
ESE — Einführung in Software
Engineering

Prof. O. Nierstrasz

Wintersemester 1999/2000

Table of Conte ii.

Table of Co

1. ESE — Einfü
Other Book
Course Ove
What is Sof
Software D
The Classic
Problems w
Iterative De
Iterative an
Boehm’s Sp
Requireme
Requireme
Prototyping
Design
Implement
Maintenan
Maintenan
Why use a
Object-Orie
Summary

2. Project Man
Manageme
Risk Manag
Focus on Sc
Scope and
Cost Estima
Measureme
Measureme
Estimation
Product Pro
Planning an
Planning an
Task Duratio

Utilities 68
Objects 69
Associations 70
Aggregation and Navigability 71
Association Classes 72
Qualified Associations 73
Inheritance 74
What is Inheritance For? 75
Multiple Inheritance 76
Constraints 77
Using the Notation 78
Summary 79

5. Modelling Behaviour 80
Use Case Diagrams 81
Sequence Diagrams 82
UML Message Flow Notation 83
Collaboration Diagrams 84
Message Labels 85
State Diagrams 86
State Diagram Notation 87
State Box with Regions 88
Transitions and Operations 89
Composite States 90
Sending Events between Objects 91
Concurrent Substates 92
Branching and Merging 93
History Indicator 94
Creating and Destroying Objects 95
Using the Notations 96
Summary 97

6. Software Architecture 98
What is Software Architecture? 99
How Architecture Drives Implementation 100
Sub-systems, Modules and Components 101
nts

September 21, 1999

ntents ii

hrung in Software Engineering 1
s 2
rview 3

tware Engineering? 4
evelopment Activities 5
al Software Lifecycle 6
ith the Software Lifecycle 7
velopment 8
d Incremental Development 9
iral Lifecycle 10

nts Collection 11
nts Analysis and Specification 12

13
14

ation and Testing 15
ce 16
ce 17
Method? 18
nted Methods 19

20

agement 21
nt activities 22
ement 23
ope 24

 Objectives 25
tion Objectives 26
nt 27
nt-based Estimation 28

and Commitment 29
cess Model 30
d Scheduling (I) 31
d Scheduling (II) 32
ns and Dependencies 33

Milestones and Deliverables 34
Activity Network 35
Activity Timeline 36
Software Teams 37
Chief Programmer Teams 38
Staff Allocation 39
Object Lessons 40
Conway’s Law 41
Summary 42

3. Requirements Collection 43
The Requirements Engineering Process 44
Requirements Engineering Activities 45
Requirements Analysis 46
Problems of Requirements Analysis 47
The Requirements Analysis Process 48
Use Cases and Viewpoints 49
Unified Modeling Language 50
Writing Requirements Definitions 51
Functional and Non-functional Requirements 52
Types of Non-functional Requirements 53
Examples of Non-functional Requirements 54
Requirements Verifiability 55
Precise Requirements Measures 56
Prototyping Objectives 57
Evolutionary Prototyping 58
Throw-away Prototyping 59
Requirements Checking 60
Requirements Reviews 61
Summary 62

4. Modelling Objects and Classes 63
Class Diagrams 64
Visibility and Scope of Features 65
UML Lines and Arrows 66
Parameterized Classes 67

Table of Contents

Tab iii.

C
C
T
L
A
L
A
O
C
C
F
B
R
E
S
D
In
C
C
S

7. R
W
D
F
D
D
C
C
C
C
C
F
Id
R
R
Id
A
R

Error Message Guidelines 177
Good and Bad Error Messages 178
Help System Design 179
User Interface Evaluation 180
Summary 181

10. Software Validation 182
Software Reliability, Failures and Faults 183
Programming for Reliability 184
Common Sources of Software Faults 185
Fault Tolerance 186
Approaches to Fault Tolerance 187
Defensive Programming 188
Verification and Validation 189
The Testing Process 190
Regression Testing 191
Test Planning 192
Testing Strategies 193
Defect Testing 194
Functional testing 195
Equivalence Partitioning 196
Test Cases and Test Data 197
Structural Testing 198
Binary Search Method 199
Path Testing 200
Statistical Testing 201
Static Verification 202
Summary 203

11. Software Quality 204
What is Quality? 205
Software Quality Factors 206
Quality Management Activities 207
Quality Controls 208
Process-based Quality 209
ISO 9000 210
ISO 9001 211
ISO 9000 and Quality Management 212
ISO 9000 Certification 213
le of Contents

September 21, 1999

ohesion 102
oupling 103

ight Coupling 104
oose Coupling 105
rchitectural Parallels 106

ayered Architectures 107
bstract Machine Model 108
SI Reference Model 109
lient-Server Architectures 110
lient-Server Architectures 111

our-Tier Architectures 112
lackboard Architectures 113
epository Model 114
vent-driven Systems 115
elective Broadcasting 116
ataflow Models 117
voice Processing System 118
ompilers as Dataflow Architectures 119
ompilers as Blackboard Architectures 120

ummary 121

esponsibility-Driven Design 122
hat is Object-Oriented Design? 123
esign Steps 124
inding Classes 125
rawing Editor Requirements Specification 126
rawing Editor: noun phrases 127
lass Selection Rationale (I) 128
lass Selection Rationale (II) 129
lass Selection Rationale (III) 130
andidate Classes 131
lass Cards 132

inding Abstract Classes 133
entifying and Naming Groups 134

ecording Superclasses 135
esponsibilities 136
entifying Responsibilities 137
ssigning Responsibilities 138
elationships Between Classes 139

Recording Responsibilities 140
Collaborations 141
Finding Collaborations 142
Recording Collaborations 143
Summary 144

8. Detailed Design 145
Sharing Responsibilities 146
Multiple Inheritance 147
Building Good Hierarchies 148
Building Kind-Of Hierarchies 149
Refactoring Responsibilities 150
Identifying Contracts 151
Applying the Guidelines 152
What are Subsystems? 153
Subsystem Cards 154
Class Cards 155
Simplifying Interactions 156
Protocols 157
Refining Responsibilities 158
Specifying Your Design: Classes 159
Specifying Subsystems and Contracts 160
Summary 161

9. User Interface Design 162
Interface Design Models 163
GUI Characteristics 164
GUI advantages 165
User Interface Design Principles 166
Direct Manipulation 167
Interface Models 168
Menu Systems 169
Menu Structuring 170
Command Interfaces 171
Information Presentation 172
Analogue vs. Digital Presentation 173
Colour Displays 174
User Guidance 175
Design Factors in Message Wording 176

Tab iv.

T

T

Q

T

R

R

S

S

R

P

S

D

G

S

12.

W

C

C

Q

T

In

T

P

S

S

4

A

T

T

C

S

S

13.
le of Contents

September 21, 1999

he Quality Plan 214

ypes of Review 215

uality Reviews 216

he Review Process 217

eview Meetings and Minutes 218

eview Guidelines 219

ample Review checklists (I) 220

ample Review checklists (II) 221

eview Results 222

roduct and Process Standards 223

ample Java Code Conventions 224

ocumentation Standards 225

ood and Bad Documentation 226

ummary 227

Computer-Aided Software Engineering 228

hat is CASE? 229

ASE Tool Functionality 230

ASE Tool Process Support 231

uality of Tools Support 232

ools, Workbenches and Environments 233

tegrated CASE 234

he CASE life cycle 235

rogramming Workbenches 236

tatic Program Analysers 237

tages of Static Analysis 238

GL Workbenches 239

nalysis and Design Workbenches 240

esting Workbenches 241

esting Tools 242

onfiguration Management Tools 243

oftware Engineering Environments 244

ummary 245

4th Generation Systems — Delphi 246

ESE 1.

U — Einführung in Software Engineering

 Engineering

 Mathis Kretz

esley, Fifth Edn., 1996.
, R. Pressman, Mc-Graw Hill,

ck, B. Wilkerson, L. Wiener,
niversität Bern ESE

1. ESE — Einführung in Software

Lecturer: Prof. Oscar Nierstrasz
Schützenmattstr. 14/103, Tel. 631.4618

Secretary: Frau I. Huber, Tel. 631.4692
Assistants: Jean-Guy Schneider, Thomas Hofmann,

WWW: http://www.iam.unibe.ch/~scg

Principle Texts:
❑ Software Engineering, I. Sommerville, Addison-W
❑ Software Engineering — A Practitioner’s Approach

Third Edn., 1994.
❑ Designing Object-Oriented Software, R. Wirfs-Bro

Prentice Hall, 1990.

ESE 2.

U — Einführung in Software Engineering

ley, 1975.
nted Development Projects,

od, D. Coleman, et al.,

r Project Management, A.

ey, Addison Wesley, 1995
Prentice Hall, Second Edn.,

 D. D'Souza, A. Wills,
niversität Bern ESE

Other Books

❑ The Mythical Man-Month, F. Brooks, Addison-Wes
❑ Object Lessons — Lessons Learned in Object-Orie

T. Love, SIGS Books, 1993
❑ Object-Oriented Development — The Fusion Meth

Prentice Hall, 1994.
❑ Succeeding with Objects: Decision Frameworks fo

Goldberg and K. Rubin, Addison-Wesley, 1995
❑ A Discipline for Software Engineering, W. Humphr
❑ Object-Oriented Software Construction, B. Meyer,

1997.
❑ Objects, Components and Frameworks with UML,

Addison-Wesley, 1999
❑ UML@Work, M. Hitz, G. Kappel, DPunkt, 1999

ESE 3.

U — Einführung in Software Engineering
niversität Bern ESE

Course Overview

1. 10-27 Introduction — The Software Lifecycle
2. 11-03 Project Management
3. 11-10 Requirements Collection
4. 11-17 Modelling Objects and Classes
5. 11-24 Modelling Behaviour
6. 12-01 Software Architecture
7. 12-08 Responsibility-Driven Design
8. 12-15 Detailed Design
9. 12-22 User Interface Design
10. 01-12 Software Validation
11. 01-19 Software Quality
12. 01-26 Computer-Aided Software Engineering
13. 02-02 4GLs: Delphi — guest lecture

02-09 Final exam

ESE 4.

U — Einführung in Software Engineering

the user’s needs?
?

 specification?
orrectly?

 a one-person team?

Final Program
niversität Bern ESE

What is Software Engineering?

A naive view:

But ...
❑ Where did the specification come from?
❑ How do you know the specification correspond to
❑ How did you decide how to structure your program
❑ How do you know the program actually meets the
❑ How do you know your program will always work c
❑ What do you do if the users’ needs change?
❑ How do you divide tasks up if you have more than

Problem Specification coding

ESE 5.

U — Einführung in Software Engineering

s

irements
niversität Bern ESE

Software Development Activitie

Requirements Collection
❑ Establish customer’s needs

Analysis
❑ Model and specify the requirements (“what”)

Design
❑ Model and specify a solution (“how”)

Implementation
❑ Construct a solution in software

Testing
❑ Validate the solution against the requirements

Maintenance
❑ Repair defects and adapt the solution to new requ

NB: these are ongoing activities, not sequential phases!

ESE 6.

U — Einführung in Software Engineering

ally:
cycle

oftware lifecycle
tware development as
“waterfall” between the
pment phases.

esting

Maintenance
niversität Bern ESE

The Classical Software Lifecycle

The waterfall model is unrealistic for many reasons, especi
❑ requirements must be “frozen” too early in the life-
❑ requirements are validated too late

The classical s
models the sof
a step-by-step
various develo

Requirements
Collection

Analysis

Design

Implementation

T

ESE 7.

U — Einführung in Software Engineering

cycle

he model proposes. Iteration
ion of the paradigm”

ments explicitly. The classic
ting the natural uncertainty

on of the program(s) will not
r blunder, if undetected until
.”

 Pressman, SE, p. 26
niversität Bern ESE

Problems with the Software Life

1. “Real projects rarely follow the sequential flow that t
always occurs and creates problems in the applicat

2. “It is often difficult for the customer to state all require
life cycle requires this and has difficulty accommoda
that exists at the beginning of many projects.”

3. “The customer must have patience. A working versi
be available until late in the project timespan. A majo
the working program is reviewed, can be disastrous

—

ESE 8.

U — Einführung in Software Engineering

s progress in parallel.

andard software process?

on requirements

oughout implementation

refactoring
niversität Bern ESE

Iterative Development

In practice, development is always iterative, and all activitie

✎ If the waterfall model is pure fiction, why is it still the st

Requirements
Collection

Testing

Design

Analysis

Implementation

Validation through prototyping

Testing based

Testing thr

Maintenance through iteration

Design through

ESE 9.

U — Einführung in Software Engineering

lopment

e, validate and test as

pensive they are to fix!

the system, even if most

le.
quirements.
niversität Bern ESE

Iterative and Incremental Deve

Plan to iterate your analysis, design and implementation.
☞ You won’t get it right the first time, so integrat

frequently as possible.

The later in the lifecycle errors are discovered, the more ex

Plan to incrementally develop (i.e., prototype) the system.
☞ If possible, always have a running version of

functionality is yet to be implemented.
☞ Integrate new functionality as soon as possib
☞ Validate incremental versions against user re

ESE 10.

U — Einführung in Software Engineering

nalysis

neering

evolving system

first prototype
niversität Bern ESE

Boehm’s Spiral Lifecycle

Planning Risk A

EngiCustomer Evaluation

initial requirements

alpha demo

ESE 11.

U — Einführung in Software Engineering

, they may be incomplete,

t place
 the project

nly when the “final system”

uirements
niversität Bern ESE

Requirements Collection

User requirements are often expressed informally:
☞ features
☞ usage scenarios

Although requirements may be documented in written form
ambiguous, or even incorrect.

Requirements will change!
☞ inadequately captured or expressed in the firs
☞ user and business needs may change during

Validation is needed throughout the software lifecycle, not o
is delivered!

☞ build constant feedback into your project plan
☞ plan for change
☞ early prototyping [e.g., UI] can help clarify req

ESE 12.

U — Einführung in Software Engineering

cification

The intention is to provide a
ts underlying concepts are.

 which describe:

m

s’ actual needs?
niversität Bern ESE

Requirements Analysis and Spe

Analysis is the process of specifying what a system will do.
clear understanding of what the system is about and what i
The result of analysis is a specification document.

An object-oriented analysis results in models of the system
❑ classes of objects that exist in the system
❑ relationships between those classes
❑ use cases and scenarios describing

☞ operations that can be performed on the syste
☞ allowable sequences of those operations

Does the requirements specification correspond to the user

ESE 13.

U — Einführung in Software Engineering

or validate a hypothesis, i.e.

type, is intended to validate

ility

 a finished product

refactoring along the way
niversität Bern ESE

Prototyping

A prototype is a software program developed to test, explore
to reduce risks.

An exploratory prototype, also known as a throwaway proto
requirements or explore design choices.

❑ UI prototype — validate user requirements
❑ rapid prototype — validate functional requirements
❑ experimental prototype — validate technical feasib

An evolutionary prototype is intended to evolve in steps into

❑ iteratively “grow” the application, redesigning and

✔ First do it, then do it right, then do it fast.

ESE 14.

U — Einführung in Software Engineering

m behaviour will be realized
detailed design documents.

cting objects
e related by inheritance

plementation!
niversität Bern ESE

Design

Design is the process of specifying how the specified syste
from software components. The results are architecture and

Object-oriented design delivers models that describe:
❑ how system operations are implemented by intera
❑ how classes refer to one another and how they ar
❑ attributes of, and operations, on classes

Design is an iterative process, proceeding in parallel with im

ESE 15.

U — Einführung in Software Engineering

ution to the customer’s

the requirements.

ted and validated solution.

ctivities
esign”, but rather the design

d implementation
 and refactoring
niversität Bern ESE

Implementation and Testing

Implementation is the activity of constructing a software sol
requirements.
Testing is the process of validating that the solution meets

The result of implementation and testing is a fully documen

❑ Design, implementation and testing are iterative a
☞ The implementation does not “implement the d

document documents the implementation!

❑ System tests reflect the requirements specification
❑ Ideally, test case specification precedes design an

☞ Repeatable, automated tests enable evolution

ESE 16.

U — Einführung in Software Engineering

s been deployed.

defects
ion to new platforms
ements

ent of the first prototype can

tion
niversität Bern ESE

Maintenance

Maintenance is the process of changing a system after it ha

❑ Corrective maintenance: identifying and repairing
❑ Adaptive maintenance: adapting the existing solut
❑ Perfective maintenance: implementing new requir

In a spiral lifecycle, everything after the delivery and deploym
be considered “maintenance”!

“Maintenance” entails:
❑ configuration and version management
❑ reengineering (redesigning and refactoring)
❑ updating all analysis, design and user documenta

ESE 17.

U — Einführung in Software Engineering

ser
s

Emergency
Fixes

utine
bugging

Changes in
Data Formats

1.8

17.4

12.4
niversität Bern ESE

Maintenance

Changes in U
Requirement

Documentation

Hardware
Changes Ro

De

Other

Efficiency
Improvements

4

9
6.2

5.5

4

3.4

Breakdown of
maintenance costs.
Source: Lientz 1979

ESE 18.

U — Einführung in Software Engineering

mbiguities in requirements

hen requirements change

e studied before

tems into manageable parts

 for analysis and design

nderstand complex systems
niversität Bern ESE

Why use a Method?

Requirements checking:
❑ System modelling helps uncover omissions and a

Clearer concepts:
❑ Domain analysis models can be reused/adapted w

Less design rework:
❑ Analysis and design models allow alternatives to b

implementation starts
Better refactoring of design work:

❑ Analysis and design helps to decompose large sys
Improved communications between developers:

❑ Standard notations provide a common vocabulary
Less effort needed on maintenance:

❑ Analysis and design documents help maintainers u

ESE 19.

U — Einführung in Software Engineering

te diagrams ...):

gn by contract

 + ...

nverging, but:

se.
niversität Bern ESE

Object-Oriented Methods

First generation:
❑ Adaptation of existing notations (ER diagrams, sta

☞ Booch, OMT, Shlaer and Mellor, ...
❑ Specialized design techniques:

☞ CRC cards; responsibility-driven design; desi
Second generation:

❑ Fusion:
☞ Booch + OMT + CRC + formal methods

Third generation:
❑ Unified Modeling Language:

☞ uniform notation: Booch + OMT + Use Cases
☞ complete lifecycle support (to be defined!)

