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1.  ESE — Einführung in Software

Lecturer: Prof. Oscar Nierstrasz
Schützenmattstr. 14/103, Tel. 631.4618

Secretary: Frau I. Huber, Tel. 631.4692
Assistants: Jean-Guy Schneider, Thomas Hofmann,

WWW: http://www.iam.unibe.ch/~scg

Principle Texts:
❑ Software Engineering, I. Sommerville, Addison-W
❑ Software Engineering — A Practitioner’s Approach

Third Edn., 1994.
❑ Designing Object-Oriented Software, R. Wirfs-Bro

Prentice Hall, 1990.
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Other Books

❑ The Mythical Man-Month, F. Brooks, Addison-Wes
❑ Object Lessons — Lessons Learned in Object-Orie

T. Love, SIGS Books, 1993
❑ Object-Oriented Development — The Fusion Meth

Prentice Hall, 1994.
❑ Succeeding with Objects: Decision Frameworks fo

Goldberg and K. Rubin, Addison-Wesley, 1995
❑ A Discipline for Software Engineering, W. Humphr
❑ Object-Oriented Software Construction, B. Meyer,

1997.
❑ Objects, Components and Frameworks with UML,

Addison-Wesley, 1999
❑ UML@Work, M. Hitz, G. Kappel, DPunkt, 1999
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U  — Einführung in Software Engineering
niversität Bern ESE

Course Overview

1. 10-27 Introduction — The Software Lifecycle
2. 11-03 Project Management
3. 11-10 Requirements Collection
4. 11-17 Modelling Objects and Classes
5. 11-24 Modelling Behaviour
6. 12-01 Software Architecture
7. 12-08 Responsibility-Driven Design
8. 12-15 Detailed Design
9. 12-22 User Interface Design
10. 01-12 Software Validation
11. 01-19 Software Quality
12. 01-26 Computer-Aided Software Engineering
13. 02-02 4GLs: Delphi — guest lecture

02-09 Final exam
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the user’s needs?
?

 specification?
orrectly?

 a one-person team?

Final Program
niversität Bern ESE

What is Software Engineering?

A naive view:

But ...
❑ Where did the specification come from?
❑ How do you know the specification correspond to 
❑ How did you decide how to structure your program
❑ How do you know the program actually meets the
❑ How do you know your program will always work c
❑ What do you do if the users’ needs change?
❑ How do you divide tasks up if you have more than

Problem Specification coding



ESE 5.

U  — Einführung in Software Engineering

s

irements
niversität Bern ESE

Software Development Activitie

Requirements Collection
❑ Establish customer’s needs

Analysis
❑ Model and specify the requirements (“what”)

Design
❑ Model and specify a solution (“how”)

Implementation
❑ Construct a solution in software

Testing
❑ Validate the solution against the requirements

Maintenance
❑ Repair defects and adapt the solution to new requ

NB: these are ongoing activities, not sequential phases!
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ally:
cycle

oftware lifecycle
tware development as
“waterfall” between the
pment phases.

esting

Maintenance
niversität Bern ESE

The Classical Software Lifecycle

The waterfall model is unrealistic for many reasons, especi
❑ requirements must be “frozen” too early in the life-
❑ requirements are validated too late

The classical s
models the sof
a step-by-step
various develo

Requirements
Collection

Analysis

Design

Implementation

T
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cycle

he model proposes. Iteration
ion of the paradigm”

ments explicitly. The classic
ting the natural uncertainty

on of the program(s) will not
r blunder, if undetected until
.”

 Pressman, SE, p. 26
niversität Bern ESE

Problems with the Software Life

1. “Real projects rarely follow the sequential flow that t
always occurs and creates problems in the applicat

2. “It is often difficult for the customer to state all require
life cycle requires this and has difficulty accommoda
that exists at the beginning of many projects.”

3. “The customer must have patience. A working versi
be available until late in the project timespan. A majo
the working program is reviewed, can be disastrous

—
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s progress in parallel.

andard software process?

on requirements

oughout implementation

refactoring
niversität Bern ESE

Iterative Development

In practice, development is always iterative, and all activitie

✎ If the waterfall model is pure fiction, why is it still the st

Requirements
Collection

Testing

Design

Analysis

Implementation

Validation through prototyping

Testing based 

Testing thr

Maintenance through iteration

Design through 
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lopment

e, validate and test as

pensive they are to fix!

the system, even if most

le.
quirements.
niversität Bern ESE

Iterative and Incremental Deve

Plan to iterate your analysis, design and implementation.
☞ You won’t get it right the first time, so integrat

frequently as possible.

The later in the lifecycle errors are discovered, the more ex

Plan to incrementally develop (i.e., prototype) the system.
☞ If possible, always have a running version of 

functionality is yet to be implemented.
☞ Integrate new functionality as soon as possib
☞ Validate incremental versions against user re
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nalysis

neering

evolving system

first prototype
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Boehm’s Spiral Lifecycle

Planning Risk A

EngiCustomer Evaluation

initial requirements

alpha demo
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, they may be incomplete,

t place
 the project

nly when the “final system”

uirements
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Requirements Collection

User requirements are often expressed informally:
☞ features
☞ usage scenarios

Although requirements may be documented in written form
ambiguous, or even incorrect.

Requirements will change!
☞ inadequately captured or expressed in the firs
☞ user and business needs may change during

Validation is needed throughout the software lifecycle, not o
is delivered!

☞ build constant feedback into your project plan
☞ plan for change
☞ early prototyping [e.g., UI] can help clarify req
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cification

The intention is to provide a
ts underlying concepts are.

 which describe:

m

s’ actual needs?
niversität Bern ESE

Requirements Analysis and Spe

Analysis is the process of specifying what a system will do.
clear understanding of what the system is about and what i
The result of analysis is a specification document.

An object-oriented analysis results in models of the system
❑ classes of objects that exist in the system
❑ relationships between those classes
❑ use cases and scenarios describing

☞ operations that can be performed on the syste
☞ allowable sequences of those operations

Does the requirements specification correspond to the user
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or validate a hypothesis, i.e.

type, is intended to validate

ility

 a finished product

refactoring along the way
niversität Bern ESE

Prototyping

A prototype is a software program developed to test, explore
to reduce risks.

An exploratory prototype, also known as a throwaway proto
requirements or explore design choices.

❑ UI prototype — validate user requirements
❑ rapid prototype — validate functional requirements
❑ experimental prototype — validate technical feasib

An evolutionary prototype is intended to evolve in steps into

❑ iteratively “grow” the application, redesigning and 

✔ First do it, then do it right, then do it fast.
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m behaviour will be realized
detailed design documents.

cting objects
e related by inheritance

plementation!
niversität Bern ESE

Design

Design is the process of specifying how the specified syste
from software components. The results are architecture and

Object-oriented design delivers models that describe:
❑ how system operations are implemented by intera
❑ how classes refer to one another and how they ar
❑ attributes of, and operations, on classes

Design is an iterative process, proceeding in parallel with im
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ution to the customer’s

the requirements.

ted and validated solution.

ctivities
esign”, but rather the design

d implementation
 and refactoring
niversität Bern ESE

Implementation and Testing

Implementation is the activity of constructing a software sol
requirements.
Testing is the process of validating that the solution meets 

The result of implementation and testing is a fully documen

❑ Design, implementation and testing are iterative a
☞ The implementation does not “implement the d

document documents the implementation!

❑ System tests reflect the requirements specification
❑ Ideally, test case specification precedes design an

☞ Repeatable, automated tests enable evolution
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s been deployed.

defects
ion to new platforms
ements

ent of the first prototype can

tion
niversität Bern ESE

Maintenance

Maintenance is the process of changing a system after it ha

❑ Corrective maintenance: identifying and repairing 
❑ Adaptive maintenance: adapting the existing solut
❑ Perfective maintenance: implementing new requir

In a spiral lifecycle, everything after the delivery and deploym
be considered “maintenance”!

“Maintenance” entails:
❑ configuration and version management
❑ reengineering (redesigning and refactoring)
❑ updating all analysis, design and user documenta
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ser
s

Emergency
Fixes

utine
bugging

Changes in
Data Formats

1.8

17.4

12.4
niversität Bern ESE

Maintenance

Changes in U
Requirement

Documentation

Hardware
Changes Ro

De

Other

Efficiency
Improvements

4

9
6.2

5.5

4

3.4

Breakdown of
maintenance costs.
Source: Lientz 1979
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mbiguities in requirements

hen requirements change

e studied before

tems into manageable parts

 for analysis and design

nderstand complex systems
niversität Bern ESE

Why use a Method?

Requirements checking:
❑ System modelling helps uncover omissions and a

Clearer concepts:
❑ Domain analysis models can be reused/adapted w

Less design rework:
❑ Analysis and design models allow alternatives to b

implementation starts
Better refactoring of design work:

❑ Analysis and design helps to decompose large sys
Improved communications between developers:

❑ Standard notations provide a common vocabulary
Less effort needed on maintenance:

❑ Analysis and design documents help maintainers u
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te diagrams ...):

gn by contract

 + ...

nverging, but:

se.
niversität Bern ESE

Object-Oriented Methods

First generation:
❑ Adaptation of existing notations (ER diagrams, sta

☞ Booch, OMT, Shlaer and Mellor, ...
❑ Specialized design techniques:

☞ CRC cards; responsibility-driven design; desi
Second generation:

❑ Fusion:
☞ Booch + OMT + CRC + formal methods

Third generation:
❑ Unified Modeling Language:

☞ uniform notation: Booch + OMT + Use Cases
☞ complete lifecycle support (to be defined!)

Object-oriented methods are still maturing. Notations are co
☞ transition is still risky
☞ few methods deal seriously with software reu
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mming?

n?

of a “real” software project?
of object-oriented methods?

users’ real needs?
niversität Bern ESE

Summary

You should know the answers to these questions:
❑ How does Software Engineering differ from progra
❑ Why is the “waterfall” model unrealistic?
❑ What is the difference between analysis and desig
❑ Why plan to iterate? Why develop incrementally?
❑ Why is programming only a small part of the cost 
❑ What are the key advantages and disadvantages 

Can you answer the following questions?
✎ Why do requirements change?
✎ How can you validate that an analysis model captures 
✎ When does analysis stop and design start?
✎ When can implementation start?



ESE 21.

U Project Management

esley, Fifth Edn., 1996.
, R. Pressman, Mc-Graw Hill,

ley, 1975

r Project Management, A.

ge, Kent Beck (to appear)
niversität Bern

2. Project Management

Overview:
❑ Management activities
❑ Risk management
❑ Planning and scheduling
❑ Teamwork

Sources:
❑ Software Engineering, I. Sommerville, Addison-W
❑ Software Engineering — A Practitioner’s Approach

Third Edn., 1994.
Recommended Reading:

❑ The Mythical Man-Month, F. Brooks, Addison-Wes
❑ Object Lessons, T. Love, SIGS Books, 1993
❑ Succeeding with Objects: Decision Frameworks fo

Goldberg and K. Rubin, Addison-Wesley, 1995
❑ Extreme Programming Explained: Embrace Chan
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niversität Bern

Management activities

❑ Defining scope and objectives
❑ Estimating costs
❑ Analysing and managing risk
❑ Planning & scheduling
❑ Selecting and evaluating staff
❑ Project tracking and control
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ck you.

— Tom Gilb

 morale ...

tenance ...
niversität Bern

Risk Management

If you don’t actively attack risks, they will actively atta

Project risks
☞ budget, schedule, resources, size, personnel,

Technical risks
☞ implementation technology, verification, main

Business risks
☞ market, sales, management, commitment ...

Management must:
❑ identify risks as early as possible
❑ assess whether risks are acceptable
❑ monitor risks throughout the project
❑ take appropriate action to manage risks

☞ e.g., training, prototyping, iteration, ...
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customers can’t tell us
y want, they don’t like
velopment. The

never tell you exactly

— Kent Beck
niversität Bern

Focus on Scope

For decades, programmers have been whining, “The
what they want. When we give them what they say the
it.” Get over it. This is an absolute truth of software de
requirements are never clear at first. Customers can 
what they want.
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art coding.”
ct failure.

 they will be achieved.

 accomplish, and bounds

itly stated
niversität Bern

Scope and Objectives

Myth: “A general statement of objectives is enough to st
Reality: Poor up-front definition is the major cause of proje

In order to plan, you must set clear scope & objectives

Objectives identify the general goals of the project, not how

Scope identifies the primary functions that the software is to
these functions in a quantitative manner.

