ...
 one place
to the same 

ed to manage the 

 candidate, or
ed to be collapsed 

d objects
ties
© O. Nierstrasz — U. Berne

Assigning Responsibilit
❑ Keep information about one thing in

☞ if multiple objects need access 
information
(i) a new object may be introduc
information, or
(ii) one object may be an obvious
(iii) the multiple objects may ne
into a single one

❑ Share responsibilities among relate
☞ break down complex responsibili
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Classes
red by examining 
:

ute often share a 

mmon 

nt, a Creation 

ented in subclass

ented in subclass
© O. Nierstrasz — U. Berne

Relationships Between 
Additional responsibilities can be uncove
relationships between classes, especially

❑ The “Is-Kind-Of” Relationship:
☞ classes sharing a common attrib

common superclass
☞ common superclasses suggest co

responsibilities
e.g., to create a new Drawing Eleme
Tool must:

1. accept user input implem
2. determine location 

to place it
generic

3. instantiate the 
element

implem
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ibilities of part and 

suggest:
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Relationships Between Cl
❑ The “Is-Analogous-To” Relationship

☞ similarities between classes sug
undiscovered superclasses

❑ The “Is-Part-Of” Relationship:
☞ distinguish (don’t share) respons

of whole

Difficulties in assigning responsibilities 
☞ missing classes in design, or 
☞ free choice between multiple cla
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lities
sible:

gests over-

ses or collaborators
ble and maintainable 
 consolidated.
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Recording Responsibi
List responsibilities as succinctly as pos

Too many responsibilities for one card sug
centralization:

☞ Try to redistribute to superclas
Having more classes leads to a more flexi
design. If necessary, classes can later be

Class: Drawing

Know which elements it contains
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o servers needed to 

formation flow and, 

responsibilities
 can reveal 
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Collaborations
What are collaborations?

❑ collaborations are client requests t
fulfil responsibilities

❑ collaborations reveal control and in
ultimately, subsystems

❑ collaborations can uncover missing 
❑ analysis of communication patterns

misassigned responsibilities
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y by itself?
hat other class can 

tion or results? 

ers should be 

...
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Finding Collaboratio
For each responsibility:

1. Can the class fulfil the responsibilit
2. If not, what does it need, and from w

it obtain what it needs?

For each class:
1. What does this class know?
2. What other classes need its informa

Check for collaborations.
3. Classes that do not interact with oth

discarded. (Check carefully!)
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ip 
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Finding Collaboration

Check for these relationships:
❑ The “Is-Part-Of” Relationship 
❑ The “Has-Knowledge-Of” Relationsh
❑ The “Depends-Upon” Relationship 
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esponsibility:

sponsibility. 
.
her walk-through.

Drawing Element
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Recording Collaborat
Collaborations exist only to fulfil respon
Put the server class next to the client’s r

Note each collaboration required for a re
Include also collaborations between peers
Validate your preliminary design with anot

Class: Drawing

Know which elements it contains
Maintain ordering between elements
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ow!
otential classes?

is and design?

w can you identify 

es help in identifying 

hey relate to 
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What you should kn
✎ What criteria can you use to identify p
✎ How can class cards help during analys
✎ How can you identify abstract classes?
✎ What are class responsibilities, and ho

them?
✎ How can identification of responsibiliti

classes?
✎ What are collaborations, and how do t

responsibilities?
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g questions?
 to a class?
o a hierarchy?
l the responsibilities 
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Can you answer the followin
✎ When should an attribute be promoted
✎ Why is it useful to organize classes int
✎ How can you tell if you have captured al

and collaborations?
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5. Detailed Des

Overview:
❑ Structuring Inheritance Hierarchie
❑ Identifying Subsystems
❑ Specifying Class Protocols (Interfa

Source:
❑ Designing Object-Oriented Softwa

B. Wilkerson, L. Wiener, Prentice H
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n Diagrams can be 
 to visualize shared 
onsibilities.
rning: not part of 
L!)

Tool
{ abstract }

Creation Tool
{ abstract }
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Sharing Responsibili

Concrete classes may be 
both instantiated and 
inherited from.
Abstract classes may only 
be inherited from.
Note on class cards and on class diagram.

Ven
used
resp
(Wa
UM

Selection Tool

Tool Creation ToolSelection Tool
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ce

de whether a class 
e instantiated to 
rmine if it is 
ract or concrete.

DateMagnitude

String
© O. Nierstrasz — U. Berne

Multiple Inheritan

Deci
will b
dete
abst

Responsibilities 
of subclasses are 
larger than those 
of superclasses.
Intersections 
represent 
common 
superclasses.

Ordered Collection Indexable Collection

Array

Matrix String Date

Magnitude

Array

Ordered
Collection

Matrix

Indexable
Collection
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chies

ited responsibilities, 

s possible:
ibilities should 
erclass; introduce 

...
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Building Good Hierar
Model a “kind-of” hierarchy:

❑ Subclasses should support all inher
and possibly more

Factor common responsibilities as high a
❑ Classes that share common respons

inherit from a common abstract sup
any that are missing
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ies ...
 inherit from con-

stract superclass: 
ponsibilities in an 

ionality:
onsibilities, or a 
rited ones
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Building Good Hierarch
Make sure that abstract classes do not
crete classes:

❑ Eliminate by introducing common ab
abstract classes should support res
implementation-independent way

Eliminate classes that do not add funct
❑ Classes should either add new resp

particular way of implementing inhe
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rchies
ies:

A and B

...

BC
© O. Nierstrasz — U. Berne

Building Kind-Of Hiera
Correctly Formed Subclass Responsibilit

C assumes all the responsibilities of both 

A B

C
A
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hies ...

sulate common 

E G

G

© O. Nierstrasz — U. Berne

Building Kind-Of Hierarc
Incorrect Subclass/Superclass 
Relationships
G assumes only some of the 
responsibilities inherited from E

Revised Inheritance Relationships
Introduce abstract superclasses to encap
responsibilities

E

G

E D
E G

D
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ilities

gle
nt

Group
Element

ing Element
{ abstract }

Rectangle
Element

Group
Element

Ellipse
lement

ar Element
{ abstract } 
© O. Nierstrasz — U. Berne

Refactoring Responsib

Lines, Ellipses and 
Rectangles are 
responsible for keeping 
track of the width and 
colour of the lines they 
are drawn with.
This suggests a common 
superclass.

Drawing Element
{ abstract }

Rectan
Eleme

Text
Element

Line
Element

Ellipse
Element

Draw

Text
Element

Line
Element E

Line
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ts
 a client can make of 
ly-related 

raction, and help to 

...
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Identifying Contrac
A contract defines a set of requests that
a server related to a cohesive set of close
responsibilities.

Contracts introduce another level of abst
simplify your design.
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s ...
lients:
t separate contracts

asses

igh in the hierarchy 
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Identifying Contract
Group responsibilities used by the same c

❑ conversely, separate clients sugges

Maximize the cohesiveness of classes:
❑ unrelated contracts belong in subcl

Minimize the number of contracts:
❑ unify responsibilities and move as h

as appropriate
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nes
op of your 

bclasses that add 

t new functionality, 
ted functionality?

...
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Applying the Guideli
1. Start by defining contracts at the t

hierarchies

2. Introduce new contracts only for su
significant new functionality
☞ do new responsibilities represen

or do they just specialize inheri
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s ...
ilities to an 

nd assign a unique 

g to the associated 

 card, determine 

ions in class diagrams
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Applying the Guideline
3. For each class card, assign responsib

appropriate contract
☞ briefly describe each contract a

number
☞ number responsibilities accordin

contract

4. For each collaboration on each class
which contract represents it
☞ model collaborations as associat

(AKA “collaboration graphs”)
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ms?
llaborate to support 

ing abstraction 

ed responsibilities, 
ations

nsibilities rather 
onsibilities
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What are Subsyste
Subsystems are groups of classes that co
a set of contracts.

❑ Subsystems simplify design by rais
levels:
☞ subsystems group logically relat

and encapsulate related collabor

❑ Don’t confuse with superclasses: 
☞ subsystems group related respo

than factoring out common resp
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s
oupled classes:

strong inter-

unication paths

tracts. Identify the 
ubsystem to 
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Finding Subsystem
Find subsystems by looking for strongly-c

❑ list the collaborations and identify 
dependencies

❑ identify frequently-travelled comm

Subsystems, like classes, also support con
services provided to clients outside the s
determine the subsystem contracts.
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ts contracts, and, 
ubsystem that sup-

ing
ing Element
ing
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Subsystem Cards
For each subsystem, record its name, i
for each contract, the internal class or s
ports it:

Subsystem: Drawing Subsystem
Access a drawing Draw
Modify part of a drawing Draw
Display a drawing Draw
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ent, change the 
n with the 

e delegation to the 

    (Abstract)

 File

 Subsystem
© O. Nierstrasz — U. Berne

Class Cards
For each collaboration from an outside cli
client’s class card to record a collaboratio
subsystem:

NB: Also record on the subsystem card th
agent class.

Class: File                                     

Document File, Graphics File, Text
Knows its contents
Print its contents Printing
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ions
able systems. 
ucture.
ons a class has with 

 a subsystem eases 

which a subsystem 

s reduce complexity

...
© O. Nierstrasz — U. Berne

Simplifying Interact
Complex collaborations lead to unmaintain
Exploit subsystems to simplify overall str

❑ Minimize the number of collaborati
other classes:
☞ centralizing communications into

evolution

❑ Minimize the number of classes to 
delegates:
☞ centralized subsystem interface



ESE — W2001/2002 155.

Detailed Design

ns ...
ontracts supported 

cess to common 

s in class diagrams
class hierarchies

 collaborations 
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Simplifying Interactio
❑ Minimize the number of different c

by a class:
☞ group contracts that require ac

information

Checking Your Design:
❑ Model collaborations as association
❑ Update class/subsystem cards and 
❑ Walk through scenarios:

☞ Has coupling been reduced? Are
simpler?
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nterface) to which a 

or public 

s should be specified 
 by subclasses

h class and 

h contract
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Protocols
A protocol is a set of signatures (i.e., an i
class will respond.

❑ Generally, protocols are specified f
responsibilities

❑ Protocols for private responsibilitie
if they will be used or implemented

1. Construct protocols for each class
2. Write a design specification for eac

subsystem
3. Write a design specification for eac
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ties

ual operation in the 

tion with each 

xplicit in the 

ossible:
ssages that should 
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Refining Responsibili
Select method names carefully:

❑ Use a single name for each concept
system

❑ Associate a single conceptual opera
method name

❑ Common responsibilities should be e
inheritance hierarchy

Make protocols as generally useful as p
❑ The more general it is, the more me

be specified
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th all possible 

ere appropriate
ly on the defaults
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Defaults
Define reasonable defaults:

1. Define the most general message wi
parameters

2. Provide reasonable default values wh
3. Define specialized messages that re
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 Classes

ses
nd class diagrams 

erited contracts and 

es, method 
 collaborations

fied further, also 

 possible algorithms, 
ror conditions etc.
© O. Nierstrasz — U. Berne

Specifying Your Design:
Specifying Classes

1. Class name; abstract or concrete
2. Immediate superclasses and subclas
3. Location in inheritance hierarchies a
4. Purpose and intended use
5. Contracts supported (as server); inh

ancestor
6. For each contract, list responsibiliti

signatures, brief description and any
7. List private responsibilities; if speci

give method signatures etc.
8. Note implementation considerations,

real-time or memory constraints, er
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 Contracts

d classes and 

le class or subsystem
© O. Nierstrasz — U. Berne

Specifying Subsystems and
Specifying Subsystems

1. Subsystem name; list all encapsulate
subsystems

2. Purpose of the subsystem
3. Contracts supported
4. For each contract, list the responsib

Formalizing Contracts
1. Contract name and number
2. Server(s)
3. Clients
4. A description of the contract
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ow!

ood class hierarchy?
lp to improve a class 

acts and 

d how can you find 

cols and contracts?
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What you should kn
✎ How can you identify abstract classes?
✎ What criteria can you use to design a g
✎ How can refactoring responsibilities he

hierarchy?
✎ What is the difference between contr

responsibilities?
✎ What are subsystems (“categories”) an

them?
✎ What is the difference between proto
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g questions?
g design if your 
t it?
g and maximize 

n design together 
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Can you answer the followin
✎ What use is multiple inheritance durin

programming language does not suppor
✎ Why should you try to minimize couplin

cohesion?
✎ How would you use Responsibility Drive

with the Unified Modeling Language?



