ESE

Einfihrung in Software Engineering
Prof. O. Nierstrasz

Wintersemester 2002/2003

ESE — W2002/2003

1. ESE — Einfahrung in Software Engineering
Principle Texts
Recommended Literature
Schedule
Why Software Engineering?
What is Software Engineering? (1)
What is Software Engineering? (Il
What is Software Engineering? (lil)
Software Development Activities
The Classical Software Lifecycle
Problems with the Software Lifecycle
Iterative Development
Iterative and Incremental Development
Iterative and Incremental Development
The Unified Process
Boehm's Spiral Lifecycle
Requirements Collection
Changing requirements
Requirements Analysis and Specification
Object-Oriented Analysis
Prototyping (1)
Prototyping (II)
Design
Conway’s Law
Implementation and Testing
Design, Implementation and Testing
Maintenance
Maintenance activities
Maintenance costs
Methods and Methodologies
Object-Oriented Methods: a brief history
What you should know!

O NON OV WON ~

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Table of Contents

Can you answer these questions?

2. Requirements Collection

The Requirements Engineering Process
Requirements Engineering Activities
Requirements Analysis

Problems of Requirements Analysis
Impedance Mismatches

Requirements evolution

The Requirements Analysis Process

Use Cases and Viewpoints

Use Cases and Viewpoints ...

Unified Modeling Language

Writing Requirements Definitions
Functional and Non-functional Requirements
Non-functional Requirements

Types of Non-functional Requirements
Examples of Non-functional Requirements
Requirements Verifiability

Precise Requirements Measures
Prototyping Objectives

Evolutionary Prototyping

Throw-away Prototyping

Requirements Checking

Requirements Reviews

Review checks

Traceability

Traceability ...

What you should know!

Can you answer the following questions?

. The Planning Game

Extreme Programming

34

35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52
54
55
56
57
58
59
60
61

62
63

64
65

ESE — W2002/2003

Driving Metaphor 66 Class Selection Rationale ... 102
Why we plan 67 Class Selection Rationale ... 103
The Planning Trap 68 Class Selection Rationale ... 104
Customer-Developer Relationships 69 Class Selection Rationale ... 105
The Customer Bill of Rights 70 Candidate Classes 106
The Developer Bill of Rights 71 CRC Cards 107
Separation of Roles 72 CRC Sessions 108
The Planning Game 73 Responsibilities 109
The Release Planning Game 74 Identifying Responsibilities 110
Planning Game: Exploration Phase 75 Assigning Responsibilities 111
User Stories 76 Assigning Responsibilities ... 112
Stories 77 Relationships Between Classes 113
Splitting Stories 78 Relationships Between Classes ... 114
Initial Estimation of Stories 79 Collaborations 115
Estimating Stories 80 Finding Collaborations 116
Planning Game: Commitment Phase 81 Finding Abstract Classes 117
Planning Game: Steering Phase 83 Sharing Responsibilities 118
Planning Game: Steering Phase... 84 Multiple Inheritance 119
Iteration Planning 85 Building Good Hierarchies 120
[teration Planning 86 Building Good Hierarchies ... 121
[teration Planning... 87 Building Kind-Of Hierarchies 122
What you should know! 88 Building Kind-Of Hierarchies ... 123
Can you answer the following questions? 89 Refactoring Responsibilities 124
4. Responsibility-Driven Design 99 Profocols 125
Why Responsibility-driven Design? 91 What you should know! _ 126
Why Responsibility-driven Design? ... 99 Can you answer the following questions? 127
Iteration in Object-Oriented Design 93 5. Modeling Objects and Classes 128
The Initial Exploration 94 UML 129
The Detailed Analysis 95 Why UML? 130
Finding Classes 96 UML History 131
Finding Classes ... Q7 Class Diagrams 132
Drawing Editor Requirements Specification 98 Visibility and Scope of Features 133
Drawing Editor: noun phrases 99 Attributes and Operations 134

Class Selection Rationale 101 UML Lines and Arrows 135

ESE — W2002/2003 il
Parameterized Classes 136 Composite States 170
Interfaces 137 Sending Events between Objects 171
Utilities 138 Concurrent Substates 172
Objects 139 Branching and Merging 173
Associations 140 Branching and Merging ... 174
Aggregation and Navigability 141 History Indicator 175
Association Classes 142 Creating and Destroying Objects 176
Qualified Associations 143 Using the Notations 177
Inheritance 144 What you should know! 178
What is Inheritance For? 145 Can you answer the following questions? 179
Inheritance supports ... 146 . User Interface Design 180
Design. Pg’r’rems gs Collaborations 147 Interface Design Models 181
Ins‘ronhqhng Design Patterns 148 User Interface Design Principles 182
Constraints 149 GUI Characteristics 184
Specifying Constraints 150 GUI advantages 186
Dgsign by Con’r.roc’r in UML 151 GUI (dlis) advantages ... 187
Using the Notation 152 Direct Manipulation 188
Using the Notation ... 153 Direct Manipulation ... 189
What you should know! 154 Interface Models 190
Can you answer the following questions? 155 Menu Systems 191

6. Modeling Behaviour 156 Menu Systems ... 192
Use Case Diagrams 157 Menu Structuring 193
Scenarios 158 Command Interfaces 194
Sequence Diagrams 159 Command Interfaces ... 195
UML Message Flow Notation 160 Information Presentation Factors 196
Collaboration Diagrams 161 Analogue vs. Digital Presentation 197
Message Labels 162 Colour Use Guidelines 198
Message Labels ... 163 User Guidance 199
State Diagrams 164 Design Factors in Message Wording 200
State Diagram Notation 165 Error Message Guidelines 202
State Diagram Notation ... 166 Good and Bad Error Messages 203
State Box with Regions 167 Help System Design 204
Transitions 168 Help system use 205
Operations and Activities 169 User Interface Evaluation 206

ESE — W2002/2003 iv.

Usability attributes 207 Basis Path Testing ... 242
What you should know! 208 Condition Testing 243
Can you answer the following questions? 209 Statistical Testing 244
8. Software Validation 210 Statistical Testing ... 245

Software Reliability, Failures and Faults 211 Static Verification 246

Kinds of failures 212 Static Verification ... 247
Programming for Reliability 213 When to Stop? 248
Fault Avoidance 214 When to 3top? ... 249
Common Sources of Software Faults 215 What you should know! _ 250
Common Sources of Software Faulfs ... 216 Can you answer the following questions? 251
Fault Tolerance 217 . Project Management 252
Approaches to Fault Tolerance 218 Recommended Reading 253
Approaches to Fault Tolerance ... 219 Why Project Management? 254
Defensive Programming 220 What is Project Management? 255
Defensive Programming ... 221 Risk Management 256
Verification and Validation 222 Risk Management .. 257
Verification and Validation ... 223 Risk Management Technigues 258
The Testing Process 224 Focus on Scope 260
The Testing Process ... 225 Myth: Scope and Objectives 261
Regression testing 226 Scope and Objectives 262
Test Planning 227 Estimation Strategies 263
Top-down Testing 228 Estimation Techniques 264
Bottom-up Testing 229 Measurement-based Estimation 265
Defect Testing 230 Estimation and Commitment 266
Defect Testing ... 231 Planning and Scheduling 267
Functional (black box) testing 232 Planning and Scheduling ... 268
Coverage Criteria 233 Myth: Deliverables and Milestones 269
Equivalence partitioning 234 Deliverables and Milestones 270
Test Cases and Test Data 235 Example: Task Durations and Dependencies 271
Structural (white box) Testing 236 Pert Chart; Activity Network 272
Coverage criteria 237 Gantt Chart: Activity Timeline 273
Binary Search Method 238 Gantt Chart: Staff Allocation 274
Path Testing 240 Myth: Delays 275
Basis Path Testing: The Technique 241 Scheduling problems 276

ESE — W2002/2003

Planning under uncertainty
Dealing with Delays
Dealing with Delays ...
Gantt Chart: Slip Line
Timeline Chart

Slip Line vs. Timeline
Software Teams

Chief Programmer Teams
Chief Programmer Teams ...
Directing Teams

Directing Teams ...

What you should know!
Can you answer these questions?

10. Software Architecture
Sources:
What is Software Architecture?
What is Software Architecture?
How Architecture Drives Implementation

How Architecture Drives Implementation ...

Sub-systems, Modules and Components
Cohesion

Coupling

Tight Coupling

Loose Coupling
Architectural Parallels
Architectural Styles

Layered Architectures
Abstract Machine Model
OSI Reference Model
Client-Server Architectures
Client-Server Architectures ...
Client-Server Architectures
Four-Tier Architectures
Blackboard Architectures

277
278
279
280
281
282
283
284
285
286
287
288
289

290
291

292
293
294
295
296
297
298
299
300
301

302
303
304
305
306
307
308
309
310

Blackboard Architectures ...

Repository Model

Event-driven Systems

Broadcast model

Selective Broadcasting

Dataflow Models

Dataflow Models ...

Invoice Processing System

Compilers as Dataflow Architectures
Compilers as Blackboard Architectures
UML support: Package Diagram

UML support: Deployment Diagram
What you should know!

Can you answer the following questions?

11. Software Quality

What is Quality?

Problems with Software Quality
Hierarchical Quality Model

Quality Attributes

Quality Attributes ...

Correctness, Reliability, Robustness
Correctness, Reliability, Robustness ...
Efficiency, Usability

Efficiency, Usability ...
Maintainability

Maintainability ...

Verifiability, Understandability
Productivity, Timeliness, Visibility
Productivity, Timeliness, Visibility ...
Productivity, Timeliness, Visibility ...
Quality Control Assumption

The Quality Plan

The Quality Plan ...

Types of Quality Reviews

311
312
313
314
315
316
317
318
319
320
321
322
323
324

325
326
327
328
329
330
331

332
333
334
335
336
337
338
339
340
341

342
343
344

ESE — W2002/2003 Vi.
Review Meetings 346 Function points 380
Review Minutes 347 Programmer productivity 381
Review Guidelines 348 The COCOMO model 383
Sample Review Checklists (1) 349 Basic COCOMO Formula 384
Sample Review Checklists (Il 350 COCOMO Project classes 385
Sample Review Checklists (lll) 357 COCOMO assumptions and problems 386
Sample Review Checklists (IV) 352 COCOMO assumptions and problems ... 387
Sample Review Checklists (V) 353 Quantitative Quality Model 388
Review Results 354 "Define your own” Quality Model 389
Product and Process Standards 355 Sample Size (and Inheritance) Metrics 390
Potential Problems with Standards 356 sample Coupling & Cohesion Metrics 391
Sample Java Code Conventions 357 Coupling & Cohesion Metrics 392
Sample Java Code Conventions ... 358 sample Quality Metrics (1) 393
Quality System 359 Sample Quality Metrics (Il 394
1SO 9000 360 Sample Quality Metrics (lll) 395
Capability Maturity Model (CMM) 361 Sample Quality Metrics (IV) 396
What you should know! 362 What you should know! . _ 397
Can you answer the following questions? 363 Can you answer the following questions? 398

12. Software Metrics 364 13. TBA ... 399
Why Metrics? 365
Why Measure Software? 366
What are Software Metrics? 367
(Measures vs Metrics) 368
Direct and Indirect Measures 369
Measurement Mapping 370
Preciseness 371
Possible Problems 372
Gam 373
Cost estimation objectives 374
Estimation techniques 375
Algorithmic cost modelling 376
Measurement-based estimation 377
Lines of code 378
Function points 379

ESE — W2002/2003 1

1. ESE — Einfiihrung in Software
Engineering

Prof. Oscar Nierstrasz
Lecturer |Oscar.Nierstrasz@iam.unibe.ch
Schiitzenmattstr. 14/103, Tel.631.4618

Michele Lanza, Tel. 631.4868
Assistants| Thomas Buehler, Markus Kobel,
Michael Locher, Mauricio Seeberger

Lectures ExWi B7, Wednesdays @ 14h15-16h00
WWW |www.iam.unibe.ch/~scg/Teaching/ESE/

Selected material courtesy of Prof. Serge Demeyer

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

http://www.iam.unibe.ch/~scg/Teaching/ESE/

ESE — W2002/2003 2.

Principle Texts

0 Software Engineering: A Practioner's Approach. Roger
S.Pressman. McGraw Hill Text; ISBN: 0072496681; 5th
edition (November 1, 2001)

0 Software Engineering. Ian Sommerville. Addison-
Wesle P)ub Co; ISBN: 020139815X; 6th edition (August
11, 2000

0 Using UML: Software Engineering with Objects and
Components. Perdita Stevens and Rob J. Pooley.
Addison-Wesley Pub Co; TSBN: 0201648601; 1st edition
(November 18, 1999)

O Designing Object-Oriented Software. Rebecca Wirfs-
Brock and Brian Wilkerson and Lauren Wiener. Prentice
Hall PTR; ISBN: 0136298257; (August 1990)

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 3.

Recommended Literature

0 eXtreme Programming Explained: Embrace Change. Kent
Beck. Addison-Wesley Pub Co; ISBN: 0201616416, 1st
edition (October 5, 1999)

[0 The CRC Card Book. David Bellin and Susan Suchman
Simone. Addison-Wesley Pub Co; TSBN: 0201895358;
1st edition (June 4, 1997)

0 The Mythical Man-Month: Essays on Software
Engineering. Frederick P. Brooks. Addison-Wesley Pub
Co; ISBN: 0201835959; 2nd edition (August 2, 1995)

0 Agile Software Development. Alistair Cockburn.
Addison-Wesley Pub Co; ISBN: 0201699699; 1st edition
(December 15, 2001)

0 Peopleware: Productive Projects and Teams. Tom
Demarco and Timothy R. Lister. Dorset House; ISBN:
0932633439; 2nd edition (February 1, 1999)

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 4.

O Succeeding with Objects: Decision Frameworks for
Project Management. Adele Goldberg and Kenneth S.
Rubin. Addison-Wesley Pub Co; ISBN: 0201628783; 1st
edition (May 1995)

0 A Discipline for Software Engineering. Watts S.
Humphrey. Addison-Wesley Pub Co; ISBN: 0201546108;
1st edition (December 31, 1994)

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003

1
2
3
4
5
6
7.
8.
9
10
11
12
13

14,

23-Oct
30-Oct
6-Nov
13-Nov
20-Nov
27-Nov
4-Dec
11-Dec
18-Dec
8-Jan
15-Jan
22-Jan
29-Jan
5-Feb

Schedule

Introduction — The Software Lifecycle
Requirements Collection

The Planning Game
Responsibility-Driven Design
Modeling Objects and Classes
Modeling Behaviour

User Interface Design
Software Validation

Project Management
Software Architecture
Software Quality

Software Metrics

TBA ...

Final Exam

® O. Nierstrasz — U. Berne

ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 6.

Why Software Engineering?

A naive view: Problem Specification _€°9N9_ Final Program
But ...
0 Where did the specification come from?

0 How do you know the specification corresponds to the
user's needs?

0 How did you decide how to structure your program?

How do you know the program actually meets the
specification?

0 How do 7/ou know your program will always work
correctly?

What do you do if the users' needs change?

How do you divide tasks up if you have more than a one-
person team?

[]

1 O

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 /.

What is Software Engineering? (I)

Some Definitions and Issues

"state of the art of developing quality software on
time and within budget”

[0 Trade-off between perfection and physical constraints
[1 SE has to deal with real-world issues

[0 State of the art!

0 Community decides on "best practice” + life-long
education

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 8.

What is Software Engineering? (IT)

"multi-person construction of multi-version software”
— Parnas

[Team-work

[0 Scale issue ("program well” is not enough) +
Communication Issue

0 Successful software systems must evolve or perish
0 Change is the norm, not the exception

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 9.

What is Software Engineering? (IIT)

"software engineering is different from other
engineering disciplines”

— Sommerville

0 Not constrained by physical laws
O limit = human mind

[TItis constrained by political forces
0 balancing stake-holders

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 10.

Software Development Activities

Requirements Collection |Establish customer’s needs
Model and specify the requirements

Analysis ("what")
Design Model and specify a solution ("how")
Implementation Construct a solution in software
Testing Validate the solution against the

requirements

Repair defects and adapt the
solution to new requirements

Maintenance

NB: these are ongoing activities, not sequential phases!

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 11.

The Classical Software Lifecycle

The classical software lifecycle models

the software development as a step-
by-step "waterfall” between the

various development phases.

Reguiiements|
kLA nalysis

\

pl emen’ra‘rm
‘\C Testi ngj\i

\LMai n’renan@

The waterfall model is unrealistic for many reasons, especially:
0 requirements must be “frozen" too early in the life-cycle
0 requirements are validated too late

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 12.

1.

Problems with the Software Lifecycle

“Real projects rarely follow the sequential flow that the
model proposes. Iteration always occurs and creates
problems in the application of the paradigm”

"It is often difficult for the customer to state all
requirements explicitly. The classic life cycle requires
this and has difficulty accommodating the natural
uncertainty that exists at the beginning of many
projects.”

"The customer must have patience. A working version of
the program(s) will not be available until /ate in the
project timespan. A major blunder, if undetected until
the working program is reviewed, can be disastrous.”

— Pressman, SE, p. 26

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 13.

Iterative Development

In practice, development is always iterative, and all activities
progress in parallel.

Requirements - :
Collec ‘rionj Testing based on requirements
Maintenance through iteration C Testing D
Analysis Testing throughout implementation
Validation through prototyping

Implementation

Design J
Design through refactoring

[J If the waterfall model is pure fiction, why is it still the
standard software process?

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 14.

Iterative and Incremental Development

Plan to iterate your analysis, design and implementation.

0 You won't get it right the first time, so integrate,
validate and test as frequently as possible.

The later in the lifecycle errors are discovered, the more
expensive they are to fix!

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 15,

Iterative and Incremental Development

Plan to incrementally develop (i.e., prototype) the system.

0 If possible, always have a running version of the
system, even if most functionality is yet to be
implemented.

[0 Integrate new functionality as soon as possible.

0 Validate incremental versions against user
requirements.

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 16.

The Unified Process

Inception | Elaboration | Construction Transition
Requirements
Analysis
Design
Implementation
Test
Iter. Iter. Iter. Iter.
#1 #2 C e e #n-1 #n

How do you plan the number of iterations?
How do you decide on completion?

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 17.

Boehm's Spiral Lifecycle

Planning = determination Risk Analysis = Analysis of
of objectives, alternatives alternatives and identification/
and constraints resolution of risks

Risk = something that
will delay project or

initial requirements , ,
Increase 1ts cost

completion go, no-go decision

first prototype
alpha demo

Customer Evaluation = Engineering =

7
Y
Assessment of the 7 Development of the

results of engineering evolving system “next level” product

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 18.

Requirements Collection

User requirements are often expressed informally.
0 features
[1 usage scenarios

Although requirements may be documented in written form,
they may be incomplete, ambiguous, or even incorrect.

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 19.

Changing requirements

Requirements will changel
0 inadequately captured or expressed in the first place

[0 user and business needs may change during the
project

Validation is needed throughout the software lifecycle, not
only when the “final system” is delivered!

0 build constant feedback into your project plan
O plan for change

0 early prototyping [e.g., UL] can help clarify
requirements

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 20.

Requirements Analysis and Specification

Analysis is the process of specifying what a system will do.

[0 The intention is to provide a clear understanding of
what the system is about and what its underlying
concepts are.

The result of analysis is a specification document.

Does the requirements specification correspond to the users’
actual needs?

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 21.

Object-Oriented Analysis

An object-oriented analysis results in models of the system
which describe:

[classes of objects that exist in the system
0 responsibilities of those classes

O relationships between those classes

[0 use cases and scenarios describing
(0 operations that can be performed on the system
0 allowable seguences of those operations

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 22.

Prototyping (I)

A prototype is a software program developed to test, explore
or validate a hypothesis, i.e. to reduce risks.

An exploratory prototype, also known as a throwaway
prototype, is intended to validate requirements or explore
design choices.

0 UI prototype — validate user requirements
0 rapid prototype — validate functional requirements
[0 experimental prototype — validate technical feasibility

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 23.

Prototyping (IT)

An evolutionary prototype is intended to evolve in steps into a
finished product.

0 iteratively "grow"” the application, redesigning and
refactoring along the way

[] First do it, then do it right, then do it fast.

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 24.

Design

Design is the process of specifying how the specified system
behaviour will be realized from software components. The
results are architecture and detailed design documents.

Ob ject-oriented design delivers models that describe:

0 how system operations are implemented by interacting
objects

[0 how classes refer to one another and how they are
related by inheritance

O attributes and operations associated to classes

Design is an iterative process, proceeding in parallel with
implementation!

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 25.

Conway's Law

"Organizations that design systems are constrained to
produce designs that are copies of the communication
structures of these organizations”

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 26.

