ESE — EinfUhrung in Software

Engineering

Prof. O. Nierstrasz

Wintersemester 1999/2000

Table of Contents

Table of Contents

1. ESE — EinfUhrung in Software Engineering
Other Books
Course Overview
What is Software Engineering?
Software Development Activities
The Classical Software Lifecycle
Problems with the Software Lifecycle
Iterative Development
Iterative and Incremental Development
Boehm’s Spiral Lifecycle
Requirements Collection
Requirements Analysis and Specification
Prototyping
Design
Implementation and Testing
Maintenance
Maintenance
Why use a Method?
Object-Oriented Methods
Summary

2. Project Management
Management activities
Risk Management
Focus on Scope
Scope and Objectives
Cost Estimation Objectives
Measurement
Measurement-based Estimation
Estimation and Commitment
Product Process Model
Planning and Scheduling (1)
Planning and Scheduling (Il)
Task Durations and Dependencies

O O ~NO P, WNPFP =

NP RPRERRERRRRER
QOO ~NOOUAWNEREO

W WWWNDNDNDNDNNDNDNDNDN
WNPFPOOWOO~NOOOR~WNDNPRE

Table of Contents

Milestones and Deliverables
Activity Network

Activity Timeline

Software Teams

Chief Programmer Teams
Staff Allocation

Object Lessons

Conway’s Law

Summary

3. Requirements Collection

The Requirements Engineering Process
Requirements Engineering Activities
Requirements Analysis

Problems of Requirements Analysis

The Requirements Analysis Process

Use Cases and Viewpoints

Unified Modeling Language

Writing Requirements Definitions
Functional and Non-functional Requirements
Types of Non-functional Requirements
Examples of Non-functional Requirements
Requirements Verifiability

Precise Requirements Measures
Prototyping Objectives

Evolutionary Prototyping

Throw-away Prototyping

Requirements Checking

Requirements Reviews

Summary

. Modelling Objects and Classes

Class Diagrams

Visibility and Scope of Features
UML Lines and Arrows
Parameterized Classes

September 21, 1999

34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67

5.

6.

Utilities

Objects

Associations
Aggregation and Navigability
Association Classes
Qualified Associations
Inheritance

What is Inheritance For?
Multiple Inheritance
Constraints

Using the Notation
Summary

Modelling Behaviour

Use Case Diagrams

Sequence Diagrams

UML Message Flow Notation
Collaboration Diagrams
Message Labels

State Diagrams

State Diagram Notation

State Box with Regions

Transitions and Operations
Composite States

Sending Events between Objects
Concurrent Substates

Branching and Merging

History Indicator

Creating and Destroying Objects
Using the Notations

Summary

Software Architecture
What is Software Architecture?

How Architecture Drives Implementation
Sub-systems, Modules and Components

ii.

68
69
70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

98
99

100
101

Table of Contents

Cohesion

Coupling

Tight Coupling

Loose Coupling

Architectural Parallels

Layered Architectures

Abstract Machine Model

OSl Reference Model

Client-Server Architectures
Client-Server Architectures

Four-Tier Architectures

Blackboard Architectures
Repository Model

Event-driven Systems

Selective Broadcasting

Dataflow Models

Invoice Processing System
Compilers as Dataflow Architectures
Compilers as Blackboard Architectures
Summary

7. Responsibility-Driven Design

What is Object-Oriented Design?
Design Steps

Finding Classes

Drawing Editor Requirements Specification
Drawing Editor: noun phrases
Class Selection Rationale (1)
Class Selection Rationale (ll)
Class Selection Rationale (lIl)
Candidate Classes

Class Cards

Finding Abstract Classes
Identifying and Naming Groups
Recording Superclasses
Responsibilities

Identifying Responsibilities
Assighing Responsibilities
Relationships Between Classes

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

Recording Responsibilities
Collaborations

Finding Collaborations
Recording Collaborations
Summary

. Detailed Design

Sharing Responsibilities

Multiple Inheritance

Building Good Hierarchies
Building Kind-Of Hierarchies
Refactoring Responsibilities
Identifying Contracts

Applying the Guidelines

What are Subsystems?
Subsystem Cards

Class Cards

Simplifying Interactions
Protocols

Refining Responsibilities
Specifying Your Design: Classes
Specifying Subsystems and Contracts
Summary

. User Interface Design

Interface Design Models

GUI Characteristics

GUIl advantages

User Interface Design Principles
Direct Manipulation

Interface Models

Menu Systems

Menu Structuring

Command Interfaces
Information Presentation
Analogue vs. Digital Presentation
Colour Displays

User Guidance

Design Factors in Message Wording

September 21, 1999

140
141
142
143
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

Error Message Guidelines
Good and Bad Error Messages
Help System Design

User Interface Evaluation
Summary

10. Software Validation

Software Reliability, Failures and Faults
Programming for Reliability
Common Sources of Software Faults
Fault Tolerance

Approaches to Fault Tolerance
Defensive Programming
Verification and Validation
The Testing Process

Regression Testing

Test Planning

Testing Strategies

Defect Testing

Functional testing

Equivalence Partitioning

Test Cases and Test Data
Structural Testing

Binary Search Method

Path Testing

Statistical Testing

Static Verification

Summary

11. Software Quality

What is Quality?

Software Quality Factors

Quality Management Activities
Quallity Controls

Process-based Quality

ISO 9000

ISO 9001

ISO 9000 and Quality Management
ISO 9000 Certification

fii.

177
178
179
180
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

204
205
206
207
208
209
210
211
212
213

Table of Contents

The Quality Plan

Types of Review

Quality Reviews

The Review Process

Review Meetings and Minutes
Review Guidelines

Sample Review checklists (1)
Sample Review checkilists (Il)
Review Results

Product and Process Standards
Sample Java Code Conventions
Documentation Standards
Good and Bad Documentation
Summary

12. Computer-Aided Software Engineering

What is CASE?

CASE Tool Functionality

CASE Tool Process Support

Quality of Tools Support

Tools, Workbenches and Environments
Integrated CASE

The CASE life cycle

Programming Workbenches

Static Program Analysers

Stages of Static Analysis

4GL Workbenches

Analysis and Design Workbenches
Testing Workbenches

Testing Tools

Configuration Management Tools
Software Engineering Environments
Summary

13. 4th Generation Systems — Delphi

214
215
216
217
218
219
220
221
222
223
224
225
226
227

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

246

September 21, 1999

iv.

ESE 1.

1. ESE — Einfuhrung in Software Engineering

Lecturer: Prof. Oscar Nierstrasz
Schitzenmattstr. 14/103, Tel. 631.4618
Secretary: Frau |. Huber, Tel. 631.4692
Assistants: Jean-Guy Schneider, Thomas Hofmann, Mathis Kretz
WWW: http://www.iam.unibe.ch/~scg

Principle Texts:
[1 Software Engineering, |. Sommerville, Addison-Wesley, Fifth Edn., 1996.

0 Software Engineering — A Practitioner’s Approach, R. Pressman, Mc-Graw Hill,
Third Edn., 1994.

1 Designing Object-Oriented Software, R. Wirfs-Brock, B. Wilkerson, L. Wiener,
Prentice Hall, 1990.

Universitat Bern ESE — Einfiihrung in Software Engineering

ESE 2.

Other Books

[0 The Mythical Man-Month, F. Brooks, Addison-Wesley, 1975.

Object Lessons — Lessons Learned in Object-Oriented Development Projects,
T. Love, SIGS Books, 1993

[0 Object-Oriented Development — The Fusion Method, D. Coleman, et al.,
Prentice Hall, 1994.

[0 Succeeding with Objects: Decision Frameworks for Project Management, A.
Goldberg and K. Rubin, Addison-Wesley, 1995

A Discipline for Software Engineering, W. Humphrey, Addison Wesley, 1995

Object-Oriented Software Construction, B. Meyer, Prentice Hall, Second Edn.,
1997.

0 Objects, Components and Frameworks with UML, D. D'Souza, A. Wills,
Addison-Wesley, 1999

0 UML@Work, M. Hitz, G. Kappel, DPunkt, 1999

]

1 O

Universitat Bern ESE — Einfiihrung in Software Engineering

ESE 3.

Course Overview

1. 10-27 Introduction — The Software Lifecycle
2. 11-03 Project Management

3. 11-10 Requirements Collection

4. 11-17 Modelling Objects and Classes

5. 11-24 Modelling Behaviour

6. 12-01 Software Architecture

7. 12-08 Responsibility-Driven Design

8. 12-15 Detailed Design

9. 12-22 User Interface Design

10. 01-12 Software Validation

11. 01-19 Software Quality

12. 01-26 Computer-Aided Software Engineering
13. 02-02 4GLs: Delphi — guest lecture

02-09 Final exam

Universitat Bern ESE — Einfiihrung in Software Engineering

ESE 4.

What is Software Engineering?

A naive view:

Problem Specification coding » Final Program

But ...

Where did the specification come from?

How do you know the specification correspond to the user’'s needs?
How did you decide how to structure your program?

How do you know the program actually meets the specification?

How do you know your program will always work correctly?

What do you do if the users’ needs change?

How do you divide tasks up if you have more than a one-person team?

(N O O O I

Universitat Bern ESE — Einfiihrung in Software Engineering

ESE 5.

Software Development Activities

Requirements Collection

[1 Establish customer’s needs
Analysis

[Model and specify the requirements (“what”)
Design

[0 Model and specify a solution (“how”)

Implementation
[1 Construct a solution in software

Testing
[0 Validate the solution against the requirements

Maintenance
[0 Repair defects and adapt the solution to new requirements

NB: these are ongoing activities, not sequential phases!

Universitat Bern ESE — Einfiihrung in Software Engineering

ESE

The Classical Software Lifecycle

The classical software lifecycle
models the software development as
a step-by-step “waterfall” between the
various development phases.

Requwementj\‘
Collection

AnaIyS|s

—

Implementation

- .
;\L Testing

K— | j
\Uamtenance

The waterfall model is unrealistic for many reasons, especially:
[0 requirements must be “frozen” too early in the life-cycle
[1 requirements are validated too late

Universitat Bern ESE — Einfiihrung in Software Engineering

ESE /.

Problems with the Software Lifecycle

1. *“Real projects rarely follow the sequential flow that the model proposes. lteration
always occurs and creates problems in the application of the paradigm”

2. ‘“ltis often difficultfor the customer to state all requirements explicitly. The classic
life cycle requires this and has difficulty accommodating the natural uncertainty
that exists at the beginning of many projects.”

3. “The customer must have patience. A working version of the program(s) will not
be available until /ate in the projecttimespan. A major blunder, if undetected until
the working program is reviewed, can be disastrous.”

— Pressman, SE, p. 26

Universitat Bern ESE — Einfiihrung in Software Engineering

ESE 8.

lterative Development

In practice, development is always iterative, and all activities progress in parallel.

Requirements Testing based on requirements
Collection
Maintenance through iteration C Testing D

Analysis Testing throughout implementation
Validation through prototyping

Implementation

Design 4’/4
Design through refactoring

0 If the waterfall model is pure fiction, why is it still the standard software process?

Universitat Bern ESE — Einfiihrung in Software Engineering

ESE

lterative and Incremental Development

Plan to iterate your analysis, design and implementation.
[0 You won't get it right the first time, so integrate, validate and test as

frequently as possible.

The later in the lifecycle errors are discovered, the more expensive they are to fix!

Plan to incrementally develop (i.e., prototype) the system.
[0 If possible, always have a running version of the system, even if most
functionality is yet to be implemented.
I Integrate new functionality as soon as possible.
[0 Validate incremental versions against user requirements.

Universitat Bern ESE — Einfiihrung in Software Engineering

ESE 10.

Boehm’s Spiral Lifecycle

P|anning Risk AnalySiS

initial requirements

first prototype

alpha demo
evolving system

Customer Evaluation Engineering

Universitat Bern ESE — Einfiihrung in Software Engineering

ESE 11.

Reguirements Collection

User requirements are often expressed informally:
[features
[0 usage scenarios

Although requirements may be documented in written form, they may be incomplete,
ambiguous, or even incorrect.

Requirements will change!
0 inadequately captured or expressed in the first place
[0 user and business needs may change during the project

Validation is needed throughout the software lifecycle, not only when the “final system”
Is delivered!

[0 build constant feedback into your project plan
[1 plan for change
[1 early prototyping [e.d., Ul] can help clarify requirements

Universitat Bern ESE — Einfiihrung in Software Engineering

ESE 12.

Requirements Analysis and Specification

Analysis is the process of specifying what a system will do. The intention is to provide a
clear understanding of what the system is about and what its underlying concepts are.
The result of analysis is a specification document.

An object-oriented analysis results in models of the system which describe:
[1 classes of objects that exist in the system
[relationships between those classes
[1 use cases and scenarios describing
[1 operations that can be performed on the system
[0 allowable sequences of those operations

Does the requirements specification correspond to the users’ actual needs?

Universitat Bern ESE — Einfiihrung in Software Engineering

ESE 13.

Prototyping

A prototype is a software program developed to test, explore or validate a hypothesis, i.e.
to reduce risks.

An exploratory prototype, also known as a throwaway prototype, is intended to validate
requirements or explore design choices.

[1 Ul prototype — validate user requirements
[1 rapid prototype — validate functional requirements
[0 experimental prototype — validate technical feasibility

An evolutionary prototype is intended to evolve in steps into a finished product

[iteratively “grow” the application, redesigning and refactoring along the way

[First do it, then do it right, then do it fast.

Universitat Bern ESE — Einfiihrung in Software Engineering

ESE 14.

Design

Design is the process of specifying how the specified system behaviour will be realized
from software components. The results are architecture and detailed design documents.

Object-oriented design delivers models that describe:

[0 how system operations are implemented by interacting objects

[0 how classes refer to one another and how they are related by inheritance
[attributes of, and operations, on classes

Design is an iterative process, proceeding in parallel with implementation!

Universitat Bern ESE — Einfiihrung in Software Engineering

ESE 15.

Implementation and Testing

Implementation is the activity of constructing a software solution to the customer’s
requirements.
Testing is the process of validating that the solution meets the requirements.

The result of implementation and testing is a fully documented and validated solution.

[1 Design, implementation and testing are iterative activities

[0 The implementation does not “implement the design”, but rather the design
document documents the implementation!

System tests reflect the requirements specification
|deally, test case specification precedes design and implementation
[Repeatable, automated tests enable evolution and refactoring

1 [

Universitat Bern ESE — Einfiihrung in Software Engineering

ESE 16.

Maintenance

Maintenance is the process of changing a system after it has been deployed.

[0 Corrective maintenance: identifying and repairing defects
[0 Adaptive maintenance: adapting the existing solution to new platforms
[0 Perfective maintenance: implementing new requirements

In a spiral lifecycle, everything after the delivery and deployment of the first prototype can
be considered “maintenance’!

“Maintenance” entails:
[0 configuration and version management
[0 reengineering (redesigning and refactoring)
[0 updating all analysis, design and user documentation

Universitat Bern ESE — Einfiihrung in Software Engineering

ESE 17.

Maintenance

Breakdown of
maintenance costs.

Source: Lientz 1979

41.8

Changes in User
Requirements

Changes in
Data Formats

17.4

Other

Efficiency
Improvements

Documentation

Emergency

Hardware Fixes

Changes

Routine
Debugging

Universitat Bern ESE — Einfiihrung in Software Engineering

ESE 18.

Why use a Method?

Requirements checking:

[0 System modelling helps uncover omissions and ambiguities in requirements
Clearer concepts:

[0 Domain analysis models can be reused/adapted when requirements change
Less design rework:

[1 Analysis and design models allow alternatives to be studied before
implementation starts

Better refactoring of design work:

[0 Analysis and design helps to decompose large systems into manageable parts
Improved communications between developers:

[0 Standard notations provide a common vocabulary for analysis and design
Less effort needed on maintenance:

[0 Analysis and design documents help maintainers understand complex systems

Universitat Bern ESE — Einfiihrung in Software Engineering

ESE 19.

ODbject-Oriented Methods

First generation:
[0 Adaptation of existing notations (ER diagrams, state diagrams ...):
[0 Booch, OMT, Shlaer and Mellor, ...
[0 Specialized design techniques:
[0 CRC cards; responsibility-driven design; design by contract
Second generation:
[0 Fusion:
[0 Booch + OMT + CRC + formal methods
Third generation:
[0 Unified Modeling Language:
[0 uniform notation: Booch + OMT + Use Cases + ...
[0 complete lifecycle support (to be defined!)

Object-oriented methods are still maturing. Notations are converging, but:
(1 transition is still risky
[0 few methods deal seriously with software reuse.

Universitat Bern ESE — Einfiihrung in Software Engineering

ESE 20.

summary

You should know the answers to these questions:
[0 How does Software Engineering differ from programming?
Why is the “waterfall” model unrealistic?
What is the difference between analysis and design?
Why plan to iterate? Why develop incrementally?
Why is programming only a small part of the cost of a “real” software project?
What are the key advantages and disadvantages of object-oriented methods?

N O O O B

Can you answer the following questions?

[0 Why do requirements change?

How can you validate that an analysis model captures users’ real needs?
When does analysis stop and design start?

When can implementation start?

[

Universitat Bern ESE — Einfiihrung in Software Engineering

ESE 21.

2. Project Management

Overview:
[0 Management activities
[0 Risk management
[0 Planning and scheduling
[0 Teamwork

Sources:
[1 Software Engineering, |. Sommerville, Addison-Wesley, Fifth Edn., 1996.

0 Software Engineering — A Practitioner’s Approach, R. Pressman, Mc-Graw Hill,
Third Edn., 1994.

Recommended Reading:
[0 The Mythical Man-Month, F. Brooks, Addison-Wesley, 1975
[0 Object Lessons, T. Love, SIGS Books, 1993

0 Succeeding with Objects: Decision Frameworks for Project Management, A.
Goldberg and K. Rubin, Addison-Wesley, 1995

0 Extreme Programming Explained: Embrace Change, Kent Beck (to appear)

Universitédt Bern Project Management

ESE 22.

Management activities

Defining scope and objectives
Estimating costs

Analysing and managing risk
Planning & scheduling
Selecting and evaluating staff
Project tracking and control

N O I O

Universitédt Bern Project Management

ESE

23.

Risk Management

If you don'’t actively attack risks, they will actively attack you.

— Tom Gilb

Project risks

[0 budget, schedule, resources, size, personnel, morale ...

Technical risks

[1 implementation technology, verification, maintenance ...

Business risks

[0 market, sales, management, commitment ...

Management must:

[]

0 O O

identify risks as early as possible

assess whether risks are acceptable
monitor risks throughout the project

take appropriate action to manage risks

1 e.g., training, prototyping, iteration, ...

Universitédt Bern Project Management

ESE 24.

