Object-Oriented Software

Reengineering

Dr. S. Demeyer
Dr. S. Ducasse
Prof. Dr. O. Nierstrasz

Wintersemester 1999/2000

Table of Contents

Table of Contents

1. Object-Oriented Software Reengineering

Goals of this course

Course Overview

Lehman’s Laws

What is a Legacy System?
Software Maintenance

Why is Software Maintenance Expensive?
Factors Affecting Maintenance
What about OO?

Definitions

Reverse and Reengineering
Goals of Reverse Engineering
Reverse Engineering Techniques
Goals of Reengineering
Reengineering Techniques
Architectural Problems
Refactoring Opportunities

Tools Architectures

Summary

. Code Duplication

Overview

Code is Copied

How Much Code is Duplicated?

What Is Considered To Be Copied Code?
How Code Gets Copied

Why Code Gets Copied

What Problems Stem From Copied Code?
Code Duplication: Problem Statement
Code Duplication Detection

General Schema of Detection Process
Simple Detection Approach |

© 00 NO OB WNRK =

el e e e o o
© 0NN WNERO

W W N DNDNDNDNDNDNDNDDNDN
P O © 0 ~NO O~ WNPEFP O

Table of Contents

Simple Detection Approach i

Detection Using Parameterized Matching |
Detection Using Parameterized Matching Il
Detection using Abstract Syntax Trees |
Detection using Abstract Syntax Trees ||
Refactoring Duplicated Code |
Refactoring Duplicated Code I
Visualization of Duplicated Code
Visualization of Copied Code Sequences
Visualization of Repetitive Structures
Visualization of Cloned Classes
Visualization of Clone Families

Summary

References

3. Lab session — Duploc

4. Design Extraction
Goals
Outline
Why Design Extraction is needed?
UML (Unified Modelling Language)
The Little Static UML
Road Map
Let us practice!
A First View
Evaluation
A Cleaner View
Road Map
Three Essential Questions
Interpreting UML
Levels of Interpretations: Perspectives
Attributes in Perspectives
Operations in Perspectives

February 9, 2000

Associations

Associations: Conceptual Perspective
Associations: Specification Perspective
Arrows: Nagivability

Generalization

Road Map

Need for a Clear Mapping

Private you said?! Which one?

Class Method Inheritance?!

Some Possible Smallltalk Conventions
Stereotypes: to Represent Conventions!
Another Example: Instance/Class Associations
RoadMap

Association Extractions (i)

Language Impact on Extraction
Method Signhature for Extracting Relation
Convention Based Association Extraction
Operation Extraction (i)

Operation Extraction (ii)

Road map

Design Patterns as Documentation Elements
Road map

Evolution Impact Analysis: Reuse Contract
Example

Reuse Contracts: General Idea

Example

Road Map

Documenting Dynamic Behaviour
Sequence Diagrams

Statically Extracting Interactions
Dynamically Extracting Interactions
Lessons Learnt

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Table of Contents ii.

5. Software Metrics 96 Class Cohesion (i) 130 Software Models (Meta Models) (1/4) 165
Why Measure Software? 97 Class Cohesion (ii) 131 Software Models (Meta Models) (2/4) 166
What is a Metric? 98 Class Coupling (1) 132 Software Models (Meta Models) (3/4) 167
GOQM 99 Class Coupling (li) 133 Software Models (Meta Models) (4/4) 168
Metrics assumptions 100 Metrics? Stepping Back 134 Software Metrics (1/2) 169
Cost estimation objectives 101 Visualisation 135 Software Metrics (2/2) 170
Estimation techniques 102 The Motivation: Why are we visualising stuff? 136 Results of a Field Study (1/4) 171
Algorithmic cost modelling 103 Visualisation: Possible Approaches 137 Results of a Field Study (2/4) 172
Measurement-based estimation 104 Example: Goose/ Graphlet 138 Results of a Field Study (3/4) 173
Lines of code 105 Example: Mermaid 139 Results of a Field Study (4/4) 174
Function points 106 Let’s summarise... 140 An Example (1/5) 175
Programmer productivity 107 Our Approach: CodeCrawler 141 An Example (2/5) 176
The COCOMO model 108 The Idea: Visualising Metrics 142 An Example (3/5) 177
Basic COCOMO Formula 109 CodeCrawler: Some Examples 143 An Example (4/5) 178
COCOMO assumptions 110 System Complexity 144 An Example (5/5) 179
Product quality metrics 111 Method Efficiency Correlation 145 Future Work 180
Maintainability Metrics 112 Inheritance Classification 146 g9 Mmetrics in OO Reengineering 181
Design maintainability 113 Service Class Detection 147 Why Metrics in OO Reengineering? 182
Coupling metrics 114 CodeCrawler’s Logic 148 Quantitative Quality Model 183
Validation of quality metrics 115 CodeCrawler: Pro And Contra 149 Process Attributes & External Attributes 184
Program quality metrics 116 CodeCrawler: The Case Studies 150 Internal Product Attributes 185
Metrics maturity 117 Example: Visualisation of a very large system 151 “Define your own” Quality Model 186
summary 118 Example: Flying Saucers 152 Conclusion: Metrics for Quality Assessment 187