❑ Goals must be realistic and measurable
❑ Constraints, performance, reliability must be explic
❑ Customer must set priorities
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ly related activities
niversität Bern

Cost Estimation Objectives

❑ To establish a budget for a software project
❑ To provide a means of controlling project costs
❑ To monitor progress against the budget

☞ comparing planned with estimated costs
❑ To establish a cost database for future estimation
❑ Cost estimation and planning/scheduling are close
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t and express it in
annot measure, when

 of a meagre and
dge, but you have
cience.

— Lord Kelvin
niversität Bern

Measurement

When you can measure what you are speaking abou
numbers, you know something about it; but when you c
you cannot express it in numbers, your knowledge is
unsatisfactory kind: it may be the beginning of knowle
scarcely, in your thoughts, advanced to the stage of s
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n

to

cts

pret
e effort with respect to a
development project plan
niversität Bern

Measurement-based Estimatio

A. Measure
Develop a system model
and measure its size

B. Estimate
Determine the effort with respect 
an empirical database of
measurements from similar proje

C. Inter
Adapt th
specific
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io of ideal programming time

get, customers pick stories

ate
ers reduce scope,
nyway)
niversität Bern

Estimation and Commitment

Example: The XP process

1. a. Customers write stories and
b. Programmers estimate stories

☞ if they can’t, they ask the customers to split/m
2. Programmers measure the team load factor, the rat

to the calendar
3. Customers sort stories by priority
4. Programmers sort stories by risk
5. a. Customers pick date, programmers calculate bud

adding up to that number, or
b. Customers pick stories, programmers calculate d
(customers complain, programmers suggest custom
customers complain some more but reduce scope a
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egration produce effec-

emove mistakes or make

t”

es or rates
s
stomer feedback
titions as early as possible

of the system
 key decisions
niversität Bern

Product Process Model

Incremental decision-making, development, testing and int
tive project results.

❑ Iterative development:
☞ Controlled reworking of parts of a system to r

improvements based on user feedback
☞ “We get things wrong before we get them righ

❑ Incremental development:
☞ Partition systems and develop at different tim
☞ Test and integrate as each partition complete
☞ Make progress in small steps to get earlier cu
☞ Obtain better quality testing by integrating par

❑ Prototyping:
☞ Creating a scaled-down model of some or all 
☞ Benefit by “buying” information before making
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rammers and catch up.”
.

developing a solution is hard
ople working on a task

to communication overhead
ntingency in planning

ns
niversität Bern

Planning and Scheduling (I)

Myth: “If we get behind schedule, we can add more prog
Reality: Adding more people typically slows a project down

Scheduling problems
❑ Estimating the difficulty of problems and the cost of
❑ Productivity is not proportional to the number of pe
❑ Adding people to a late project makes it later due 
❑ The unexpected always happens. Always allow co

Planning under uncertainty
❑ State clearly what you know and don’t know
❑ State clearly what you will do to eliminate unknow
❑ Make sure that all early milestones can be met
❑ Plan to replan
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.
of workforce

graph

nce!

e monitored and revised
niversität Bern

Planning and Scheduling (II)

Project Scheduling
❑ Split project into tasks.
❑ Identify required milestones and cost of each task
❑ Organize tasks concurrently to make optimal use 
❑ Document dependencies between project tasks

☞ total time depends on longest path in activity 
❑ Minimize task dependencies to avoid delays
❑ Depend on project manager’s intuition and experie

Planning and estimation are iterative and schedules must b
during the project!
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ies
pendencies

T1

T2, T4

T1, T2

T1

T4

T3, T6

T5, T7

T9

T11
niversität Bern

Task Durations and Dependenc

✎ What is the minimum total duration of this project?

Task Duration (days) De

T1 8

T2 15

T3 15

T4 10

T5 10

T6 5

T7 20

T8 25

T9 15

T10 15

T11 7

T12 10
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ent are needed to ensure

cess activities.
tomer.
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niversität Bern

Milestones and Deliverables

Myth: “The only deliverable for a successful project is th
Reality: Documentation of all aspects of software developm

maintainability.

Project milestones mark the end of significant software pro
Project deliverables are results that are delivered to the cus

❑ E.g.:
☞ initial requirements document
☞ UI prototype
☞ architecture specification

❑ Milestones and deliverables help to monitor progre
☞ Should be scheduled roughly every 2-3 week

NB: Deliverables must evolve as the project progresses!
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Activity Network
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Activity Timeline
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Software Teams

Team organisation
❑ Teams should be relatively small (< 8 members)

☞ minimize communication overhead
☞ team quality standard can be developed
☞ members can work closely together
☞ programs are regarded as team property (“eg
☞ continuity can be maintained if members leav

❑ Break big projects down into multiple smaller proje
❑ Small teams may be organised in an informal, dem
❑ Chief programmer teams try to make the most effe

experience
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 as required
esign, programming, testing

 and develops test cases

smith, documentation editor,
rogrammers

grammers
niversität Bern

Chief Programmer Teams

❑ Consist of a kernel of specialists helped by others
☞ chief programmer takes full responsibility for d

and installation of system
☞ backup programmer keeps track of CP’s work
☞ librarian manages all information
☞ others may include: project administrator, tool

language/system expert, tester, and support p

❑ Reportedly successful but problems are:
☞ Difficult to find talented chief programmers
☞ Disrupting to normal organisational structures
☞ De-motivating for those who are not chief pro
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Staff Allocation
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 products

ustomer to correct

ductivity (if ever)

nd support

skills & talents

 acquiring ...)

ced by the team
all code
niversität Bern

Object Lessons
Prototyping

❑ plan to throw one (two?) away; prototypes are not
Requirements and Design

❑ must be formally specified and reviewed with the c
misunderstandings at the earliest possible stage

Training
❑ 6-12 months to train software engineers to OO pro

Reusability
❑ high programmer resistance; requires incentives a

Productivity
❑ can vary by 50:1; match organization to available 

Tools
❑ devote 20% of project staff to toolsmiths (building,

Leading vs. Managing
❑ team leaders should read & review all code produ
❑ managers should be able to read and understand 
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Conway’s Law

“Organizations that design systems are constrained to
are copies of the communication structures of these o
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Summary

You should know the answers to these questions:
❑ How can prototyping help to reduce risk in a proje
❑ What is the difference between iterative and incre
❑ What are milestones, and why are they important?
❑ What can you learn from an activity network? An a
❑ Why should programming teams have no more th
❑ What is meant by “plan to throw one away”?

Can you answer the following questions?
✎ What will happen if the developers, not the customers,
✎ What is a good way to measure the size of a project (ba
✎ When should you sign a contract with the customer?
✎ How do you know if you fall behind schedule? What sh
✎ How would you select and organize the perfect softwa
✎ What are good examples of Conway’s Law in action?
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3. Requirements Collection

Overview:
❑ The Requirements Engineering Process

☞ Requirements Analysis, Definition and Specif
❑ Use cases and scenarios
❑ Functional and non-functional requirements
❑ Evolutionary and throw-away prototyping
❑ Requirements checking and reviews

Sources:
❑ Software Engineering, I. Sommerville, Addison-W
❑ Software Engineering — A Practitioner’s Approach

Third Edn., 1994.
❑ Objects, Components and Frameworks with UML,

Addison-Wesley, 1999
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Process
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The Requirements Engineering 
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Requirements Engineering Acti

Feasibility study
❑ Determine if the user needs can be satisfied with t

budget.
Requirements analysis

❑ Find out what system stakeholders require from th
Requirements definition

❑ Define the requirements in a form understandable
Requirements specification

❑ Define the requirements in detail.
Written as a contract between client and contracto

“Requirements are for users; specifications are for analysts
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Requirements Analysis

Sometimes called requirements elicitation or requirements 

Technical staff work with customers to determine
❑ the application domain,
❑ the services that the system should provide and
❑ the system’s operational constraints.

Involves various stakeholders:
❑ e.g., end-users, managers, engineers involved in 

experts, trade unions, etc.
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Problems of Requirements Ana

Various problems typically arise:
❑ Stakeholders don’t know what they really want
❑ Stakeholders express requirements in their own te
❑ Different stakeholders may have conflicting requir
❑ Organisational and political factors may influence 
❑ The requirements change during the analysis proc

New stakeholders may emerge.

Requirements evolution
❑ Requirements always evolve as a better understa

developed and as the organisation’s objectives ch
❑ It is essential to plan for change in the requiremen

developed and used
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The Requirements Analysis Proc
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Use Cases and Viewpoints

A use case is the specification of a sequence of actions, incl
(or other entity) can perform, interacting with actors of the s

A scenario is a particular trace of action occurrences, starti

Stakeholders represent different problem viewpoints.
❑ Interview as many different kinds of stakeholders 
❑ Translate requirements into use cases or “stories”

involving a fixed set of actors (users and system o
❑ For each use case, capture both typical and excep

Users tend to think about systems in terms of “features”.
❑ You must get them to tell you stories involving tho
❑ Use cases and scenarios can tell you if the require

consistent!
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Unified Modeling Language

The “Unified Modeling Language” (UML) is an emerging ind
documenting object-oriented analysis and design models.

❑ Class Diagrams:  specify classes, objects and the
☞ visualize logical structure of system

❑ Use Case Diagrams:  show external actors and u
❑ Sequence Diagrams:  list the message exchange

☞ visualizes temporal message ordering
❑ Collaboration Diagrams:  show messages excha

☞ visualize object relationships
❑ State Diagrams:  specify the possible internal stat

and others ...
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Writing Requirements Definition

Requirements definitions usually consist of natural languag
UML) diagrams and tables.

Three types of problem can arise:

❑ Lack of clarity:
☞ It is hard to write documents that are both pre

❑ Requirements confusion:
☞ Functional and non-functional requirements te

❑ Requirements amalgamation:
☞ Several different requirements may be expres
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Functional and Non-functional 

Functional requirements describe system services or functi

Non-functional requirements are constraints on the system

❑ Product requirements:
☞ specify that the delivered product must behav

execution speed, reliability, etc.
❑ Organisational requirements:

☞ are a consequence of organisational policies a
standards used, implementation requirements

❑ External requirements:
☞ arise from factors which are external to the sy

process e.g. interoperability requirements, leg

Non-functional requirements may be more critical than func
If these are not met, the system is useless!
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Types of Non-functional Requir
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Examples of Non-functional Re

Product requirement
❑ It shall be possible for all necessary communicatio

user to be expressed in the standard Ada characte

Organisational requirement
❑ The system development process and deliverable

the process and deliverables defined in XYZCo-SP

External requirement
❑ The system shall provide facilities that allow any u

is maintained on the system. A procedure must be
software that will allow users to inspect personal d
in that data.
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Requirements Verifiability

Requirements must be written so that they can be objective

Imprecise:

The system should be easy to use by experienced con
organised in such a way that user errors are minimise

Terms like “easy to use” and “errors shall be minimised” are

Verifiable:

Experienced controllers should be able to use all the
a total of two hours training. After this training, the ave
made by experienced users should not exceed two p
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Precise Requirements Measure
Property Measure

Speed Processed transactions/se
User/Event response time
Screen refresh time

Size K Bytes; Number of RAM c

Ease of use Training time
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failur
Percentage of events caus
Probability of data corruptio

Portability Percentage of target depe
Number of target systems
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Prototyping Objectives

The objective of evolutionary prototyping is to deliver a wor

❑ Development starts with the requirements that are

The objective of throw-away prototyping is to validate or der

❑ Prototyping starts with that requirements that are p
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Evolutionary Prototyping

❑ Must be used for systems where the specification 
advance.
☞ e.g. AI systems and user interface systems

❑ Based on techniques which allow rapid system ite
☞ e.g., executable specification languages, VHL

component toolkits

❑ Verification is impossible as there is no specificati
☞ Validation means demonstrating the adequac
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Throw-away Prototyping

❑ Used to reduce requirements risk

❑ The prototype is developed from an initial specificat
then discarded

❑ The throw-away prototype should not be consider
☞ Some system characteristics may have been 

(e.g., platform requirements may be ignored)
☞ There is no specification for long-term mainte
☞ The system will be poorly structured and diffic
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Requirements Checking

Validity:
❑ Does the system provide the functions which best

needs?

Consistency:
❑ Are there any requirements conflicts?