FOcus on Scope

For decades, programmers have been whining, “The customers can't tell us
what they want. When we give them what they say they want, they don't like
it.” Get over it. This is an absolute truth of software development. The

requirements are never clear at first. Customers can never tell you exactly
what they want.

— Kent Beck

Universitédt Bern Project Management

ESE 25.

Scope and Objectives

Myth: “A general statement of objectives is enough to start coding.”
Reality: Poor up-front definition is the major cause of project failure.

In order to plan, you must set clear scope & objectives

Objectives identify the general goals of the project, not how they will be achieved.

Scope identifies the primary functions that the software is to accomplish, and bounds
these functions in a quantitative manner.

[0 Goals must be realistic and measurable
[0 Constraints, performance, reliability must be explicitly stated
[0 Customer must set priorities

Universitédt Bern Project Management

ESE 26.

Cost Estimation Objectives

[J To establish a budget for a software project
[0 To provide a means of controlling project costs
[0 To monitor progress against the budget
[0 comparing planned with estimated costs
[0 To establish a cost database for future estimation
[0 Cost estimation and planning/scheduling are closely related activities

Universitédt Bern Project Management

ESE 27.

Measurement

When you can measure what you are speaking about and express it in
numbers, you know something about it; but when you cannot measure, when
you cannot express it in numbers, your knowledge is of a meagre and
unsatisfactory kind: it may be the beginning of knowledge, but you have
scarcely, in your thoughts, advanced to the stage of science.

— Lord Kelvin

Universitédt Bern Project Management

ESE 28.

Measurement-based Estimation

A. Measure

Develop a system model
and measure its size

C. Interpret

Adapt the effort with respect to a
specific development project plan

B. Estimate

Determine the effort with respect to
an empirical database of
measurements from similar projects

Universitat Bern Project Management

ESE

29.

Estimation and Commitment

Example: The XP process

1.

B W

a. Customers write stories and
b. Programmers estimate stories
[if they can’t, they ask the customers to split/merge/rewrite stories

Programmers measure the team load factor, the ratio of ideal programming time
to the calendar

Customers sort stories by priority
Programmers sort stories by risk

a. Customers pick date, programmers calculate budget, customers pick stories
adding up to that number, or

b. Customers pick stories, programmers calculate date

(customers complain, programmers suggest customers reduce scope,
customers complain some more but reduce scope anyway)

Universitédt Bern Project Management

ESE

30.

Product Process Model

Incremental decision-making, development, testing and integration produce effec-
tive project results.

[]

lterative development:

[0 Controlled reworking of parts of a system to remove mistakes or make
improvements based on user feedback

[0 “We get things wrong before we get them right”

Incremental development:

[1 Partition systems and develop at different times or rates

[0 Test and integrate as each partition completes

[1 Make progress in small steps to get earlier customer feedback

[0 Obtain better quality testing by integrating partitions as early as possible
Prototyping:

[0 Creating a scaled-down model of some or all of the system

[0 Benefit by “buying” information before making key decisions

Universitédt Bern Project Management

ESE 31.

Planning and Scheduling (1)

Myth: “If we get behind schedule, we can add more programmers and catch up.”
Reality: Adding more people typically slows a project down.

Scheduling problems
[1 Estimating the difficulty of problems and the cost of developing a solution is hard
[0 Productivity is not proportional to the number of people working on a task
1 Adding people to a late project makes it later due to communication overhead
[0 The unexpected always happens. Always allow contingency in planning

Planning under uncertainty
[J State clearly what you know and don’t know
[0 State clearly what you will do to eliminate unknowns
[0 Make sure that all early milestones can be met
[1 Plan to replan

Universitédt Bern Project Management

ESE

Planning and Scheduling (I1)

Project Scheduling

[]

[I

1 [

Split project into tasks.

|dentify required milestones and cost of each task.

Organize tasks concurrently to make optimal use of workforce
Document dependencies between project tasks

[0 total time depends on longest path in activity graph
Minimize task dependencies to avoid delays

Depend on project manager’s intuition and experience!

32.

Planning and estimation are iterative and schedules must be monitored and revised
during the project!

Universitat Bern

Project Management

ESE

Task Durations and Dependencies

0 What is the minimum total duration of this project?

Universitat Bern

Task Duration (days) Dependencie
T1 8
T2 15
T3 15 T1
T4 10
T5 10 T2, T4
T6 5 T1, T2
T7 20 T1
T8 25 T4
T9 15 T3, T6
T10 15 T5, T7
T11 7 T9
T12 10 T11

S

33.

Project Management

ESE 34.

Milestones and Deliverables

Myth: “The only deliverable for a successful project is the working program.”

Reality: Documentation of all aspects of software development are needed to ensure
maintainability.

Project milestones mark the end of significant software process activities.
Project deliverables are results that are delivered to the customer.

0 E.g.
[initial requirements document
[1 Ul prototype
[architecture specification

[0 Milestones and deliverables help to monitor progress
[0 Should be scheduled roughly every 2-3 weeks

NB: Deliverables must evolve as the project progresses!

Universitédt Bern Project Management

ESE 35.

Activity Network

14/7/94 15 days

25/8/94

11/8/94

@ 15 days
T10
18/7/94 - 10 days

25 days

Finish
19/9/94

©lan Sommerville 1995

Universitét Bern Project Management

ESE

Activity Timeline

36.

4/7 11/7 18/7 25/7 1/8 8/8 15/8 22/8 29/8 59 12/9 19/9
‘ Starl

T4
™[1
- I

Vil @

17 | |

T3 | |

M5 4 ' :
T
m3 4]
M2
T6 |
TS
¢ M4
1o |
M7 4
T10 | I
’]VIlﬁ
T11
& M8
T12
’ Finish

©lan Sommerville 1995

Universitat Bern

Project Management

ESE 37.

Software Teams

Team organisation
[0 Teams should be relatively small (< 8 members)

[0 minimize communication overhead
[1 team quality standard can be developed
[0 members can work closely together
[1 programs are regarded as team property (“egoless programming”)
[0 continuity can be maintained if members leave
[0 Break big projects down into multiple smaller projects
[0 Small teams may be organised in an informal, democratic way
(1 Chief programmer teams try to make the most effective use of skills and

experience

Universitédt Bern Project Management

ESE 38.

Chief Programmer Teams

[0 Consist of a kernel of specialists helped by others as required

0 chief programmer takes full responsibility for design, programming, testing
and installation of system

0 backup programmer keeps track of CP’s work and develops test cases
0 librarian manages all information
[0 others may include: project administrator, toolsmith, documentation editor,

language/system expert, tester, and support programmers

[0 Reportedly successful but problems are:
[0 Difficult to find talented chief programmers
(1 Disrupting to normal organisational structures
[0 De-motivating for those who are not chief programmers

Universitédt Bern Project Management

ESE

Staff Allocation

39.

4/7 11/7 18/7 25/ 1/8 8/8 15/8 22/8 29/8 5/9 12/9 19/9
| |
Fred |T4
T8 11
112
Jane T1
T3
TO
Anne |T2
T6 TI
Jim 17
Mary TS
|

©lan Sommerville 1995

Universitat Bern

Project Management

ESE 40.

ODbject Lessons

Prototyping
[0 plan to throw one (two?) away; prototypes are not products
Requirements and Design

[0 must be formally specified and reviewed with the customer to correct
misunderstandings at the earliest possible stage

Training

0 6-12 months to train software engineers to OO productivity (if ever)
Reusability

(1 high programmer resistance; requires incentives and support
Productivity

[0 can vary by 50:1; match organization to available skills & talents
Tools

[0 devote 20% of project staff to toolsmiths (building, acquiring ...)
Leading vs. Managing

[1 team leaders should read & review all code produced by the team

[0 managers should be able to read and understand all code

Universitédt Bern Project Management

ESE 41.

Conway'’s Law

“Organizations that design systems are constrained to produce designs that
are copies of the communication structures of these organizations”

Universitédt Bern Project Management

ESE 42.

summary

You should know the answers to these questions:

[0 How can prototyping help to reduce risk in a project?
What is the difference between iterative and incremental development?
What are milestones, and why are they important?
What can you learn from an activity network? An activity timeline?
Why should programming teams have no more than about 8 members?
What is meant by “plan to throw one away”?

N O O O B

Can you answer the following questions?

What will happen if the developers, not the customers, set the project priorities?
What is a good way to measure the size of a project (based on requirements alone)?
When should you sign a contract with the customer?

How do you know if you fall behind schedule? What should you do then?

How would you select and organize the perfect software development team?

What are good examples of Conway’s Law in action?

N O O O B O

Universitédt Bern Project Management

ESE 43.

3. Requirements Collection

Overview:
[0 The Requirements Engineering Process
[0 Requirements Analysis, Definition and Specification

[Use cases and scenarios

[0 Functional and non-functional requirements

[0 Evolutionary and throw-away prototyping

[1 Requirements checking and reviews
sources:

[1 Software Engineering, |. Sommerville, Addison-Wesley, Fifth Edn., 1996.

0 Software Engineering — A Practitioner’s Approach, R. Pressman, Mc-Graw Hill,
Third Edn., 1994.

[0 Objects, Components and Frameworks with UML, D. D'Souza, A. Wills,
Addison-Wesley, 1999

Universitat Bern Requirements Collection

ESE 44.

The Reguirements Engineering Process

Requirements
analysis

Feasibility
study

Requirements
definition

Feasibility
report

Requirements
specification

System
models

Definition of
requirements

Y

Specification of
requirements

Requirements
document

©lan Sommerville 1995

Universitét Bern Requirements Collection

ESE 45.

Reqguirements Engineering Activities

Feasibility study
[0 Determine if the user needs can be satisfied with the available technology and
budget.

Requirements analysis
[0 Find out what system stakeholders require from the system.
Requirements definition
[0 Define the requirements in a form understandable to the customer.
Requirements specification
[1 Define the requirements in detail.
Written as a contract between client and contractor.

“Requirements are for users; specifications are for analysts and developers.”

Universitat Bern Requirements Collection

ESE 46.

Reguirements Analysis

Sometimes called requirements elicitation or requirements discovery

Technical staff work with customers to determine
[0 the application domain,
[0 the services that the system should provide and
[0 the system’s operational constraints.

Involves various stakeholders:

0 e.g., end-users, managers, engineers involved in maintenance, domain
experts, trade unions, etc.

Universitat Bern Requirements Collection

ESE 47.

Problems of Requirements Analysis

Various problems typically arise:
[0 Stakeholders don’'t know what they really want
Stakeholders express requirements in their own terms
Different stakeholders may have conflicting requirements
Organisational and political factors may influence the system requirements
The requirements change during the analysis process.
New stakeholders may emerge.

N O O B

Requirements evolution

[0 Requirements always evolve as a better understanding of user needs is
developed and as the organisation’s objectives change

[0 Itis essential to plan for change in the requirements as the system is being
developed and used

Universitat Bern Requirements Collection

ESE 48.

The Requirements Analysis Process

/Requirements
definition and
specification

; o,
/ Requirements
validation

Y

Domain
understanding

Prioritization
Process
entry

/ Conflict

resolution

Requirements
collection

Classification

©lan Sommerville 1995

Universitét Bern Requirements Collection

ESE 49.

Use Cases and Viewpoints

A use case is the specification of a sequence of actions, including variants, that a system
(or other entity) can perform, interacting with actors of the system”.

A scenario is a particular trace of action occurrences, starting from a known initial state.

Stakeholders represent different problem viewpoints.
[Interview as many different kinds of stakeholders as possible/necessary

[0 Translate requirements into use cases or “stories” about the desired system
involving a fixed set of actors (users and system objects)

[0 For each use case, capture both typical and exceptional usage scenarios

Users tend to think about systems in terms of “features”.
[0 You must get them to tell you stories involving those features.

[0 Use cases and scenarios can tell you if the requirements are complete and
consistent!

Universitat Bern Requirements Collection

ESE 50.

Unified Modeling Language

The “Unified Modeling Language” (UML) is an emerging industrial standard for
documenting object-oriented analysis and design models.

[0 Class Diagrams: specify classes, objects and their relationships
[1 visualize logical structure of system
Use Case Diagrams: show external actors and use cases they participate in
Sequence Diagrams: list the message exchanges in a use case scenario
[visualizes temporal message ordering
[0 Collaboration Diagrams: show messages exchanged by objects
[J visualize object relationships
[1 State Diagrams: specify the possible internal states of an object

1 [

and others ...

Universitat Bern Requirements Collection

ESE 51.

Writing Reguirements Definitions

Requirements definitions usually consist of natural language, supplemented by (e.qg.,
UML) diagrams and tables.

Three types of problem can arise:

[J Lack of clarity:
0 Itis hard to write documents that are both precise and easy-to-read.

[0 Requirements confusion:
[0 Functional and non-functional requirements tend to be intertwined.

[J Requirements amalgamation:
[0 Several different requirements may be expressed together.

Universitat Bern Requirements Collection

ESE 52.

Functional and Non-functional Reguirements

Functional requirements describe system services or functions

Non-functional requirements are constraints on the system or the development process:

[0 Product requirements:

[0 specify that the delivered product must behave in a particular way e.g.
execution speed, reliability, etc.

[1 Organisational requirements:

[1 are aconseguence of organisational policies and procedures e.g. process
standards used, implementation requirements, etc.

[1 External requirements:

[1 arise from factors which are external to the system and its development
process e.g. interoperability requirements, legislative requirements, etc.

Non-functional requirements may be more critical than functional requirements.
If these are not met, the system is useless!

Universitat Bern Requirements Collection

ESE

53.

Types of Non-functional Reguirements

Non-functional
requirements

Product
requirements

Efficiency Reliability
requirements requirements

Portability
requirements

Organizational
requirements

External
reguirements

Interoperability
requirements

Ethical

requirements

Usability Delivery Implementation Standards Legislative
requirements requirements requirements requirements requirements
Privacy Safety
requirements requirements

Performance Space
requirements requirements

©lan Sommerville 1995

Universitat Bern

Requirements Collection

ESE 54.

Examples of Non-functional Requirements

Product requirement

[1 It shall be possible for all necessary communication between the APSE and the
user to be expressed in the standard Ada character set.

Organisational requirement

[0 The system development process and deliverable documents shall conform to
the process and deliverables defined in XYZCo-SP-STAN-95.

External requirement

[1 The system shall provide facilities that allow any user to check if personal data
IS maintained on the system. A procedure must be defined and supported in the
software that will allow users to inspect personal data and to correct any errors
in that data.

Universitat Bern Requirements Collection

ESE 55.

Reguirements Verifiability

Requirements must be written so that they can be objectively verified.

Imprecise:

The system should be easy to use by experienced controllers and should be
organised in such a way that user errors are minimised.

Terms like “easy to use” and “errors shall be minimised” are useless as specifications.

Verifiable:

Experienced controllers should be able to use all the system functions after
a total of two hours training. After this training, the average number of errors
made by experienced users should not exceed two per day.

Universitat Bern Requirements Collection

ESE

Precise Requirements Measures

Universitat Bern

56.

Property Measure

Speed Processed transactions/second
User/Event response time
Screen refresh time

Size K Bytes; Number of RAM chips

Ease of use Training time
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statemgents

Number of target systems

Requirements Collection

ESE 57.

Prototyping Objectives

The objective of evolutionary prototyping is to deliver a working system to end-users.

[1 Development starts with the requirements that are best understood.

The objective of throw-away prototyping is to validate or derive the system requirements.

[0 Prototyping starts with that requirements that are poorly understood.

Universitat Bern Requirements Collection

ESE 58.

Evolutionary Prototyping

[1 Must be used for systems where the specification cannot be developed in
advance.

[1 e.g. Al systems and user interface systems

[0 Based on techniques which allow rapid system iterations.

[0 e.g., executable specification languages, VHL languages, 4GLs,
component toolkits

[1 Verification is impossible as there is no specification.
[0 Validation means demonstrating the adequacy of the system.

Universitat Bern Requirements Collection

ESE 59.

Throw-away Prototyping

[0 Used to reduce requirements risk

[1 The prototype is developed from an initial specification, delivered for experiment
then discarded

[0 The throw-away prototype should not be considered as a final system

[0 Some system characteristics may have been left out
(e.qg., platform requirements may be ignored)

[1 There is no specification for long-term maintenance
[0 The system will be poorly structured and difficult to maintain

Universitat Bern Requirements Collection

ESE 60.

Requirements Checking

Validity:
[0 Does the system provide the functions which best support the customer’s
needs?

Consistency:
[0 Are there any requirements conflicts?

Completeness:
(1 Are all functions required by the customer included?

Realism:
[0 Can the requirements be implemented given available budget and technology?

Universitat Bern Requirements Collection

ESE 61.

Requirements Reviews

Requirements reviews

[0 Regular reviews should be held while the requirements definition is being
formulated

[1 Both client and contractor staff should be involved in reviews
[0 Reviews may be formal (with completed documents) or informal.

Good communications between developers, customers and users can
resolve problems at an early stage

Review checks

0 Verifiability. |Is the requirement realistically testable?

[0 Comprehensibility. |s the requirement properly understood?
[0 Traceability. Is the origin of the requirement clearly stated?
[]

Adaptability. Can the requirement be changed without a large impact on other
requirements?

Universitat Bern Requirements Collection

ESE 62.

summary

You should know the answers to these questions:

[0 What is the difference between requirements analysis and specification?
Why is it hard to define and specify requirements?
What are use cases and scenarios?
What is the difference between functional and non-functional requirements?
What's wrong with a requirement that says a product should be “user-friendly”?
What's the difference between evolutionary and throw-away prototyping?

N O O O B

Can you answer the following questions?

Why isn’t it enough to specify requirements as a set of desired features?
Which is better for specifying requirements: natural language or diagrams?
How would you prototype a user interface for a web-based ordering system?
Would it be an evolutionary or throw-away prototype?

What would you expect to gain from the prototype?

How would you check a requirement for “adaptability”?

N O O O B O

Universitat Bern Requirements Collection

ESE 63.

4. Modelling Objects and Classes

Classes, attributes and operations
Visibility of Features
Parameterized Classes

Objects

Associations

Inheritance

Constraints

Packages

N I O I I O

Sources:

[0 Unified Modeling Language — Notation Guide, version 1.1, Rational Software
Corporation, 1997.

[0 Object-Oriented Development — The Fusion Method, D. Coleman, et al.,
Prentice Hall, 1994.

Universitédt Bern Modelling Objects and Classes

ESE 64.

Class Diagrams

“Class diagrams show generic descriptions of possible systems, and object diagrams
show particular instantiations of systems and their behaviour.”

Class name, attributes and operations: A collapsed class view:

Polygon Polygon

centre: Point
vertices: List of Point
borderColour: Colour
fillColour: Colour

display (on: Surface) Class with Package name:
rotate (angle: Integer)

erase () ZWindows::Window
destroy ()

select (p: Point): Boolean

Attributes and operations are also collectively called features.