Implementation and Testing

Implementation is the activity of constructing a software
solution to the customer's requirements.

Testing is the process of validating that the solution meets the
requirements.

0 The result of implementation and testing is a fully
documented and validated solution.

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 27.

Design, Implementation and Testing

Design, implementation and testing are iterative activities

0 The implementation does not “implement the design”,
but rather the design document documents the
implementation!

[0 System tests reflect the requirements specification
0 Testing and implementation go hand-in-hand

0 TIdeally, test case specification precedes design and
implementation

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 28.

Maintenance

Maintenance is the process of changing a system after it has
been deployed.

0 Corrective maintenance: identifying and repairing
defects

0 Adaptive maintenance: adapting the existing solution to
new platforms

0 Perfective maintenance: implementing new requirements

In a spiral lifecycle, everything after the delivery and
deployment of the first prototype can be considered
"maintenance”!

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 29.

Maintenance activities

"Maintenance” entails:
0 configuration and version management
[0 reengineering (redesigning and refactoring)
0 updating all analysis, design and user documentation

Repeatable, automated tests enable evolution and refactoring

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 30.

Maintenance costs

Breakdown of
maintenance costs.

Source: Lientz 1979

41.8

Changes in User
Requirements

Changes in
Data Formats

17 .4

Other

Efficiency
Improvements

Documentation

Emergency

Hardware Fixes

Changes

Routine
Debugging

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 31

Methods and Methodologies

Principle = general statement describing desirable properties
Method = general guidelines governing some activity
Technigue = more technical and mechanical than method
Methodology = package of methods and techniques packaged

Tools

Methodologies

Methods and Techniques

Principle

— Ghezzi et al. 1991

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 32.

Object-Oriented Methods: a brief history

First generation:

[0 Adaptation of existing notations (ER diagrams, state
diagrams ...): Booch, OMT, Shlaer and Mellor, ...

[0 Specialized design techniques:

[0 CRC cards; responsibility-driven design; design by
contract

Second generation:
[0 Fusion: Booch + OMT + CRC + formal methods

Third generation:
0 Unified Modeling Language:
[0 uniform notation: Booch + OMT + Use Cases + ...
0 various UML-based methods (e.g. Catalysis)

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 33.

What you should know!

How does Software Engineering differ from programming?
Why is the "waterfall” model unrealistic?

What is the difference between analysis and design?

Why plan to iterate? Why develop incrementally?

Why is programming only a small part of the cost of a "real”
software project?

What are the key advantages and disadvantages of object-
oriented methods?

O OCOO0On0

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 34.

Can you answer these questions?

What is the appeal of the "waterfall” model?
Why do requirements change?

How can you validate that an analysis model captures users’
real needs?

When does analysis stop and design start?
When can implementation start?
What are good examples of Conway's Law in action?

oo OO0

© O. Nierstrasz — U. Berne ESE — Einfiihrung in Software Engineering

ESE — W2002/2003 35.

2. Reguirements Collection

Overview:
[0 The Requirements Engineering Process
[0 Use cases and scenarios
0 Functional and non-functional requirements
0 Evolutionary and throw-away prototyping
[0 Requirements checking and reviews

Sources:
0 Software Engineering, I. Sommerville, 1996.

0 Software Engineering — A Practitioner's Approach, R.
Pressman, Mc-Graw Hill, Third Edn., 1994.

0 Objects, Components and Frameworks with UML, D.
D'Souza, A. Wills, Addison-Wesley, 1999

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 36.

The Requirements Engineering Process

Requirements
analysis

Feasibility
study

Requirements
definition

Feasibility
report

Requirements
specification

System
models

Definition of
requirements

Y

Specification of
requirements

Requirements
document

©lan Sommerville 1995

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 37.

Requirements Engineering Activities

Feasibility |Determine if the user needs can be satisfied
study with the available technology and budget.

Requirements Find out what system stakeholders require
analysis |from the system.

Requirements Define the requirements in a form
definition | understandable to the customer.

Define the requirements in detail.
(Written as a contract between client and
contractor.)

Requirements
specification

"Requirements are for users, specifications are for analysts
and developers.”

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 38.

Requirements Analysis

Sometimes called requirements elicitation or requirements
discovery

Technical staff work with customers to determine
O the application domain,
0 the services that the system should provide and
0 the system's operational constraints.

Involves various stakeholders:

0 e.g., end-users, managers, engineers involved in
maintenance, domain experts, trade unions, etc.

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 39.

Problems of Requirements Analysis

Various problems typically arise:

[]

Stakeholders don’t know what they really want
Stakeholders express requirements in their own terms

Different stakeholders may have conflicting
requirements

0 Organisational and political factors may influence the
system requirements

[0 The requirements change during the analysis process.
New stakeholders may emerge.

1 O

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 40.

Impedance Mismatches

As Systems
designed it

As the Project
As Management Leader defined it

requested it

As Operations

installed it What the ’

As Programming User wanted

developed it
..f'"""Q.‘Q‘-

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003

41.

Requirements evolution

[0 Requirements always evolve as a better understanding of
user needs is developed and as the organisation'’s

objectives change

[0 It isessential o plan for change in the requirements as

the system is being developed and used

® O. Nierstrasz — U. Berne

Requirements Collection

ESE — W2002/2003 42.

The Requirements Analysis Process

/Rﬁquirements
definition and
specification

. o,
/ Requirements
validation

Y

Domain
understanding

Prioritization
Process
entry

/ Conflict

resolution

Requirements
collection

Classification

©lan Sommerville 1995

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 43.

Use Cases and Viewpoints

A use case is the specification of a sequence of actions,
including variants, that a system (or other entity) can perform,
interacting with actors of the system”.

0 e.g., buy a DVD through the internet

A scenario is a particular trace of action occurrences, starting
from a known initial state.

0 e.g., connect to myDVD.com, go to the "search” page

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 44

Use Cases and Viewpoints ...

Stakeholders represent different problem viewpoints.

[0 Interview as many different kinds of stakeholders as
possible/necessary

0 Translate requirements into use cases or “stories” about
the desired sEsTem involving a fixed set of actors (users
and system objects)

[0 For each use case, capture both typical and exceptional
usage scenarios

Users tend to think about systems in terms of "features”.

0 You must get them to tell you stories involving those
features.

0 Use cases and scenarios can tell you if the requirements
are complete and consistent!

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 45

Unified Modeling Language
UML is an industry standard for documenting OO models.

Class visualize logical structure of system
Diagrams |in terms of classes, objects and relationships

Use Case |show external actors and use cases they
Diagrams | participate in

Sequence |visualize temporal message ordering of a
Diagrams | concrete scenario of a use case

Collaboration |visualize relationships of objects exchanging
Diagrams |messages in a concrete scenario

State specify the abstract states of an object and
Diagrams |the transitions between the states

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 46.

Writing Requirements Definitions

Requirements definitions usually consist of natural language,
supplemented by (e.g., UML) diagrams and tables.

Three types of problem can arise:

Lack of clarity: It is hard to write documents that are both
precise and easy-to-read.

Requirements Functional and non-functional requirements
confusion: tend to be intertwined.

Requirements Several different requirements may be
amalgamation: expressed together.

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 47.

Functional and Non-functional Requirements

Functional requirements describe system services or functions
0 Compute sales tax on a purchase
0 Update the database on the server ...

Non-functional requirements are constraints on the system or
the development process

Non-functional requirements may be more critical than
functional requirements.

If these are not met, the system is useless!

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003

48.

Non-functional Requirements

specify that the delivered product must

Product behave i el
requirements: ehave in a particular way
e.g. execution speed, reliability, etc.
are a consequence of organisational policies
Organisational | and procedures
requirements: e.g. process standards used, implementation
requirements, etc.
arise from factors which are external to the
External |system and its development process
requirements: |e.q. interoperability requirements, legislative

requirements, etc.

® O. Nierstrasz — U. Berne

Requirements Collection

ESE — W2002/2003 49.

Types of Non-functional Requirements

Non-{unctional
requirements
Product Organizational External
requirements requirements reguirements
Efficiency Reliability Portability
requirements requirements requirements
Usability Delivery Implementation Standards Legislative

requirements requirements requirements requirements requirements
Performance Space Privacy Safety
requirements requirements requirements requirements

©lan Sommerville 1995

Ethical

Interoperability
requirements

requirements

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003

50.

Examples of Non-functional Requirements

I't shall be possible for all necessary

Product | communication between the APSE and the
requirement | user to be expressed in the standard Ada
character seft.
The system development process and
Organisational | deliverable documents shall conform to the
requirement |process and deliverables defined in XYZCo-
SP-STAN-95.
The system shall provide facilities that allow
any user to check if personal data is
External |maintained on the system. A procedure must
requirement | be defined and supportedinthe software that

will allow users to inspect personal dataand to
correct any errors in that data.

® O. Nierstrasz — U. Berne

Requirements Collection

ESE — W2002/2003 51

Requirements Verifiability

Requirements must be written so that they can be objectively
verified.

Imprecise: The system should be easy to use by
experienced controllers and should be organised in
such a way that user errors are minimised,

Terms like "easy to use" and “errors shall be minimised” are
useless as specifications.

Verifiable: Experienced controllers should be able to
use all the system functions after a total of two hours
training. After this training, the average number of
errors made by experienced users should not exceed
two per day.

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 52.

Precise Requirements Measures

Property Measure

Speed Processed transactions/second
User/Event response time
Screen refresh time

Size K Bytes; Number of RAM chips

Ease of use | Training time
Rate of errors made by trained users
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 53.

Property Measure

Robustness | Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 54.

Prototyping Objectives

The objective of evolutionary prototyping is to deliver a
working system to end-users.

0 Development starts with the requirements that are best
understood.

The objective of throw-away prototyping is to validate or
derive the system requirements.

0 Prototyping starts with that requirements that are
poorly understood.

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 55.

Evolutionary Prototyping

0 Must be used for systems where the specification
cannot be developed in advance.

0 e.g., AL systems and user interface systems

[0 Based on techniques which allow rapid system iterations.

0 e.g., executable specification languages, VHL
languages, 4GLs, component toolkits

0 Verification is impossible as there is no specification.

O Validation means demonstrating the adequacy of the
system.

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 56.

Throw-away Prototyping

[0 Used to reduce requirements risk

[0 The prototype is developed from an initial specification,
delivered for experiment then discarded

0 The throw-away prototype should not be considered as
a final system

0 Some system characteristics may have been left out
(e.g., platform requirements may be ignored)

0 There is no specification for long-term maintenance

[The system will be poorly structured and difficult to
maintain

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 57.

Requirements Checking

Does the system provide the functions
which best support the customer’'s needs?

Consistency: |Are there any requirements conflicts?
Are all functions required by the
customer included?

Can the requirements be implemented
given available budget and technology?

Validity:

Completeness:

Realism:

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 58.

Requirements Reviews

0 Regular reviews should be held while the requirements
definition is being formulated

[1 Both client and contractor staff should be involved in
reviews

[0 Reviews may be formal (with completed documents) or
informal.

Good communications between developers,
customers and users can resolve problems at an
early stage

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 59.

Review checks

Verifiability |Is the requirement realistically testable?

Comprehensibility | Is the requirement properly understood?

Is the origin of the requirement clearly
stated?

Can the requirement be changed without a
large impact on other requirements?

Traceability

Adaptability

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 60.

Traceability

To protect against changes you should be able to trace back
from every system component to the original requirement that
caused its presence.

N £
Q. Q. Q.
= £
©O O | .| .| .| .. o
\O IS : : : : : \®)
Req 1 X X
Req 2 | X X
X X X
X
X X
Req n

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 61

Traceability ...

0 A software process should help you keeping this virtual
table up-to-date

0 Simple technigues may be quite valuable (haming
conventions, ...)

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 62.

What you should know!

What is the difference between requirements analysis and
specification?

Why is it hard to define and specify requirements?

What are use cases and scenarios?

What is the difference between functional and non-
functional requirements?

What's wrong with a requirement that says a product should
be "user-friendly”?

What's the difference between evolutionary and throw-
away prototyping?

O 0O OO0 O

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 63.

Can you answer the following questions?

Why isn't it enough to specify requirements as a set of
desired features?

Which is better for specifying requirements: natural
language or diagrams?

How would you prototype a user interface for a web-based
ordering system?

Would it be an evolutionary or throw-away prototype?
What would you expect to gain from the prototype?
How would you check a requirement for “adaptability”?

oo O 0O O

© O. Nierstrasz — U. Berne Requirements Collection

ESE — W2002/2003 64.

3. The Planning Game

Overview:
[0 XP — coping with change and uncertainty
[0 Customers and Developers — why do we plan?
[1 User stories
0 Estimation

Source:

[0 eXtreme Programming Explained: Embrace Change. Kent
Beck. Addison-Wesley Pub Co; ISBN: 0201616416, 1st
edition (October 5, 1999)

Based on a presentation by Matthias Rieger.

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003 65.

Extreme Programming

XP is a set of mutually
supportive practices for

PI
anning Game \ developing quality software

Short releases o el desr \v

Metaphor
\ / Refactoring

Continuous l
Pair pr'ogr'ammmg integration

Testing

Coding standards /

— Collective code ownership

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003 66.

Driving Metaphor

Driving a car is not about pointing the car in one direction and
holding to it; driving is about making /ots of little course
corrections.

"Do the simplest thing that could possibly work”

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003 67.

Why we plan

We want to ensure that
0 we are always working on the most important things
[we are coordinated with other people

0 when unexpected events occur, we understand the
consequences on priorities and coordination

Plans must be
[0 easy to make and update
0 understandable by everyone that uses them

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003 68.

The Planning Trap

0 Plans project a /ikely course of events
0 Plans must try to create visibility: where is the project

But: A plan does not mean you are in control of things
[0 Events happen
0 Plans become invalid

Having a plan isn't everything, planning is.

[0 Keep plans honest and expect them to always change

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003

69.

Customer-Developer Relationships

A well-known experience in Software Development:
The customer and the developer sit in a small boat in the ocean

and are afraid of each other.

Customer fears

Developer fears

They won't get what they asked for

They won't be given clear definitions of
what needs to be done

They must surrender the control of
their careers to techies who don't care

They will be given responsibility without
authority

They'll pay too much for too little

They will be told to do things that don'+t
make sense

They won't know what is going on (the
plans they see will be fairy tales)

They'll have to sacrifice quality for
deadlines

Result: A lot of energy goes into protective measures and

politics instead of success

® O. Nierstrasz — U. Berne

The Planning Game

ESE — W2002/2003

70.

The Customer Bill of Rights

You have the right to an overall plan

To steer a project, you need to know
what can be accomplished within time
and budget

You have the right to get the most
possible value out of every
programming week

The most valuable things are worked on
first.

You have the right to see progress in
a running system.

Only a running system can give exact
information about project state

You have the right to change your
mind, to substitute functionality and
to change priorities without
exorbitant costs.

Market and business requirements
change. We have to allow change.

You have the right to be informed

about schedule changes, in time to

choose how to reduce the scope to
restore the original date.

XP works to be sure everyone knows
just what is really happening.

® O. Nierstrasz — U. Berne

The Planning Game

ESE — W2002/2003

71,

The Developer Bill of Rights

You have the right to know what is
needed, with clear declarations of
priority.

Tight communication with the
customer. Customer directs by value.

You have the right to produce quality
work all the time.

Unit Tests and Refactoring help to
keep the code clean

You have the right to ask for and
receive help from peers, managers,
and customers

No one can ever refuse help to a feam
member

You have the right to make and
update your own estimates.

Programmers know best how long it is
going to take them

You have the right to accept your
responsibilities instead having them
assigned to you

We work most effectively when we
have accepted our responsibilities
instead of having them thrust upon us

® O. Nierstrasz — U. Berne

The Planning Game

ESE — W2002/2003 72.

Separation of Roles

[Customer makes business decisions
[Developers make technical decisions

Business Decisions Technical Decisions
Scope Estimates
Dates of the releases Dates within an iteration
Priority Team velocity
Warnings about technical risks

The Customer owns "what you get” while the Developers own
"what it costs”.

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003 73.

The Planning Game

A game with a set of rules that ensures that Customer and
Developers don't become mortal enemies

Goal:
Maximize the value of the software produced by Developers.

Overview:.

1. Release Planning: Customer selects the scope of the
next release

2. Iteration Planning: Developers decide on what to do and
in which order

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003 74.

The Release Planning Game

Customer Developers
Write Story
Exploration Phase Estimate Story
Split Story

Sort Stories by Value

Sort Stories by Risk
Set Velocity

Commitment Phase

Choose Scope
Iteration

Steering Phase Recovery
New Story Reestimate

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003 75.

Planning Game: Exploration Phase

Purpose:
Get an appreciation for what the system should eventually do.

The Moves:

[]

[]
[]

1 [

Customer: Write a story. Discuss it until everybody
understands it.

Developers: Estimate a story in terms of effort.

Customer: Split a story, if Developers don't understand
or can't estimate it.

Developers: Do a spike solution to enable estimation.

Customer: Toss stories that are no longer wanted or are
covered by a split story.

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003 76.

User Stories

Principles of good stories:

0 Customers write stories. Developers do not write
stories.

[1 Stories must be understandable to the customer
0 The shorter the better. No detailed specification!
[1 Worite stories on index cards

[0 Each story must provide something of value to the
customer

0 A story must be testable
[0 then we can know when it is done

Writing stories is an iterative process, requiring interaction
between Customer and Developers.

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003 77.

Stories

A story contains:
[l aname
0 the story itself
[1 an estimate

Example:

[0 When the GPS has contact with two or fewer satellites
for more than 60 seconds, it should display the message
"Poor satellite contact”, and wait for confirmation from
the user. If contact improves before confirmation, clear
the message automatically.

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003 /8.

Splitting Stories

Developers ask the Customer to split a story if
0 They cannot estimate a story because of its complexity

0 Their estimate is longer than two or three weeks of
effort

Why?
0 Estimates get fuzzy for bigger stories

[0 The smaller the story, the better the control (tight
feedback loop)

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003 79.

Initial Estimation of Stories

With no history, the first plan is the hardest and least
accurate (fortunately, you only have to do it once)
How to start estimating:

0 Begin with the stories that you feel the most
comfortable estimating.

O Intuitively imagine how long it will take you.

[0 Base other estimates on the comparison with those first
stories.

Spike Solutions:
Do a quick implementation of the whole story.

— Do not look for the perfect solution
—Just try to find out how long something takes

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003 80.

Estimating Stories

Keys to effective story estimation:
0 Keep it simple
0 Use what happened in the past ("Yesterday's weather")
0 Learn from experience

Comparative story estimation:

0 One story is often an elaboration of a closely related one
0 Look for stories that have already been implemented

0 Compare difficulties, not implementation time

0 “twice as difficult”, “half as difficult”

Discuss estimates in the team. Try to find an agreement.

"Optimism wins". Choose the more optimistic of two
disagreeing estimates.

(1 [

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003 81

Planning Game: Commitment Phase

Purpose:

Customer: to choose scope and date of next
delivery

Developers: to confidently commit to deliver the
next release

The Moves:
0 Customer: Sort by stories by value

(1) Stories without which the system will not
function

(2) Less essential stories, but still providing
significant business value

(3) Nice-to-have stories

[1 Customer wants the release to be as valuable as
possible

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003 82.

[0 Developers: Sort stories by risk

(1) Stories that can be estimated precisely (low
risk)

(2) Stories that can be estimated reasonably well
(3) Stories that cannot be estimated (high risk)

[0 Developers want to tackle high-risk first, or at least
make risk visible

[0 Developers: Set team velocity

How much ideal engineering time per calendar
month/week can the team offer?

0 this is the budget that is available to Customer
[0 Customer: Choose scope of the release, by either

—fixing the date and choosing stories based on
estimates and velocity

— fixing the stories and calculating the delivery date

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003 83.

Planning Game: Steering Phase

Purpose: Update the plan based on what is learned.

The Moves:

[0 Iteration: Customer picks one iteration worth of the
most valuable stories.

[0 see Iteration Planning

[0 Get stories done: Customer should only accept stories
that are 1007 done.

[0 Recovery: Developers realize velocity is wrong
— Developers re-estimate velocity.

— Customer can defer (or split) stories to maintain
release date.

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003 84.

Planning Game: Steering Phase...

[0 New Story: Customer identifies new, more valuable
stories

— Developers estimate story

— Customer removes estimated points from
incomplete part of existing plan, and inserts the new
story.

[0 Reestimate: Developers feel that plan is no longer
accurate

— Developers re-estimate velocity and all stories.
— Customer sets new scope plan.

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003

85.