Completeness:
❑ Are all functions required by the customer include

Realism:
❑ Can the requirements be implemented given avail
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Requirements Reviews

Requirements reviews
❑ Regular reviews should be held while the requirem

formulated
❑ Both client and contractor staff should be involved
❑ Reviews may be formal (with completed documen

Good communications between developers, custo
resolve problems at an early stage

Review checks
❑ Verifiability. Is the requirement realistically testable
❑ Comprehensibility. Is the requirement properly und
❑ Traceability. Is the origin of the requirement clearl
❑ Adaptability. Can the requirement be changed with

requirements?
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Summary

You should know the answers to these questions:
❑ What is the difference between requirements anal
❑ Why is it hard to define and specify requirements?
❑ What are use cases and scenarios?
❑ What is the difference between functional and non
❑ What’s wrong with a requirement that says a produ
❑ What’s the difference between evolutionary and th

Can you answer the following questions?
✎ Why isn’t it enough to specify requirements as a set of
✎ Which is better for specifying requirements: natural lan
✎ How would you prototype a user interface for a web-ba
✎ Would it be an evolutionary or throw-away prototype?
✎ What would you expect to gain from the prototype?
✎ How would you check a requirement for “adaptability”?
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4. Modelling Objects and Class

❑ Classes, attributes and operations
❑ Visibility of Features
❑ Parameterized Classes
❑ Objects
❑ Associations
❑ Inheritance
❑ Constraints
❑ Packages

Sources:
❑ Unified Modeling Language — Notation Guide, ve

Corporation, 1997.
❑ Object-Oriented Development — The Fusion Meth

Prentice Hall, 1994.
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Windows::Window
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Class Diagrams

“Class diagrams show generic descriptions of possible syst
show particular instantiations of systems and their behaviou

Attributes and operations are also collectively called feature

Class name, attributes and operations:

Polygon

centre: Point
vertices: List of Point
borderColour: Colour
fillColour: Colour

display (on: Surface)
rotate (angle: Integer)
erase ( )
destroy ( )
select (p: Point): Boolean

A col

Class w

Z
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e { property string }
efaultValue, ...) : resultType

 }

User-defined properties
(e.g., abstract, readonly,
owner = “Pingu”)

underlined attributes
have class scope
italic attributes are
abstract
niversität Bern

Visibility and Scope of Features

Attributes are specified as: name: type = initialValu
Operations are specified as: name (param: type = d

«user interface»
Window

{ abstract

+size: Area = (100, 100)
#visibility: Boolean = false
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindow*

+display ( )
+hide ( )
+create ( )
-attachXWindow (xwin: Xwindow*)

Stereotype
(what “kind” of class is it?)

+ = “public”
# = “protected”
− = “private”
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Association
e.g., «uses»

Navigable association
e.g., part-of

“Generalization”
i.e., specialization (!)
e.g., class/superclass,
concrete/abstract class

“Composition”
i.e., containment
niversität Bern

UML Lines and Arrows
Constraint
(usually annotated)

Dependency
e.g., «requires»,
«imports» ...

Refinement
e.g., class/template,
class/interface

Aggregation
i.e., “consists of”
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Parameterized Classes

Parameterized (aka “template” or “generic”) classes are de
shown in a dashed box.
Parameters may be either types (just a name) or values (na

Instantiation of a class from a template can be shown by a 

NB: All forms of arrows (directed arcs) go from the client to

FArray

FArray<Point, 3> FArray<Address, 4

T, n: Integer
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Utilities

A “utility” is a grouping of global attributes and operations. I
with the stereotype «utility». Utilities may be parameterized

NB: A utility’s attributes are already interpreted as being in c
to underline them.

A “note” is a text comment associated with a view, and repr
right corner folded over.

«utility»
MathPack

randomSeed : long = 0
pi : long = 3.14158265358979

sin (angle : double) : double
cos (angle : double) : double
random ( ) : double

ret
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Objects

Objects are shown as rectangles with their name and type 
compartment, and attribute values, optionally, in a second c

At least one of the name or the type must be present.

triangle1: P olygon

centre = (0, 0)
vertices = ((0,0), (4,0), (4,3))
borderColour = black
fillColour = white

triangle1

: P
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Associations
Associations represent structural relationships between obj

☞ usually binary (but may be ternary etc.)
☞ optional name and direction
☞ (unique) role names and multiplicities at end-
☞ can traverse using navigation expressions

e.g., Sandoz.employee[name = “Pin

Company

name
address

Pe

name
AHV N
addre

**
Works-for

Employs

employeeemployer

hu

w
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Aggregation and Navigability

Aggregation is denoted by a diamond and indicates a part-

A hollow diamond indicates a reference; a solid diamond an

If the link terminates with an arrowhead, then one can naviga

If the multiplicity of a role is > 1, it may be marked as { orde

Polygon
1 Contains

{ ordered }

3..*

Gra

colou
textu
dens

1

1
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and its name can be left out.

Workstation
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Association Classes

An association may be an instance of an association class:

In many cases the association class only stores attributes, 

Authorization

priority
privileges

start session

User * *
Authorized on

*

Directory

home directory1
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 a qualifier value.”
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Qualified Associations

A qualified association uses a special qualifier value to ident
of the association:

“The multiplicity attached to the target role denotes the poss
target objects selected by the pairing of a source object and

NB: Qualifiers are part of the association, not the class

Airline

frequent flyer #

Person

*

0..1

C

par
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Inheritance
A subclass inherits the features of its superclasses:

Figure1dim
{ abstract }

colour

display ( )

Line

endpoints

display ( )

Arc

radius
start angle
arc angle

display ( )

Sp

contr

displa
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What is Inheritance For?

New software often builds on old software by imitation, refin
Similarly, classes may be extensions, specializations or com

Inheritance supports:
Conceptual hierarchy:

❑ conceptually related classes can be organized into
☞ people, employees, managers
☞ geometric objects ...

Software reuse:
❑ related classes may share interfaces, data structu

☞ geometric objects ...
Polymorphism:

❑ objects of distinct, but related classes may be unif
☞ array of geometric objects
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Multiple Inheritance

A class may inherit features from multiple superclasses:

In Eiffel, features inherited from common parents are share
renamed along one of the inheritance paths. Such features
Other languages may adopt other rules to resolve inheritan

Vehicle

LandVehicle WaterVehic

AmphibiousVehicleCar
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Person

birthdate
/age

{ age = currentDate - birthdate }

Company

ployer }
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Constraints

Constraints are restrictions on values attached to classes o
☞ Binary constraints may be shown as dashed l
☞ Derived values and associations can be mark

Constraints are specified between braces, either free or wit

Person Committee

Member-of

Chair-of

subset

* *

*1

Person

employee

* 0..1

employerworker

boss

*

0..1

{ Person.employer = Person.boss.em
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Using the Notation

During Analysis:
❑ Capture classes visible to users
❑ Document attributes and responsibilities
❑ Identify associations and collaborations
❑ Identify conceptual hierarchies
❑ Capture all visible features

During Design:
❑ Specify contracts and operations
❑ Decompose complex objects
❑ Factor out common interfaces and functionalities

The graphical notation is only part of the analysis or design
data dictionary cataloguing and describing all names of clas
must be maintained throughout the project.
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Summary

You should know the answers to these questions:
❑ How do you represent classes, objects and assoc
❑ How do you specify the visibility of attributes and o
❑ How is a utility different from a class? How is it sim
❑ Why do we need both named associations and ro
❑ Why is inheritance useful in analysis? In design?
❑ How are constraints specified?

Can you answer the following questions?
✎ Why would you want a feature to have class scope?
✎ Why don’t you need to show operations when depictin
✎ Why aren’t associations drawn with arrowheads?
✎ How is aggregation different from any other kind of ass
✎ How are associations realized in an implementation lan
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5. Modelling Behaviour

❑ Use Case Diagrams
❑ Sequence Diagrams
❑ Collaboration Diagrams
❑ State Diagrams

Sources:
❑ Unified Modeling Language — Notation Guide, ve

Corporation, 1997.
❑ Object-Oriented Development — The Fusion Meth

Prentice Hall, 1994.
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Use Case Diagrams

IdentifyCustomer

Auditor

Bank

Pre
state

Cou
trans

Lo
appli

A

A use case is a generic
description of an entire
transaction involving several
actors.
A use case diagram presents
a set of use cases (ellipses)
and the external actors that
interact with the system.
Dependencies and
associations between use
cases may be indicated.

A scenario is an instance of a
use case showing a typical
example of its execution.
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phone rings

answer phone

ringing stops

hone Line Callee
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Sequence Diagrams

caller lifts receive

dial tone begins

dial (1)

dial tone ends

dial (2)

dial (2)

ringing tone

tone stops

tim
e

Caller PA sequence diagram depicts a
scenario by showing the
interactions among a set of
objects in temporal order.

Objects (not classes!) are shown
as vertical bars.
Events or message dispatches
are shown as horizontal (or
slanted) arrows from the send to
the receiver.

Recall that a scenario describes a
typical example of a use case, so
conditionality is not expressed!
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 asynchronous)
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UML Message Flow Notation

Filled solid arrowhead
procedure call or other nested cont

Stick arrowhead
flat, sequential control flow (usually

Half-stick arrowhead
asynchronous control flow between
procedural sequence
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ges between objects:

{ temp }

1.1.3.1: add(self)

contents { new }

: Window

: Line { new }

window
niversität Bern

Collaboration Diagrams

Collaboration diagrams depict scenarios as flows of messa

redisplay( )

1: displayPositions(window)

window

1.1*[i=1..n]: drawSegment(i)

«self» 1.1.2: create(r0, r1)
1.1.3: display(window)

i-1 i

{ temp }

1.1.1a: r0 := position( ) 1.1.1b: r1 := position( )

: Controller

wire : Wire

left : Bead right : Bead

wire

«local» line

«parameter» 
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Message Labels

Messages from one object to another are labelled with text
of message flow and information indicating the message se

Message labels:
1. Prior messages from other threads (e.g. “[A1.3, B6.

☞ only need with concurrent flow of control
2. Dot-separated list of sequencing elements:

☞ sequencing integer (e.g., “3.1.2” is invoked by
☞ letter indicating concurrent threads (e.g., “1.2
☞ iteration indicator (e.g., “1.1*[i=1..n]”)
☞ conditional indicator (e.g., “2.3 [#items = 0]”)

3. Return value binding (e.g., “status :=”)
4. Message name
5. Argument list
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Dialing

Ringing
do / play ringing tone

Connecting

h

15 sec.

dial digit(n)
[incomplete]

connected

dial digit(n) [valid]
/connect

busy
niversität Bern

State Diagrams

Idle

Pinned

Talking

callee
answers

callee
hangs up

Timeout
do / play message

DialTone
do / play dial tone

Invalid
do / play message

Busy
do / play busy tone

Active

callee answers / enable speec

dial digit(n)

15 sec.

dial digit(n) [invalid]

caller
hangs up
/ disconnect

lift receiver
/ get dial tone
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State Diagram Notation

A State Diagram describes the temporal evolution of an ob
response to interactions with other objects inside or outside

An event is a one-way (asynchronous) communication from
❑ atomic (non-interruptible)
❑ includes events from hardware and real-world obje

e.g., message receipt, input event, elapsed time, .
❑ notation: eventName(parameter: type, ...)
❑ may cause object to make a transition between st

A state is a period of time during which an object is waiting
❑ depicted as rounded box with (up to) three section

☞ name — optional
☞ state variables — name: type = value  (valid 
☞ triggered operations — internal transitions an

❑ may be nested
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name

rnal operations

into this state, and the
out of this state.
tions with no change of
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State Box with Regions

Typing Password

entry / set echo invisible
exit / set echo normal
character / handle character
help / display help

inte

The entry event occurs whenever a transition is made
exit  operation is triggered when a transition is made 
The help  and character events cause internal transi
state, so the entry and exit operations are not perform
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Transitions and Operations

Transitions:
❑ A response to an external event received by an ob
❑ May invoke an operation, and cause object to cha
❑ May send an event to an external object
❑ Transition syntax (each part is optional):

event (arguments)
[condition]
^target.sendEvent (arguments)
/ operation (arguments)

❑ External transitions label arcs between states;
internal transitions are part of the triggered operat

Operations:
❑ Operations invoked by transitions are atomic actio
❑ Entry and exit operations can be associated with s

Activities:
❑ Ongoing operations while object is in a given state
❑ Modelled as internal transitions labelled with the p
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Connecting
um)

[number.isValid( )]

^ dialedNumber(num)
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Composite States
Composite states may depicted either as high-level or low-
To indicate the presence of internal states, “stubbed transitio
level view:

Starting and termination substates are shown as black spo

Idle Dialinglift receiver dialedNumber(n

Start
do / play dial tone

Partial Dial
entry / number.append(n)

Dialing

number : String = “”

digit(n)

digit(n)
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R mode

Power button

On

On

toggle Power
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Sending Events between Objec

TV mode VC

VCR button

TV button
Power button

Remote Control

Off

toggle Power

toggle Power
VCR

Off

toggle Power

toggle Power
Television

toggle Power
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Concurrent Substates

Lab1

Term Project

Final Test

Lab2
lab done lab d

project done

pass

Incomplete

fail

Taking Class
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Cleanup
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Branching and Merging

Entering concurrent states:
Entering a state with concurrent substates means that each
concurrently (one logical thread per substate).