ESE — W2001/2002 163.

Modeling Objects and Classes

d Classes

tion Guide, version 
 1997.
all Scott, Addison-
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6. Modeling Objects an

❑ Classes, attributes and operations
❑ Visibility of Features
❑ Parameterized Classes
❑ Objects, Associations, Inheritance
❑ Constraints

Sources
❑ Unified Modeling Language — Nota

1.3, Rational Software Corporation,
❑ UML Distilled, Martin Fowler, Kend

Wesley, Second Editon, 2000.
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se Cases (+ state 

ess is

in team
e
users
rds”

 same software 
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UML
What is UML?

❑ uniform notation: Booch + OMT + U
charts)
☞ UML is not a method or process
☞ .. The Unified Development Proc

Why a Graphical Modeling Language?
❑ Software projects are carried out 
❑ Team members need to communicat

☞ ... sometimes even with the end 
❑ “One picture conveys a thousand wo

☞ the question is only which words
☞ Need for different views on the

artifact
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understand your 

tions and dialects

ts to extend basic 

nced extensions
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Why UML?
Why UML

❑ Represents de-facto standard
☞ more tool support, more people 

diagrams, less education
❑ Is reasonably well-defined

☞ ... although there are interpreta
❑ Is open

☞ stereotypes, tags and constrain
constructs

☞ has a meta-meta-model for adva
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 + James Rumbaugh 

ses) joined Rational

 to support UML
o OMG by consortium
 as OMG standard

leans up standard in 

 up standard in 
© O. Nierstrasz — U. Berne

UML History
❑ 1994: Grady Booch (Booch method)

(OMT) at Rational
❑ 1994: Ivar Jacobson (OOSE, use ca

☞ “The three amigos”
❑ 1996: Rational formed a consortium
❑ January, 1997: UML1.0 submitted t
❑ November, 1997: UML 1.1 accepted

☞ However, OMG names it UML1.0
❑ December, 1998: UML task force c

UML1.2
❑ June, 1999: UML task force cleans

UML1.3
❑ ...: Major revision to UML2.0
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ions of possible 
articular 
ehaviour.”

ively called features.

Polygon
entre: Point
ertices: List of Point
orderColour: Colour
illColour: Colour
isplay (on: Surface)
otate (angle: Integer)
rase ( )
estroy ( )
elect (p: Point): Boolean
© O. Nierstrasz — U. Berne

Class Diagrams
“Class diagrams show generic descript
systems, and object diagrams show p
instantiations of systems and their b

Class name, attributes and operations:

A collapsed class view:

Class with Package name:

Attributes and operations are also collect

c
v
b
f
d
r
e
d
s

Polygon

ZWindows::Window
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eatures

ract }

ow*)

User-defined 
properties
(e.g., readonly, 
owner = “Pingu”)

italic 
attributes 
are abstract

ies are not shown
© O. Nierstrasz — U. Berne

Visibility and Scope of F

«user interface»
Window

{ abst

+size: Area = (100, 100)
#visibility: Boolean = false
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindow*
+display ( )
+hide ( )
+create ( )
-attachXWindow (xwin: Xwind
...

Stereotype
(what “kind” 
of class is it?)

underlined 
attributes 
have class 
scope

+ = “public”
# = “protected”
− = “private”

An ellipsis signals that further entr
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tions

 string }

..) : resultType
© O. Nierstrasz — U. Berne

Attributes and Opera
Attributes are specified as:

name: type = initialValue { property

Operations are specified as:

name (param: type = defaultValue, .
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ows
Association
e.g., «uses»

Navigable
association
e.g., part-of

“Generalization”
., specialization (!)
., class/superclass,
rete/abstract class

“Composition”
i.e., containment
© O. Nierstrasz — U. Berne

UML Lines and Arr
Constraint

(usually annotated)

Dependency
e.g., «requires»,

«imports» ...

Realization
e.g., class/template,

class/interface

Aggregation
i.e., “consists of”

i.e
e.g

conc
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ses
”) classes are 
 dashed box. 

me) or values (name: 

an be shown by a 

o from the client to 

ist

ger

Address,24)
© O. Nierstrasz — U. Berne

Parameterized Clas
Parameterized (aka “template” or “generic
depicted with their parameters shown in a
Parameters may be either types (just a na
Type).

Instantiation of a class from a template c
dashed arrow (Realization).
NB: All forms of arrows (directed arcs) g
the supplier!

FArray

FArray<Point, 3> AddressL

T, n: Inte

«bind»(
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 with no attributes, 
type «interface» or, 
:

 Boolean

omparable
String

ashTable
© O. Nierstrasz — U. Berne

Interfaces
Interfaces, equivalent to abstract classes
are represented as classes with the stereo
alternatively, with the “Lollipop-Notation”

HashTable

«interface»
Comparable

isEqual(String): 
Boolean
hash(): Integer

String
...
isEqual(String):
hash(): Integer
...

C
«use»

HNB: Interfaces cannot have 
(navigable) associations!
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and operations. It is 
e «utility». Utilities 

rpreted as being in 
e them.
h a view, and 
ner folded over.

sin (angle + pi/2.0);
© O. Nierstrasz — U. Berne

Utilities
A utility is a grouping of global attributes 
represented as a class with the stereotyp
may be parameterized.

NB: A utility’s attributes are already inte
class scope, so it is redundant to underlin
A “note” is a text comment associated wit
represented as box with the top right cor

«utility»
MathPack

randomSeed : long = 0
pi : long = 3.14158265358979
sin (angle : double) : double
cos (angle : double) : double
random ( ) : double

return 
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ir name and type 
ute values, 

ngle1: Polygon

: Polygon

triangle1

ne of the name or 
 must be present.
© O. Nierstrasz — U. Berne

Objects
Objects are shown as rectangles with the
underlined in one compartment, and attrib
optionally, in a second compartment.

triangle1: Polygon
centre = (0, 0)
vertices = ((0,0), (4,0), (4,3))
borderColour = black
fillColour = white

tria

At least o
the type
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rson
e
 Nr.
ess

sband

wife

Married-to

0..1
0..1

0..1
boss

rker *
Manages

nships 

c.)

 at end-points
ions
ss
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Associations

Company
name
address

Pe
nam
AHV
addr

**
Works-for

Employs
employeeemployer

hu

wo

Associations represent structural relatio
between objects of different classes.

☞  usually binary (but may be ternary et
☞  optional name and direction
☞  (unique) role names and multiplicities
☞  can traverse using navigation express
e.g., Sandoz.employee[name = “Pingu”].bo
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ability

hen one can navigate 

e marked as 

ontains

{ ordered }
Point

3..*

GraphicsBundle 
colour
texture
density
© O. Nierstrasz — U. Berne

Aggregation and Navig
Aggregation is denoted by 
a diamond and indicates a 
part-whole dependency:

A hollow diamond 
indicates a reference; a 
solid diamond an 
implementation.

If the link terminates with an arrowhead, t
from the whole to the part.

If the multiplicity of a role is > 1, it may b
{ordered}, or as {sorted}.

Polygon
1 C

1

1
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s
sociation class:

ores attributes, and 

Workstation

y
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Association Classe
An association may be an instance of an as

In many cases the association class only st
its name can be left out.

Authorization
priority
privileges
start session

User * *Authorized on

*

Directory
home director1
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ons

et role denotes 
f target objects 
ject and a 

, not the class

Catalogue
part number

Part

1

0..1
nger
© O. Nierstrasz — U. Berne

Qualified Associati

A qualified association 
uses a special qualifier 
value to identify the 
object at the other end 
of the association.

“The multiplicity attached to the targ
the possible cardinalities of the set o
selected by the pairing of a source ob
qualifier value.”

NB: Qualifiers are part of the association

Airline
frequent flyer #

Person

*

0..1
isPasse
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perclasses:

Spline
control 
points
display ( )

Drawing
© O. Nierstrasz — U. Berne

Inheritance
A subclass inherits the features of its su

Figure1dim
{ abstract }

colour
display ( )

Line
endpoints
display ( )

Arc
radius
start 
angle
arc angle
display ( )

*

. . .
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For?

e by imitation, 

ializations or 
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What is Inheritance 

New software often builds on old softwar
refinement or combination.

Similarly, classes may be extensions, spec
combinations of existing classes.
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 ...

 organized into a 

s, data structures or 

ses may be uniformly 
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Inheritance supports
Conceptual hierarchy:

❑ conceptually related classes can be
specialization hierarchy 
☞ people, employees, managers
☞ geometric objects ...

Software reuse: 
❑ related classes may share interface

behaviour
☞ geometric objects ...

Polymorphism: 
❑ objects of distinct, but related clas

treated by clients
☞ array of geometric objects
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orations
arameterized 

Adaptee
SpecificRequest ( )

ee.SpecificRequest()
© O. Nierstrasz — U. Berne

Design Patterns as Collab
Design Patterns can be represented as “p
collaborations”: 

Target
Request()

Adapter
Request ( )

Client

adapt

adaptee

Adapter
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tterns

an be described with 

extView
Extent()

apter

Adaptee
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Instantiating Design Pa

A Design Pattern in use (an instantiation) c
a dashed oval:

Shape
boudingBox()

T
get

TextShape
boudingBox() AdAdapter
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Person
birthdate
/age

Person

Committee

er-of Chair-of{subset}*

* *

1

 currentDate - birthdate }
© O. Nierstrasz — U. Berne

Constraints
Constraints are restrictions on 
values attached to classes or 
associations.

❑ Binary constraints may be 
shown as dashed lines 
between elements

❑ Derived values and 
associations can be marked 
with a “/”

Memb

{ age =
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nts
, either free or 

Company0..1
er

s.employer }
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Specifying Constrai
Constraints are specified between braces
within a note:

Person

employee
*

employworker

boss

*
0..1

{ Person.employer = Person.bos
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 UML

tcondition» are 

isEmpty ())

lf.size in 

-1

d

(OCL)
© O. Nierstrasz — U. Berne

Design by Contract in
Combine constraints with stereotypes:

NB: «invariant», «precondition», and «pos
predefined in UML.

«invariant»
(isEmpty ()) or (!

Stack
/size
...
push (char)
pop (): char
isEmpty(): boolean letoldSize:Integer = se

pre:oldSize > 0
post:self.size = oldSize

«postcondition»
(!isEmpty ()) an
(top() = char)
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n

ilities
tions

...
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Using the Notatio
During Analysis:

❑ Capture classes visible to users
❑ Document attributes and responsib
❑ Identify associations and collabora
❑ Identify conceptual hierarchies
❑ Capture all visible features
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...

functionalities

analysis or design 
cataloguing and 
ociations, etc. must 
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Using the Notation 
During Design:

❑ Specify contracts and operations
❑ Decompose complex objects
❑ Factor out common interfaces and 

The graphical notation is only part of the 
document. For example, a data dictionary 
describing all names of classes, roles, ass
be maintained throughout the project.
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ow!
 and associations?
tributes and 

? How is it similar?
ns and roles?