Iteration Planning

Read Write | || Unclaimed [| SEEITF‘ *":“1
Story Cards [| Task Cards [| | Tasks stimate
: mta b Tasks
; too big” or
: 1'[m l:‘_ls}‘“
CPse
Phase 2
Y
; 7 y ;
Accepted
Tasks: |Programmer| |Programmer| |Programmer| |Programmer
1 2 3 4

Sapright 2000 by Williem O Wl

® O. Nierstrasz — U. Berne

The Planning Game

ESE — W2002/2003

86.

Iteration Planning

[0 Customer selects stories to be implemented in this

Iteration.

[0 Customer explains the stories in detail to the

Developers

— Resolve ambiguities and unclear parts in discussion

® O. Nierstrasz — U. Berne

The Planning Game

ESE — W2002/2003 87.

Iteration Planning...

[0 Developers brainstorm engineering tasks

— A task is small enough that everybody fully
understands it and can estimate it.

— Use short CRC or UML sessions to determine how a
story is accomplished.

[0 Observing the design process builds common
knowledge and confidence throughout the team

[Developers/pairs sign up for work and estimates

— Assignments are not forced upon anybody (Principle
of Accepted Responsibility)

— The person responsible for a task gets to do the
estimate

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003 88.

What you should know!

Why is planning more important than having a plan?

Why shouldn’t Customers make technical decisions? Why
shouldn’t Developers make business decisions?

Why should stories be written on index cards?
Why should the Customer sort stories by value?
Why should the Developer sort stories by risk?
How do you assign stories to Developers?

oo 0Om%.

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003 89.

Can you answer the following questions?

What is "extreme” about XP?

What is the differences between a User Story and a Use
Case?

Are Developers allowed to write stories?
What is the ideal time period for one iteration?
How can you improve your skill at estimating stories?

oo Omnm

© O. Nierstrasz — U. Berne The Planning Game

ESE — W2002/2003 90.

4. Responsibility-Driven Design

Overview:
0 Finding Classes
CRC sessions
Identifying Responsibilities
Finding Collaborations
Structuring Inheritance Hierarchies

I I R R

Source:

O Designing Object-Oriented Software, R. Wirfs-Brock,
B. Wilkerson, L. Wiener, Prentice Hall, 1990.

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 91

Why Responsibility-driven Design?

Functional Decomposition

Decompose according to the functions
a system is supposed to perform.

Functional Decomposition

0 Good ina "waterfall” approach: stable requirements and
one monolithic function

However
[0 Naive: Modern systems perform more than one function

0 Maintainability: system functions evolve O redesign
affect whole system

O Interoperability: interfacing with other system is
difficult

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 9z

Why Responsibility-driven Design? ...

Object-Oriented Decomposition

Decompose according to the objects
a system is supposed to manipulate.

Object-Oriented Decomposition

0 Better for complex and evolving systems
However

0 How to find the objects?

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 93.

Iteration in Object-Oriented Design

[0 The result of the design process is not a final product:

[design decisions may be revisited, even after
implementation

0 design is not /inear but iterative

0 The design process is not algorithmic:
0 a design method provides guidelines, not fixed rules

0 "a good sense of style often helps Er'oduce clean,
elegant designs — designs that make a lot of sense
from the engineering standpoint”

[1 Responsibility-driven design is an (analysis and) design
technigue that works well in combination with various
methods and notations.

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 94.

The Initial Exploration

1. Find the classes in your system
2. Determine the responsibilities of each class

3. Determine how objects collaborate with each other to
fulfil their responsibilities

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 95.

The Detailed Analysis

1. Factor common responsibilities to build class hierarchies
2. Streamline collaborations between objects
0 Is message traffic heavy in parts of the system?
0 Are there classes that collaborate with everybody?
[0 Are there classes that collaborate with nobody?

0 Are there groups of classes that can be seen as
subsystems?

3. Turn class responsibilities into fully specified signatures

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 96.

Finding Classes

Start with requirements specification:

[0 What are the goals of the system being designed, its
expected inputs and desired responses?

1. Look for noun phrases:

[0 separate into obvious classes, uncertain candidates,
and nonsense

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 97.

Finding Classes ...

2. Refine to alist of candidate classes. Some guidelines are:

[]
[]
L]

[]

[]

Model physical objects — e.q. disks, printers
Model conceptual entities — e.g. windows, files

Choose one word for one concept — what does it
mean within the system

Be wary of adjectives — is it really a separate class?

Be wary of missing or misleading subjects — rephrase
In active voice

Model categories of classes — delay modelling of
inheritance

Model interfaces to the system — e.g., user
interface, program interfaces

Model attribute values, not attributes — e.g., Point
vs. Centre

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003

98.

Drawing Editor Requirements Specification

The drawing editor is an interactive graphics editor. With it, users can
create and edit drawings composed of lines, rectangles, ellipses and
text.

Tools control the mode of operation of the editor. Exactly one tool is
active at any given time.

Two kinds of tools exist: the selection tool and creation tools. When
the selection tool is active, existing drawing elements can be
selected with the cursor. One or more drawing elements can be
selected and manipulated; if several drawing elements are selected,
they can be manipulated as if they were a single element. Elements
that have been selected in this way are referred to as the current
selection. The current selection is indicated visually by displaying the
control points for the element. Clicking on and dragging a control

point modifies the element with which the control point is associated.

When a creation tool is active, the current selection is empty. The
cursor changes in different ways according to the specific creation
tool, and the user can create an element of the selected kind. After
the element is created, the selection tool is made active and the
newly created element becomes the current selection.

The text creation tool changes the shape of the cursor to that of an |-

beam. The position of the first character of text is determined by
where the user clicks the mouse button. The creation tool is no

longer active when the user clicks the mouse button outside the text
element. The control points for a text element are the four corners of
the region within which the text is formatted. Dragging the control
points changes this region. The other creation tools allow the
creation of lines, rectangles and ellipses. They change the shape of
the cursor to that of a crosshair. The appropriate element starts to be
created when the mouse button is pressed, and is completed when
the mouse button is released. These two events create the start
point and the stop point.

The line creation tool creates a line from the start point to the stop
point. These are the control points of a line. Dragging a control point
changes the end point.

The rectangle creation tool creates a rectangle such that these
points are diagonally opposite corners. These points and the other
corners are the control points. Dragging a control point changes the
associated corner.

The ellipse creation tool creates an ellipse fitting within the rectangle
defined by the two points described above. The major radius is one
half the width of the rectangle, and the minor radius is one half the
height of the rectangle. The control points are at the corners of the
bounding rectangle. Dragging control points changes the
associated corner.

® O. Nierstrasz — U. Berne

Responsibility-Driven Design

ESE — W2002/2003 99.

Drawing Editor: noun phrases

The drawing editor is an interactive graphics editor. With it, users can create and
edit drawings composed of lines, rectangles, ellipses and text.

Tools control the mode of operation of the editor. Exactly one tool is active at any
given time.

Two kinds of tools exist: the selection tool and creation tools. When the selection
tool is active, existing drawing elements can be selected with the cursor. One or
more drawing elements can be selected and manipulated; if several drawing
elements are selected, they can be manipulated as if they were a single element.
Elements that have been selected in this way are referred to as the current
selection. The current selection is indicated visually by displaying the control
points for the element. Clicking on and dragging a control point modifies the
element with which the control point is associated.

When a creation tool is active, the current selection is empty. The cursor changes
in different ways according to the specific creation tool, and the user can create
an element of the selected kind. After the element is created, the selection tool is
made active and the newly created element becomes the current selection.

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 100.

The text creation tool changes the shape of the cursor to that of an I-beam. The
position of the first character of text is determined by where the user clicks the
mouse button. The creation tool is no longer active when the user clicks the mouse
button outside the text element. The control points for a text element are the
four corners of the region within which the text is formatted. Dragging the control
points changes this region. The other creation tools allow the creation of lines,
rectangles and ellipses. They change the shape of the cursor to that of a crosshair.
The appropriate element starts to be created when the mouse button is pressed,
and is completed when the mouse button is released. These two events create the
start point and the stop point.

The line creation tool creates a line from the start point to the stop point. These
are the control points of a line. Dragging a control point changes the end point.
The rectangle creation tool creates a rectangle such that these points are
diagonally opposite corners. These points and the other corners are the control
points. Dragging a control point changes the associated corner.

The ellipse creation tool creates an ellipse fitting within the rectangle defined by
the two points described above. The major radius is one half the width of the
rectangle, and the minor radius is one half the height of the rectangle. The control
points are at the corners of the bounding rectangle. Dragging control points
changes the associated corner.

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 101

Class Selection Rationale

Model physical objects:
[0 wmousebutton [event or attribute]

Model conceptual entities:
0 ellipse, line, rectangle
0 Drawing, Drawing Element

0 Tool, Creation Tool, Ellipse Creation Tool, Line
Creation Tool, Rectangle Creation Tool, Selection
Tool, Text Creation Tool

text, Character
Current Selection

1 [

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 102.

Class Selection Rationale ...

Choose one word for one concept:

Drawing Editor 0 editor, interactivegraphics-—editor
Drawing Element O etetnent

Text Element O +ext

Ellipse Element, Line Element, Rectangle Element

0 ethipse, tine, rectangle

I I R I R

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 103.

Class Selection Rationale ...

Be wary of adjectives:

[]

I I

Ellipse Creation Tool, Line Creation Tool, Rectangle
Creation Tool, Selection Tool, Text Creation Tool
— all have d/fferenf reqwr'emenfs

f‘eﬁﬁrr?ie regior [1 Rectangle
— common meaning, but different from Rectangle
Element

Point O endpointt, startpoint, stoppoint

Control Point — more than just a coordinate

corner [J assoctated-corner, diagonahy-opposite-

eornetr — nho hew behaviour

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 104.

Class Selection Rationale ...

Be wary of sentences with missing or misleading subjects:

[0 "The current selection is indicated visually by
disglaying the control points for the element.”
— by what? Assume Drawing Editor ...

Model categories:
0 Tool, Creation Tool

Model interfaces to the system:
0 wuser — don't need to model user explicitly
O edrser — cursor motion handled by operating system

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 105.

Class Selection Rationale ...

Model values of attributes, not attributes themselves:

[0 hketghtof-therectangle, width-of-therectanglte
0 mejor-radids, minor-radits

0 pesition — of first text character, probably Point
attribute

mode-of-operation — attfribute of Drawing Editor
shape-of-the-cursor, I-beam, erosshair — attributes

of Cursor
eorner — attribute of Rectangle
titme — an implicit attribute of the system

1 [

] [

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 106.

Candidate Classes

Preliminary analysis yields the following candidates:

Character Line Element

Control Point Point

Creation Tool Rectangle

Current Selection Rectangle Creation Tool
Drawing Rectangle Element
Drawing Editor Selection Tool

Drawing Element Text Creation Tool
Ellipse Creation Tool Text Element

Ellipse Element Tool

Line Creation Tool

Expect the list to evolve as design progresses.

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 107.

CRC Cards

Use CRC cards to record candidate classes:

Text Creation Tool subclass of Tool
Editing Text Text Element

Record the candidate Class Name and superclass (if known)
Record each Responsibility and the Collaborating classes

0 compact, easy to manipulate, easy to modify or
discard!

[] easy to arrange, reorganize
[0 easy to retrieve discarded classes

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 108.

CRC Sessions

CRC cards are not a specification of a design.
They are a tool to explore possible designs.

0 Prepare a CRC card for each candidate class

[Get a team of Developers to sit around a table and
distribute the cards to the team

[0 The team walks through scenarios, playing the roles of
the classes.

This exercise will uncover:
0 unneeded classes and responsibilities
O missing classes and responsibilities

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 109.

Responsibilities

What are responsibilities?
0 the knowledge an object maintains and provides
0 the actions it can perform

Responsibilities represent the public services an object may
Erovide to clients (but not the way in which those services may
e implemented)

0 specify what an object does, not how it does it

0 don't describe the interface yet, only conceptual
responsibilities

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 110.

Identifying Responsibilities

0 Study the requirements specification:
0 highlight verbs and determine which represent
responsibilities
0 perform a walk-though of the system
[explore as many scenarios as possible

0 identify actions resulting from input to the
system

0 Study the candidate classes:
0 class names O roles O responsibilities
0 recorded purposes on class cards [responsibilities

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 111.

Assigning Responsibilities

0 Evenly distribute system intelligence
0 avoid procedural centralization of responsibilities

[0 keep responsibilities close to objects rather than
their clients

[0 State responsibilities as generally as possible
0 “draw yourself” vs. "draw a line/rectangle etc.”

0 Keep behaviour together with any related information
O principle of encapsulation

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 112

Assignhing Responsibilities ...

0 Keep information about one thing in one place

0 if multiple objects need access to the same

information
(i) a new object may be introduced to manage the

information, or

(ii) one object may be an obvious candidate, or
(iii) the multiple objects may need to be collapsed
intfo a single one

0 Share responsibilities among related objects
0 break down complex responsibilities

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 113.

Relationships Between Classes

Additional responsibilities can be uncovered by examining
relationships between classes, especially:

0 The "Is-Kind-Of" Relationship:

0 classes sharing a common attribute often share a
common superclass

[0 common superclasses suggest common
responsibilities
e.g., to create a new Drawing Element, a Creation

Tool must:
1. accept user input implemented in subclass
2. determine location to place it generic
3. instantiate the element implemented in subclass

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 114,

Relationships Between Classes ...

0 The "Is-Analogous-To" Relationship:

O similarities between classes suggest as-yet-
undiscovered superclasses

0 The "Is-Part-Of" Relationship:

O distinguish (don't share) responsibilities of part and
of whole

Difficulties in assigning responsibilities suggest:
O missing classes in design, or
O free choice between multiple classes

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 115,

Collaborations

What are collaborations?

[0 collaborations are client requests to servers needed to
fulfil responsibilities

0 collaborations reveal control and information flow and,

ultimately, subsystems

collaborations can uncover missing responsibilities

analysis of communication patterns can reveal
misassigned responsibilities

1 [

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 116.

Finding Collaborations

For each responsibility:
1. Can the class fulfil the responsibility by itself?

2. If not, what does it need, and from what other class can
it obtain what it needs?

For each class:
1. What does this class know?

2. What other classes need its information or results?
Check for collaborations.

3. Classes that do not interact with others should be
discarded. (Check carefully!)

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 117.

Finding Abstract Classes

Abstract classes factor out common behaviour shared by
other classes

Tool
Selection Tool Creation Tool
Ellipse Tool Line Tool Rectangle Tool Text Tool

0 group related classes with common attributes
00 introduce abstract superclasses to represent the group
[“categories” are good candidates for abstract classes

[J Warning: beware of premature classification, your hierarchy
will evolve

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003

118.

Sharing Responsibilities

Concrete classes may be
both instantiated and
inherited from.

Abstract classes may only
be inherited from.

Tool

{ abstract }

/

Selection Tool

Note on class cards and on class diagram.

Selection Tool

0 Creation Tool

%

Creation Tool
{ abstract }

Venn Diagrams can be

UML!)

used to visualize shared
responsibilities.

(Warning: not part of

® O. Nierstrasz — U. Berne

Responsibility-Driven Design

ESE — W2002/2003 119.

Multiple Inheritance

Ordered Collection | [Indexable Collection] Decide whether a class
< 7 will be /:nsfqnfiafed to
determine if it is
abstract or concrete.

Array Magnitude

ANV

Matrix String Date

Ordered
Collection

Responsibilities
of subclasses are
larger than those
of superclasses.

Intersections Array
represent Indexable
common Collection
superclasses.

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 120.

Building Good Hierarchies

Model a “kind-of” hierarchy:

[0 Subclasses should support all inherited responsibilities,
and possibly more

Factor common responsibilities as high as possible:

0 Classes that share common responsibilities should
inherit from a common abstract superclass; introduce
any that are missing

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 121,

Building Good Hierarchies ...

Make sure that abstract classes do not inherit from con-
crete classes:

0 Eliminate by introducing common abstract superclass:
abstract classes should support responsibilities in an
implementation-independent way

Eliminate classes that do not add functionality:

0 Classes should either add new responsibilities, or a
particular way of implementing inherited ones

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003

122

Building Kind-Of Hierarchies

Correctly Formed Subclass Responsibilities:

A

B

R

7

C

(A C(B)

C assumes all the responsibilities of both A and B

® O. Nierstrasz — U. Berne

Responsibility-Driven Design

ESE — W2002/2003 123.

Building Kind-Of Hierarchies ...

Incorrect Subclass/Superclass

Relationships E
G assumes only some of the ? @
G

responsibilities inherited from E

Revised Inheritance Relationships

Introduce abstract superclasses to encapsulate common
responsibilities

e | B

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 124

Refactoring Responsibilities

Drawing Element
%abs‘rr‘ac’r }

Text Line Ellipse | |Rectangle| | Group
Element | | Element | | Element | | Element | | Element

Lines, Ellipses and

Rectangles are Dr aW"”{’ Element)
responsible for keepin]
track of the width an .

. Text Linear Element Group
colour of the lines they | Element { abstract})l | Element
are drawn with. A
This suggests a common | _Line Ellipse Rectangle
S'Uper'C ass. Element Element Element

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 125

Protocols

A protocol is a set of signatures (i.e., an interface) to which a
class will respond.

[Generally, protocols are specified for public
responsibilities

0 Protocols for privateresponsibilities should be specified
if they will be used or implemented by subclasses

—

Construct protocols for each class

2. Write a design specification for each class and
subsystem

3. Write a design specification for each contract

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE —

W2002/2003 126.

oo O O OoOooOomfb

What you should know!

What criteria can you use to identify potential classes?
How can CRC cards help during analysis and design?
How can you identify abstract classes?

What are class responsibilities, and how can you identify
them?

How can identification of responsibilities help in identifying
classes?

What are collaborations, and how do they relate to
responsibilities?

How can you identify abstract classes?

What criteria can you use to design a good class hierarchy?

How can refactoring responsibilities help to improve a class
hierarchy?

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 127.

Can you answer the following questions?

[J When should an attribute be promoted to a class?
[1 Why is it useful to organize classes into a hierarchy?

[J How can you tell if you have captured all the responsibilities
and collaborations?

[1 What use is multiple inheritance during design if your
programming language does not support it?

© O. Nierstrasz — U. Berne Responsibility-Driven Design

ESE — W2002/2003 128.

5. Modeling Objects and Classes

Classes, attributes and operations
Visibility of Features
Parameterized Classes

Objects, Associations, Inheritance
[0 Constraints

Sources

0 The Unified Modeling Language Reference Manual,
James Rumbaugh, Ivar Jacobson and Grady Booch,
Addison Wesley, 1999,

O UML Distilled, Martin Fowler, Kendall Scott, Addison-
Wesley, Second Editon, 2000.

I I R I R

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003 129.

UML
What is UML?
0 uniform notation: Booch + OMT + Use Cases (+ state
charts)

0 UML is not a method or process
O .. The Unified Development Process is
Why a Graphical Modeling Language?

0 Software projects are carried out in team
[0 Team members need to communicate

0 ... sometimes even with the end users
0 "One picture conveys a thousand words"

0 the question is only which words

[1 Need for different views on the same software
artifact

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003 130.

Why UML?

Why UML
[0 Represents de-facto standard

0 more tool support, more people understand your
diagrams, less education

0 Is reasonably well-defined
0 ... although there are interpretations and dialects
[Is open

[0 stereotypes, tags and constraints to extend basic
constructs

[0 has a meta-meta-model for advanced extensions

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003 131.

1 OO0 O

UML History

1994: Grady Booch (Booch method) + James Rumbaugh
(OMT) at Rational

1994: Tvar Jacobson (OOSE, use cases) joined Rational
0 "The three amigos”

1996: Rational formed a consortium to support UML
January, 1997: UML1.0 submitted to OMG by consortium
November, 1997: UML 1.1 accepted as OMG standard

0 However, OMG names it UML1.0

December, 1998: UML task force cleans up standard in
UML1.2

June, 1999: UML task force cleans up standard in
UML1.3

... Major revision to UML2.0

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003 132.

Class Diagrams

"Class diagrams show generic descriptions of possible
systems, and object diagrams show particular
instantiations of systems and their behaviour.”

Class name, attributes and operations: Polygon
centre: Point
A Co//apsed class view: vertices: List of Point
borderColour: Colour
Polygon fillColour: Colour

display (on: Surface)
rotate (angle: Integer)

Class with Package name: erase ()
. . destroy ()
ZWindows: :Window select (p: Point): Boolean

Attributes and operations are also collectively called features.

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003 133.

Visibility and Scope of Features

Stereotype
(what “kind" —— User-defined
of class is it?) v properties
{abstract } | (€.9., readonly,
- “p: T}
underlined +size: Area = (100, 100) owner = "Pingu")

attributes \fvisibili’ry: Boolean = false
+default-size: Rectangle

have class H#maximum-size: Rectangle
scope -xptr: XWindow™
N +display () - italic
+ = {'Jub/IC) +hide () - attributes
= pr'oTeczl‘ed +create () are abstract
- = "private -attachXWindow (xwin: Xwindow*)

An ellipsis signals that further entries are not shown

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003 134.