Leaving concurrent states:
A labelled transition out of any of the substates terminates
An unlabelled transition out of the overall state waits for all 

An alternative notation for explicit branching and merging u

A2A1

B2B1

Startup
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History Indicator

A “history indicator” can be used to indicate that the curren
remembered upon an external transition. To return to the sa
point explicitly to the history icon:

A2

A1

H

A
inter

resum
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Creating and Destroying Objec

Creation and destruction of objects can be depicted by usin
symbols as top-level states:

Writeable
lock

ReadOunlock

modify

destroy

create

CreatedFile
File
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Using the Notations

The diagrams introduced here complement class and objec

During Analysis:
❑ Use case, sequence and collaboration diagrams d

scenarios during requirements specification

During Design:
❑ Sequence and collaboration diagrams can be use

implementation scenarios or refine use case scen
❑ State diagrams document internal behaviour of cla

against the specified use cases
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Summary

You should know the answers to these questions:
❑ What is the purpose of a use case diagram?
❑ Why do scenarios depict objects but not classes?
❑ How can timing constraints be expressed in scena
❑ How do you specify and interpret message labels 
❑ How do you use nested state diagrams to model o
❑ What is the difference between “external” and “inte
❑ How can you model interaction between state diag

Can you answer the following questions?
✎ Can a sequence diagram always be translated to an co
✎ Or vice versa?
✎ Why are arrows depicted with the message labels rath
✎ When should you use concurrent substates?
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6. Software Architecture

Overview:
❑ What is Software Architecture?
❑ Coupling and Cohesion
❑ Architectural styles:

☞ Layered, Client-Server, Blackboard, Dataflow

Sources:
❑ Software Engineering, I. Sommerville, Addison-W
❑ Objects, Components and Frameworks with UML,

Addison-Wesley, 1999
❑ Pattern-Oriented Software Architecture — A Syste

Buschmann, et al., John Wiley, 1996
❑ Software Architecture: Perspectives on an Emergi

Garlan, Prentice-Hall, 1996
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What is Software Architecture?

A neat-looking drawing of some boxes, circles, and li
Powerpoint or Word, does not constitute an architect

The architecture of a system consists of:
❑ the structure(s) of its parts

☞ including design-time, test-time, and run-time
❑ the externally visible properties of those parts

☞ modules with interfaces, hardware units, obje
❑ the relationships and constraints between them

in other words:
❑ The set of design decisions about any system (or 

implementors and maintainers from exercising “ne
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How Architecture Drives Implem

❑ Use a 3-tier client-server architecture: all business
tier, presentation and dialogue on the client, and d
that way you can scale the application server proc
persistent store.

❑ Use Corba for all distribution, using Corba event c
the Corba relationship service; do not use the Corb
not yet mature.

❑ Use Collection Galore’s collections for representin
use their List class, or document your reason othe

❑ Use Model-View-Controller with an explicit Applica
any UI to the business logic and objects.
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Sub-systems, Modules and Com

❑ A sub-system is a system in its own right whose op
services provided by other sub-systems.

❑ A module is a system component that provides se
but would not normally be considered as a separa

❑ A component is an independently deliverable unit o
its design and implementation and offers interface
may be composed with other components to form
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Cohesion

Cohesion is a measure of how well the parts of a compone

Cohesion is weak if elements are bundled simply because th
functions (e.g., java.lang.Math).

Cohesion is strong if all parts are needed for the functioning
java.lang.String).

Strong cohesion promotes maintainability and adaptability b
changes to small numbers of components.

There are many definitions and interpretations of cohesion.
Most attempts to formally define it are inadequate!
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Coupling

Coupling is a measure of the strength of the interconnectio
components.

Coupling is tight between components if they depend heavily
is a lot of communication between them).

Coupling is loose if there are few dependencies between co

Loose coupling promotes maintainability and adaptability si
component are less likely to affect other ones.
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Tight Coupling
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Loose Coupling
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Architectural Parallels

❑ Architects are the technical interface between the
building the system

❑ A bad architectural design for a building cannot be
construction — the same is true for software

❑ There are specialized types of building and softwa

❑ There are schools or styles of building and softwa

An architectural style defines a family of systems in te
structural organization. More specifically, an architec
vocabulary of components and connector types, and
how they can be combined.
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Layered Architectures

A layered architecture organises a system into a set of layer
of services to the layer “above.”

❑ Normally layers are constrained so elements only 

– other elements in the same layer, or

– elements of the layer below

❑ Callbacks may be used to communicate to higher 

❑ Supports the incremental development of sub-sys
☞ When a layer interface changes, only the adja
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Abstract Machine Model
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OSI Reference Model
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Client-Server Architectures

A client-server architecture distributes application logic and
number of client and server sub-systems, each potentially ru
and communicating through the network (e.g, by RPC).

Advantages
❑ Distribution of data is straightforward
❑ Makes effective use of networked systems. May re
❑ Easy to add new servers or upgrade existing serv

Disadvantages
❑ No shared data model so sub-systems use differe

Data interchange may be inefficient
❑ Redundant management in each server
❑ May require a central register of names and servic

out what servers and services are available
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Client-Server Architectures
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Four-Tier Architectures
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Blackboard Architectures

A blackboard architecture distributes application logic to a n
systems, but manages all data in a single, shared repositor

Advantages
❑ Efficient way to share large amounts of data
❑ Sub-systems need not be concerned with how data
❑ Sharing model is published as the repository sche

Disadvantages
❑ Sub-systems must agree on a repository data mod
❑ Data evolution is difficult and expensive
❑ No scope for specific management policies
❑ Difficult to distribute efficiently
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Repository Model
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Event-driven Systems

In an event-driven architecture components perform service
events generated by other components.

❑ In broadcast models an event is broadcast to all su
which can handle the event may do so.

❑ In interrupt-driven models real-time interrupts are 
handler and passed to some other component for 

Broadcast model
❑ Effective in integrating sub-systems on different co
❑ Can be implemented using a publisher-subscriber

☞ Sub-systems register an interest in specific ev
☞ When these occur, control is transferred to th

❑ Control policy is not embedded in the event and me
decide on events of interest to them

❑ However, sub-systems don’t know if or when an e
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Selective Broadcasting
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Dataflow Models

In a dataflow architecture each component performs functio
inputs to produce outputs.

❑ Dataflows should be free of cycles

❑ The single-input, single-output variant is known as
☞ e.g., UNIX (Bourne) shell

❑ Not really suitable for interactive systems
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Invoice Processing System
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Compilers as Dataflow Architec
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Compilers as Blackboard Arch
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Summary

You should know the answers to these questions:
❑ How does software architecture constrain a system
❑ How does choosing an architecture simplify desig
❑ What are coupling and cohesion?
❑ What is an architectural style?
❑ Why shouldn’t elements in a software layer “see” t
❑ What kinds of applications are suited to event-driv

Can you answer the following questions?
✎ What is meant by a “fat client” or a “thin client” in a 4-ti
✎ What kind of architectural styles are supported by the J
✎ How do callbacks reduce coupling between software la
✎ How would you implement a dataflow architecture in Ja
✎ Is it easier to understand a dataflow architecture or an 
✎ What are the coupling and cohesion characteristics of 
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7. Responsibility-Driven Design

Overview:
❑ What is Object-Oriented Design?
❑ Finding Classes
❑ Identifying Responsibilities
❑ Finding Collaborations

Source:
❑ Designing Object-Oriented Software, R. Wirfs-Bro

Prentice Hall, 1990.
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What is Object-Oriented Design

“Object-oriented [analysis and] design is the process
requirements are turned into a detailed specification 
specification includes a complete description of the re
responsibilities of objects and how they communicate

❑ The result of the design process is not a final prod
☞ design decisions may be revisited, even after
☞ design is not linear but iterative

❑ The design process is not algorithmic:
☞ a design method provides guidelines, not fixe
☞ “a good sense of style often helps produce cle

designs that make a lot of sense from the eng

✔ Responsibility-driven design is an (analysis and) design
combination with various methods and notations.
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Design Steps

The Initial Exploration
1. Find the classes in your system
2. Determine the responsibilities of each class

☞ What are the client-server contracts?
3. Determine how objects collaborate with each other 

☞ What are the client-server roles?

The Detailed Analysis
1. Factor common responsibilities to build class hierar
2. Streamline collaborations between objects

☞ Is message traffic heavy in parts of the system
☞ Are there classes that collaborate with everyb
☞ Are there classes that collaborate with nobod
☞ Are there groups of classes that can be seen 

3. Turn class responsibilities into fully specified signat
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Finding Classes

Start with requirements specification: what are the goals of
its expected inputs and desired responses.

1. Look for noun phrases:
☞ separate into obvious classes, uncertain cand

2. Refine to a list of candidate classes. Some guidelin
☞ Model physical objects — e.g. disks, printers
☞ Model conceptual entities — e.g. windows, fil
☞ Choose one word for one concept — what do
☞ Be wary of adjectives — does it really signal a
☞ Be wary of missing or misleading subjects — 
☞ Model categories of classes — delay modellin
☞ Model interfaces to the system — e.g., user in
☞ Model attribute values, not attributes — e.g., 
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Drawing Editor Requirements Sp
The drawing editor is an interactive graphics editor. With it, users
can create and edit drawings composed of lines, rectangles,
ellipses and text.

Tools control the mode of operation of the editor. Exactly one tool is
active at any given time.

Two kinds of tools exist: the selection tool and creation tools. When
the selection tool is active, existing drawing elements can be
selected with the cursor. One or more drawing elements can be
selected and manipulated; if several drawing elements are
selected, they can be manipulated as if they were a single element.
Elements that have been selected in this way are referred to as the
current selection. The current selection is indicated visually by
displaying the control points for the element. Clicking on and
dragging a control point modifies the element with which the control
point is associated.

When a creation tool is active, the current selection is empty. The
cursor changes in different ways according to the specific creation
tool, and the user can create an element of the selected kind. After
the element is created, the selection tool is made active and the
newly created element becomes the current selection.

The text creation tool changes the shape of the cursor to that of an
I-beam. The position of the first character of text is determined by

where the user clicks
longer active when the
element. The control
of the region within wh
points changes this re
creation of lines, rect
of the cursor to that o
to be created when th
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Drawing Editor: noun phrases
The drawing editor is an interactive graphics editor. With it, users
can create and edit drawings composed of lines, rectangles,
ellipses and text.

Tools control the mode of operation of the editor. Exactly one tool is
active at any given time.

Two kinds of tools exist: the selection tool and creation tools. When
the selection tool is active, existing drawing elements can be
selected with the cursor. One or more drawing elements can be
selected and manipulated; if several drawing elements are
selected, they can be manipulated as if they were a single element.
Elements that have been selected in this way are referred to as the
current selection. The current selection is indicated visually by
displaying the control points for the element. Clicking on and
dragging a control point modifies the element with which the control
point is associated.

When a creation tool is active, the current selection is empty. The
cursor changes in different ways according to the specific creation
tool, and the user can create an element of the selected kind. After
the element is created, the selection tool is made active and the
newly created element becomes the current selection.

The text creation tool changes the shape of the cursor to that of an
I-beam. The position of the first character of text is determined by
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longer active when the
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Class Selection Rationale (I)

Model physical objects:
☞ mouse button [event or attribute]

Model conceptual entities:
☞ ellipse, line, rectangle
☞ Drawing, Drawing Element
☞ Tool, Creation Tool, Ellipse Creation Tool, Lin

Rectangle Creation Tool, Selection Tool, Tex
☞ text, Character
☞ Current Selection

Choose one word for one concept:
☞ Drawing Editor ⇒ editor, interactive graphics 
☞ Drawing Element ⇒ element
☞ Text Element ⇒ text
☞ Ellipse Element, Line Element, Rectangle Ele

⇒ ellipse, line, rectangle
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Class Selection Rationale (II)

Be wary of adjectives:
☞ Ellipse Creation Tool, Line Creation Tool, Rec

Selection Tool, Text Creation Tool — all have
☞ bounding rectangle, rectangle, region ⇒ Rect

— common meaning, but different from Recta
☞ Point ⇒ end point, start point, stop point
☞ Control Point — more than just a coordinate
☞ corner ⇒ associated corner, diagonally oppos

— no new behaviour
Be wary of sentences with missing or misleading subjects:

☞ “The current selection is indicated visually by
for the element.” — by what? Assume Drawin

Model categories:
☞ Tool, Creation Tool
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Class Selection Rationale (III)

Model interfaces to the system:
☞ user — don’t need to model user explicitly
☞ cursor — cursor motion handled by operating

Model values of attributes, not attributes themselves:
☞ height of the rectangle, width of the rectangle
☞ major radius, minor radius
☞ position — of first text character; probably Po
☞ mode of operation — attribute of Drawing Edi
☞ shape of the cursor, I-beam, crosshair — attri
☞ corner — attribute of Rectangle
☞ time — an implicit attribute of the system
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Candidate Classes

Preliminary analysis yields the following candidates:

Expect the list to evolve as design progresses.