Universitédt Bern Modelling Objects and Classes

ESE 65.

Visibility and Scope of Features

Stereotype

User-defined properties
(what “kind” of class is it?)

(e.g., abstract, readonly,
/ owner = “Pingu”)

Tk «user interface»

Window
{ abstract }
+ = “public” +size: Area = (100, 100)
= “protected” #visibility: Boolean = false B . .
o “p ivate” +default-size: Rectangle -.—— | underlined attributes
= private #maximum-size: Rectangle have class scope
-xptr: XWindow* __ jtalic attributes are
+display () a— abstract
+hide ()
+create ()
-attachXWindow (xwin: Xwindow*)
Attributes are specified as: name: type = initialValue { property string }
Operations are specified as: name (param: type = defaultValue, ...) : resultType

Universitédt Bern Modelling Objects and Classes

ESE 66.

UML Lines and Arrows

—————————— Constraint Association
(usually annotated) e.g., «uses»
_______ ~ Dependency Navigable association
e.g., «requires», e.g., part-of

«imports» ...

_______ —~ Refinement ~ “Generalization”
e.g., class/template, I.e., specialization (!)
class/interface e.g., class/superclass,

concrete/abstract class

Aggregation < “Composition”
I.e., “consists of” I.e., containment

Universitét Bern Modelling Objects and Classes

ESE 67.

Parameterized Classes

Parameterized (aka “template” or “generic”) classes are depicted with their parameters
shown in a dashed box.

Parameters may be either types (just a name) or values (name: Type).

r—— - - - al
|

T, n: Integer |
FArray ‘-——|———J
Ve N
Ve AN
Ve N
v N
FArray<Point, 3> FArray<Address, 4>

Instantiation of a class from a template can be shown by a dashed arrow.

NB: All forms of arrows (directed arcs) go from the client to the supplier!

Universitédt Bern Modelling Objects and Classes

ESE 68.

Utilities

A “utility” is a grouping of global attributes and operations. It is represented as a class
with the stereotype «utility». Utilities may be parameterized.

«utility»
MathPack

randomSeed : long =0
pi : long = 3.14158265358979

sin (angle : double) : double
cos (angle : double) : double- + — — — — — - return sin (angle + pi/2.0); lﬁ
random () : double

NB: A utility’s attributes are already interpreted as being in class scope, so it is redundant
to underline them.

A “note” is a text comment associated with a view, and represented as box with the top
right corner folded over.

Universitédt Bern Modelling Objects and Classes

ESE 69.

Objects

Objects are shown as rectangles with their name and type underlined in one
compartment, and attribute values, optionally, in a second compartment.

trianglel: P olygon

trianglel: P olygon

centre = (0, 0)

vertices = ((0,0), (4,0), (4,3))
borderColour = black
fillColour = white - Polvaon

At least one of the name or the type must be present.

Universitédt Bern Modelling Objects and Classes

ESE /0.

Associlations

Associations represent structural relationships between objects of different classes.

Married-to

< Works-for husband | 0..1
* *
Company Person :
employer employee wife
name name
address Employs B> AHV Nr. 0..1
address
boss
worker| *
Manages | Y
[0 usually binary (but may be ternary etc.)
[1 optional name and direction
[0 (unique) role names and multiplicities at end-points
[1 can traverse using navigation expressions

e.g., Sandoz.employee[name = “Pingu”].boss

Universitédt Bern Modelling Objects and Classes

ESE /1.

Aggregation and Navigability

Aggregation is denoted by a diamond and indicates a part-whole dependency:

1 Contains P 5 &
Polygon Point
{ ordered }
1
1 GraphicsBundle

colour

texture

density

A hollow diamond indicates a reference; a solid diamond an implementation.
If the link terminates with an arrowhead, then one can navigate from the whole to the part.

If the multiplicity of a role is > 1, it may be marked as { ordered }, or as { sorted }.

Universitédt Bern Modelling Objects and Classes

ESE 72.

Assoclation Classes

An association may be an instance of an association class:

Authorized on >

User . Workstation
|

Authorization

priority
privileges

start session

*

1 | home directory

Directory

In many cases the association class only stores attributes, and its name can be left out.

Universitédt Bern Modelling Objects and Classes

ESE /3.

Qualified Associations

A qualified association uses a special qualifier value to identify the object at the other end
of the association:

Airline Catalogue
frequent flyer # part number
* 1

0..1 0.1
Person Part

“The multiplicity attached to the target role denotes the possible cardinalities of the set of
target objects selected by the pairing of a source object and a qualifier value.”

NB: Qualifiers are part of the association, not the class

Universitédt Bern Modelling Objects and Classes

ESE /4.

Inheritance

A subclass inherits the features of its superclasses:

Figureldim
{ abstract }

colour

display ()

il

Line Arc Spline

endpoints radius control points

display () Z‘rir;sgﬁe'e display ()

display ()

Universitét Bern Modelling Objects and Classes

ESE /5.

What is Inheritance For?

New software often builds on old software by imitation, refinement or combination.
Similarly, classes may be extensions, specializations or combinations of existing classes.

Inheritance supports:
Conceptual hierarchy:
[0 conceptually related classes can be organized into a specialization hierarchy
0 people, employees, managers
[geometric objects ...
Software reuse:
0 related classes may share interfaces, data structures or behaviour
[geometric objects ...
Polymorphism:
[J objects of distinct, but related classes may be uniformly treated by clients
[0 array of geometric objects

Universitédt Bern Modelling Objects and Classes

ESE /6.

Multiple Inheritance

A class may inherit features from multiple superclasses:

Vehicle
LandVehicle WaterVehicle
Car AmphibiousVehicle Boat

In Eiffel, features inherited from common parents are shared unless they have been
renamed along one of the inheritance paths. Such features are considered replicated.

Other languages may adopt other rules to resolve inheritance conflicts.

Universitédt Bern Modelling Objects and Classes

ESE /7.

Constraints

Constraints are restrictions on values attached to classes or associations.
[0 Binary constraints may be shown as dashed lines between elements
[1 Derived values and associations can be marked with a “/”

» Member-of

Person

Person Committee :
| Subset birthdate

lage

1 Chair-of *

{ age = currentDate - birthdate }

Constraints are specified between braces, either free or within a note:

worker employee employer
* * 0.1
Person Company
0.1
boss

{ Person.employer = Person.boss.employer }ll'

Universitédt Bern Modelling Objects and Classes

ESE

Using the Notation

During Analysis:

[]

N O O B

Capture classes visible to users
Document attributes and responsibilities
|dentify associations and collaborations
|dentify conceptual hierarchies

Capture all visible features

During Design:

[]
[]

[1 Factor out common interfaces and functionalities

Specify contracts and operations
Decompose complex objects

/8.

The graphical notation is only part of the analysis or design document. For example, a
data dictionary cataloguing and describing all names of classes, roles, associations, etc.

must be maintained throughout the project.

Universitat Bern

Modelling Objects and Classes

ESE /9.

summary

You should know the answers to these questions:
[0 How do you represent classes, objects and associations?
How do you specify the visibility of attributes and operations to clients?
How is a utility different from a class? How is it similar?
Why do we need both named associations and roles?
Why is inheritance useful in analysis? In design?
How are constraints specified?

N O O O B

Can you answer the following questions?

Why would you want a feature to have class scope?

Why don’t you need to show operations when depicting an object?
Why aren’t associations drawn with arrowheads?

How is aggregation different from any other kind of association?
How are associations realized in an implementation language?

N O O O B B

Universitédt Bern Modelling Objects and Classes

ESE 80.

5. Modelling Behaviour

[0 Use Case Diagrams

[0 Sequence Diagrams

[0 Collaboration Diagrams

[1 State Diagrams
sources:

[0 Unified Modeling Language — Notation Guide, version 1.1, Rational Software
Corporation, 1997.

[0 Object-Oriented Development — The Fusion Method, D. Coleman, et al.,
Prentice Hall, 1994.

Universitédt Bern Modelling Behaviour

ESE 81.

Use Case Diagrams

A use case is a generic Bank
description of an entire

transaction involving several

actors.
. statements
A use case diagram presents — %

a set of use cases (ellipses) Q

and the external actors that , Counter
) ; ransaction
interact with the system.)\ w

£ Clerk

Dependencies and
associations between use Customer
cases may be indicated.

A scenariois an instance of a
use case showing a typical
example of its execution.

Auditor _
Loan Officer

Universitédt Bern Modelling Behaviour

ESE

Segquence Diagrams

A sequence diagram depicts a
scenario by showing the
Interactions among a set of
objects in temporal order.

Obijects (not classes!) are shown
as vertical bars.

Events or message dispatches
are shown as horizontal (or
slanted) arrows from the send to
the receiver.

Recall that a scenario describes a
typical example of a use case, so
conditionality is not expressed!

Universitat Bern

time

Caller

caller lifts receiver

dial tone begins

dial (1)

dial tone ends

82.

Phone Line Callee

dial (2)

dial (2)

ringing tone phone rings
__answer phone

tone stops ringing stops

Modelling Behaviour

ESE 83.

UML Message Flow Notation

» Filled solid arrowhead
procedure call or other nested control flow

Stick arrowhead
flat, sequential control flow (usually asynchronous)

Half-stick arrowhead

asynchronous control flow between objects within a
procedural sequence

Universitédt Bern Modelling Behaviour

ESE

Collaboration Diagrams

Collaboration diagrams depict scenarios as flows of messages between objects:

redisplay() —»

¢ 1.1*[i=1..n]: drawSegment(i)

[

«self»

¢ 1.1.1a: rO := position()

window
: Controller - Window
«parameter» window {temp }

*1; displayPositions(window) fl 1.3.1: add(self)
wire contents { new }
{temp }
=N N 1.1.2: create(r0, rl) —p

i- |

1.1.3: display(window) —»
¢ 1.1.1b: r1 := position()

left : Bead

right : Bead . * - $

Universitat Bern

84.

Modelling Behaviour

ESE 85.

Message Labels

Messages from one object to another are labelled with text strings showing the direction
of message flow and information indicating the message sequence.

Message labels:

1. Prior messages from other threads (e.g. “[Al1.3, B6.7.1]")
[1 only need with concurrent flow of control

2. Dot-separated list of sequencing elements:
[0 sequencing integer (e.g., “3.1.2" is invoked by “3.1” and follows “3.1.1")
[0 letter indicating concurrent threads (e.g., “1.2a” and “1.2b")
[iteration indicator (e.g., “1.1*[i=1..n]")
[1 conditional indicator (e.g., “2.3 [#items = 0]")

3. Return value binding (e.qg., “status :=")

4. Message name

5. Argument list

Universitédt Bern Modelling Behaviour

ESE 86.

State Diagrams

e N
Active (Timeout W dial digit(n)

do / pl .

15 sec. k o / play message 15 sec. lincomplete]
lift recc_eiver

/ get dial tone . il digitn)

(DialTone .
&d : Dialing
o / play dial tone/
dial digit(n) [invalid]
dial digit(n) [valid]
(. /connect

Invalid
&do / play message
Connecting
Pinned
[Busy Ty d
caller callee callee busy connecte
lhgins%?)rl:rﬁ)ect answers \/ | hangs up kdo /' play busy tone e
Ringing W
(Talkina, do / play ringing tone)
callee answers / enable speech

\ /

Universitét Bern Modelling Behaviour

ESE 87.

State Diagram Notation

A State Diagram describes the temporal evolution of an object of a given class in
response to interactions with other objects inside or outside the system.

An eventis a one-way (asynchronous) communication from one object to another:
[0 atomic (non-interruptible)

[0 includes events from hardware and real-world objects
e.g., message receipt, input event, elapsed time, ...

[0 notation: eventName(parameter: type, ...)
[may cause object to make a transition between states
A state is a period of time during which an object is waiting for an event to occur:
[1 depicted as rounded box with (up to) three sections:
[name — optional
[1 state variables — name: type = value (valid only for that state)

[1 triggered operations — internal transitions and ongoing operations
[0 may be nested

Universitédt Bern Modelling Behaviour

ESE 88.

State Box with Regions

4 \/ name
Typing Password

- |

entry / set echo invisible - internal operations

exit / set echo normal -]
character / handle character

help / display help

o %

The entry event occurs whenever a transition is made into this state, and the
exit operation is triggered when a transition is made out of this state.

The help and character events cause internal transitions with no change of
state, so the entry and exit operations are not performed.

Universitédt Bern Modelling Behaviour

ESE 89.

Transitions and Operations

Transitions:

[0 A response to an external event received by an object in a given state
May invoke an operation, and cause object to change state
May send an event to an external object

Transition syntax (each part is optional):
event (arguments)
[condition]
Marget.sendEvent (arguments)
/ operation (arguments)

[0 External transitions label arcs between states;
internal transitions are part of the triggered operations of a state

Operations:

[0 Operations invoked by transitions are atomic actions

[1 Entry and exit operations can be associated with states
Activities:

[1 Ongoing operations while object is in a given state

[0 Modelled as internal transitions labelled with the pseudo-event do

[I

Universitédt Bern Modelling Behaviour

ESE 90.

‘ Composite States

Composite states may depicted either as high-level or low-level views.

To indicate the presence of internal states, “stubbed transitions” may be used in the high-
level view:

dle ft receiver { Dialing j dialedNumber(num)\[Connecting)

Starting and termination substates are shown as black spots and “bulls-eyes™:

4 Dialing diait h
$ number : String = *” '9tn)
digit(n) m [number.isValid()]
[Start Partial Dial ~ dialedNumber(num)— \@
- kdo / play dial tone/ Kentry / number.append(n)/ ,

Universitédt Bern Modelling Behaviour

ESE

91.

‘ Sending Events between Objects

toggle Power
VCR
off | . On |
toggle Power
/ktoggle Power
[
Remote Control Power button
VCR button
™ e
TV mode | | VCR mode
% \
TV button
Power butto
|
|

toggle Powerv

Television

toggle Power

off |

toggle Power

| On

Universitat Bern

Modelling Behaviour

ESE 92.
‘ Concurrent Substates
Taking Class A
4 Incomplete)
lab done lab done
Lab1 Lab2 @

O%| Term Project] project done>@
%..Passed
.%[Final Test] pass /@
\ J
fail [j
. Failed
\ J

Universitat Bern

Modelling Behaviour

ESE 93.

Branching and Merging

Entering concurrent states:

Entering a state with concurrent substates means that each of the substates is entered
concurrently (one logical thread per substate).

Leaving concurrent states:
A labelled transition out of any of the substates terminates all of the substates.
An unlabelled transition out of the overall state waits for all substates to terminate.

An alternative notation for explicit branching and merging uses a “synchronization bar”:

4 N

(n

e

Universitédt Bern Modelling Behaviour

ESE

History Indicator

94.

A “history indicator” can be used to indicate that the current composite state should be
remembered upon an external transition. To return to the saved state, a transition should

point explicitly to the history icon:

A2

e

interrup\t

(H)=

Universitat Bern

C

resume

Modelling Behaviour

ESE

Creating and Destroying Objects

95.

Creation and destruction of objects can be depicted by using the start and terminal
symbols as top-level states:

File

create

/Created File

o
kerteabIe

)

modify

lock
unlock ReadOnly)

~

(destroy

Universitat Bern

Modelling Behaviour

ESE 96.

Using the Notations

The diagrams introduced here complement class and object diagrams.

During Analysis:

[0 Use case, sequence and collaboration diagrams document use cases and their
scenarios during requirements specification

During Design:
[Sequence and collaboration diagrams can be used to document
implementation scenarios or refine use case scenarios

[0 State diagrams document internal behaviour of classes and must be validated
against the specified use cases

Universitédt Bern Modelling Behaviour

ESE 97.

summary

You should know the answers to these questions:
[0 What is the purpose of a use case diagram?
Why do scenarios depict objects but not classes?
How can timing constraints be expressed in scenarios?
How do you specify and interpret message labels in a scenario?
How do you use nested state diagrams to model object behaviour?
What is the difference between “external” and “internal” transitions?
How can you model interaction between state diagrams for several classes?

N O O O

Can you answer the following questions?

[0 Can a sequence diagram always be translated to an collaboration diagram?
Or vice versa?

Why are arrows depicted with the message labels rather than with links?
When should you use concurrent substates?

[

Universitédt Bern Modelling Behaviour

ESE 98.

6. Software Architecture

Overview:
[0 What is Software Architecture?
[Coupling and Cohesion
[0 Architectural styles:
[1 Layered, Client-Server, Blackboard, Dataflow, ...

Sources:
[1 Software Engineering, |. Sommerville, Addison-Wesley, Fifth Edn., 1996.

[0 Objects, Components and Frameworks with UML, D. D'Souza, A. Wills,
Addison-Wesley, 1999

[0 Pattern-Oriented Software Architecture — A System of Patterns, F.
Buschmann, et al., John Wiley, 1996

0 Software Architecture: Perspectives on an Emerging Discipline, M. Shaw, D.
Garlan, Prentice-Hall, 1996

Universitat Bern Software Architecture

ESE 99.

What is Software Architecture?

A neat-looking drawing of some boxes, circles, and lines, laid out nicely in
Powerpoint or Word, does not constitute an architecture.

The architecture of a system consists of:
[the structure(s) of its parts
[J including design-time, test-time, and run-time hardware and software parts
[the externally visible properties of those parts
[0 modules with interfaces, hardware units, objects
[the relationships and constraints between them

in other words:

[0 The set of design decisions about any system (or subsystem) that keeps its
implementors and maintainers from exercising “needless creativity.”

Universitat Bern Software Architecture

ESE 100.

How Architecture Drives Implementation

[0 Use a 3-tier client-server architecture: all business logic must be in the middle
tier, presentation and dialogue on the client, and data services on the server,

that way you can scale the application server processing independently of
persistent store.

[0 Use Corba for all distribution, using Corba event channels for notification and

the Corba relationship service; do not use the Corba messaging service as itis
not yet mature.

[1 Use Collection Galore’s collections for representing any collections; by default
use their List class, or document your reason otherwise.

[0 Use Model-View-Controller with an explicit ApplicationModel object to connect
any Ul to the business logic and objects.

Universitat Bern Software Architecture

ESE 101.

Sub-systems, Modules and Components

[0 Asub-system is a system in its own right whose operation is independent of the
services provided by other sub-systems.

[0 A module is a system component that provides services to other components
but would not normally be considered as a separate system.

[A componentis an independently deliverable unit of software that encapsulates
its design and implementation and offers interfaces to the out-side, by which it
may be composed with other components to form a larger whole.

Universitat Bern Software Architecture

ESE 102.

Cohesion

Cohesion is a measure of how well the parts of a component “belong together.”

Cohesion is weak if elements are bundled simply because they perform similar or related
functions (e.g., java.lang.Math).

Cohesion is strong if all parts are needed for the functioning of other parts (e.g.
java.lang.String).