6. Metrics, Visualisations and Interactions Conclusion & Possible Projects 153 The KISS principle 188

for Reverse Engineering 119 Bibliography 154 Trend Analysis via Change Metrics 189
Contents 120 7. Lab session — CodeCrawler 155 Conclusion: Metrics for Trend Analysis 190
Introduction 121 g object-Oriented Software Cost Estimation 156 ldentifying Refactorings via Change Metrics 191
Metr!cs 122 Topics 157 Split into Superclass / Merge with Superclass 192
Metrics and Measurements 123 Measurements & Estimates (1/2) 158 Example: Inferring the Bridge Protocol 193
Metrics for Reverse Engineering 124 Measurements & Estimates (2/2) 159 Split into Subclass / Merge with Subclass 194
Wh'Ch.Met“CS to Collect (Definitions)? 125 A Measurement-Based Estimation Process (1/3)160 Example: Adding new Functionality 195
Class size _ 126 A Measurement-Based Estimation Process (2/3)161 Move to Superclass, Subclass or Sibling Class 196
Class Complexity 127 A Measurement-Based Estimation Process(3/3) 162 Example: Introducing Layers 197
Hierarchy Layout 128 Software Process Models (1/2) 163 Split Method / Factor Common Functionality 198

Method Size129 Software Process Models (2/2) 164 Example: Creation of Template Method 199

February 9, 2000

Table of Contents V.

Conclusion: Identifying Refactorings 200 Prototype Consolidation 235 RoadMap 270
Conclusion 201 Expansion 236 A Step Back: Design Recovery 271
Questions 202 Expanded Design: Class Diagram 237 Design Recovery through Visualization 272
10. Tool Integration 203 Expanded Implementation 239 Selective Instrumentation & Filtering 273
Why Integrate Tools? 204 Consolidation: Problem Detection 240 Clustering 274
Which Tools to Integrate? 205 Consolidation: Refactored Class Diagram 241 Recognizing Patterns: example of Jinsight 275
Tool Integration Issues 206 Refactoring Sequence (1/5) 242 Summary of Visualization for Design Recovery 276
Basic Tool Architecture 207 Refactoring Sequence (2/5) 243 RoadMap 277
Help Yourself - Parser 208 Refactoring Sequence (3/5) 244 Gaudi: overview of Approach 278
Help Yourself - File Formats 209 Refactoring Sequence (4/5) 245 Gaudi: Implementation 279
Help Yourself - API 210 Refactoring Sequence (5/5) 246 Gaudi: Formulating Derived Relations 283
Help Yourself - Execution Trace 211 Conclusion (1/2) 247 Gaudi: Using Derived Relations for Querying 284
APl Example - Java 212 Conclusion: Culture shock (2/2) 248 Gaudi: Simple vs. Composed Views 285
AP Example - SNiFF+ 213 Projects and More Information 249 Gaudi: Instance Level View 286
APl Example - Rational/Rose 214 12.Using Dynamic Information for Reverse Engineering Gaudi Summary 287
Exchange Standards 215 250 Instrumentation 288
Exchange Standards - Reference Format 216 Outline 251 References 290
Exchange Standards - Openness 217 Why Dynamic Information? 252
Meta Models 218 Why Dynamic Information (cont’d)? 253
CDIF sample (propriety syntax) 219 What is Dynamic Information? 254
MOF Sample (XML syntax) 220 Static vs. Dynamic Information 255
CORBA Interface for MOF 221 Problems with using Dynamic Information 256
UML shortcomings 222 Roadmap 257
Conclusion 223 Frequency Spectrum 258
Questions 224 FSA: low vs. high frequencies 259
11. Refactoring 205 FSA: related frequencies 260
What is Refactoring? 296 FSA: specific frequencies 261
Why Refactoring? 297 Dynamic Differencing . 262
Iterative Development Life-cycle 228 Summary of Spectrum Techniques 263
Example: Rename Class 229 Rgadmap 264
Tool Support for Refactoring 230 Vlsgallzatlon] 265
Case Study: Internet Banking 231 An?mated Summar!es o 266
Prototype Design: Class Diagram 232 Ammate'd Summaries Example: Jinsight 267
Prototype Design: Contracts 233 Informat!on Mural . 268
Prototype Implementation 234 Information Mural Example: ISVis 269

February 9, 2000

Object-Oriented Software Reengineering

1. Object-Oriented Software Reengineering

Lecturers: Dr. S. Demeyer, Dr. S. Ducasse, Prof. Dr. O. Nierstrasz

with Michele Lanza, Tamar Richner, Matthias Rieger, Sander Tichelaar
WWW: http://ww. i am uni be. ch/ ~scg

Sources

[0 Software Engineering, lan Sommerville, Addison-Wesley, 5th edn., 1995

[0 Software Reengineering, Ed. Robert S. Arnold, IEEE Computer Society, 1993

IAM, U. Berne Object-Oriented Software Reengineering

http://www.iam.unibe.ch/~scg/

Object-Oriented Software Reengineering 2.

Goals of this course

The “Software Crisis” is an artefact of short-sighted software practices
[1 try to understand factors that lead to software maintenance problems

Legacy systems are “old systems that must still be maintained”
[0 study legacy systems to understand what problems they pose

Reverse Engineering
[examine ways to recover design and analysis models from existing systems

Reengineering
[1 explore techniques to transform systems to make them more maintainable

Object-Oriented Reengineering

[0 survey the particular problems and opportunities of reengineering object
oriented legacy systems

IAM, U. Berne Object-Oriented Software Reengineering

Object-Oriented Software Reengineering

Course Overview

29/10
05/11
12/11
19/11
26/11
03/12
10/12
17/12
14/01
21/01
28/01
04/02
04/02

© 0N Ok wWDNRE

I el
Ww N = O

IAM, U. Berne

Introduction

Duplicated code

Lab session — Duploc

UML extraction

Software metrics

Visualizing software metrics
Lab session — Codecrawler
Metrics in industry

Metrics and reengineering
Code repositories

Refactoring

Lab session — Refactoring browser
Exploiting run-time information

Object-Oriented Software Reengineering

Object-Oriented Software Reengineering 4,

Lehman’s Laws

A classic study by Lenman and Belady (1985) identified several “laws” of system change.