Attributes and Operations

Attributes are specified as:
name: type = initialValue { property string }
Operations are specified as:

name (param: type = defaultValue, ...) : resultType

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003 135.

UML Lines and Arrows

—————————— Constraint Association
(usually annotated) e.g., «uses»
——————— = Dependency Navigable
e.g., «requires», association
<imports» ... e.g., part-of
——————— &= Realization = "Generalization”
e.qg., class/template, i.e., specialization (1)
class/interface e.qg., class/superclass,

concrete/abstract class

Aggregation - “Composition”
l.e., consists of" l.e., containment

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003 136.

Parameterized Classes

Parameterized (aka "template” or "generic”) classes are
depicted with their parameters shown in a dashed box.

Pararr)\e’rer's may be either types (just a name) or values (name:
Type).

FArray "~ [~~~
) /d v\«bi nd»(Address,24)
/ N\
FArray<Point, 3> AddressList

Instantiation of a class from a template can be shown by a
dashed arrow (Realization).

NB: All forms of arrows (directed arcs) go from the client to
the supplier!

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003

Interfaces

Interfaces, equivalent to abstract classes with no attributes,
are represented as classes with the stereotype «interface» or,

alternatively, with the "Lollipop-Notation™

«interface»

String

Comparable

isEqual(String):
Boolean <
hash(): Integer

------ isEqual(String): Boolean
hash(): Integer

«Kusem
|

HashTable

NB: Interfaces cannot have
(navigable) associations!

Comparable

O

A

String

Hash'lrable

® O. Nierstrasz — U. Berne

Modeling Objects and Classes

ESE — W2002/2003 138.

Utilities

A utility is a grouping of global attributes and operations. It is
represented as a class with the stereotype «utility». Utilities
may be parameterized.

«utility»
MathPack

randomSeed : long = O
pi : long = 3.14158265358979

sin (angle : double) : double -
cos (angle : double) : double- ~~
random () : double

~1 return sin (angle + pi/2. 0),5

NB: A utility’s attributes are already interpreted as being in
class scope, so it is redundant to underline them.

A "note" is a text comment associated with a view, and
represented as box with the top right corner folded over.

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003 139.

Objects

Objects are shown as rectangles with their name and type
underlined in one compartment, and attribute values,
optionally, in a second compartment.

trianglel: Polygon

trianglel: Polygon

centre = (0, 0) trianglel
vertices = ((0,0), (4,0), (4,3))

borderColour = black
fillColour = white . Polygon

At least one of the name or
the type must be present.

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003

140.

between objects of different classes.

Associations
Associations represent structural relationships

Married-to
husband| 0..1

0.1
Company | <« Works-for et | ite
name name

dress | €MPlOYEr employee | A1y N

adare Employs p address 0.1

boss
worker | *
Manages| ¥

O usually binary (but may be ternary etc.)
O optional name and direction
O (unique) role names and multiplicities at end-points

[J can ftraverse using navigation expressions
e.g., Sandoz.employee[name = "Pingu"].boss

® O. Nierstrasz — U. Berne

Modeling Objects and Classes

ESE — W2002/2003 141,

Aggregation and Navigability

Aggregationis denoted by 1 Contains b~

a diamond and indicates a [Polygon 3 point
part-whole dependency: 7 ‘ { ordered }

A hollow diamond GraphicsBundle
indicates a reference; a 1 |colour

solid diamond an Le"“.“"e
implementation. ensity

If the link terminates with an arrowhead, then one can navigate
from the whole to the part.

If the multiplicity of a role is > 1, it may be marked as
{ordered}, or as {sorted}.

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003

142.

Association Classes

An association may be an instance of an association class:

* Authorized onp *

User

Workstation

Authorization

priority
privileges

start session
*

1| home directory

Directory

In many cases the association class only stores attributes, and

its name can be left out.

® O. Nierstrasz — U. Berne

Modeling Objects and Classes

ESE — W2002/2003 143.

Qualified Associations

o o Airline Catalogue
A qua/ ifi edgssoc: a.T/.on frequent flyer # part number
uses a special qualifier % 1
value to identify the sPassenger
object at the other end 0.1 01
of the association. -
Person Part

"The multiplicity attached to the target role denotes
the possible cardinalities of the set of target objects
selected by the pairing of a source object and a
qualifier value.”

NB: Qualifiers are part of the association, not the class

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003 144,

Inheritance

A subclass inherits the features of its superclasses:

Figureldim |,
{ abstract } | Drawing
colour
display (')
Line Arc Spline
endpoints radius control
display () start points
angle display ()
arc angle
display ()

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003 145.

What is Inheritance For?

New software often builds on old software by imitation,
refinement or combination.

Similarly, classes may be extensions, specializations or
combinations of existing classes.

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003 146.

Inheritance supports ...

Conceptual hierarchy:

0 conceptually related classes can be organized into a
specialization hierarchy

0 people, employees, managers
[1 geometric objects ...
Software reuse:

0 related classes may shareinterfaces, data structures or
behaviour

[0 geomeftric objects ...
Polymorphism:

0 objects of distinct, but related classes may be uniformly
treated by clients

0 array of geometric objects

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003 147.

Design Patterns as Collaborations

Design Patterns can be represented as "parameterized
collaborations™

Cliont Target adaptee Adaptee
Request() SpecificRequest ()
AdapTer' Adapter J] adapt ee. Speci fi cRequest () ﬁ
Request ()|~)

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003 148.

Instantiating Design Patterns

A Design Patternin use (an instantiation) can be described with
a dashed oval.

Shape TextView
boudingBox() getExtent()
Q T Adaptee
TextShape T T
Adapter - \
boudingBox() D /\ AdapTer /\

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003

149.

Constraints

Constraints are restrictions on
values attached to classes or

associations. Person
x
1
, , Member-of |SUPSEN ™ Chair-of
[Binary constraints may be x x
shown as dashed lines Committee
between elements
[0 Derived values and Person
associations can be marked :
. “ /n blr"l'hdaTe
Wl'l'h a / /age

{ age = currentDate - birthdate }

® O. Nierstrasz — U. Berne

Modeling Objects and Classes

ESE — W2002/2003

150.

Specifying Constraints

Constraints are specified between braces, either free or

within a note:

worker

0.1| Person

employee

employer

x

0.1

Company

{ Person.employer = Person.boss.employer }B

® O. Nierstrasz — U. Berne

Modeling Objects and Classes

ESE — W2002/2003 151.

Design by Contract in UML

Combine constraints with stereotypes:

«invariant»
(i sEnpty ()) or (lisEmpty ())
Stack 7 }
: -7 «postcondition»

/size | (I sEmpty ()) andj

| _——=""|(top() = char)

push (char) -——~

pop (): char- _ _

isEmpty(): boolean’| - - - | letoldSize:Integer = self.size in (ocL)

pre:oldSize > O
post:self.size = oldSize-1

NB: «invariant», «precondition», and «postcondition» are
predefined in UML.

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003

152.

During Analysis:

Using the Notation

[0 Capture classes visible to users

[]
L]
[]
[]

Document attributes and responsibilities
Identify associations and collaborations
Identify conceptual hierarchies
Capture all visible features

® O. Nierstrasz — U. Berne

Modeling Objects and Classes

ESE — W2002/2003 153.

Using the Notation ...

During Design:
O Specify contracts and operations
0 Decompose complex objects
0 Factor out common interfaces and functionalities

The graphical notation is only part of the analysis or design
document. For example, a data dictionary cataloguing ana’g
describing all names of classes, roles, associations, etc. must
be maintained throughout the project.

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003 154

What you should know!

How do you represent classes, objects and associations?

How do you specify the visibility of attributes and
operations to clients?

How is a utility different from a class? How is it similar?
Why do we need both named associations and roles?
Why is inheritance useful in analysis? In design?

How are constraints specified?

oo 0O%

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003 155

Can you answer the following questions?

Why would you want a feature to have class scope?

Why don't you need to show operations when depicting an
object?

Why aren’t associations drawn with arrowheads?

How is aggregation different from any other kind of
association?

How are associations realized in an implementation
language?

O OO Ofn

© O. Nierstrasz — U. Berne Modeling Objects and Classes

ESE — W2002/2003

156.

6. Modeling Behaviour

Use Case Diagrams
Sequence Diagrams
Collaboration Diagrams
State Diagrams

I I R I R

Sources:

O The Unified Modeling Language Reference Manual,
James Rumbaugh, Ivar Jacobson and Grady Booch,

Addison Wesley, 1999,

® O. Nierstrasz — U. Berne

Modeling Behaviour

ESE — W2002/2003

157.

Use Case Diagrams

A use case IS a generic
description of an entire
transaction involving
several actors.

A use case diagram
presents a set of use
cases (ellipses) and the
external actors that
interact with the
system.

Dependencies and
associations between
use cases may be
indicated.

Bank

Prepare
statements

X

Customer

Counter™, | %
transaction
Clerk

. » «include»

«include»

Loan
application

X

Auditor

Loan Officer

® O. Nierstrasz — U. Berne

Modeling Behaviour

ESE — W2002/2003 158.

Scenarios

A scenario is an instance of a use case showing a typical
example of its execution.

Scenarios can be presented in UML using either sequence
diagrams or collaboration diagrams.

Note that a scenario only describes an example of a use case,
so conditionality cannot be expressed!

© O. Nierstrasz — U. Berne Modeling Behaviour

ESE — W2002/2003

159.

Sequence Diagrams

A sequence diagram
depicts a scenario by
showing the
interactions among a
set of objects in
temporal order.

Objects (not classesl!)
are shown as vertical
bars. Events or message
dispatches are shown as
horizontal (or slanted)
arrows from the sender
to the receiver.

Caller Phone Line Callee

T

caller lifts receiver

dial tone begins

dial (1)

dial tone ends

dial (2)

dial (2)

ringing tfone phone rings
_answer phone

tone stops ringing stops

]

]

]

Temporal constraints between events may also be expressed.

® O. Nierstrasz — U. Berne

Modeling Behaviour

ESE — W2002/2003

160.

UML Message Flow Notation

» Filled solid arrowhead

procedure call or other nested control flow

Stick arrowhead
flat, sequential control flow

Half -stick arrowhead

asynchronous control flow between objects

within a procedural sequence

® O. Nierstrasz — U. Berne

Modeling Behaviour

ESE — W2002/2003 161.

Collaboration Diagrams

Collaboration diagrams depict scenarios as flows of messages
between objects:

redisplay() —» ind
% : Controller WINTOY! . Window
T cy : «parameter»
y 1 displayPositions(window) window { temp } | 41.1.3.1: add(self)
, : wire contents
y 11*[i=1..n]: drawSegment(i) { temp } { new}
(wire : Wire | «locab> line |. |ine { new }
«self» | | |
i-1 i | 1.1.2: line := create(rQ, r1)—»
1.1.3: display(window)—»
;1.1.10: rO := position() ;1.1.1b: rl := position()

left : Bead right : Bead

© O. Nierstrasz — U. Berne Modeling Behaviour

ESE — W2002/2003 162.

Message Labels

Messages from one object to another are labelled with text
strings showing the direction of message flow and information
indicating the message sequence.

1. Prior messages from other threads (e.g. "[Al.3, B6.7.1]")
0 only needed with concurrent flow of control
2. Dot-separated list of sequencing elements

0 sequencinginteger (e.g.,"3.1.2" is invoked by "3.1" and
follows "3.1.1")

0 letter indicating concurrent threads (e.g., "1.2a" and
\\1.2bll)

O iteration indicator (e.g., "1.1*[i=1..n]")
[0 conditional indicator (e.g., "2.3 [#items = 0]")

© O. Nierstrasz — U. Berne Modeling Behaviour

ESE — W2002/2003 163.

Message Labels ...

3. Return value binding (e.g., "status :=")
4. Message name

[1 event or operation name
5. Argument list

© O. Nierstrasz — U. Berne Modeling Behaviour

ESE — W2002/2003 164.
State Diagrams
4 A W N
ctive Timeout o
lift receiver do/play message after [?rltilo(rjn'g;;grg)]
/gef dial tone GfTer 15 sec. . o 15 sec.
dial digit(n)

caller
hangs up
/disconnect

Dial Tone

@o/play dial tone

%

dial digit(n) [invalid]

dial digit(n) [valid]
/connect

Invalid
 do/play message | (Connec‘ring)
(Pinned) B ~ busy, connected
callee | / callee usy
answers |/ | hangs up Kdo/play busy tone) - A
N Ringing A
9 Talking callee answers/enable speech\dO/pICly "inging Ton%

® O. Nierstrasz — U. Berne

Modeling Behaviour

ESE — W2002/2003 165.

State Diagram Notation

A State Diagram describes the temporal evolution of an object
of a given class in response to interactions with other objects
inside or outside the system.

An event is a one-way (asynchronous) communication from one
object to another:

0 atomic (non-interruptible)

0 includes events from hardware and real-world objects
e.g., message receipt, input event, elapsed time, ...

O notation: eventName(parameter: type, ...)
0 may cause object to make a fransition between states

© O. Nierstrasz — U. Berne Modeling Behaviour

ESE — W2002/2003 166.

State Diagram Notation ...

A stateis a period of time during which anobject is waiting for
an event to occur:

0 depicted as rounded box with (up to) three sections:
0 name — optional

[statevariables —nane: type = val ue (valid only for
that state)

0 triggered operations — internal transitions and
ongoing operations

0 may be nested

© O. Nierstrasz — U. Berne Modeling Behaviour

ESE — W2002/2003

167.

State Box with Regions

The entry event occurs whenever a
transition is made into this state,
and the exit operation is triggered
when a transition is made out of
this state.

The help and character events
cause internal transitions with no
change of state, so the entry and
exit operations are not performed.

name

yd
Typing Password

.

entry / set echo invisible
exit / set echo normal
character / handle character
help / display help

A /

\

internal operations

® O. Nierstrasz — U. Berne

Modeling Behaviour

ESE — W2002/2003 168.

Transitions

A transitionis an response to an external event received by an
object in a given state

[]

[]
[]

1 [

May invoke an operation, and cause the object to change
State

May send an event to an external object
Transition syntax (each part is optional):

event(arquments) [condition]
/ “target.sendEvent operation(arguments)

External transitions label arcs between states

Internal transitions are part of the triggered
operations of a state

© O. Nierstrasz — U. Berne Modeling Behaviour

ESE — W2002/2003 169.

Operations and Activities

An operation is an atomic action invoked by a transition
0 Entry and exit operations can be associated with states

An activity is an ongoing operation that takes place while
object is in a given state

[1 Modelled as "internal transitions” labelled with the
pseudo-event do

© O. Nierstrasz — U. Berne Modeling Behaviour

ESE — W2002/2003 170.

Composite States

Composite states may depicted either as high-level or low-level
views.

"Stubbed transitions” indicate the presence of internal states:

lift receiver SV dialedNumber(number)
Idle | Dialing | CConnec’ring)

R
Initial and terminal substates are shown as black spots and
"bulls-eyes":
- " ™
Dialing digit(n)

n

number : String = "

Start \%(Partial Dial h @

@o / play dial fone] jigit(n) @m‘ry/number.append(n} [number.isValid()]
S /"dialedNumber'(number')/

© O. Nierstrasz — U. Berne Modeling Behaviour

ESE — W2002/2003

171.

Sending Events between Objects

VCR toggle Power

off | | On

toggle Power

/\ toggle Power

Remote Control
~ VCR button p ﬂ Power button
C TV mode /' | VCR mode)

TV button
Power button

I
toggle Power \/

Television toggle Power

Ooff | | On

toggle Power

® O. Nierstrasz — U. Berne

Modeling Behaviour

ESE — W2002/2003 172.

Concurrent Substates

g Taking Class
4 Incomplete N
lab done | | lab done
Lab1 Lab2 @
R
0%| Term Pr'ojec’rj project done @

'%[Final Test] pass @
- Y,
fail Failed
. Y

© O. Nierstrasz — U. Berne Modeling Behaviour

ESE — W2002/2003 173.

Branching and Merging

Entering concurrent states:

Entering a state with concurrent substates means that each of
the substates is entered concurrently (one logical thread per
substate).

Leaving concurrent states:

A labelled transition out of any of the substates terminates all
of the substates.

An unlabelled transition out of the overall state waits for all
substates to terminate.

© O. Nierstrasz — U. Berne Modeling Behaviour

ESE — W2002/2003 174.

Branching and Merging ...

An alternative notation for explicit branching and merging uses
a "synchronization bar":

4 I Jd
———————————————————
e
o %

© O. Nierstrasz — U. Berne Modeling Behaviour

ESE — W2002/2003 175.

History Indicator

A "history indicator” can be used to indicate that the current
composite state should be remembered upon an external
transition. To return to the saved state, a transition should
point explicitly to the history icon:

(H)=" resume
(A2)
o %

© O. Nierstrasz — U. Berne Modeling Behaviour

ESE — W2002/2003 176.

Creating and Destroying Objects

Creation and destruction of objects can be depicted by using
the start and terminal symbols as top-level states:

File

4 N

CreatedFile

lock

o
kWr'l’reable ReadOnly
unlock -

(.

_ destroy :

create

© O. Nierstrasz — U. Berne Modeling Behaviour

ESE — W2002/2003 177.

Using the Notations

The diagrams introduced here complement class and object
diagrams.

During Analysis:
[0 Use case, sequence and collaboration diagrams document

use cases and their scenarios during requirements
specification

During Design:
[0 Sequence and collaboration diagrams can be used to
document implementation scenarios or refine use case
scenarios

[1 State diagrams document internal behaviour of classes
and must be validated against the specified use cases

© O. Nierstrasz — U. Berne Modeling Behaviour

ESE — W2002/2003 178.

What you should know!

What is the purpose of a use case diagram?
Why do scenarios depict objects but not classes?
How can timing constraints be expressed in scenarios?

How do you specify and interpret message labels in a
scenario?

How do you use nested state diagrams to model object
behaviour?

What is the difference between “"external” and "internal”
transitions?

How can you model interaction between state diagrams for
several classes?

o 0O O GOO0go.

© O. Nierstrasz — U. Berne Modeling Behaviour

ESE — W2002/2003 179.

Can you answer the following questions?

Can a sequence diagram always be translated to an
collaboration diagram?

Or vice versa?

Why are arrows depicted with the message labels rather
than with links?

When should you use concurrent substates?

o OO 0O

© O. Nierstrasz — U. Berne Modeling Behaviour

ESE — W2002/2003 180.

/. User Interface Design

Overview:

0 Interface desigh models
Design principles
Information presentation
User Guidance
Evaluation

I I R R

Sources:

0 Software Engineering, I. Sommerville, Addison-Wesley,
Fifth Edn., 1996.

0 Software Engineering — A Practitioner’s Approach, R.
Pressman, Mc-Graw Hill, Third Edn., 1994.

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 181.

Interface Design Models

Four different models occur in HCT design:

1. The design model expresses the software design.
2. The user model describes the profile of the end users.
(i.e., novices vs. experts, cultural background, etc.)

3. The user’s model is the end users' perception of the
system.

4. The system image is the external manifestation of the
system (look and feel + documentation etc.)

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 182.

User Interface Design Principles

Principle Description

Use terms and concepts familiar to the
user.

Comparable operations should be activated
Consistency |in the same way. Commands and menus
should have the same format, etc.

If a command operates in a known way, the
Minimal surprise user should be able to predict the
operation of comparable commands.

Provide the user with visual and auditory
Feedback feedback, maintaining fwo-way
communication.

User familiarity

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 183.

Principle Description

Reduce the amount of information that
Memory load |must be remembered between actions.
Minimize the memory load.

Seek efficiency in dialogue, motion and
Efficiency | thought. Minimize keystrokes and mouse
movements.

Allow users to recover from their errors.
Recoverability |Include undo facilities, confirmation of
destructive actions, 'soft' deletes, etc.

Incorporate some form of context-
sensitive user guidance and assistance.

User guidance

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 184.

GUI Characteristics

Characteristic Description

Multiple windows allow different
Windows | information to be displayed
simultaneously on the user's screen.

Usually icons represent files (including
folders and applications), but they may

Lcons also stand for processes (e.qg., printer
drivers).
Menus bundle and organize commands
Menus (eliminating the need for a command
language).

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 185.

Characteristic Description

A pointing device such as a mouse is used
Pointing | for commands choices from a menu or
indicating items of interest in a window.

Graphical elements can be commands on
the same display.

Graphics

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 186.

GUI advantages

[0 They are easy to learn and use.