In design?
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What you should kn
✎ How do you represent classes, objects
✎ How do you specify the visibility of at

operations to clients?
✎ How is a utility different from a class
✎ Why do we need both named associatio
✎ Why is inheritance useful in analysis? 
✎ How are constraints specified?
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g questions?
 class scope?
 when depicting an 

rowheads?
 other kind of 

lementation 
© O. Nierstrasz — U. Berne

Can you answer the followin
✎ Why would you want a feature to have
✎ Why don’t you need to show operations

object?
✎ Why aren’t associations drawn with ar
✎ How is aggregation different from any

association?
✎ How are associations realized in an imp

language?
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tion Guide, version 
 1997.
e Fusion Method, D. 
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7. Modeling Behav

❑ Use Case Diagrams
❑ Sequence Diagrams
❑ Collaboration Diagrams
❑ State Diagrams

Sources:
❑ Unified Modeling Language — Nota

1.1, Rational Software Corporation,
❑ Object-Oriented Development — Th

Coleman, et al., Prentice Hall, 1994.
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s

ify
Clerk

Loan Officer

Clear
checks

are
ents

ounter
nsaction

an
ation

Audit

«include»

«include»
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Use Case Diagram
A use case is a generic 
description of an entire 
transaction involving 
several actors.

A use case diagram 
presents a set of use 
cases (ellipses) and the 
external actors that 
interact with the 
system.
Dependencies and 
associations between 
use cases may be 
indicated.

Ident
Customer

Auditor

Bank

Prep
statem

C
tra

Lo
applic
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wing a typical 

either sequence 

ample of a use case, 
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Scenarios
A scenario is an instance of a use case sho
example of its execution.

Scenarios can be presented in UML using 
diagrams or collaboration diagrams.

Note that a scenario only describes an ex
so conditionality cannot be expressed!
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s

 also be expressed.

eiver
s

phone rings
answer phone
ringing stops

Phone Line Callee
© O. Nierstrasz — U. Berne

Sequence Diagram
A sequence diagram 
depicts a scenario by 
showing the 
interactions among a 
set of objects in 
temporal order.

Objects (not classes!) 
are shown as vertical 
bars. Events or message 
dispatches are shown as 
horizontal (or slanted) 
arrows from the sender 
to the receiver.
Temporal constraints between events may

caller lifts rec
dial tone begin
dial (1)
dial tone ends
dial (2)
dial (2)
ringing tone

tone stops

ti
m

e

Caller



ESE — W2001/2002 195.

Modeling Behaviour

tation

ed control flow

etween objects 
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UML Message Flow No
Filled solid arrowhead
procedure call or other nest

Stick arrowhead
flat, sequential control flow 

Half-stick arrowhead
asynchronous control flow b
within a procedural sequence
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ms
s flows of messages 

w

 temp } 1.1.3.1: add(self)

contents

te(r0, r1)
dow)

n( )

: Window

: Line { new }

ter» 

{ new }
© O. Nierstrasz — U. Berne

Collaboration Diagra
Collaboration diagrams depict scenarios a
between objects:

redisplay( )

1: displayPositions(window)

windo

{

1.1*[i=1..n]: drawSegment(i)

«self»
1.1.2: line := crea
1.1.3: display(win

i-1 i

{ temp }

1.1.1a: r0 := position( ) 1.1.1b: r1 := positio

: Controller

wire : Wire

left : Bead right : Bead

wire

«local» line

«parame
window
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 labelled with text 
low and information 

(e.g. “[A1.3, B6.7.1]”)
w of control
ments
 invoked by “3.1” and 

eads (e.g., “1.2a” and 

..n]”)
#items = 0]”)

...
© O. Nierstrasz — U. Berne

Message Labels
Messages from one object to another are
strings showing the direction of message f
indicating the message sequence.

1. Prior messages from other threads 
☞ only needed with concurrent flo

2. Dot-separated list of sequencing ele
☞ sequencing integer (e.g., “3.1.2” is

follows “3.1.1”)
☞ letter indicating concurrent thr

“1.2b”)
☞ iteration indicator (e.g., “1.1*[i=1
☞ conditional indicator (e.g., “2.3 [
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..
”)
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Message Labels .
3. Return value binding (e.g., “status :=
4. Message name

☞ event or operation name 
5. Argument list 
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Dialing

Ringing
do/play ringing tone

Connecting

ech

after
dial digit(n)
[incomplete]

lid]

connected

dial digit(n) [valid]
/connect

busy

15 sec.
© O. Nierstrasz — U. Berne

State Diagrams

Idle

Pinned

Talking

callee
answers

callee
hangs up

Timeout
do/play message

DialTone
do/play dial tone

Invalid
do/play message

Busy
do/play busy tone

Active

callee answers/enable spe

dial digit(n)
after 15 sec.

dial digit(n) [inva

caller
hangs up
/disconnect

lift receiver
/get dial tone
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tion
volution of an object 
s with other objects 

munication from one 

 real-world objects
lapsed time, ...
pe, ...)
ion between states

...
© O. Nierstrasz — U. Berne

State Diagram Nota
A State Diagram describes the temporal e
of a given class in response to interaction
inside or outside the system.

An event is a one-way (asynchronous) com
object to another:

❑ atomic (non-interruptible)
❑ includes events from hardware and

e.g., message receipt, input event, e
❑ notation: eventName(parameter: ty
❑ may cause object to make a transit
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on ...
 object is waiting for 

o) three sections:

value (valid only for 

 transitions and 
© O. Nierstrasz — U. Berne

State Diagram Notati
A state is a period of time during which an
an event to occur:

❑ depicted as rounded box with (up t
☞ name — optional
☞ state variables — name: type = 

that state)
☞ triggered operations — internal

ongoing operations
❑ may be nested
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ions

g Password

 / set echo invisible
 set echo normal
cter / handle character

/ display help

name

internal operations
© O. Nierstrasz — U. Berne

State Box with Reg
The entry event occurs whenever a 
transition is made into this state, 
and the exit operation is triggered 
when a transition is made out of 
this state.
The help and character events 
cause internal transitions with no 
change of state, so the entry and 
exit operations are not performed.

Typin

entry
exit /
chara
help 
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event received by an 

he object to change 

bject
onal):

n(arguments)
een states
 triggered 
© O. Nierstrasz — U. Berne

Transitions
A transition is an response to an external 
object in a given state

❑ May invoke an operation, and cause t
state

❑ May send an event to an external o
❑ Transition syntax (each part is opti

event(arguments) [condition]
/ ^target.sendEvent operatio

❑ External transitions label arcs betw
❑ Internal transitions are part of the

operations of a state
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ities
y a transition
sociated with states

kes place while 

belled with the 
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Operations and Activ
An operation is an atomic action invoked b

❑ Entry and exit operations can be as

An activity is an ongoing operation that ta
object is in a given state

❑ Modelled as “internal transitions” la
pseudo-event do
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igh-level or low-level 

ce of internal states:

s black spots and 

Connecting
umber)

[number.isValid()]
/^dialedNumber(number)
© O. Nierstrasz — U. Berne

Composite States
Composite states may depicted either as h
views.
“Stubbed transitions” indicate the presen

Initial and terminal substates are shown a
“bulls-eyes”:

Idle Dialing
lift receiver dialedNumber(n

Dialing
number : String = “”

digit(n)

digit(n)

Partial Dial
entry/number.append(n)

Start
do / play dial tone
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Objects

CR mode

Power button

On

On

toggle Power
© O. Nierstrasz — U. Berne

Sending Events between 

TV mode V
VCR button

TV button
Power button

Remote Control

Off
toggle Power

toggle PowerVCR

Off
toggle Power

toggle PowerTelevision

toggle Power
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es

done

Failed

Passed

Taking Class
© O. Nierstrasz — U. Berne

Concurrent Substat

Lab1

Term Project

Final Test

Lab2
lab done lab 

project done

pass

Incomplete

fail
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ing

s means that each of 
e logical thread per 

tates terminates all 

l state waits for all 

...
© O. Nierstrasz — U. Berne

Branching and Merg
Entering concurrent states:
Entering a state with concurrent substate
the substates is entered concurrently (on
substate).

Leaving concurrent states:
A labelled transition out of any of the subs
of the substates.
An unlabelled transition out of the overal
substates to terminate.
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g ...
ing and merging uses 

Cleanup

e’/a’
© O. Nierstrasz — U. Berne

Branching and Mergin
An alternative notation for explicit branch
a “synchronization bar”:

A2A1

B2B1

Startup

e/a
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r
te that the current 
on an external 
 transition should 

C
rrupt

sume
© O. Nierstrasz — U. Berne

History Indicato
A “history indicator” can be used to indica
composite state should be remembered up
transition. To return to the saved state, a
point explicitly to the history icon: 

A2

A1

H

A
inte

re
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Objects
e depicted by using 
el states:

adOnly
© O. Nierstrasz — U. Berne

Creating and Destroying 
Creation and destruction of objects can b
the start and terminal symbols as top-lev

Writeable
lock

Re
unlock

modify

destroy

create

CreatedFile
File
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ns
t class and object 

n diagrams document 
g requirements 

s can be used to 
 or refine use case 

ehaviour of classes 
pecified use cases
© O. Nierstrasz — U. Berne

Using the Notatio
The diagrams introduced here complemen
diagrams.
During Analysis:

❑ Use case, sequence and collaboratio
use cases and their scenarios durin
specification

During Design:
❑ Sequence and collaboration diagram

document implementation scenarios
scenarios

❑ State diagrams document internal b
and must be validated against the s
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ow!
ram?
ot classes?
ed in scenarios?
age labels in a 

 to model object 

rnal” and “internal” 

n state diagrams for 
© O. Nierstrasz — U. Berne

What you should kn
✎ What is the purpose of a use case diag
✎ Why do scenarios depict objects but n
✎ How can timing constraints be express
✎ How do you specify and interpret mess

scenario?
✎ How do you use nested state diagrams

behaviour?
✎ What is the difference between “exte

transitions?
✎ How can you model interaction betwee

several classes?
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g questions?
slated to an 

sage labels rather 

ates?
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Can you answer the followin
✎ Can a sequence diagram always be tran

collaboration diagram?
✎ Or vice versa?
✎ Why are arrows depicted with the mes

than with links?
✎ When should you use concurrent subst
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ecture

ard, Dataflow, ...
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8. Software Archit

Overview:
❑ What is Software Architecture?
❑ Coupling and Cohesion
❑ Architectural styles:

☞ Layered, Client-Server, Blackbo
❑ UML diagrams for architectures
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lle, Addison-Wesley, 

rks with UML, D. 
, 1999
ecture — A System 
ohn Wiley, 1996
es on an Emerging 
tice-Hall, 1996
© O. Nierstrasz — U. Berne

Sources:
❑ Software Engineering, I. Sommervi

Fifth Edn., 1996.
❑ Objects, Components and Framewo

D'Souza, A. Wills, Addison-Wesley
❑ Pattern-Oriented Software Archit

of Patterns, F. Buschmann, et al., J
❑ Software Architecture: Perspectiv

Discipline, M. Shaw, D. Garlan, Pren
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tecture?

, circles, and 
Word, does not 

 D’Souza & Wills
© O. Nierstrasz — U. Berne

What is Software Archi

A neat-looking drawing of some boxes
lines, laid out nicely in Powerpoint or 
constitute an architecture.

—
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tecture?

, and run-time 

 those parts
re units, objects 

etween them

ny system (or 
tors and maintainers 
y”.
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What is Software Archi
The architecture of a system consists of:

❑ the structure(s) of its parts 
☞ including design-time, test-time

hardware and software parts
❑ the externally visible properties of

☞ modules with interfaces, hardwa
❑ the relationships and constraints b

in other words:
❑ The set of design decisions about a

subsystem) that keeps its implemen
from exercising “needless creativit
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plementation

ture: all business 
sentation and 

vices on the server; 
on server processing 

 Corba event 
orba relationship 
aging service as it is 

...
© O. Nierstrasz — U. Berne

How Architecture Drives Im

❑ Use a 3-tier client-server architec
logic must be in the middle tier, pre
dialogue on the client, and data ser
that way you can scale the applicati
independently of persistent store.