Continuing change

[0 A program that is used in a real-world environment must change, or become
progressively less useful in that environment.

Increasing complexity

[0 As a program evolves, it becomes more complex, and extra resources are
needed to preserve and simplify its structure.

IAM, U. Berne Object-Oriented Software Reengineering

Object-Oriented Software Reengineering 5.

What is a Legacy System?

legacy

A sum of money, or a specified article, given to another by will;
anything handed down by an ancestor or predecessor.

— OED

A legacy system is a piece of software that:
[0 you have inherited, and
[0 is valuable to you.

Typical problems with legacy systems are:
[0 original developers no longer available
[0 outdated development methods used
[0 extensive patches and modifications have been made
[0 missing or outdated documentation
so, further evolution and development may be prohibitively expensive

IAM, U. Berne Object-Oriented Software Reengineering

Object-Oriented Software Reengineering 6.

Software Maintenance

Software Maintenance is the “modification of a software product after delivery to correct

faults, to improve performance or other attributes, or to adapt the product to a changed
environment” [ANSI/IEEE Std. 729-1983]

Corrective maintenance (17%
fixing reported errors in the

Adaptive maintenance|(18%)

adapting the software tola new
environment (e.g., platfo

Perfective m
O/S)

implementing
non-functiq

ntenance (65%)

new functional or
al requirements

IAM, U. Berne Object-Oriented Software Reengineering

Object-Oriented Software Reengineering 7.

Why is Software Maintenance Expensive?

Various studies show 50% to 75% of available effort is spent on maintenance.

Costs can be high because:

[0 Maintenance staff are often inexperienced and unfamiliar with the application
domain

[0 Programs being maintained may have been developed without modern
technigues; they may be unstructured, or optimized for efficiency, not
maintainability

[0 Changes may introduce new faults, which trigger further changes

[0 As a system is changed, its structure tends to degrade, which makes it harder
to change

0 With time, documentation may no longer reflect the implementation

IAM, U. Berne Object-Oriented Software Reengineering

Object-Oriented Software Reengineering 8.

Factors Affecting Maintenance

Module independence

Programming language

Programming style

Program validation and testing
Quality of documentation
Configuration management techniques
Application domain

Staff stability

Age of program

Dependence on external environment
Hardware stability

N T A I B

IAM, U. Berne Object-Oriented Software Reengineering

Object-Oriented Software Reengineering 9.

What about OO?

Any successful software system will suffer from the symptoms of legacy systems.

Object-oriented legacy systems are successful OO systems whose architecture and
design no longer responds to changing requirements.

[0 The symptoms and the source of the problems are the same.
[0 The technical details and solutions may differ.

Although OO techniques promise better flexibility, reusability, maintainability etc. etc.,
they do not come for free

The claim:

A culture of continuous reengineering is a prerequisite for flexible and maintainable
object-oriented systems.

IAM, U. Berne Object-Oriented Software Reengineering

Object-Oriented Software Reengineering 10.

Definitions

“Forward Engineering is the traditional process of moving from high-level abstractions
and logical, implementation-independent designs to the physical implementation of a
system.”

“Reverse Engineering is the process of analyzing a subject system to
[0 identify the system’s components and their interrelationships and

[create representations of the system in another form or at a higher level of
abstraction.”

“Reengineering ... is the examination and alteration of a subject system to reconstitute it
in a new form and the subsequent implementation of the new form.”

— Chikofsky and Cross [in Arnold, 1993]

IAM, U. Berne Object-Oriented Software Reengineering

Object-Oriented Software Reengineering

Reverse and Reengineering

Buieaulbus premio
Reverse engineering f

Requirements

W

IAM, U. Berne

Reengineering

Designs (models)

System (software)

11.

New requirements

\

Object-Oriented Software Reengineering

Object-Oriented Software Reengineering 12.

Goals of Reverse Engineering

Cope with complexity

[0 need techniques to understand large, complex systems
Generate alternative views

[0 automatically generate different ways to view systems
Recover lost information

[J extract what changes have been made and why
Detect side effects

[0 help understand ramifications of changes
Synthesize higher abstractions

[0 identify latent abstractions in software
Facilitate reuse

[1 detect candidate reusable artifacts and components

— Chikofsky and Cross [in Arnold, 1993]

IAM, U. Berne Object-Oriented Software Reengineering

Object-Oriented Software Reengineering 13.

Reverse Engineering Techniques

“Redocumentation is the creation or revision of a semantically equivalent representation

within the same relative abstraction level.”

[]
[]
[]

pretty printers
diagram generators
cross-reference listing generators

“Design recovery recreates design abstractions from a combination of code, existing

documentation (if available), personal experience, and general knowledge about
problem and application domains.” [Biggerstaff]

[]

(I O

software metrics

browsers, visualization tools
static analyzers

dynamic (trace) analyzers

IAM, U. Berne Object-Oriented Software Reengineering

Object-Oriented Software Reengineering 14.

Goals of Reengineering

Unbundling

[split a monolithic system into parts that can be separately marketed
Performance

O “first do it, then do it right, then do it fast”
Port to other Platform

0 the architecture must distinguish the platform dependent modules
Design extraction

[J to improve maintainability, portability, etc.
Exploitation of New Technology

0 i.e., new language features, standards, libraries, etc.

IAM, U. Berne Object-Oriented Software Reengineering

Object-Oriented Software Reengineering 15.