Object-oriented methods are still maturing. Notations are co
☞ transition is still risky
☞ few methods deal seriously with software reu

ESE 20.

U — Einführung in Software Engineering

mming?

n?

of a “real” software project?
of object-oriented methods?

users’ real needs?
niversität Bern ESE

Summary

You should know the answers to these questions:
❑ How does Software Engineering differ from progra
❑ Why is the “waterfall” model unrealistic?
❑ What is the difference between analysis and desig
❑ Why plan to iterate? Why develop incrementally?
❑ Why is programming only a small part of the cost
❑ What are the key advantages and disadvantages

Can you answer the following questions?
✎ Why do requirements change?
✎ How can you validate that an analysis model captures
✎ When does analysis stop and design start?
✎ When can implementation start?

ESE 21.

U Project Management

esley, Fifth Edn., 1996.
, R. Pressman, Mc-Graw Hill,

ley, 1975

r Project Management, A.

ge, Kent Beck (to appear)
niversität Bern

2. Project Management

Overview:
❑ Management activities
❑ Risk management
❑ Planning and scheduling
❑ Teamwork

Sources:
❑ Software Engineering, I. Sommerville, Addison-W
❑ Software Engineering — A Practitioner’s Approach

Third Edn., 1994.
Recommended Reading:

❑ The Mythical Man-Month, F. Brooks, Addison-Wes
❑ Object Lessons, T. Love, SIGS Books, 1993
❑ Succeeding with Objects: Decision Frameworks fo

Goldberg and K. Rubin, Addison-Wesley, 1995
❑ Extreme Programming Explained: Embrace Chan

ESE 22.

U Project Management
niversität Bern

Management activities

❑ Defining scope and objectives
❑ Estimating costs
❑ Analysing and managing risk
❑ Planning & scheduling
❑ Selecting and evaluating staff
❑ Project tracking and control

ESE 23.

U Project Management

ck you.

— Tom Gilb

 morale ...

tenance ...
niversität Bern

Risk Management

If you don’t actively attack risks, they will actively atta

Project risks
☞ budget, schedule, resources, size, personnel,

Technical risks
☞ implementation technology, verification, main

Business risks
☞ market, sales, management, commitment ...

Management must:
❑ identify risks as early as possible
❑ assess whether risks are acceptable
❑ monitor risks throughout the project
❑ take appropriate action to manage risks

☞ e.g., training, prototyping, iteration, ...

ESE 24.

U Project Management

customers can’t tell us
y want, they don’t like
velopment. The

never tell you exactly

— Kent Beck
niversität Bern

Focus on Scope

For decades, programmers have been whining, “The
what they want. When we give them what they say the
it.” Get over it. This is an absolute truth of software de
requirements are never clear at first. Customers can
what they want.

ESE 25.

U Project Management

art coding.”
ct failure.

 they will be achieved.

 accomplish, and bounds

itly stated
niversität Bern

Scope and Objectives

Myth: “A general statement of objectives is enough to st
Reality: Poor up-front definition is the major cause of proje

In order to plan, you must set clear scope & objectives

Objectives identify the general goals of the project, not how

Scope identifies the primary functions that the software is to
these functions in a quantitative manner.

❑ Goals must be realistic and measurable
❑ Constraints, performance, reliability must be explic
❑ Customer must set priorities

ESE 26.

U Project Management

ly related activities
niversität Bern

Cost Estimation Objectives

❑ To establish a budget for a software project
❑ To provide a means of controlling project costs
❑ To monitor progress against the budget

☞ comparing planned with estimated costs
❑ To establish a cost database for future estimation
❑ Cost estimation and planning/scheduling are close

ESE 27.

U Project Management

t and express it in
annot measure, when

 of a meagre and
dge, but you have
cience.

— Lord Kelvin
niversität Bern

Measurement

When you can measure what you are speaking abou
numbers, you know something about it; but when you c
you cannot express it in numbers, your knowledge is
unsatisfactory kind: it may be the beginning of knowle
scarcely, in your thoughts, advanced to the stage of s

ESE 28.

U Project Management

n

to

cts

pret
e effort with respect to a
development project plan
niversität Bern

Measurement-based Estimatio

A. Measure
Develop a system model
and measure its size

B. Estimate
Determine the effort with respect
an empirical database of
measurements from similar proje

C. Inter
Adapt th
specific

ESE 29.

U Project Management

erge/rewrite stories
io of ideal programming time

get, customers pick stories

ate
ers reduce scope,
nyway)
niversität Bern

Estimation and Commitment

Example: The XP process

1. a. Customers write stories and
b. Programmers estimate stories

☞ if they can’t, they ask the customers to split/m
2. Programmers measure the team load factor, the rat

to the calendar
3. Customers sort stories by priority
4. Programmers sort stories by risk
5. a. Customers pick date, programmers calculate bud

adding up to that number, or
b. Customers pick stories, programmers calculate d
(customers complain, programmers suggest custom
customers complain some more but reduce scope a

ESE 30.

U Project Management

egration produce effec-

emove mistakes or make

t”

es or rates
s
stomer feedback
titions as early as possible

of the system
 key decisions
niversität Bern

Product Process Model

Incremental decision-making, development, testing and int
tive project results.

❑ Iterative development:
☞ Controlled reworking of parts of a system to r

improvements based on user feedback
☞ “We get things wrong before we get them righ

❑ Incremental development:
☞ Partition systems and develop at different tim
☞ Test and integrate as each partition complete
☞ Make progress in small steps to get earlier cu
☞ Obtain better quality testing by integrating par

❑ Prototyping:
☞ Creating a scaled-down model of some or all
☞ Benefit by “buying” information before making

ESE 31.

U Project Management

rammers and catch up.”
.

developing a solution is hard
ople working on a task

to communication overhead
ntingency in planning

ns
niversität Bern

Planning and Scheduling (I)

Myth: “If we get behind schedule, we can add more prog
Reality: Adding more people typically slows a project down

Scheduling problems
❑ Estimating the difficulty of problems and the cost of
❑ Productivity is not proportional to the number of pe
❑ Adding people to a late project makes it later due
❑ The unexpected always happens. Always allow co

Planning under uncertainty
❑ State clearly what you know and don’t know
❑ State clearly what you will do to eliminate unknow
❑ Make sure that all early milestones can be met
❑ Plan to replan

ESE 32.

U Project Management

.
of workforce

graph

nce!

e monitored and revised
niversität Bern

Planning and Scheduling (II)

Project Scheduling
❑ Split project into tasks.
❑ Identify required milestones and cost of each task
❑ Organize tasks concurrently to make optimal use
❑ Document dependencies between project tasks

☞ total time depends on longest path in activity
❑ Minimize task dependencies to avoid delays
❑ Depend on project manager’s intuition and experie

Planning and estimation are iterative and schedules must b
during the project!

ESE 33.

U Project Management

ies
pendencies

T1

T2, T4

T1, T2

T1

T4

T3, T6

T5, T7

T9

T11
niversität Bern

Task Durations and Dependenc

✎ What is the minimum total duration of this project?

Task Duration (days) De

T1 8

T2 15

T3 15

T4 10

T5 10

T6 5

T7 20

T8 25

T9 15

T10 15

T11 7

T12 10

ESE 34.

U Project Management

e working program.”
ent are needed to ensure

cess activities.
tomer.

ss
s

niversität Bern

Milestones and Deliverables

Myth: “The only deliverable for a successful project is th
Reality: Documentation of all aspects of software developm

maintainability.

Project milestones mark the end of significant software pro
Project deliverables are results that are delivered to the cus

❑ E.g.:
☞ initial requirements document
☞ UI prototype
☞ architecture specification

❑ Milestones and deliverables help to monitor progre
☞ Should be scheduled roughly every 2-3 week

NB: Deliverables must evolve as the project progresses!

ESE 35.

U Project Management
niversität Bern

Activity Network

ESE 36.

U Project Management
niversität Bern

Activity Timeline

ESE 37.

U Project Management

oless programming”)
e
cts
ocratic way
ctive use of skills and
niversität Bern

Software Teams

Team organisation
❑ Teams should be relatively small (< 8 members)

☞ minimize communication overhead
☞ team quality standard can be developed
☞ members can work closely together
☞ programs are regarded as team property (“eg
☞ continuity can be maintained if members leav

❑ Break big projects down into multiple smaller proje
❑ Small teams may be organised in an informal, dem
❑ Chief programmer teams try to make the most effe

experience

ESE 38.

U Project Management

 as required
esign, programming, testing

 and develops test cases

smith, documentation editor,
rogrammers

grammers
niversität Bern

Chief Programmer Teams

❑ Consist of a kernel of specialists helped by others
☞ chief programmer takes full responsibility for d

and installation of system
☞ backup programmer keeps track of CP’s work
☞ librarian manages all information
☞ others may include: project administrator, tool

language/system expert, tester, and support p

❑ Reportedly successful but problems are:
☞ Difficult to find talented chief programmers
☞ Disrupting to normal organisational structures
☞ De-motivating for those who are not chief pro

ESE 39.

U Project Management
niversität Bern

Staff Allocation

ESE 40.

U Project Management

 products

ustomer to correct

ductivity (if ever)

nd support

skills & talents

 acquiring ...)

ced by the team
all code
niversität Bern

Object Lessons
Prototyping

❑ plan to throw one (two?) away; prototypes are not
Requirements and Design

❑ must be formally specified and reviewed with the c
misunderstandings at the earliest possible stage

Training
❑ 6-12 months to train software engineers to OO pro

Reusability
❑ high programmer resistance; requires incentives a

Productivity
❑ can vary by 50:1; match organization to available

Tools
❑ devote 20% of project staff to toolsmiths (building,

Leading vs. Managing
❑ team leaders should read & review all code produ
❑ managers should be able to read and understand

ESE 41.

U Project Management

produce designs that
rganizations”
niversität Bern

Conway’s Law

“Organizations that design systems are constrained to
are copies of the communication structures of these o

ESE 42.

U Project Management

ct?
mental development?

ctivity timeline?
an about 8 members?

 set the project priorities?
sed on requirements alone)?

ould you do then?
re development team?
niversität Bern

Summary

You should know the answers to these questions:
❑ How can prototyping help to reduce risk in a proje
❑ What is the difference between iterative and incre
❑ What are milestones, and why are they important?
❑ What can you learn from an activity network? An a
❑ Why should programming teams have no more th
❑ What is meant by “plan to throw one away”?

Can you answer the following questions?
✎ What will happen if the developers, not the customers,
✎ What is a good way to measure the size of a project (ba
✎ When should you sign a contract with the customer?
✎ How do you know if you fall behind schedule? What sh
✎ How would you select and organize the perfect softwa
✎ What are good examples of Conway’s Law in action?

ESE 43.

U Requirements Collection

ication

esley, Fifth Edn., 1996.
, R. Pressman, Mc-Graw Hill,

 D. D'Souza, A. Wills,
niversität Bern

3. Requirements Collection

Overview:
❑ The Requirements Engineering Process

☞ Requirements Analysis, Definition and Specif
❑ Use cases and scenarios
❑ Functional and non-functional requirements
❑ Evolutionary and throw-away prototyping
❑ Requirements checking and reviews

Sources:
❑ Software Engineering, I. Sommerville, Addison-W
❑ Software Engineering — A Practitioner’s Approach

Third Edn., 1994.
❑ Objects, Components and Frameworks with UML,

Addison-Wesley, 1999

ESE 44.

U Requirements Collection

Process
niversität Bern

The Requirements Engineering

ESE 45.

U Requirements Collection

vities

he available technology and

e system.

 to the customer.

r.

 and developers.”
niversität Bern

Requirements Engineering Acti

Feasibility study
❑ Determine if the user needs can be satisfied with t

budget.
Requirements analysis

❑ Find out what system stakeholders require from th
Requirements definition

❑ Define the requirements in a form understandable
Requirements specification

❑ Define the requirements in detail.
Written as a contract between client and contracto

“Requirements are for users; specifications are for analysts

ESE 46.

U Requirements Collection

discovery

maintenance, domain
niversität Bern

Requirements Analysis

Sometimes called requirements elicitation or requirements

Technical staff work with customers to determine
❑ the application domain,
❑ the services that the system should provide and
❑ the system’s operational constraints.

Involves various stakeholders:
❑ e.g., end-users, managers, engineers involved in

experts, trade unions, etc.

ESE 47.

U Requirements Collection

lysis

rms
ements
the system requirements
ess.

nding of user needs is
ange
ts as the system is being
niversität Bern

Problems of Requirements Ana

Various problems typically arise:
❑ Stakeholders don’t know what they really want
❑ Stakeholders express requirements in their own te
❑ Different stakeholders may have conflicting requir
❑ Organisational and political factors may influence
❑ The requirements change during the analysis proc

New stakeholders may emerge.

Requirements evolution
❑ Requirements always evolve as a better understa

developed and as the organisation’s objectives ch
❑ It is essential to plan for change in the requiremen

developed and used

ESE 48.

U Requirements Collection

ess
niversität Bern

The Requirements Analysis Proc

ESE 49.

U Requirements Collection

uding variants, that a system
ystem”.

ng from a known initial state.

as possible/necessary
 about the desired system
bjects)
tional usage scenarios

se features.
ments are complete and
niversität Bern

Use Cases and Viewpoints

A use case is the specification of a sequence of actions, incl
(or other entity) can perform, interacting with actors of the s

A scenario is a particular trace of action occurrences, starti

Stakeholders represent different problem viewpoints.
❑ Interview as many different kinds of stakeholders
❑ Translate requirements into use cases or “stories”

involving a fixed set of actors (users and system o
❑ For each use case, capture both typical and excep

Users tend to think about systems in terms of “features”.
❑ You must get them to tell you stories involving tho
❑ Use cases and scenarios can tell you if the require

consistent!

ESE 50.

U Requirements Collection

ustrial standard for

ir relationships

se cases they participate in
s in a use case scenario

nged by objects

es of an object
niversität Bern

Unified Modeling Language

The “Unified Modeling Language” (UML) is an emerging ind
documenting object-oriented analysis and design models.

❑ Class Diagrams: specify classes, objects and the
☞ visualize logical structure of system

❑ Use Case Diagrams: show external actors and u
❑ Sequence Diagrams: list the message exchange

☞ visualizes temporal message ordering
❑ Collaboration Diagrams: show messages excha

☞ visualize object relationships
❑ State Diagrams: specify the possible internal stat

and others ...

ESE 51.

U Requirements Collection

s

e, supplemented by (e.g.,

cise and easy-to-read.

nd to be intertwined.

sed together.
niversität Bern

Writing Requirements Definition

Requirements definitions usually consist of natural languag
UML) diagrams and tables.

Three types of problem can arise:

❑ Lack of clarity:
☞ It is hard to write documents that are both pre

❑ Requirements confusion:
☞ Functional and non-functional requirements te

❑ Requirements amalgamation:
☞ Several different requirements may be expres

ESE 52.

U Requirements Collection

Requirements

ons

or the development process:

e in a particular way e.g.

nd procedures e.g. process
, etc.

stem and its development
islative requirements, etc.

tional requirements.
niversität Bern

Functional and Non-functional

Functional requirements describe system services or functi

Non-functional requirements are constraints on the system

❑ Product requirements:
☞ specify that the delivered product must behav

execution speed, reliability, etc.
❑ Organisational requirements:

☞ are a consequence of organisational policies a
standards used, implementation requirements

❑ External requirements:
☞ arise from factors which are external to the sy

process e.g. interoperability requirements, leg

Non-functional requirements may be more critical than func
If these are not met, the system is useless!

ESE 53.

U Requirements Collection

ements
niversität Bern

Types of Non-functional Requir

ESE 54.

U Requirements Collection

quirements

n between the APSE and the
r set.

documents shall conform to
-STAN-95.

ser to check if personal data
defined and supported in the
ata and to correct any errors
niversität Bern

Examples of Non-functional Re

Product requirement
❑ It shall be possible for all necessary communicatio

user to be expressed in the standard Ada characte

Organisational requirement
❑ The system development process and deliverable

the process and deliverables defined in XYZCo-SP

External requirement
❑ The system shall provide facilities that allow any u

is maintained on the system. A procedure must be
software that will allow users to inspect personal d
in that data.

ESE 55.

U Requirements Collection

ly verified.

trollers and should be
d.

 useless as specifications.

system functions after
rage number of errors
er day.
niversität Bern

Requirements Verifiability

Requirements must be written so that they can be objective

Imprecise:

The system should be easy to use by experienced con
organised in such a way that user errors are minimise

Terms like “easy to use” and “errors shall be minimised” are

Verifiable:

Experienced controllers should be able to use all the
a total of two hours training. After this training, the ave
made by experienced users should not exceed two p

ESE 56.

U Requirements Collection

s

cond

hips

e
ing failure
n on failure

ndent statements
niversität Bern

Precise Requirements Measure
Property Measure

Speed Processed transactions/se
User/Event response time
Screen refresh time

Size K Bytes; Number of RAM c

Ease of use Training time
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failur
Percentage of events caus
Probability of data corruptio

Portability Percentage of target depe
Number of target systems

ESE 57.

U Requirements Collection

king system to end-users.

best understood.

ive the system requirements.

oorly understood.
niversität Bern

Prototyping Objectives

The objective of evolutionary prototyping is to deliver a wor

❑ Development starts with the requirements that are

The objective of throw-away prototyping is to validate or der

❑ Prototyping starts with that requirements that are p

ESE 58.

U Requirements Collection

cannot be developed in

rations.
 languages, 4GLs,

on.
y of the system.
niversität Bern

Evolutionary Prototyping

❑ Must be used for systems where the specification
advance.
☞ e.g. AI systems and user interface systems

❑ Based on techniques which allow rapid system ite
☞ e.g., executable specification languages, VHL

component toolkits

❑ Verification is impossible as there is no specificati
☞ Validation means demonstrating the adequac

ESE 59.