❑ Use Corba for all distribution, using
channels for notification and the C
service; do not use the Corba mess
not yet mature.
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ementation ...

or representing any 
t class, or document 

 explicit 
ct any UI to the 
© O. Nierstrasz — U. Berne

How Architecture Drives Impl

❑ Use Collection Galore’s collections f
collections; by default use their Lis
your reason otherwise.

❑ Use Model-View-Controller with an
ApplicationModel object to conne
business logic and objects.
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Components

 right whose 
vices provided by 

at provides services 
 normally be 

liverable unit of 
ign and 
s to the out-side, by 

er components to 
© O. Nierstrasz — U. Berne

Sub-systems, Modules and 

❑ A sub-system is a system in its own
operation is independent of the ser
other sub-systems.

❑ A module is a system component th
to other components but would not
considered as a separate system.

❑ A component is an independently de
software that encapsulates its des
implementation and offers interface
which it may be composed with oth
form a larger whole.
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ts of a component 

dled simply because 
ctions (e.g., 

eeded for the 
.lang.String).

ability and 
f changes to small 

tions of cohesion.
adequate!
© O. Nierstrasz — U. Berne

Cohesion
Cohesion is a measure of how well the par
“belong together”.

❑ Cohesion is weak if elements are bun
they perform similar or related fun
java.lang.Math).

❑ Cohesion is strong if all parts are n
functioning of other parts (e.g. java

❑ Strong cohesion promotes maintain
adaptability by limiting the scope o
numbers of components.

There are many definitions and interpreta
Most attempts to formally define it are in
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he interconnections 

ts if they depend 
is a lot of 

pendencies between 

ility and adaptability 
 less likely to affect 
© O. Nierstrasz — U. Berne

Coupling
Coupling is a measure of the strength of t
between system components.

❑ Coupling is tight between componen
heavily on one another, (e.g., there 
communication between them).

❑ Coupling is loose if there are few de
components.

❑ Loose coupling promotes maintainab
since changes in one component are
others.
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Tight Coupling
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Loose Coupling
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lels

ace between the 
ng the system

ilding cannot be 
e same is true for 

ding and software 

ing and software 
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Architectural Paral

❑ Architects are the technical interf
customer and the contractor buildi

❑ A bad architectural design for a bu
rescued by good construction — th
software

❑ There are specialized types of buil
architects

❑ There are schools or styles of build
architecture
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es

ly of systems in 
nization. More 
fines a 
tor types, and a 
 combined.
Shaw and Garlan
© O. Nierstrasz — U. Berne

Architectural Styl

An architectural style defines a fami
terms of a pattern of structural orga
specifically, an architectural style de
vocabulary of components and connec
set of constraints on how they can be

— 
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res
 into a set of layers 
 the layer “above”.

elements only see
, or

ate to higher layers
ent of sub-systems 

, only the adjacent 
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Layered Architectu
A layered architecture organises a system
each of which provide a set of services to

❑ Normally layers are constrained so 
—other elements in the same layer
—elements of the layer below

❑ Callbacks may be used to communic
❑ Supports the incremental developm

in different layers. 
☞ When a layer interface changes

layer is affected
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odel
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Abstract Machine M
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del
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OSI Reference Mo
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ctures

pplication logic and 
t and server sub-
ferent machine and 
by RPC).

ard
ystems. May require 

 existing servers

...
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Client-Server Archite

A client-server architecture distributes a
services respectively to a number of clien
systems, each potentially running on a dif
communicating through the network (e.g, 

Advantages
❑ Distribution of data is straightforw
❑ Makes effective use of networked s

cheaper hardware
❑ Easy to add new servers or upgrade
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ures ...

s use different data 

t
ver
ames and services — 
ers and services are 
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Client-Server Architect

Disadvantages
❑ No shared data model so sub-system

organisation. 
Data interchange may be inefficien

❑ Redundant management in each ser
❑ May require a central registry of n

it may be hard to find out what serv
available
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ctures
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Client-Server Archite
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ures
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Four-Tier Architect
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ures

plication logic to a 
manages all data in a 
).

ts of data
d with how data is 

epository schema

...
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Blackboard Architect

A blackboard architecture distributes ap
number of independent sub-systems, but 
single, shared repository (or “blackboard”

Advantages
❑ Efficient way to share large amoun
❑ Sub-systems need not be concerne

produced, backed up etc.
❑ Sharing model is published as the r
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res ...

itory data model
nsive
policies
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Blackboard Architectu

Disadvantages
❑ Sub-systems must agree on a repos
❑ Data evolution is difficult and expe
❑ No scope for specific management 
❑ Difficult to distribute efficiently
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l
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Repository Mode
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ms

ts perform services 
y other components.

oadcast to all sub-
 handle the event 

e interrupts are 
nd passed to some 
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Event-driven Syste

In an event-driven architecture componen
in reaction to external events generated b

❑ In broadcast models an event is br
systems. Any sub-system which can
may do so.

❑ In interrupt-driven models real-tim
detected by an interrupt handler a
other component for processing. 
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s on different 

er-subscriber 

t in specific events
nsferred to the 

e event and message 
nts of interest to 

 or when an event will 
© O. Nierstrasz — U. Berne

Broadcast model
❑ Effective in integrating sub-system

computers in a network
❑ Can be implemented using a publish

pattern:
☞ Sub-systems register an interes
☞ When these occur, control is tra

subscribed sub-systems
❑ Control policy is not embedded in th

handler. Sub-systems decide on eve
them

❑ However, sub-systems don’t know if
be handled
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ing
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Selective Broadcast
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t performs 
o produce outputs.

cy in parallel or 

or slower ones

systems
les

...
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Dataflow Models
In a dataflow architecture each componen
functional transformations on its inputs t

❑ Highly effective for reducing laten
distributed systems
☞ No call/reply overhead
☞ But, fast processes must wait f

❑ Not really suitable for interactive 
☞ Dataflows should be free of cyc
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..

nt is known as pipes 

 Web-content

Data sink
 picasso dd

Data sink
ted HTML page
© O. Nierstrasz — U. Berne

Dataflow Models .
Examples:

❑ The single-input, single-output varia
and filters 
☞ e.g., UNIX (Bourne) shell

☞ e.g., CGI Scripts for interactive

Data source Filter
tar cf - . gzip -9 rsh

Data source Filter
HTML Form CGI Script genera
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stem
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Invoice Processing Sy
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Compilers as Dataflow Arc



ESE — W2001/2002 245.

Software Architecture

chitectures
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Compilers as Blackboard Ar
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iagram

Customer 
Management

Interface
()

Customer
© O. Nierstrasz — U. Berne

UML support: Package D
Decompose system 
into packages 
(containing any 
other UML 
element, incl. 
packages)

Processing Orders

RDB 
query

Database Layer

Domain Layer

Application Layer

Order
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 Diagram
 hardware nodes.

ixHost

WebServer

ixHost

:Database

rnet»  
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UML support: Deployment
Physical layout of run-time components on

myMac: Mac

:Netscape

aPC: PC

:IExplorer

:Un

:

:Un

«internet»  

«internet»  
«ethe
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ow!
rain a system?
plify design?

layer “see” the layer 

to event-driven 
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What you should kn
✎ How does software architecture const
✎ How does choosing an architecture sim
✎ What are coupling and cohesion?
✎ What is an architectural style?
✎ Why shouldn’t elements in a software 

above?
✎ What kinds of applications are suited 

architectures?
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g questions?
in client” in a 4-tier 

supported by the 

een software layers?
rchitecture in Java?
rchitecture or an 

racteristics of each 
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Can you answer the followin
✎ What is meant by a “fat client” or a “th

architecture?
✎ What kind of architectural styles are 

Java AWT? by RMI?
✎ How do callbacks reduce coupling betw
✎ How would you implement a dataflow a
✎ Is it easier to understand a dataflow a

event-driven one?
✎ What are the coupling and cohesion cha

architectural style?
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esign

lle, Addison-Wesley, 

ner’s Approach, R. 
., 1994.
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9. User Interface D

Overview:
❑ Interface design models
❑ Design principles
❑ Information presentation
❑ User Guidance
❑ Evaluation

Sources:
❑ Software Engineering, I. Sommervi

Fifth Edn., 1996.
❑ Software Engineering — A Practitio

Pressman, Mc-Graw Hill, Third Edn
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dels

n:

tware design.
e of the end users.
kground, etc.)
rception of the 

nifestation of the 
on etc.)
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Interface Design Mo

Four different models occur in HCI desig

1. The design model expresses the sof
2. The user model describes the profil

(i.e., novices vs. experts, cultural bac
3. The user’s model is the end users’ pe

system.
4. The system image is the external ma

system (look and feel + documentati
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cs
ion

different 
ayed 
ser’s screen.
 files (including 
), but they may 
s (e.g., printer 

ize commands 
r a command 
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GUI Characteristi
Characteristic Descript

Windows
Multiple windows allow 
information to be displ
simultaneously on the u

Icons

Usually icons represent
folders and applications
also stand for processe
drivers).

Menus
Menus bundle and organ
(eliminating the need fo
language).
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as a mouse is used 
rom a menu or 
rest in a window.
 be commands on 

ion
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Pointing
A pointing device such 
for commands choices f
indicating items of inte

Graphics Graphical elements can
the same display.

Characteristic Descript
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arn to use the 

een tasks and 

s own window when 

ible with immediate 

...
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GUI advantages
❑ They are easy to learn and use.

☞ Users without experience can le
system quickly.

❑ The user may switch attention betw
applications.
☞ Information remains visible in it

attention is switched.

❑ Fast, full-screen interaction is poss
access to the entire screen
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s ...

nterface
er used due to poor 

a user to make 
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GUI (dis) advantage

But
❑ A GUI is not automatically a good i

☞ Many software systems are nev
UI design

☞ A poorly designed UI can cause 
catastrophic errors
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rinciples
tion
 familiar to the 

should be activated 
nds and menus 

ormat, etc.
 in a known way, the 
redict the 

e commands.
isual and auditory 
wo-way 
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User Interface Design P
Principle Descrip

User familiarity Use terms and concepts
user.

Consistency
Comparable operations 
in the same way. Comma
should have the same f

Minimal surprise
If a command operates
user should be able to p
operation of comparabl

Feedback
Provide the user with v
feedback, maintaining t
communication.
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nformation that 
etween actions. 
ad.
gue, motion and 
trokes and mouse 

from their errors. 
 confirmation of 
ft' deletes, etc.
 of context-
 and assistance.

tion
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Memory load
Reduce the amount of i
must be remembered b
Minimize the memory lo

Efficiency
Seek efficiency in dialo
thought. Minimize keys
movements.

Recoverability
Allow users to recover 
Include undo facilities,
destructive actions, 'so

User guidance Incorporate some form
sensitive user guidance

Principle Descrip
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n
he user with a model 
d by direct action.

editors

...
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Direct Manipulatio
A direct manipulation interface presents t
of the information space which is modifie

Examples
❑ forms (direct entry)
❑ WYSIWYG document and graphics 
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ely to be intimidated 

rt
heir actions 
d and corrected

y be difficult
tly in a large 

emanding to execute
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Direct Manipulation
Advantages

❑ Users feel in control and are less lik
by the system

❑ User learning time is relatively sho
❑ Users get immediate feedback on t

☞ mistakes can be quickly detecte

Problems
❑ Finding the right user metaphor ma
❑ It can be hard to navigate efficien

information space.
❑ It can be complex to program and d
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ktop” with icons 

ware control panel 

 displays, sliders etc.
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Interface Models
Desktop metaphor.