Character
Control Point
Creation Tool
Current Selection
Drawing
Drawing Editor
Drawing Element
Ellipse Creation Tool
Ellipse Element
Line Creation Tool

Line Elem
Point
Rectangl
Rectangl
Rectangl
Selection
Text Crea
Text Elem
Tool
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Class Cards
Use class cards to record candidate classes:

Write a short description of the purpose of the class on the 
☞ compact, easy to manipulate, easy to modify 
☞ easy to arrange, reorganize
☞ easy to retrieve discarded classes

Class:  Drawing
superclasses

subclasses

responsibilities ... collab
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Finding Abstract Classes

Abstract classes factor out common behaviour shared by o
They are abstract because they need not be completely im

☞ group related classes with common attributes
☞ introduce abstract superclasses that represen
☞ “categories” are good candidates for abstract

✔ Warning:  beware of premature classification; your hiera

Tool

Creation
Tool

Selection
Tool

Rectangle
Tool

Ellipse
Tool

Line
Tool
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Identifying and Naming Group

If you have trouble naming a group:
☞ enumerate common attributes to derive the n
☞ divide into more clearly defined subcategories

Attributes of abstract classes should serve to distinguish su
☞ Physical vs. conceptual
☞ Active vs. passive
☞ Temporary vs. permanent
☞ Generic vs. specific
☞ Shared vs. unshared

Classes may be missing because the specification is incom
☞ editing ⇒ undoing ⇒ need for a Cut Buffer
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Recording Superclasses

Record superclasses and subclasses on all class cards:

Class:  Creation Tool
Tool
Ellipse Tool, Line Tool, Rectangle Tool, 
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Responsibilities

What are responsibilities?
☞ the knowledge an object maintains and provid
☞ the actions it can perform

Responsibilities represent the public services an object ma
not the way in which those services may be implemented

☞ specify what an object does, not how it does i
☞ don’t describe the interface yet, only conceptu
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Identifying Responsibilities

❑ Study the requirements specification:
☞ highlight verbs and determine which represen
☞ perform a walk-though of the system

➪ exploring as many scenarios as possible
➪ identify actions resulting from input to the

❑ Study the candidate classes:
☞ class names ⇒ roles ⇒ responsibilities
☞ recorded purposes on class cards ⇒ respons
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Assigning Responsibilities

❑ Evenly distribute system intelligence
☞ avoid procedural centralization of responsibili
☞ keep responsibilities close to objects rather th

❑ State responsibilities as generally as possible
☞ “draw yourself” vs. “draw a line/rectangle etc.

❑ Keep behaviour together with any related informat
☞ principle of encapsulation

❑ Keep information about one thing in one place
☞ if multiple objects need access to the same in

(i) a new object may be introduced to manage
(ii) one object may be an obvious candidate, o
(iii) the multiple objects may need to be collap

❑ Share responsibilities among related objects
☞ break down complex responsibilities
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Relationships Between Classes

Additional responsibilities can be uncovered by examining r
classes, especially:

❑ The “Is-Kind-Of” Relationship:
☞ classes sharing a common attribute often sha
☞ common superclasses suggest common resp

e.g., to create a new Drawing Element, a Cre
1. accept user input imple
2. determine location to place it gene
3. instantiate the element imple

❑ The “Is-Analogous-To” Relationship:
☞ similarities between classes suggest as-yet-u

❑ The “Is-Part-Of” Relationship:
☞ distinguish (don’t share) responsibilities of pa

Difficulties in assigning responsibilities suggest:
☞ missing classes in design, or
☞ free choice between multiple classes
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Recording Responsibilities

List responsibilities as succinctly as possible:

Too many responsibilities to fit onto one card suggests ove
☞ Check if responsibilities really belong in a sup

or if they can be distributed to cooperating cla
Having more classes leads to a more flexible and maintaina
classes can later be consolidated.

Class:  Drawing

Know which elements it contains
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Collaborations

What are collaborations?

❑ collaborations are client requests to servers neede
❑ collaborations reveal control and information flow 
❑ collaborations can uncover missing responsibilitie
❑ analysis of communication patterns can reveal mis
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Finding Collaborations

For each responsibility:
1. Can the class fulfil the responsibility by itself?
2. If not, what does it need, and from what other class

For each class:
1. What does this class know?
2. What other classes need its information or results? 
3. Classes that do not interact with others should be d

Check for these relationships:
❑ The “Is-Part-Of” Relationship
❑ The “Has-Knowledge-Of” Relationship
❑ The “Depends-Upon” Relationship
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Recording Collaborations

Collaborations exist only to fulfil responsibilities.
Enter the class name of the server role next to client’s resp

Note each collaboration required for a responsibility.
Include also collaborations between peers.
Validate your preliminary design with another walk-through

Class:  Drawing

Know which elements it contains
Maintain ordering between elements Draw
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Summary

You should know the answers to these questions:
❑ What criteria can you use to identify potential clas
❑ How can class cards help during analysis and des
❑ How can you identify abstract classes?
❑ What are class responsibilities, and how can you i
❑ How can identification of responsibilities help in id
❑ What are collaborations, and how do they relate to

Can you answer the following questions?
✎ When should an attribute be promoted to a class?
✎ Why is it useful to organize classes into a hierarchy?
✎ How can you tell if you have captured all the responsib
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8. Detailed Design

Overview:
❑ Structuring Inheritance Hierarchies
❑ Identifying Subsystems
❑ Specifying Class Protocols (Interfaces)

Source:
❑ Designing Object-Oriented Software, R. Wirfs-Bro

Prentice Hall, 1990
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Sharing Responsibilities

Concrete classes may be both instantiated and inherited fro
Abstract classes may only be inherited from. Note on class

Venn Diagrams can be used to visualize shared responsibi

(Warning: not part of UML!)

Tool
{ abstract }

Creation T
{ abs

Selection
Tool

Tool CreatSelection Tool
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Decide whether a
class will be
instantiated to
determine if it is
abstract or concrete.

DateMagnitude

tring
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Multiple Inheritance

Array

Matrix String Date

Ordered Collection
{ abstract }

Indexable Collection
{ abstract }

Magnitude
{ abstract }

Array

Ordered
Collection

Matrix

S
Indexable
Collection

Responsibilities of
subclasses are
larger than those of
superclasses.

Intersections
represent common
superclasses.
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Building Good Hierarchies

Model a “kind-of” hierarchy:
☞ Subclasses should support all inherited respo

Factor common responsibilities as high as possible:
☞ Classes that share common responsibilities sh

abstract superclass; introduce any that are m

Make sure that abstract classes do not inherit from concret
☞ Eliminate by introducing common abstract su

should support responsibilities in an impleme

Eliminate classes that do not add functionality:
☞ Classes should either add new responsibilitie

implementing inherited ones
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E GD

Incorrect
Subclass/Superclass

Relationships
Subclasses should assume all
superclass responsibilities
niversität Bern

Building Kind-Of Hierarchies

A B

C

E

G

E G

D

Correctly Formed Subclass
Responsibilities

Revised Inheritance
Relationships

Introduce abstract
superclasses to encapsulate
common responsibilities

{ abstract }

E G
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{ abstract }

Rectangle
Element

Group
Element

Ellipse
Element

ar Element
{ abstract }
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Refactoring Responsibilities

Drawing Element
{ abstract }

Rectangle
Element

Group
Element

Text
Element

Line
Element

Ellipse
Element

Lines, Ellipses and Rectangles
are responsible for keeping
track of the width and colour of
the lines they are drawn with.
This suggests a common
superclass.

Draw

Text
Element

Line
Element

Line
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Identifying Contracts

A contract defines a set of requests that a client can make 
cohesive set of closely-related responsibilities.

Contracts introduce another level of abstraction, and help t

❑ Group responsibilities used by the same clients:
☞ conversely, separate clients suggest separate

❑ Maximize the cohesiveness of classes:
☞ unrelated contracts belong in subclasses

❑ Minimize the number of contracts:
☞ unify responsibilities and move as high in the 
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Applying the Guidelines

1. Start by defining contracts at the top of your hierarc

2. Introduce new contracts only for subclasses that add
☞ do new responsibilities represent new functio

specialize inherited functionality?

3. For each class card, assign responsibilities to an ap
☞ briefly describe each contract and assign a un
☞ number responsibilities according to the asso

4. For each collaboration on each class card, determin
☞ model collaborations as associations in class

(AKA “collaboration graphs”)
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What are Subsystems?

Subsystems are groups of classes that collaborate to supp

❑ Subsystems simplify design by raising abstraction
☞ subsystems group logically related responsib

related collaborations

❑ Don’t confuse with superclasses:
☞ subsystems group related responsibilities rath

common responsibilities

Find subsystems by looking for strongly-coupled classes:
☞ list the collaborations and identify strong inter
☞ identify and highly frequently-travelled commu

Subsystems, like classes, also support contracts. Identify th
outside the subsystem to determine the subsystem contrac
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Subsystem Cards

For each subsystem, record its name, its contracts, and, fo
ternal class or subsystem that supports it:

Subsystem:  Drawing Subsystem
Access a drawing Drawin
Modify part of a drawing Drawin
Display a drawing Drawin
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Class Cards

For each collaboration from an outside client, change the c
collaboration with the subsystem:

Record on the subsystem card the delegation to the agent 

Class:  File  (

Document File, Graphics File, Text File
Knows its contents
Print its contents Printing Su
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Simplifying Interactions

Complex collaborations lead to unmaintainable systems.
Exploit subsystems to simplify overall structure.

❑ Minimize the number of collaborations a class has
☞ centralizing communications into a subsystem

❑ Minimize the number of classes to which a subsys
☞ centralized subsystem interfaces reduce com

❑ Minimize the number of different contracts suppor
☞ group contracts that require access to commo

Checking Your Design:
☞ model collaborations as associations in class
☞ update class/subsystem cards and class hiera
☞ walk through scenarios:

➪ Has coupling been reduced? Are collabo
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Protocols

A protocol is a set of signatures (i.e., method names, param
to which a class will respond.

☞ Generally, protocols are specified for public re
☞ Protocols for private responsibilities should be

or implemented by subclasses

1. Construct protocols for each class
2. Write a design specification for each class and subs
3. Write a design specification for each contract
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Refining Responsibilities

Select method names carefully:
☞ Use a single name for each conceptual opera
☞ Associate a single conceptual operation with 
☞ Common responsibilities should be explicit in

Make protocols as generally useful as possible:
☞ The more general it is, the more messages th

Define reasonable defaults:
1. Define the most general message with all possible p
2. Provide reasonable default values where appropria
3. Define specialized messages that rely on the defau
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Specifying Your Design: Classe

Specifying Classes
1. Class name; abstract or concrete
2. Immediate superclasses and subclasses
3. Location in inheritance hierarchies and class diagra
4. Purpose and intended use
5. Contracts supported (as server); inherited contracts
6. For each contract, list responsibilities, method signa

any collaborations
7. List private responsibilities; if specified further, also 
8. Note: implementation considerations, possible algo

constraints, error conditions etc.
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Specifying Subsystems and Co

Specifying Subsystems
1. Subsystem name; list all encapsulated classes and
2. Purpose of the subsystem
3. Contracts supported
4. For each contract, list the responsible class or subs

Formalizing Contracts
1. Contract name and number
2. Server(s)
3. Clients
4. A description of the contract
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Summary

You should know the answers to these questions:
❑ How can you identify abstract classes?
❑ What criteria can you use to design a good class h
❑ How can refactoring responsibilities help to improv
❑ What is the difference between contracts and resp
❑ What are subsystems (“categories”) and how can 
❑ What is the difference between protocols and con

Can you answer the following questions?
✎ What use is multiple inheritance during design if your p

not support it?
✎ Why should you try to minimize coupling and maximize
✎ How would you use Responsibility Driven design togeth

Language?
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9. User Interface Design

Overview:
❑ Interface design models
❑ Design principles
❑ Information presentation
❑ User Guidance
❑ Evaluation

Sources:
❑ Software Engineering, I. Sommerville, Addison-W
❑ Software Engineering — A Practitioner’s Approach

Third Edn., 1994.
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Interface Design Models

Four different models occur in HCI design:

1. The design model expresses the software design.

2. The user model describes the profile of the end use
(i.e., novices vs. experts, cultural background, etc.)

3. The user’s model is the end users’ perception of the

4. The system image is the external manifestation of t
(look and feel + documentation etc.)
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GUI Characteristics

Characteristic Descriptio

Windows Multiple windows allowdifferent infor
simultaneously on the user’s screen.