U Requirements Collection

ion, delivered for experiment

ed as a final system
left out

nance
ult to maintain
niversität Bern

Throw-away Prototyping

❑ Used to reduce requirements risk

❑ The prototype is developed from an initial specificat
then discarded

❑ The throw-away prototype should not be consider
☞ Some system characteristics may have been

(e.g., platform requirements may be ignored)
☞ There is no specification for long-term mainte
☞ The system will be poorly structured and diffic

ESE 60.

U Requirements Collection

 support the customer’s

d?

able budget and technology?
niversität Bern

Requirements Checking

Validity:
❑ Does the system provide the functions which best

needs?

Consistency:
❑ Are there any requirements conflicts?

Completeness:
❑ Are all functions required by the customer include

Realism:
❑ Can the requirements be implemented given avail

ESE 61.

U Requirements Collection

ents definition is being

 in reviews
ts) or informal.
mers and users can

?
erstood?

y stated?
out a large impact on other
niversität Bern

Requirements Reviews

Requirements reviews
❑ Regular reviews should be held while the requirem

formulated
❑ Both client and contractor staff should be involved
❑ Reviews may be formal (with completed documen

Good communications between developers, custo
resolve problems at an early stage

Review checks
❑ Verifiability. Is the requirement realistically testable
❑ Comprehensibility. Is the requirement properly und
❑ Traceability. Is the origin of the requirement clearl
❑ Adaptability. Can the requirement be changed with

requirements?

ESE 62.

U Requirements Collection

ysis and specification?

-functional requirements?
ct should be “user-friendly”?
row-away prototyping?

 desired features?
guage or diagrams?
sed ordering system?
niversität Bern

Summary

You should know the answers to these questions:
❑ What is the difference between requirements anal
❑ Why is it hard to define and specify requirements?
❑ What are use cases and scenarios?
❑ What is the difference between functional and non
❑ What’s wrong with a requirement that says a produ
❑ What’s the difference between evolutionary and th

Can you answer the following questions?
✎ Why isn’t it enough to specify requirements as a set of
✎ Which is better for specifying requirements: natural lan
✎ How would you prototype a user interface for a web-ba
✎ Would it be an evolutionary or throw-away prototype?
✎ What would you expect to gain from the prototype?
✎ How would you check a requirement for “adaptability”?

ESE 63.

U Modelling Objects and Classes

es

rsion 1.1, Rational Software

od, D. Coleman, et al.,
niversität Bern

4. Modelling Objects and Class

❑ Classes, attributes and operations
❑ Visibility of Features
❑ Parameterized Classes
❑ Objects
❑ Associations
❑ Inheritance
❑ Constraints
❑ Packages

Sources:
❑ Unified Modeling Language — Notation Guide, ve

Corporation, 1997.
❑ Object-Oriented Development — The Fusion Meth

Prentice Hall, 1994.

ESE 64.

U Modelling Objects and Classes

ems, and object diagrams
r.”

s.

lapsed class view:

Polygon

ith Package name:

Windows::Window
niversität Bern

Class Diagrams

“Class diagrams show generic descriptions of possible syst
show particular instantiations of systems and their behaviou

Attributes and operations are also collectively called feature

Class name, attributes and operations:

Polygon

centre: Point
vertices: List of Point
borderColour: Colour
fillColour: Colour

display (on: Surface)
rotate (angle: Integer)
erase ()
destroy ()
select (p: Point): Boolean

A col

Class w

Z

ESE 65.

U Modelling Objects and Classes

e { property string }
efaultValue, ...) : resultType

 }

User-defined properties
(e.g., abstract, readonly,
owner = “Pingu”)

underlined attributes
have class scope
italic attributes are
abstract
niversität Bern

Visibility and Scope of Features

Attributes are specified as: name: type = initialValu
Operations are specified as: name (param: type = d

«user interface»
Window

{ abstract

+size: Area = (100, 100)
#visibility: Boolean = false
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindow*

+display ()
+hide ()
+create ()
-attachXWindow (xwin: Xwindow*)

Stereotype
(what “kind” of class is it?)

+ = “public”
= “protected”
− = “private”

ESE 66.

U Modelling Objects and Classes

Association
e.g., «uses»

Navigable association
e.g., part-of

“Generalization”
i.e., specialization (!)
e.g., class/superclass,
concrete/abstract class

“Composition”
i.e., containment
niversität Bern

UML Lines and Arrows
Constraint
(usually annotated)

Dependency
e.g., «requires»,
«imports» ...

Refinement
e.g., class/template,
class/interface

Aggregation
i.e., “consists of”

ESE 67.

U Modelling Objects and Classes

picted with their parameters

me: Type).

dashed arrow.

 the supplier!

>

niversität Bern

Parameterized Classes

Parameterized (aka “template” or “generic”) classes are de
shown in a dashed box.
Parameters may be either types (just a name) or values (na

Instantiation of a class from a template can be shown by a

NB: All forms of arrows (directed arcs) go from the client to

FArray

FArray<Point, 3> FArray<Address, 4

T, n: Integer

ESE 68.

U Modelling Objects and Classes

t is represented as a class
.

lass scope, so it is redundant

esented as box with the top

urn sin (angle + pi/2.0);
niversität Bern

Utilities

A “utility” is a grouping of global attributes and operations. I
with the stereotype «utility». Utilities may be parameterized

NB: A utility’s attributes are already interpreted as being in c
to underline them.

A “note” is a text comment associated with a view, and repr
right corner folded over.

«utility»
MathPack

randomSeed : long = 0
pi : long = 3.14158265358979

sin (angle : double) : double
cos (angle : double) : double
random () : double

ret

ESE 69.

U Modelling Objects and Classes

underlined in one
ompartment.

: P olygon

olygon
niversität Bern

Objects

Objects are shown as rectangles with their name and type
compartment, and attribute values, optionally, in a second c

At least one of the name or the type must be present.

triangle1: P olygon

centre = (0, 0)
vertices = ((0,0), (4,0), (4,3))
borderColour = black
fillColour = white

triangle1

: P

ESE 70.

U Modelling Objects and Classes

ects of different classes.

points

gu”].boss

rson

r.
ss

sband

wife

Married-to

0..1

0..1

0..1

boss
orker *

Manages
niversität Bern

Associations
Associations represent structural relationships between obj

☞ usually binary (but may be ternary etc.)
☞ optional name and direction
☞ (unique) role names and multiplicities at end-
☞ can traverse using navigation expressions

e.g., Sandoz.employee[name = “Pin

Company

name
address

Pe

name
AHV N
addre

**
Works-for

Employs

employeeemployer

hu

w

ESE 71.

U Modelling Objects and Classes

whole dependency:

 implementation.

te from the whole to the part.

red }, or as { sorted }.

Point

phicsBundle

r
re
ity
niversität Bern

Aggregation and Navigability

Aggregation is denoted by a diamond and indicates a part-

A hollow diamond indicates a reference; a solid diamond an

If the link terminates with an arrowhead, then one can naviga

If the multiplicity of a role is > 1, it may be marked as { orde

Polygon
1 Contains

{ ordered }

3..*

Gra

colou
textu
dens

1

1

ESE 72.

U Modelling Objects and Classes

and its name can be left out.

Workstation
niversität Bern

Association Classes

An association may be an instance of an association class:

In many cases the association class only stores attributes,

Authorization

priority
privileges

start session

User * *
Authorized on

*

Directory

home directory1

ESE 73.

U Modelling Objects and Classes

ify the object at the other end

ible cardinalities of the set of
 a qualifier value.”

atalogue

t number

Part

1

0..1
niversität Bern

Qualified Associations

A qualified association uses a special qualifier value to ident
of the association:

“The multiplicity attached to the target role denotes the poss
target objects selected by the pairing of a source object and

NB: Qualifiers are part of the association, not the class

Airline

frequent flyer #

Person

*

0..1

C

par

ESE 74.

U Modelling Objects and Classes

line

ol points

y ()
niversität Bern

Inheritance
A subclass inherits the features of its superclasses:

Figure1dim
{ abstract }

colour

display ()

Line

endpoints

display ()

Arc

radius
start angle
arc angle

display ()

Sp

contr

displa

ESE 75.

U Modelling Objects and Classes

ement or combination.
binations of existing classes.

 a specialization hierarchy

res or behaviour

ormly treated by clients
niversität Bern

What is Inheritance For?

New software often builds on old software by imitation, refin
Similarly, classes may be extensions, specializations or com

Inheritance supports:
Conceptual hierarchy:

❑ conceptually related classes can be organized into
☞ people, employees, managers
☞ geometric objects ...

Software reuse:
❑ related classes may share interfaces, data structu

☞ geometric objects ...
Polymorphism:

❑ objects of distinct, but related classes may be unif
☞ array of geometric objects

ESE 76.

U Modelling Objects and Classes

d unless they have been
 are considered replicated.
ce conflicts.

le

Boat
niversität Bern

Multiple Inheritance

A class may inherit features from multiple superclasses:

In Eiffel, features inherited from common parents are share
renamed along one of the inheritance paths. Such features
Other languages may adopt other rules to resolve inheritan

Vehicle

LandVehicle WaterVehic

AmphibiousVehicleCar

ESE 77.

U Modelling Objects and Classes

r associations.
ines between elements
ed with a “/”

hin a note:

Person

birthdate
/age

{ age = currentDate - birthdate }

Company

ployer }
niversität Bern

Constraints

Constraints are restrictions on values attached to classes o
☞ Binary constraints may be shown as dashed l
☞ Derived values and associations can be mark

Constraints are specified between braces, either free or wit

Person Committee

Member-of

Chair-of

subset

* *

*1

Person

employee

* 0..1

employerworker

boss

*

0..1

{ Person.employer = Person.boss.em

ESE 78.

U Modelling Objects and Classes

 document. For example, a
ses, roles, associations, etc.
niversität Bern

Using the Notation

During Analysis:
❑ Capture classes visible to users
❑ Document attributes and responsibilities
❑ Identify associations and collaborations
❑ Identify conceptual hierarchies
❑ Capture all visible features

During Design:
❑ Specify contracts and operations
❑ Decompose complex objects
❑ Factor out common interfaces and functionalities

The graphical notation is only part of the analysis or design
data dictionary cataloguing and describing all names of clas
must be maintained throughout the project.

ESE 79.

U Modelling Objects and Classes

iations?
perations to clients?
ilar?

les?

g an object?

ociation?
guage?
niversität Bern

Summary

You should know the answers to these questions:
❑ How do you represent classes, objects and assoc
❑ How do you specify the visibility of attributes and o
❑ How is a utility different from a class? How is it sim
❑ Why do we need both named associations and ro
❑ Why is inheritance useful in analysis? In design?
❑ How are constraints specified?

Can you answer the following questions?
✎ Why would you want a feature to have class scope?
✎ Why don’t you need to show operations when depictin
✎ Why aren’t associations drawn with arrowheads?
✎ How is aggregation different from any other kind of ass
✎ How are associations realized in an implementation lan

ESE 80.

U Modelling Behaviour

rsion 1.1, Rational Software

od, D. Coleman, et al.,
niversität Bern

5. Modelling Behaviour

❑ Use Case Diagrams
❑ Sequence Diagrams
❑ Collaboration Diagrams
❑ State Diagrams

Sources:
❑ Unified Modeling Language — Notation Guide, ve

Corporation, 1997.
❑ Object-Oriented Development — The Fusion Meth

Prentice Hall, 1994.

ESE 81.

U Modelling Behaviour

Clerk

Loan Officer

Clear
checks

pare
ments

nter
action

an
cation

udit
niversität Bern

Use Case Diagrams

IdentifyCustomer

Auditor

Bank

Pre
state

Cou
trans

Lo
appli

A

A use case is a generic
description of an entire
transaction involving several
actors.
A use case diagram presents
a set of use cases (ellipses)
and the external actors that
interact with the system.
Dependencies and
associations between use
cases may be indicated.

A scenario is an instance of a
use case showing a typical
example of its execution.

ESE 82.

U Modelling Behaviour

r

phone rings

answer phone

ringing stops

hone Line Callee
niversität Bern

Sequence Diagrams

caller lifts receive

dial tone begins

dial (1)

dial tone ends

dial (2)

dial (2)

ringing tone

tone stops

tim
e

Caller PA sequence diagram depicts a
scenario by showing the
interactions among a set of
objects in temporal order.

Objects (not classes!) are shown
as vertical bars.
Events or message dispatches
are shown as horizontal (or
slanted) arrows from the send to
the receiver.

Recall that a scenario describes a
typical example of a use case, so
conditionality is not expressed!

ESE 83.

U Modelling Behaviour

rol flow

 asynchronous)

 objects within a
niversität Bern

UML Message Flow Notation

Filled solid arrowhead
procedure call or other nested cont

Stick arrowhead
flat, sequential control flow (usually

Half-stick arrowhead
asynchronous control flow between
procedural sequence

ESE 84.

U Modelling Behaviour

ges between objects:

{ temp }

1.1.3.1: add(self)

contents { new }

: Window

: Line { new }

window
niversität Bern

Collaboration Diagrams

Collaboration diagrams depict scenarios as flows of messa

redisplay()

1: displayPositions(window)

window

1.1*[i=1..n]: drawSegment(i)

«self» 1.1.2: create(r0, r1)
1.1.3: display(window)

i-1 i

{ temp }

1.1.1a: r0 := position() 1.1.1b: r1 := position()

: Controller

wire : Wire

left : Bead right : Bead

wire

«local» line

«parameter»

ESE 85.

U Modelling Behaviour

strings showing the direction
quence.

7.1]”)

 “3.1” and follows “3.1.1”)
a” and “1.2b”)
niversität Bern

Message Labels

Messages from one object to another are labelled with text
of message flow and information indicating the message se

Message labels:
1. Prior messages from other threads (e.g. “[A1.3, B6.

☞ only need with concurrent flow of control
2. Dot-separated list of sequencing elements:

☞ sequencing integer (e.g., “3.1.2” is invoked by
☞ letter indicating concurrent threads (e.g., “1.2
☞ iteration indicator (e.g., “1.1*[i=1..n]”)
☞ conditional indicator (e.g., “2.3 [#items = 0]”)

3. Return value binding (e.g., “status :=”)
4. Message name
5. Argument list

ESE 86.

U Modelling Behaviour

Dialing

Ringing
do / play ringing tone

Connecting

h

15 sec.

dial digit(n)
[incomplete]

connected

dial digit(n) [valid]
/connect

busy
niversität Bern

State Diagrams

Idle

Pinned

Talking

callee
answers

callee
hangs up

Timeout
do / play message

DialTone
do / play dial tone

Invalid
do / play message

Busy
do / play busy tone

Active

callee answers / enable speec

dial digit(n)

15 sec.

dial digit(n) [invalid]

caller
hangs up
/ disconnect

lift receiver
/ get dial tone

ESE 87.

U Modelling Behaviour

ject of a given class in
 the system.

 one object to another:

cts
..

ates
 for an event to occur:
s:

only for that state)
d ongoing operations
niversität Bern

State Diagram Notation

A State Diagram describes the temporal evolution of an ob
response to interactions with other objects inside or outside

An event is a one-way (asynchronous) communication from
❑ atomic (non-interruptible)
❑ includes events from hardware and real-world obje

e.g., message receipt, input event, elapsed time, .
❑ notation: eventName(parameter: type, ...)
❑ may cause object to make a transition between st

A state is a period of time during which an object is waiting
❑ depicted as rounded box with (up to) three section

☞ name — optional
☞ state variables — name: type = value (valid
☞ triggered operations — internal transitions an

❑ may be nested

ESE 88.

U Modelling Behaviour

name

rnal operations

into this state, and the
out of this state.
tions with no change of

ed.
niversität Bern

State Box with Regions

Typing Password

entry / set echo invisible
exit / set echo normal
character / handle character
help / display help

inte

The entry event occurs whenever a transition is made
exit operation is triggered when a transition is made
The help and character events cause internal transi
state, so the entry and exit operations are not perform

ESE 89.

U Modelling Behaviour

ject in a given state
nge state

ions of a state

ns
tates

seudo-event do
niversität Bern

Transitions and Operations

Transitions:
❑ A response to an external event received by an ob
❑ May invoke an operation, and cause object to cha
❑ May send an event to an external object
❑ Transition syntax (each part is optional):

event (arguments)
[condition]
^target.sendEvent (arguments)
/ operation (arguments)

❑ External transitions label arcs between states;
internal transitions are part of the triggered operat

Operations:
❑ Operations invoked by transitions are atomic actio
❑ Entry and exit operations can be associated with s

Activities:
❑ Ongoing operations while object is in a given state
❑ Modelled as internal transitions labelled with the p

ESE 90.

U Modelling Behaviour

level views.
ns” may be used in the high-

ts and “bulls-eyes”:

Connecting
um)

[number.isValid()]

^ dialedNumber(num)
niversität Bern

Composite States
Composite states may depicted either as high-level or low-
To indicate the presence of internal states, “stubbed transitio
level view:

Starting and termination substates are shown as black spo

Idle Dialinglift receiver dialedNumber(n

Start
do / play dial tone

Partial Dial
entry / number.append(n)

Dialing

number : String = “”

digit(n)

digit(n)

ESE 91.

U Modelling Behaviour

ts

R mode

Power button

On

On

toggle Power
niversität Bern

Sending Events between Objec

TV mode VC

VCR button

TV button
Power button

Remote Control

Off

toggle Power

toggle Power
VCR

Off

toggle Power

toggle Power
Television

toggle Power

ESE 92.

U Modelling Behaviour

one

Failed

Passed
niversität Bern

Concurrent Substates

Lab1

Term Project

Final Test

Lab2
lab done lab d

project done

pass

Incomplete

fail

Taking Class

ESE 93.

U Modelling Behaviour

 of the substates is entered

all of the substates.
substates to terminate.

ses a “synchronization bar”:

Cleanup
niversität Bern

Branching and Merging

Entering concurrent states:
Entering a state with concurrent substates means that each
concurrently (one logical thread per substate).

Leaving concurrent states:
A labelled transition out of any of the substates terminates
An unlabelled transition out of the overall state waits for all

An alternative notation for explicit branching and merging u

A2A1

B2B1

Startup

ESE 94.