0 Users without experience can learn to use the
system quickly.

[0 The user may switch attention between tasks and
applications.

[0 Information remains visible in its own window when
attention is switched.

0 Fast, full-screen interaction is possible with immediate
access to the entire screen

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 187.

GUI (dis) advantages ...

But
0 A GUI is not automatically a good interface

0 Many software systems are never used due to poor
UT design

0 A poorly designed UT can cause a user to make
catastrophic errors

YOU HAVE CHRONIC
MAHTOBRIS CRAPPUS
BUT THAT'S NOT LJHY
YOU PUKED.

YOU HAVE TNTERFACE
POISONIMNG. YOU'LL
BE DEAD IN A LJEEK.

HAVE YOU BEEM
EXPOSED TO ANY
USER INTERFACES
CESIGNED BY
ENMGINEERS?

seolledames@acl com

q)us] o € 2002 United Feature Syndicats, Ine.

www_dilbert.com

Copyright @ 2882 United Feature Syndicate, Inc.

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 188.

Direct Manipulation

A direct manipulation interface presents the user with a model
of the information space which is modified by direct action.

Examples
0 forms (direct entry)
0 WYSIWYG document and graphics editors

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 189.

Direct Manipulation ...

Advantages

0 Users feel in controland are less likely to be intimidated
by the system

0 User learning time is relatively short
0 Users get immediate feedback on their actions
[0 mistakes can be quickly detected and corrected

Problems
0 Finding the right user metaphor may be difficult

0 It canbe hard to navigate efficiently in a large
information space.

0 It canbe complex to program and demanding to execute

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 190.

Interface Models

Desktop metaphor.

0 The model of an interface is a "desktop” with icons
representing files, cabinets, etc.

Control panel metaphor.

0 The model of an interface is a hardware control panel
with interface enftities including:

0 buttons, switches, menus, lights, displays, sliders etc.

o swme [eros | —

b

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 191.

Menu Systems

Menu systems allow users to make a selection from a list of
possibilities presented to them by the system by pointing and
clicking with a mouse, using cursor keys or by typing (part of)
the name of the selection.

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 192.

Menu Systems ...

Advantages

[0 Users don't need to remember command hames
Typing effort is minimal
User errors are trapped by the interface

Context-dependent help can be provided (based on the
current menu selec’riong)

Problems

0 Actions involving logical conjunction (and) or disjunction
(or) are awkward to represent

O If there are many choices, some menu structuring
facility must be used

[0 Experienced users find menus slower than command
language

I

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 193.

Menu Structuring

Scrolling menus
[0 The menu can be scrolled to reveal additional choices
0 Not practical if there is a very large number of choices

Hierarchical menus

0 Selecting a menuitem causes the menu to be replaced by
a sub-menu

Walking menus
[1 A menu selection causes another menu to be revealed

Associated control panels

0 When a menu item is selected, a control panel pops-up
with further options

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 194.

Command Interfaces

With a command language, the user types commands to give
instructions to the system

0 May be implemented using cheap terminals
[0 Easy to process using compiler techniques

0 Commands of arbitrary complexity can be created by
command combination

0 Concise interfaces requiring minimal typing can be
created

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003

195.

Command Interfaces ...

Advantages

O Allow experienced users to interact quickly with the

system
0 Commands can be scripted (1)

Problems

0 Users have to learn and remember a command language
0 Not suitable for occasional or inexperienced users
0 An error detection and recovery system is required

0 Typing ability is required

® O. Nierstrasz — U. Berne

User Interface Design

ESE — W2002/2003 196.

Information Presentation Factors

0 Is the user interested in precise information or data
relationships?

0 How quickly do information values change?

Must the change be indicated immediately?

Must the user take some action in response to a change?
Is there a direct manipulation interface?

Is the information textual or numeric? Are relative
values important?

1 OO0 O

4000 —

3000 —

Jan Feb Mar April May June
2842 02851 31642789 1273 2835 2000

1000

0

Jan Feb Mar April May June

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 197.

Analogue vs. Digital Presentation

Digital presentation
0 Compact — takes up little screen space
O Precise values can be communicated

Analogue presentation
0 Easier to get an 'at a glance’ impression of a value
[0 Possible to show relative values
0 Easier to see exceptional data values

Pressure Temperature
0 00 200 00 400 0 25 50 75 U0

©lan Sommerville 1995

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 198.

Colour Use Guidelines

Colour can help the user understand complex information
structures.

O Don’t use (only) colour to communicate meaning!

0 Open to misinterpretation (colour-blindness, cultural
differences ...)

0 Design for monochrome then add colour
[0 Use colour coding to support user tasks
O highlight exceptional events
[0 allow users to control colour coding
Use colour change to show status change
Don't use too many colours
0 Avoid colour pairings which clash
[0 Use colour coding consistently

1 O

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 199.

User Guidance

The user guidance system s integrated with the user interface
to help users when they need information about the system or
when they make some kind of error.

User guidance covers:
[0 System messages, including error messages
[0 Documentation provided for users
0 On-line help

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 200.

Design Factors in Message Wording

The user guidance system should be aware of
Context |what the user is doing and should adjust the
output message to the current context.

The user guidance system should provide both
Experience|longer, explanatory messages for beginners, and
more terse messages for experienced users.

Messages should be tailored to the user’s skills
as well as their experience.

I.e., depending on the terminology which is
familiar to the reader.

Skill level

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 201.

Messages should be positive rather than
Style | negative. They should never be insulting or try
to be funny.

Wherever possible, the designer of messages
should be familiar with the culture of the
Culture |country (or environment) where the system is
used. (A suitable message for one culture might
be unacceptable in another!)

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 202.

Error Message Guidelines

[]

Speak the user’s language
Give constructive advice for recovering from the error

Indicate negative consequences of the error (e.q.,
possibly corrupted files)

Give an audible or visual cue
Don't make the user feel guilty!

1 O

(1 [

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 203.

Good and Bad Error Messages

The application “Convert To GIF” has crashed {Unknown floating
point instruction).

Morton CrashGuard recommends that you quit the application,
butifyou have unsaved data, try to fix the crash.

Try To Fix | | _Restart | |[_QuitApplication ||

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 204.

Help System Design

Help? means"Please help. I want information.”
Help! means"HELP. I'm in trouble."

Help information
0 Should not simply be an on-line manual

[Screens or windows don't map well onto paper pages

0 Dynamic characteristics of display can improve
information presentation

O but people are not so good at reading screens as they
are text.

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 205.

Help system use

O Multiple entry points should be provided

[the user should be able to get help from different
places

0 The help system should indicate where the user is
positioned

O Navigation and traversal facilities must be provided

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003

206.

User Interface Evaluation

User interface design should be evaluated to assess its

suitability and usability.

® O. Nierstrasz — U. Berne

User Interface Design

ESE — W2002/2003 207.

Usability attributes

Attribute Description
| carnabilit How long does it take a new user to
Y become productive with the system?
. |How well does the system response
Speed of operation match the user's work practice?
Robustness How folerant is the system of user
error?
Recoverability How good is the system at recovering
from user errors?
- How closely is the system tied to a
Adaptability single model of work?

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 208.

What you should know!

What models are important to keep in mind in UT design?
What is the principle of minimal surprise?

What problems arise in designing a good direct manipulation
interface?

What are the trade-offs between menu systems and
command languages?

How can you use colour to improve a UI?
In what way can a help system be context sensitive?

OO O OO0

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003 209.

Can you answer the following questions?

Why is it important to offer "keyboard short-cuts” for
equivalent mouse actions?

How would you present the current load on the system?
Over time?

What is the worst UT you every used? Which design
principles did it violate?

What's the worst web site you've used recently? How would
you fix it?

What's good or bad about the MS-Word help system?

o 0O O O 0O

© O. Nierstrasz — U. Berne User Interface Design

ESE — W2002/2003

210.

8. Software Validation

Overview:
0 Reliability, Failures and Faults
Fault Tolerance

[]
0 Software Testing: Black box and white box testing
[]

Static Verification

Source:

0 Software Engineering, I. Sommerville, Addison-Wesley,

Fifth Edn., 1996.

® O. Nierstrasz — U. Berne

Software Validation

ESE — W2002/2003 211.

Software Reliability, Failures and Faults

The reliability of a software system is a measure of how well it
provides the services expected by its users, expressed in
terms of software failures.

[1 A software failure is an execution event where the
software behaves in an unexpected or undesirable way.

0 A software fault is an erroneous portion of a software
system which may cause failures to occur if it isrunina
particular state, or with particular inputs.

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 212.

Kinds of failures

Failure class Description
Transient Occurs only with certain inputs
Permanent Occurs with all inputs

System can recover without operator
iIntfervention

Operator intervention is needed to
recover from failure

Non-corrupting |Failure does not corrupt data

Recoverable

Unrecoverable

Corrupting Failure corrupts system data

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 213.

Programming for Reliability

Fault avoidance:

[development techniques to reduce the number of faults
In a system

Fault tolerance:

[0 developing programs that will operate despite the
presence of faults

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 214.

Fault Avoidance

Fault avoidance depends on:
1. A precise system specification (preferably formal)

2. Software design based on information hiding and
encapsulation

3. Extensive validation reviews during the development
process

4. Anorganizational guality philosophy to drive the software
process

5. Planned system testing to expose faults and assess
reliability

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 215.

Common Sources of Software Faults

Several features of programming languages and systems are
common sources of faults in software systems:

0 Goto statements and other unstructured programming
constructs make programs hard to understand, reason
about and modify.

[0 Use structured programming constructs

O Floating point numbers are inherently imprecise and may
lead to invalid comparisons.

[Fixed point numbers are safer for exact comparisons

0 Pointers are dangerous because of aliasing, and the risk
of corrupting memory

0 Pointer usage should be confined to abstract data
type implementations

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 216.

Common Sources of Software Faults ...

(0 Parallelism is dangerous because timing differences can
affect overall program behaviour in hard-to-predict
ways.

[0 Minimize inter-process dependencies

[0 Recursion can lead to convoluted logic, and may exhaust
(stack) memory.

[0 Use recursion in a disciplined way, within a controlled
scope

0 Interruptsforce transfer of control independent of the
current context, and may cause a critical operation to be
terminated.

0 Minimize the use of interrupts; prefer disciplined
exceptions

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 217.

Fault Tolerance

A fault-tolerant system must carry out four activities:

1.
2.

3.

Failure detection: detect that the system has reached a
particular state or will result in a system failure

Dama%e assessment: detect which parts of the system
state have been affected by the failure

Fault recovery: restore the state to a known, "safe”
state (either by correcting the damaged state, or backing
up to a previous, safe state)

Fault repair: modify the system so the fault does not
recur (1)

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 218.

Approaches to Fault Tolerance

N-version Programming:

Multiple versions of the software system are implemented
independently by different teams.

The final system:
0 runs all the versions in parallel,
0 compares their results using a voting system, and

0 rejects inconsistent outputs. (At least three versions
should be availablel)

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 219.

Approaches to Fault Tolerance ...

Recovery Blocks:

A finer-grained approach in which a program unit contains a
test to check for failure, and alternative code to back up and
try in case of failure.

0 alternatives are executed in sequence, not in parallel
0 the failure test is independent (not by voting)

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 220.

Defensive Programming

Failure detection:

0 Use the type system as much as possible to ensure that
state variables do not get assigned invalid values.

0 Use assertions to detect failures and raise exceptions.
Explicitly state and check all invariants for abstract
data types, and pre- and post-conditions of procedures
as assertions. Use exception handlers to recover from
failures.

0 Use damage assessment procedures, where appropriate,
to assess what parts of the state have been affected,
before attempting to fix the damage.

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 221.

Defensive Programming ...

Fault recovery:

0 Backward recovery: backup to a previous, consistent
state

O Forward recovery: make use of redundant information to
reconstruct a consistent state from corrupted data

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 222.

Verification and Validation

Verification:
0 Are we building the product right?

—i.e., does it conform to specs?

Validation:
0 Are we building the right product?

—i.e., does it meet expectations?

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 223.

Verification and Validation ...

Static
T

verification
Requirements| | High-level Formal Detailed
specification design specifications design

' T
Prototype | (v[c)z;:' Zaag‘r:'iacn '

Static technigues include program inspection, analysis and
formal verification.

Dynamic technigues include statistical testing and defect
testing ...

Program

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 224.

The Testing Process

1. Unit testing:

0 Individual (stand-alone) components are tested to
ensure that they operate correctly.

2. Module testing:

0 A collection of related components (a module) is
tested as a group.

3. Sub-system testing:

0 The phase tests a set of modules integrated as a sub-
system. Since the most common problems in large
systems arise from sub-system interface
mismatches, this phase focuses on testing these
interfaces.

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 225.

The Testing Process ...

4. System testing:

0 This phase concentrates on (i) de’rec‘ring errors
resulting from unexpected interactions between sub-
systems, and (ii) validating that the complete
systems fulfils functional and non-functional
requirements.

5. Acceptance testing (alpha/beta testing):

0 The system is tested with real rather than simulated
data.

Testing is iterative! Regression testing is performed when
defects are repaired.

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 226.

Regression testing

Regression testing means testing that everything that used to
work still works after changes are made to the system!

0 tests must be deterministic and repeatable
0 should test "all” functionality
[every interface
all boundary situations
every feature
every line of code
everything that can conceivably go wrong!

I I R R

It costs extra work to define tests up front, but they pay of f
in debugging & maintenance!

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 227.

Test Planning

The preparation of the test plan should begin when the system
requirements are formulated, and the plan should be developed
in detail as the software is designed.

System
specification

Detailed
design

System design

Requirements
specification

Acceptance _ System Sub-system Module and unit
test plan integration integration code and test
test plan test plan
Service Acceptance System Sub-system
test integration test integration test

The plan should be revised regularly, and tests should be
repeated and extended where the software process iterates.

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 228.

Top-down Testing

0 Start with sub-systems, where modules are represented
by "stubs”

Similarly test modules, representing functions as stubs
Coding and testing are carried out as a single activity

Design errors can be detected early on, avoiding
expensive redesign

0 Always have a running (if limited) system!

I I

0 BUT: may be impractical for stubs to simulate complex
components

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 229.

Bottom-up Testing

[]

Start by testing units and modules

Test drivers must be written to exercise lower-level
components

0 Works well for reusable components to be shared with
other projects

[]

0 BUT: pure bottom-up testing will not uncover
architectural faults till late in the software process

;'ypica//y a combination of top-down and bottom-up testing is
est.

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 230.

Defect Testing

Tests are designed to reveal the presence of defects in the
system.

Testing should, in principle, be exhaustive, but in practice can
only be representative.

Test data are inputs devised to test the system.

Test cases are input/output specifications for a particular
function being tested.

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 231

Defect Testing ...

Petschenik (1985) proposes:

1. "Testing a system's capabilities is more important than
testing its components.”

0 Choose test cases that will identify situations that
may prevent users from doing their job.

2. "Testing old capabilities is more important than testing
new capabilities.”

0 Always perform regression tests when the system is
modified.

3. "Testing typical situations is more important than testing
boundary value cases."

0 If resources are limited, focus on typical usage
patterns.

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 232.

Functional (black box) testing

Functional testing treats a component as a "black box" whose
behaviour can be determined only by studying its inputs and
outputs.

Inputs causing

Input se anomalous
behaviour
Component
Outputs
revealing the
Output S presence of
defects

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 233.

Coverage Criteria

Test cases are derived from the external specification of the
component and should cover:

0 all exceptions

O all data ranges (incl. invalid) generating different
classes of output
a

| boundary values

[]

Test cases can be derived from a component's interface, by
assuming that the component will behave similarly for all
members of an equivalence partition ...

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 234.

Equivalence partitioning

private int[] elenents_;
public boolean find(int key) { ... }

Check input partitions:
0 Do the inputs fulfil the pre-conditions?
[0 is the array sorted, non-empty ...
[0 Is the key in the array?
[leads to (at least) 2x2 equivalence classes
Check boundary conditions:
0 Isthe array of length 1?
0 Is the key at the start or end of the array?

[0 leads to further subdivisions (not all combinations
make sense)

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 235.

Test Cases and Test Data

Generate test data that cover all meaningful equivalence
partitions.

Test Cases Test Data
Array length O key = 17, elements = { }
Array not sorted key = 17, elements = { 33, 20, 17, 18 }
Array size 1, key in array key = 17, elements = { 17 }
Array size 1, key not in array key = O, elements = { 17 }

Array size > 1, key is first element |key = 17, elements = {17, 18, 20, 33 }
Array size > 1, key is last element key = 33, elements = { 17, 18, 20, 33 }
Array size > 1, key is in middle key = 20, elements = { 17, 18, 20, 33 }
Array size > 1, key not in array key = 50, elements = { 17, 18, 20, 33 }

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 236.

Structural (white box) Testing

Structural testing

Treats a component :
as a "white box" or Derive test data Test

“glass box" whose data
structure can be
examined to

Run tests

generate test cases.

Component
code
Derive test cases to
maximize coverage of
that structure, yet Test
minimize number of Produce output outputs
test cases.

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 237.

Coverage criteria

every statement at least once

all portions of control flow at least once

all possible values of compound conditions at least once
all portions of data flow at least once

for all loops L, with n allowable passes:
(i) skip the loop;

(ii) 1 pass through the loop

(iii) 2 passes

(iv) m passes where 2<mz<n

(v) n-1,n, n+l passes

N I o I B I B

Path testing is a white-box strategy which exercises every
independent execution path through a component.

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 238.

Binary Search Method

publ i ¢ bool ean find(int key)
throws assertionViolation { [l (1)
assert(isSorted()); // pre-condition
I f (isEmpty()) { return false; }
Int bottom = O;
Int top = elenents .| ength-1;
Int [astlndex = (bottomttop)/?2;
Int md,
bool ean found = key == elenents [l astlndex];

while ((bottom<=top) && !'found) { [/ (2) (3)
assert(bottom<= top); // loop Invariant
md = (bottom+ top) / 2;
found = key == elenments [md];

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 239,
I f (found) { [l (5)
| ast I ndex = md; [l (6)
} else {
If (elements [md] < key) { [l (7)
bottom=md + 1; [(8)
} else { top =md - 1; } [l (9)
} /] loop variant decreases. top - bottom
} [l (4)
assert((key == elenents [lastindex]) || !found);

/| post-condition
return found;

® O. Nierstrasz — U. Berne

Software Validation

ESE — W2002/2003 240.

Path Testing

Test cases should be chosen to cover all independent paths
through a routine:

while (bottom <= top

9., {1,2,12,13},
{1,23 578101

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 241.

Basis Path Testing: The Technique

See [Press92a]
1. Draw a control flow graph

Nodes represent nonbranching statements; edges
represent control flow.

g 2=

| f-then-el se whi | e case- of and / or

2. Compute the Cyclomatic Complexity
= #(edges) - #(nodes) + 2 = number of conditions + 1

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 242.

Basis Path Testing ...

3. Determine a set of independent paths

Several possibilities. Upper bound = Cyclomatic
Complexity

4. Prepare test cases that force each of these paths
Choose values for all variables that control the branches.

Predict the result in ferms of values and/or exceptions
raised

B. Write test driver for each test case

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 243.

Condition Testing

For complex boolean expressions, Basis Path Testing is not
enough! Input values {x = 3, y=4} and {x = 4, y=3} will exercise
all paths, but consider {x = 3, y=3} ...

public int abs (int x, int vy)

[0 Condition throws assertionViolation {
Tesf/'ng int result;
exercises all e L .,
IOQICG! COhdIT.IOI’\S | else |
O Domain Tesfmg: result =y - x;
for each }

assert (result > 0); // post-condition

occurrence of <,
return result:

<=,=,¢>,> 3

tests }

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 244,

Statistical Testing

The objective of statistical testing is to determine the
reliability of the software, rather than to discover faults.

Reliability may be expressed as:
[probability of failure on demand
0 i.e., for safety-critical systems
0 rate of failure occurrence
O i.e., #failures/time unit
[0 mean time to failure
0 i.e., for a stable system
O availability
0 i.e., fraction of time, for e.g. telecom systems

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 245.

Statistical Testing ...

Tests are designed to reflect the frequency of actual user
inputs and, after running the tests, an estimate of the
operational reliability of the system can be made:

1. Determine usage patterns of the system (classes of input
and probabilities)

2. Select or generate test data corresponding to these
patterns

Apply the test cases, recording execution time to failure

4. Based on a statistically significant number of test runs,
compute reliability

w

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 246.

Static Verification

Program Inspections:
0 Small team systematically checks program code
0 Inspection checklist often drives this activity

0 e.g., "Are dll invariants, pre- and post-conditions
checked?” ...

Static Program Analysers:
0 Complements compiler to check for common errors
[e.g., variable use before initialization

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003

247.