Icons Usually icons representfiles (including
but they may also stand forprocesses (e

Menus Menus bundle and organizecommand
command language).

Pointing A pointing device such as a mouse
from a menu or indicating items of i

Graphics Graphical elements can bemixed with
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GUI advantages

❑ They are easy to learn and use.
☞ Users without experience can learn to use the

❑ The user may switch attention between tasks and
☞ Information remains visible in its own window

❑ Fast, full-screen interaction is possible with immed
screen

But
❑ A GUI is not automatically a good interface

☞ Many software systems are never used due t
☞ A poorly designed UI can cause a user to ma
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 same format, etc.
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User Interface Design Principles
Principle Description

User familiarity Use terms and conceptsfamiliar to the use

Consistency Comparable operations should beactivated
Commands and menus should have the

Minimal
surprise

If a command operates in a known way, t
the operation of comparable commands

Feedback Provide the user with visual and auditor
communication.

Memory load Reduce the amount of information that mus
actions. Minimize the memory load.

Efficiency Seekefficiency in dialogue, motion and th
and mouse movements.

Recoverability Allow users torecover from their errors. Inc
confirmation of destructive actions, 'soft'

User guidance Incorporate some form ofcontext-sensitive
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Direct Manipulation

A direct manipulation interface presents the user with a mo
which is modified by direct action.

Examples
❑ forms (direct entry)
❑ WYSIWYG document editors

Advantages
❑ Users feel in control and are less likely to be intim
❑ User learning time is relatively short
❑ Users get immediate feedback on their actions

☞ mistakes can be quickly detected and correct
Problems

❑ Finding the right user metaphor may be difficult
❑ It can be hard to navigate efficiently in a large info
❑ It can be complex to program and demanding to e
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Interface Models

Desktop metaphor.
❑ The model of an interface is a “desktop” with icons

etc.

Control panel metaphor.
❑ The model of an interface is a hardware control pa

including:
☞ buttons, switches, menus, lights, displays, slid
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Menu Systems

Menu systems allow users to make a selection from a list o
them by the system by pointing and clicking with a mouse, u
(part of) the name of the selection.

Advantages
❑ Users don’t need to remember command names
❑ Typing effort is minimal
❑ User errors are trapped by the interface
❑ Context-dependent help can be provided (based o

Problems
❑ Actions involving logical conjunction (and) or disju

represent
❑ If there are many choices, some menu structuring
❑ Experienced users find menus slower than comma
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Menu Structuring

❑ Scrolling menus
☞ The menu can be scrolled to reveal additiona
☞ Not practical if there is a very large number o

❑ Hierarchical menus
☞ Selecting a menu item causes the menu to be

❑ Walking menus
☞ A menu selection causes another menu to be

❑ Associated control panels
☞ When a menu item is selected, a control pane
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Command Interfaces

With a command language, the user types commands to gi

❑ May be implemented using cheap terminals
❑ Easy to process using compiler techniques
❑ Commands of arbitrary complexity can be created
❑ Concise interfaces requiring minimal typing can be

Advantages
❑ Allow experienced users to interact quickly with th
❑ Commands can be scripted

Problems
❑ Users have to learn and remember a command la
❑ Not suitable for occasional or inexperienced users
❑ An error detection and recovery system is required
❑ Typing ability is required
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Information Presentation

Information display factors
❑ Is the user interested in precise information or dat
❑ How quickly do information values change?

Must the change be indicated immediately?
❑ Must the user take some action in response to a c
❑ Is there a direct manipulation interface?
❑ Is the information textual or numeric? Are relative 
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Analogue vs. Digital Presentatio

Digital presentation
❑ Compact - takes up little screen space
❑ Precise values can be communicated

Analogue presentation
❑ Easier to get an 'at a glance' impression of a value
❑ Possible to show relative values
❑ Easier to see exceptional data values
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Colour Displays

Colour can help the user understand complex information s

Colour use guidelines
❑ Don’t use (only) colour to communicate meaning!

☞ Open to misinterpretation (colour-blindness, c
☞ Design for monochrome then add colour

❑ Use colour coding to support user tasks
☞ highlight exceptional events
☞ allow users to control colour coding

❑ Use colour change to show status change
❑ Don't use too many colours

☞ Avoid colour pairings which clash
❑ Use colour coding consistently
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User Guidance

The user guidance system is integrated with the user interf
need information about the system or when they make som

User guidance covers:
❑ System messages, including error messages
❑ Documentation provided for users
❑ On-line help
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Design Factors in Message Wor

Context
The user guidance system should be aware o
adjust the output message to the current con

Experience
The user guidance system should provide bo
for beginners, and moreterse messages for ex

Skill level
Messages should betailored to the user’s skills a
I.e., depending on theterminology which is fam

Style
Messages should bepositive rather than negat
They should never be insulting or try to be fu

Culture
Wherever possible, the designer of message
culture of the country (or environment) where
A suitable message for one culture might be
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Error Message Guidelines

❑ Speak the user’s language
❑ Give constructive advice for recovering from the e
❑ Indicate negative consequences of the error (e.g.,
❑ Give an audible or visual cue
❑ Don’t make the user feel guilty!
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Good and Bad Error Messages
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Help System Design

Help? means “Please help. I want information
Help! means “HELP. I'm in trouble.”

Help information
❑ Should not simply be an on-line manual

☞ Screens or windows don't map well onto pape
❑ Dynamic characteristics of display can improve inf

☞ but people are not so good at reading screen

Help system use
❑ Multiple entry points should be provided

☞ the user should be able to get help from differ
❑ The help system should indicate where the user is
❑ Navigation and traversal facilities must be provide



ESE 180.

U User Interface Design

tability and usability.

n

come productive with the system?

match the user’s work practice?

or?

 from user errors?

gle model of work?
niversität Bern

User Interface Evaluation

User interface design should be evaluated to assess its sui

Usability attributes

Attribute Descriptio

Learnability How long does it take a new user to be

Speed of operation How well does the system response 

Robustness How tolerant is the system of user err

Recoverability How good is the system at recovering

Adaptability How closely is the system tied to a sin
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Summary

You should know the answers to these questions:
❑ What models are important to keep in mind in UI d
❑ What is the principle of minimal surprise?
❑ What problems arise in designing a good direct m
❑ What are the trade-offs between menu systems an
❑ How can you use colour to improve a UI?
❑ In what way can a help system be context sensitiv

Can you answer the following questions?
✎ Why is it important to offer “keyboard shortcuts” for equ
✎ How would you present the current load on the system
✎ What is the worst UI you every used? Which design pr
✎ What’s the worst web site you’ve used recently? How w
✎ What’s good or bad about the MS-Word help system?
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10. Software Validation

Overview:
❑ Reliability, Failures and Faults
❑ Fault Tolerance
❑ Software Testing: Black box and white box testing
❑ Static Verification

Source:
❑ Software Engineering, I. Sommerville, Addison-W
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Software Reliability, Failures an

The reliability of a software system is a measure of how we
expected by its users, expressed in terms of software failur

A software failure is an execution event where the software b
undesirable way.
A software fault is an erroneous portion of a software syste
to occur if it is run in a particular state, or with particular inp

Failure class Description

Transient Occurs only with certain inputs

Permanent Occurs with all inputs

Recoverable System can recover without ope

Unrecoverable Operator intervention is needed 

Non-corrupting Failure does not corrupt data

Corrupting Failure corrupts system data
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Programming for Reliability

Fault avoidance:
☞ development techniques to reduce the numbe

Fault tolerance:
☞ developing programs that will operate despite

Fault avoidance depends on:
1. A precise system specification (preferably formal)
2. Software design based on information hiding and en
3. Extensive validation reviews during the developmen
4. An organizational quality philosophy to drive the sof
5. Planned system testing to expose faults and assess
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Common Sources of Software F
Several features of programming languages and systems a
in software systems:

❑ Goto statements and other unstructured programm
programs hard to understand, reason about and m
☞ Use structured programming constructs

❑ Floating point numbers are inherently imprecise a
comparisons.
☞ Fixed point numbers are safer for exact comp

❑ Pointers are dangerous because of aliasing, and t
☞ Pointer usage should be confined to abstract 

❑ Parallelism is dangerous because timing difference
behaviour in hard-to-predict ways.
☞ Minimize inter-process dependencies

❑ Recursion can lead to convoluted logic, and may e
☞ Use recursion in a disciplined way, within a co

❑ Interrupts force transfer of control independent of t
cause a critical operation to be terminated.
☞ Minimize the use of interrupts; prefer disciplin
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Fault Tolerance

A fault-tolerant system must carry out four activities:

1. Failure detection:
☞ detect that the system has reached a particul

system failure
2. Damage assessment:

☞ detect which parts of the system state have b
3. Fault recovery:

☞ restore the state to a known, “safe” state (eithe
state, or backing up to a previous, safe state)

4. Fault repair:
☞ modify the system so the fault does not recur
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Approaches to Fault Tolerance

N-version Programming:
Multiple versions of the software system are imple
by different teams. The final system:

– runs all the versions in parallel,

– compares their results using a voting system, a

– rejects inconsistent outputs. (At least three vers

Recovery Blocks:
A finer-grained approach in which a program unit c
for failure, and alternative code to back up and try

– alternatives are executed in sequence, not in p

– the failure test is independent (not by voting)
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Defensive Programming

Failure detection:
❑ Use the type system as much as possible to ensur

get assigned invalid values.
❑ Use assertions to detect failures and raise exceptio

all invariants for abstract data types, and pre- and p
as assertions. Use exception handlers to recover 

❑ Use damage assessment procedures, where appr
of the state have been affected, before attempting

Fault recovery:
❑ Backward recovery: backup to a previous, consist
❑ Forward recovery: make use of redundant informa

consistent state from corrupted data



ESE 189.

U Software Validation

 formal verification.
sting ...

Programtailed
sign

Dynamic
validation
niversität Bern

Verification and Validation

Validation:
❑ Are we building the right product?

Verification:
❑ Are we building the product right?

Static techniques include program inspection, analysis and
Dynamic techniques include statistical testing and defect te

Requirements
specification

High-level
design

Formal
specifications

De
de

Prototype

Static
verification
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The Testing Process

1. Unit testing:
☞ Individual (stand-alone) components are teste

correctly.
2. Module testing:

☞ A collection of related components (a module
3. Sub-system testing:

☞ The phase tests a set of modules integrated a
most common problems in large systems aris
mismatches, this phase focuses on testing th

4. System testing:
☞ This phase concentrates on (i) detecting error

interactions between sub-systems, and (ii) va
systems fulfils functional and non-functional r

5. Acceptance testing (alpha/beta testing):
☞ The system is tested with real rather than sim

Testing is iterative! Regression testing is performed when d
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Regression Testing

Regression testing means testing that everything that used
changes are made to the system!

❑ tests must be deterministic and repeatable

❑ should test “all” functionality
☞ every interface
☞ all boundary situations
☞ every feature
☞ every line of code
☞ everything that can conceivably go wrong!

It costs extra work to define tests up front, but they pay off i

NB: Testing can only reveal the presence of defects, not th
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Test Planning

The preparation of the test plan should begin when the sys
formulated, and the plan should be developed in detail as t

The plan should be revised regularly, and tests should be r
wherever iteration occurs in the software process.

Acceptance
test plan

System
integration
test plan

Requirements
specification

Sub-system
integration
test plan

System
specification

System
design

System
integration test

Acceptance
testService
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Testing Strategies
Top-down Testing:

☞ Start with sub-systems, where modules are re
☞ Similarly test modules, representing functions
☞ Coding and testing are carried out as a single
☞ Design errors can be detected early on, avoid
☞ Always have a running (if limited) system
☞ BUT: may be impractical for stubs to simulate

Bottom-up Testing:
☞ Start by testing units and modules
☞ Test drivers must be written to exercise lower
☞ Works well for reusable components to be sh
☞ BUT: pure bottom-up testing will not uncover 

the software process

Typically a combination of top-down and bottom-up testing 
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Defect Testing

Tests are designed to reveal the presence of defects in the
Testing should, in principle, be exhaustive, but in practice c

Test data are inputs devised to test the system.
Test cases are input/output specifications for a particular fu

Petschenik (1985) proposes:
1. “Testing a system’s capabilities is more important th

☞ Choose test cases that will identify situations
doing their job.