U Modelling Behaviour

t composite state should be
ved state, a transition should

C
rupt

e

niversität Bern

History Indicator

A “history indicator” can be used to indicate that the curren
remembered upon an external transition. To return to the sa
point explicitly to the history icon:

A2

A1

H

A
inter

resum

ESE 95.

U Modelling Behaviour

ts

g the start and terminal

nly
niversität Bern

Creating and Destroying Objec

Creation and destruction of objects can be depicted by usin
symbols as top-level states:

Writeable
lock

ReadOunlock

modify

destroy

create

CreatedFile
File

ESE 96.

U Modelling Behaviour

t diagrams.

ocument use cases and their

d to document
arios
sses and must be validated
niversität Bern

Using the Notations

The diagrams introduced here complement class and objec

During Analysis:
❑ Use case, sequence and collaboration diagrams d

scenarios during requirements specification

During Design:
❑ Sequence and collaboration diagrams can be use

implementation scenarios or refine use case scen
❑ State diagrams document internal behaviour of cla

against the specified use cases

ESE 97.

U Modelling Behaviour

rios?
in a scenario?
bject behaviour?
rnal” transitions?
rams for several classes?

llaboration diagram?

er than with links?
niversität Bern

Summary

You should know the answers to these questions:
❑ What is the purpose of a use case diagram?
❑ Why do scenarios depict objects but not classes?
❑ How can timing constraints be expressed in scena
❑ How do you specify and interpret message labels
❑ How do you use nested state diagrams to model o
❑ What is the difference between “external” and “inte
❑ How can you model interaction between state diag

Can you answer the following questions?
✎ Can a sequence diagram always be translated to an co
✎ Or vice versa?
✎ Why are arrows depicted with the message labels rath
✎ When should you use concurrent substates?

ESE 98.

U Software Architecture

, ...

esley, Fifth Edn., 1996.
 D. D'Souza, A. Wills,

m of Patterns, F.

ng Discipline, M. Shaw, D.
niversität Bern

6. Software Architecture

Overview:
❑ What is Software Architecture?
❑ Coupling and Cohesion
❑ Architectural styles:

☞ Layered, Client-Server, Blackboard, Dataflow

Sources:
❑ Software Engineering, I. Sommerville, Addison-W
❑ Objects, Components and Frameworks with UML,

Addison-Wesley, 1999
❑ Pattern-Oriented Software Architecture — A Syste

Buschmann, et al., John Wiley, 1996
❑ Software Architecture: Perspectives on an Emergi

Garlan, Prentice-Hall, 1996

ESE 99.

U Software Architecture

nes, laid out nicely in
ure.

hardware and software parts

cts

subsystem) that keeps its
edless creativity.”
niversität Bern

What is Software Architecture?

A neat-looking drawing of some boxes, circles, and li
Powerpoint or Word, does not constitute an architect

The architecture of a system consists of:
❑ the structure(s) of its parts

☞ including design-time, test-time, and run-time
❑ the externally visible properties of those parts

☞ modules with interfaces, hardware units, obje
❑ the relationships and constraints between them

in other words:
❑ The set of design decisions about any system (or

implementors and maintainers from exercising “ne

ESE 100.

U Software Architecture

entation

 logic must be in the middle
ata services on the server;
essing independently of

hannels for notification and
a messaging service as it is

g any collections; by default
rwise.

tionModel object to connect
niversität Bern

How Architecture Drives Implem

❑ Use a 3-tier client-server architecture: all business
tier, presentation and dialogue on the client, and d
that way you can scale the application server proc
persistent store.

❑ Use Corba for all distribution, using Corba event c
the Corba relationship service; do not use the Corb
not yet mature.

❑ Use Collection Galore’s collections for representin
use their List class, or document your reason othe

❑ Use Model-View-Controller with an explicit Applica
any UI to the business logic and objects.

ESE 101.

U Software Architecture

ponents

eration is independent of the

rvices to other components
te system.

f software that encapsulates
s to the out-side, by which it
 a larger whole.
niversität Bern

Sub-systems, Modules and Com

❑ A sub-system is a system in its own right whose op
services provided by other sub-systems.

❑ A module is a system component that provides se
but would not normally be considered as a separa

❑ A component is an independently deliverable unit o
its design and implementation and offers interface
may be composed with other components to form

ESE 102.

U Software Architecture

nt “belong together.”

ey perform similar or related

 of other parts (e.g.

y limiting the scope of
niversität Bern

Cohesion

Cohesion is a measure of how well the parts of a compone

Cohesion is weak if elements are bundled simply because th
functions (e.g., java.lang.Math).

Cohesion is strong if all parts are needed for the functioning
java.lang.String).

Strong cohesion promotes maintainability and adaptability b
changes to small numbers of components.

There are many definitions and interpretations of cohesion.
Most attempts to formally define it are inadequate!

ESE 103.

U Software Architecture

ns between system

on one another, (e.g., there

mponents.

nce changes in one
niversität Bern

Coupling

Coupling is a measure of the strength of the interconnectio
components.

Coupling is tight between components if they depend heavily
is a lot of communication between them).

Coupling is loose if there are few dependencies between co

Loose coupling promotes maintainability and adaptability si
component are less likely to affect other ones.

ESE 104.

U Software Architecture
niversität Bern

Tight Coupling

ESE 105.

U Software Architecture
niversität Bern

Loose Coupling

ESE 106.

U Software Architecture

customer and the contractor

 rescued by good

re architects

re architecture

rms of a pattern of
tural style defines a
a set of constraints on

— Shaw and Garlan
niversität Bern

Architectural Parallels

❑ Architects are the technical interface between the
building the system

❑ A bad architectural design for a building cannot be
construction — the same is true for software

❑ There are specialized types of building and softwa

❑ There are schools or styles of building and softwa

An architectural style defines a family of systems in te
structural organization. More specifically, an architec
vocabulary of components and connector types, and
how they can be combined.

ESE 107.

U Software Architecture

s each of which provide a set

see

layers

tems in different layers.
cent layer is affected
niversität Bern

Layered Architectures

A layered architecture organises a system into a set of layer
of services to the layer “above.”

❑ Normally layers are constrained so elements only

– other elements in the same layer, or

– elements of the layer below

❑ Callbacks may be used to communicate to higher

❑ Supports the incremental development of sub-sys
☞ When a layer interface changes, only the adja

ESE 108.

U Software Architecture
niversität Bern

Abstract Machine Model

ESE 109.

U Software Architecture
niversität Bern

OSI Reference Model

ESE 110.

U Software Architecture

services respectively to a
nning on a different machine

quire cheaper hardware
ers

nt data organisation.

es — it may be hard to find
niversität Bern

Client-Server Architectures

A client-server architecture distributes application logic and
number of client and server sub-systems, each potentially ru
and communicating through the network (e.g, by RPC).

Advantages
❑ Distribution of data is straightforward
❑ Makes effective use of networked systems. May re
❑ Easy to add new servers or upgrade existing serv

Disadvantages
❑ No shared data model so sub-systems use differe

Data interchange may be inefficient
❑ Redundant management in each server
❑ May require a central register of names and servic

out what servers and services are available

ESE 111.

U Software Architecture
niversität Bern

Client-Server Architectures

ESE 112.

U Software Architecture
niversität Bern

Four-Tier Architectures

ESE 113.

U Software Architecture

umber of independent sub-
y (or “blackboard”).

is produced, backed up etc.
ma

el
niversität Bern

Blackboard Architectures

A blackboard architecture distributes application logic to a n
systems, but manages all data in a single, shared repositor

Advantages
❑ Efficient way to share large amounts of data
❑ Sub-systems need not be concerned with how data
❑ Sharing model is published as the repository sche

Disadvantages
❑ Sub-systems must agree on a repository data mod
❑ Data evolution is difficult and expensive
❑ No scope for specific management policies
❑ Difficult to distribute efficiently

ESE 114.

U Software Architecture
niversität Bern

Repository Model

ESE 115.

U Software Architecture

s in reaction to external

b-systems. Any sub-system

detected by an interrupt
processing.

mputers in a network
 pattern:
ents

e subscribed sub-systems
ssage handler. Sub-systems

vent will be handled
niversität Bern

Event-driven Systems

In an event-driven architecture components perform service
events generated by other components.

❑ In broadcast models an event is broadcast to all su
which can handle the event may do so.

❑ In interrupt-driven models real-time interrupts are
handler and passed to some other component for

Broadcast model
❑ Effective in integrating sub-systems on different co
❑ Can be implemented using a publisher-subscriber

☞ Sub-systems register an interest in specific ev
☞ When these occur, control is transferred to th

❑ Control policy is not embedded in the event and me
decide on events of interest to them

❑ However, sub-systems don’t know if or when an e

ESE 116.

U Software Architecture
niversität Bern

Selective Broadcasting

ESE 117.

U Software Architecture

nal transformations on its

pipes and filters
niversität Bern

Dataflow Models

In a dataflow architecture each component performs functio
inputs to produce outputs.

❑ Dataflows should be free of cycles

❑ The single-input, single-output variant is known as
☞ e.g., UNIX (Bourne) shell

❑ Not really suitable for interactive systems

ESE 118.

U Software Architecture
niversität Bern

Invoice Processing System

ESE 119.

U Software Architecture

tures
niversität Bern

Compilers as Dataflow Architec

ESE 120.

U Software Architecture

itectures
niversität Bern

Compilers as Blackboard Arch

ESE 121.

U Software Architecture

?
n?

he layer above?
en architectures?

er architecture?
ava AWT? by RMI?
yers?
va?
event-driven one?
each architectural style?
niversität Bern

Summary

You should know the answers to these questions:
❑ How does software architecture constrain a system
❑ How does choosing an architecture simplify desig
❑ What are coupling and cohesion?
❑ What is an architectural style?
❑ Why shouldn’t elements in a software layer “see” t
❑ What kinds of applications are suited to event-driv

Can you answer the following questions?
✎ What is meant by a “fat client” or a “thin client” in a 4-ti
✎ What kind of architectural styles are supported by the J
✎ How do callbacks reduce coupling between software la
✎ How would you implement a dataflow architecture in Ja
✎ Is it easier to understand a dataflow architecture or an
✎ What are the coupling and cohesion characteristics of

ESE 122.

U Responsibility-Driven Design

ck, B. Wilkerson, L. Wiener,
niversität Bern

7. Responsibility-Driven Design

Overview:
❑ What is Object-Oriented Design?
❑ Finding Classes
❑ Identifying Responsibilities
❑ Finding Collaborations

Source:
❑ Designing Object-Oriented Software, R. Wirfs-Bro

Prentice Hall, 1990.

ESE 123.

U Responsibility-Driven Design

?

 by which software
of objects. This
spective roles and
 with each other.”

uct:
 implementation

d rules
an, elegant designs —
ineering standpoint”

technique that works well in
niversität Bern

What is Object-Oriented Design

“Object-oriented [analysis and] design is the process
requirements are turned into a detailed specification
specification includes a complete description of the re
responsibilities of objects and how they communicate

❑ The result of the design process is not a final prod
☞ design decisions may be revisited, even after
☞ design is not linear but iterative

❑ The design process is not algorithmic:
☞ a design method provides guidelines, not fixe
☞ “a good sense of style often helps produce cle

designs that make a lot of sense from the eng

✔ Responsibility-driven design is an (analysis and) design
combination with various methods and notations.

ESE 124.

U Responsibility-Driven Design

to fulfil their responsibilities

chies

?
ody?
y?
as subsystems?
ures
niversität Bern

Design Steps

The Initial Exploration
1. Find the classes in your system
2. Determine the responsibilities of each class

☞ What are the client-server contracts?
3. Determine how objects collaborate with each other

☞ What are the client-server roles?

The Detailed Analysis
1. Factor common responsibilities to build class hierar
2. Streamline collaborations between objects

☞ Is message traffic heavy in parts of the system
☞ Are there classes that collaborate with everyb
☞ Are there classes that collaborate with nobod
☞ Are there groups of classes that can be seen

3. Turn class responsibilities into fully specified signat

ESE 125.

U Responsibility-Driven Design

 the system being designed,

idates, and nonsense
es are:

es
es it mean within the system
 separate class?
rephrase in active voice
g of inheritance
terface, program interfaces

Point vs. Centre
niversität Bern

Finding Classes

Start with requirements specification: what are the goals of
its expected inputs and desired responses.

1. Look for noun phrases:
☞ separate into obvious classes, uncertain cand

2. Refine to a list of candidate classes. Some guidelin
☞ Model physical objects — e.g. disks, printers
☞ Model conceptual entities — e.g. windows, fil
☞ Choose one word for one concept — what do
☞ Be wary of adjectives — does it really signal a
☞ Be wary of missing or misleading subjects —
☞ Model categories of classes — delay modellin
☞ Model interfaces to the system — e.g., user in
☞ Model attribute values, not attributes — e.g.,

ESE 126.

U Responsibility-Driven Design

ecification
 the mouse button. The creation tool is no

user clicks the mouse button outside the text
points for a text element are the four corners
ich the text is formatted. Dragging the control
gion. The other creation tools allow the

angles and ellipses. They change the shape
f a crosshair. The appropriate element starts
e mouse button is pressed, and is completed
on is released. These two events create the
p point.

creates a line from the start point to the stop
ontrol points of a line. Dragging a control point
t.

n tool creates a rectangle such that these
opposite corners. These points and the other
l points. Dragging a control point changes the

ool creates an ellipse fitting within the
the two points described above. The major
width of the rectangle, and the minor radius is
 the rectangle. The control points are at the
g rectangle. Dragging control points changes

r.
niversität Bern

Drawing Editor Requirements Sp
The drawing editor is an interactive graphics editor. With it, users
can create and edit drawings composed of lines, rectangles,
ellipses and text.

Tools control the mode of operation of the editor. Exactly one tool is
active at any given time.

Two kinds of tools exist: the selection tool and creation tools. When
the selection tool is active, existing drawing elements can be
selected with the cursor. One or more drawing elements can be
selected and manipulated; if several drawing elements are
selected, they can be manipulated as if they were a single element.
Elements that have been selected in this way are referred to as the
current selection. The current selection is indicated visually by
displaying the control points for the element. Clicking on and
dragging a control point modifies the element with which the control
point is associated.

When a creation tool is active, the current selection is empty. The
cursor changes in different ways according to the specific creation
tool, and the user can create an element of the selected kind. After
the element is created, the selection tool is made active and the
newly created element becomes the current selection.

The text creation tool changes the shape of the cursor to that of an
I-beam. The position of the first character of text is determined by

where the user clicks
longer active when the
element. The control
of the region within wh
points changes this re
creation of lines, rect
of the cursor to that o
to be created when th
when the mouse butt
start point and the sto

The line creation tool
point. These are the c
changes the end poin

The rectangle creatio
points are diagonally
corners are the contro
associated corner.

The ellipse creation t
rectangle defined by
radius is one half the
one half the height of
corners of the boundin
the associated corne

ESE 127.

U Responsibility-Driven Design

 the mouse button. The creation tool is no
user clicks the mouse button outside the text

points for a text element are the four corners
ich the text is formatted. Dragging the control
gion. The other creation tools allow the

angles and ellipses. They change the shape
f a crosshair. The appropriate element starts
e mouse button is pressed, and is completed
on is released. These two events create the
p point.

creates a line from the start point to the stop
ontrol points of a line. Dragging a control point
t.

n tool creates a rectangle such that these
opposite corners. These points and the other
l points. Dragging a control point changes the

ool creates an ellipse fitting within the
the two points described above. The major
width of the rectangle, and the minor radius is
 the rectangle. The control points are at the
g rectangle. Dragging control points changes

r.
niversität Bern

Drawing Editor: noun phrases
The drawing editor is an interactive graphics editor. With it, users
can create and edit drawings composed of lines, rectangles,
ellipses and text.

Tools control the mode of operation of the editor. Exactly one tool is
active at any given time.

Two kinds of tools exist: the selection tool and creation tools. When
the selection tool is active, existing drawing elements can be
selected with the cursor. One or more drawing elements can be
selected and manipulated; if several drawing elements are
selected, they can be manipulated as if they were a single element.
Elements that have been selected in this way are referred to as the
current selection. The current selection is indicated visually by
displaying the control points for the element. Clicking on and
dragging a control point modifies the element with which the control
point is associated.

When a creation tool is active, the current selection is empty. The
cursor changes in different ways according to the specific creation
tool, and the user can create an element of the selected kind. After
the element is created, the selection tool is made active and the
newly created element becomes the current selection.

The text creation tool changes the shape of the cursor to that of an
I-beam. The position of the first character of text is determined by

where the user clicks
longer active when the
element. The control
of the region within wh
points changes this re
creation of lines, rect
of the cursor to that o
to be created when th
when the mouse butt
start point and the sto

The line creation tool
point. These are the c
changes the end poin

The rectangle creatio
points are diagonally
corners are the contro
associated corner.

The ellipse creation t
rectangle defined by
radius is one half the
one half the height of
corners of the boundin
the associated corne

ESE 128.

U Responsibility-Driven Design

e Creation Tool,
t Creation Tool

editor

ment
niversität Bern

Class Selection Rationale (I)

Model physical objects:
☞ mouse button [event or attribute]

Model conceptual entities:
☞ ellipse, line, rectangle
☞ Drawing, Drawing Element
☞ Tool, Creation Tool, Ellipse Creation Tool, Lin

Rectangle Creation Tool, Selection Tool, Tex
☞ text, Character
☞ Current Selection

Choose one word for one concept:
☞ Drawing Editor ⇒ editor, interactive graphics
☞ Drawing Element ⇒ element
☞ Text Element ⇒ text
☞ Ellipse Element, Line Element, Rectangle Ele

⇒ ellipse, line, rectangle

ESE 129.

U Responsibility-Driven Design

tangle Creation Tool,
 different requirements
angle
ngle Element

ite corner

displaying the control points
g Editor ...
niversität Bern

Class Selection Rationale (II)

Be wary of adjectives:
☞ Ellipse Creation Tool, Line Creation Tool, Rec

Selection Tool, Text Creation Tool — all have
☞ bounding rectangle, rectangle, region ⇒ Rect

— common meaning, but different from Recta
☞ Point ⇒ end point, start point, stop point
☞ Control Point — more than just a coordinate
☞ corner ⇒ associated corner, diagonally oppos

— no new behaviour
Be wary of sentences with missing or misleading subjects:

☞ “The current selection is indicated visually by
for the element.” — by what? Assume Drawin

Model categories:
☞ Tool, Creation Tool

ESE 130.