Static Verification ...

Mathematically-based Verification:

[0 Use mathematical reasoning to demonstrate that

program meets specification

0 e.g., that invariants are not violated, that loops

terminate, etc.

Cleanroom Software Development:

0 Systematically use:
(i) incremental development,
(ii) formal specification,
(iii) mathematical verification, and
(iv) statistical testing

® O. Nierstrasz — U. Berne

Software Validation

ESE — W2002/2003 248.

When to Stop?

When are we done testing? When do we have enough tests?

Cynical Answers (sad but true)

0 You're never done: each run of the system is a new test

0 Each bug-fix should be accompanied by a new
regression test

0 You're done when you are out of time/money

0 Include testing in the project plan AND DO NOT
GIVE IN TO PRESSURE

[0 ...in the long run, tests save time

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003

249.

When to Stop? ...
Statistical Testing

0 Test until you've reduced the failure rate to fall below

the risk threshold

[0 Testing is like an insurance company calculating risks

A

Errors per
test hour

Execution Time

® O. Nierstrasz — U. Berne

Software Validation

ESE — W2002/2003 250.

What you should know!

What is the difference between a failure and a fault?
What kinds of failure classes are important?

How can a software system be made fault-tolerant?

How do assertions help to make software more reliable?
What are the goals of software validation and verification?
What is the difference between test cases and test data?
How can you develop test cases for your programs?

What is the goal of path testing?

COOoOoOoOOonOnQ

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 251

Can you answer the following questions?

[J When would you combine top-down testing with bottom-up
testing?

[J When would you combine black-box testing with white-box
testing?

[J Is it acceptable to deliver a system that is not 1007
reliable?

® O. Nierstrasz — U. Berne Software Validation

ESE — W2002/2003 252.

9. Project Management

Overview:
0 Risk management
0 Scoping and estimation, planning and scheduling
0 Dealing with delays
[0 Staffing, directing, tfeamwork

Sources:

0 Software Engineering, I. Sommerville, Addison-Wesley,
Sixth Edn., 2000.

0 Software Engineering — A Practitioner's Approach, R.
Pressman, Mc-Graw Hill, Third Edn., 1994.

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 253.

Recommended Reading

[0 The Mythical Man-Month, F. Brooks, Addison-Wesley,
1975

Object Lessons, T. Love, SIGS Books, 1993

Succeeding with Objects: Decision Frameworks for
Project Management, A. Goldberg and K. Rubin, Addison-
Wesley, 1995

O Extreme Programming Explained: Embrace Change, Kent
Beck, Addison Wesley, 1999

] [

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 254,

Why Project Management?

Almost all software products are obtained via projects.
(as opposed to manufactured products)

Project Concern = Deliver on time and within budget
A

NI € || it Resrces

The Project Team is the
primary Resource!

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 255.

What is Project Management?

Project Management = Plan the work and work the plan

Management Functions

[0 Planning: Estimate and schedule resources
Organization: Who does what
Staffing: Recruiting and motivating personnel
Directing: Ensure team acts as a whole

Monitoring (Controlling): Detect plan deviations +
corrective actions

I I R R

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 256.

Risk Management

If you don't actively attack risks, they will actively
attack you.

— Tom Gilb

Project risks
[0 budgeft, schedule, resources, size, personnel, morale

Technical risks
0 implementation technology, verification, maintenance

Business risks
[0 market, sales, management, commitment ...

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 257.

Risk Management ..

Management must:
0 identify risks as early as possible
[0 assess whether risks are acceptable
0 take appropriate action to mitigate and manage risks
[] e.g., training, prototyping, iteration, ...
O monitor risks throughout the project

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 258.

Risk Management Techniques

Risk I'tems Risk Management Techniques

Personnel shortfalls |Staffing with top talent; team
building; cross-training; pre-
scheduling key people
Unrealistic schedules |Detailed multi-source cost &

and budgets schedule estimation; incremental
development, reuse; re-scoping

Developing the wrong |User-surveys; prototyping; early
software functions |users's manuals

Continuing stream of |High change threshold; information
requirements changes | hiding; incremental development

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 259.

Risk I'tems Risk Management Techniques
Real time Simulation; benchmarking; modeling;
performance prototyping; instrumentation; tuning
shortfalls

Straining computer | Technical analysis; cost-benefit
science capabilities |analysis; prototyping; reference
checking

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 260.

Focus on Scope

For decades, programmers have been whining, "The
customers can't tell us what they want. When we give
them what they say they want, they don't like it."” Get
over it. This is an absolute truth of software
development. The requirements are never clear at
first. Customers can never tell you exactly what they
want.

— Kent Beck

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003

261.

Myth: Scope and Objectives

Myth

"A general statement of objectives is enough to start

coding.”

Reality

Poor up-front definition is the major cause of project

failure.

® O. Nierstrasz — U. Berne

Project Management

ESE — W2002/2003

262.

Scope and Objectives

In order to plan, you must set clear scope & objectives
[Objectivesidentify the general goals of the project, not

how they will be achieved.

0 Scope identifies the primary functions that the
software is to accomplish, and bounds these functions in

a quantitative manner.

Goals must be realistic and measurable

Constraints, performance, reliability must be explicitly stated

Customer must set priorities

® O. Nierstrasz — U. Berne

Project Management

ESE — W2002/2003 263.

Estimation Strategies

These strategies are simple but risky:

Expert | Consult experts and compare estimates
judgement |0 cheap, but unreliable

Compare with other projects in the same

application domain

O limited applicability

Parkinson's | Work expands to fill the time available
Law 0 pessimistic management strategy

Estimation by
analogy

You do what you can with the budget available

Pricing fo win 0 requires trust between parties

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 264.

Estimation Techniques

"Decomposition” and "Algorithmic cost modeling” are used
together

Estimate costs for components + integration

Decomposition

[0 top-down or bottom-up estimation

Exploit database of historical facts to map
Algorithmic |size on costs

cost modeling

0 requires correlation data

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003

265.

Measurement-based Estimation

A. Measure

Develop a system model
and measure its size

B. Estimate

C. Interpret

Adapt the effort with
respect to a specific
development project plan

Determine the effort with
respect to an empirical
database of measurements
from similar projects

® O. Nierstrasz — U. Berne

Project Management

ESE — W2002/2003 266.

Estimation and Commitment

Example: The XP process

1.

ok w

a. Customers write stories and
b. Programmers estimate stories
0 else ask the customers to split/rewrite stories

. Programmers measure the team load factor, the ratio of

ideal programming time to the calendar
Customers sort stories by priority
Programmers sort stories by risk

a. Customers pick date, programmers calculate budget,
customers pick stories adding up to that number, or

b. Customers pick stories, programmers calculate date

(customers complain, programmers ask to reduce scope,
customers complain some more but reduce scope anyway)

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 267.

Planning and Scheduling

Good planning depends largely on project manager’s intuition
and experience!

O Split project into tasks.

[0 Tasks into subtasks etc.
0 For each task, estimate the time.

0 Define tasks small enough for reliable estimation.
O Significant tasks should end with a milestone.

0 Milestone = A verifiable goal that must be met after
task completion

[Clear unambiguous milestones are a necessity!
("80% coding finished" is a meaningless statement)

0 Monitor progress via milestones

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 268.

Planning and Scheduling ...

0 Define dependencies between project tasks

0 Total time depends on longest (= critical) path in
activity graph
O Minimize task dependencies to avoid delays

0 Organize tasks concurrently to make optimal use of
workforce

Planning is iterative
O monitor and revise schedules during the project!

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 269.

Myth: Deliverables and Milestones

Myth

"The only deliverable for a successful project is the
working program.”

Reality

Documentation of all aspects of software development
are needed to ensure maintainability.

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 270.

Deliverables and Milestones

Project deliverables are results that are delivered to the
customer.

0 E.g.
O initial requirements document
[1 UI prototype
0 architecture specification

0 Milestones and deliverables help to monitor progress
0 Should be scheduled roughly every 2-3 weeks

NB: Deliverables must evolve as the project progresses!

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 271

Example: Task Durations and Dependencies

Task Duration (days) | Dependencies

T1 8

T2 15

T3 15 T1
T4 10

T5 10 T2, T4
T6 5 T1, T2
T7 20 T1
T8 25 T4
T9 15 T3, T6
T10 15 15, T7
T11 7 T9
T12 10 T11

[J What is the minimum total duration of this project?

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 272.

Pert Chart: Activity Network

14/7/94 15 days

25/8/94

19/9/94

©@lan Sommerville 1995

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 273.

Gantt Chart: Activity Timeline

4/7 11/7 18/7 25/7 1/8 8/8 15/8 22/8 29/8 5/9 12/9 19/9
‘ Starl

T4 |
SOl
r2 |

M1 @

17 | l

T3 | |

MSs : :
T8
m3 4]
M2
T6 |
I's
¢ M4
T9 | |
M7 '
Ti0 [| |
’]VIlﬁ
T11
M8
ri2
’ Finish

©lan Sommerville 1995

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003

274.

Gantt Chart: Staff Allocation

FIM|A|M JIA[S|O FIMIAIM|J|J|A

| | | | | |
. |
Tobias 1| 2. Design (3.1 3.2. Parser 5. Manual 7 |
| | |
Marta 1| 2. Design 3.3. Code Gen. 4. Integrate&Test | 7 :

I I I
| |
Leo | 3.3. Code Gen. 4. Integrate&Test |
| | | |
Ryan : 3.1 3.2. Parser 4. Integrate&Test :
: | ' ' |
Sylvia | 3.1| 3.2 Parser 4. Integrate&Test |
| | | | | |
Laura | | | | 5. Manual |
| | | | : |

Occupied time | | Free time | |

(Overall tasks such as reviewing, reporting, ...

incorporate)

are difficult to

® O. Nierstrasz — U. Berne

Project Management

ESE — W2002/2003 275.

Myth: Delays

Myth

"I'f we get behind schedule, we can add more
programmers and catch up.”

Reality
Adding more people typically slows a project down.

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 276.

Scheduling problems

0 Estimating the difficul’rz of problems and the cost of
developing a solution is hard

O Productivity is not proportional to the number of people
working on a task

0 Adding people to a late project makes it later due to
communication overhead

0 The unexpected always happens. Always allow
contingency in planning

0 Cutting back in testing and reviewing is a recipe for
disaster

0 Working overnight? Only short term benefits!

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 277.

Planning under uncertainty

O State clearly what you know and don't know
0 State clearly what you will do to eliminate unknowns
[0 Make sure that all early milestones can be met

O Plan to replan

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003

278.

Dealing with Delays

Spot potential delays as soon as possible
... then you have more time to recover

How to spot?
0 Earned value analysis
0 planned time is the project budget

0 time of a completed task is credited to the project

budget

® O. Nierstrasz — U. Berne

Project Management

ESE — W2002/2003 279.

Dealing with Delays ...

How to recover?
A combination of following 3 actions
0 Adding senior staff for well-specified tasks

O outside critical path to avoid communication
overhead

O Prioritize requirements and deliver incrementally
0 deliver most important functionality on time

[0 testing remains a priority (even if customer
disagrees)

[0 Extend the deadline

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003

280.

Gantt Chart: Slip Line

Visualize slippage

[0 Shade time line = portion of task completed
0 Draw a slip line at current date, connecting endpoints of

the shaded areas

0 bending to the right = ahead of schedule

(1 to the left = behind schedule

JIFIMIAIM[J|J|A|S|OJN|D|J|FIM|AM|J|J]|A
1.Start] ! !
2.Design | L3 :
3.Implementation | |
3.1.build scanner K |
i

3.2.build parser

4.Integrate & Test
5.Write manual

| |

| |

| |

| |
a/*lread of schélzdu/e

! |

f |

6. Reviewing

|
|
|
|

3.3. build code generator :
|
|
|
|

7. Finish

® O. Nierstrasz — U. Berne

Project Management

ESE — W2002/2003 281

Timeline Chart

Visualise slippage evolution

0 downward lines represent planned completion time as
they vary in current time

0 bullets at the end of a line represent completed tasks

Planned Time

D

MlJ|J|Aa|s|o

J|F

lesred z'g | =z

SWIL [eNPY | =

lorespuab apoo £'¢ |«

____{_ _____
|
|
Today

|
'behinld schedule

I
_______'_______

ahedd of
schedule

______ .

A/ N|O|S|V|[C|C|IN|>

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 282.

Slip Line vs. Timeline

Monitors current slip status of project tasks
0 many tasks

Slip Line O only for 1 point in time

0 include a few slip lines from the past to
illustrate evolution

Monitors how the slip status of project tasks
evolves

0 few tasks

[crossing lines quickly clutter the figure

O colours can be used to show more tasks

0 complete time scale

Timeline

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 283.

Software Teams

Team organisation

[0 Teams should be relatively small (< 8 members)

0 minimize communication overhead

team quality standard can be developed
members can work closely together
programs are regarded as team property ("egoless
programming”)
0 continuity can be maintained if members leave
Break big projects down into multiple smaller projects

Small teams may be organised in an informal, democratic
way

O Chief programmer teams try to make the most effective
use of skills and experience

1 OO O

] [

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 284.

Chief Programmer Teams

[0 Consist of a kernel of specialists helped by others as
required

0 chief programmer takes full responsibility for
design, programming, testing and installation of
system

O backup programmer keeps track of CP's work and
develops test cases

librarian manages all information

others may include: project administrator, toolsmith,
documentation editor, language/system expert,
tester, and support programmers

(1 [

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 285.

Chief Programmer Teams ...

0 Reportedly successful but problems are:
O Difficult to find talented chief programmers
0 Disrupting to normal organisational structures

[0 De-motivating for those who are not chief
programmers

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 286.

Directing Teams

Managers serve their team
[0 Managers ensure that team has the necessary
information and resources

"The manager’s function is not to make people work, it
is to make it possible for people to work”

— Tom DeMarco

Responsibility demands authority
[0 Managers must delegate
0 Trust your own people and they will trust you.

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003

287.

Directing Teams ...

Managers manage

0 Managers cannot perform tasks on the critical path
0 Especially difficult for technical managers

Developers control deadlines

0 A manager cannot meet a deadline to which the

developers have not agreed

® O. Nierstrasz — U. Berne

Project Management

ESE — W2002/2003 288.

What you should know!

How can prototyping help to reduce risk in a project?
What are milestones, and why are they important?

What can you learn from an activity network? An activity
timeline?

What's the difference between the 0/100; the 50/50 and
the milestone technique for calculating the earned value.
Why should programming teams have no more than about 8
members?

O 0O 0OO0On

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 289.

Can you answer these questions?

What will happen if the developers, not the customers, set
the project priorities?

What is a good way to measure the size of a project (based
on requirements alone)?

When should you sign a contract with the customer?
Would you consider bending slip lines as a good sign or a bad
sigh? Why?

How would you select and organize the perfect software
development team?

O Oogo O O

© O. Nierstrasz — U. Berne Project Management

ESE — W2002/2003 290.

10. Software Architecture

Overview:
O What is Software Architecture?
0 Coupling and Cohesion
0 Architectural styles:
[Layered, Client-Server, Blackboard, Dataflow, ...
0 UML diagrams for architectures

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 291

Sources:

0 Software Engineering, I. Sommerville, Addison-Wesley,
Fifth Edn., 1996.

0 Objects, Components and Frameworks with UML, D.
D'Souza, A. Wills, Addison-Wesley, 1999

O Pattern-Oriented Software Architecture — A System
of Patterns, F. Buschmann, et al., John Wiley, 1996

0 Software Architecture: Perspectives on an Emerging
Discipline, M. Shaw, D. Garlan, Prentice-Hall, 1996

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 292.

What is Software Architecture?

A neat-looking drawing of some boxes, circles, and
lines, laid out nicely in Powerpoint or Word, does not
constitute an architecture.

— D’'Souza & Wills

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 293.

What is Software Architecture?

The architecture of a system consists of:
O the structure(s) of its parts

0 including design-time, test-time, and run-time
hardware and software parts

O the externally visible properties of those parts
0 modules with interfaces, hardware units, objects
O the relationships and constraints between them

in other words:

0 The set of design decisions about any system (or
subsystem) that keeps its implementors and maintainers
from exercising "needless creativity".

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 294.

How Architecture Drives Implementation

[0 Use a 3-tier client-server architecture: all business
logic must be in the middle tier, presentation and
dialogue on the client, and data services on the server;
that way you can scale the application server processing
independently of persistent store.

[0 Use Corba for all distribution, using Corba event
channels for notification and the Corba relationship
service; do not use the Corba messaging service as it is
not yet mature.

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 295.

How Architecture Drives Implementation ...

0 Use Collection Galore's collections for representing any
collections; by default use their List class, or document
your reason otherwise.

0 Use Model-View-Controller with an explicit

Appl i cati onModel object to connect any UT to the
business logic and objects.

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 296.

Sub-systems, Modules and Components

0 A sub-systemis a system in its own right whose
operation is independent of the services provided by
other sub-systems.

0 A module is a system component that provides services
to other components but would not normally be
considered as a separate system.

0 A component is an independently deliverable unit of
software that encapsulates its desigh and
implementation and of fers interfaces to the out-side, by
which it may be composed with other components to
form a larger whole.

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 297.

Cohesion

Cohesion is a measure of how well the parts of a component
"belong together”.

[Cohesion is weak if elements are bundled simply because
they perform similar or related functions (e.g.,
java.lang.Math).

0 Cohesion is strong if all parts are needed for the
functioning of other parts (e.g. java.lang.String).

0 Strong cohesion promotes maintainability and
adapfabi/i?/ by /imiting the scope of changes to small
numbers of components.

There are many definitions and interpretations of cohesion.
Most attempts to formally define it are inadequate!

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 298.

Coupling

Coupling is a measure of the strength of the interconnections
between system components.

0 Coupling is tight between components if they depend
heavily on one another, (e.g., there is a lot of
communication between them).

0 Coupling is loose if there are few dependencies between
components.

O Loose coupling promotes maintainability and adaptability
since changes in one component are less likely to affect
others.

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 299.

Tight Coupling

Module A Module B

Module C Module D

Shared data
area

©@lan Sommerville 1995

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 300.

Loose Coupling

Module A

A's data

Module B Module C

B’s data C’s data

Module D

D’s data

©@lan Sommerville 1995

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 301.

Architectural Parallels

(1 Architects are the technical interface between the
customer and the contractor building the system

0 A bad architectural design for a building cannot be
rescued by good construction — the same is true for
software

0 There are specialized types of building and software
architects

0 There are schools or styles of building and software
architecture

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 302.

Architectural Styles

An architectural style defines a family of systems in
terms of a pattern of structural organization. More
specifically, an architectural style defines a
vocabulary of components and connector types, and a
set of constraints on how they can be combined.

— Shaw and Garlan

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 303.

Layered Architectures

A layered architecture organises a system into a set of layers
each of which provide a set of services to the layer "above”.

0 Normally layers are constrained so elements only see
—other elements in the same layer, or
—elements of the layer below

Callbacks may be used to communicate to higher layers

Supports the incremental development of sub-systems
in different layers.

0 When a layer interface changes, only the adjacent
layer is affected

1 [

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 304.

Abstract Machine Model

Version management

Object management

Database system

Operating
system

©lan Sommerville 1995

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 305.

OSI Reference Model

7 Application Application

6 Presentation Presentation

5 Session Session

4 Transport Transport

3 Network Network Network

2 Data link Data link Data link

| Physical Physical Physical
Communications medium

©lan Sommerville 1995

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 306.

Client-Server Architectures

A client-server architecture distributes application logic and
services respectively to a number of client and server sub-
systems, each potentially running on a different machine and
communicating through the network (e.g, by RPC).

Advantages
0 Distribution of data is straightforward

0 Makes effective use of networked systems. May require
cheaper hardware

[0 Easy to add new servers or upgrade existing servers

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 307.

Client-Server Architectures ...

Disadvantages

0 No shared data modelso sub-systems use different data
organisation.

Data interchange may be inefficient
Redundant management in each server

May require a central registry of hames and services —
it may be hard to find out what servers and services are
available

1 [

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 308.

Client-Server Architectures

Client 1 Client 2 Client 3 Client4

Wide-bandwidth network

Catalogue
server

Video
server

Film clip
files

Picture
server

Digitized
photographs

Hypertext
server

Hypertext
web

Catalogue

©lan Sommerville 1995

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003

309.

Four-Tier Architectures

clients r—— — — — —
F—_ - — — — - business objects
Browser | web server | : and components server :
EJB Container
<<https>> | | web Server | | |
C D I | ,

4©_|_ <<RMI>> | Enterprise |

| | JavaBean |

Lo _ C:) <<SNA>>
Non-browser Fm e — — — - — — —
GUI | ainframe |

Legacy Adaptor

| Legacy System |
I I
L - — -

® O. Nierstrasz — U. Berne

Software Architecture

ESE — W2002/2003 310.