Reengineering Techniques

“Restructuring is the transformation from one representation form to another at the same
relative abstraction level, while preserving the system’s external behaviour.”

[0 automatic conversion from unstructured (“spaghetti”) code to structured (“goto-
less™) code

[source code translation

“Data reengineering is the process of analyzing and reorganizing the data structures (and
sometimes the data values) in a system to make it more understandable.”

[1 integrating and centralizing multiple databases
[0 unifying multiple, inconsistent representations
[1 upgrading data models

Refactoring is restructuring within an object-oriented context
[0 renaming/moving methods/classes etc.

IAM, U. Berne Object-Oriented Software Reengineering

Object-Oriented Software Reengineering 16.

Architectural Problems

Insufficient documentation
[0 most legacy systems suffer from inexistent or inconsistent documentation

Duplicated functionality
0 “cut, paste and edit” is quick and easy, but leads to maintenance nightmares

Lack of modularity
[1 strong coupling between modules hampers evolution

Improper layering
[1 missing or improper layering hampers portability and adaptability

IAM, U. Berne Object-Oriented Software Reengineering

Object-Oriented Software Reengineering 17.

Refactoring Opportunities

Misuse of inheritance
[0 for composition, code reuse rather than polymorphism

Missing inheritance
[0 duplicated code, and case statements to select behaviour

Misplaced operations
[0 unexploited cohesion — operations outside instead of inside classes

Violation of encapsulation
[0 explicit type-casting, C++ “friends” ...

Class misuse
[0 lack of cohesion — classes as namespaces

IAM, U. Berne Object-Oriented Software Reengineering

Object-Oriented Software Reengineering

Tools Architectures

18.

“Most tools for reverse engineering, restructuring and reengineering use the same basic

architecture.”

/

Software
work product

Parser,
Semantic
analyzer

View

composer(s)

Information
base

T~

New view(s)
of product

IAM, U. Berne

Object-Oriented Software Reengineering

Object-Oriented Software Reengineering 19.

Ssummary

0 We will always have legacy systems, because valuable software systems
outlive their original requirements

[0 Early adopters of OO methods now find themselves with OO legacy software

[Reverse engineering techniques help to recover designs from legacy software

[0 Reengineering techniques are needed to restructure valuable legacy software
so that it can meet new requirements, both now, and in the future

IAM, U. Berne Object-Oriented Software Reengineering

Object-Oriented Software Re-Engineering: Code Duplication 20.

Code Duplicaiion

a.k.a. Software Cloning, Copy&Paste Programming, Code Scavenging

Matthias Rieger
FAMOQOS Project, Software Composition Group
University of Berne
ri eger @am uni be. ch

Universitat Bern Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication

Overview

1 O

What is Code Duplication?

— How Much Code Is Copied

— What Do We Call Copied Code

The Life and Times of Copied Code

— How Code Gets Copied

— Why Code Gets Copied

— What Problems Stem From Copied Code
We have to detect Duplicated Code

— Simple Detection Approach

— Detection Using Parameterized Matches
— Detection Using Abstract Syntax Trees

Refactoring Duplicated Code
Visualizing Duplicated Code

Universitat Bern

21.

Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication

Code is Copied

NS IMETHODIMP
L ocationl mpl::GetPathname(nsString
{

nsAutoString href;
nslURI *url;
nsresult result = NS _OK;

result = GetHref (href);
if (NS_OK == result) {
#ifndef NECKO
result = NS_NewURL (&url, href);
#else
result = NS_NewURI(&url, href);
#endif // NECKO
if (NS_OK == result) {
#ifdef NECKO
char* file;
result = url->GetPath(&file);
#else
const char* file;
result = url->GetFile(&file);
#endif
if (result ==NS_OK) {
aPathname.SetString(file);
#ifdef NECKO
nsCRT::free(file);
#endif

Universitat Bern

467]
468]
469
[470]
[471]
472]
[473]
[474]
[475]
[476]
[477]
[478]
[479]
[480]
[481]
482]
483]
[484]
485]
486]
487]
488]
489
[490]
491
[492]

[493]

NS IMETHODIMP
L ocationl mpl:: SetPathname(const nsString

nsAutoString href;
nslURI *url;
nsresult result = NS _OK;

result = GetHref(href);
if (NS_OK == result) {
#ifndef NECKO
result = NS_NewURL (&url, href);
#else
result = NS_NewURI(&url, href);
#endif // NECKO
if (NS_OK == result) {
char *buf = aPathname. ToNewCString();
#ifdef NECKO
url->SetPath(buf);
#else
url->SetFile(buf);
#Hendif
SetURL (url);
delete]] buf;
NS RELEASE(url);

}
}

497]
498
499
500
501
502
503
504
505
506
507]
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

523

22.

[0 Small Example from the Mozilla Distribution (Milestone 9)

NS IMETHODIMP
L ocationlmpl::GetPort(nsString& aPo
{

nsAutoString href;
nslURI *url;
nsresult result = NS _OK;

result = GetHref (href);
If (NS_OK == result) {
#ifndef NECKO
result = NS_NewURL (&url, href);
#else
result = NS_NewURI(&url, href);
#endif // NECKO
If (NS_OK == result) {
aPort.SetL ength(0);
#ifdef NECKO
PRINt32 port;
(void)url->GetPort(& port);
#else
PRUInNt32 port;
(void)url->GetHostPort(& port);
#endif
if (-1!=port) {
aPort.Append(port, 10);

}
NS _RELEASE(url);

Extract from / doni sr ¢/ base/ nsLocat i on. cpp

Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication

How Much Code is Duplicated?