U Responsibility-Driven Design

 system

int attribute
tor
butes of Cursor
niversität Bern

Class Selection Rationale (III)

Model interfaces to the system:
☞ user — don’t need to model user explicitly
☞ cursor — cursor motion handled by operating

Model values of attributes, not attributes themselves:
☞ height of the rectangle, width of the rectangle
☞ major radius, minor radius
☞ position — of first text character; probably Po
☞ mode of operation — attribute of Drawing Edi
☞ shape of the cursor, I-beam, crosshair — attri
☞ corner — attribute of Rectangle
☞ time — an implicit attribute of the system

ESE 131.

U Responsibility-Driven Design

ent

e
e Creation Tool
e Element
 Tool
tion Tool
ent
niversität Bern

Candidate Classes

Preliminary analysis yields the following candidates:

Expect the list to evolve as design progresses.

Character
Control Point
Creation Tool
Current Selection
Drawing
Drawing Editor
Drawing Element
Ellipse Creation Tool
Ellipse Element
Line Creation Tool

Line Elem
Point
Rectangl
Rectangl
Rectangl
Selection
Text Crea
Text Elem
Tool

ESE 132.

U Responsibility-Driven Design

back of the card
or discard!

orations
niversität Bern

Class Cards
Use class cards to record candidate classes:

Write a short description of the purpose of the class on the
☞ compact, easy to manipulate, easy to modify
☞ easy to arrange, reorganize
☞ easy to retrieve discarded classes

Class: Drawing
superclasses

subclasses

responsibilities ... collab

ESE 133.

U Responsibility-Driven Design

ther classes
plemented.

t the group
 classes

rchy will evolve

Text
Tool
niversität Bern

Finding Abstract Classes

Abstract classes factor out common behaviour shared by o
They are abstract because they need not be completely im

☞ group related classes with common attributes
☞ introduce abstract superclasses that represen
☞ “categories” are good candidates for abstract

✔ Warning: beware of premature classification; your hiera

Tool

Creation
Tool

Selection
Tool

Rectangle
Tool

Ellipse
Tool

Line
Tool

ESE 134.

U Responsibility-Driven Design

s

ame

bgroups

plete or imprecise
niversität Bern

Identifying and Naming Group

If you have trouble naming a group:
☞ enumerate common attributes to derive the n
☞ divide into more clearly defined subcategories

Attributes of abstract classes should serve to distinguish su
☞ Physical vs. conceptual
☞ Active vs. passive
☞ Temporary vs. permanent
☞ Generic vs. specific
☞ Shared vs. unshared

Classes may be missing because the specification is incom
☞ editing ⇒ undoing ⇒ need for a Cut Buffer

ESE 135.

U Responsibility-Driven Design

Text Tool
niversität Bern

Recording Superclasses

Record superclasses and subclasses on all class cards:

Class: Creation Tool
Tool
Ellipse Tool, Line Tool, Rectangle Tool,

ESE 136.

U Responsibility-Driven Design

es

y provide to clients,

t
al responsibilities
niversität Bern

Responsibilities

What are responsibilities?
☞ the knowledge an object maintains and provid
☞ the actions it can perform

Responsibilities represent the public services an object ma
not the way in which those services may be implemented

☞ specify what an object does, not how it does i
☞ don’t describe the interface yet, only conceptu

ESE 137.

U Responsibility-Driven Design

t responsibilities

 system

ibilities
niversität Bern

Identifying Responsibilities

❑ Study the requirements specification:
☞ highlight verbs and determine which represen
☞ perform a walk-though of the system

➪ exploring as many scenarios as possible
➪ identify actions resulting from input to the

❑ Study the candidate classes:
☞ class names ⇒ roles ⇒ responsibilities
☞ recorded purposes on class cards ⇒ respons

ESE 138.

U Responsibility-Driven Design

ties
an their clients

”
ion

formation
 the information, or
r
sed into a single one
niversität Bern

Assigning Responsibilities

❑ Evenly distribute system intelligence
☞ avoid procedural centralization of responsibili
☞ keep responsibilities close to objects rather th

❑ State responsibilities as generally as possible
☞ “draw yourself” vs. “draw a line/rectangle etc.

❑ Keep behaviour together with any related informat
☞ principle of encapsulation

❑ Keep information about one thing in one place
☞ if multiple objects need access to the same in

(i) a new object may be introduced to manage
(ii) one object may be an obvious candidate, o
(iii) the multiple objects may need to be collap

❑ Share responsibilities among related objects
☞ break down complex responsibilities

ESE 139.

U Responsibility-Driven Design

elationships between

re a common superclass
onsibilities
ation Tool must:
mented in subclass
ric
mented in subclass

ndiscovered superclasses

rt and of whole
niversität Bern

Relationships Between Classes

Additional responsibilities can be uncovered by examining r
classes, especially:

❑ The “Is-Kind-Of” Relationship:
☞ classes sharing a common attribute often sha
☞ common superclasses suggest common resp

e.g., to create a new Drawing Element, a Cre
1. accept user input imple
2. determine location to place it gene
3. instantiate the element imple

❑ The “Is-Analogous-To” Relationship:
☞ similarities between classes suggest as-yet-u

❑ The “Is-Part-Of” Relationship:
☞ distinguish (don’t share) responsibilities of pa

Difficulties in assigning responsibilities suggest:
☞ missing classes in design, or
☞ free choice between multiple classes

ESE 140.

U Responsibility-Driven Design

r-centralization:
erclass,
sses.
ble design. If necessary,
niversität Bern

Recording Responsibilities

List responsibilities as succinctly as possible:

Too many responsibilities to fit onto one card suggests ove
☞ Check if responsibilities really belong in a sup

or if they can be distributed to cooperating cla
Having more classes leads to a more flexible and maintaina
classes can later be consolidated.

Class: Drawing

Know which elements it contains

ESE 141.

U Responsibility-Driven Design

d to fulfil responsibilities
and, ultimately, subsystems
s
assigned responsibilities
niversität Bern

Collaborations

What are collaborations?

❑ collaborations are client requests to servers neede
❑ collaborations reveal control and information flow
❑ collaborations can uncover missing responsibilitie
❑ analysis of communication patterns can reveal mis

ESE 142.

U Responsibility-Driven Design

 can it obtain what it needs?

Check for collaborations.
iscarded. (Check carefully!)
niversität Bern

Finding Collaborations

For each responsibility:
1. Can the class fulfil the responsibility by itself?
2. If not, what does it need, and from what other class

For each class:
1. What does this class know?
2. What other classes need its information or results?
3. Classes that do not interact with others should be d

Check for these relationships:
❑ The “Is-Part-Of” Relationship
❑ The “Has-Knowledge-Of” Relationship
❑ The “Depends-Upon” Relationship

ESE 143.

U Responsibility-Driven Design

onsibility:

.

ing Element
niversität Bern

Recording Collaborations

Collaborations exist only to fulfil responsibilities.
Enter the class name of the server role next to client’s resp

Note each collaboration required for a responsibility.
Include also collaborations between peers.
Validate your preliminary design with another walk-through

Class: Drawing

Know which elements it contains
Maintain ordering between elements Draw

ESE 144.

U Responsibility-Driven Design

ses?
ign?

dentify them?
entifying classes?
 responsibilities?

ilities and collaborations?
niversität Bern

Summary

You should know the answers to these questions:
❑ What criteria can you use to identify potential clas
❑ How can class cards help during analysis and des
❑ How can you identify abstract classes?
❑ What are class responsibilities, and how can you i
❑ How can identification of responsibilities help in id
❑ What are collaborations, and how do they relate to

Can you answer the following questions?
✎ When should an attribute be promoted to a class?
✎ Why is it useful to organize classes into a hierarchy?
✎ How can you tell if you have captured all the responsib

ESE 145.

U Detailed Design

ck, B. Wilkerson, L. Wiener,
niversität Bern

8. Detailed Design

Overview:
❑ Structuring Inheritance Hierarchies
❑ Identifying Subsystems
❑ Specifying Class Protocols (Interfaces)

Source:
❑ Designing Object-Oriented Software, R. Wirfs-Bro

Prentice Hall, 1990

ESE 146.

U Detailed Design

m.
cards and on class diagram.

lities:

ool
tract }

ion Tool
niversität Bern

Sharing Responsibilities

Concrete classes may be both instantiated and inherited fro
Abstract classes may only be inherited from. Note on class

Venn Diagrams can be used to visualize shared responsibi

(Warning: not part of UML!)

Tool
{ abstract }

Creation T
{ abs

Selection
Tool

Tool CreatSelection Tool

ESE 147.

U Detailed Design

Decide whether a
class will be
instantiated to
determine if it is
abstract or concrete.

DateMagnitude

tring
niversität Bern

Multiple Inheritance

Array

Matrix String Date

Ordered Collection
{ abstract }

Indexable Collection
{ abstract }

Magnitude
{ abstract }

Array

Ordered
Collection

Matrix

S
Indexable
Collection

Responsibilities of
subclasses are
larger than those of
superclasses.

Intersections
represent common
superclasses.

ESE 148.

U Detailed Design

nsibilities, and possibly more

ould inherit from a common
issing

e classes:
perclass: abstract classes
ntation-independent way

s, or a particular way of
niversität Bern

Building Good Hierarchies

Model a “kind-of” hierarchy:
☞ Subclasses should support all inherited respo

Factor common responsibilities as high as possible:
☞ Classes that share common responsibilities sh

abstract superclass; introduce any that are m

Make sure that abstract classes do not inherit from concret
☞ Eliminate by introducing common abstract su

should support responsibilities in an impleme

Eliminate classes that do not add functionality:
☞ Classes should either add new responsibilitie

implementing inherited ones

ESE 149.

U Detailed Design

BA C

E GD

Incorrect
Subclass/Superclass

Relationships
Subclasses should assume all
superclass responsibilities
niversität Bern

Building Kind-Of Hierarchies

A B

C

E

G

E G

D

Correctly Formed Subclass
Responsibilities

Revised Inheritance
Relationships

Introduce abstract
superclasses to encapsulate
common responsibilities

{ abstract }

E G

ESE 150.

U Detailed Design

ing Element
{ abstract }

Rectangle
Element

Group
Element

Ellipse
Element

ar Element
{ abstract }
niversität Bern

Refactoring Responsibilities

Drawing Element
{ abstract }

Rectangle
Element

Group
Element

Text
Element

Line
Element

Ellipse
Element

Lines, Ellipses and Rectangles
are responsible for keeping
track of the width and colour of
the lines they are drawn with.
This suggests a common
superclass.

Draw

Text
Element

Line
Element

Line

ESE 151.

U Detailed Design

of a server related to a

o simplify your design.

 contracts

hierarchy as appropriate
niversität Bern

Identifying Contracts

A contract defines a set of requests that a client can make
cohesive set of closely-related responsibilities.

Contracts introduce another level of abstraction, and help t

❑ Group responsibilities used by the same clients:
☞ conversely, separate clients suggest separate

❑ Maximize the cohesiveness of classes:
☞ unrelated contracts belong in subclasses

❑ Minimize the number of contracts:
☞ unify responsibilities and move as high in the

ESE 152.

U Detailed Design

hies

significant new functionality
nality, or do they just

propriate contract
ique number

ciated contract

e which contract represents it
 diagrams
niversität Bern

Applying the Guidelines

1. Start by defining contracts at the top of your hierarc

2. Introduce new contracts only for subclasses that add
☞ do new responsibilities represent new functio

specialize inherited functionality?

3. For each class card, assign responsibilities to an ap
☞ briefly describe each contract and assign a un
☞ number responsibilities according to the asso

4. For each collaboration on each class card, determin
☞ model collaborations as associations in class

(AKA “collaboration graphs”)

ESE 153.

U Detailed Design

ort a set of contracts.

 levels:
ilities, and encapsulate

er than factoring out

-dependencies
nication paths

e services provided to clients
ts.
niversität Bern

What are Subsystems?

Subsystems are groups of classes that collaborate to supp

❑ Subsystems simplify design by raising abstraction
☞ subsystems group logically related responsib

related collaborations

❑ Don’t confuse with superclasses:
☞ subsystems group related responsibilities rath

common responsibilities

Find subsystems by looking for strongly-coupled classes:
☞ list the collaborations and identify strong inter
☞ identify and highly frequently-travelled commu

Subsystems, like classes, also support contracts. Identify th
outside the subsystem to determine the subsystem contrac

ESE 154.

U Detailed Design

r each contract, the in-

g
g Element
g

niversität Bern

Subsystem Cards

For each subsystem, record its name, its contracts, and, fo
ternal class or subsystem that supports it:

Subsystem: Drawing Subsystem
Access a drawing Drawin
Modify part of a drawing Drawin
Display a drawing Drawin

ESE 155.

U Detailed Design

lient’s class card to record a

class.

Abstract)

bsystem
niversität Bern

Class Cards

For each collaboration from an outside client, change the c
collaboration with the subsystem:

Record on the subsystem card the delegation to the agent

Class: File (

Document File, Graphics File, Text File
Knows its contents
Print its contents Printing Su

ESE 156.

U Detailed Design

 with other classes:
 eases evolution

tem delegates:
plexity

ted by a class:
n information

 diagrams
rchies

rations simpler?
niversität Bern

Simplifying Interactions

Complex collaborations lead to unmaintainable systems.
Exploit subsystems to simplify overall structure.

❑ Minimize the number of collaborations a class has
☞ centralizing communications into a subsystem

❑ Minimize the number of classes to which a subsys
☞ centralized subsystem interfaces reduce com

❑ Minimize the number of different contracts suppor
☞ group contracts that require access to commo

Checking Your Design:
☞ model collaborations as associations in class
☞ update class/subsystem cards and class hiera
☞ walk through scenarios:

➪ Has coupling been reduced? Are collabo

ESE 157.

U Detailed Design

eter types and return types)

sponsibilities
specified if they will be used

ystem
niversität Bern

Protocols

A protocol is a set of signatures (i.e., method names, param
to which a class will respond.

☞ Generally, protocols are specified for public re
☞ Protocols for private responsibilities should be

or implemented by subclasses

1. Construct protocols for each class
2. Write a design specification for each class and subs
3. Write a design specification for each contract

ESE 158.

U Detailed Design

tion in the system
each method name
 the inheritance hierarchy

at should be specified

arameters
te
lts
niversität Bern

Refining Responsibilities

Select method names carefully:
☞ Use a single name for each conceptual opera
☞ Associate a single conceptual operation with
☞ Common responsibilities should be explicit in

Make protocols as generally useful as possible:
☞ The more general it is, the more messages th

Define reasonable defaults:
1. Define the most general message with all possible p
2. Provide reasonable default values where appropria
3. Define specialized messages that rely on the defau

ESE 159.

U Detailed Design

s

ms

 and ancestor
tures, brief description and

give method signatures etc.
rithms, real-time or memory
niversität Bern

Specifying Your Design: Classe

Specifying Classes
1. Class name; abstract or concrete
2. Immediate superclasses and subclasses
3. Location in inheritance hierarchies and class diagra
4. Purpose and intended use
5. Contracts supported (as server); inherited contracts
6. For each contract, list responsibilities, method signa

any collaborations
7. List private responsibilities; if specified further, also
8. Note: implementation considerations, possible algo

constraints, error conditions etc.

ESE 160.

U Detailed Design

ntracts

 subsystems

ystem
niversität Bern

Specifying Subsystems and Co

Specifying Subsystems
1. Subsystem name; list all encapsulated classes and
2. Purpose of the subsystem
3. Contracts supported
4. For each contract, list the responsible class or subs

Formalizing Contracts
1. Contract name and number
2. Server(s)
3. Clients
4. A description of the contract

ESE 161.

U Detailed Design

ierarchy?
e a class hierarchy?
onsibilities?
you find them?
tracts?

rogramming language does

 cohesion?
er with the Unified Modeling
niversität Bern

Summary

You should know the answers to these questions:
❑ How can you identify abstract classes?
❑ What criteria can you use to design a good class h
❑ How can refactoring responsibilities help to improv
❑ What is the difference between contracts and resp
❑ What are subsystems (“categories”) and how can
❑ What is the difference between protocols and con

Can you answer the following questions?
✎ What use is multiple inheritance during design if your p

not support it?
✎ Why should you try to minimize coupling and maximize
✎ How would you use Responsibility Driven design togeth

Language?

ESE 162.

U User Interface Design

esley, Fifth Edn., 1996.
, R. Pressman, Mc-Graw Hill,
niversität Bern

9. User Interface Design

Overview:
❑ Interface design models
❑ Design principles
❑ Information presentation
❑ User Guidance
❑ Evaluation

Sources:
❑ Software Engineering, I. Sommerville, Addison-W
❑ Software Engineering — A Practitioner’s Approach

Third Edn., 1994.

ESE 163.

U User Interface Design

rs.

 system.

he system
niversität Bern

Interface Design Models

Four different models occur in HCI design:

1. The design model expresses the software design.

2. The user model describes the profile of the end use
(i.e., novices vs. experts, cultural background, etc.)

3. The user’s model is the end users’ perception of the

4. The system image is the external manifestation of t
(look and feel + documentation etc.)

ESE 164.

U User Interface Design

n

mation to be displayed

 folders and applications),
.g., printer drivers).

s(eliminating the need for a

 is used forselecting choices
nterest in a window.

 text on the same display.
niversität Bern

GUI Characteristics

Characteristic Descriptio

Windows Multiple windows allowdifferent infor
simultaneously on the user’s screen.

Icons Usually icons representfiles (including
but they may also stand forprocesses (e

Menus Menus bundle and organizecommand
command language).

Pointing A pointing device such as a mouse
from a menu or indicating items of i

Graphics Graphical elements can bemixed with

ESE 165.

