
OORPT Team 5 - ESE Evaluation
December 2006

Tests and Error Handling

Tests Team 1 Team 2 Team 3 Team 4 Team 5
Number of
test methods

52 17 80 26 17

Lines of
code
tests/project

763
(10.1%)

507 (7.0%) 3956 (8.3%) 968 (4.4%) 533 (6.9%)

Error free yes yes yes 1 Failure 4 errors
What do
they test?

Model Model Model and
Database

Model Model

Do they
seem to be
useful?

yes. More or less.
Some do
something, but
others don’t (see
LibrarySaverTest)

Yes, very
detailed and
in-depth!!

yes. Hm. Not
very much.
See
LibraryTest

Grade (0 – 2
points)

2 0.5 2 1.25 0.25

Bad examples:

Team 2, LibrarySaverTest:

This test is not useful!

Team 5, LibraryTest.testIsEmpty():

This is not the way we want tests to be.

Error Handling by example: What happens if a music file which is in a
playlist does not exist anymore before launching the application?

Team 1 Team 2 Team 3 Team 4 Team 5
Could the
program
start?

Yes No. We had to
remove the
library.xml file.

Yes Yes yes

Error Handling by example 2: What happens if a broken music file is
loaded?

Team 1 Team 2 Team 3 Team 4 Team 5
Does it
survive?

Yes Yes Yes Yes Yes

What else
happens?

Displays an
empty line,
nothing
happens

Does not
import it

Does not
import broken
file

Displays an
empty line,
play button
state is
switched

Displays an
empty line,
nothing
happens

Estimating a user story: How long will it take to add an import /
export function for playlists in the m3u format?

Details Team 1 Team 2 Team 3 Team 4 Team 5
Involved existing model
Classes

SerializablePlaylist,
LibraryFileHandler
,
Library.saveData()
and .loadData()

LibrarySaver
.parsePlaylist()...,
ContentManager,
Library

DataLoader,
DataSaver,
PlaylistLibrary

Loader,
Saver.savePlaylist,
javazoom
BasePlaylist

XmlUtils
.savePlaylist,
AbstractPlaylist,
UserPlaylist

Easy structure? Simple structure Simple structure Big but well
structured

A bit messy Simple structure

Current persistence xml xml Database xml xml
Importer: selects files or
only directories?

files files files directory Directory, but files
visible

Cyclomatic complexitiy
average / max (whole)

2 / 43 2 / 19 2 / 28 2 / 27 1.5 / 7

Documentation

Team1 uses Javadoc comments only in the modelclasses consistently. They have an UML-
diagram in the repository which shows the basic structure of the model.
The Readme explaines only the most basic functions of the player. It does not tell how to edit
Tracks or move them around in Playlists. There is no Pattern explicitly documented.
Score: 0.25

Team2 did not provide an UML diagram for their system and there are very few Javadoc
comments. They should certanly use them more often.
The Readme matches the behaviour of the program and covers the functionality. There is no
additional documentation on the teams website except for the autobuild reports.
Score: 0.25

Team3 provides an Eclipse-generated UML diagram of their Model but it is pretty hard to get
an overview over the model out of it because it is very small and if you zoom in you loose the
context of the classes. Maybe it would be better if there was not every constructor etc. listed so
the classes would not take so much space and it would be easyer to see how they are relatet.
The Readmefile of this Team explaines only where the actual documentationfiles are stored.
They are using a help system based on html pages. The intetion seems to be to make them
accesible from within the running program by using the help-menu. Currently this does not

To do Team 1 Team 2 Team 3 Team 4 Team 5
M3u file reading / writing 5h 5h 5h 1h 5h
Add playlist to library and
add files

1h 1h 1h 1h 1h

GUI: file and content
menu / button

Menus => 3h Buttons => 2h Menus => 2h Menus + Buttons =>
3h

Buttons => 2h

GUI import and export
windows

2h 2h 2h 5h 5h

Total: 11h 10h 10h 10h 13h

work. But the help-files can still be viewed by a browser. They explain in a detailed manner the
usage of the program.
There are no design patterns documented. The website holds no additional userdocumentation.
Javadoc is used in some classes but in most it is missing.
Score: 0.5

Team4 uses Javadoc quiet often. Many of their methodes have a javadoccomment and there are
also many normal comments in the code.
We could not find any UML-diagram for the project though.
There is a user documentation on the website of the team but it is not 100% accurate. For
example it states that during playing the progress is shown but this does not work at the
moment. It also states that you can doubleclick on a song to play it but you have to click it once
to select and then press play.
There are no desing patterns documented.
Score 0.5 (because of many javadoccomments)

Team5 has 3 UML diagrams in their repository and on their website. One shows the sequence
diagram of file-importing, one the model and the last one documents how they implemented the
MVC pattern.
There is also a readme that explaines how to use tha program.
Javadoc is used often. The core model classes in particular are very well documented. The
Team also uses the TODO tag of eclipse alot. We think this is good because it is easyer to find
sourcecode that should maybe be refactored for other programers.
Score: 1

Design and Code Conventions

All Teams use the MVC Pattern based JavaSwing framework. They all have separated
packages for model view and controller. The only exception is Team 4 which has model and
gui classes in the same package. So it is harder to find out where to look for the classes.
All Teams have an average of around 10 LOC per methode over the whole project. Also the
CC averages under 2 per methode.