[1 Usual estimates: 8 to 10% in normal industrial code
[Our Research:

Universitat Bern

Case Study Language LOC Duplication %
gcc C 460'000 | 8.7% (5.6%)
Database Server | Smalltalk 245'000 | 36.4% (23.3%)
Payroll Cobol 40'000 | 59.3% (25.4%)
Message Board Python 6500 29.4% (17.4%)

23.

Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication 24.

What Is Considered To Be Copied Code?

Duplicated Code = Source code segments that are found in different places of a system.
[0 in different files
[inthe same file but in different functions
[J inthe same function

The segments must contain some logic or structure that can be abstracted, i.e.

. . IS not considered
conputelt(a,b,c,d); conputelt(w, x,Y, z); duplicated code.

O o could be abstracted
getlt(hash(tail(z))); getlt(hash(tail (a))); to a new function

[0 Copied artefacts range from expressions, to functions, to data structures, and
to entire subsystems.

Universitat Bern Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication 25.

How Code Gets Copied

Programming Truism: | copy, you copy, we all copy!

A possible scenario from Software Maintenance:

14.
15.
16.
17.

18.
19.
20.

New functionality similar to the one provided by a sub-component C is needed.
C could be extended to assimilate the new functionality, but ...

... this requires lengthy and difficult analysis of C

... and significant regression testing to ensure functioning of C in old contexts.

Add time pressure.

A copy of C is made.
The component is tailored to provide the new functionality

Code that is not understood and therefore cannot be deleted remains as red
herring or even dead code.

Universitat Bern Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication 26.

Why Code Gets Copied

Causes apart from time pressure that lead to copy&paste programming:

[]

[]

Laziness

Producing reusable software takes a lot of effort.
Efficiency Considerations

Procedure Calls can cost too much.

Code Ownership

| cannot adapt my neighbours code, so | must copy it.
Maintaining Versions For Multiple Platforms
Separate files instead of a lot of #i f def ’s.
Programmer Productivity Evaluation Methods

It is easy way to boost the number of lines of code produced by copying
them.

Universitat Bern Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication 27.

What Problems Stem From Copied Code?

General negative effect:
[0 Code bloat

Negative effects on Software Maintenance:
[0 Copied Defects
[0 Changes take double, triple, quadruple, ... work
[0 Red herrings and dead code
[0 add to the cognitive load of future maintainers
[0 Copying as additional source of defects
[0 Errors in the systematic renaming produce unintended aliasing

Metaphorically speaking:
Software Aging, “hardening of the arteries”, “Software Entropy” increases
[0 even small design changes become very difficult to effect

Universitat Bern Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication 28.

Code Duplication: Problem Statement

Frequent consolidation to keep a system flexible and easier to expand:
[Reorganize system components
[0 Refactor functionality
[1 Rationalize interfaces

[1 Remove Duplicated Code

Nontrivial problem:
No a priori knowledge about which code has been copied

[1 Detect Duplicated Code

and for that we need tools...

Universitat Bern Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication

‘ Code Duplication Detection

How do we find all clone pairs among all possible pairs of segments?

)
©

- 11
\

'j

!

[L

|l

exical Equivalence =

I

I
0p
S
o
=,
R
D
[Tl
@.
<.
<
D
)
=
o
o)

||) T
I

!

[

l“"'ll

Semantic Equivalence =
[=——] |—|
| | | | =

Universitat Bern

l
|

|

I

Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication 30.

General Schema of Detection Process

Transformation Comparison
Sour ce Code Transf ormed Code Dupl i cati on Data
Author Level Transformed Code C‘?ergr?r?irésuoen
Johnson, 1994 Lexical Substrings String-Matching
Rieger et. al., 1999 Lexical Normalized Strings String-Matching
Baker, 1992 Syntactical Parameterized Strings String-Matching
Mayrand et. al., 1996 Syntactical Metric Tuples Discrete comparison
Kontogiannis, 1996 Syntactical Metric Tuples Euclidean distance
Baxter et. al., 1998 Syntactical AST Tree-Matching

Universitat Bern Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication 31.

Simple Detection Approach |

Assumption: Code segments are just copied and changed at a few places

Code Transformation Step
[0 remove white space
[1 remove comments
[0 remove lines that contain uninteresting code elements (e.g. just ‘el se’ or ‘}’)

/] assign sane fastid as contai ner fasti d=NULL;
fastid = NULL; const char*fi dptr=get Fasti d();
const char* fidptr = getFastid(); I f(fidptr!=NULL){
if(fidptr !'= NULL) { intl=strlen(fidptr);
int | =strlen(fidptr); fasti d=newchar[| +1];

fastid = new char[| +1];
char *tnp = (char*) fastid, for(inti=0;i<l;i++)
for (int i =0;i<l;i++) tnp[i]=fidptr[i];

tnp[i] = fidptr[i]; tnp[l]="\0";
tnp[1] ="\0;

char*t np=(char*) fasti d;

Universitat Bern Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication 32.

Simple Detection Approach Il

Code Comparison Step
[0 Line based comparison (Assumption: Layout not changed during copying)
[0 Compare each line with each other line.

— Reduce search space by hashing:

1. Preprocessing: Compute the hash value for each line
2. Actual Comparison: Compare all lines in the same hash bucket
[0 Collect consecutive matching lines into match sequences

Evaluation of the Approach

Advantages |language independent

Disadvantages | misses copies with (small) changes on every line

Universitat Bern Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication 33.

Detection Using Parameterized Matching |

Assumption: Programmers copy code segments and systematically replace variable
names to fit in the new context.