Strong cohesion promotes maintainability and adaptability by limiting the scope of
changes to small numbers of components.

There are many definitions and interpretations of cohesion.
Most attempts to formally define it are inadequate!

Universitat Bern Software Architecture

ESE 103.

Coupling

Coupling is a measure of the strength of the interconnections between system
components.

Coupling is tight between components if they depend heavily on one another, (e.g., there
IS a lot of communication between them).

Coupling is loose if there are few dependencies between components.

Loose coupling promotes maintainability and adaptability since changes in one
component are less likely to affect other ones.

Universitat Bern Software Architecture

ESE 104.

Tight Coupling

Module A Module B

Module C Module D

Shared data
area

©@lan Sommerville 1995

Universitéat Bern Software Architecture

ESE

Loose Coupling

Module B

B’s data

Module D

D’s data

©@lan Sommerville 1995

Universitat Bern

Module A

A's data

105.

Module C

C’s data

Software Architecture

ESE 106.

Architectural Parallels

[1 Architects are the technical interface between the customer and the contractor
building the system

[0 A bad architectural design for a building cannot be rescued by good
construction — the same is true for software

[0 There are specialized types of building and software architects

[0 There are schools or styles of building and software architecture

An architectural style defines a family of systems in terms of a pattern of
structural organization. More specifically, an architectural style defines a
vocabulary of components and connector types, and a set of constraints on
how they can be combined.

— Shaw and Garlan

Universitat Bern Software Architecture

ESE 10v.

Layered Architectures

A layered architecture organises a system into a set of layers each of which provide a set
of services to the layer “above.”

[0 Normally layers are constrained so elements only see
— other elements in the same layer, or
— elements of the layer below

[0 Callbacks may be used to communicate to higher layers

[0 Supports the incremental development of sub-systems in different layers.
[When a layer interface changes, only the adjacent layer is affected

Universitat Bern Software Architecture

ESE

Abstract Machine Model

108.

Version management

Object management

Database system

Operating
system

©lan Sommerville 1995

Universitat Bern

Software Architecture

ESE

OSI| Reference Model

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Communications medium

©lan Sommerville 1995

Universitat Bern

109.

Software Architecture

ESE 110.

Client-Server Architectures

A client-server architecture distributes application logic and services respectively to a
number of client and server sub-systems, each potentially running on a different machine
and communicating through the network (e.g, by RPC).

Advantages
(1 Distribution of data is straightforward
[0 Makes effective use of networked systems. May require cheaper hardware
[0 Easy to add new servers or upgrade existing servers

Disadvantages
[1 No shared data model so sub-systems use different data organisation.
Data interchange may be inefficient
[0 Redundant management in each server

[0 May require a central register of names and services — it may be hard to find
out what servers and services are available

Universitat Bern Software Architecture

ESE 111.

Client-Server Architectures

Client | Client 2 Client 3 Client4

Wide-bandwidth network

Catalogue
server

Video
server

Film clip
files

Picture
server

Digitized
photographs

Hypertext
server

Hypertext
web

Catalogue

©lan Sommerville 1995

Universitéat Bern Software Architecture

ESE 112.

Four-Tier Architectures

clients r— — — — — — ~
F—_ - — — — - business objects
Browser | web server | : and components server :
EJB Container
<<https>> | | \web Server | | |
O I | ,

4©_|_ <<RMI|>> | Enterprise |

| O_Ii JavaBean |

Lo _ C:) <<SNA>>
Non-browser P — — — — - — — —
GUI | ainframe |

Legacy Adaptor

| Legacy System |
I I
L o e e o |

Universitat Bern Software Architecture

ESE 113.

Blackboard Architectures

A blackboard architecture distributes application logic to a number of independent sub-
systems, but manages all data in a single, shared repository (or “blackboard”).

Advantages
[1 Efficient way to share large amounts of data
[Sub-systems need not be concerned with how data is produced, backed up etc.
[0 Sharing model is published as the repository schema

Disadvantages
[0 Sub-systems must agree on a repository data model
[0 Data evolution is difficult and expensive
[1 No scope for specific management policies
[Difficult to distribute efficiently

Universitat Bern Software Architecture

ESE 114.

Repository Model

Code
generator

Design
editor

Project
repository

Program
editor

Design
translator

Design
analyser

Report
generator
©lan Sommerville 1995

Universitéat Bern Software Architecture

ESE 115.

Event-driven Systems

In an event-driven architecture components perform services in reaction to external
events generated by other components.

[0 In broadcast models an event is broadcast to all sub-systems. Any sub-system
which can handle the event may do so.

O In interrupt-driven models real-time interrupts are detected by an interrupt
handler and passed to some other component for processing.

Broadcast model
[1 Effective in integrating sub-systems on different computers in a network
[0 Can be implemented using a publisher-subscriber pattern:
[0 Sub-systems register an interest in specific events
[0 When these occur, control is transferred to the subscribed sub-systems

[1 Control policy is not embedded in the event and message handler. Sub-systems
decide on events of interest to them

[0 However, sub-systems don’t know if or when an event will be handled

Universitat Bern Software Architecture

ESE 116.

Selective Broadcasting

Sub-system Sub-system Sub-system Sub-system
1 2 3 4

Event and message handler

©lan Sommerville 1995

Universitéat Bern Software Architecture

ESE 117.

Dataflow Models

In a dataflow architecture each component performs functional transformations on its
inputs to produce outputs.

[1 Dataflows should be free of cycles

[1 The single-input, single-output variant is known as pipes and filters
[0 e.g., UNIX (Bourne) shell

[1 Not really suitable for interactive systems

Universitat Bern Software Architecture

ESE 118.

Invoice Processing System

=N
receipts

Find
payments
due

Read issued
invoices

Identily
payments

‘ Invoices ' ‘ Payments '

©lan Sommerville 1995

Issue
payment
reminder

‘ Reminders I

Universitéat Bern Software Architecture

ESE 119.

Compilers as Dataflow Architectures

Y

Lexical Syntactic Semantic Code

analysis analysis analysis generation

©lan Sommerville 1995

Universitéat Bern Software Architecture

ESE 120.

Compilers as Blackboard Architectures

Lexical Syntax Semantic
analyser analyser analyser

Abstract Grammar

Pretty-
printer
: Symbol

Code
generator

syntax tree definition

Output
definition

©lan Sommerville 1995

Universitéat Bern Software Architecture

ESE 121.

summary

You should know the answers to these questions:
[0 How does software architecture constrain a system?
How does choosing an architecture simplify design?
What are coupling and cohesion?
What is an architectural style?
Why shouldn’t elements in a software layer “see” the layer above?
What kinds of applications are suited to event-driven architectures?

N O O O B

Can you answer the following questions?

What is meant by a “fat client” or a “thin client” in a 4-tier architecture?

What kind of architectural styles are supported by the Java AWT? by RMI?
How do callbacks reduce coupling between software layers?

How would you implement a dataflow architecture in Java?

Is it easier to understand a dataflow architecture or an event-driven one?

What are the coupling and cohesion characteristics of each architectural style?

N O O O B

Universitat Bern Software Architecture

ESE 122.

/. Responsibility-Driven Design

Overview:
[0 What is Object-Oriented Design?

0 Finding Classes

[0 Identifying Responsibilities

[0 Finding Collaborations
Source:

[1 Designing Object-Oriented Software, R. Wirfs-Brock, B. Wilkerson, L. Wiener,
Prentice Hall, 1990.

Universitat Bern Responsibility-Driven Design

ESE 123.

What is Object-Oriented Design?

“Object-oriented [analysis and] design is the process by which software
requirements are turned into a detailed specification of objects. This
specification includes a complete description of the respective roles and
responsibilities of objects and how they communicate with each other.”

[0 The result of the design process is not a final product:
[1 design decisions may be revisited, even after implementation
[1 design is not linear but iterative

[The design process is not algorithmic:
[1 a design method provides guidelines, not fixed rules

1 “a good sense of style often helps produce clean, elegant designs —
designs that make a lot of sense from the engineering standpoint”

[0 Responsibility-driven design is an (analysis and) design technique that works well in
combination with various methods and notations.

Universitat Bern Responsibility-Driven Design

ESE 124.

Design Steps

The Initial Exploration
1. Find the classes in your system
2. Determine the responsibilities of each class
[0 What are the client-server contracts?
3. Determine how objects collaborate with each other to fulfil their responsibilities
[0 What are the client-server roles?

The Detailed Analysis
1. Factor common responsibilities to build class hierarchies
2. Streamline collaborations between objects
[0 Is message traffic heavy in parts of the system?
[0 Are there classes that collaborate with everybody?
[0 Are there classes that collaborate with nobody?
[1 Are there groups of classes that can be seen as subsystems?
3. Turn class responsibilities into fully specified signatures

Universitat Bern Responsibility-Driven Design

ESE 125.

Finding Classes

Start with requirements specification: what are the goals of the system being designed,
its expected inputs and desired responses.

1. Look for noun phrases:

[1 separate into obvious classes, uncertain candidates, and nonsense
2. Refine to a list of candidate classes. Some guidelines are:

[0 Model physical objects — e.qg. disks, printers
Model conceptual entities — e.g. windows, files
Choose one word for one concept — what does it mean within the system
Be wary of adjectives — does it really signal a separate class?
Be wary of missing or misleading subjects — rephrase in active voice
Model categories of classes — delay modelling of inheritance
Model interfaces to the system — e.g., user interface, program interfaces
Model attribute values, not attributes — e.g., Point vs. Centre

(N O I O I

Universitat Bern Responsibility-Driven Design

ESE

126.

Drawing Editor Reguirements Specification

The drawing editor is an interactive graphics editor. With it, users
can create and edit drawings composed of lines, rectangles,
ellipses and text.

Tools control the mode of operation of the editor. Exactly one tool is
active at any given time.

Two kinds of tools exist: the selection tool and creation tools. When
the selection tool is active, existing drawing elements can be
selected with the cursor. One or more drawing elements can be
selected and manipulated; if several drawing elements are
selected, they can be manipulated as if they were a single element.
Elements that have been selected in this way are referred to as the
current selection. The current selection is indicated visually by
displaying the control points for the element. Clicking on and
dragging a control point modifies the element with which the control
point is associated.

When a creation tool is active, the current selection is empty. The
cursor changes in different ways according to the specific creation
tool, and the user can create an element of the selected kind. After
the element is created, the selection tool is made active and the
newly created element becomes the current selection.

The text creation tool changes the shape of the cursor to that of an
I-beam. The position of the first character of text is determined by

Universitat Bern

where the user clicks the mouse button. The creation tool is no
longer active when the user clicks the mouse button outside the text
element. The control points for a text element are the four corners
of the region within which the text is formatted. Dragging the control
points changes this region. The other creation tools allow the
creation of lines, rectangles and ellipses. They change the shape
of the cursor to that of a crosshair. The appropriate element starts
to be created when the mouse button is pressed, and is completed
when the mouse button is released. These two events create the
start point and the stop point.

The line creation tool creates a line from the start point to the stop
point. These are the control points of a line. Dragging a control point
changes the end point.

The rectangle creation tool creates a rectangle such that these
points are diagonally opposite corners. These points and the other
corners are the control points. Dragging a control point changes the
associated corner.

The ellipse creation tool creates an ellipse fitting within the
rectangle defined by the two points described above. The major
radius is one half the width of the rectangle, and the minor radius is
one half the height of the rectangle. The control points are at the
corners of the bounding rectangle. Dragging control points changes
the associated corner.

Responsibility-Driven Design

ESE

127.

Drawing Editor: noun phrases

The drawing editor is an interactive graphics editor. With it, users
can create and edit drawings composed of lines, rectangles,
ellipses and text.

Tools control the mode of operation of the editor. Exactly one tool is
active at any given time.

Two kinds of tools exist: the selection tool and creation tools. When
the selection tool is active, existing drawing elements can be
selected with the cursor. One or more drawing elements can be
selected and manipulated; if several drawing elements are
selected, they can be manipulated as if they were a single element.
Elements that have been selected in this way are referred to as the
current selection. The current selection is indicated visually by
displaying the control points for the element. Clicking on and
dragging a control point modifies the element with which the control
point is associated.

When a creation tool is active, the current selection is empty. The
cursor changes in different ways according to the specific creation
tool, and the user can create an element of the selected kind. After
the element is created, the selection tool is made active and the
newly created element becomes the current selection.

The text creation tool changes the shape of the cursor to that of an
I-beam. The position of the first character of text is determined by

Universitat Bern

where the user clicks the mouse button. The creation tool is no
longer active when the user clicks the mouse button outside the text
element. The control points for a text element are the four corners
of the region within which the text is formatted. Dragging the control
points changes this region. The other creation tools allow the
creation of lines, rectangles and ellipses. They change the shape
of the cursor to that of a crosshair. The appropriate element starts
to be created when the mouse button is pressed, and is completed
when the mouse button is released. These two events create the

start point and the stop point.
The line creation tool creates a line from the start point to the stop

point. These are the control points of a line. Dragging a control point
changes the end point.

The rectangle creation tool creates a rectangle such that these
points are diagonally opposite corners. These points and the other
corners are the control points. Dragging a control point changes the
associated corner.

The ellipse creation tool creates an ellipse fitting within the
rectangle defined by the two points described above. The major
radius is one half the width of the rectangle, and the minor radius is
one half the height of the rectangle. The control points are at the
corners of the bounding rectangle. Dragging control points changes
the associated corner.

Responsibility-Driven Design

ESE

128.

Class Selection Rationale (1)

Model physical objects:
[0 meuse-button [event or attribute]
Model conceptual entities:

[]
[]
[]

[]
[]

ellipse, line, rectangle
Drawing, Drawing Element

Tool, Creation Tool, Ellipse Creation Tool, Line Creation Tool,
Rectangle Creation Tool, Selection Tool, Text Creation Tool

text, Character
Current Selection

Choose one word for one concept:

[]

[]
[]
[]

Universitat Bern

Drawing Editor [1 editor, interactive-graphics-editor
Drawing Element [1 element

Text Element [text
Ellipse Element, Line Element, Rectangle Element

[ellipse, line, rectangle

Responsibility-Driven Design

ESE 129.

Class Selection Rationale (ll)

Be wary of adjectives:

[0 Ellipse Creation Tool, Line Creation Tool, Rectangle Creation Tool,
Selection Tool, Text Creation Tool — all have different requirements

[0 beundingrectangle, rectangle, region [1 Rectangle

— common meaning, but different from Rectangle Element

0 Point LI end-point, startpoint, stoppoint

[1 Control Point — more than just a coordinate

[1 corner I associated-corner, diagonally-opposite-corner

— no new behaviour

Be wary of sentences with missing or misleading subjects:

0 “The current selection is indicated visually by displaying the control points
for the element.” — by what? Assume Drawing Editor ...

Model categories:
[0 Tool, Creation Tool

Universitat Bern Responsibility-Driven Design

ESE 130.

Class Selection Rationale (lll)

Model interfaces to the system:

[0 user— don't need to model user explicitly

[0 ewrser — cursor motion handled by operating system
Model values of attributes, not attributes themselves:

[heightoftherectangle, width-of-the rectangle

majorradius, minorradius

pesitienr — of first text character; probably Point attribute
mode-of-operation — attribute of Drawing Editor
shape-ofthe-cursor, -beam, eresshair — attributes of Cursor
corner — attribute of Rectangle

time — an implicit attribute of the system

N O IO

Universitat Bern Responsibility-Driven Design

ESE 131.

Candidate Classes

Preliminary analysis yields the following candidates:

Character Line Element

Control Point Point

Creation Tool Rectangle

Current Selection Rectangle Creation Tool
Drawing Rectangle Element
Drawing Editor Selection Tool

Drawing Element Text Creation Tool
Ellipse Creation Tool Text Element

Ellipse Element Tool

Line Creation Tool

Expect the list to evolve as design progresses.

Universitat Bern Responsibility-Driven Design

ESE 132.

Class Cards

Use class cards to record candidate classes:

Class: Drawing
superclasses
subclasses
responsibilities ... collaborations

Write a short description of the purpose of the class on the back of the card
[compact, easy to manipulate, easy to modify or discard!
[1 easy to arrange, reorganize
[1 easy to retrieve discarded classes

Universitat Bern Responsibility-Driven Design

ESE 133.

Finding Abstract Classes

Abstract classes factor out common behaviour shared by other classes
They are abstract because they need not be completely implemented.
[0 group related classes with common attributes
[0 introduce abstract superclasses that represent the group
[0 “categories” are good candidates for abstract classes

[0 Warning: beware of premature classification; your hierarchy will evolve

Universitat Bern

Tool
Selection Creation
Tool Tool
Ellipse Line Rectangle Text
Tool Tool Tool Tool

Responsibility-Driven Design

ESE 134.

ldentifying and Naming Groups

If you have trouble naming a group:
[0 enumerate common attributes to derive the name
[divide into more clearly defined subcategories

Attributes of abstract classes should serve to distinguish subgroups
Physical vs. conceptual

Active vs. passive

Temporary vs. permanent

Generic vs. specific

Shared vs. unshared

N I O O B

Classes may be missing because the specification is incomplete or imprecise
[0 editing O undoing O need for a Cut Buffer

Universitat Bern Responsibility-Driven Design

ESE 135.

Recording Superclasses

Record superclasses and subclasses on all class cards:

Class: Creation Tool
Tool
Ellipse Tool, Line Tool, Rectangle Tool, Text Tool

Universitat Bern Responsibility-Driven Design

ESE 136.

Responsibilities

What are responsibilities?
1 the knowledge an object maintains and provides
I the actions it can perform

Responsibilities represent the public services an object may provide to clients,
not the way in which those services may be implemented

[1 specify what an object does, not how it does it
[0 don’t describe the interface yet, only conceptual responsibilities

Universitat Bern Responsibility-Driven Design

ESE 137.

ldentifying Responsibilities

1 Study the requirements specification:
1 highlight verbs and determine which represent responsibilities
[0 perform a walk-though of the system
[1 exploring as many scenarios as possible
I identify actions resulting from input to the system

[1 Study the candidate classes:
[0 class names [roles [0 responsibilities
[1 recorded purposes on class cards [1 responsibilities

Universitat Bern Responsibility-Driven Design

ESE

138.

Assigning Responsibilities

[

Evenly distribute system intelligence

[0 avoid procedural centralization of responsibilities

[0 keep responsibilities close to objects rather than their clients
State responsibilities as generally as possible

0 “draw yourself’ vs. “draw a line/rectangle etc.”

Keep behaviour together with any related information

[0 principle of encapsulation

Keep information about one thing in one place

0 if multiple objects need access to the same information
(i) a new object may be introduced to manage the information, or
(i) one object may be an obvious candidate, or
(i) the multiple objects may need to be collapsed into a single one

Share responsibilities among related objects
[0 break down complex responsibilities

Universitat Bern Responsibility-Driven Design

ESE 139.