❑ The model of an interface is a “des
representing files, cabinets, etc.

Control panel metaphor.
❑ The model of an interface is a hard

with interface entities including:
☞ buttons, switches, menus, lights,
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tem by pointing and 
 by typing (part of) 

...
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Menu Systems

Menu systems allow users to make a selec
possibilities presented to them by the sys
clicking with a mouse, using cursor keys or
the name of the selection.
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.

mand names

erface
vided (based on the 

 (and) or disjunction 

nu structuring 

er than command 
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Menu Systems ..
Advantages 

❑ Users don’t need to remember com
❑ Typing effort is minimal
❑ User errors are trapped by the int
❑ Context-dependent help can be pro

current menu selection)
Problems 

❑ Actions involving logical conjunction
(or) are awkward to represent

❑ If there are many choices, some me
facility must be used

❑ Experienced users find menus slow
language
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 additional choices
e number of choices

nu to be replaced by 

enu to be revealed

ntrol panel pops-up 
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Menu Structuring
Scrolling menus

❑ The menu can be scrolled to reveal
❑ Not practical if there is a very larg

Hierarchical menus
❑ Selecting a menu item causes the me

a sub-menu
Walking menus

❑ A menu selection causes another m
Associated control panels

❑ When a menu item is selected, a co
with further options
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es
 commands to give 

rminals
niques
can be created by 

l typing can be 

...
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Command Interfac
With a command language, the user types
instructions to the system 

❑ May be implemented using cheap te
❑ Easy to process using compiler tech
❑ Commands of arbitrary complexity 

command combination
❑ Concise interfaces requiring minima

created
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t quickly with the 

a command language
erienced users
stem is required
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Command Interfaces
Advantages

❑ Allow experienced users to interac
system

❑ Commands can be scripted (!)

Problems
❑ Users have to learn and remember 
❑ Not suitable for occasional or inexp
❑ An error detection and recovery sy
❑ Typing ability is required
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 Factors
formation or data 

hange? 
diately?
esponse to a change?
face?
ric? Are relative 
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Information Presentation
❑ Is the user interested in precise in

relationships?
❑ How quickly do information values c

Must the change be indicated imme
❑ Must the user take some action in r
❑ Is there a direct manipulation inter
❑ Is the information textual or nume

values important?
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ace

ssion of a value

es
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Analogue vs. Digital Pres
Digital presentation

❑ Compact — takes up little screen sp
❑ Precise values can be communicated

Analogue presentation
❑ Easier to get an 'at a glance' impre
❑ Possible to show relative values
❑ Easier to see exceptional data valu
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es
lex information 

ate meaning!
r-blindness, cultural 

d colour
asks

ing
hange

h
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Colour Use Guidelin
Colour can help the user understand comp
structures.

❑ Don’t use (only) colour to communic
☞ Open to misinterpretation (colou

differences ...)
☞ Design for monochrome then ad

❑ Use colour coding to support user t
☞ highlight exceptional events
☞ allow users to control colour cod

❑ Use colour change to show status c
❑ Don't use too many colours

☞ Avoid colour pairings which clas
❑ Use colour coding consistently
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h the user interface 
about the system or 

essages
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User Guidance
The user guidance system is integrated wit
to help users when they need information 
when they make some kind of error.

User guidance covers:
❑ System messages, including error m
❑ Documentation provided for users
❑ On-line help
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 Wording

ould be aware of 
ould adjust the 

nt context.
ould provide both 
 for beginners, and 

perienced users.
 to the user’s skills 

ology which is 
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Design Factors in Message

Context
The user guidance system sh
what the user is doing and sh
output message to the curre

Experience
The user guidance system sh
longer, explanatory messages
more terse messages for ex

Skill level

Messages should be tailored
as well as their experience. 
I.e., depending on the termin
familiar to the reader.
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 rather than 
be insulting or try 

gner of messages 
ulture of the 
ere the system is 
r one culture might 
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Style
Messages should be positive
negative. They should never 
to be funny.

Culture

Wherever possible, the desi
should be familiar with the c
country (or environment) wh
used. (A suitable message fo
be unacceptable in another!)



ESE — W2001/2002 272.

User Interface Design

lines

ring from the error
the error (e.g., 
© O. Nierstrasz — U. Berne

Error Message Guide

❑ Speak the user’s language
❑ Give constructive advice for recove
❑ Indicate negative consequences of 

possibly corrupted files)
❑ Give an audible or visual cue
❑ Don’t make the user feel guilty!
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Good and Bad Error Me
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formation.”

ual
ell onto paper pages
can improve 

ding screens as they 
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Help System Desi

Help? means “Please help. I want in
Help! means “HELP. I'm in trouble.”

Help information
❑ Should not simply be an on-line man

☞ Screens or windows don't map w
❑ Dynamic characteristics of display 

information presentation
☞ but people are not so good at rea

are text.
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vided
elp from different 

ere the user is 

ust be provided
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Help system use
❑ Multiple entry points should be pro

☞ the user should be able to get h
places

❑ The help system should indicate wh
positioned

❑ Navigation and traversal facilities m
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 to assess its 
© O. Nierstrasz — U. Berne

User Interface Evalu

User interface design should be evaluated
suitability and usability.
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s
iption
e a new user to 
ith the system?
stem response 
k practice?
ystem of user 

em at recovering 

stem tied to a 
?
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Usability attribute
Attribute Descr

Learnability How long does it tak
become productive w

Speed of operation How well does the sy
match the user’s wor

Robustness How tolerant is the s
error?

Recoverability How good is the syst
from user errors?

Adaptability How closely is the sy
single model of work



ESE — W2001/2002 278.

User Interface Design

ow!
mind in UI design?
se?
 direct manipulation 

u systems and 

I?
ext sensitive?
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What you should kn
✎ What models are important to keep in 
✎ What is the principle of minimal surpri
✎ What problems arise in designing a good

interface?
✎ What are the trade-offs between men

command languages?
✎ How can you use colour to improve a U
✎ In what way can a help system be cont
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g questions?
d short-cuts” for 

d on the system? 

 Which design 

recently? How would 

rd help system?
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Can you answer the followin
✎ Why is it important to offer “keyboar

equivalent mouse actions?
✎ How would you present the current loa

Over time?
✎ What is the worst UI you every used?

principles did it violate?
✎ What’s the worst web site you’ve used 

you fix it?
✎ What’s good or bad about the MS-Wo
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ation

hite box testing

lle, Addison-Wesley, 
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10. Software Valid

Overview:
❑ Reliability, Failures and Faults
❑ Fault Tolerance
❑ Software Testing: Black box and w
❑ Static Verification

Source:
❑ Software Engineering, I. Sommervi

Fifth Edn., 1996.
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easure of how well it 
rs, expressed in 

vent where the 
 or undesirable way.

rtion of a software 
 occur if it is run in a 
inputs.
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Software Reliability, Failure
The reliability of a software system is a m
provides the services expected by its use
terms of software failures.

❑ A software failure is an execution e
software behaves in an unexpected

❑ A software fault is an erroneous po
system which may cause failures to
particular state, or with particular 
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tem data
© O. Nierstrasz — U. Berne

Kinds of failures
Failure class Descr

Transient Occurs only with ce
Permanent Occurs with all inpu

Recoverable System can recover
intervention

Unrecoverable Operator interventi
recover from failure

Non-corrupting Failure does not cor
Corrupting Failure corrupts sys
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bility

he number of faults 

te despite the 
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Programming for Relia
Fault avoidance:

❑ development techniques to reduce t
in a system

Fault tolerance:
❑ developing programs that will opera

presence of faults
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ults and assess 
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Fault Avoidance
Fault avoidance depends on:

1. A precise system specification (pref
2. Software design based on informati

encapsulation
3. Extensive validation reviews during t

process
4. An organizational quality philosophy t

process
5. Planned system testing to expose fa

reliability
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are Faults
es and systems are 
tems:
tured programming 
understand, reason 

nstructs
ly imprecise and may 

r exact comparisons 
aliasing, and the risk 

 to abstract data 

...
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Common Sources of Softw
Several features of programming languag
common sources of faults in software sys

❑ Goto statements and other unstruc
constructs make programs hard to 
about and modify.
☞ Use structured programming co

❑ Floating point numbers are inherent
lead to invalid comparisons.
☞ Fixed point numbers are safer fo

❑ Pointers are dangerous because of 
of corrupting memory
☞ Pointer usage should be confined

type implementations
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e Faults ...
ing differences can 
 hard-to-predict 

ncies
ic, and may exhaust 

y, within a controlled 

l independent of the 
itical operation to be 

prefer disciplined 
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Common Sources of Softwar
❑ Parallelism is dangerous because tim

affect overall program behaviour in
ways.
☞ Minimize inter-process depende

❑ Recursion can lead to convoluted log
(stack) memory.
☞ Use recursion in a disciplined wa

scope
❑ Interrupts force transfer of contro

current context, and may cause a cr
terminated.
☞ Minimize the use of interrupts; 

exceptions
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ur activities:

ystem has reached a 
stem failure
arts of the system 

lure
o a known, “safe” 
ged state, or backing 

the fault does not 
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Fault Tolerance
A fault-tolerant system must carry out fo

1. Failure detection: detect that the s
particular state or will result in a sy

2. Damage assessment: detect which p
state have been affected by the fai

3. Fault recovery: restore the state t
state (either by correcting the dama
up to a previous, safe state)

4. Fault repair: modify the system so 
recur (!)
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 are implemented 

g system, and
ast three versions 
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Approaches to Fault To
N-version Programming:

Multiple versions of the software system
independently by different teams. 
The final system:

❑ runs all the versions in parallel,
❑ compares their results using a votin
❑ rejects inconsistent outputs. (At le

should be available!)
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rance ...

am unit contains a 
code to back up and 

ce, not in parallel
 by voting)
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Approaches to Fault Tole
Recovery Blocks:

A finer-grained approach in which a progr
test to check for failure, and alternative 
try in case of failure.

❑ alternatives are executed in sequen
❑ the failure test is independent (not
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sible to ensure that 
 invalid values.
nd raise exceptions. 
ants for abstract 
itions of procedures 
rs to recover from 

, where appropriate, 
ave been affected, 
e.

...
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Defensive Programm
Failure detection:

❑ Use the type system as much as pos
state variables do not get assigned

❑ Use assertions to detect failures a
Explicitly state and check all invari
data types, and pre- and post-cond
as assertions. Use exception handle
failures.

❑ Use damage assessment procedures
to assess what parts of the state h
before attempting to fix the damag
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vious, consistent 

ndant information to 
 corrupted data
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Defensive Programmin
Fault recovery:

❑ Backward recovery: backup to a pre
state

❑ Forward recovery: make use of redu
reconstruct a consistent state from
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Verification and Valid
Verification:

❑ Are we building the product right? 
—i.e., does it conform to specs?

Validation:
❑ Are we building the right product? 

—i.e., does it meet expectations?
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tion ...

ion, analysis and 

ting and defect 

Programtailed 
esign

Dynamic
validation
© O. Nierstrasz — U. Berne

Verification and Valida

Static techniques include program inspect
formal verification.
Dynamic techniques include statistical tes
testing ...

Requirements
specification

High-level 
design

Formal 
specifications

De
d

Prototype

Static
verification
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ents are tested to 
tly.

nts (a module) is 

 integrated as a sub-
 problems in large 
interface 
on testing these 

...
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The Testing Proce
1. Unit testing: 

☞ Individual (stand-alone) compon
ensure that they operate correc

2. Module testing:
☞ A collection of related compone

tested as a group.
3. Sub-system testing:

☞ The phase tests a set of modules
system. Since the most common
systems arise from sub-system 
mismatches, this phase focuses 
interfaces.
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etecting errors 
actions between sub-
the complete 
n-functional 

ing): 
ther than simulated 

 performed when 
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The Testing Process
4. System testing:

☞ This phase concentrates on (i) d
resulting from unexpected inter
systems, and (ii) validating that 
systems fulfils functional and no
requirements.