2. “Testing old capabilities is more important than test
☞ Always perform regression tests when the sys

3. “Testing typical situations is more important than te
☞ If resources are limited, focus on typical usag
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Functional testing

Functional testing treats a component as a “black box” who
determined only by studying its inputs and outputs.

Test cases are derived from the external specification of th

Ie
Input set

Oe

Output set

Component

O
p
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Equivalence Partitioning
Test cases can be derived from a component’s interface, b
component will behave similarly for all members of an equi

Example:
private int[] _elements;
public boolean find(int key) { ... }

Check input partitions:
❑ Do the inputs fulfil the pre-conditions?
❑ Is the key in the array?

☞ leads to (at least) 2x2 equivalence classes

Check boundary conditions:
❑ Is the array of length 1?
❑ Is the key at the start or end of the array?

☞ leads to further subdivisions (not all combinat
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rtitions.

Test Data

s = { }

s = { 33, 20, 17, 18 }

ts = { 17 }

s = { 17 }

ts = { 17, 18, 20, 33 }

nts = { 17, 18, 20, 33 }

ts = { 17, 18, 20, 33 }

ts = { 17, 18, 20, 33 }
niversität Bern

Test Cases and Test Data

Generate test data that cover all meaningful equivalence pa

Test Cases

Array length 0 key = 17, element

Array not sorted key = 17, element

Array size 1, key in array key = 17, elemen

Array size 1, key not in array key = 0, element

Array size > 1, key is first element key = 17, elemen

Array size > 1, key is last element key = 33, eleme

Array size > 1, key is in middle key = 20, elemen

Array size > 1, key not in array key = 50, elemen

...
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Structural Testing

Structural testing treats a component as a “white box” or “gla
be examined to generate test cases.

Path testing is a white-box strategy which exercises every i
through a component.

Component
code

Test
data

Test
outputs

Derive test data

Run tests

Produce output
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// (2) (3)

// (5)
// (6)

// (7)
// (8)
// (9)

// (4)
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Binary Search Method
public boolean find(int key) throws assertionViolation {

assert(isSorted()); // pre-condition
if (isEmpty()) { return false; } // Trivially can't find key in a
int bottom = 0;
int top = _elements.length-1;
int lastIndex = (bottom+top)/2;
int mid;
boolean found = key == _elements[lastIndex];

while ((bottom <= top) && !found) {
assert(bottom <= top); // loop invariant
mid = (bottom + top) / 2;
found = key == _elements[mid];
if (found) {

lastIndex = mid;
} else {

if (_elements[mid] < key) {
bottom = mid + 1;

} else { top = mid - 1; }
} // loop variant decreases: top - bottom

}
assert((key == _elements[lastIndex]) || !found); // post-condition
return found;

}
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Path Testing
A set of independent paths of a flow graph must cover all th
e.g., {1,2,3,4,12,13}, {1,2,3,5,6,11,2,12,13}, {1,2,3,5,7,8,10,
{1,2,3,5,7,9,10,11,2,12,13}

Test cases should be chosen to cover all independent path

1

2

3
4

6
5

7
8

13

10
11

12

until found or (b

if (bottom > top) if (key == _el

if (

if (found)
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Statistical Testing

The objective of statistical testing is to determine the reliabilit
to discover software faults. Reliability may be expressed as

❑ probability of failure on demand,
❑ rate of failure occurrence,
❑ mean time to failure,
❑ availability

Tests are designed to reflect the frequency of actual user in
tests, an estimate of the operational reliability of the system

1. Determine usage patterns of the system (classes of
2. Select or generate test data corresponding to these
3. Apply the test cases, recording execution time to fa
4. Based on a statistically significant number of test ru
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Static Verification

Program Inspections:
❑ Small team systematically checks program code
❑ Inspection checklist often drives this activity

☞ e.g., “Are all invariants, pre- and post-conditio

Static Program Analysers:
❑ Complements compiler to check for common error

☞ e.g., variable use before initialization

Mathematically-based Verification:
❑ Use mathematical reasoning to demonstrate that p

☞ e.g., that invariants are not violated, that loop

Cleanroom Software Development:
❑ Systematically use (i) incremental development, (i

mathematical verification, and (iv) statistical testin
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Summary

You should know the answers to these questions:
❑ What is the difference between a failure and a fau
❑ What kinds of failure classes are important?
❑ How can a software system be made fault-toleran
❑ How do assertions help to make software more re
❑ What are the goals of software validation and veri
❑ What is the difference between test cases and tes
❑ How can you develop test cases for your program
❑ What is the goal of path testing?

Can you answer the following questions?
✎ When would you combine top-down testing with bottom
✎ When would you combine black-box testing with white
✎ Is it acceptable to deliver a system that is not 100% re
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11. Software Quality

Overview:
❑ What is quality?
❑ Quality Management activities
❑ ISO 9001
❑ Quality Reviews
❑ Product and Process Standards

Sources:
❑ Software Engineering, I. Sommerville, Addison-W
❑ Software Engineering — A Practitioner’s Approach

Third Edn., 1994.
❑ Objects, Components and Frameworks with UML,

Addison-Wesley, 1999
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What is Quality?

Software Quality is conformance to
❑ explicitly stated functional and performance requir
❑ explicitly documented development standards,
❑ implicit characteristics that are expected of all prof

software.

Problems:
❑ Software specifications are usually incomplete and
❑ There is tension between:

☞ customer quality requirements (efficiency, reli
☞ developer quality requirements (maintainabilit

❑ Some quality requirements are hard to specify in a
☞ directly measurable qualities (e.g., errors/KLO
☞ indirectly measurable qualities (e.g., usability)

Quality management is not just about reducing defects!
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Software Quality Factors

Product
revision

Product
transition

Product
operations

P
R
In

Maintainability
Flexibility
Testability

Correctness Security
Reliability Usability
Efficiency

Ref: McCall 1977
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Quality Management Activities

Quality assurance
❑ Establish organisational procedures and standard

Quality planning
❑ Select applicable procedures and standards for a 

and modify these as required

Quality control
❑ Ensure that procedures and standards are followed

team

Quality management should be separate from project mana
independence
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Quality Controls

Examples:
❑ Code walk-through of a module to check if it imple

specification correctly
☞ Results in minutes documenting who participa

❑ Acceptance test to check if a function has been co
☞ Results in a test record

❑ Examination of a program for conformance to stan
☞ Results in filled form or checklist

❑ Running a tool to check for adherence to portabilit
☞ Results in printout of the tool
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Process-based Quality

Quality management must include periodic reviews of the q
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ISO 9000

ISO 9000 is an international set of standards for quality ma
range of organisations from manufacturing to service indus

ISO 9001 is a generic model of the quality process, applica
design, develop and maintain products

❑ ISO 9001 must be instantiated for each organisati
❑ ISO 9000-3 interprets ISO 9001 for the software d

NB: ISO = International Organisation for Standardization
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ISO 9001

Describes quality standards and procedures for developing

Management responsibility

Control of non-conforming products Design co

Handling, storage, packaging and delivery Purchasi

Purchaser-supplied products Product id

Process control Inspection 

Inspection and test equipment Inspectio

Contract review Corrective a

Document control Quality reco

Internal quality audits Training

Servicing Statistical te
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ISO 9000 and Quality Managem
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ISO 9000 Certification

Software developers may request to be certified as being IS

❑ Quality standards and procedures must be docum
quality manual
☞ The quality system should be used for severa

❑ An external body should audit the system for conf
☞ Usually a company specializing in standards

❑ The system is submitted to an accreditation body
☞ One for each country

Customers are increasingly demanding that suppliers be IS
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The Quality Plan

A quality plan should:

❑ set out desired product qualities and how these ar
☞ define the most significant quality attributes

❑ define the quality assessment process
☞ i.e., the controls used to ensure quality

❑ set out which organisational standards should be 
☞ may define new standards, i.e., if new tools o
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Types of Review

Review type Principal 

Design or program
inspections

To detect detailed errors in th
check whether standards hav
should be driven by achecklist

Progress reviews To provide information for m
overall progress of the projec
a product review and is conc
schedules.

Quality reviews To carry out a technical ana
or documentation to findfaults
the specification and the des
It may also be concerned wit
such asadherence to standar
attributes.
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Quality Reviews

A quality review is carried out by a group of people who care
software system and its associated documentation.

❑ Objective is the discovery of system defects and in

❑ Review teams should be relatively small and revie

❑ Any documents produced in the process may be r
☞ Code, designs, specifications, test plans, stan

reviewed.

❑ Review should be recorded and records maintaine
☞ Software or documents may be “signed off” a
☞ Progress to the next development stage is the
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The Review Process
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Review Meetings and Minutes

Review meetings should:
❑ typically involve 3-5 people
❑ require a maximum of 2 hours advance preparatio
❑ last less than 2 hours

The review report should summarize:
1. What was reviewed
2. Who reviewed it?
3. What were the findings and conclusions?

The review should conclude whether the product is:
1. Accepted without modification
2. Provisionally accepted, subject to corrections (no fo
3. Rejected, subject to corrections and follow-up revie
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Review Guidelines

1. Review the product, not the producer
2. Set an agenda and maintain it
3. Limit debate and rebuttal
4. Identify problem areas, but don’t attempt to solve ev
5. Take written notes
6. Limit the number of participants and insist upon adv
7. Develop a checklist for each product that is likely to
8. Allocate resources and time schedule for reviews
9. Conduct meaningful training for all reviewers
10. Review your early reviews
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Sample Review checklists (I)

Software Project Planning
1. Is software scope unambiguously defined and boun
2. Are resources adequate for scope?
3. Have risks in all important categories been defined?
4. Are tasks properly defined and sequenced?
5. Is the basis for cost estimation reasonable?
6. Have historical productivity and quality data been u
7. Is the schedule consistent?

Requirements Analysis
1. Is information domain analysis complete, consisten
2. Does the data model properly reflect data objects, a
3. Are all requirements traceable to system level?
4. Has prototyping been conducted for the user/custom
5. Are requirements consistent with schedule, resourc
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Sample Review checklists (II)
Design

1. Has modularity been achieved?
2. Are interfaces defined for modules and external sys
3. Are the data structures consistent with the informati
4. Are the data structures consistent with the requirem
5. Has maintainability been considered?

Code
1. Does the code reflect the design documentation?
2. Has proper use of language conventions been mad
3. Have coding standards been observed?
4. Are there incorrect or ambiguous comments?

Testing
1. Have test resources and tools been identified and a
2. Have both white and black box tests been specified
3. Have all the independent logic paths been tested?
4. Have test cases been identified and listed with expe
5. Are timing and performance to be tested?
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Review Results

Comments made during the review should be classified.

❑ No action.
☞ No change to the software or documentation 

❑ Refer for repair.
☞ Designer or programmer should correct an id

❑ Reconsider overall design.
☞ The problem identified in the review impacts o

Requirements and specification errors may have to be refe
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Product and Process Standards

Product standards define characteristics that all componen
Process standards define how the software process should

Problems
❑ Not always seen as relevant and up-to-date by so
❑ May involve too much bureaucratic form filling
❑ May require tedious manual work if unsupported b

Product standards Pro

Design review form Design review

Document naming standards Submission

Procedure header format Version rele

Java programming style standard Project pla

Project plan format Change cont

Change request form Test recordi
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Sample Java Code Convention

4.2 Wrapping Lines
When an expression will not fit on a single line, break it acc
principles:

❑ Break after a comma.
❑ Break before an operator.
❑ Prefer higher-level breaks to lower-level breaks.
❑ Align the new line with the beginning of the expres

previous line.
❑ If the above rules lead to confusing code or to cod

the right margin, just indent 8 spaces instead.

10.3 Constants
Numerical constants (literals) should not be coded directly, e
can appear in a for loop as counter values.
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Documentation Standards

Documentation process standards define how documents s
validated and maintained.

Document interchange standards define how documents ar
between different documentation systems.

Document standards are concerned with document contents
❑ Identification: how documents are uniquely identifi
❑ Structure: standard structure for project document
❑ Presentation: define fonts and styles, use of logos
❑ Update: how changes from previous versions are 
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Good and Bad Documentation

Bad signs
❑ No documentation
❑ All documents, no code exists
❑ All pictures
❑ Wall-sized documents
❑ Big thick formal documents

Good signs
❑ Clear document structure
❑ Mix of formal and informal
❑ Clear glossary
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Summary

You should know the answers to these questions:
❑ Can a correctly functioning piece of software still h
❑ Why should quality management be separate from
❑ How could you use ISO 9000 to guide quality man
❑ How should you organize and run a review meetin
❑ What information should be recorded in the review

Can you answer the following questions?
✎ How can you evaluate a quality assurance plan?
✎ Would you trust software developed by an ISO 9000 c
✎ Why are coding standards important?
✎ What would you include in a documentation review che
✎ How often should reviews by scheduled?
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12. Computer-Aided Software E

Overview:
❑ What is CASE?