Blackboard Architectures

A blackboard architecture distributes application /olgic toa
number of independent sub-systems, but manages all data ina
single, shared repository (or “blackboard").

Advantages
0 Efficient way to share large amounts of data

[0 Sub-systems need not be concerned with how data is
produced, backed up eftc.

0 Sharing model is published as the repository schema

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 311.

Blackboard Architectures ...

Disadvantages
[0 Sub-systems must agree on a repository data model
0 Data evolution is difficult and expensive
0 No scope for specific management policies
O Difficult to distribute efficiently

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003

312.

Design
translator

©lan Sommerville 1995

Repository Model

Design
editor

Code
generator

repository

Project

Design
analyser

Report
generator

® O. Nierstrasz — U. Berne

Software Architecture

ESE — W2002/2003 313.

Event-driven Systems

In an event-driven architecture components perform services
in reaction to external events generated by other components.

[1 In broadcast models an event is broadcast to all sub-
systems. Any sub-system which can handle the event
may do so.

O In interrupt-driven models real-time interrupts are
detected by an interrupt handler and passed to some
other component for processing.

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 314.

Broadcast model

0 Effective in integrating sub-systems on different
computers in a network

0 Can be implemented using a publisher-subscriber
pattern:

[0 Sub-systems register an interest in specific events

0 When these occur, control is transferred to the
subscribed sub-systems

0 Control policy is not embedded in the event and message
handler. Sub-systems decide on events of interest to
them

0 However, sub-systems don't know if or when an event will
be handled

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003

315.

Sub-system
1

Selective Broadcasting

Sub-system Sub-system
2 3

Sub-system
4

Event and message handler

©lan Sommerville 1995

® O. Nierstrasz — U. Berne

Software Architecture

ESE — W2002/2003 316.

Dataflow Models

In a dataflow architecture each component performs
functional transformations on its inputs to produce outputs.

0 Highly effective for reducing latency in parallel or
distributed systems

0 No call/reply overhead
[0 Buft, fast processes must wait for slower ones

0 Not really suitable for interactive systems
0 Dataflows should be free of cycles

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 317.

Dataflow Models ...

Examples:

0 The single-input, single-output variant is known as pipes
and filters

[0 e.g., UNIX (Bourne) shell

Data source Filter Data sink
tar cf - . gzip -9 rsh picasso dd

0 e.g., CGI Scripts for interactive Web-content

Data source Filter Data sink
HTM. Form | Cd Script | generated HIM. page

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003

318.

Invoice Processing System

Read issued
invoices

‘ Invoices '

©lan Sommerville 1995

Identily
payments

‘ Payments '

=
receipts

Find
payments
due

Issue
payment
reminder

‘ Reminders I

® O. Nierstrasz — U. Berne

Software Architecture

ESE — W2002/2003 319.

Compilers as Dataflow Architectures

Y

Code
generation

Semantic
analysis

Syntactic
analysis

©lan Sommerville 1995

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 320.

Compilers as Blackboard Architectures

Lexical Syntax Semantic
analyser analyser analyser

Abstract Grammar

syntax tree definition

Pretty-
printer
; Symbol

Code
generator

Output
definition

©lan Sommerville 1995

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003

321.

UML support: Package Diagram

Decompose system
intfo packages
(containing any
other UML
element, incl.
packages)

Application Layer

] -
: Customer
Processing Orders Management
|
I
Domain Layer \/
Order — Customer
|
I
Database Layer \/

RDB Interface

query()

® O. Nierstrasz — U. Berne

Software Architecture

ESE — W2002/2003 322.

UML support: Deployment Diagram

Physical layout of run-time components on hardware nodes.

myMac: Mac

\ «internet»
% Netscape |-\

- % :WebServer

| p
aPC: PC / |
E— | .
«internet» I
: «eth t» |
% :IExplorer I g etherne | |
|
|
|

:UnixHost Vv

% :Database

:UnixHost

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 323.

What you should know!

How does software architecture constrain a system?
How does choosing an architecture simplify design?
What are coupling and cohesion?

What is an architectural style?

Why shouldn’t elements in a software layer "see” the layer
above?

What kinds of applications are suited to event-driven
architectures?

O O OO0On0

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 324.

Can you answer the following questions?

What is meant by a “fat client” or a "thin client” in a 4-tier
architecture?

What kind of architectural styles are supported by the
Java AWT? by RMI?

How do callbacks reduce coupling between software layers?
How would you implement a dataflow architecture in Java?

Is it easier to understand a dataflow architecture or an
event-driven one?

What are the coupling and cohesion characteristics of each
architectural style?

O OOt 0O O

® O. Nierstrasz — U. Berne Software Architecture

ESE — W2002/2003 325.

11. Software Quality

Overview:
0 What is quality?
0 Quality Attributes
[0 Quality Assurance: Planning and Reviewing
0 Quality System and Standards

Sources:
0 Software Engineering, I. Sommerville, Addison-Wesley,
Fifth Edn., 1996.
0 Software Engineering — A Practitioner's Approach, R.
Pressman, Mc-Graw Hill, Third Edn., 1994.

0 Fundamentals of Software Engineering, C. Ghezzi, M.
Jazayeri, D. Mandroli, Prentice-Hall 1991

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 326.

What is Quality?

Software Quality is conformance to:

0 explicitly stated functional and performance
requirements,

0 explicitly documented development standards,

O implicit characteristics that are expected of all
professionally developed software.

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 327.

Problems with Software Quality

0 Software specifications are usually incomplete and
often inconsistent

[1 There is tension between:

0 customer quality requirements (efficiency,
reliability, etc.)

0 developer quality requirements (maintainability,
reusability, etc.)

0 Some quality requirements are hard to specify in an
unambiguous way

O directly measurable qualities (e.g., errors/KLOC),
0 indirectly measurable qualities (e.g., usability).

Quality management is not just about reducing defects!

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 328.

Hierarchical Quality Model

Define quality via hierarchical quality model, i.e. number of
quality attributes (a.k.a. quality factors, quality aspects, ...)

Software
Quality

Choose quality attributes (and weights) depending on the
project context

> < -~ --Quality attribute
(Reliability < <----may be further

Portability ><

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 329.

Quality Attributes
Quality attributes apply both to the product and the process.

[]

product: delivered to the customer

process: produces the software product

resources:

(both the product and the process require resources)

0 Underlying assumption: a quality process leads to a
?uali‘ry product

cf. metaphor of manufacturing lines)

1 O

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 330.

Quality Attributes ...

Quality attributes can be external or internal.

0 External: Derived from the relationship between the
environment and the system (or the process).
(To derive, the system or process must run)

0 e.g. Reliability, Robustness

0 Internal: Derived immediately from the product or
process description
(To derive, it is sufficient to have the description)

0 Underlying assumption: internal quality leads to
external quality
(cfr. metaphor manufacturing lines)

0 e.g. Efficiency

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 331

Correctness, Reliability, Robustness

Correctness
0 A system is correct if it behaves according to its
specification
0 Anabsolute property (i.e.,a system cannot be "almost
correct”)

0 ...in theory and practice undecidable

Reliability
0 The user may rely on the system behaving properly

0 Reliabilityis the probability that the system will operate
as expected over a specified interval

0 A relative property (a system has a mean time
between failure of 3 weeks)

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 332.

Correctness, Reliability, Robustness ...

Robustness

[A system is robust if it behaves reasonably even in
circumstances that were not specified

0 A vague property (once you specify the abnormal
circumstances they become part of the
requirements)

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 333.

Efficiency, Usability

Efficiency. (Performance)
0 Use of resources such as computing time, memory
0 Affects user-friendliness and scalability
0 Hardware technology changes fast!

[0 (Remember: First do it, then do it right, then do it
fast)

0 For process, resources are manpower, fime and money
0 relates to the "productivity” of a process

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 334.

Efficiency, Usability ...

Usability. (User Friendliness, Human Factors)

0 The degree to which the human users find the system
(process) both “easy to use" and useful

[0 Depends a lot on the target audience (hovices vs.
experts)

[0 Often a system has various kinds of users (end-
users, operators, installers)

0 Typically expressed in "amount of time to learn the
system”

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003

335.

Maintainability

external product attributes (evolvability also applies to

process)

Maintainability

0 How easy it is to change a system after its initial release
0 software entropy O maintainability gradually

decreases over time

® O. Nierstrasz — U. Berne

Software Quality

ESE — W2002/2003

336.

Maintainability ...

Is often refined into ...
Repairability
[1 How much work is needed to correct a defect

Evolvability (Adaptability)

0 How much work is needed to adapt to changing
requirements (both system and process)

Portability

0 How much work is needed to port to new environment or

platforms

® O. Nierstrasz — U. Berne

Software Quality

ESE — W2002/2003 337.

Verifiability, Understandability

internal (and external) product attribute

Verifiability
0 How easy it is o verify whether desired attributes are
there?

0 internally: e.g., verify requirements, code inspections
0 externally: e.g., testing, efficiency

Understandability
0 How easy it is to understand the system
0 internally: contributes to maintainability
0 externally: contributes to usability

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 338.

Productivity, Timeliness, Visibility

external process attribute (visibility also internal)

Productivity

0 Amount of product produced by a process for a given
number of resources

0 productivity among individuals varies a lot

0 often: productivity (3 individuals) < > productivity
(individuals)

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 339.

Productivity, Timeliness, Visibility ...

Timeliness Function

[0 Ability to deliver the !
product on time User needs

0 important for
marketing ("short time
to market”)

[0 often a reason to |
Sﬁr!g‘)lcfe other quality T, 5 ha
ariributes initial

[1 incremental delivery

development may
provide an answer

System
capability

Time

-

redesign

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 340.

Productivity, Timeliness, Visibility ...

Visibility. (Transparency, Glasnost)
[0 Current process steps and project status are accessible
0 important for management
0 also deal with staff turn-over

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 341.

Quality Control Assumption

Project Concern = D;Iiver' on time and within budget
External (and In’rer'nal) Process Attributes
Product Attributes

Assumptions:

—_— — — — — — — — — — —_— — — — — — — — — —

/ Internal quality \O ‘' External quality \
\ Process quall’ry /'IZI\ Product quall'ry ,

—_— — —_— —_— —_— —_— —_ — = —_—— —_— — —_— —_— —_— —_— —_ =

& LN
(Control during project)/\(Obtain after pr'ojec‘r)

Otherwise, quality is mere coincidence!

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 342.

The Quality Plan

Project Plan
Plan Time — —— Schedule
Plan Money —— |Budget

Plan Quality —— [Quality Plan

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 343.

The Quality Plan ...

A guality plan should:

0 set out desired product qualities and how these are
assessed

[define the most significant quality attributes
0 define the guality assessment process
0 i.e., the controls used to ensure quality
0 set out which organisational standards should be applied

0 may define new standards, i.e., if new tools or
methods are used

NB: Quality Management should be separate from project
management to ensure independence

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 344.

Types of Quality Reviews

A guality review is carried out by a group of people who
carefully examine part or all of a software system and its
associated documentation.

Review type Principal purpose
Formal Technical |Driven by checklist
Reviews 0 detect detailed errors in any
(a.k.a. design or product
program [0 mismatches between
inspections) requirements and product

0 check whether standards have
been followed.

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 345.

Review type Principal purpose
Progress reviews | Driven by budgets, plans and
schedules

0 check whether project runs
according to plan

0 requires precise milestones

0 both a process and a product
review

[1 Reviews should be recorded and records maintained

[0 Software or documents may be "signed off" at a
review

[0 Progress to the next development stage is thereby
approved

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 346.

Review Meetings

Review meetings should:
O typically involve 3-5 people
[require a maximum of 2 hours advance preparation

(1 last less than 2 hours

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 347.

Review Minutes

The review report should summarize:
1. What was reviewed
2. Who reviewed it?
3. What were the findings and conclusions?

The review should conclude whether the product is:
1. Accepted without modification

2. Provisionally accepted, subject to corrections (no follow-
up review)

3. Rejected, subject to corrections and follow-up review

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 348.

8.

9.

N oo hwpne

Review Guidelines

Review the product, not the producer
Set an agenda and maintain it
Limit debate and rebuttal

Identify problem areas, but don't attempt to solve every
problem noted

Take written notes

Limit the number of participants and insist upon advance
preparation

Develop a checklist for each product that is likely to be
reviewed

Allocate resources and time schedule for reviews
Conduct meaningful training for all reviewers

10. Review your early reviews

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 349.

Sample Review Checklists (I)

Software Project Planning

Is software scope unambiguously defined and bounded?
Are resources adequate for scope?

Have risks in all important categories been defined?
Are tasks properly defined and sequenced?

Is the basis for cost estimation reasonable?

Have historical productivity and quality data been used?
Is the schedule consistent?

NoO oA wN e

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 350.

Sample Review Checklists (IT)

Requirements Analysis

1. TIs information domain analysis complete, consistent and
accurate?

2. Does the data model properly reflect data objects,
attributes and relationships?

Are all requirements traceable to system level?
Has prototyping been conducted for the user/customer?

Are requirements consistent with schedule, resources
and budget?

ok w

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 351

Sample Review Checklists (IIT)

Design
1. Has modularity been achieved?

2. Are interfaces defined for modules and external system
elements?

3. Are the data structures consistent with the information
domain?

4. Are the data structures consistent with the
requirements?

5. Has maintainability been considered?

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 352.

Sample Review Checklists (IV)

Code
1. Does the code reflect the design documentation?
2. Has proper use of language conventions been made?
3. Have coding standards been observed?
4. Are there incorrect or ambiguous comments?

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 353.

Sample Review Checklists (V)

Testing

1. Have test resources and tools been identified and
acquired?

Have both white and black box tests been specified?
Have all the independent /ogic paths been tested?

Have test cases been identified and listed with expected
results?

5. Are timing and performance to be tested?

Hwn

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 354.

Review Results

Comments made during the review should be classified.
[0 No action.

0 No change to the software or documentation is
required.

0 Refer for repair.

[0 Designer or programmer should correct an identified
fault.

[0 Reconsider overall design.

0 The problem identified in the review impacts other
parts of the design.

Reqguirements and specification errors may have to be referred
to the client.

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 355.

Product and Process Standards

Product standards define characteristics that all components
should exhibit.

Process standards define how the software process should be
enacted.

Product standards Process standards
Design review form Design review conduct
Document naming standards | Submission of documents
Procedure header format | Version release process

Java conventions Project plan approval process
Project plan format Change control process
Change request form Test recording process

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 356.

Potential Problems with Standards

0 Not always seen as relevant and up-to-date by software
engineers

0 May involve too much bureaucratic form filling

0 May require tedious manual work if unsupported by
software tools

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 357.

Sample Java Code Conventions

4.2 Wrapping Lines

When an expression will not fit on a single line, break it
according to these general principles:

[0 Break after a comma.
Break before an operator.
Prefer higher-level breaks to lower-level breaks.

Align the new line with the beginning of the expression
at the same level on the previous line.

If the above rules lead to confusing code or to code
that's squished up against the right margin, just indent
8 spaces instead.

1 OO0 O

[]

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 358.

Sample Java Code Conventions ...

10.3 Constants
Numerical constants (literals) should not be coded directly,
except for -1,0,and 1, which can appear in a for loop as counter

values.

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 359.

Quality System

A Quality Plan should be an instance of an organization's
Quality System

Quality Assurance Certification

Quality Standards
(ISO 9001, CMM)

Quality System influences

Quality Manual
?DT«CLZZCCI{ZCZ ;& foedbackd External Body
(mprove certification
?/ instantiates

request

Project Plan x

Quality pl Accreditation
uality plan x

Body

Customers may require an externally reviewed quality system

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 360.

ISO 9000

IS0 9000 is an international set of standards for quality
management applicable to a range of organisations from
manufacturing to service industries.

IS0 9001 is a generic model of the quality process, aE‘plicable
to organisations whose business processes range all the way
from desigh and development, to production, installation and
servicing;

0 ISO 9001 must be instantiated for each organisation

0 ISO 9000-3 interprets ISO 9001 for the software
developer

ISO = International Organisation for Standardization
0 ISO main site: http://www.iso.ch/
0 ISO 9000 main site: http://www.tc176.0org/

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 361.

Capability Maturity Model (CMM)

The SEI process maturity model classifies how well
contractors manage software processes

Quantitative data Level 5: Optimizing
are necessary for Improvement is fed back into QA process
mp rovement! Level 4: Managed /‘
QA Process + quantitative data collection
Level 3: Defined /‘
QA process is defined and institutionalized
Level 2: Repeatable JQUG/"W depends

on individual

Formal QA procedures in place

project managers!
Level 1: Initial (Ad Hoc) JQua/iTy depends
No effective QA procedures, quality is luck on individuals!

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 362.

What you should know!

Can a correctly functioning piece of software still have poor
quality?

What's the difference between an external and an internal
quality attribute?

And between a product and a process attribute?

Why should quality management be separate from project
management?

How should you organize and run a review meeting?

What information should be recorded in the review
minutes?

oo O 0O O

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 363.

Can you answer the following questions?

Why does a project need a quality plan?
Why are coding standards important?

What would you include in a documentation review
checklist?

How often should reviews be scheduled?

Would you trust software developed by an ISO 9000
certified company?

And if it were CMM level 5?

O OO OO0

© Q. Nierstrasz — U. Berne Software Quality

ESE — W2002/2003 364.

12. Software Metrics

Overview:
0 What are metrics? Why do we need them?
0 Metrics for cost estimation
0 Metrics for software quality evaluation

Sources:

0 Software Engineering, I. Sommerville, Addison-Wesley,
Fifth Edn., 1996.
0 Software Metrics: A Rigorous & Practical Approach,

Norman E. Fenton, Shari l. Pfleeger, Thompson Computer
Press, 1996.

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 365.

Why Metrics?

When you can measure what you are speaking about
and express it in numbers, you know something about
it; but when you cannot measure, when you cannot
express it in numbers, your knowledge is of a meagre
and unsatisfactory kind: it may be the beginning of
knowledge, but you have scarcely, in your thoughts,
advanced to the stage of science.

— Lord Kelvin

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 366.

Why Measure Software?

Estimate cost and |measure correlation between
effort specifications and final product

Improve productivity |measure value and cost of software

Improve software |measure usability, efficiency,
quality maintainability ...

Improve reliability 'measure mean time to failure, etfc.

Evaluate methods |measure productivity, quality, reliability
and tools

"You cannot control what you cannot measure” — De
Marco, 1982

"What is not measurable, make measurable” — Galileo

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 367.

What are Software Metrics?

Software metrics

[0 Any type of measurement which relates to a software
system, process or related documentation

0 Lines of code in a program

0 the Fog index (calculates readability of a piece of
documentation)

0.4 *(# words / # sentences) +
(percentage of words = 3 syllables)

0 number of person-days required to implement a use-
case

NB: "Software metrics” are not mathematical metrics, but
rather measures

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003

368.

(Measures vs Metrics)

Mathematically, a metric is a function m measuring the

distance between two objects such that:

1. Ox, mx,x)=0
2. Ox,y, m(x,y) = m(y,x)
3. Ox,y, z, m(x,z) <m(xy) + m(y,z)

So, technically "software metrics” is an abuse of terminology,
and we should instead talk about "software measures”.

® O. Nierstrasz — U. Berne

Software Metrics

ESE — W2002/2003 369.

Direct and Indirect Measures

Direct Measures

0 Measured directly in terms of the observed attribute
(usually by counting)

0 Length of source-code, Duration of process, Number
of defects discovered

Indirect Measures
(1 Calculated from other direct and indirect measures

[0 Module Defect Density = Number of defects
discovered / Length of source

[0 Temperature is usually derived from the length of a
liquid column

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 370.

Measurement Mapping

Measure & Measurement
A measure is a function mapping

O an attribute of a real
world entity
(= the domain)

onto

0 a sym bolin a set with Exampllje: mec;fsur'e mapping "heighf”
attribute of person on a number
EZIOGM;TO nmsazhiﬁg?gglge) representing “height in meters”,

A measurement is then the symbol assighed to the real world
attribute by the measure.

Purpose: Manipulate symbol(s) in the range to draw
conclusions about attribute(s) in the domain

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 371

Preciseness

To be precise, the definition of the measure must specify:
0 domain: do we measure people's height or width?
[0 range: do we measure height in centimetres or inches?

0 mapping rules: do we allow shoes to be worn?

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 372.

Possible Problems

Compare productivity in lines of code per time unit.

Do we use the same units to | What is a "line of code"?
compare? What is the "time unit"?

Is the context the same? | Were programmers familiar with the language?

Is “"code size” really what we | What about code guality?
want to produce?