5. Acceptance testing (alpha/beta test
☞ The system is tested with real ra

data.

Testing is iterative! Regression testing is
defects are repaired.
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rything that used to 
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peatable

 go wrong!

nt, but they pay off 
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Regression testin
Regression testing means testing that eve
work still works after changes are made t

❑ tests must be deterministic and re
❑ should test “all” functionality

☞ every interface
☞ all boundary situations
☞ every feature
☞ every line of code
☞ everything that can conceivably

It costs extra work to define tests up fro
in debugging & maintenance!
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gin when the system 
 should be developed 

tests should be 
re process iterates.

Detailed 
design

Module and unit 
code and test

Sub-system 
integration test
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Test Planning
The preparation of the test plan should be
requirements are formulated, and the plan
in detail as the software is designed.

The plan should be revised regularly, and 
repeated and extended where the softwa

Acceptance 
test plan

System 
integration 
test plan

Requirements 
specification

Sub-system 
integration 
test plan

System 
specification

System design

System 
integration test

Acceptance
testService
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g
ules are represented 

g functions as stubs
as a single activity
y on, avoiding 

ystem!

to simulate complex 
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Top-down Testin
❑ Start with sub-systems, where mod

by “stubs”
❑ Similarly test modules, representin
❑ Coding and testing are carried out 
❑ Design errors can be detected earl

expensive redesign
❑ Always have a running (if limited) s

❑ BUT: may be impractical for stubs 
components
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g

ercise lower-level 

s to be shared with 

t uncover 
software process

ottom-up testing is 
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Bottom-up Testin
❑ Start by testing units and modules
❑ Test drivers must be written to ex

components
❑ Works well for reusable component

other projects

❑ BUT: pure bottom-up testing will no
architectural faults till late in the 

Typically a combination of top-down and b
best.
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, but in practice can 

ystem.

s for a particular 
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Defect Testing
Tests are designed to reveal the presence
system.

Testing should, in principle, be exhaustive
only be representative.

Test data are inputs devised to test the s

Test cases are input/output specification
function being tested.
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portant than testing 
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Defect Testing ..
Petschenik (1985) proposes:

1. “Testing a system’s capabilities is m
testing its components.”
☞ Choose test cases that will iden

may prevent users from doing th
2. “Testing old capabilities is more imp

new capabilities.”
☞ Always perform regression test

modified.
3. “Testing typical situations is more im

boundary value cases.”
☞ If resources are limited, focus 

patterns.
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a “black box” whose 
ying its inputs and 

causing 
us 
ur

puts 
ealing the 
sence of 
ects
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Functional (black box) 
Functional testing treats a component as 
behaviour can be determined only by stud
outputs.

Ie
Input set

Oe
Output set

Component

Inputs 
anomalo
behavio

Out
rev
pre
def
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ting different 

ent’s interface, by 
similarly for all 
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Coverage Criteria
Test cases are derived from the external
component and should cover:

❑ all exceptions
❑ all data ranges (incl. invalid) genera

classes of output 
❑ all boundary values

Test cases can be derived from a compon
assuming that the component will behave 
members of an equivalence partition ...
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 }
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..

ce classes

e array?
t all combinations 
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Equivalence partitio
private int[] elements_;
public boolean find(int key) { ...

Check input partitions:
❑ Do the inputs fulfil the pre-conditi

☞ is the array sorted, non-empty .
❑ Is the key in the array?

☞ leads to (at least) 2x2 equivalen
Check boundary conditions:

❑ Is the array of length 1?
❑ Is the key at the start or end of th

☞ leads to further subdivisions (no
make sense)
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Data
ful equivalence 

est Data
nts = { }
nts = { 33, 20, 17, 18 }
nts = { 17 }
ts = { 17 }
nts = { 17, 18, 20, 33 }

ents = { 17, 18, 20, 33 }
ents = { 17, 18, 20, 33 }
ents = { 17, 18, 20, 33 }
© O. Nierstrasz — U. Berne

Test Cases and Test 
Generate test data that cover all meaning
partitions.

Test Cases T
Array length 0 key = 17, eleme
Array not sorted key = 17, eleme
Array size 1, key in array key = 17, eleme
Array size 1, key not in array key = 0, elemen
Array size > 1, key is first element key = 17, eleme
Array size > 1, key is last element key = 33, elem
Array size > 1, key is in middle key = 20, elem
Array size > 1, key not in array key = 50, elem
...
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Test 
data

Test 
outputs

a

Run tests
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Structural (white box) 
Structural testing 
treats a component 
as a “white box” or 
“glass box” whose 
structure can be 
examined to 
generate test cases.

Derive test cases to 
maximize coverage of 
that structure, yet 
minimize number of 
test cases.

Componen
code

Derive test dat

Produce output
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Coverage criteria
❑ every statement at least once
❑ all portions of control flow at least
❑ all possible values of compound con
❑ all portions of data flow at least on
❑ for all loops L, with n allowable pass

(i) skip the loop;
(ii) 1 pass through the loop
(iii) 2 passes
(iv) m passes where 2 < m < n
(v) n-1, n, n+1 passes

Path testing is a white-box strategy whic
independent execution path through a com



ESE — W2001/2002 308.

Software Validation

od

// (1)
tion

[lastIndex];

) { // (2) (3)
invariant
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Binary Search Meth
public boolean find(int key)

throws assertionViolation {
assert(isSorted()); // pre-condi
if (isEmpty()) { return false; }
int bottom = 0;
int top = elements_.length-1;
int lastIndex = (bottom+top)/2;
int mid;
boolean found = key == elements_

while ((bottom <= top) && !found
assert(bottom <= top); // loop 
mid = (bottom + top) / 2;
found = key == elements_[mid];
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// (5)
// (6)

// (7)
// (8)
// (9)

p - bottom
// (4)

ex]) || !found);
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if (found) {
lastIndex = mid;

} else {
if (elements_[mid] < key) {
bottom = mid + 1;

} else { top = mid - 1; }
} // loop variant decreases: to

}
assert((key == elements_[lastInd
// post-condition
return found;

}
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ndependent paths 

11,2,12,13}, 
1,2,12,13} ...

ents_[mid])

ements_[mid] < key)
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Path Testing
Test cases should be chosen to cover all i
through a routine: 

e.g., {1,2,12,13}, {1,2,3,4,12,13}, {1,2,3,5,6,
{1,2,3,5,7,8,10,11,2,12,13}, {1,2,3,5,7,9,10,1

1

2

3
4

6
5

7
8

13

9
10

11
12

while (bottom <= top)

if (key == elem

if (el

if ( ! found)
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of conditions + 1

and / or 
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Basis Path Testing: The T
See [Press92a]

1. Draw a control flow graph
Nodes represent nonbranching state
represent control flow.

2. Compute the Cyclomatic Complexity
= #(edges) - #(nodes) + 2 = number 

...

if-then-else while case-of
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...
s

Cyclomatic 

of these paths
ontrol the branches.
 and/or exceptions 
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Basis Path Testing 
3. Determine a set of independent path

Several possibilities. Upper bound = 
Complexity

4. Prepare test cases that force each 
Choose values for all variables that c
Predict the result in terms of values
raised

5. Write test driver for each test case
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th Testing is not 
4, y=3} will exercise 

t x, int y) 
ionViolation {

- y;

- x;

> 0); // post-condition
© O. Nierstrasz — U. Berne

Condition Testing
For complex boolean expressions, Basis Pa
enough! Input values {x = 3, y=4} and {x = 
all paths, but consider {x = 3, y=3} ...

❑ Condition 
Testing 
exercises all 
logical conditions

❑ Domain Testing: 
for each 
occurrence of <, 
<=, =, <>, >= 3 
tests

public int abs (in
throws assert

int result;
if (x > y) {

result = x 
} else {

result = y 
}

assert (result 
return result;

}
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Statistical Testin
The objective of statistical testing is to d
reliability of the software, rather than to

Reliability may be expressed as:
❑ probability of failure on demand

☞ i.e., for safety-critical systems
❑ rate of failure occurrence

☞ i.e., #failures/time unit
❑ mean time to failure

☞ i.e., for a stable system
❑ availability 

☞ i.e., fraction of time, for e.g. te
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imate of the 
e made:
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ution time to failure
umber of test runs, 
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Statistical Testing 
Tests are designed to reflect the frequen
inputs and, after running the tests, an est
operational reliability of the system can b

1. Determine usage patterns of the sys
and probabilities)

2. Select or generate test data corres
patterns

3. Apply the test cases, recording exec
4. Based on a statistically significant n

compute reliability
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Static Verificatio
Program Inspections:

❑ Small team systematically checks p
❑ Inspection checklist often drives t

☞ e.g., “Are all invariants, pre- and
checked?” ...

Static Program Analysers:
❑ Complements compiler to check for

☞ e.g., variable use before initializ

...
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...

onstrate that 

ted, that loops 
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Static Verification 
Mathematically-based Verification:

❑ Use mathematical reasoning to dem
program meets specification
☞ e.g., that invariants are not viola

terminate, etc.

Cleanroom Software Development:
❑ Systematically use:

(i) incremental development, 
(ii) formal specification, 
(iii) mathematical verification, and
(iv) statistical testing
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ave enough tests?

system is a new test
nied by a new 

e/money
lan AND DO NOT 

e
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When to Stop?
When are we done testing? When do we h

Cynical Answers (sad but true)
❑ You’re never done: each run of the 

☞ Each bug-fix should be accompa
regression test

❑ You’re done when you are out of tim
☞ Include testing in the project p

GIVE IN TO PRESSURE
☞ ... in the long run, tests save tim

...



ESE — W2001/2002 319.

Software Validation

.

e rate to fall below 

any calculating risks
© O. Nierstrasz — U. Berne

When to Stop? ..
Statistical Testing

❑ Test until you’ve reduced the failur
the risk threshold
☞ Testing is like an insurance comp

Errors per 
test hour

Execution Time
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What you should kn
✎ What is the difference between a fail
✎ What kinds of failure classes are impo
✎ How can a software system be made f
✎ How do assertions help to make softwa
✎ What are the goals of software validat
✎ What is the difference between test 
✎ How can you develop test cases for yo
✎ What is the goal of path testing?
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g questions?
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ting with white-box 

at is not 100% 
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Can you answer the followin
✎ When would you combine top-down tes

testing?
✎ When would you combine black-box tes

testing?
✎ Is it acceptable to deliver a system th

reliable?
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11. Software Qu

Overview: 
❑ What is quality?
❑ Quality Attributes
❑ Quality Assurance: Planning and Re
❑ Quality System and Standards

Sources:
❑ Software Engineering, I. Sommervi

Fifth Edn., 1996.
❑ Software Engineering — A Practitio

Pressman, Mc-Graw Hill, Third Edn
❑ Fundamentals of Software Enginee

Jazayeri, D. Mandroli, Prentice-Hal
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What is Quality?
Software Quality is conformance to:

❑ explicitly stated functional and per
requirements,

❑ explicitly documented development

❑ implicit characteristics that are ex
professionally developed software.
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 Quality
 incomplete and 

efficiency, 

(maintainability, 

 to specify in an 

g., errors/KLOC), 
e.g., usability).

ucing defects!
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Problems with Software
❑ Software specifications are usually

often inconsistent
❑ There is tension between:

☞ customer quality requirements (
reliability, etc.)

☞ developer quality requirements 
reusability, etc.)