Design evaluation Team 1

Their project is rather small. They have about 4000 LOC.
They have the whole gui in one Class. Everything is built there. We think it should be possible
to split the gui in several subframes so we do not have such a Giant Class.
The FrameListener seems to have too much responsibility because its actionPerformed
methode is very long and has a CC of 43. It manages the whole behaviour if a button is
pressed.
The Library seems to be managing the Playlists. We think this is not a responsibility the library
should have.

Design Score: 1 + 0.5 CodeConventions

Abbildung 1: Team 1 Overview

Design evaluation Team 2

Their project has about 5000 LOC.
By Looking at the SystemComplexity we found 3 Classes that seemd to be out of the norm.
The TrackEditorDialog class manages the editing of the Track Informations. This class breaks
the MVC Pattern because it implements the gui the and the controller for track editing at the
same time. We think this could be separeted.
They have implemented drag and drop to move songs into playlists which seems to be a good
idea.
The ContentManager has no clear responsibility.
There is a user-defined exception class called library Exception but it does not have any special
functionality. Nevertheless this is a good thing because the name of the exception already
might give you a hint where the exception happened if it gets thrown.

Score: 1.25 + 0.5 CodeConventions

Design evaluation Team 3

Their system is much bigger than the other ones. It has more than 18'000 LOC. Team 3 and 4
are both using the MP3 library and player jlgui from http://www.javazoom.net/. This might be
the reason why their projects are bigger than the other ones. They partialy rely on functionality
that is provided by the jlgui player (eg. Equalizer).
Like Team2 they created some user defined Exceptions. They are thrown if there occurs a
problem while loading or saving from the database they use.
The gui creation is distributed over several Classes. But some of them are still pretty big. In the
MainMenuBar class we could see that they are checking for the state in which they are to react

http://www.javazoom.net/

accordingly to events. This is not a problem at the moment but maybe they could use a State
pattern later.

The Graph below shows the cyclomatic complexity of the project. Each bar represents a class.
The Bars are drawn starting at the average over all bars and extending to the top if the class has
a cc above average to the bottom if it has a cc below average.

Score 1.5 Design + 0.7.5 CodeConventions

Design evaluation Team 4

This project has about 10'000 LOC. They are using a Factory Pattern and a decorater pattern in
the TableSorter class but it seems like this classes were taken of some extern library and they
have not written it themselfs. They also use a very big gui class that should be split in some
subframes. At the moment this guiclass is also building/instantiating the rest of the system.
It seems they also already have a M3U importer.
In the repository there is a file in the Files/mp3 folder named Classes.rtf. We found it a bit
strange that there are some classes listet that are not existing in the project. For example there
is an Album class that does not exist in the system. It might be a good idea to introduce this
class. Maybe it would be possible to use a Composite pattern for the Playlist and Album.

Score 1.25 Design + 0.5 CodeConventions

 Overview Team 4

Design evaluation Team 5

The system has about 4000 LOC.
Score 1 Design + 0.5 CodeConventions.

Abbildung 2: Overview Team 5

Participation

Team 1

Team 2

Team 3

Team 4

Team 5

Total Grades:

Team 1: 3.75

Team 2: 2.5

Team 3: 4.5

Team 4: 3.5

Team 5: 2.75

	To do
	Team 1
	Team 2
	Team 3
	Team 4
	Team 5
	OORPT Team 5 - ESE Evaluation
	Tests and Error Handling
	Tests
	Team 1
	Team 2
	Team 3
	Team 4
	Team 5
	Error Handling by example: What happens if a music file which is in a playlist does not exist anymore before launching the application?
	Team 1
	Team 2
	Team 3
	Team 4
	Team 5
	Error Handling by example 2: What happens if a broken music file is loaded?
	Team 1
	Team 2
	Team 3
	Team 4
	Team 5

	Estimating a user story: How long will it take to add an import / export function for playlists in the m3u format?
	Details
	Team 1
	Team 2
	Team 3
	Team 4
	Team 5

	Documentation
	Design and Code Conventions