☞ CASE tool functionality vs. process support
❑ Tools, Workbenches and Environments

☞ Programming workbenches
☞ Analysis and design workbenches
☞ Testing workbenches

❑ Software Engineering Environments

Source:
❑ Software Engineering, I. Sommerville, Addison-W
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What is CASE?

“Computer-aided Software Engineering” refers to automate
engineering process. There are mainly 3 levels of CASE te

1. Production-process support technology:
☞ includes support for process activities such as

implementation, testing etc. (mature, and wid

2. Process management technology:
☞ includes tools to support process modelling a

(few products available)

3. Meta-CASE technology:
☞ tools for generating CASE tools (not widely ad
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CASE Tool Functionality

CASE tools can be classified by functionality or by their sup

Tool type Examp

Management Tools PERT tools, estimation tools

Editing tools Text editors, diagram editors, w

Configuration management tools Version management system

Prototyping tools Very high-level languages, user

Method support tools Design editors, data dictionarie

Language processing tools Compilers, interpreters

Program analysis tools Cross-reference generators, s

Testing tools Test data generators, file comp

Debugging tools Interactive debugging systems

Documentation tools Page layout programs, image e

Re-engineering tools Cross-reference systems, prog
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plementation
Verification

and Validation

✓ ✓

✓ ✓

✓ ✓

✓ ✓

✓

✓

✓ ✓

✓ ✓

✓ ✓

✓

✓

✓

niversität Bern

CASE Tool Process Support
Tools Specification Design Im

Planning and Estimation ✓ ✓

Text Editing ✓ ✓

Document Preparation ✓ ✓

Configuration Management ✓ ✓

Prototyping ✓

Diagram Editing ✓ ✓

Data Dictionary ✓ ✓

User Interface Management ✓

Method Support ✓ ✓

Language Processing

Program Analysis

Interactive Debugging

Program Transformation

Modelling and Simulation ✓

Test Data Generation



ESE 232.

U Computer-Aided Software Engineering

Good Excellent
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Quality of Tools Support

Poor Moderate

Requirements definition

Formal specification

Function-oriented design

Data modelling

Object-oriented design

Programming

Testing

Maintenance

Management
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Tools, Workbenches and Enviro

CASE
Technology

Tools Workbenches

Editors Compilers File Comparators
env

Analysis and design Programming

Multi-method
workbenches

Single-method
workbenches

General-purpose
workbenches
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Integrated CASE

CASE systems can be integrated at various levels:(Wasser
1. Platform integration

☞ Tools run on the same hardware/operating sy

2. Data integration
☞ Tools operate using a shared data model

3. Presentation integration
☞ Tools offer a common user interface

4. Control integration
☞ Tools may activate and control the operation 

5. Process integration
☞ Tool usage is guided by an explicit process m
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The CASE life cycle

Procurement

Tailoring

Introduction

Operation

Evolution

Obsolescence

During CASE system procure
standards, platform, applicat
CASE system cost (including
must be considered.

CASE system tailoring involv
model definition, tool integrat
the installation.

Introduction can be risky due
systems restrict freedom by i
inadequate training, or even 
(changing tools and procedu
individual projects).

An obsolete CASE system ca
but must be phased out over
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Programming Workbenches
Source

program
Structured

editor

Symbol
table

Syntax
tree

Language
compiler

Compiled
code

Program
libraries

Linker

Executable
program

Loader

Interactive
debugger

Executing
program

Cross-referen

Prettyprinte

Static analy

Execution
report

user

A programm
tools to supp
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Static Program Analysers

Static program analysers scan the source code to detect po

☞ Unreachable code
☞ Unconditional branches into loops
☞ Undeclared variables
☞ Variables used before initialization
☞ Variables declared and never used
☞ Variables written twice with no intervening as
☞ Parameter type mismatches
☞ Parameter number mismatches
☞ Uncalled functions and procedures
☞ Non-usage of function results
☞ Possible array bound violations
☞ Misuse of pointers
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Stages of Static Analysis

1. Control flow analysis:
☞ loops with multiple exit or entry points and un

2. Data use analysis:
☞ use of uninitialized variables, declared but un

3. Interface analysis:
☞ consistency of procedure declarations and us

4. Information flow analysis:
☞ identifies dependencies of output variables on

5. Path analysis:
☞ identifies all possible paths through program
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4GL Workbenches

A so-called “Fourth Generation Language” (4GL) is really a
producing interactive applications that provide users with for
an underlying (relational) database.

Database Management System

Form
designer

DB query
language Spreadshe
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Analysis and Design Workbenc
Analysis and design workbenches support the modelling pha
usually by means of a graphical notation (e.g., dataflow, ER
not support a specific analysis and design method (e.g., JS

Central information
repository

Structured
diagramming tools

Data
dictionary

Skeleton code
generator

Forms
creation tools

Design analysis and
checking tools
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Testing Workbenches
Testing tends to be application and organization specific, s
developed in-house using standard tools.

Test results
report

Test data
generator

Test data

Test result

Test
manager

Source
code

Dynamic
analyser

Program being
tested

Execution
report Simulator
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Testing Tools

Test Data Generators:
☞ automatic generation of test inputs
☞ output analysis by “oracle” (i.e., prototype, pa

File Comparators:
☞ automatically comparing old and new test res

Simulators:
☞ hardware — cost, availability, risk ...
☞ events — real-time, reproducibility, load ...

Dynamic Analysers:
☞ instrumentation statements are automatically 
☞ execution profiles are generated and analyse
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Configuration Management To

Configuration management is concerned with the developm
standards for managing an evolving software system produ

Tool examples:
Version Control — SCCS and RCS:

☞ check-out and check-in of components
☞ logging changes (who, where, when)
☞ changes converted to system “deltas” (can ge
☞ “freezing” of versions as releases (possibly pa

System Building — Make:
☞ dependency specification
☞ rules for generation of intermediate files
☞ automatic re-generation of out-of-date files
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Software Engineering Environm

A software engineering environment (SEE) is a set of h
tools which can act in combination in an integrated w
for the whole of the software process from initial spec
testing and system delivery.

— Somm

SEEs vs. CASEs:
❑ SEEs are fully integrated (all 5 levels)
❑ SEEs support development by teams and provide

management
❑ SEEs support workbenches for a range of softwar

Although there are presently no good examples of SEEs, th
Environment (PCTE) has been widely adopted as a standa
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Summary

You should know the answers to these questions:
❑ What are the key features of a CASE environmen
❑ Which phases of the software lifecycle benefit from
❑ In what different ways can CASE system be integr
❑ What are the risks in adopting a CASE system?
❑ What kinds of errors can be detected by static ana
❑ What is an “oracle” and how is it used?

Can you answer the following questions?
✎ Why is the quality of tool support for project manageme

and programming?
✎ Where does SNiFF+ fit into the CASE system classific
✎ Is it better to use a single method A&D workbench or a
✎ Why is Meta-CASE technology not widely used?
✎ Why are there no good examples of SEEs in use?
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What is Delphi?

• Delphi is a 4GL-object-oriented, visual programming 
environment for RAD Client/Server applications for
Windows 95/NT.

• Delphi provides a library of reusable software components
and several integrated development tools like experts.

• Delphi is (deceptively) easy to use. Within minutes, an
advanced programmer can create real Windows applications.

• To write Delphi programs, it is not necessary to be a
Windows programming expect, but at least one must be
familiar with some fundamental Windows concepts.
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4GL-Environment

• A 4GL-environment integrates programming facilities,
graphical user interfaces (GUI), and a database system in a
single tool.

• The programming language used in these systems is usually
object-oriented.

• The main purpose of these systems is to support application
development for commercial problem domains as good as
possible.

• A 4GL-environment is an end user tool that focuses on highest
productivity.
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Delphi - Goals and Objects

• Rapid Application Development environment for the Internet
and Enterprise,

• Build large scale database solutions,

• Build high speed, native-code compiled, client and server
applications for the Enterprise and the Internet,

• Reuse objects through-out the enterprise in a multi-tier
environment.

• Simplifying distributed enterprise development through a one-
step simultaneous support of COM and CORBA (Visibroker).
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The environment

Delphi combines a RAD environment, high speed native code
compiler, scalable database and reusable componentry to provide
developer with the highest productivity.
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The product family

Intra
Builder Delphi

J Builder C++ Builder

InterBase SQL Links

Open

Scalable
Architecture

OLEnterprise

Entera

Control

Performance

X-Platform

Web

Database

RAD/Reuse

Delphi:
Scalable Windows
applications

C++ Builder:
Critical business 
applications

Intra Builder:
Corporate Data-driven
web-applications

JBuilder:
Scalable cross-platform
web-applications
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Two-tier Architecture

Provides basic separations of concerns.
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Tree-tier Architecture

Offers a technology neutral
method to develop client/server
applications with vendors who
employ standard interfaces
which provide services for each
logical tier.
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Multi-tier Architecture

A multi-tier, three-tier, or N-
tier implementation employs a
three-tier logical architecture
superimposed on a distributed
physical model. Application
Servers can access other
application servers in order to
supply services to the client
application as well as supply
services for other application
servers.
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The Delphi IDE

Object
Inspector

Component Repository

Form
Editor

Application Form
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Hello World

Steps:

• add label

• new application

• set alignment

• change font

• resize form

• run
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Delphi Component Definition

• A component is an  item that can be selected from the
component palette and which can be manipulated by the form
designer or the program code.

• A component is an object which class is derived from the class
TComponent, TComponent defines the basic behaviour that
must be fulfilled by every component.

• A component is an element which can be added to the Delphi
environment. The complexity of a component can range from
a simple extension of a standard component to a complex
interface component for hard- and software.
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Facts about Delphi

•  Components + ObjectPascal = Application,

•  Transparent integration of COM and CORBA components,

•  Delphi components can easily be made a COM components,

•  The JavaBeans model is derived from Delphi,

•  Delphi has emerged a first component market.

•  Delphi is a mixed-style programming environment; the user can
or must use the textual or visual style of programming.

•  Delphi components lack a binary standard like COM.
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Working with Components

• All components are visible and configurable at design time.

• Visual components appear at runtime as designed.

• Non-visual components are invisible at runtime. These
components provide a visual way of setting up properties.

• Only published properties can be changed at design time.

• Event handler provide a convenient way to add application
specific code to your application.

• Understanding component properties and events is essential
to effectively program with Delphi.
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The Object Model
• The root class of every object is TObject.

• A class can have a private, protected, public, and published
interface.

• The object model supports class-based features like class
methods.

• Every object in Delphi is a dynamic instance - reference model.

• Delphi supports so-called method pointers.

• Type information is available at both design time and runtime.

• The object model provides a so-called property mechanism
faking direct instance variable access.
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Delphi’s Object repository
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Creating a new Component
• New component • Implement component

• Test and install component



18

Publisher-Subscriber pattern I
 TUpdateNotifier = class(TComponent)
  private
    FWindowHandle : HWND;
    FAtom : DWORD;
    FOnNotifyUpdate : TOnNotifyUpdate;

  public
    constructor Create( AOwner : TComponent ); override;
    destructor Destroy; override;
    procedure WndProc( var Msg : TMessage );
    procedure NotifyUpdate( AObject : TObject );

  published
    property OnNotifyUpdate : TOnNotifyUpdate read FOnNotifyUpdate
                                              write FOnNotifyUpdate;
  end;
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Publisher-Subscriber pattern II
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Publisher-Subscriber pattern III

ColorManager



21

Rotating 3D Cube
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Rotating 3D Cube

A rotating cube
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One-Step ActiveX
New element:

1.

Derive from TWinControl

Build-in COM support:

2.
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Make it into an ActiveX-control

Steps:

• Make cube component
an window control

• Make new component
a ActiveX-element

• Build OCX

• Register ActiveX-server
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Use Delphi’s ActiveX-control I
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Use Delphi’s ActiveX-control II
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Use Delphi’s ActiveX-control III
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What have you learned about
Delphi?
• Delphi is a rapid application development environment,

• Delphi supports enterprise and internet client/server solutions,

• Delphi supports an open, scalable multi-tier architecture,

• Delphi provides support to create, manage, and deliver data
over the web,

• Delphi provides support to create reusable objects,

• Delphi provides support to graphically display of any kind of
data,

• Delphi supports one-step COM and CORBA development.
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Questions
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