❑ Some quality requirements are hard
unambiguous way
☞ directly measurable qualities (e.
☞ indirectly measurable qualities (

Quality management is not just about red
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Hierarchical Quality M
Define quality via hierarchical quality mod
quality attributes (a.k.a. quality factors, q

Choose quality attributes (and weights) d
project context

Software
Quality

...

Reliability

Efficiency

Usability

Maintainability

Portability

m
r
s

Q
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Quality Attribute
Quality attributes apply both to the prod

❑ product: delivered to the customer
❑ process: produces the software pro
❑ resources: 

(both the product and the process 
☞ Underlying assumption: a quality

quality product
(cf. metaphor of manufacturing 



ESE — W2001/2002 327.

Software Quality

...
rnal.

ship between the 
 process).
ust run) 
ustness

 the product or 

he description)
quality leads to 

es)
© O. Nierstrasz — U. Berne

Quality Attributes 
Quality attributes can be external or inte

❑ External: Derived from the relation
environment and the system (or the
(To derive, the system or process m
☞ e.g. Correctness, Reliability, Rob

❑ Internal: Derived immediately from
process description
(To derive, it is sufficient to have t
☞ Underlying assumption: internal 

external quality
(cfr. metaphor manufacturing lin

☞ e.g. Efficiency, Usability
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s a mean time 
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Correctness, Reliability, R
Correctness

❑ A system is correct if it behaves a
specification
☞ An absolute property (i.e., a syst

correct”)
☞ ... in theory and practice undecid

Reliability
❑ The user may rely on the system be
❑ Reliability is the probability that th

as expected over a specified interv
☞ A relative property (a system ha

between failure of 3 weeks)
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Correctness, Reliability, Ro
Robustness

❑ A system is robust if it behaves re
circumstances that were not specif
☞ A vague property (once you spec

circumstances they become part
requirements)
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 time, memory
calability
st!

 it right, then do it 

er, time and money
a process
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Efficiency, Usabili
Efficiency. (Performance)

❑ Use of resources such as computing
☞ Affects user-friendliness and s
☞ Hardware technology changes fa
☞ (Remember: First do it, then do

fast)

❑ For process, resources are manpow
☞ relates to the “productivity” of 
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ctors)
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eful
ience (novices vs. 

s of users (end-

f time to learn the 
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Efficiency, Usability
Usability. (User Friendliness, Human Fa

❑ The degree to which the human use
(process) both “easy to use” and us
☞ Depends a lot on the target aud

experts)
☞ Often a system has various kind

users, operators, installers)
☞ Typically expressed in “amount o

system”
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ter its initial release
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Maintainability
external product attributes (evolvabil

process)

Maintainability
❑ How easy it is to change a system af

☞ software entropy ⇒  maintainabi
decreases over time
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to changing 
cess)

 new environment or 
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Maintainability ..
Is often refined into ...
Repairability

❑ How much work is needed to correc

Evolvability (Adaptability)
❑ How much work is needed to adapt 

requirements (both system and pro

Portability
❑ How much work is needed to port to

platforms
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Verifiability, Understan
internal (and external) product

Verifiability
❑ How easy it is to verify whether de

there?
☞ internally: e.g., verify requireme
☞ externally: e.g., testing, efficien

Understandability
❑ How easy it is to understand the sy

☞ internally: contributes to mainta
☞ externally: contributes to usabi
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rocess for a given 

aries a lot
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Productivity, Timeliness, 
external process attribute (visibilit

Productivity
❑ Amount of product produced by a p

number of resources
☞ productivity among individuals v
☞ often: productivity (∑ individual

(individuals)
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Time

er needs System
capability

t1 t2 t3 t4
initial redesigndelivery
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Productivity, Timeliness, V
Timeliness

❑ Ability to deliver the 
product on time
☞ important for 

marketing (“short time 
to market”)

☞ often a reason to 
sacrifice other quality 
attributes

☞ incremental 
development may 
provide an answer

Function

Us

t0



ESE — W2001/2002 337.

Software Quality
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status are accessible
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Productivity, Timeliness, V
Visibility. (Transparency, Glasnost)

❑ Current process steps and project 
☞ important for management
☞ also deal with staff turn-over
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Quality Control Assum

Assumptions:

Otherwise, quality is mere coincidence!

Project Concern = Deliver on time and

External (and Internal)
Product Attributes

Proces

Internal quality  ⇒⇒⇒⇒   External 
Process quality  ⇒⇒⇒⇒   Product q

Control during project Ob
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The Quality Plan

Projec
Schedule
Budget
Quality P

Plan Time
Plan Money
Plan Quality
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The Quality Plan .
A quality plan should:

❑ set out desired product qualities an
assessed 
☞ define the most significant qual

❑ define the quality assessment proc
☞ i.e., the controls used to ensure

❑ set out which organisational standa
☞ may define new standards, i.e., i

methods are used

NB: Quality Management should be separa
management to ensure independence
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Types of Quality Rev
A quality review is carried out by a group 
carefully examine part or all of a softwar
associated documentation.

Review type Principal
Formal Technical 
Reviews
(a.k.a. design or 
program 
inspections)

Driven by checklist
❑ detect deta

product
❑ mismatches 

requirement
❑ check wheth

been followe
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❑ Reviews should be recorded and re
☞ Software or documents may be 

review
☞ Progress to the next developme

approved

Progress reviews Driven by budgets,
schedules

❑ check wheth
according to

❑ requires pre
❑ both a proce

review

Review type Principal
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nce preparation
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Review Meetings
Review meetings should:

❑ typically involve 3-5 people

❑ require a maximum of 2 hours adva

❑ last less than 2 hours
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roduct is:

rrections (no follow-

 follow-up review
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Review Minutes
The review report should summarize:

1. What was reviewed
2. Who reviewed it?
3. What were the findings and conclusi

The review should conclude whether the p
1. Accepted without modification
2. Provisionally accepted, subject to co

up review)
3. Rejected, subject to corrections and
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tempt to solve every 

 insist upon advance 

 that is likely to be 

e for reviews
eviewers
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Review Guidelines
1. Review the product, not the produce
2. Set an agenda and maintain it
3. Limit debate and rebuttal
4. Identify problem areas, but don’t at

problem noted
5. Take written notes
6. Limit the number of participants and

preparation
7. Develop a checklist for each product

reviewed
8. Allocate resources and time schedul
9. Conduct meaningful training for all r
10. Review your early reviews



ESE — W2001/2002 346.

Software Quality

sts (I)

fined and bounded?
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Sample Review Checkli
Software Project Planning

1. Is software scope unambiguously de
2. Are resources adequate for scope?
3. Have risks in all important categorie
4. Are tasks properly defined and sequ
5. Is the basis for cost estimation rea
6. Have historical productivity and qua
7. Is the schedule consistent?

...
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stem level?
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Sample Review Checklis
Requirements Analysis

1. Is information domain analysis comp
accurate?

2. Does the data model properly reflec
attributes and relationships?

3. Are all requirements traceable to sy
4. Has prototyping been conducted for
5. Are requirements consistent with sc

and budget?

...
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Sample Review Checklis
Design

1. Has modularity been achieved?
2. Are interfaces defined for modules 

elements?
3. Are the data structures consistent w

domain?
4. Are the data structures consistent 

requirements?
5. Has maintainability been considered

...
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Sample Review Checklis
Code

1. Does the code reflect the design do
2. Has proper use of language conventi
3. Have coding standards been observe
4. Are there incorrect or ambiguous co

...
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 been tested?
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Sample Review Checkli
Testing

1. Have test resources and tools been 
acquired?

2. Have both white and black box tests
3. Have all the independent logic paths
4. Have test cases been identified and 

results?
5. Are timing and performance to be te
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Review Results
Comments made during the review should 

❑ No action.
☞ No change to the software or d

required.
❑ Refer for repair.

☞ Designer or programmer should c
fault.

❑ Reconsider overall design.
☞ The problem identified in the re

parts of the design.

Requirements and specification errors may
to the client.
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Product and Process St
Product standards define characteristics
should exhibit.
Process standards define how the softwar
enacted.

Product standards Proce
Design review form Design rev
Document naming standards Submission
Procedure header format Version re
Java conventions Project pla
Project plan format Change con
Change request form Test recor
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tandards

to-date by software 

form filling

 unsupported by 
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Potential Problems with S

❑ Not always seen as relevant and up-
engineers

❑ May involve too much bureaucratic 

❑ May require tedious manual work if
software tools
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 line, break it 
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g of the expression 
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 margin, just indent 
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Sample Java Code Conv
4.2 Wrapping Lines
When an expression will not fit on a single
according to these general principles:

❑ Break after a comma.
❑ Break before an operator.
❑ Prefer higher-level breaks to lower
❑ Align the new line with the beginnin

at the same level on the previous li
❑ If the above rules lead to confusin

that’s squished up against the right
8 spaces instead.
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tions ...

be coded directly, 
 a for loop as counter 
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Sample Java Code Conven
10.3 Constants
Numerical constants (literals) should not 
except for -1, 0, and 1, which can appear in
values.
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wed quality system

Quality Standards 
(ISO 9001, CMM)

External Body

Accreditation 
Body

certification 
request

Certification
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Quality System
A Quality Plan should be an instance of an
Quality System

Customers may require an externally revie

Quality System

Quality Manual

Standards & 
Procedures

Project Plan x
Quality plan x

instantiates

feedback & 
improve

Quality Assurance

influences

audit
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on, installation and 
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ISO 9000
ISO 9000 is an international set of stand
management applicable to a range of orga
manufacturing to service industries.
ISO 9001 is a generic model of the qualit
to organisations whose business processe
from design and development, to producti
servicing;

❑ ISO 9001 must be instantiated for
❑ ISO 9000-3 interprets ISO 9001 f

developer

ISO = International Organisation for S
❑ ISO main site: http://www.iso.ch/
❑ ISO 9000 main site: http://www.tc
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: Optimizing
ed back into QA process

Quality depends 
on individual 

project managers!
Quality depends 
on individuals!
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Capability Maturity Mode
The SEI process maturity model classifie
contractors manage software processes

Level 1: Initial (Ad Hoc)
No effective QA procedures, quality is luck

Level 2: Repeatable
Formal QA procedures in place

Level 3: Defined 
QA process is defined and institu

Level 4: Man
QA Process + quantitativ

Level 5
Improvement is f

Quantitative data 
are necessary for 

improvement!
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What you should kn
✎ Can a correctly functioning piece of sof

quality?
✎ What’s the difference between an ext

quality attribute?
✎ And between a product and a process 
✎ Why should quality management be sep

management?
✎ How should you organize and run a rev
✎ What information should be recorded 

minutes?
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Can you answer the followin
✎ Why does a project need a quality plan
✎ Why are coding standards important?
✎ What would you include in a documenta

checklist?
✎ How often should reviews be schedule
✎ Would you trust software developed b

certified company?
✎ And if it were CMM level 5?
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12. Software Met

Overview:
❑ Measurement Theory
❑ GQM Paradigm
❑ Quantitative Quality Model
❑ Sample Quality Metrics

Sources:
❑ Software Engineering, I. Sommervi

Fifth Edn., 1996.
❑ Software Engineering — A Practitio

Pressman, Mc-Graw Hill, Third Edn
❑ Norman E. Fenton, Shari l. Pfleeger

A rigorous & Practical Approach”, T
Press, 1996.
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Why Metrics?