Relationships Between Classes

Additional responsibilities can be uncovered by examining relationships between
classes, especially:

[0 The “Is-Kind-Of” Relationship:

[1 classes sharing a common attribute often share a common superclass

[1 common superclasses suggest common responsibilities
e.g., to create a new Drawing Element, a Creation Tool must:

1. accept user input implemented in subclass
2. determine location to place it generic
3. instantiate the element iImplemented in subclass

[0 The “Is-Analogous-To” Relationship:

[0 similarities between classes suggest as-yet-undiscovered superclasses
0 The “Is-Part-Of" Relationship:

[0 distinguish (don’t share) responsibilities of part and of whole

Difficulties in assigning responsibilities suggest:
[0 missing classes in design, or
[1 free choice between multiple classes

Universitat Bern Responsibility-Driven Design

ESE 140.

Recording Responsibilities

List responsibilities as succinctly as possible:

Class: Drawing

Know which elements it contains

Too many responsibilities to fit onto one card suggests over-centralization:

[0 Check if responsibilities really belong in a superclass,
or if they can be distributed to cooperating classes.

Having more classes leads to a more flexible and maintainable design. If necessary,
classes can later be consolidated.

Universitat Bern Responsibility-Driven Design

ESE 141.

Collaborations

What are collaborations?

collaborations are client requests to servers needed to fulfil responsibilities
collaborations reveal control and information flow and, ultimately, subsystems
collaborations can uncover missing responsibilities

analysis of communication patterns can reveal misassigned responsibilities

0O O O

Universitat Bern Responsibility-Driven Design

ESE 142.

Finding Collaborations

For each responsibility:
1. Can the class fulfil the responsibility by itself?
2. If not, what does it need, and from what other class can it obtain what it needs?

For each class:
1. What does this class know?
2. What other classes need its information or results? Check for collaborations.
3. Classes that do not interact with others should be discarded. (Check carefully!)

Check for these relationships:
[0 The “Is-Part-Of” Relationship
[0 The “Has-Knowledge-Of” Relationship
[0 The “Depends-Upon” Relationship

Universitat Bern Responsibility-Driven Design

ESE 143.

Recording Collaborations

Collaborations exist only to fulfil responsibilities.
Enter the class name of the server role next to client’s responsibility:

Class: Drawing

Know which elements it contains
Maintain ordering between elements Drawing Element

Note each collaboration required for a responsibility.
Include also collaborations between peers.
Validate your preliminary design with another walk-through.

Universitat Bern Responsibility-Driven Design

ESE 144.

summary

You should know the answers to these questions:

[0 What criteria can you use to identify potential classes?
How can class cards help during analysis and design?
How can you identify abstract classes?
What are class responsibilities, and how can you identify them?
How can identification of responsibilities help in identifying classes?
What are collaborations, and how do they relate to responsibilities?

N O O O B

Can you answer the following questions?

[0 When should an attribute be promoted to a class?

0 Why is it useful to organize classes into a hierarchy?

[0 How can you tell if you have captured all the responsibilities and collaborations?

Universitat Bern Responsibility-Driven Design

ESE 145.

8. Detailed Design

Overview:
[1 Structuring Inheritance Hierarchies
[ldentifying Subsystems
1 Specifying Class Protocols (Interfaces)

Source:

1 Designing Object-Oriented Software, R. Wirfs-Brock, B. Wilkerson, L. Wiener,
Prentice Hall, 1990

Universitat Bern Detailed Design

ESE 146.

Sharing Responsibilities

Tool
{ abstract }
Selection Creation Tool
Tool { abstract }

Concrete classes may be both instantiated and inherited from.
Abstract classes may only be inherited from. Note on class cards and on class diagram.

Venn Diagrams can be used to visualize shared responsibilities:

Selection Tool Creation Tool

(Warning: not part of UML!)

Universitat Bern Detailed Design

ESE

147.

Multiple Inheritance

Ordered Collection Indexable Collection D|eC|de \I/Y Eether a
{ abstract } { abstract } Class will be
Instantiated to
b\ /4 determine if it is
Maanitude abstract or concrete.
Array J { abstract }
Matrix String Date

Responsibilities of

subclasses are Ordered
largerthan those of Collection
superclasses.

Array Magnitude
represent common @&%&%ﬁ
superclasses.

Universitat Bern Detailed Design

Intersections

ESE 148.

Building Good Hierarchies

Model a “kind-of” hierarchy:
[0 Subclasses should support all inherited responsibilities, and possibly more

Factor common responsibilities as high as possible:

[0 Classes that share common responsibilities should inherit from a common
abstract superclass; introduce any that are missing

Make sure that abstract classes do not inherit from concrete classes:

[0 Eliminate by introducing common abstract superclass: abstract classes
should support responsibilities in an implementation-independent way

Eliminate classes that do not add functionality:

[1 Classes should either add new responsibilities, or a particular way of
implementing inherited ones

Universitat Bern Detailed Design

ESE

Building Kind-Of Hierarchies

Correctly Formed Subclass
Responsibilities

A B

149.

R/

CAD C (B

E O

Revised Inheritance
Relationships

Introduce abstract
superclasses to encapsulate
common responsibilities

Universitat Bern

D
{ abstract }

AR

Incorrect
Subclass/Superclass
Relationships

Subclasses should assume all
superclass responsibilities

O

Detailed Design

ESE

Refactoring Responsibilities

Drawing Element

{ abstract }
Text Line Ellipse Rectangle Group
Element Element Element Element Element

Lines, Ellipses and Rectangles
are responsible for keeping

Drawing Element
{ abstract }

track of the width and colour of

)

the lines they are drawn with.
This Suggests a common Text Linear Element Group
superclass. Element Z{;zbstract} Element
Line Ellipse Rectangle
Element Element Element
Detailed Design

Universitat Bern

150.

ESE 151.

ldentifying Contracts

A contract defines a set of requests that a client can make of a server related to a
cohesive set of closely-related responsibilities.

Contracts introduce another level of abstraction, and help to simplify your design.

[0 Group responsibilities used by the same clients:
[0 conversely, separate clients suggest separate contracts

[0 Maximize the cohesiveness of classes:
[0 unrelated contracts belong in subclasses

0 Minimize the number of contracts:
[0 unify responsibilities and move as high in the hierarchy as appropriate

Universitat Bern Detailed Design

ESE 152.

Applying the Guidelines

1. Start by defining contracts at the top of your hierarchies

2. Introduce new contracts only for subclasses that add significant new functionality

[0 do new responsibilities represent new functionality, or do they just
specialize inherited functionality?

3. For each class card, assign responsibilities to an appropriate contract
[0 briefly describe each contract and assign a unique number
[0 number responsibilities according to the associated contract

4. For each collaboration on each class card, determine which contract represents it

[0 model collaborations as associations in class diagrams
(AKA “collaboration graphs”)

Universitat Bern Detailed Design

ESE 153.

What are Subsystems?

Subsystems are groups of classes that collaborate to support a set of contracts.

[0 Subsystems simplify design by raising abstraction levels:

[0 subsystems group logically related responsibilities, and encapsulate
related collaborations

[0 Don’t confuse with superclasses:

[0 subsystems group related responsibilities rather than factoring out
common responsibilities

Find subsystems by looking for strongly-coupled classes:
[0 list the collaborations and identify strong inter-dependencies
[identify and highly frequently-travelled communication paths

Subsystems, like classes, also support contracts. Identify the services provided to clients
outside the subsystem to determine the subsystem contracts.

Universitat Bern Detailed Design

ESE

Subsystem Cards

154.

For each subsystem, record its name, its contracts, and, for each contract, the in-
ternal class or subsystem that supports it:

Universitat Bern

Subsystem: Drawing Subsystem

Access a drawing

Drawing

Modify part of a drawing

Drawing Element

Display a drawing

Drawing

Detailed Design

ESE

Class Cards

155.

For each collaboration from an outside client, change the client’s class card to record a
collaboration with the subsystem:

Class: File (Abstract)

Document File, Graphics File, Text File

Knows its contents

Print its contents Printing Subsystem

Record on the subsystem card the delegation to the agent class.

Universitat Bern

Detailed Design

ESE 156.

Simplifying Interactions

Complex collaborations lead to unmaintainable systems.
Exploit subsystems to simplify overall structure.
[0 Minimize the number of collaborations a class has with other classes:
[0 centralizing communications into a subsystem eases evolution

0 Minimize the number of classes to which a subsystem delegates:
[0 centralized subsystem interfaces reduce complexity

[0 Minimize the number of different contracts supported by a class:
[0 group contracts that require access to common information

Checking Your Design:
[0 model collaborations as associations in class diagrams
[J update class/subsystem cards and class hierarchies
[0 walk through scenarios:
[0 Has coupling been reduced? Are collaborations simpler?

Universitat Bern Detailed Design

ESE 157.

Protocols

A protocol is a set of signatures (i.e., method names, parameter types and return types)
to which a class will respond.

[0 Generally, protocols are specified for public responsibilities

[0 Protocols for private responsibilities should be specified if they will be used
or implemented by subclasses

1. Construct protocols for each class
2. Write a design specification for each class and subsystem
3. Write a design specification for each contract

Universitat Bern Detailed Design

ESE 158.

Refining Responsibilities

Select method names carefully:
[0 Use a single name for each conceptual operation in the system
[0 Associate a single conceptual operation with each method name
[0 Common responsibilities should be explicit in the inheritance hierarchy

Make protocols as generally useful as possible:
[0 The more general it is, the more messages that should be specified

Define reasonable defaults:
1. Define the most general message with all possible parameters
2. Provide reasonable default values where appropriate
3. Define specialized messages that rely on the defaults

Universitat Bern Detailed Design

ESE

1509.

Specifying Your Design: Classes

Specifying Classes

1.

o U A WN

~

Class name; abstract or concrete

Immediate superclasses and subclasses

Location in inheritance hierarchies and class diagrams

Purpose and intended use

Contracts supported (as server); inherited contracts and ancestor

For each contract, list responsibilities, method signatures, brief description and
any collaborations

List private responsibilities; if specified further, also give method signatures etc.

Note: implementation considerations, possible algorithms, real-time or memory
constraints, error conditions etc.

Universitat Bern Detailed Design

ESE 160.

Specifying Subsystems and Contracts

Specifying Subsystems
1. Subsystem name; list all encapsulated classes and subsystems
Purpose of the subsystem

2.
3. Contracts supported
4. For each contract, list the responsible class or subsystem

Formalizing Contracts
1. Contract name and number
2. Server(s)
3. Clients
4. A description of the contract

Universitat Bern Detailed Design

ESE 161.

summary

You should know the answers to these questions:

[0 How can you identify abstract classes?
What criteria can you use to design a good class hierarchy?
How can refactoring responsibilities help to improve a class hierarchy?
What is the difference between contracts and responsibilities?
What are subsystems (“categories”) and how can you find them?
What is the difference between protocols and contracts?

N O O O B

Can you answer the following questions?

0 What use is multiple inheritance during design if your programming language does
not support it?

[0 Why should you try to minimize coupling and maximize cohesion?

0 How would you use Responsibility Driven design together with the Unified Modeling
Language?

Universitat Bern Detailed Design

ESE 162.

9. User Interface Design

Overview:
[0 Interface design models

[1 Design principles
[0 Information presentation
[0 User Guidance
[0 Evaluation
Sources:

[1 Software Engineering, |. Sommerville, Addison-Wesley, Fifth Edn., 1996.

0 Software Engineering — A Practitioner’s Approach, R. Pressman, Mc-Graw Hill,
Third Edn., 1994.

Universitat Bern User Interface Design

ESE 163.

Interface Design Models

Four different models occur in HCI design:

1. The design model expresses the software design.

2. The user model describes the profile of the end users.
(i.e., novices vs. experts, cultural background, etc.)

3. The user’s model is the end users’ perception of the system.

4. The system image is the external manifestation of the system
(look and feel + documentation etc.)

Universitat Bern User Interface Design

ESE 164.

GUI Characteristics

Characteristic Description

Windows Multiple windows allowdifferent informatiorto be displayed
simultaneouslyn the user’s screen.

lcons Usually icons represeiiles (including folders and applications),
but they may also stand fprocessesge.g., printer drivers).

Menus Menus bundle and organz@mmandsgeliminating the need for a
command language).

Pointing A pointing device such as a mouse is useddiactingchoices
from a menu or indicating items of interest in a window.

Graphics Graphical elements canrmbeed with texbn the same display.

Universitat Bern User Interface Design

ESE 165.

GUl advantages

[0 They are easy to learn and use.
[0 Users without experience can learn to use the system quickly.

[0 The user may switch attention between tasks and applications.
[1 Information remains visible in its own window when attention is switched.

[0 Fast, full-screen interaction is possible with immediate access to the entire
screen

But
0 A GUI is not automatically a good interface
[0 Many software systems are never used due to poor Ul design
[0 A poorly designed Ul can cause a user to make catastrophic errors

Universitat Bern User Interface Design

ESE 166.

User Interface Design Principles

Principle Description

User familiarity | Use terms and concefamiliar to the user.

Consistency Comparableoperations should kectivated in the same way.
Commands and menus should have the same format, etc.

Minimal If a command operates in a known way, the (sesuld be able to predict
surprise the operation of comparable commands.
Feedback Provide the user with visual and auditory feedback, maintéawmgay

communication.

Memory load | Reduce the amount of informatitrat must be remembered between
actions. Minimize the memory load.

Efficiency Seelefficiency in dialogue, motion and thougktinimize keystrokes
and mouse movements.

Recoverability | Allow users teecover from their errorsinclude undo facilities,
confirmation of destructive actions, 'soft' deletes, etc.

User guidance | Incorporate some forntohtext-sensitive user guidanaed assistance.

\V

Universitat Bern User Interface Design

ESE 167.

Direct Manipulation

A direct manipulation interface presents the user with a model of the information space
which is modified by direct action.

Examples
[1 forms (direct entry)
0 WYSIWYG document editors

Advantages
[0 Users feel in control and are less likely to be intimidated by the system
[0 User learning time is relatively short
[0 Users get immediate feedback on their actions
[0 mistakes can be quickly detected and corrected
Problems
[0 Finding the right user metaphor may be difficult
[It can be hard to navigate efficiently in a large information space.
I It can be complex to program and demanding to execute

Universitat Bern User Interface Design

ESE 168.

Interface Models

Desktop metaphor.
[0 The model of an interface is a “desktop” with icons representing files, cabinets,
etc.
Control panel metaphor.
[0 The model of an interface is a hardware control panel with interface entities
including:

I buttons, switches, menus, lights, displays, sliders etc.

Elapsed Timne |

| norree f snurrie | eros il — |

b

Universitét Bern User Interface Design

ESE 1609.

Menu Systems

Menu systems allow users to make a selection from a list of possibilities presented to
them by the system by pointing and clicking with a mouse, using cursor keys or by typing
(part of) the name of the selection.

Advantages
[0 Users don’t need to remember command names
[0 Typing effort is minimal
[0 User errors are trapped by the interface
[0 Context-dependent help can be provided (based on the current menu selection)

Problems
[0 Actions involving logical conjunction (and) or disjunction (or) are awkward to
represent

[0 If there are many choices, some menu structuring facility must be used
[0 Experienced users find menus slower than command language

Universitat Bern User Interface Design

ESE 170.

Menu Structuring

[0 Scrolling menus
[0 The menu can be scrolled to reveal additional choices
[0 Not practical if there is a very large number of choices

[0 Hierarchical menus
[0 Selecting a menu item causes the menu to be replaced by a sub-menu

[0 Walking menus
[A menu selection causes another menu to be revealed

[0 Associated control panels
[0 When a menu item is selected, a control panel pops-up with further options

Universitat Bern User Interface Design

ESE 171.

Command Interfaces

With a command language, the user types commands to give instructions to the system

[0 May be implemented using cheap terminals
[0 Easy to process using compiler techniques
[0 Commands of arbitrary complexity can be created by command combination
[0 Concise interfaces requiring minimal typing can be created
Advantages

0 Allow experienced users to interact quickly with the system
[0 Commands can be scripted

Problems
[0 Users have to learn and remember a command language
[0 Not suitable for occasional or inexperienced users
[0 An error detection and recovery system is required
0 Typing ability is required

Universitat Bern User Interface Design

ESE

172.

Information Presentation

Information display factors

[
[

[

1 O

Is the user interested in precise information or data relationships?
How quickly do information values change?

Must the change be indicated immediately?

Must the user take some action in response to a change?

Is there a direct manipulation interface?

Is the information textual or numeric? Are relative values important?
EILLIRS

Jan Feb Mar April May June
2842 2851 3164 2789 1273 2835

il Sommeorville 15

Jan Feb Mar Aprl May June

Universitét Bern User Interface Design

ESE 173.

Analogue vs. Digital Presentation

Digital presentation
[0 Compact - takes up little screen space
[1 Precise values can be communicated

Analogue presentation
[Easier to get an 'at a glance' impression of a value
[0 Possible to show relative values
[Easier to see exceptional data values

Pressure Temperature
] 100 200 300 400 O 25 50 715 100

Clam Sommerville 1995

Universitét Bern User Interface Design

ESE

174.

Colour Displays

Colour can help the user understand complex information structures.

Colour use guidelines

[

1 O

Don’t use (only) colour to communicate meaning!

1 Open to misinterpretation (colour-blindness, cultural differences ...)
[0 Design for monochrome then add colour

Use colour coding to support user tasks

[highlight exceptional events

[0 allow users to control colour coding

Use colour change to show status change

Don't use too many colours

[0 Avoid colour pairings which clash

Use colour coding consistently

Universitat Bern User Interface Design

ESE 175.

User Guidance

The user guidance system is integrated with the user interface to help users when they
need information about the system or when they make some kind of error.

User guidance covers:
[0 System messages, including error messages
[0 Documentation provided for users
0 On-line help

Universitat Bern User Interface Design

ESE

176.

Design Factors in Message Wording

should

The user guidance system should be aware of what the user is doing and
Context .
adjust the output message to the current context.
. The user guidance system should provide both loegplanatory messages
Experience . :
for beginnersand morderse messages for experienced users.
. Messages should lbailored to the user’s skillas well as their experience.
Skill level : . . .
|.e., depending on thterminologywhich is familiar to the reader.
Messages should Ip@sitive rather than negative.
Style .)
They should never be insulting or try to be funny.
Wherever possible, the designer of messages shotdanier with the
Culture | cultureof the country (or environment) where the system is used.
A suitable message for one culture might be unacceptable in another.

Universitat Bern

User Interface Design

ESE 177.

Error Message Guidelines

Speak the user’s language

Give constructive advice for recovering from the error

Indicate negative consequences of the error (e.g., possibly corrupted files)
Give an audible or visual cue

Don’'t make the user feel guilty!

N O O O B

Universitat Bern User Interface Design

ESE 178.