U User Interface Design

 system quickly.

 applications.
 when attention is switched.

iate access to the entire

o poor UI design
ke catastrophic errors
niversität Bern

GUI advantages

❑ They are easy to learn and use.
☞ Users without experience can learn to use the

❑ The user may switch attention between tasks and
☞ Information remains visible in its own window

❑ Fast, full-screen interaction is possible with immed
screen

But
❑ A GUI is not automatically a good interface

☞ Many software systems are never used due t
☞ A poorly designed UI can cause a user to ma

ESE 166.

U User Interface Design

r.

 in the same way.
 same format, etc.

he usershould be able to predict
.

y feedback, maintainingtwo-way

t be remembered between

ought. Minimize keystrokes

lude undo facilities,
 deletes, etc.

 user guidance and assistance.
niversität Bern

User Interface Design Principles
Principle Description

User familiarity Use terms and conceptsfamiliar to the use

Consistency Comparable operations should beactivated
Commands and menus should have the

Minimal
surprise

If a command operates in a known way, t
the operation of comparable commands

Feedback Provide the user with visual and auditor
communication.

Memory load Reduce the amount of information that mus
actions. Minimize the memory load.

Efficiency Seekefficiency in dialogue, motion and th
and mouse movements.

Recoverability Allow users torecover from their errors. Inc
confirmation of destructive actions, 'soft'

User guidance Incorporate some form ofcontext-sensitive

ESE 167.

U User Interface Design

del of the information space

idated by the system

ed

rmation space.
xecute
niversität Bern

Direct Manipulation

A direct manipulation interface presents the user with a mo
which is modified by direct action.

Examples
❑ forms (direct entry)
❑ WYSIWYG document editors

Advantages
❑ Users feel in control and are less likely to be intim
❑ User learning time is relatively short
❑ Users get immediate feedback on their actions

☞ mistakes can be quickly detected and correct
Problems

❑ Finding the right user metaphor may be difficult
❑ It can be hard to navigate efficiently in a large info
❑ It can be complex to program and demanding to e

ESE 168.

U User Interface Design

representing files, cabinets,

nel with interface entities

ers etc.
niversität Bern

Interface Models

Desktop metaphor.
❑ The model of an interface is a “desktop” with icons

etc.

Control panel metaphor.
❑ The model of an interface is a hardware control pa

including:
☞ buttons, switches, menus, lights, displays, slid

ESE 169.

U User Interface Design

f possibilities presented to
sing cursor keys or by typing

n the current menu selection)

nction (or) are awkward to

 facility must be used
nd language
niversität Bern

Menu Systems

Menu systems allow users to make a selection from a list o
them by the system by pointing and clicking with a mouse, u
(part of) the name of the selection.

Advantages
❑ Users don’t need to remember command names
❑ Typing effort is minimal
❑ User errors are trapped by the interface
❑ Context-dependent help can be provided (based o

Problems
❑ Actions involving logical conjunction (and) or disju

represent
❑ If there are many choices, some menu structuring
❑ Experienced users find menus slower than comma

ESE 170.

U User Interface Design

l choices
f choices

replaced by a sub-menu

revealed

l pops-up with further options
niversität Bern

Menu Structuring

❑ Scrolling menus
☞ The menu can be scrolled to reveal additiona
☞ Not practical if there is a very large number o

❑ Hierarchical menus
☞ Selecting a menu item causes the menu to be

❑ Walking menus
☞ A menu selection causes another menu to be

❑ Associated control panels
☞ When a menu item is selected, a control pane

ESE 171.

U User Interface Design

ve instructions to the system

 by command combination
 created

e system

nguage
niversität Bern

Command Interfaces

With a command language, the user types commands to gi

❑ May be implemented using cheap terminals
❑ Easy to process using compiler techniques
❑ Commands of arbitrary complexity can be created
❑ Concise interfaces requiring minimal typing can be

Advantages
❑ Allow experienced users to interact quickly with th
❑ Commands can be scripted

Problems
❑ Users have to learn and remember a command la
❑ Not suitable for occasional or inexperienced users
❑ An error detection and recovery system is required
❑ Typing ability is required

ESE 172.

U User Interface Design

a relationships?

hange?

values important?
niversität Bern

Information Presentation

Information display factors
❑ Is the user interested in precise information or dat
❑ How quickly do information values change?

Must the change be indicated immediately?
❑ Must the user take some action in response to a c
❑ Is there a direct manipulation interface?
❑ Is the information textual or numeric? Are relative

ESE 173.

U User Interface Design

n

niversität Bern

Analogue vs. Digital Presentatio

Digital presentation
❑ Compact - takes up little screen space
❑ Precise values can be communicated

Analogue presentation
❑ Easier to get an 'at a glance' impression of a value
❑ Possible to show relative values
❑ Easier to see exceptional data values

ESE 174.

U User Interface Design

tructures.

ultural differences ...)
niversität Bern

Colour Displays

Colour can help the user understand complex information s

Colour use guidelines
❑ Don’t use (only) colour to communicate meaning!

☞ Open to misinterpretation (colour-blindness, c
☞ Design for monochrome then add colour

❑ Use colour coding to support user tasks
☞ highlight exceptional events
☞ allow users to control colour coding

❑ Use colour change to show status change
❑ Don't use too many colours

☞ Avoid colour pairings which clash
❑ Use colour coding consistently

ESE 175.

U User Interface Design

ace to help users when they
e kind of error.
niversität Bern

User Guidance

The user guidance system is integrated with the user interf
need information about the system or when they make som

User guidance covers:
❑ System messages, including error messages
❑ Documentation provided for users
❑ On-line help

ESE 176.

U User Interface Design

ding

f what the user is doing and should
text.

th longer,explanatory messages
perienced users.

s well as their experience.
iliar to the reader.

ive.
nny.

s should befamiliar with the
 the system is used.
 unacceptable in another.
niversität Bern

Design Factors in Message Wor

Context
The user guidance system should be aware o
adjust the output message to the current con

Experience
The user guidance system should provide bo
for beginners, and moreterse messages for ex

Skill level
Messages should betailored to the user’s skills a
I.e., depending on theterminology which is fam

Style
Messages should bepositive rather than negat
They should never be insulting or try to be fu

Culture
Wherever possible, the designer of message
culture of the country (or environment) where
A suitable message for one culture might be

ESE 177.

U User Interface Design

rror
 possibly corrupted files)
niversität Bern

Error Message Guidelines

❑ Speak the user’s language
❑ Give constructive advice for recovering from the e
❑ Indicate negative consequences of the error (e.g.,
❑ Give an audible or visual cue
❑ Don’t make the user feel guilty!

ESE 178.

U User Interface Design
niversität Bern

Good and Bad Error Messages

ESE 179.

U User Interface Design

.”

r pages
ormation presentation
s as they are text.

ent places
 positioned
d

niversität Bern

Help System Design

Help? means “Please help. I want information
Help! means “HELP. I'm in trouble.”

Help information
❑ Should not simply be an on-line manual

☞ Screens or windows don't map well onto pape
❑ Dynamic characteristics of display can improve inf

☞ but people are not so good at reading screen

Help system use
❑ Multiple entry points should be provided

☞ the user should be able to get help from differ
❑ The help system should indicate where the user is
❑ Navigation and traversal facilities must be provide

ESE 180.

U User Interface Design

tability and usability.

n

come productive with the system?

match the user’s work practice?

or?

 from user errors?

gle model of work?
niversität Bern

User Interface Evaluation

User interface design should be evaluated to assess its sui

Usability attributes

Attribute Descriptio

Learnability How long does it take a new user to be

Speed of operation How well does the system response

Robustness How tolerant is the system of user err

Recoverability How good is the system at recovering

Adaptability How closely is the system tied to a sin

ESE 181.

U User Interface Design

esign?

anipulation interface?
d command languages?

e?

ivalent mouse actions?
? Over time?
inciples did it violate?
ould you fix it?
niversität Bern

Summary

You should know the answers to these questions:
❑ What models are important to keep in mind in UI d
❑ What is the principle of minimal surprise?
❑ What problems arise in designing a good direct m
❑ What are the trade-offs between menu systems an
❑ How can you use colour to improve a UI?
❑ In what way can a help system be context sensitiv

Can you answer the following questions?
✎ Why is it important to offer “keyboard shortcuts” for equ
✎ How would you present the current load on the system
✎ What is the worst UI you every used? Which design pr
✎ What’s the worst web site you’ve used recently? How w
✎ What’s good or bad about the MS-Word help system?

ESE 182.

U Software Validation

esley, Fifth Edn., 1996.
niversität Bern

10. Software Validation

Overview:
❑ Reliability, Failures and Faults
❑ Fault Tolerance
❑ Software Testing: Black box and white box testing
❑ Static Verification

Source:
❑ Software Engineering, I. Sommerville, Addison-W

ESE 183.

U Software Validation

d Faults

ll it provides the services
es.

ehaves in an unexpected or

m which may cause failures
uts.

rator intervention

to recover from failure
niversität Bern

Software Reliability, Failures an

The reliability of a software system is a measure of how we
expected by its users, expressed in terms of software failur

A software failure is an execution event where the software b
undesirable way.
A software fault is an erroneous portion of a software syste
to occur if it is run in a particular state, or with particular inp

Failure class Description

Transient Occurs only with certain inputs

Permanent Occurs with all inputs

Recoverable System can recover without ope

Unrecoverable Operator intervention is needed

Non-corrupting Failure does not corrupt data

Corrupting Failure corrupts system data

ESE 184.

U Software Validation

r of faults in a system

 the presence of faults

capsulation
t process
tware process
 reliability
niversität Bern

Programming for Reliability

Fault avoidance:
☞ development techniques to reduce the numbe

Fault tolerance:
☞ developing programs that will operate despite

Fault avoidance depends on:
1. A precise system specification (preferably formal)
2. Software design based on information hiding and en
3. Extensive validation reviews during the developmen
4. An organizational quality philosophy to drive the sof
5. Planned system testing to expose faults and assess

ESE 185.

U Software Validation

aults
re common sources of faults

ing constructs make
odify.

nd may lead to invalid

arisons
he risk of corrupting memory
data type implementations
s can affect overall program

xhaust (stack) memory.
ntrolled scope
he current context, and may

ed exceptions
niversität Bern

Common Sources of Software F
Several features of programming languages and systems a
in software systems:

❑ Goto statements and other unstructured programm
programs hard to understand, reason about and m
☞ Use structured programming constructs

❑ Floating point numbers are inherently imprecise a
comparisons.
☞ Fixed point numbers are safer for exact comp

❑ Pointers are dangerous because of aliasing, and t
☞ Pointer usage should be confined to abstract

❑ Parallelism is dangerous because timing difference
behaviour in hard-to-predict ways.
☞ Minimize inter-process dependencies

❑ Recursion can lead to convoluted logic, and may e
☞ Use recursion in a disciplined way, within a co

❑ Interrupts force transfer of control independent of t
cause a critical operation to be terminated.
☞ Minimize the use of interrupts; prefer disciplin

ESE 186.

U Software Validation

ar state or will result in a

een affected by the failure

r by correcting the damaged

 (!)
niversität Bern

Fault Tolerance

A fault-tolerant system must carry out four activities:

1. Failure detection:
☞ detect that the system has reached a particul

system failure
2. Damage assessment:

☞ detect which parts of the system state have b
3. Fault recovery:

☞ restore the state to a known, “safe” state (eithe
state, or backing up to a previous, safe state)

4. Fault repair:
☞ modify the system so the fault does not recur

ESE 187.

U Software Validation

mented independently

nd

ions should be available!)

ontains a test to check
 in case of failure.

arallel
niversität Bern

Approaches to Fault Tolerance

N-version Programming:
Multiple versions of the software system are imple
by different teams. The final system:

– runs all the versions in parallel,

– compares their results using a voting system, a

– rejects inconsistent outputs. (At least three vers

Recovery Blocks:
A finer-grained approach in which a program unit c
for failure, and alternative code to back up and try

– alternatives are executed in sequence, not in p

– the failure test is independent (not by voting)

ESE 188.

U Software Validation

e that state variables do not

ns. Explicitly state and check
ost-conditions of procedures
from failures.
opriate, to assess what parts
 to fix the damage.

ent state
tion to reconstruct a
niversität Bern

Defensive Programming

Failure detection:
❑ Use the type system as much as possible to ensur

get assigned invalid values.
❑ Use assertions to detect failures and raise exceptio

all invariants for abstract data types, and pre- and p
as assertions. Use exception handlers to recover

❑ Use damage assessment procedures, where appr
of the state have been affected, before attempting

Fault recovery:
❑ Backward recovery: backup to a previous, consist
❑ Forward recovery: make use of redundant informa

consistent state from corrupted data

ESE 189.

U Software Validation

 formal verification.
sting ...

Programtailed
sign

Dynamic
validation
niversität Bern

Verification and Validation

Validation:
❑ Are we building the right product?

Verification:
❑ Are we building the product right?

Static techniques include program inspection, analysis and
Dynamic techniques include statistical testing and defect te

Requirements
specification

High-level
design

Formal
specifications

De
de

Prototype

Static
verification

ESE 190.

U Software Validation

d to ensure that they operate

) is tested as a group.

s a sub-system. Since the
e from sub-system interface
ese interfaces.

s resulting from unexpected
lidating that the complete
equirements.

ulated data.

efects are repaired.
niversität Bern

The Testing Process

1. Unit testing:
☞ Individual (stand-alone) components are teste

correctly.
2. Module testing:

☞ A collection of related components (a module
3. Sub-system testing:

☞ The phase tests a set of modules integrated a
most common problems in large systems aris
mismatches, this phase focuses on testing th

4. System testing:
☞ This phase concentrates on (i) detecting error

interactions between sub-systems, and (ii) va
systems fulfils functional and non-functional r

5. Acceptance testing (alpha/beta testing):
☞ The system is tested with real rather than sim

Testing is iterative! Regression testing is performed when d

ESE 191.

U Software Validation

 to work still works after

n debugging & maintenance!

eir absence!
niversität Bern

Regression Testing

Regression testing means testing that everything that used
changes are made to the system!

❑ tests must be deterministic and repeatable

❑ should test “all” functionality
☞ every interface
☞ all boundary situations
☞ every feature
☞ every line of code
☞ everything that can conceivably go wrong!

It costs extra work to define tests up front, but they pay off i

NB: Testing can only reveal the presence of defects, not th

ESE 192.

U Software Validation

tem requirements are
he software is designed.

epeated and extended

Detailed
design

Module and unit
code and test

Sub-system
integration test
niversität Bern

Test Planning

The preparation of the test plan should begin when the sys
formulated, and the plan should be developed in detail as t

The plan should be revised regularly, and tests should be r
wherever iteration occurs in the software process.

Acceptance
test plan

System
integration
test plan

Requirements
specification

Sub-system
integration
test plan

System
specification

System
design

System
integration test

Acceptance
testService

ESE 193.

U Software Validation

presented by “stubs”
 as stubs
 activity
ing expensive redesign

 complex components

-level components
ared with other projects
architectural faults till late in

is best.
niversität Bern

Testing Strategies
Top-down Testing:

☞ Start with sub-systems, where modules are re
☞ Similarly test modules, representing functions
☞ Coding and testing are carried out as a single
☞ Design errors can be detected early on, avoid
☞ Always have a running (if limited) system
☞ BUT: may be impractical for stubs to simulate

Bottom-up Testing:
☞ Start by testing units and modules
☞ Test drivers must be written to exercise lower
☞ Works well for reusable components to be sh
☞ BUT: pure bottom-up testing will not uncover

the software process

Typically a combination of top-down and bottom-up testing

ESE 194.

U Software Validation

 system.
an only be representative.

nction being tested.

an testing its components.”
that may prevent users from

ing new capabilities.”
tem is modified.

sting boundary value cases.”
e patterns.
niversität Bern

Defect Testing

Tests are designed to reveal the presence of defects in the
Testing should, in principle, be exhaustive, but in practice c

Test data are inputs devised to test the system.
Test cases are input/output specifications for a particular fu

Petschenik (1985) proposes:
1. “Testing a system’s capabilities is more important th

☞ Choose test cases that will identify situations
doing their job.

2. “Testing old capabilities is more important than test
☞ Always perform regression tests when the sys

3. “Testing typical situations is more important than te
☞ If resources are limited, focus on typical usag

ESE 195.

U Software Validation

se behaviour can be

e component.

Inputs causing
anomalous behaviour

utputs revealing the
resence of defects
niversität Bern

Functional testing

Functional testing treats a component as a “black box” who
determined only by studying its inputs and outputs.

Test cases are derived from the external specification of th

Ie
Input set

Oe

Output set

Component

O
p

ESE 196.

U Software Validation

y assuming that the
valence partition.

ions make sense)
niversität Bern

Equivalence Partitioning
Test cases can be derived from a component’s interface, b
component will behave similarly for all members of an equi

Example:
private int[] _elements;
public boolean find(int key) { ... }

Check input partitions:
❑ Do the inputs fulfil the pre-conditions?
❑ Is the key in the array?

☞ leads to (at least) 2x2 equivalence classes

Check boundary conditions:
❑ Is the array of length 1?
❑ Is the key at the start or end of the array?

☞ leads to further subdivisions (not all combinat

ESE 197.

U Software Validation

rtitions.

Test Data

s = { }

s = { 33, 20, 17, 18 }

ts = { 17 }

s = { 17 }

ts = { 17, 18, 20, 33 }

nts = { 17, 18, 20, 33 }

ts = { 17, 18, 20, 33 }

ts = { 17, 18, 20, 33 }
niversität Bern

Test Cases and Test Data

Generate test data that cover all meaningful equivalence pa

Test Cases

Array length 0 key = 17, element

Array not sorted key = 17, element

Array size 1, key in array key = 17, elemen

Array size 1, key not in array key = 0, element

Array size > 1, key is first element key = 17, elemen

Array size > 1, key is last element key = 33, eleme

Array size > 1, key is in middle key = 20, elemen

Array size > 1, key not in array key = 50, elemen

...

ESE 198.

U Software Validation

ss box” whose structure can

ndependent execution path
niversität Bern

Structural Testing

Structural testing treats a component as a “white box” or “gla
be examined to generate test cases.

Path testing is a white-box strategy which exercises every i
through a component.

Component
code

Test
data

Test
outputs

Derive test data

Run tests

Produce output

ESE 199.