When you can measure what you are s
and express it in numbers, you know s
it; but when you cannot measure, whe
express it in numbers, your knowledg
and unsatisfactory kind: it may be th
knowledge, but you have scarcely, in y
advanced to the stage of science.
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 objects, people 
re temperature
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perature
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), ...
ro allows for more 
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Measurement quantifies 

Measurement enables understanding, cont

Date Measurement Comment
2000 BC Rankings “hotter 

than”
By touching
could compa

1600 AD Thermometer 
“hotter than”

A separate 
compare tem

1720 AD Fahrenheit scale Quantificat
temperatur
predict phe
forecasting

1742 AD Celsius scale

1854 AD Kelvin scale Absolute ze
precise des
physical phe
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oduction processes
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Why Software Met
Effort (and Cost) Estimation

❑ Measure early in the life-cycle to d
production efforts

Quality Assessment and Improvement
❑ Control software quality attributes
❑ Compare (and improve) software pr
❑ Remember Quality Assumptions

Internal quality   ⇒⇒⇒⇒    External 
Process quality   ⇒⇒⇒⇒    Product q

Control during project Ob
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What are Software M
Software metrics

❑ Any type of measurement which re
system, process or related docume
☞ Lines of code in a program
☞ the Fog index (calculates readab

documentation)
0.4 *(# words / # sentenc

(percentage of words ≥ 3 sy
☞ number of person-days required

case

NB: “Software metrics” are not mathema
rather measures
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 of process, Number 

direct measures
r of defects 

rom the length of a 
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Direct and Indirect Me
Direct Measures

❑ Measured directly in terms of the 
(usually by counting)
☞ Length of source-code, Duration

of defects discovered

Indirect Measures
❑ Calculated from other direct and in

☞ Module Defect Density = Numbe
discovered / Length of source

☞ Temperature is usually derived f
liquid column
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Possible Problems
Compare productivity in lines of code per 

❑ Do we use the same units to compa
☞ What is a “line of code”? What 

❑ Is the context the same?
☞ Were programmers familiar wit

❑ Is “code size” really what we want 
☞ What about code quality?

❑ How do we want to interpret result
☞ Average productivity of a progr

Programmer X is twice as produ
❑ What do we want to do with the re

☞ Do you reward “productive” prog
Do you compare productivity of 
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s

ationships between 

ed for all possible 
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Empirical Relation

Empirical relations observe true/false rel
(attributes of) real world entities.

Empirical relations are complete, i.e. defin
combinations.
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tributes of persons

 unary relationship

Laura 
“is tall”

Joe “is 
not tall”

higher than 
..” ternary 
tionship

Frank “is not higher than” 
Joe on Laura’s shoulders
© O. Nierstrasz — U. Berne

Examples
Empirical relationships between height at

Frank “is taller 
than” Laura

“is taller than” binary relationship

Joe “is not taller 
than” Laura

“is tall”

Frank “is 
tall”

Frank “is not much 
taller than” Laura

Frank “is much 
taller than” Joe

“is much taller than” binary relationship “... is 
... + .

rela
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ing

ed to the real world 

ge to draw 
in

oe

1.80
1.65

1.73

 measure mapping “height” 
e of person on a number 
nting “height in meters”.
© O. Nierstrasz — U. Berne

Measurement Mapp
Measure & Measurement
A measure is a function mapping

❑ an attribute of a real 
world entity
(= the domain)

onto
❑ a symbol in a set with 

known mathematical 
relations (= the range).

A measurement is then the symbol assign
attribute by the measure.
Purpose: Manipulate symbol(s) in the ran
conclusions about attribute(s) in the doma

Frank
J

Laura

Example:
attribut
represe
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cs)
easuring the 

use of terminology, 
e measures”.
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(Measures vs Metri
Mathematically, a metric is a function m m
distance between two objects such that:

1. ∀  x, m(x,x) = 0
2. ∀  x, y, m(x,y) = m(y,x)
3. ∀  x, y, z, m(x,z) ≤ m(x,y) + m(y,z)

So, technically “software metrics” is an ab
and we should instead talk about “softwar



ESE — W2001/2002 372.

Software Metrics

re must specify:

ght or width?

timetres or inches?

 be worn?
© O. Nierstrasz — U. Berne

Preciseness
To be precise, the definition of the measu

❑ domain: do we measure people’s hei

❑ range: do we measure height in cen

❑ mapping rules: do we allow shoes to
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tions
presentation 

he more difficult it 

ical relations
range)
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Representation Condi
To be valid, a measure must satisfy the re
condition:

In general, the more empirical relations, t
is to find a valid measure.

empirical relations
(in domain)

⇔ mathemat
(in 
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ons ...
E Measure 2

x > y
F 1.80 > 1.73 true
J 1.70 > 1.73 false
i x > y + .10
F 1.80 > 1.73 + .10 false
F 1.80 > 1.70 + .10 false

1.80
1.70

1.73
© O. Nierstrasz — U. Berne

Representation Conditi
mpirical Relation Measure 1

is-taller-than x > y
rank, Laura true 1.80 > 1.73 true
oe, Laura false 1.65 > 1.73 false

s-much-taller-than x > y + .10
rank, Laura false 1.80 > 1.73 + .10 false
rank, Joe true 1.80 > 1.65 + .10 true

Frank

Joe

Laura

1.80
1.65

1.73

Frank

Joe
LauraM

ea
su

re
 1

M
ea

su
re

 2
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. [Basili et al. 1984]

g standard XYZ?”

th/without XYZ?”

YZ

 robustness ...
© O. Nierstrasz — U. Berne

GQM
Goal - Question - Metrics approach

❑ Define Goal
☞ e.g., “How effective is the codin

❑ Break down into Questions
☞ “Who is using XYZ?”
☞ “What is productivity/quality wi

❑ Pick suitable Metrics
☞ Proportion of developers using X
☞ Their experience with XYZ ...
☞ Resulting code size, complexity,
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Model
d
ierarchical quality 

ng basic attributes

stic Metric

nce

y

y

y

cy

defect density
= #defects / size

correction impact
= #components

changed

correction time
© O. Nierstrasz — U. Berne

Quantitative Quality 
Quality according to ISO 9126 standar

❑ Divide-and conquer approach via “h
model”

❑ Leaves are simple metrics, measuri

Software
Quality

Functionality

Reliability

Efficiency

Usability

Maintainability

Portability

ISO 9126 Factor Characteri

Error tolera

Accurac

Simplicit

Modularit

Consisten
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y Model 
ment team
design principles, 

Metric

 number of private 
attributes ]2, 10[

number of public 
attributes ]0, 0[

number of public 
methods ]5, 30[

average number of 
arguments [0, 4[
© O. Nierstrasz — U. Berne

“Define your own” Qualit
Define the quality model with the develop

❑ Team chooses the characteristics, 
metrics ... and the thresholds

Maintainability

Factor Characteristic Design Principle

Modularity

design class as an
abstract data-type

encapsulate all 
attributes

avoid complex 
interfaces
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ce) Metrics

Attribute

o

Class Size Metrics
methods (NOM)
attributes, instance/class 
A, NCA)
Σ of method size (WMC)

These are 
Internal Product 
Metrics
© O. Nierstrasz — U. Berne

Sample Size (and Inheritan
Inheritance Metrics

- hierarchy nesting level (HNL)
- # immediate children (NOC)
- # inherited methods, unmodified (NMI)
- #overridden methods (NMO)

inherits belongsT

access

invokes

- # 
- # 
(NI
- # 

Method Size Metrics
- # invocations (NOI)
- # statements (NOS)
- # lines of code (LOC)
- # arguments (NOA)

Class

Method
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n Metrics
Metrics
 later republished as 

en class is coupled
lass requires to 

essing same 
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Sample Coupling & Cohesio
These are Internal Product 

Following definitions stem from [Chid91a],
[Chid94a]

Coupling Between Objects (CBO)
CBO = number of other class to which giv
Interpret as “number of other classes a c
compile”

Lack of Cohesion in Methods (LCOM)
LCOM = number of disjoint sets (= not acc
attribute) of local methods
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etrics

ohesion methods are 

esive may have a high 

ay have high CBO 

thod or inheritance 
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Coupling & Cohesion M
Beware!
Researchers disagree whether coupling/c
valid

❑ Classes that are observed to be coh
LCOM value
☞ due to accessor methods

❑ Classes that are not much coupled m
value
☞ no distinction between data, me

coupling



ESE — W2001/2002 381.

Software Metrics

etrics (I)

ours, weeks, months
 unit does not always 

lity of the 
© O. Nierstrasz — U. Berne

Sample External Quality M
Productivity (Process Metric)

❑ functionality / time
❑ functionality in LOC or FP; time in h

☞ be careful to compare: the same
represent the same

❑ Does not take into account the qua
functionality!
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etrics (II)

ability 

account 
ce the rest of the 
rmulas
failures / time
ar time
ability density 

+ mean time to repair
e available, take into 

probability
density
function

time

fa
ilu

re
© O. Nierstrasz — U. Berne

Sample External Quality M
Reliability (Product Metric)

❑ mean time to failure = mean of prob
density function PDF
☞ for software one must take into 

the fact that repairs will influen
function ⇒  quite complicated fo

❑ average time between failures = # 
☞ time in execution time or calend
☞ necessary to calibrate the prob

function
❑ mean time between failure = MTTF 

☞ to know when your system will b
account repair
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etrics (III)

cannot measure 

/ product size

 count!
nless you’re data 
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Sample External Quality M
Correctness (Product Metric)

❑ “a system is correct or not, so one 
correctness”

❑ defect density = # known defects 
☞ product size in LOC or FP
☞ # known defects is a time based

❑ do NOT compare across projects u
collection is sound!
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etrics (IV)

of changes
ime to repair”
 and “average time 

ive

istrative delay time 
 time + testing & 
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Sample External Quality M
Maintainability (Product Metric)

❑ #time to repair certain categories 
❑ “mean time to repair” vs. “average t

☞ similar to “mean time to failure”
between failures”

❑ beware for the units
☞ categories of changes is subject
☞ time =?

problem recognition time + admin
+ problem analysis time + change
reviewing time
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 QA (I)
reveal which 

s, yet good quality
ts, yet poor quality

e?) a quantitative 

rial and error)

imple metrics
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Conclusion: Metrics for
Question: Can internal product metrics 
components have good/poor quality?
Yes, but...
Not reliably

❑ false positives: “bad” measurement
❑ false negatives: “good” measuremen

Heavyweight
❑ Requires team to develop (customiz

quality model
❑ Requires definition of thresholds (t

Difficult to interpret
❑ Requires complex combinations of s

...
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del and the 

re selected for 

mponents first
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However...
❑ Cheap once you have the quality mo

thresholds
❑ Good focus (± 20% of components a

further inspection)
Note: focus on the most complex co
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QA (II)
 metrics reveal 

 metrics

ess

 one project to 
© O. Nierstrasz — U. Berne

Conclusion: Metrics for 
Question: Can external product/process
quality?
Yes, ...

❑ More reliably then internal product

However...
❑ Requires a finished product or proc
❑ It is hard to achieve preciseness

☞ even if measured in same units
☞ beware to compare results from

another
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ow!
trics usage in 
etrics theory 

 you need to say “A 
gn error”? And what 
r is twice as bad as a 

 time to failure” and 
 is the difference 
© O. Nierstrasz — U. Berne

What you should kn
✎ What are the possible problems of me

software engineering? How does the m
address them?

✎ What kind of measurement scale would
specification error is worse than a desi
if we want to say “A specification erro
design error?”

✎ What’s the difference between “Mean
“Average time between failures”? Why
important?



ESE — W2001/2002 389.

Software Metrics

g questions?
ject would you use 

roduct size metrics?
Product Attributes 
s during Quality 
e of doing that?
ortant? Why then 
© O. Nierstrasz — U. Berne

Can you answer the followin
✎ During which phases in a software pro

metrics?
✎ Why is it so important to have “good” p
✎ Why do we prefer measuring Internal 

instead of External Product Attribute
Control? What is the main disadvantag

✎ Why are coupling/cohesion metrics imp
are they so rarely used?
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13. TBA ...
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