Good and Bad Error Messages

The application “Convert To GIF” has crashed {(Unknown floating
point instruction).

Morton CrashGuard recommends that you quit the application,
but if you have unsaved data, try to fix the crash.

[TryToFix | [_Restart | | quitApplication]]

34 Sorry, a system error occured.
"Convert to GIF”
error type 10

Universitat Bern User Interface Design

ESE 179.

Help System Design

Help? means “Please help. | want information.”
Help! means “HELP. I'm in trouble.”

Help information
[0 Should not simply be an on-line manual
[0 Screens or windows don't map well onto paper pages
[0 Dynamic characteristics of display can improve information presentation
[0 but people are not so good at reading screens as they are text.

Help system use
0 Multiple entry points should be provided
[0 the user should be able to get help from different places
[0 The help system should indicate where the user is positioned
[0 Navigation and traversal facilities must be provided

Universitat Bern User Interface Design

ESE 180.

User Interface Evaluation

User interface design should be evaluated to assess its suitability and usability.

Usability attributes

Attribute Description
Learnability How long does it take a new user to become productive with the system?
Speed of operation How well does the system response match the user’s work practice?
Robustness How tolerant is the system of user error?
Recoverability How good is the system at recovering from user errors?
Adaptability How closely is the system tied to a single model of work?

Universitat Bern User Interface Design

ESE 181.

summary

You should know the answers to these questions:

1 What models are important to keep in mind in Ul design?
What is the principle of minimal surprise?
What problems arise in designing a good direct manipulation interface?
What are the trade-offs between menu systems and command languages?
How can you use colour to improve a Ul?
In what way can a help system be context sensitive?

N O O O B

Can you answer the following questions?

Why is it important to offer “keyboard shortcuts” for equivalent mouse actions?
How would you present the current load on the system? Over time?

What is the worst Ul you every used? Which design principles did it violate?
What'’s the worst web site you’ve used recently? How would you fix it?

What's good or bad about the MS-Word help system?

N O O B

Universitat Bern User Interface Design

ESE 182.

10. Software Validation

Overview:
[0 Reliability, Failures and Faults
[1 Fault Tolerance
[0 Software Testing: Black box and white box testing
[1 Static Verification

Source:
[1 Software Engineering, |. Sommerville, Addison-Wesley, Fifth Edn., 1996.

Universitat Bern Software Validation

ESE 183.

Software Reliability, Failures and Faults

The reliability of a software system is a measure of how well it provides the services
expected by its users, expressed in terms of software failures.

A software failure is an execution event where the software behaves in an unexpected or
undesirable way.

A software fault is an erroneous portion of a software system which may cause failures
to occur if itis run in a particular state, or with particular inputs.

Failure class Description
Transient Occurs only with certain inputs
Permanent Occurs with all inputs

Recoverable System can recover without operator intervention
Unrecoverable| Operator intervention is needed to recover from failure
Non-corrupting Failure does not corrupt data
Corrupting Failure corrupts system data

Universitat Bern Software Validation

ESE

184.

Programming for Reliability

Fault avoidance:

[0 development techniques to reduce the number of faults in a system

Fault tolerance:

[0 developing programs that will operate despite the presence of faults

Fault avoidance depends on:

1.

a bk wnN

A precise system specification (preferably formal)

Software design based on information hiding and encapsulation
Extensive validation reviews during the development process

An organizational quality philosophy to drive the software process
Planned system testing to expose faults and assess reliability

Universitat Bern Software Validation

ESE

185.

Common Sources of Software Faults

Several features of programming languages and systems are common sources of faults
In software systems:

[]

Goto statements and other unstructured programming constructs make
programs hard to understand, reason about and modify.

[0 Use structured programming constructs

Floating point numbers are inherently imprecise and may lead to invalid
comparisons.

[0 Fixed point numbers are safer for exact comparisons
Pointers are dangerous because of aliasing, and the risk of corrupting memory
[0 Pointer usage should be confined to abstract data type implementations

Parallelismis dangerous because timing differences can affect overall program
behaviour in hard-to-predict ways.

[1 Minimize inter-process dependencies
Recursion can lead to convoluted logic, and may exhaust (stack) memory.
[0 Use recursion in a disciplined way, within a controlled scope

Interrupts force transfer of control independent of the current context, and may
cause a critical operation to be terminated.

[0 Minimize the use of interrupts; prefer disciplined exceptions

Universitat Bern Software Validation

ESE 186.

Fault Tolerance

A fault-tolerant system must carry out four activities:

1. Failure detection:

[1 detect that the system has reached a particular state or will result in a
system failure

2. Damage assessment:.
[1 detect which parts of the system state have been affected by the failure
3. Fault recovery:

[restore the state to a known, “safe” state (either by correcting the damaged
state, or backing up to a previous, safe state)

4. Fault repalr:
[0 modify the system so the fault does not recur (!)

Universitat Bern Software Validation

ESE 18v7.

Approaches to Fault Tolerance

N-version Programming:

Multiple versions of the software system are implemented independently
by different teams. The final system:

— runs all the versions in parallel,
— compares their results using a voting system, and
— rejects inconsistent outputs. (At least three versions should be available!)

Recovery Blocks:

A finer-grained approach in which a program unit contains a test to check
for failure, and alternative code to back up and try in case of failure.

— alternatives are executed in sequence, not in parallel
— the failure test is independent (not by voting)

Universitat Bern Software Validation

ESE 188.

Defensive Programming

Failure detection:

[0 Use the type system as much as possible to ensure that state variables do not
get assigned invalid values.

[0 Use assertionsto detect failures and raise exceptions. Explicitly state and check
all invariants for abstract data types, and pre- and post-conditions of procedures
as assertions. Use exception handlers to recover from failures.

[0 Use damage assessment procedures, where appropriate, to assess what parts
of the state have been affected, before attempting to fix the damage.

Fault recovery:
[Backward recovery: backup to a previous, consistent state

[0 Forward recovery: make use of redundant information to reconstruct a
consistent state from corrupted data

Universitat Bern Software Validation

ESE

Verification and Validation

Validation:

[0 Are we building the right product?

Verification:

[0 Are we building the product right?

Static
verification

189.

Requirements High-level Formal Detailed Program
specification design specifications design
(Dynamic
Prototype ~ | validation ’

Static techniques include program inspection, analysis and formal verification.

Dynamic techniques include statistical testing and defect testing ...

Universitat Bern

Software Validation

ESE 190.

The Testing Process

1. Unit testing:

[0 Individual (stand-alone) components are tested to ensure that they operate
correctly.

2. Module testing:
[0 A collection of related components (a module) is tested as a group.
3. Sub-system testing:

[0 The phase tests a set of modules integrated as a sub-system. Since the
most common problems in large systems arise from sub-system interface
mismatches, this phase focuses on testing these interfaces.

4. System testing:

[0 This phase concentrates on (i) detecting errors resulting from unexpected
interactions between sub-systems, and (ii) validating that the complete
systems fulfils functional and non-functional requirements.

5. Acceptance testing (alpha/beta testing):
[0 The system is tested with real rather than simulated data.

Testing is iterative! Regression testing is performed when defects are repaired.

Universitat Bern Software Validation

ESE 191.

Regression Testing

Regression testing means testing that everything that used to work still works after
changes are made to the system!

[1 tests must be deterministic and repeatable

[0 should test “all” functionality

every interface

all boundary situations

every feature

every line of code

everything that can conceivably go wrong!

N O O O B B

It costs extra work to define tests up front, but they pay off in debugging & maintenance!

NB: Testing can only reveal the presence of defects, not their absence!

Universitat Bern Software Validation

ESE 192.

Test Planning

The preparation of the test plan should begin when the system requirements are
formulated, and the plan should be developed in detail as the software is designed.

Detailed
design

Requirements
specification

System
specification

Acceptance ~ System Sub-system Module and unit
|ntegrat|0n |ntegrat|0n code and test
test plan
test plan test plan
Acceptance System Sub-system

test integration test integration test

Service

The plan should be revised regularly, and tests should be repeated and extended
wherever iteration occurs in the software process.

Universitéat Bern Software Validation

ESE 193.

Testing Strateqies

Top-down Testing:

[0 Start with sub-systems, where modules are represented by “stubs”
Similarly test modules, representing functions as stubs
Coding and testing are carried out as a single activity
Design errors can be detected early on, avoiding expensive redesign
Always have a running (if limited) system
BUT: may be impractical for stubs to simulate complex components

N O O O B

Bottom-up Testing:

[0 Start by testing units and modules
Test drivers must be written to exercise lower-level components
Works well for reusable components to be shared with other projects

BUT: pure bottom-up testing will not uncover architectural faults till late in
the software process

[I

Typically a combination of top-down and bottom-up testing is best.

Universitat Bern Software Validation

ESE 194.

Defect Testing

Tests are designed to reveal the presence of defects in the system.
Testing should, in principle, be exhaustive, but in practice can only be representative.

Test data are inputs devised to test the system.
Test cases are input/output specifications for a particular function being tested.

Petschenik (1985) proposes:
1. *“Testing a system’s capabilities is more important than testing its components.”

[0 Choose test cases that will identify situations that may prevent users from
doing their job.

2. “Testing old capabilities is more important than testing new capabilities.”
[0 Always perform regression tests when the system is modified.

3. “Testing typical situations is more important than testing boundary value cases.”
[If resources are limited, focus on typical usage patterns.

Universitat Bern Software Validation

ESE 195.

Functional testing

Functional testing treats a component as a “black box” whose behaviour can be
determined only by studying its inputs and outputs.

Inputs causing

Input Set‘m anomalous behaviour

Component

Outputs revealing the

@ presence of defects

Test cases are derived from the external specification of the component.

Universitéat Bern Software Validation

ESE 196.

Equivalence Partitioning

Test cases can be derived from a component’s interface, by assuming that the
component will behave similarly for all members of an equivalence patrtition.

Example:

private int[] _elements;
public boolean find(int key) { ... }

Check input partitions:
[1 Do the inputs fulfil the pre-conditions?
[1 Is the key in the array?
[1 leads to (at least) 2x2 equivalence classes

Check boundary conditions:
[1 Isthe array of length 17?
[0 Is the key at the start or end of the array?
[0 leads to further subdivisions (not all combinations make sense)

Universitat Bern Software Validation

ESE 197.

Test Cases and Test Data

Generate test data that cover all meaningful equivalence partitions.

Test Cases Test Data
Array length O key = 17, elements = { }
Array not sorted key =17, elements ={ 33, 20, 17, 18 }
Array size 1, key in array key =17, elements = {17 }
Array size 1, key not in array key =0, elements = {17 }

Array size > 1, key is first element key =17, elements ={ 17, 18, 20, 33}

Array size > 1, key is last element key = 33, elements = {17, 18, 20, 33 }
Array size > 1, key is in middle key = 20, elements ={ 17, 18, 20, 33 }
Array size > 1, key not in array key = 50, elements ={ 17, 18, 20, 33}

Universitéat Bern Software Validation

ESE 198.

Structural Testing

Structural testing treats a component as a “white box” or “glass box” whose structure can
be examined to generate test cases.

Derive test data Test
data

) Run tests
Component

code

\ Test

Produce output | OUtPUtS

Path testing is a white-box strategy which exercises every independent execution path
through a component.

Universitat Bern Software Validation

ESE

Binary Search Method

199.

public boolean find(int key) throws assertionViolation { /(1)
assert(isSorted()); // pre-condition
if IsEmpty()) { return false; } // Trivially can't find key in an empty list
int bottom = 0;
int top = elements.length-1;
int lastindex = (bottom+top)/2;
int mid;
boolean found = key == _elements|lastindex];
while ((bottom <= top) && !found) { /1 (2) (3)
assert(bottom <= top); // loop invariant
mid = (bottom + top) / 2;
found = key == _elements[mid];
if (found) { // (5)
lastindex = mid; // (6)
} else {
if (_elements[mid] < key) { /(7)
bottom = mid + 1; // (8)
}else{top=mid-1;} // (9)
} //loop variant decreases: top - bottom
} /1 (4)

assert((key == _elements[lastindex]) || !found), // post-condition
return found;

Universitat Bern

Software Validation

ESE 200.

Path Testing

A set of independent paths of a flow graph must cover all the edges in the graph:

e.g., {1,2,3,4,12,13}, {1,2,3,5,6,11,2,12,13}, {1,2,3,5,7,8,10,11,2,12,13},
{1,2,3,5,7,9,10,11,2,12,13}

F if (bottom > top) if (key == _elements[mid])

if (_elements[mid] < key)

Test cases should be chosen to cover all independent paths through a routine.

Universitat Bern Software Validation

ESE 201.

Statistical Testing

The objective of statistical testing is to determine the reliability of the software, rather than
to discover software faults. Reliability may be expressed as:

probability of failure on demand,
rate of failure occurrence,

mean time to failure,

availability

N O N B B

Tests are designed to reflect the frequency of actual user inputs and, after running the
tests, an estimate of the operational reliability of the system can be made:

Determine usage patterns of the system (classes of input and probabilities)
Select or generate test data corresponding to these patterns

Apply the test cases, recording execution time to failure

Based on a statistically significant number of test runs, compute reliability

WP

Universitat Bern Software Validation

ESE 202.

Static Verification

Program Inspections:
[0 Small team systematically checks program code
[0 Inspection checklist often drives this activity
0 e.g., “Are all invariants, pre- and post-conditions checked?” ...

Static Program Analysers:
[0 Complements compiler to check for common errors
[0 e.g., variable use before initialization

Mathematically-based Verification:
[0 Use mathematical reasoning to demonstrate that program meets specification
[e.g., that invariants are not violated, that loops terminate, etc.

Cleanroom Software Development:

[0 Systematically use (i) incremental development, (ii) formal specification, (iii)
mathematical verification, and (iv) statistical testing

Universitat Bern Software Validation

ESE

203.

summary

You should know the answers to these questions:

[]

N I I O

What is the difference between a failure and a fault?
What kinds of failure classes are important?

How can a software system be made fault-tolerant?

How do assertions help to make software more reliable?
What are the goals of software validation and verification?
What is the difference between test cases and test data?
How can you develop test cases for your programs?
What is the goal of path testing?

Can you answer the following questions?

[0 When would you combine top-down testing with bottom-up testing?
0 When would you combine black-box testing with white-box testing?
I Is it acceptable to deliver a system that is not 100% reliable?

Universitat Bern Software Validation

ESE 204.

11. Software Quality

Overview:
[0 What is quality?
I Quality Management activities
O 1SO 9001
[0 Quality Reviews
[0 Product and Process Standards

Sources:
[1 Software Engineering, |. Sommerville, Addison-Wesley, Fifth Edn., 1996.

0 Software Engineering — A Practitioner’s Approach, R. Pressman, Mc-Graw Hill,
Third Edn., 1994.

[0 Objects, Components and Frameworks with UML, D. D'Souza, A. Wills,
Addison-Wesley, 1999

Universitédt Bern Software Quality

ESE 205.

What is Quality?

Software Quality is conformance to
[explicitly stated functional and performance requirements,
[0 explicitly documented development standards,

[0 implicit characteristics that are expected of all professionally developed
software.

Problems:
[0 Software specifications are usually incomplete and often inconsistent
[0 There is tension between:
[0 customer quality requirements (efficiency, reliability, etc.)
1 developer quality requirements (maintainability, reusability, etc.)
[0 Some quality requirements are hard to specify in an unambiguous way
[directly measurable qualities (e.g., errors/KLOC),
I indirectly measurable qualities (e.g., usability).

Quality management is not just about reducing defects!

Universitédt Bern Software Quality

ESE 206.

Software Quality Factors
Ref: McCall 1977

Maintainability
Flexibility
Testability

Portability
Reusability
Interoperability

Product Product
revision transition

Product
operations

Correctness Security
Reliability Usability
Efficiency

Universitédt Bern Software Quality

ESE 207.

Quality Management Activities

Quality assurance
[0 Establish organisational procedures and standards for quality

Quality planning
[1 Select applicable procedures and standards for a particular project
and modify these as required

Quality control

[0 Ensurethat procedures and standards are followed by the software development
team

Quality management should be separate from project management to ensure
independence

Universitédt Bern Software Quality

ESE 208.

Quality Controls

Examples:

[0 Code walk-through of a module to check if it implements its functional
specification correctly

[0 Results in minutes documenting who participated, what was found ...

[0 Acceptance testto check if a function has been correctly implemented
[0 Results in a test record

[1 Examination of a program for conformance to standards
[0 Results in filled form or checklist

[0 Running a tool to check for adherence to portability standard
[0 Results in printout of the tool

Universitédt Bern Software Quality

ESE 2009.

Process-based Quality

Quality management must include periodic reviews of the quality system itself!

Define process Develop Assess pmduct
product quality
Improve No Yes Standardize
process process

©lan Sommerville 1995

Universitét Bern Software Quality

ESE 210.

1ISO 9000

ISO 9000 is an international set of standards for quality management applicable to a
range of organisations from manufacturing to service industries.

ISO 9001 is a generic model of the quality process, applicable to organisations which
design, develop and maintain products

0 1SO 9001 must be instantiated for each organisation
0 1SO 9000-3 interprets 1SO 9001 for the software developer

NB: ISO = International Organisation for Standardization

Universitédt Bern Software Quality

ESE 211.

1ISO 9001

Describes quality standards and procedures for developing products of any kind.

Management responsibility Quality system
Control of non-conforming products Design control
Handling, storage, packaging and delivery = Purchasing
Purchaser-supplied products Product identification and traceability
Process control Inspection and testing
Inspection and test equipment Inspection and test status
Contract review Corrective action
Document control Quality records
Internal quality audits Training
Servicing Statistical techniques

Universitét Bern Software Quality

ESE 212.

1SO 9000 and Quality Management

ISO 9000
quality models

instantiated as

Y

documents

Organization

Organization
quality process

quality manual

instantiated as

Y

is used to develop

Y

Project 2
quality plan

Project quality
management

Project 3

Project 1
quality plan

quality plan

Supports

©lan Sommerville 1995

Universitét Bern Software Quality

ESE 213.

ISO 9000 Certification

Software developers may request to be certified as being ISO 9000 compliant.

[0 Quality standards and procedures must be documented in an organisational
guality manual

[0 The quality system should be used for several months to detect problems

0 An external body should audit the system for conformance to ISO 9000
[0 Usually a company specializing in standards

[0 The system is submitted to an accreditation body
[0 One for each country

Customers are increasingly demanding that suppliers be ISO 9000 certified ...

Universitédt Bern Software Quality

ESE 214.

The Quality Plan

A quality plan should:

[1 set out desired product qualities and how these are assessed
[0 define the most significant quality attributes

[1 define the quality assessment process
0 i.e., the controls used to ensure quality

[1 set out which organisational standards should be applied
[0 may define new standards, i.e., if new tools or methods are used

Universitédt Bern Software Quality

ESE 215.