Code Transformation Step
[0 Lexical analysis to generate a token stream
[0 Replace the identifiers of tokens that represent variables by generic names

fastid = NULL; PO = NULL;
const char* fidptr = getFastid(); const char* Pl1l= getFastid();
if(fidptr = NULL) { i f(P1 !'= NUL) {
int | = strlen(fidptr); int P3 = strlen(Pl);
fastid = new char[l +1] ; PO= new char [P3+1] ;
char *tnp = (char*) fastid, char *P4 = (char*) PO;
for (int i =0;i<l;i++) for (int P5=0; P5<P3; P5++)
tnp[i] = fidptr[i]; P4[P5] = P1[P5];
tnp[l] ="'\0"; P4[P3] ="'\0";

[0 Token stream regarded as one large string

Universitat Bern Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication 34.

Detection Using Parameterized Matching Il

Code Comparison Step
[0 Find all maximal matching substrings (by using Suffix Tries)

X =Yy - Z; X =b - c;
y=b

1 f (y>z) m= 1, 7Z=C I f (b>c) n = 1;
m=n

h = f(x); } { h = f(x);
y=c
y = X; cC = X;

Evaluation of the Approach

finds large range of duplication
can generate code that unifies parameterized matches

requires lexical analysis, thus language dependent
algorithmically complicated

Advantages

Disadvantages

Universitat Bern Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication 35.

Detection using Abstract Syntax Trees |

Idea: Abstract view on the code is not disturbed by accidental properties like layout,
parameter names or even operand order.

ASTs are handy format for a large number of computations

Code Transformation Step
[0 Parse source code into an abstract syntax tree

fastid = NULL;

const char* fidptr = getFastid(); j X{‘
if(fidptr !'= NULL) {
int | = strlen(fidptr); \m\p
fastid = new char[| +1];
char *tnp = (char*) fastid; i~ gl 0
for (int i =0;i<l;i++) retoren —
tnpli] = fidptr[il; T E
vy - [
} trptl] o (part of the for-loop)

[0 Calculate tuples of metric values for specific subtrees (e.g. functions)

Universitat Bern Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication 36.

Detection using Abstract Syntax Trees Il

Code Comparison Step
[1 Tree matching
or
[0 Comparison of metrics tuples (Euclidean distance)

Evaluation of the Approach

- fine grained similarity analysis is possible
Advantages [1 approach finds largest range of duplication
- code generation can be done directly from the AST

- very language dependent

Disadvantages | scalability is a problem since ASTs require la lot of memory

Universitat Bern Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication 37.

Refactoring Duplicated Code |

The Mantra of the Ideal Programmer

Write every piece of logic once and only once (Kent Beck)

Refactoring in a Class Hierarchy

[If you have a piece of duplication in methods of the same class
[refactor code into a function or method

[If you have pieces of duplication in two sibling subclasses.
[0 refactor code into a method and put it into the common superclass

[If the code in the subclasses is not the same but just similar, (e.g. the same
algorithmic structure with some differences in the details)

[1 consider applying the Template Method Pattern (Gamma et. al., 1995)

Universitat Bern Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication

Refactoring Duplicated Code |l

Automatic refactoring of Java clones using the strategy design pattern
[0 O oneHandl er class captures the duplicated functionality
[0 1dStrat egy interface connects the CloneHandler to the context from which it

is called

38.

O DiffStrategy interface holds the variant functionality that occurs in the

different clones

<<interface>>
DiffStrategy - <<uses>> CloneHandler <<uses>>
DiffInterface() ClonedMethod()
.............. A

Concrete diff strategy 1

<<interface>>
|ldStrategy

Idinterface() A

...................

OriginalClass1

Diffinterface()

Concrete diff strategy 2

ClonedMethod1()
IdInterface()

OriginalClass?2

ClonedMethod2()
IdInterface()

\

Diffinterface()

Universitat Bern

Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication 39.

Visualization of Duplicated Code

Scatterplots-Technique from DNA Analysis
[0 Code is put on vertical as well as horizontal axis
[0 A match between two elements is represented as a dot in the matrix

Interpretation of Dot Configurations

abcdefabcdef abcdefabxyef abcdeabxycde axbc xdexfgxh
® ® ® ® ® ® ®
o o o ® o o o 6 o o
.O .O .O .O .O .O
o o o o o [e 60 o
® .O ¢ ® .O ¢ 'O .O .O
o o ® o o e 6 o _©°
.O .O .O o .O .O
o o o o o o ® 6 o o
[) [[) [[) [[
Exact Copies Copies with Inserts/Deletes Repetitive
Variations Code Elements

[0 Visualization allows intuitive insights into the duplication situation
[Easy source code access is important

Universitat Bern Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication 40.

Visualization of Copied Code Sequences

File A File B
o . .
-
File A
~ \"'\. |
T
Detected Problem: - -
File A contains two copies of File B o o | Nl
a piece of code. NG
File B contains another copy LN
of this code. AN

All Examples on this an the following slides are from an industrial case study (1 Mio LOC C++ System)

Universitat Bern Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication 41.

Visualization of Repetitive Structures

Detected Problem:

4 Obiject factory clones:
a switch statement over
a type variable is used
to call individual
construction code.

Possible Solution:
Strategy Method

Universitat Bern Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication

Visualization of Cloned Classes

42.

Class A Class B
SRR o
Do 2 L -
N . RN
CIaSS A ¥, i
'."-._ ", . -""\-._" L
Detected Problem: < i
Class A is an edited b T Lo
copy of class B: \\ - NEE a L
Editing & Insertion B o :
ClassB | . - |
Typical case of code TN o
scavenging. s \

Universitat Bern

Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication 43.