U Software Validation

// (1)

n empty list

// (2) (3)

// (5)
// (6)

// (7)
// (8)
// (9)

// (4)
niversität Bern

Binary Search Method
public boolean find(int key) throws assertionViolation {

assert(isSorted()); // pre-condition
if (isEmpty()) { return false; } // Trivially can't find key in a
int bottom = 0;
int top = _elements.length-1;
int lastIndex = (bottom+top)/2;
int mid;
boolean found = key == _elements[lastIndex];

while ((bottom <= top) && !found) {
assert(bottom <= top); // loop invariant
mid = (bottom + top) / 2;
found = key == _elements[mid];
if (found) {

lastIndex = mid;
} else {

if (_elements[mid] < key) {
bottom = mid + 1;

} else { top = mid - 1; }
} // loop variant decreases: top - bottom

}
assert((key == _elements[lastIndex]) || !found); // post-condition
return found;

}

ESE 200.

U Software Validation

e edges in the graph:
11,2,12,13},

s through a routine.

9

ottom > top)

ements[mid])

_elements[mid] < key)
niversität Bern

Path Testing
A set of independent paths of a flow graph must cover all th
e.g., {1,2,3,4,12,13}, {1,2,3,5,6,11,2,12,13}, {1,2,3,5,7,8,10,
{1,2,3,5,7,9,10,11,2,12,13}

Test cases should be chosen to cover all independent path

1

2

3
4

6
5

7
8

13

10
11

12

until found or (b

if (bottom > top) if (key == _el

if (

if (found)

ESE 201.

U Software Validation

y of the software, rather than
:

puts and, after running the
 can be made:

 input and probabilities)
 patterns
ilure
ns, compute reliability
niversität Bern

Statistical Testing

The objective of statistical testing is to determine the reliabilit
to discover software faults. Reliability may be expressed as

❑ probability of failure on demand,
❑ rate of failure occurrence,
❑ mean time to failure,
❑ availability

Tests are designed to reflect the frequency of actual user in
tests, an estimate of the operational reliability of the system

1. Determine usage patterns of the system (classes of
2. Select or generate test data corresponding to these
3. Apply the test cases, recording execution time to fa
4. Based on a statistically significant number of test ru

ESE 202.

U Software Validation

ns checked?” ...

s

rogram meets specification
s terminate, etc.

i) formal specification, (iii)
g

niversität Bern

Static Verification

Program Inspections:
❑ Small team systematically checks program code
❑ Inspection checklist often drives this activity

☞ e.g., “Are all invariants, pre- and post-conditio

Static Program Analysers:
❑ Complements compiler to check for common error

☞ e.g., variable use before initialization

Mathematically-based Verification:
❑ Use mathematical reasoning to demonstrate that p

☞ e.g., that invariants are not violated, that loop

Cleanroom Software Development:
❑ Systematically use (i) incremental development, (i

mathematical verification, and (iv) statistical testin

ESE 203.

U Software Validation

lt?

t?
liable?
fication?
t data?
s?

-up testing?
-box testing?
liable?
niversität Bern

Summary

You should know the answers to these questions:
❑ What is the difference between a failure and a fau
❑ What kinds of failure classes are important?
❑ How can a software system be made fault-toleran
❑ How do assertions help to make software more re
❑ What are the goals of software validation and veri
❑ What is the difference between test cases and tes
❑ How can you develop test cases for your program
❑ What is the goal of path testing?

Can you answer the following questions?
✎ When would you combine top-down testing with bottom
✎ When would you combine black-box testing with white
✎ Is it acceptable to deliver a system that is not 100% re

ESE 204.

U Software Quality

esley, Fifth Edn., 1996.
, R. Pressman, Mc-Graw Hill,

 D. D'Souza, A. Wills,
niversität Bern

11. Software Quality

Overview:
❑ What is quality?
❑ Quality Management activities
❑ ISO 9001
❑ Quality Reviews
❑ Product and Process Standards

Sources:
❑ Software Engineering, I. Sommerville, Addison-W
❑ Software Engineering — A Practitioner’s Approach

Third Edn., 1994.
❑ Objects, Components and Frameworks with UML,

Addison-Wesley, 1999

ESE 205.

U Software Quality

ements,

essionally developed

 often inconsistent

ability, etc.)
y, reusability, etc.)
n unambiguous way
C),
.

niversität Bern

What is Quality?

Software Quality is conformance to
❑ explicitly stated functional and performance requir
❑ explicitly documented development standards,
❑ implicit characteristics that are expected of all prof

software.

Problems:
❑ Software specifications are usually incomplete and
❑ There is tension between:

☞ customer quality requirements (efficiency, reli
☞ developer quality requirements (maintainabilit

❑ Some quality requirements are hard to specify in a
☞ directly measurable qualities (e.g., errors/KLO
☞ indirectly measurable qualities (e.g., usability)

Quality management is not just about reducing defects!

ESE 206.

U Software Quality

ortability
eusability
teroperability
niversität Bern

Software Quality Factors

Product
revision

Product
transition

Product
operations

P
R
In

Maintainability
Flexibility
Testability

Correctness Security
Reliability Usability
Efficiency

Ref: McCall 1977

ESE 207.

U Software Quality

s for quality

particular project

by the software development

gement to ensure
niversität Bern

Quality Management Activities

Quality assurance
❑ Establish organisational procedures and standard

Quality planning
❑ Select applicable procedures and standards for a

and modify these as required

Quality control
❑ Ensure that procedures and standards are followed

team

Quality management should be separate from project mana
independence

ESE 208.

U Software Quality

ments its functional

ted, what was found ...

rrectly implemented

dards

y standard
niversität Bern

Quality Controls

Examples:
❑ Code walk-through of a module to check if it imple

specification correctly
☞ Results in minutes documenting who participa

❑ Acceptance test to check if a function has been co
☞ Results in a test record

❑ Examination of a program for conformance to stan
☞ Results in filled form or checklist

❑ Running a tool to check for adherence to portabilit
☞ Results in printout of the tool

ESE 209.

U Software Quality

uality system itself!
niversität Bern

Process-based Quality

Quality management must include periodic reviews of the q

ESE 210.

U Software Quality

nagement applicable to a
tries.

ble to organisations which

on
eveloper
niversität Bern

ISO 9000

ISO 9000 is an international set of standards for quality ma
range of organisations from manufacturing to service indus

ISO 9001 is a generic model of the quality process, applica
design, develop and maintain products

❑ ISO 9001 must be instantiated for each organisati
❑ ISO 9000-3 interprets ISO 9001 for the software d

NB: ISO = International Organisation for Standardization

ESE 211.

U Software Quality

 products of any kind:

Quality system

ntrol

ng

entification and traceability

and testing

n and test status

ction

rds

chniques
niversität Bern

ISO 9001

Describes quality standards and procedures for developing

Management responsibility

Control of non-conforming products Design co

Handling, storage, packaging and delivery Purchasi

Purchaser-supplied products Product id

Process control Inspection

Inspection and test equipment Inspectio

Contract review Corrective a

Document control Quality reco

Internal quality audits Training

Servicing Statistical te

ESE 212.

U Software Quality

ent
niversität Bern

ISO 9000 and Quality Managem

ESE 213.

U Software Quality

O 9000 compliant.

ented in an organisational

l months to detect problems

ormance to ISO 9000

O 9000 certified ...
niversität Bern

ISO 9000 Certification

Software developers may request to be certified as being IS

❑ Quality standards and procedures must be docum
quality manual
☞ The quality system should be used for severa

❑ An external body should audit the system for conf
☞ Usually a company specializing in standards

❑ The system is submitted to an accreditation body
☞ One for each country

Customers are increasingly demanding that suppliers be IS

ESE 214.

U Software Quality

e assessed

applied
r methods are used
niversität Bern

The Quality Plan

A quality plan should:

❑ set out desired product qualities and how these ar
☞ define the most significant quality attributes

❑ define the quality assessment process
☞ i.e., the controls used to ensure quality

❑ set out which organisational standards should be
☞ may define new standards, i.e., if new tools o

ESE 215.

U Software Quality

purpose

e design or code and to
e been followed. The review
 of possible errors.

anagement about the
t. This is both a process and
erned withcosts, plans and

lysis of product components
 or mismatches between
ign, code or documentation.
h broader quality issues
ds andother quality
niversität Bern

Types of Review

Review type Principal

Design or program
inspections

To detect detailed errors in th
check whether standards hav
should be driven by achecklist

Progress reviews To provide information for m
overall progress of the projec
a product review and is conc
schedules.

Quality reviews To carry out a technical ana
or documentation to findfaults
the specification and the des
It may also be concerned wit
such asadherence to standar
attributes.

ESE 216.

U Software Quality

fully examine part or all of a

consistencies

ws should be fairly short

eviewed
dards, etc. can all be

d
t a review
reby approved
niversität Bern

Quality Reviews

A quality review is carried out by a group of people who care
software system and its associated documentation.

❑ Objective is the discovery of system defects and in

❑ Review teams should be relatively small and revie

❑ Any documents produced in the process may be r
☞ Code, designs, specifications, test plans, stan

reviewed.

❑ Review should be recorded and records maintaine
☞ Software or documents may be “signed off” a
☞ Progress to the next development stage is the

ESE 217.

U Software Quality
niversität Bern

The Review Process

ESE 218.

U Software Quality

n

llow-up review)
w

niversität Bern

Review Meetings and Minutes

Review meetings should:
❑ typically involve 3-5 people
❑ require a maximum of 2 hours advance preparatio
❑ last less than 2 hours

The review report should summarize:
1. What was reviewed
2. Who reviewed it?
3. What were the findings and conclusions?

The review should conclude whether the product is:
1. Accepted without modification
2. Provisionally accepted, subject to corrections (no fo
3. Rejected, subject to corrections and follow-up revie

ESE 219.

U Software Quality

ery problem noted

ance preparation
 be reviewed
niversität Bern

Review Guidelines

1. Review the product, not the producer
2. Set an agenda and maintain it
3. Limit debate and rebuttal
4. Identify problem areas, but don’t attempt to solve ev
5. Take written notes
6. Limit the number of participants and insist upon adv
7. Develop a checklist for each product that is likely to
8. Allocate resources and time schedule for reviews
9. Conduct meaningful training for all reviewers
10. Review your early reviews

ESE 220.

U Software Quality

ded?

sed?
 ...

t and accurate?
ttributes and relationships?

er?
es and budget? ...
niversität Bern

Sample Review checklists (I)

Software Project Planning
1. Is software scope unambiguously defined and boun
2. Are resources adequate for scope?
3. Have risks in all important categories been defined?
4. Are tasks properly defined and sequenced?
5. Is the basis for cost estimation reasonable?
6. Have historical productivity and quality data been u
7. Is the schedule consistent?

Requirements Analysis
1. Is information domain analysis complete, consisten
2. Does the data model properly reflect data objects, a
3. Are all requirements traceable to system level?
4. Has prototyping been conducted for the user/custom
5. Are requirements consistent with schedule, resourc

ESE 221.

U Software Quality

tem elements?
on domain?
ents?

...

e?

...

cquired?
?

cted results?
 ...
niversität Bern

Sample Review checklists (II)
Design

1. Has modularity been achieved?
2. Are interfaces defined for modules and external sys
3. Are the data structures consistent with the informati
4. Are the data structures consistent with the requirem
5. Has maintainability been considered?

Code
1. Does the code reflect the design documentation?
2. Has proper use of language conventions been mad
3. Have coding standards been observed?
4. Are there incorrect or ambiguous comments?

Testing
1. Have test resources and tools been identified and a
2. Have both white and black box tests been specified
3. Have all the independent logic paths been tested?
4. Have test cases been identified and listed with expe
5. Are timing and performance to be tested?

ESE 222.

U Software Quality

is required.

entified fault.

ther parts of the design.

rred to the client.
niversität Bern

Review Results

Comments made during the review should be classified.

❑ No action.
☞ No change to the software or documentation

❑ Refer for repair.
☞ Designer or programmer should correct an id

❑ Reconsider overall design.
☞ The problem identified in the review impacts o

Requirements and specification errors may have to be refe

ESE 223.

U Software Quality

ts should exhibit.
 be enacted.

ftware engineers

y software tools

cess standards

 conduct

 of documents

ase process

n approval process

rol process

ng process
niversität Bern

Product and Process Standards

Product standards define characteristics that all componen
Process standards define how the software process should

Problems
❑ Not always seen as relevant and up-to-date by so
❑ May involve too much bureaucratic form filling
❑ May require tedious manual work if unsupported b

Product standards Pro

Design review form Design review

Document naming standards Submission

Procedure header format Version rele

Java programming style standard Project pla

Project plan format Change cont

Change request form Test recordi

ESE 224.

U Software Quality

s

ording to these general

sion at the same level on the

e that’s squished up against

xcept for -1, 0, and 1, which
niversität Bern

Sample Java Code Convention

4.2 Wrapping Lines
When an expression will not fit on a single line, break it acc
principles:

❑ Break after a comma.
❑ Break before an operator.
❑ Prefer higher-level breaks to lower-level breaks.
❑ Align the new line with the beginning of the expres

previous line.
❑ If the above rules lead to confusing code or to cod

the right margin, just indent 8 spaces instead.

10.3 Constants
Numerical constants (literals) should not be coded directly, e
can appear in a for loop as counter values.

ESE 225.

U Software Quality

hould be developed,

e stored and interchanged

, structure, and appearance:
ed
s
, etc.
reflected in a document
niversität Bern

Documentation Standards

Documentation process standards define how documents s
validated and maintained.

Document interchange standards define how documents ar
between different documentation systems.

Document standards are concerned with document contents
❑ Identification: how documents are uniquely identifi
❑ Structure: standard structure for project document
❑ Presentation: define fonts and styles, use of logos
❑ Update: how changes from previous versions are

ESE 226.

U Software Quality
niversität Bern

Good and Bad Documentation

Bad signs
❑ No documentation
❑ All documents, no code exists
❑ All pictures
❑ Wall-sized documents
❑ Big thick formal documents

Good signs
❑ Clear document structure
❑ Mix of formal and informal
❑ Clear glossary

ESE 227.

U Software Quality

ave poor quality?
 project management?
agement?
g?
 minutes?

ertified company?

cklist?
niversität Bern

Summary

You should know the answers to these questions:
❑ Can a correctly functioning piece of software still h
❑ Why should quality management be separate from
❑ How could you use ISO 9000 to guide quality man
❑ How should you organize and run a review meetin
❑ What information should be recorded in the review

Can you answer the following questions?
✎ How can you evaluate a quality assurance plan?
✎ Would you trust software developed by an ISO 9000 c
✎ Why are coding standards important?
✎ What would you include in a documentation review che
✎ How often should reviews by scheduled?

ESE 228.

U Computer-Aided Software Engineering

ngineering

esley, Fifth Edn., 1996.
niversität Bern

12. Computer-Aided Software E

Overview:
❑ What is CASE?

☞ CASE tool functionality vs. process support
❑ Tools, Workbenches and Environments

☞ Programming workbenches
☞ Analysis and design workbenches
☞ Testing workbenches

❑ Software Engineering Environments

Source:
❑ Software Engineering, I. Sommerville, Addison-W

ESE 229.

U Computer-Aided Software Engineering

d support for the software
chnology:

 specification, design,
e-spread)

nd process management

opted)
niversität Bern

What is CASE?

“Computer-aided Software Engineering” refers to automate
engineering process. There are mainly 3 levels of CASE te

1. Production-process support technology:
☞ includes support for process activities such as

implementation, testing etc. (mature, and wid

2. Process management technology:
☞ includes tools to support process modelling a

(few products available)

3. Meta-CASE technology:
☞ tools for generating CASE tools (not widely ad

ESE 230.

U Computer-Aided Software Engineering

port for the software process.

les

ord processors

s, change management systems

 interface generators

s, code generators

tatic analysers, dynamic analysers

arators

ditors

ram restructuring systems
niversität Bern

CASE Tool Functionality

CASE tools can be classified by functionality or by their sup

Tool type Examp

Management Tools PERT tools, estimation tools

Editing tools Text editors, diagram editors, w

Configuration management tools Version management system

Prototyping tools Very high-level languages, user

Method support tools Design editors, data dictionarie

Language processing tools Compilers, interpreters

Program analysis tools Cross-reference generators, s

Testing tools Test data generators, file comp

Debugging tools Interactive debugging systems

Documentation tools Page layout programs, image e

Re-engineering tools Cross-reference systems, prog

ESE 231.

U Computer-Aided Software Engineering

plementation
Verification

and Validation

✓ ✓

✓ ✓

✓ ✓

✓ ✓

✓

✓

✓ ✓

✓ ✓

✓ ✓

✓

✓

✓

niversität Bern

CASE Tool Process Support
Tools Specification Design Im

Planning and Estimation ✓ ✓

Text Editing ✓ ✓

Document Preparation ✓ ✓

Configuration Management ✓ ✓

Prototyping ✓

Diagram Editing ✓ ✓

Data Dictionary ✓ ✓

User Interface Management ✓

Method Support ✓ ✓

Language Processing

Program Analysis

Interactive Debugging

Program Transformation

Modelling and Simulation ✓

Test Data Generation

ESE 232.

U Computer-Aided Software Engineering

Good Excellent
niversität Bern

Quality of Tools Support

Poor Moderate

Requirements definition

Formal specification

Function-oriented design

Data modelling

Object-oriented design

Programming

Testing

Maintenance

Management

ESE 233.

U Computer-Aided Software Engineering

nments

Environments

Integrated
ironments

Process-centred
environments

Testing

Language specific
workbenches
niversität Bern

Tools, Workbenches and Enviro

CASE
Technology

Tools Workbenches

Editors Compilers File Comparators
env

Analysis and design Programming

Multi-method
workbenches

Single-method
workbenches

General-purpose
workbenches

ESE 234.

U Computer-Aided Software Engineering

man 1990):

stem platform

of other tools

odel and process engine
niversität Bern

Integrated CASE

CASE systems can be integrated at various levels:(Wasser
1. Platform integration

☞ Tools run on the same hardware/operating sy

2. Data integration
☞ Tools operate using a shared data model

3. Presentation integration
☞ Tools offer a common user interface

4. Control integration
☞ Tools may activate and control the operation

5. Process integration
☞ Tool usage is guided by an explicit process m

ESE 235.