How do we want to interpret | Average productivity of a programmer?
results? Programmer X is twice as productive as ¥Y?

Do you reward "productive” programmers?
Do you compare productivity of software
processes?

What do we want to do with
the results?

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 373.

GQM

Goal - Question - Metrics approach. [Basili et al. 1984]
[Define Goal
0 e.g., "How effective is the coding standard XYZ?"

[0 Break down into Questions
0 "Who is using XYZ?"
0 "What is productivity/quality with/without XYZ?"

0 Pick suitable Metrics
0 Proportion of developers using XYZ
0 Their experience with XYZ ...
0 Resulting code size, complexity, robustness ...

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 374.

Cost estimation objectives

Cost estimation and planning/scheduling are closely related
activities

Goals
0 To establish a budget for a software project
0 To provide a means of controlling project costs
0 To monitor progress against the budget
0 comparing planned with estimated costs
[0 To establish a cost database for future estimation

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 375.

Estimation techniques

Expert judgement cheap, but risky!
Estimation by analogy limited applicability
Parkinson's Law unlimited risk!

Pricing to win i.e., you do what you can with the money
Top-down estimation may miss low-level problems
Bottom-up estimation may underestimate integration costs

Algorithmic cost modelling requires correlation data

Each method has strengths and weaknesses!

Estimation should be based on several methods

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 376.

Algorithmic cost modelling

[Cost is estimated as a mathematical functionof product,
project and process attributes whose values are
estimated by project managers

0 The function is derived from a study of historical
costing data

0 Most commonly used product attribute for cost
estimation is LOC (code size)

[0 Most models are basically similar but with different
attribute values

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003

377.

Measurement-based estimation

A. Measure

Develop a system

model and

measure its size

B. Estimate

C. Interpret

Adapt the effort with
respect to a specific
development project plan

Determine the effort

with respect to

an

empirical database of
measurements from

similar projects

® O. Nierstrasz — U. Berne

Software Metrics

ESE — W2002/2003 378.

Lines of code

Lines of Code as a measure of system size?

0 Easy to measure; but not well-defined for modern
languages

[1 What's a line of code?

0 A poor indicator of productivity

0 Ignores software reuse, code duplication, benefits
of redesign

0 The lower level the language, the more productive
the programmer!

[0 The more verbose the programmer, the higher the
productivity!

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 379.

Function points

Function Points (Albrecht, 1979)
[0 Based on a combination of program characteristics:
0 external inputs and outputs
[1 user interactions
[external interfaces
0 files used by the system
[0 A weight is associated with each of these

0 The function point count is computed by multiplying each
raw count by the weight and summing all values

0 Function point count modified by complexity of the
project

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 380.

Function points

Good points, bad points
[0 Can be measured already after design

0 FPs can be used to estimate LOC depending on the
average humber of LOC per FP for a given language

0 LOC can vary wildly in relation to FP

0 FPs are very subjective — depend on the estimator.
They cannot be counted automatically

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 381.

Programmer productivity

A measure of the rate at which individual engineers involved in
software development produce software and associated
documentation

Productivity metrics

[Size related measures based on some output from the
software process. This may be lines of delivered source
code, object code instructions, etc.

0 Function-related measures based on an estimate of the
functionality of the delivered software. Function-points
are the best known of this type of measure

Productivity estimates
[Real-tfime embedded systems, 40-160 LOC/P-month
0 Systems programs , 150-400 LOC/P-month
0 Commercial applications, 200-800 LOC/P-month

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 382.

Quality and productivity
0 All metrics based on volume/unit time are flawed
because they do not take quality into account
O Productivity may generally be increased at the cost of
quality
0 Itis not clear how productivity/quality metrics are
related

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 383.

The COCOMO model
[0 Developed at TRW, a US defence contractor

[1 Based on a cost database of more than 60 different
projects

[0 Exists in three stages

[Basic — Gives a 'ball-park’ estimate based on
product attributes

0 Intermediate — modifies basic estimate using
project and process attributes

0 Advanced — Estimates project phases and parts
separately

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003

384.

Basic COCOMO Formula

0 Effort=C xPMS x M

L]
L]
[]

C is a complexity factor

PM is a product metric (size or functionality)
exponent S is close to 1, but increasing for large

projects

M is a multiplier based on process, product and

development attributes (~1)

® O. Nierstrasz — U. Berne

Software Metrics

ESE — W2002/2003

385.

COCOMO Project classes

Organic mode: small teams, familiar
environment, well-understood
applications, no difficult non-functional
requirements (EASY)

Effort = 2.4 (KDSI) 109 x M

Semi-detached mode: Project team may
have experience mixture, system may
have more significant non-functional

constraints, organization may have less
familiarity with application (HARDER)

Effort = 3 (KDSI) 12 x M

Embedded: Hardware/software systems,
tight constraints, unusual for team to
have deep application experience (HARD)

Effort = 3.6 (KDSI) 14 x M

KDSI = Kilo Delivered Source Instructions

® O. Nierstrasz — U. Berne

Software Metrics

ESE — W2002/2003

386.

COCOMO assumptions and problems

0 Implicit productivity estimate
0 Organic mode = 16 LOC/day
0 Embedded mode = 4 LOC/day
0 Time requiredis a function of total effort not team size
0 Not clear how to adapt model to personnel availability

IN A PERFECT L-JDFLLD—]
THE PROJECT WOULD
TAKE EIGHT MONTHS.

SCHEDULE |

wawww. dilbert.com scoltadams &aeal,.com

BUT BASED ON PAST
PROJECTS TN THIS
COMPANY, T APPLIED
ALS TNCOMPETENCE
MULTIPLIER,

\

Wk

L

tire Syndicace, lne.

3|nlea £ 2002 United Fes

7" AND THEN I APPLIED
'L AN LULLE OF &3,

LYING
WEASEL
FACTOR.

Copyright @ 2882 United Feature Syndicate, Inc.

® O. Nierstrasz — U. Berne

Software Metrics

ESE — W2002/2003 387.

COCOMO assumptions and problems ...

0 Staff required can't be computed by dividing the
development time by the required schedule

0 The number of people working on a project varies
depending on the phase of the project

0 The more people who work on the project, the more total
effort is usually required (!)

O Very rapid build-up of people often correlates with
schedule slippage

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 388.

Quantitative Quality Model

Quality according to ISO 9126 standard

[0 Divide-and conquer approach via “hierarchical quality
model”

O Leaves are simple metrics, measuring basic attributes

CFunc’nonalu’ry){ Error Tolemnce<

C Reliability A
ccuracy :
Efficiency >< = #defects / size

Consistency
Usability >< <

i~ correction time
@\ain'rainabili’ry Simplicity
: correction impact
C Portability >< Modularity (= #cgmpondeen’rs
change

IS0 9126 " Factor | [Characteristicl [Metric]

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 389.

"Define your own” Quality Model

Define the quality model with the development team

[0 Team chooses the characteristics, design principles,
metrics ... and the thresholds

design class as an number of private

abstract data-type attributes]2, 10[

TR : encapsulate all number of public
@ammmab'm Modularity attributes attributes 10, Of

number of public
avoid complex methods]5, 30[

interfaces average number of
arguments [0, 4

m m Design Principle ﬁrric\‘

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003

390.

Sample Size (and Inheritance) Metrics

Inheritance Metrics
- hierarchy nesting level (HNL)
- # immediate children (NOC)

- # inherited methods, unmodified (NMI)

- #overridden methods (NMO)

Class Size Metrics
- # methods (NOM)
- # attributes, instance/class
(NIA, NCA)
- # 3 of method size (WMC)

Class
inherits belongsTo
access
Method Attribute

R Method Size Metrics
Invokes - # invocations (NOI)
- # statements (NOS)

- # lines of code (LOC)

- # arguments (NOA)

® O. Nierstrasz — U. Berne

Software Metrics

ESE — W2002/2003 391.

Sample Coupling & Cohesion Metrics

Following definitions stem from [Chid91a], later republished as
[Chid94a]

Coupling Between Objects (CBO)
CBO = number of other class to which given class is coupled

Interpret as "number of other classes a class requires to
compile”

Lack of Cohesion in Methods (LCOM)

LCOM = number of disjoint sets (= not accessing same
attribute) of local methods

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 392.

Coupling & Cohesion Metrics

Bewarel

Re/sgarchers disagree whether coupling/cohesion methods are
vali

[Classes that are observed to be cohesive may have a high
LCOM value

[1 due to accessor methods

] Clcltsses that are not much coupled may have high CBO
value

0 no distinction between data, method or inheritance
coupling

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 393.

Sample Quality Metrics (I)

Productivity (Process Metric)
0 functionality / time
O functionality in LOC or FP; time in hours, weeks, months

0 be careful to compare: the same unit does not always
represent the same

[0 Does not take into account the quality of the
functionality!

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 394.

Sample Quality Metrics (II)

Reliability (Product Metric)
0 mean time to failure = mean of probability probabil
density function PDF %wyn

O for software one must take into account fime
the fact that repairs will influence the rest of the
function O quite complicated formulas

0 average time between failures = # failures / time
0 time in execution time or calendar time

0 necessary to calibrate the probability density
function

0 mean time between failure = MTTF + mean time to repair

0 to know when your system will be available, take into
account repair

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 395.

Sample Quality Metrics (III)

Correctness (Product Metric)

0 “asystem is correct or not, so one cannot measure
correctness”

0 defect density = # known defects / product size
0 product size in LOC or FP
[0 # known defects is a time based count!

0 do not compare across projects unless your data
collection is sound!

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 396.

Sample Quality Metrics (IV)

Maintainability (Product Metric)
0 #time to repair certain categories of changes
0 “mean time to repair” vs. "average time to repair”

0 similar to "mean time to failure" and "average time
between failures”

0 beware of the units
0 “categories of changes” is subjective
[time =?
problem recognition time + administrative delay time

+ problem analysis time + change time + testing &
reviewing time

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 397.

What you should know!

What is a measure? What is a metric?

What is GQM?

What are the three phases of algorithmic cost modelling?
What problems arise when using LOC as a software metric?
What are the key ideas behind COCOMO?

What's the difference between "Mean time to failure” and
"Average time between failures”? Why is the difference
important?

COoobOo0gnQ

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003 398.

Can you answer the following questions?

During which phases in a software project would you use
metrics?

Is the Fog index a "good” metric?
How would you measure your own software productivity?

Why are coupling/cohesion metrics important? Why then
are they so rarely used?

oo 0O

® O. Nierstrasz — U. Berne Software Metrics

ESE — W2002/2003

399.

13. TBA ...

® O. Nierstrasz — U. Berne

TBA ...

	ESE
	Table of Contents
	1. ESE — Einführung in Software Engineering
	Principle Texts
	Recommended Literature
	Schedule
	Why Software Engineering?
	What is Software Engineering? (I)
	What is Software Engineering? (II)
	What is Software Engineering? (III)
	Software Development Activities
	The Classical Software Lifecycle
	Problems with the Software Lifecycle
	Iterative Development
	Iterative and Incremental Development
	Iterative and Incremental Development
	The Unified Process
	Boehm’s Spiral Lifecycle
	Requirements Collection
	Changing requirements
	Requirements Analysis and Specification
	Object-Oriented Analysis
	Prototyping (I)
	Prototyping (II)
	Design
	Conway’s Law
	Implementation and Testing
	Design, Implementation and Testing
	Maintenance
	Maintenance activities
	Maintenance costs
	Methods and Methodologies
	Object-Oriented Methods: a brief history
	What you should know!
	Can you answer these questions?

	2. Requirements Collection
	The Requirements Engineering Process
	Requirements Engineering Activities
	Requirements Analysis
	Problems of Requirements Analysis
	Impedance Mismatches
	Requirements evolution
	The Requirements Analysis Process
	Use Cases and Viewpoints
	Use Cases and Viewpoints ...
	Unified Modeling Language
	Writing Requirements Definitions
	Functional and Non-functional Requirements
	Non-functional Requirements
	Types of Non-functional Requirements
	Examples of Non-functional Requirements
	Requirements Verifiability
	Precise Requirements Measures
	Prototyping Objectives
	Evolutionary Prototyping
	Throw-away Prototyping
	Requirements Checking
	Requirements Reviews
	Review checks
	Traceability
	Traceability ...
	What you should know!
	Can you answer the following questions?

	3. The Planning Game
	Extreme Programming
	Driving Metaphor
	Why we plan
	The Planning Trap
	Customer-Developer Relationships
	The Customer Bill of Rights
	The Developer Bill of Rights
	Separation of Roles
	The Planning Game
	The Release Planning Game
	Planning Game: Exploration Phase
	User Stories
	Stories
	Splitting Stories
	Initial Estimation of Stories
	Estimating Stories
	Planning Game: Commitment Phase
	Planning Game: Steering Phase
	Planning Game: Steering Phase...
	Iteration Planning
	Iteration Planning
	Iteration Planning...
	What you should know!
	Can you answer the following questions?

	4. Responsibility-Driven Design
	Why Responsibility-driven Design?
	Why Responsibility-driven Design? ...
	Iteration in Object-Oriented Design
	The Initial Exploration
	The Detailed Analysis
	Finding Classes
	Finding Classes ...
	Drawing Editor Requirements Specification
	Drawing Editor: noun phrases
	Class Selection Rationale
	Class Selection Rationale ...
	Class Selection Rationale ...
	Class Selection Rationale ...
	Class Selection Rationale ...
	Candidate Classes
	CRC Cards
	CRC Sessions
	Responsibilities
	Identifying Responsibilities
	Assigning Responsibilities
	Assigning Responsibilities ...
	Relationships Between Classes
	Relationships Between Classes ...
	Collaborations
	Finding Collaborations
	Finding Abstract Classes
	Sharing Responsibilities
	Multiple Inheritance
	Building Good Hierarchies
	Building Good Hierarchies ...
	Building Kind-Of Hierarchies
	Building Kind-Of Hierarchies ...
	Refactoring Responsibilities
	Protocols
	What you should know!
	Can you answer the following questions?

	5. Modeling Objects and Classes
	UML
	Why UML?
	UML History
	Class Diagrams
	Visibility and Scope of Features
	Attributes and Operations
	UML Lines and Arrows
	Parameterized Classes
	Interfaces
	Utilities
	Objects
	Associations
	Aggregation and Navigability
	Association Classes
	Qualified Associations
	Inheritance
	What is Inheritance For?
	Inheritance supports ...
	Design Patterns as Collaborations
	Instantiating Design Patterns
	Constraints
	Specifying Constraints
	Design by Contract in UML
	Using the Notation
	Using the Notation ...
	What you should know!
	Can you answer the following questions?

	6. Modeling Behaviour
	Use Case Diagrams
	Scenarios
	Sequence Diagrams
	UML Message Flow Notation
	Collaboration Diagrams
	Message Labels
	Message Labels ...
	State Diagrams
	State Diagram Notation
	State Diagram Notation ...
	State Box with Regions
	Transitions
	Operations and Activities
	Composite States
	Sending Events between Objects
	Concurrent Substates
	Branching and Merging
	Branching and Merging ...
	History Indicator
	Creating and Destroying Objects
	Using the Notations
	What you should know!
	Can you answer the following questions?

	7. User Interface Design
	Interface Design Models
	User Interface Design Principles
	GUI Characteristics
	GUI advantages
	GUI (dis) advantages ...
	Direct Manipulation
	Direct Manipulation ...
	Interface Models
	Menu Systems
	Menu Systems ...
	Menu Structuring
	Command Interfaces
	Command Interfaces ...
	Information Presentation Factors
	Analogue vs. Digital Presentation
	Colour Use Guidelines
	User Guidance
	Design Factors in Message Wording
	Error Message Guidelines
	Good and Bad Error Messages
	Help System Design
	Help system use
	User Interface Evaluation
	Usability attributes
	What you should know!
	Can you answer the following questions?

	8. Software Validation
	Software Reliability, Failures and Faults
	Kinds of failures
	Programming for Reliability
	Fault Avoidance
	Common Sources of Software Faults
	Common Sources of Software Faults ...
	Fault Tolerance
	Approaches to Fault Tolerance
	Approaches to Fault Tolerance ...
	Defensive Programming
	Defensive Programming ...
	Verification and Validation
	Verification and Validation ...
	The Testing Process
	The Testing Process ...
	Regression testing
	Test Planning
	Top-down Testing
	Bottom-up Testing
	Defect Testing
	Defect Testing ...
	Functional (black box) testing
	Coverage Criteria
	Equivalence partitioning
	Test Cases and Test Data
	Structural (white box) Testing
	Coverage criteria
	Binary Search Method
	Path Testing
	Basis Path Testing: The Technique
	Basis Path Testing ...
	Condition Testing
	Statistical Testing
	Statistical Testing ...
	Static Verification
	Static Verification ...
	When to Stop?
	When to Stop? ...
	What you should know!
	Can you answer the following questions?

	9. Project Management
	Recommended Reading
	Why Project Management?
	What is Project Management?
	Risk Management
	Risk Management ..
	Risk Management Techniques
	Focus on Scope
	Myth: Scope and Objectives
	Scope and Objectives
	Estimation Strategies
	Estimation Techniques
	Measurement-based Estimation
	Estimation and Commitment
	Planning and Scheduling
	Planning and Scheduling ...
	Myth: Deliverables and Milestones
	Deliverables and Milestones
	Example: Task Durations and Dependencies
	Pert Chart: Activity Network
	Gantt Chart: Activity Timeline
	Gantt Chart: Staff Allocation
	Myth: Delays
	Scheduling problems
	Planning under uncertainty
	Dealing with Delays
	Dealing with Delays ...
	Gantt Chart: Slip Line
	Timeline Chart
	Slip Line vs. Timeline
	Software Teams
	Chief Programmer Teams
	Chief Programmer Teams ...
	Directing Teams
	Directing Teams ...
	What you should know!
	Can you answer these questions?

	10. Software Architecture
	Sources:
	What is Software Architecture?
	What is Software Architecture?
	How Architecture Drives Implementation
	How Architecture Drives Implementation ...
	Sub-systems, Modules and Components
	Cohesion
	Coupling
	Tight Coupling
	Loose Coupling
	Architectural Parallels
	Architectural Styles
	Layered Architectures
	Abstract Machine Model
	OSI Reference Model
	Client-Server Architectures
	Client-Server Architectures ...
	Client-Server Architectures
	Four-Tier Architectures
	Blackboard Architectures
	Blackboard Architectures ...
	Repository Model
	Event-driven Systems
	Broadcast model
	Selective Broadcasting
	Dataflow Models
	Dataflow Models ...
	Invoice Processing System
	Compilers as Dataflow Architectures
	Compilers as Blackboard Architectures
	UML support: Package Diagram
	UML support: Deployment Diagram
	What you should know!
	Can you answer the following questions?

	11. Software Quality
	What is Quality?
	Problems with Software Quality
	Hierarchical Quality Model
	Quality Attributes
	Quality Attributes ...
	Correctness, Reliability, Robustness
	Correctness, Reliability, Robustness ...
	Efficiency, Usability
	Efficiency, Usability ...
	Maintainability
	Maintainability ...
	Verifiability, Understandability
	Productivity, Timeliness, Visibility
	Productivity, Timeliness, Visibility ...
	Productivity, Timeliness, Visibility ...
	Quality Control Assumption
	The Quality Plan
	The Quality Plan ...
	Types of Quality Reviews
	Review Meetings
	Review Minutes
	Review Guidelines
	Sample Review Checklists (I)
	Sample Review Checklists (II)
	Sample Review Checklists (III)
	Sample Review Checklists (IV)
	Sample Review Checklists (V)
	Review Results
	Product and Process Standards
	Potential Problems with Standards
	Sample Java Code Conventions
	Sample Java Code Conventions ...
	Quality System
	ISO 9000
	Capability Maturity Model (CMM)
	What you should know!
	Can you answer the following questions?

	12. Software Metrics
	Why Metrics?
	Why Measure Software?
	What are Software Metrics?
	(Measures vs Metrics)
	Direct and Indirect Measures
	Measurement Mapping
	Preciseness
	Possible Problems
	GQM
	Cost estimation objectives
	Estimation techniques
	Algorithmic cost modelling
	Measurement-based estimation
	Lines of code
	Function points
	Function points
	Programmer productivity
	The COCOMO model
	Basic COCOMO Formula
	COCOMO Project classes
	COCOMO assumptions and problems
	COCOMO assumptions and problems ...
	Quantitative Quality Model
	“Define your own” Quality Model
	Sample Size (and Inheritance) Metrics
	Sample Coupling & Cohesion Metrics
	Coupling & Cohesion Metrics
	Sample Quality Metrics (I)
	Sample Quality Metrics (II)
	Sample Quality Metrics (III)
	Sample Quality Metrics (IV)
	What you should know!
	Can you answer the following questions?

	13. TBA ...