Visualization of Clone Families

Overview Detall

F 3 ¥ £33 T 3 £33
ok ke + o+ Tt [oy + o+ Frbt e Tt 4
4 4o+ AT 4o+ o + E Ty ++ 4o+ o
ok ++ + ++ + + + ++
FokkE bk A + e 4+ ke + e + e + + ++
hEEE b A + + hEE + + + + + kEE +
ke bt Tt Tt Tt Tt Tt e ot Tt
ok Tt Tt ++ Tt Tt Tt Tt ++ Tt
s Fhbt e paaey Tt e e + paaey s
+ + b + o + b) + b
+ + ++ + +
T kR bE ST o ST + T ST ST
e + ++ 4+ Tt
+ ++ + ++ ++ ++ Tt Tt ++
+ ke + e + + ke ++ + b + e + + ke + e o
++ o kEEE pa Tt Tt Tt pa pa Tt pa -
R TR Tt 4+ Tt 4+ Tt Tt Tt Tt -
e E Tt s Tt i Tt T T Tt "
-+ +) -+ o -+ b) -+ b
+ + + + + + ++ +
o) + STy + Y T ST STy +
+ + ok + + ++ ++ ++ +
+ ++ - + ++ ++ ++ + 4
4+ 4+ ke ++ A 4+ ke L + o A +
+ kEE + 4o+ e + + + + + +
b bt b b bt [ead [end + o+ b [end
+ S T ++ ++ ++ ++ + ++ ++
Tt e + e Tt Tt + + e +
b ++ ++ + o+ ++ b ++) + ++ s
fe & ++ o+ + o+ ++ o ++ + + o+ o+
T+ s T + EEaE T 4 oEE + ke + + i+ EE
e ++ ++ o ++ ++ ++ ++ + ++
Tt 4+ b 4 ke R T R T ke 4+ ke e + 4+ ke
4+ ke + e + 4 ke + + b + + + kEE + .
bt bt e o hEEE Tt Tt e P bt e -
Tt Tt Tk AR Tt 4+ Tt Tt Tt Tt N
s paaey Tt s Tt e s + s s -
+ +) + o 4)) + b .
b + + + + ++ +
o) o STy + ST T T STy o
Tt + + 4+ Tt Tt +
s + ++ ++ 4 ++ ++ ++ ++ +
4k 4 ke + 4+ ke + ++ + e + 4+ ke ++
+ kEE + e + okEE FokEEE b ke + + okEE e
Tt Tkt bt Fhbd b bbEE b b o Tt b
4+ + Tt + e Tt Tt ++ 4+ Tt
++ Tt) T o p) + 4+ b
+ + ++ + + + + + +
fe & ++ o s ++ + o+ N o+ s o
+ o+ s T s EEaE T + ke e oEE T s T
+ ++ + ++ ++ o ++ + 4
4+ 4+ b + o 4+ ke B T R o o +
Y + e + + kEE + bk b + ++ +
Tt Tt ++ Tt Tk kbEE ++ + Tt ++
e Tt Tt Tt Fhb hbbbEE Tt Tt Tt Tt -
Tt Tt + e Tt s Tt + e Tt P
+ +) + + + b) + b -
b+ + ++ ++ +
T o STy T ST ST L T T S 2 T T .
Tt + 4+ bk
o+ + + ++ + + L ++ + ++
4k 4+ ke ++ o + L + e o o +
+ kEE + Tt T Tt +
b bt [e 4+ 4+ I scaE R ST Y + b [end
+ Fhb b hEE + ++
Tt e ++ e 4 ++ + 4+ e +
b ++ + + o+ + b + + o+ + o+ + + o+
[+ ++ o+ + o+ o+ + o+
++ ++ T + EEaE T ER T e+ oEE + + T
Tt ++ + + + o + +
+ ++ + ++ ++ + ++ ++ ++ +
+ okEE + okEE FE EEE e o A
+ kEE + + + kEE + b+ ++ o hEE + N
b Tk b b e b + b b b + b N
+ + + + + EEE + +
Tt e + Tt b Tt + + Tt +
b ++ ++ + o+ ++ b ++) + o+ ++ s .
fe & ++ o+ + o+ ++ o ++ + + o+ o+
T+ s T + o+ EEaE T 4 oEE + ke + + i+ EE Lo
e ++ ++ + ++ ++ ++ ++ o ++
Tt 4+ b 4 ke + 4 ke ke 4+ ke e R T R T
4+ ke + e + + + + b + + 4 ke +
bt bt e bt Tt Tt e P o hEEE e
Tt Tt Tt Tt Tt 4+ Tt Fhk Ak hEE Tt
s paaey Tt s Tt e s + s s
+ +) + o 4)) + b
b + + + + ++ + ++ + +
o Y + STy + ST T ST STy +
Tt + ++ + + Tt ++ + o
+ ++ + + ++ ++ + L
4+ 4+ ke + A + e + o A + e
+ kEE + + + + + + + + o okEEE
b bt fe o b 4+ e et Tk b N
+ + ++ + 4 hEE
Tt e e e Tt e + e +
+ o+ + + 4 + + o+ + o+

20 Classes implementing lists for different data types

Universitat Bern Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication 44,

Ssummary

[1 Duplicated code is a real problem
[0 Duplicated Code makes a system progressively harder to change

[0 To Detect Duplicated Code is a hard problem
[1 tool support is needed

[1 Refactoring duplicated code can be done automatically

[Code Duplication Detection and Removal is an active research area

Universitat Bern Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication 45,

References

M. Balazinska et. al. Partial Redesign of Java software Systems Based on Clone
Analysis, Proceedings Sixth Working Conference on Reverse Engineering, pages 326-
336, IEEE Computer Society, 1999.