U Computer-Aided Software Engineering

ment, current methods and
ion domain, security, and
training and maintenance)

es installation, process
ion, and documentation of

 to user resistance (CASE
mposing discipline),
management resistance
res increases risks for

nnot simply be scrapped,
 a transition period.
niversität Bern

The CASE life cycle

Procurement

Tailoring

Introduction

Operation

Evolution

Obsolescence

During CASE system procure
standards, platform, applicat
CASE system cost (including
must be considered.

CASE system tailoring involv
model definition, tool integrat
the installation.

Introduction can be risky due
systems restrict freedom by i
inadequate training, or even
(changing tools and procedu
individual projects).

An obsolete CASE system ca
but must be phased out over

ESE 236.

U Computer-Aided Software Engineering

Dynamic
analyser

cer

r

ser Program
report

Formatted
source listing

calls

ing workbench is a set of
ort program development.
niversität Bern

Programming Workbenches
Source

program
Structured

editor

Symbol
table

Syntax
tree

Language
compiler

Compiled
code

Program
libraries

Linker

Executable
program

Loader

Interactive
debugger

Executing
program

Cross-referen

Prettyprinte

Static analy

Execution
report

user

A programm
tools to supp

ESE 237.

U Computer-Aided Software Engineering

ssible faults and anomalies:

signment
niversität Bern

Static Program Analysers

Static program analysers scan the source code to detect po

☞ Unreachable code
☞ Unconditional branches into loops
☞ Undeclared variables
☞ Variables used before initialization
☞ Variables declared and never used
☞ Variables written twice with no intervening as
☞ Parameter type mismatches
☞ Parameter number mismatches
☞ Uncalled functions and procedures
☞ Non-usage of function results
☞ Possible array bound violations
☞ Misuse of pointers

ESE 238.

U Computer-Aided Software Engineering

reachable code ...

used variables ...

e, unused functions ...

 input
niversität Bern

Stages of Static Analysis

1. Control flow analysis:
☞ loops with multiple exit or entry points and un

2. Data use analysis:
☞ use of uninitialized variables, declared but un

3. Interface analysis:
☞ consistency of procedure declarations and us

4. Information flow analysis:
☞ identifies dependencies of output variables on

5. Path analysis:
☞ identifies all possible paths through program

ESE 239.

U Computer-Aided Software Engineering

programming workbench for
m and spreadsheet views on

Report
generatoret
niversität Bern

4GL Workbenches

A so-called “Fourth Generation Language” (4GL) is really a
producing interactive applications that provide users with for
an underlying (relational) database.

Database Management System

Form
designer

DB query
language Spreadshe

ESE 240.

U Computer-Aided Software Engineering

hes
ses of the software process,

, UML etc.), and may or may
D, Booch, etc.).

Report generation
facilities

Import/export
facilities

Query language
facilities
niversität Bern

Analysis and Design Workbenc
Analysis and design workbenches support the modelling pha
usually by means of a graphical notation (e.g., dataflow, ER
not support a specific analysis and design method (e.g., JS

Central information
repository

Structured
diagramming tools

Data
dictionary

Skeleton code
generator

Forms
creation tools

Design analysis and
checking tools

ESE 241.

U Computer-Aided Software Engineering

o workbenches are typically

Specification

Test
predictions

“Oracle”

s

File
comparator

Report
generator
niversität Bern

Testing Workbenches
Testing tends to be application and organization specific, s
developed in-house using standard tools.

Test results
report

Test data
generator

Test data

Test result

Test
manager

Source
code

Dynamic
analyser

Program being
tested

Execution
report Simulator

ESE 242.

U Computer-Aided Software Engineering

rallel system, human)

ults (e.g., UNIX “diff”)

added to program
d

niversität Bern

Testing Tools

Test Data Generators:
☞ automatic generation of test inputs
☞ output analysis by “oracle” (i.e., prototype, pa

File Comparators:
☞ automatically comparing old and new test res

Simulators:
☞ hardware — cost, availability, risk ...
☞ events — real-time, reproducibility, load ...

Dynamic Analysers:
☞ instrumentation statements are automatically
☞ execution profiles are generated and analyse

ESE 243.

U Computer-Aided Software Engineering

ols

ent of procedures and
ct.

nerate any version)
rallel ⇒ tree of versions)
niversität Bern

Configuration Management To

Configuration management is concerned with the developm
standards for managing an evolving software system produ

Tool examples:
Version Control — SCCS and RCS:

☞ check-out and check-in of components
☞ logging changes (who, where, when)
☞ changes converted to system “deltas” (can ge
☞ “freezing” of versions as releases (possibly pa

System Building — Make:
☞ dependency specification
☞ rules for generation of intermediate files
☞ automatic re-generation of out-of-date files

ESE 244.

U Computer-Aided Software Engineering

ents

ardware and software
ay to provide support
ification through to

erville, 5th edn., p. 548

 integrated configuration

e development activities

e Portable Common Tool
rd framework for SEEs ...
niversität Bern

Software Engineering Environm

A software engineering environment (SEE) is a set of h
tools which can act in combination in an integrated w
for the whole of the software process from initial spec
testing and system delivery.

— Somm

SEEs vs. CASEs:
❑ SEEs are fully integrated (all 5 levels)
❑ SEEs support development by teams and provide

management
❑ SEEs support workbenches for a range of softwar

Although there are presently no good examples of SEEs, th
Environment (PCTE) has been widely adopted as a standa

ESE 245.

U Computer-Aided Software Engineering

t?
configuration management?
ated?

lysis?

nt not as good as for design

ation?
 multi-method one?
niversität Bern

Summary

You should know the answers to these questions:
❑ What are the key features of a CASE environmen
❑ Which phases of the software lifecycle benefit from
❑ In what different ways can CASE system be integr
❑ What are the risks in adopting a CASE system?
❑ What kinds of errors can be detected by static ana
❑ What is an “oracle” and how is it used?

Can you answer the following questions?
✎ Why is the quality of tool support for project manageme

and programming?
✎ Where does SNiFF+ fit into the CASE system classific
✎ Is it better to use a single method A&D workbench or a
✎ Why is Meta-CASE technology not widely used?
✎ Why are there no good examples of SEEs in use?

The 4GL-Component Framework DelphiDelphi

Markus Lumpe

Institute of Computer Science and Applied Mathematics (IAM)

University of Berne

Neubrückstrasse 10, CH-3012 Bern

E-mail: lumpe@iam.unibe.ch

WWW: http://www.iam.unibe.ch/~lumpe

2

What is Delphi?

• Delphi is a 4GL-object-oriented, visual programming
environment for RAD Client/Server applications for
Windows 95/NT.

• Delphi provides a library of reusable software components
and several integrated development tools like experts.

• Delphi is (deceptively) easy to use. Within minutes, an
advanced programmer can create real Windows applications.

• To write Delphi programs, it is not necessary to be a
Windows programming expect, but at least one must be
familiar with some fundamental Windows concepts.

3

4GL-Environment

• A 4GL-environment integrates programming facilities,
graphical user interfaces (GUI), and a database system in a
single tool.

• The programming language used in these systems is usually
object-oriented.

• The main purpose of these systems is to support application
development for commercial problem domains as good as
possible.

• A 4GL-environment is an end user tool that focuses on highest
productivity.

4

Delphi - Goals and Objects

• Rapid Application Development environment for the Internet
and Enterprise,

• Build large scale database solutions,

• Build high speed, native-code compiled, client and server
applications for the Enterprise and the Internet,

• Reuse objects through-out the enterprise in a multi-tier
environment.

• Simplifying distributed enterprise development through a one-
step simultaneous support of COM and CORBA (Visibroker).

5

The environment

Delphi combines a RAD environment, high speed native code
compiler, scalable database and reusable componentry to provide
developer with the highest productivity.

6

The product family

Intra
Builder Delphi

J Builder C++ Builder

InterBase SQL Links

Open

Scalable
Architecture

OLEnterprise

Entera

Control

Performance

X-Platform

Web

Database

RAD/Reuse

Delphi:
Scalable Windows
applications

C++ Builder:
Critical business
applications

Intra Builder:
Corporate Data-driven
web-applications

JBuilder:
Scalable cross-platform
web-applications

7

Two-tier Architecture

Provides basic separations of concerns.

8

Tree-tier Architecture

Offers a technology neutral
method to develop client/server
applications with vendors who
employ standard interfaces
which provide services for each
logical tier.

9

Multi-tier Architecture

A multi-tier, three-tier, or N-
tier implementation employs a
three-tier logical architecture
superimposed on a distributed
physical model. Application
Servers can access other
application servers in order to
supply services to the client
application as well as supply
services for other application
servers.

10

The Delphi IDE

Object
Inspector

Component Repository

Form
Editor

Application Form

11

Hello World

Steps:

• add label

• new application

• set alignment

• change font

• resize form

• run

12

Delphi Component Definition

• A component is an item that can be selected from the
component palette and which can be manipulated by the form
designer or the program code.

• A component is an object which class is derived from the class
TComponent, TComponent defines the basic behaviour that
must be fulfilled by every component.

• A component is an element which can be added to the Delphi
environment. The complexity of a component can range from
a simple extension of a standard component to a complex
interface component for hard- and software.

13

Facts about Delphi

• Components + ObjectPascal = Application,

• Transparent integration of COM and CORBA components,

• Delphi components can easily be made a COM components,

• The JavaBeans model is derived from Delphi,

• Delphi has emerged a first component market.

• Delphi is a mixed-style programming environment; the user can
or must use the textual or visual style of programming.

• Delphi components lack a binary standard like COM.

14

Working with Components

• All components are visible and configurable at design time.

• Visual components appear at runtime as designed.

• Non-visual components are invisible at runtime. These
components provide a visual way of setting up properties.

• Only published properties can be changed at design time.

• Event handler provide a convenient way to add application
specific code to your application.

• Understanding component properties and events is essential
to effectively program with Delphi.

15

The Object Model
• The root class of every object is TObject.

• A class can have a private, protected, public, and published
interface.

• The object model supports class-based features like class
methods.

• Every object in Delphi is a dynamic instance - reference model.

• Delphi supports so-called method pointers.

• Type information is available at both design time and runtime.

• The object model provides a so-called property mechanism
faking direct instance variable access.

16

Delphi’s Object repository

17

Creating a new Component
• New component • Implement component

• Test and install component

18

Publisher-Subscriber pattern I
 TUpdateNotifier = class(TComponent)
 private
 FWindowHandle : HWND;
 FAtom : DWORD;
 FOnNotifyUpdate : TOnNotifyUpdate;

 public
 constructor Create(AOwner : TComponent); override;
 destructor Destroy; override;
 procedure WndProc(var Msg : TMessage);
 procedure NotifyUpdate(AObject : TObject);

 published
 property OnNotifyUpdate : TOnNotifyUpdate read FOnNotifyUpdate
 write FOnNotifyUpdate;
 end;

19

Publisher-Subscriber pattern II

20

Publisher-Subscriber pattern III

ColorManager

21

Rotating 3D Cube

22

Rotating 3D Cube

A rotating cube

23

One-Step ActiveX
New element:

1.

Derive from TWinControl

Build-in COM support:

2.

24

Make it into an ActiveX-control

Steps:

• Make cube component
an window control

• Make new component
a ActiveX-element

• Build OCX

• Register ActiveX-server

25

Use Delphi’s ActiveX-control I

26

Use Delphi’s ActiveX-control II

27

Use Delphi’s ActiveX-control III

28

What have you learned about
Delphi?
• Delphi is a rapid application development environment,

• Delphi supports enterprise and internet client/server solutions,

• Delphi supports an open, scalable multi-tier architecture,

• Delphi provides support to create, manage, and deliver data
over the web,

• Delphi provides support to create reusable objects,

• Delphi provides support to graphically display of any kind of
data,

• Delphi supports one-step COM and CORBA development.

29

Questions

	ESE — Einführung in Software Engineering
	Table of Contents
	1. ESE — Einführung in Software Engineering
	Other Books
	Course Overview
	What is Software Engineering?
	Software Development Activities
	The Classical Software Lifecycle
	Problems with the Software Lifecycle
	Iterative Development
	Iterative and Incremental Development
	Boehm’s Spiral Lifecycle
	Requirements Collection
	Requirements Analysis and Specification
	Prototyping
	Design
	Implementation and Testing
	Maintenance
	Maintenance
	Why use a Method?
	Object-Oriented Methods
	Summary

	2. Project Management
	Management activities
	Risk Management
	Focus on Scope
	Scope and Objectives
	Cost Estimation Objectives
	Measurement
	Measurement-based Estimation
	Estimation and Commitment
	Product Process Model
	Planning and Scheduling (I)
	Planning and Scheduling (II)
	Task Durations and Dependencies
	Milestones and Deliverables
	Activity Network
	Activity Timeline
	Software Teams
	Chief Programmer Teams
	Staff Allocation
	Object Lessons
	Conway’s Law
	Summary

	3. Requirements Collection
	The Requirements Engineering Process
	Requirements Engineering Activities
	Requirements Analysis
	Problems of Requirements Analysis
	The Requirements Analysis Process
	Use Cases and Viewpoints
	Unified Modeling Language
	Writing Requirements Definitions
	Functional and Non-functional Requirements
	Types of Non-functional Requirements
	Examples of Non-functional Requirements
	Requirements Verifiability
	Precise Requirements Measures
	Prototyping Objectives
	Evolutionary Prototyping
	Throw-away Prototyping
	Requirements Checking
	Requirements Reviews
	Summary

	4. Modelling Objects and Classes
	Class Diagrams
	Visibility and Scope of Features
	UML Lines and Arrows
	Parameterized Classes
	Utilities
	Objects
	Associations
	Aggregation and Navigability
	Association Classes
	Qualified Associations
	Inheritance
	What is Inheritance For?
	Multiple Inheritance
	Constraints
	Using the Notation
	Summary

	5. Modelling Behaviour
	Use Case Diagrams
	Sequence Diagrams
	UML Message Flow Notation
	Collaboration Diagrams
	Message Labels
	State Diagrams
	State Diagram Notation
	State Box with Regions
	Transitions and Operations
	Composite States
	Sending Events between Objects
	Concurrent Substates
	Branching and Merging
	History Indicator
	Creating and Destroying Objects
	Using the Notations
	Summary

	6. Software Architecture
	What is Software Architecture?
	How Architecture Drives Implementation
	Sub-systems, Modules and Components
	Cohesion
	Coupling
	Tight Coupling
	Loose Coupling
	Architectural Parallels
	Layered Architectures
	Abstract Machine Model
	OSI Reference Model
	Client-Server Architectures
	Client-Server Architectures
	Four-Tier Architectures
	Blackboard Architectures
	Repository Model
	Event-driven Systems
	Selective Broadcasting
	Dataflow Models
	Invoice Processing System
	Compilers as Dataflow Architectures
	Compilers as Blackboard Architectures
	Summary

	7. Responsibility-Driven Design
	What is Object-Oriented Design?
	Design Steps
	Finding Classes
	Drawing Editor Requirements Specification
	Drawing Editor: noun phrases
	Class Selection Rationale (I)
	Class Selection Rationale (II)
	Class Selection Rationale (III)
	Candidate Classes
	Class Cards
	Finding Abstract Classes
	Identifying and Naming Groups
	Recording Superclasses
	Responsibilities
	Identifying Responsibilities
	Assigning Responsibilities
	Relationships Between Classes
	Recording Responsibilities
	Collaborations
	Finding Collaborations
	Recording Collaborations
	Summary

	8. Detailed Design
	Sharing Responsibilities
	Multiple Inheritance
	Building Good Hierarchies
	Building Kind-Of Hierarchies
	Refactoring Responsibilities
	Identifying Contracts
	Applying the Guidelines
	What are Subsystems?
	Subsystem Cards
	Class Cards
	Simplifying Interactions
	Protocols
	Refining Responsibilities
	Specifying Your Design: Classes
	Specifying Subsystems and Contracts
	Summary

	9. User Interface Design
	Interface Design Models
	GUI Characteristics
	GUI advantages
	User Interface Design Principles
	Direct Manipulation
	Interface Models
	Menu Systems
	Menu Structuring
	Command Interfaces
	Information Presentation
	Analogue vs. Digital Presentation
	Colour Displays
	User Guidance
	Design Factors in Message Wording
	Error Message Guidelines
	Good and Bad Error Messages
	Help System Design
	User Interface Evaluation
	Summary

	10. Software Validation
	Software Reliability, Failures and Faults
	Programming for Reliability
	Common Sources of Software Faults
	Fault Tolerance
	Approaches to Fault Tolerance
	Defensive Programming
	Verification and Validation
	The Testing Process
	Regression Testing
	Test Planning
	Testing Strategies
	Defect Testing
	Functional testing
	Equivalence Partitioning
	Test Cases and Test Data
	Structural Testing
	Binary Search Method
	Path Testing
	Statistical Testing
	Static Verification
	Summary

	11. Software Quality
	What is Quality?
	Software Quality Factors
	Quality Management Activities
	Quality Controls
	Process-based Quality
	ISO 9000
	ISO 9001
	ISO 9000 and Quality Management
	ISO 9000 Certification
	The Quality Plan
	Types of Review
	Quality Reviews
	The Review Process
	Review Meetings and Minutes
	Review Guidelines
	Sample Review checklists (I)
	Sample Review checklists (II)
	Review Results
	Product and Process Standards
	Sample Java Code Conventions
	Documentation Standards
	Good and Bad Documentation
	Summary

	12. Computer-Aided Software Engineering
	What is CASE?
	CASE Tool Functionality
	CASE Tool Process Support
	Quality of Tools Support
	Tools, Workbenches and Environments
	Integrated CASE
	The CASE life cycle
	Programming Workbenches
	Static Program Analysers
	Stages of Static Analysis
	4GL Workbenches
	Analysis and Design Workbenches
	Testing Workbenches
	Testing Tools
	Configuration Management Tools
	Software Engineering Environments
	Summary

	13. The 4GL- Component Framework DelphiDelphi Delphi