Types of Review

Review type Principal purpose
Design or program To detect detailed errors in the design or code and to
Inspections check whether standards have been followed. The review

should be driven by ehecklist of possible errars

Progress reviews To provide information for management about the
overall progress of the project. This is both a processjand
a product review and is concerned withsts, plans and
schedules

Quality reviews To carry out a technical analysis of product components
or documentation to finfhults or mismatchelsetween
the specification and the design, code or documentation.
It may also be concerned with broader quality issues
such asadherence to standar@ndother quality
attributes

Universitédt Bern Software Quality

ESE 216.

Quality Reviews

A guality review is carried out by a group of people who carefully examine part or all of a
software system and its associated documentation.

[1 Obijective is the discovery of system defects and inconsistencies
[0 Review teams should be relatively small and reviews should be fairly short

[0 Any documents produced in the process may be reviewed

[0 Code, designs, specifications, test plans, standards, etc. can all be
reviewed.

[0 Review should be recorded and records maintained
[0 Software or documents may be “signed off” at a review
[1 Progress to the next development stage is thereby approved

Universitédt Bern Software Quality

ESE 217.

The Review Process

Select Complete
review team + review forms
' ﬁrmngf{ prage ' (Hold review '
and time +
Distribute
documents

©lan Sommerville 1995

Universitét Bern Software Quality

ESE 218.

Review Meetings and Minutes

Review meetings should:
[typically involve 3-5 people
[0 require a maximum of 2 hours advance preparation
[last less than 2 hours

The review report should summarize:
1. What was reviewed
2. Who reviewed it?
3. What were the findings and conclusions?

The review should conclude whether the product is:
1. Accepted without modification
2. Provisionally accepted, subject to corrections (no follow-up review)
3. Rejected, subject to corrections and follow-up review

Universitédt Bern Software Quality

ESE 219.

Review Guidelines

Review the product, not the producer

Set an agenda and maintain it

Limit debate and rebulttal

Identify problem areas, but don’t attempt to solve every problem noted
Take written notes

Limit the number of participants and insist upon advance preparation
Develop a checklist for each product that is likely to be reviewed
Allocate resources and time schedule for reviews

Conduct meaningful training for all reviewers

10 Review your early reviews

© 0N Ok WDNE

Universitédt Bern Software Quality

ESE

220.

Sample Review checkilists (1)

Software Project Planning

1.

N oo s wN

|s software scope unambiguously defined and bounded?
Are resources adequate for scope?

Have risks in all important categories been defined?

Are tasks properly defined and sequenced?

Is the basis for cost estimation reasonable?

Have historical productivity and quality data been used?
Is the schedule consistent?

Requirements Analysis

1.

a W

Is information domain analysis complete, consistent and accurate?

Does the data model properly reflect data objects, attributes and relationships?
Are all requirements traceable to system level?

Has prototyping been conducted for the user/customer?

Are requirements consistent with schedule, resources and budget?

Universitédt Bern Software Quality

ESE 221.

Sample Review checkilists (Il)

Design
1. Has modularity been achieved?
2. Are interfaces defined for modules and external system elements?
3. Are the data structures consistent with the information domain?
4. Are the data structures consistent with the requirements?
5. Has maintainability been considered?

1. Does the code reflect the design documentation?

2. Has proper use of language conventions been made?
3. Have coding standards been observed?

4. Are there incorrect or ambiguous comments?

1. Have test resources and tools been identified and acquired?

2. Have both white and black box tests been specified?

3. Have all the independent logic paths been tested?

4. Have test cases been identified and listed with expected results?
5. Are timing and performance to be tested?

Universitédt Bern Software Quality

ESE 222.

Review Results

Comments made during the review should be classified.

[0 No action.
[0 No change to the software or documentation is required.

[1 Refer for repair.
[0 Designer or programmer should correct an identified fault.

[1 Reconsider overall design.
[0 The problem identified in the review impacts other parts of the design.

Requirements and specification errors may have to be referred to the client.

Universitédt Bern Software Quality

ESE 223.

Product and Process Standards

Product standards define characteristics that all components should exhibit.
Process standards define how the software process should be enacted.

Product standards Process standards
Design review form Design review conduct
Document naming standards Submission of documents
Procedure header format Version release process
Java programming style standard Project plan approval process
Project plan format Change control process
Change request form Test recording process

Problems
[0 Not always seen as relevant and up-to-date by software engineers
[1 May involve too much bureaucratic form filling
[0 May require tedious manual work if unsupported by software tools

Universitédt Bern Software Quality

ESE 224.

Sample Java Code Conventions

4.2 Wrapping Lines
When an expression will not fit on a single line, break it according to these general
principles:

[1 Break after a comma.

[0 Break before an operator.

[1 Prefer higher-level breaks to lower-level breaks.

[1 Align the new line with the beginning of the expression at the same level on the
previous line.

[If the above rules lead to confusing code or to code that’s squished up against

the right margin, just indent 8 spaces instead.

10.3 Constants

Numerical constants (literals) should not be coded directly, except for -1, 0, and 1, which
can appear in a for loop as counter values.

Universitédt Bern Software Quality

ESE 225.

Documentation Standards

Documentation process standards define how documents should be developed,
validated and maintained.

Document interchange standards define how documents are stored and interchanged
between different documentation systems.

Document standards are concerned with document contents, structure, and appearance:
[0 Identification: how documents are uniguely identified
[0 Structure: standard structure for project documents
[0 Presentation: define fonts and styles, use of logos, etc.
[0 Update: how changes from previous versions are reflected in a document

Universitédt Bern Software Quality

ESE 226.

Good and Bad Documentation

Bad signs
[1 No documentation

[0 All documents, no code exists

0 All pictures

[0 Wall-sized documents

[1 Big thick formal documents
Good signs

[1 Clear document structure
[1 Mix of formal and informal
[0 Clear glossary

Universitédt Bern Software Quality

ESE 227.

summary

You should know the answers to these questions:
[0 Can a correctly functioning piece of software still have poor quality?
Why should quality management be separate from project management?
How could you use ISO 9000 to guide quality management?
How should you organize and run a review meeting?
What information should be recorded in the review minutes?

N O O B

Can you answer the following questions?

How can you evaluate a quality assurance plan?

Would you trust software developed by an ISO 9000 certified company?
Why are coding standards important?

What would you include in a documentation review checklist?

How often should reviews by scheduled?

N O O B B

Universitédt Bern Software Quality

ESE 228.

12. Computer-Aided Software Engineering

Overview:
0 Whatis CASE?
[0 CASE tool functionality vs. process support
[0 Tools, Workbenches and Environments
[1 Programming workbenches
[0 Analysis and design workbenches
[0 Testing workbenches
[0 Software Engineering Environments

Source:
[1 Software Engineering, I. Sommerville, Addison-Wesley, Fifth Edn., 1996.

Universitat Bern Computer-Aided Software Engineering

ESE 229.

What is CASE?

“Computer-aided Software Engineering” refers to automated support for the software
engineering process. There are mainly 3 levels of CASE technology:

1. Production-process support technology:

[J includes support for process activities such as specification, design,
Implementation, testing etc. (mature, and wide-spread)

2. Process management technology:

[0 includes tools to support process modelling and process management
(few products available)

3. Meta-CASE technology:
[0 tools for generating CASE tools (not widely adopted)

Universitat Bern Computer-Aided Software Engineering

ESE

230.

CASE Tool Functionality

CASE tools can be classified by functionality or by their support for the software process.

Tool type

Examples

Management Tools

PERT tools, estimation tools

Editing tools

Text editors, diagram editors, word processors

Configuration management tools

Version management systems, change management systgms

Prototyping tools

Very high-level languages, user interface generators

Method support tools

Design editors, data dictionaries, code generators

Language processing tools

Compilers, interpreters

Program analysis tools

Cross-reference generators, static analysers, dynamic analysers

Testing tools

Test data generators, file comparators

Debugging tools

Interactive debugging systems

Documentation tools

Page layout programs, image editors

Re-engineering tools

Cross-reference systems, program restructuring systems

Universitat Bern

Computer-Aided Software Engineering

ESE 231.

CASE Tool Process Support

T : . Verification
Tools Specification Design Implementation and Validation
Planning and Estimation [[[] [
Text Editing [[[] O
Document Preparation [l [O
Configuration Management [[[] [
Prototyping [O
Diagram Editing [] [
Data Dictionary [[
User Interface Management U [
Method Support [[
Language Processing [Il
Program Analysis [Il
Interactive Debugging [[
Program Transformation []
Modelling and Simulation [[
Test Data Generation [

Universitét Bern Computer-Aided Software Engineering

ESE 232.

Quality of Tools Support

Poor Moderate Good Excellent

Requirements definition
Formal specification
Function-oriented design
Data modelling
Object-oriented design
Programming
Testing
Maintenance

Management

Universitét Bern Computer-Aided Software Engineering

ESE 233.

Tools, Workbenches and Environments

CASE
Technology
Tools Workbenches Environments
Editors Compilers File Comparatonls Integrated Process-centred
environments environments
Analysis and desigr, Programmingl; Testing
Multi-method Single-method General-purpose Language specifig
workbenches workbenches workbenches workbenches

Universitat Bern Computer-Aided Software Engineering

ESE 234.

Integrated CASE

CASE systems can be integrated at various levels:(Wasserman 1990):
1. Platform integration
[0 Tools run on the same hardware/operating system platform

2. Data integration
[0 Tools operate using a shared data model

3. Presentation integration
[1 Tools offer a common user interface

4. Control integration
[0 Tools may activate and control the operation of other tools

5. Process integration
[0 Tool usage is guided by an explicit process model and process engine

Universitat Bern Computer-Aided Software Engineering

ESE 235.

The CASE life cycle

During CASE system procurement, current methods and
standards, platform, application domain, security, and
CASE system cost (including training and maintenance)
must be considered.

Procurement)

Tailorin
J CASE system tailoring involves installation, process

model definition, tool integration, and documentation of
the installation.

Introduction

Introduction can be risky due to user resistance (CASE
systems restrict freedom by imposing discipline),
Inadequate training, or even management resistance
(changing tools and procedures increases risks for
individual projects).

Operation

Evolution

An obsolete CASE system cannot simply be scrapped,

Obsolescence but must be phased out over a transition period.

Y Ve Yo T
R A

Universitat Bern Computer-Aided Software Engineering

ESE

Programming Workbenches

Source Structured) A programming workbench is a set of
program editor Y tools to support program development.
Y </ v
(Language Syntax Cross-reference)
compiler) tree
.

Program Symbol 2 Formatted
libraries table Prettyprrnter source listing

Linker Compiled Static analyser Program

code report
Executable Interactrve user |
program debugger \
\calls
Loader Executing Execution Dynamic
program report analyser

Universitat Bern

Computer-Aided Software Engineering

ESE

237.

Static Program Analysers

Static program analysers scan the source code to detect possible faults and anomalies:

N e)) I I

Universitat Bern

Unreachable code

Unconditional branches into loops
Undeclared variables

Variables used before initialization
Variables declared and never used
Variables written twice with no intervening assignment
Parameter type mismatches
Parameter number mismatches
Uncalled functions and procedures
Non-usage of function results
Possible array bound violations
Misuse of pointers

Computer-Aided Software Engineering

ESE 238.

Stages of Static Analysis

1. Control flow analysis:
[0 loops with multiple exit or entry points and unreachable code ...

2. Data use analysis:
[1 use of uninitialized variables, declared but unused variables ...

3. Interface analysis:
[1 consistency of procedure declarations and use, unused functions ...

4. Information flow analysis:
[1 identifies dependencies of output variables on input

5. Path analysis:
[identifies all possible paths through program

Universitat Bern Computer-Aided Software Engineering

ESE 239.

4GL Workbenches

A so-called “Fourth Generation Language” (4GL) is really a programming workbench for
producing interactive applications that provide users with form and spreadsheet views on
an underlying (relational) database.

DB query Form Report
(language) (designer) (Spreadsheet) (generator)

Database Management System

Universitat Bern Computer-Aided Software Engineering

ESE 240.

Analysis and Design Workbenches

Analysis and design workbenches support the modelling phases of the software process,
usually by means of a graphical notation (e.g., dataflow, ER, UML etc.), and may or may
not support a specific analysis and design method (e.g., JSD, Booch, etc.).

Data Structured Report generation
dictionary diagramming tools facilities

[Skeleton code Central information Query language j

generator repository facilities
Forms Design analysis and Import/export
creation tools checking tools facilities

Universitat Bern Computer-Aided Software Engineering

ESE

Testing Workbenches

241.

Testing tends to be application and organization specific, so workbenches are typically
developed in-house using standard tools.

Source
code

'

Dynamic
analyser

(;Jr:rsl’te?a%ar } Specification
manager)
! Y
Programbeing | | Tact results Test
tested predictions

!

:

Execution
report

(Simulator)
/

Universitat Bern

.

e

(

File
comparator

Test results
report

Y

- (

Report
generator

Computer-Aided Software Engineering

ESE 242.

Testing Tools

Test Data Generators:
[0 automatic generation of test inputs
[0 output analysis by “oracle” (i.e., prototype, parallel system, human)

File Comparators:
[0 automatically comparing old and new test results (e.g., UNIX “diff”)

Simulators:
[0 hardware — cost, availability, risk ...
[0 events — real-time, reproducibility, load ...

Dynamic Analysers:
[0 instrumentation statements are automatically added to program
[1 execution profiles are generated and analysed

Universitat Bern Computer-Aided Software Engineering

ESE 243.

Configuration Management Tools

Configuration management is concerned with the development of procedures and
standards for managing an evolving software system product.

Tool examples:
Version Control — SCCS and RCS:
[0 check-out and check-in of components
[0 logging changes (who, where, when)
[1 changes converted to system “deltas” (can generate any version)
[0 “freezing” of versions as releases (possibly parallel [tree of versions)
System Building — Make:
[0 dependency specification
[1 rules for generation of intermediate files
[1 automatic re-generation of out-of-date files

Universitat Bern Computer-Aided Software Engineering

ESE 244.

Software Engineering Environments

A software engineering environment (SEE) is a set of hardware and software
tools which can act in combination in an integrated way to provide support

for the whole of the software process from initial specification through to
testing and system delivery.

— Sommetville, 5th edn., p. 548

SEEs vs. CASEs:
[0 SEEs are fully integrated (all 5 levels)

[0 SEEs support development by teams and provide integrated configuration
management

[0 SEEs support workbenches for a range of software development activities

Although there are presently no good examples of SEES, the Portable Common Tool
Environment (PCTE) has been widely adopted as a standard framework for SEEs ...

Universitat Bern Computer-Aided Software Engineering

ESE 245.

summary

You should know the answers to these questions:
[0 What are the key features of a CASE environment?
Which phases of the software lifecycle benefit from configuration management?
In what different ways can CASE system be integrated?
What are the risks in adopting a CASE system?
What kinds of errors can be detected by static analysis?
What is an “oracle” and how is it used?

N O O O B

Can you answer the following questions?

0 Why is the quality of tool support for project management not as good as for design
and programming?

Where does SNiFF+ fit into the CASE system classification?

Is it better to use a single method A&D workbench or a multi-method one?

Why is Meta-CASE technology not widely used?

Why are there no good examples of SEESs in use?

0O O O

Universitat Bern Computer-Aided Software Engineering

The 4GL-Component Framewori

Markus Lumpe
Institute of Computer Science and Applied Mathematics (IAM)
University of Berne
Neubriickstrasse 10, CH-3012 Bern
E-mail: lumpe@iam.unibe.ch

WWW: http://lwww.iam.unibe.ch/~lumpe

What Is Delphi?

» Delphi is a 4GL-object-oriented, visual programming
environment for RAD Client/Server applications for
Windows 95/NT.

 Delphi provides a library of reusable software components
and several integrated development tools like experts.

» Delphi is (deceptively) easy to use. Within minutes, an
advanced programmer can create real Windows applications.

« To write Delphi programs, it is not necessary to be a
Windows programming expect, but at least one must be
familiar with some fundamental Windows concepts.

4GL-Environment

e A 4GL-environment integrates programming facilities,
graphical user interfaces (GUI), and a database system in a
single tool.

* The programming language used in these systems is usually
object-oriented.

* The main purpose of these systems is to support application
development for commercial problem domains as good as
possible.

* A 4GL-environment is an end user tool that focuses on highest
productivity.

Delphi - Goals and Objects

« Rapid Application Development environment for the Internet
and Enterprise,

 Build large scale database solutions,

 Build high speed, native-code compiled, client and server
applications for the Enterprise and the Internet,

* Reuse objects through-out the enterprise in a multi-tier
environment.

« Simplifying distributed enterprise development through a one-
step simultaneous support of COM and CORBA (Visibroker).

The environment

Visual Database

Delphi combines a RAD environment, high speed native code
compiler, scalable database and reusable componentry to provide
developer with the highest productivity.

The product family

JBuilder:
Scalable cross-platform
web-applications

Intra Builder:
Corporate Data-driven
web-applications

J Builder

InterBase

C++ Builder

SQL Links

C++ Builder:
Critical business
applications

Delphi:
Scalable Windows
applications

Two-tier Architecture

First Tier: Tasks/Services
Cliemt e User Interface
= Presentation services
o Application services
Second Tier: - Tasks/Services
Deicr Berver o Application services

s Business ssrvices

= Data services

Provides basic separations of concerns.

Tree-tier Architecture

Firsi Tier: Tasks (Services

Clignt + Tser Interface
+ Presentation Services
L’ 'LEL

A
_____________________ A
Second Tier ¥ Taskes/Services
A.Wh'(:tdigﬂ Server Business - ﬂPPHﬁﬂﬁmmn‘iﬁES
ChjectiComponet

= Business services/ohjecis

Business Busimess
OhjectiComponert ChjectiComponent

Data Samey = Data services

= Data validation

Offers a technology neutral
method to develop client/server
applications with vendors who
employ standard interfaces
which provide services for each
logical tier.

Multi-tier Architecture

Multi- Tier Architecture

A multi-tier, three-tier, or N-
K s " tier implementation employs a
"4 ' - three-tier logical architecture
superimposed on a distributed
Server physical model. Application
x “x Servers can access other
Legacy Application application servers in order to
Data | %7777 * Server % supply services to the client
application as well as supply

services for other application
servers.

Server

The Delphi IDE

Component Repository

it Daghd & Hum s Lacids e
DG B @ B || T | o] woid | Semn] iamn | Dua tscos | s ot | venn | Do

(@90 0s-N 3z TEAFalas o i@ = J

1] i | ducsnie|

Form
Editor

FLEAESls TRELEMAERI
Fras
"

CEEE

L=

103
daca
Lua

L
Eith
piral
BrEC:
prec. |-
i

Object/

Inspector

R

Moe| B AN (B -

Application Form 10

Hello World

s [kl 4 - Pyl |
|t-h:-|u-b-lhnﬂ-—-tn-.—_tm“_|

O W @ B (@ 5o [aasied| w3 Soem| s | Dbconss | D Carieas | Oace | Do | i 21 | s | Acsos |

=00

e 1= Les il

sell B bk M ARgar s $afan
5]

| Iu:ﬁ

1
i

11111

[riirm Trmm ik
[Bbwicds | baleblaftighi
[Hisllcs Wil (0
[clirfucs
=Crriadl 1T 5 et "
Cawr cllaad Crnukipy, Coeerolm, Fo
sy oy
Camf i Al
o
Tram

:F

78T TRITLE N;

Hal ()___J__Wprld]

g

| = vimiat Pt [freite 1

Steps:

e new application
e add label

 set alignment

« change font
* resize form

°run
11

Delphi Component Definition

« A component is an item that can be selected from the
component palette and which can be manipulated by the form
designer or the program code.

« A component is an object which class is derived from the class
TComponent TComponent defines the basic behaviour that
must be fulfilled by every component.

A component is an element which can be added to the Delphi
environment. The complexity of a component can range from
a simple extension of a standard component to a complex
Interface component for hard- and software.

12

Facts about Delphi

Components + ObjectPascal = Application,

Transparent integration of COM and CORBA components,

Delphi components can easily be made a COM components,

The JavaBeans model is derived from Delphi,

Delphi has emerged a first component market.

e Delphi is a mixed-style programming environment; the user can
or must use the textual or visual style of programming.

e Delphi components lack a binary standard like COM.

13

Working with Components

 All components are visible and configurable at design time.
 Visual components appear at runtime as designed.

* Non-visual components are invisible at runtime. These
components provide a visual way of setting up properties.

* Only published properties can be changed at design time.

e Event handler provide a convenient way to add application
specific code to your application.

« Understanding component properties and events is essential
to effectively program with Delphi.

14

The Object Model

* The root class of every objectTli®bject

A class can have a private, protected, public, and published
Interface.

* The object model supports class-based features like class
methods.

e Every object in Delphi is a dynamic instance - reference model.
» Delphi supports so-called method pointers.
e Type information is available at both design time and runtime.

* The object model provides a so-called property mechanism
faking direct instance variable access.

15

Delphi’s Object repository

s New Items

M e |.-5'-.|::ti~.=e§={| Formz I Dialngsl F'ru:uie::tsl Drata Mu:u:lulesl Eusines&l

o %

& pplication Batch File Component Data Module DLL
1 5 2
Farm Fackage Project Group R eport FResource DLL
Wizard
e - =
e =
Service Service T et Thread Object it

Apphcation

£ Eopy £ et 50 e

ak. I Cancel Help

Creating a new Component

* New component

* Implement component

Mew Component

=]

Mew Component |

B c:\program files\borland\delphi4\Lib\M otifier_pas

Ancestor tpe; ITEDmpDnent

Clazs Mame: |T

Falette Page: (HETATE

Search path: |$[DELF'HI]HLi|:;$[DELF'HI]'%

Install.. | 0K

ﬂ THMaotifier
D Procedures
-0 Uses

Lnit file name: Il::"-.pn:ugram filezborlandsde \
.

o

[11

| Modified

Inzert

£ Notiier | -
private ;I
FWUindowHandle : HWND:
Fatom : DWORD:
ForMotifyUpdate @ TOnNotifyUpdate:
public

end;

procedure Register;

implementation

procedure Register:

constructor Create| AOwner : TComponent); override;
destructor Destroy:; override;

procedure WndProc| wvar Msg @ TMessage 1:

procedure NotifyUpdate(A0bject : TObhject)
hed
P ty OnMNotifylUpdate : TOnMNotifyUpdate read FOnlotifylUpdate

write FOnMNotifyUpdate

Information

The companent palette has been updated Az a result of rebuilding installed package c:\program

files\barlanddelphidhLibhdoluzrd0. bpl.
The falloving new component(z] have been reqiztered: THohfier.

e Test and install component

17

Publisher-Subscriber pattern

TUpdateNotifier = class(TComponent)
private

FWindowHandle : HWND:;

FAtom : DWORD;

FOnNotifyUpdate : TOnNotifyUpdate;

public
constructor Create(AOwner : TComponent); override;
destructor Destroy; override;
procedure WndProc(var Msg : TMessage);
procedure NotifyUpdate(AObject : TObject);

published
property OnNotifyUpdate : TOnNotifyUpdate read FOnNotifyUpdate
write FOnNotifyUpdate;
end;

18

i1 Delphi 3 - ColortManager
Datei

Bearbeiten Suchen Ansicht Projgkt Statt Fomponente Datenbank Tool: Hilfe
|->F_‘| m-; =5 @ ﬂ' ’ [”] Standard IZusétinchI win32 | Sustem | Internet | Datenzuaiff | Datensteuerung | OReport | Dialoge | tin 3.1 ILI_’I
N M%ﬁl_anl-r@ s [T [E] [|
:RBG !Iill . .
B Panell e
Eigenzchafter Dntrollerl it | Lrit3 | Unitd Units |
Panel? e
ActiveContre uni nits;
. K Panel3
BorderStyle —— R R : Green - 10} x|
Caphion RBG . :
ClientH ight 123 . k2, 3ysUtils, Clas
Cligntiw/idth 142 . R G B JScdCtrls, Extitrl
Calor chahite . .
CH30 True . Z‘ Z‘ ZI
Curzor ciDefault £ [TForm) EE
Enabled True : ‘fl: TUpdateMotifie

+Font [TFont] . .

FormStyle fsMormnal . . '

Height 150 .

HelpContext |0 : j j j [)
HelpFile : hteNotifierlNotify
Hint . Show(Sender: Tdkh)]
+HorzScrolBar |[TCombolSeral 0000010 iiciiooiciiociicoioopli3bblclick(Sender
- . e
. el = . | Schliefen |: SR
.. —= L
—E—
I I_C,‘F'.utu:uShapESv\ \DD.4|&v-ﬁ Av—-*—.i)l
| Slide 21 of 22 Default Design
Slaltl AL | |=1) Microsoft Pow. . | W Microsoft Wor... ”ﬁ Delphi 3 @untltled Fairt |

Publisher-Subscriber pattern ll|

ColorManager

20

Rotating 3D Cube

elphi 4 - Mulimediaanimator

File Edit Search “iew Project Bun Component Database Tool: Help |
O~ & | i | B g | ” @ Standard |Add|t|0na|| win32 | Svstem | Intemet | Data .-’-‘«ccessl Diata Contrals | ORepart | Dislogs | win 31| Samoles | Active | Markus |

E=la=1PRal B8 A = r e =] &

I FotatingCubel: TRotatingCube I

Properties | E\-'entsl ﬂ. T CaboForm Main Cube I = - = -
BackgroundCoals clBtnFace [Wariables/Constants unit Cube: =
Cursor crDefault

Edgel ength 160 interface

HasBorder False

Height 163 uses 1

Hint Windows, HMNessages=, . phics, Controls, Fo
Left 2 StdCtrls, ExtCtrls,: :

Mame RotatingCubel -

F!otat,a =l type :

Rotationlnterval| 20 TCubeForm = class (1.

SidelColor clBlue - _ . :

Side2Colar clRed A ——] <] EtatlngCubel . TI:

SideColor | creliow = ‘rate

Side4Colar clGreen : coiiiioniiiiiins Private-Deklar:
SidebColar clPurple fic i
SideEColar clTeal
Stepi 1
Stepv 1
StepZ 1
Tag 0

g

1

Public-Deklaratroooo—r

-

TCubeForm;

EeForm:
Top o
Width

. mentation

S Main:

| Microsoft PowerPoint - [De...l Iﬁ Delphi 4

Rotating 3D Cube

A rotating cube

22

One-Step ActiveX

New element:

iti New ltems

Mew Actives |Fnrms I Dialogsl Proiectsl Data Modulesl Businessl

o = = LA

E : Z i
Activerl Acleek Library Automation COM Object
Corntral Object

1.

Property Page Type Library

ActiveX Control W zard Ed I

WL Class Mame:

T -

Build-in COM support:

uttonControll_tib

B i

- IButtoriE vents
a Buittor

[# T=BiDiMode
TrDragMode
TrMouseButton

C Lo 1 New Activer Name: IBLJH'I'Y'I><

Implernentation L nit: IButtDnImpH .pas

Project Mame IButtDrMD:untn:ul'I .dpr

Threading kodel: I.ﬁ.partment

[

—Activer Control Option
™ Include Design-Time License

I~ Include Yersion Infarmation

[C Include About Box

Ll PF'Userépe‘l
n

IR TY Y L5 ok
i

Attributes I Uses I Flags I Text I

Mame: IButtonXEonth
GUID: |{28?D?EEE-D TFE-11D3-4B4E-000039D15F1 7}
ersion: |‘I 0
LCID: f
—Help
Help String: IButtonXEonth Library

Help Contest: I

Help String Cantest: I

Help String DLL: |

Help File: f

|Modified |

]

Cancel |

Help

Derive from TWinControl

23

Make It into an ActiveX-control

Steps:

* Make cube component
an window control

* Make new component
a ActiveX-element

 Build OCX

Datei Bearbeiten Suchen Ansicht

Projekt Start Komponente Datenbank Toolz Hilfe

S B D uu

2B

Standard IZusétinchI Win32| Sl,lsteml Internetl Datenzuuriffl Datensteuerunal QHeDortl Dialoqel Win 3.1 |LIL

b B R ARE Rk e e

Eigenschaften | E[eignissel

h ActiveX- Element-Experte

WYEL-Klassenname;
MName fur neues Activel:

Implementienings-Unit:

Projektname:

. |F|0tatingEubePaneI><

IHotatingCubePanellmpH .pas

.--':|FlotatingCubePaneNCDntrol.dpr

r—Optionen flr Active
I Design-Lizenz hinzufiigen

I Info-Fenster hinzufiigen

I~ Mersionsinformation hinzufligen

] I Abbrechen Hilfe

| Slide 16 of 20

i Start | ‘= BorlandDoc

e Register ActiveX-server

DeFauIt Design

|-M|crosoft Paw... |WMlcrosoftW0r ”ﬁ Delphi 3 .untltled Pairt |

24

se Delphi’'s ActiveX-control |

g, Project] - Microsoft ¥isual Basic [Entwerfen]

Datei Bearbeiten Ansicht Projekk Format Testen Awusfihren Exkras Add-Ins Fenster 7

[B-m-BedE 2@ o o]y | | ¥EeSs R

4305, 2475 3465 x 3645
Pt k- Prajectl x|
m Piojectl - MainForm [Code] =] B3 | c

Il:nllgemein)

j I(I]eklara‘tiunen]l

=l

| ‘ Private Declare Function sndPlaySound T

. Project] - MainForm (Form)
O

ActiveX

IS[=] E3

1

hrkush Col

hrkush Col

of

EE Projectl {Projectl.vbp)
=3 Formulare

------ B9 MainFaorm (Farml . Frn)

|MainFnrm Farm

Alphabetisch |Nach Kateqorien I

MainFarm
1-30
False

[&Ha0o0000F
2 - Anderbar

Lrkiva S0 |h»=\;|

(Name)

Gibt den Mamen zurick, der im Code
zur Identifikation eines Objekks

Formular-L

g Start| “Lib

| EMicrosoit P...| B Micosoht ... | 52 Delphi 3

I untitled -P... | %F‘miect'l -

25

Use Delphi’'s ActiveX-control Il

E C:\User\M artkus\Courses\| 2A\E vamplesiActiveX C... - Microsoft Internet Explorer

File Edit Wiew Go Favoritez Help

H«:: > 0 [o @ F5 8 £ B F

Back Forward Stop Refresh Home Search Favorites Print Fant I ail Edit

JJ Address IE:‘\User\Markus\EDurses‘\IZME:-:amples\.-'-‘«clivex CubehLibxcubelib.htrm j |JJ Links
[

Testseite fiir Delphi-3DCubePanel-ActiveX-Control

() Matlous Lumpe
[]
| 9]

|D|:|ne

#star| Syl | =i Microsoft Pow... | B Microsoft wior... | 558 Delphi 3 | (2 untited -Paint [[[3) C\userm | Bl 1747 26

Use Delphi’s ActiveX-control Il

27

What have you learned about
Delphi?

 Delphi is a rapid application development environment,
 Delphi supports enterprise and internet client/server solutions,
 Delphi supports an open, scalable multi-tier architecture,

» Delphi provides support to create, manage, and deliver data
over the web,

 Delphi provides support to create reusable objects,

» Delphi provides support to graphically display of any kind of
data,

e Delphi supports one-step COM and CORBA development.

28

Questions

	ESE — Einführung in Software Engineering
	Table of Contents
	1. ESE — Einführung in Software Engineering
	Other Books
	Course Overview
	What is Software Engineering?
	Software Development Activities
	The Classical Software Lifecycle
	Problems with the Software Lifecycle
	Iterative Development
	Iterative and Incremental Development
	Boehm’s Spiral Lifecycle
	Requirements Collection
	Requirements Analysis and Specification
	Prototyping
	Design
	Implementation and Testing
	Maintenance
	Maintenance
	Why use a Method?
	Object-Oriented Methods
	Summary

	2. Project Management
	Management activities
	Risk Management
	Focus on Scope
	Scope and Objectives
	Cost Estimation Objectives
	Measurement
	Measurement-based Estimation
	Estimation and Commitment
	Product Process Model
	Planning and Scheduling (I)
	Planning and Scheduling (II)
	Task Durations and Dependencies
	Milestones and Deliverables
	Activity Network
	Activity Timeline
	Software Teams
	Chief Programmer Teams
	Staff Allocation
	Object Lessons
	Conway’s Law
	Summary

	3. Requirements Collection
	The Requirements Engineering Process
	Requirements Engineering Activities
	Requirements Analysis
	Problems of Requirements Analysis
	The Requirements Analysis Process
	Use Cases and Viewpoints
	Unified Modeling Language
	Writing Requirements Definitions
	Functional and Non-functional Requirements
	Types of Non-functional Requirements
	Examples of Non-functional Requirements
	Requirements Verifiability
	Precise Requirements Measures
	Prototyping Objectives
	Evolutionary Prototyping
	Throw-away Prototyping
	Requirements Checking
	Requirements Reviews
	Summary

	4. Modelling Objects and Classes
	Class Diagrams
	Visibility and Scope of Features
	UML Lines and Arrows
	Parameterized Classes
	Utilities
	Objects
	Associations
	Aggregation and Navigability
	Association Classes
	Qualified Associations
	Inheritance
	What is Inheritance For?
	Multiple Inheritance
	Constraints
	Using the Notation
	Summary

	5. Modelling Behaviour
	Use Case Diagrams
	Sequence Diagrams
	UML Message Flow Notation
	Collaboration Diagrams
	Message Labels
	State Diagrams
	State Diagram Notation
	State Box with Regions
	Transitions and Operations
	Composite States
	Sending Events between Objects
	Concurrent Substates
	Branching and Merging
	History Indicator
	Creating and Destroying Objects
	Using the Notations
	Summary

	6. Software Architecture
	What is Software Architecture?
	How Architecture Drives Implementation
	Sub-systems, Modules and Components
	Cohesion
	Coupling
	Tight Coupling
	Loose Coupling
	Architectural Parallels
	Layered Architectures
	Abstract Machine Model
	OSI Reference Model
	Client-Server Architectures
	Client-Server Architectures
	Four-Tier Architectures
	Blackboard Architectures
	Repository Model
	Event-driven Systems
	Selective Broadcasting
	Dataflow Models
	Invoice Processing System
	Compilers as Dataflow Architectures
	Compilers as Blackboard Architectures
	Summary

	7. Responsibility-Driven Design
	What is Object-Oriented Design?
	Design Steps
	Finding Classes
	Drawing Editor Requirements Specification
	Drawing Editor: noun phrases
	Class Selection Rationale (I)
	Class Selection Rationale (II)
	Class Selection Rationale (III)
	Candidate Classes
	Class Cards
	Finding Abstract Classes
	Identifying and Naming Groups
	Recording Superclasses
	Responsibilities
	Identifying Responsibilities
	Assigning Responsibilities
	Relationships Between Classes
	Recording Responsibilities
	Collaborations
	Finding Collaborations
	Recording Collaborations
	Summary

	8. Detailed Design
	Sharing Responsibilities
	Multiple Inheritance
	Building Good Hierarchies
	Building Kind-Of Hierarchies
	Refactoring Responsibilities
	Identifying Contracts
	Applying the Guidelines
	What are Subsystems?
	Subsystem Cards
	Class Cards
	Simplifying Interactions
	Protocols
	Refining Responsibilities
	Specifying Your Design: Classes
	Specifying Subsystems and Contracts
	Summary

	9. User Interface Design
	Interface Design Models
	GUI Characteristics
	GUI advantages
	User Interface Design Principles
	Direct Manipulation
	Interface Models
	Menu Systems
	Menu Structuring
	Command Interfaces
	Information Presentation
	Analogue vs. Digital Presentation
	Colour Displays
	User Guidance
	Design Factors in Message Wording
	Error Message Guidelines
	Good and Bad Error Messages
	Help System Design
	User Interface Evaluation
	Summary

	10. Software Validation
	Software Reliability, Failures and Faults
	Programming for Reliability
	Common Sources of Software Faults
	Fault Tolerance
	Approaches to Fault Tolerance
	Defensive Programming
	Verification and Validation
	The Testing Process
	Regression Testing
	Test Planning
	Testing Strategies
	Defect Testing
	Functional testing
	Equivalence Partitioning
	Test Cases and Test Data
	Structural Testing
	Binary Search Method
	Path Testing
	Statistical Testing
	Static Verification
	Summary

	11. Software Quality
	What is Quality?
	Software Quality Factors
	Quality Management Activities
	Quality Controls
	Process-based Quality
	ISO 9000
	ISO 9001
	ISO 9000 and Quality Management
	ISO 9000 Certification
	The Quality Plan
	Types of Review
	Quality Reviews
	The Review Process
	Review Meetings and Minutes
	Review Guidelines
	Sample Review checklists (I)
	Sample Review checklists (II)
	Review Results
	Product and Process Standards
	Sample Java Code Conventions
	Documentation Standards
	Good and Bad Documentation
	Summary

	12. Computer-Aided Software Engineering
	What is CASE?
	CASE Tool Functionality
	CASE Tool Process Support
	Quality of Tools Support
	Tools, Workbenches and Environments
	Integrated CASE
	The CASE life cycle
	Programming Workbenches
	Static Program Analysers
	Stages of Static Analysis
	4GL Workbenches
	Analysis and Design Workbenches
	Testing Workbenches
	Testing Tools
	Configuration Management Tools
	Software Engineering Environments
	Summary

	13. The 4GL- Component Framework DelphiDelphi Delphi