Brenda S. Baker. On Finding Duplication and Near-Duplication in Large-Software-
Systems. In Proceedings Second Working Conference on Reverse Engineering, pages
86-95, IEEE Computer Society, 1995.

Jonathan Helfman. Dotplot Patterns: A Literal Look at Pattern Languages. TAPOS,
2(1):31-41,1995.

J Howard Johnson. Substring Matching For Clone Detection and Change Tracking. In
Proceedings of the International Conference on Software Maintenance (ICSM), pages
120-126, 1994.

Kostas Kontogiannis. Evaluation Experiments on the Detection of Programming Patterns
Using Software Metrics, In Ira Baxter, Alex Quilici, and Chris Verhoef, editors,
Proceedings Fourth WCRE, pages 44-54, IEEE Computer Society, 1997.

Universitat Bern Code Duplication

Object-Oriented Software Re-Engineering: Code Duplication 46.

3. Lab session — Duploc

Universitat Bern Lab session — Duploc

Object-Oriented Software Reengineering 47 .

4. Design Extraction

War story:
“Company X is in trouble.
Their product is successful (they have 60% of the world market).
But:
- all the original developers left,
- there is no documentation at all,
- there is no comment in the code,
- the few comments are obsolete,
- there is no architectural description,...
And they must change the product to take into account new client requirements.
They asked a student to reconstruct the design.”

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 48 .

Goals
[1 Design is not code displayed with boxes and arrows
[1 Design extraction is not trivial
- scalability
- not fully automatized -> needs human intervention to filter out
[0 Give a critic view on hype: “we read your code and produce design”
[0 Show that UML is not that simple and clear
[0 Show that conventions for the interpretation are crucial

- Language mapping
- UML interpretation

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 49 .

Outline

Why Extracting Design? Why Uml|?
Basic Uml Static Elements
Experimenting With Extraction
Interpreting Uml

Language Specific Issues

Tracks For Extraction

Extracting Intention: Design Pattern
Extraction For The Reuser
Extraction of Interaction

Conclusion

[T Ay

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 50.

Why Design Extraction is needed?

Documentation inexistent, obsolete or too prolix
Abstraction needed to understand applications (complexity)
Original programmers left

Only the code available

N I I

Why UML?

Standard

Communication based on a common language

Can support documentation if we are precise about its interpretation
Extensible

Hype and market!

]

N I I

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 51.

UML (Unified Modelling Language)

What is the Unified Modelling Language?
- Successor of OOAD&D methods of late 80 & early 90
- Unifies Booch, Rumbaugh (OMT) and Jacobson [Booc98a] [Rumb99a]
- Currently standardized by OMG

- UML = a modelling language and not a methodology (no process)
- UML defines

- a notation (the syntax of the modelling language)
EX:

Customer

name
address

creditRating(): String

- a meta-model = a model to define the “semantics” of a model
(what is well-formed), defines in itself but weak!

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering

The Little Static UML

52.

Order N an Association Customer
, name
dateReceived 4 address
iIsPrepaid < some attributes
number: String creditRating(): String
price: Money AN
dispatch() <—— some operations
close()
1 sales
rep
0.1 + Corporate Customer Personal
Employee | — contactName Customer
line items | « creditRating creditCard#
creditLimit
OrderLine remind()
quantity. Tnteger | » 1 billForMonth(Integer)
price: Money Product \
iIsSatified: Boolean
a Class

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Design Extraction

Object-Oriented Software Reengineering 53.

Road Map

Why Extracting Design? Why Uml|?
Basic Uml Static Elements

[0 Experimenting With Extraction
Interpreting Uml

Language Specific Issues

Tracks For Extraction

Extracting Intention: Design Pattern
Extraction For The Reuser
Extraction of Interaction
Conclusion

1 O

O O0O0-0od

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering

Let us practice!

A small example in C++: A Tic-Tac-Toe Game!
You will do it now........
But:
[0 do not interpret the code
[0 do not make any assumption about it
[0 do not filter out anything

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

54 .

Design Extraction

Object-Oriented Software Reengineering 55.

A First View

; Error EventType Message
Board PlayerlD
myWidth :|int = (other.myWidth)
myHeight [_int|= (othgn.myHeight) 1
idth() T
Wi -my
M S G height
Board 1
Board(-my
~Board Piece = (id)
putPiece() :
Boardgam operator =() -my myType dint= (other.nlyType) .1
etPiece() EmyBltmap : const char* = (other.myBitmap
myWidth :|int ¥ (wigith)
myHeight |[Sint=-(hei type() Driver tBoard()
myEmptyCount : int = (width * height i etEvent
YEMPYY ? (ght) tman(mmyPIayers : Player** 0
ec) essage()
Piece() 1 mmyNumOfPIayerS int 8p(3)layers)
Piece() mmyQun it =(0) drawPiece()
33?5? (())r 0 Driver() (:::;vsze;;(s)tring()
$heighy() run(.) errorString()
operaf@ =%() ~D[')Ver()
init
S board() oppiRiAAitio handleEvent()
(from BoardWin uit()
_my _my
Gomoku 1
& myPiecesToWin : int = (piecesToWin) 0./1 Board
1 .:. . =
.Gomoku()] imgi)lfr\;zntlc\:/l:jrl:t..lic::g: (OS)tructureNl
= Gomoku() = MYT IXMap :
Ref myW|dth Jint
B myWidth :int = (width) myHeight]: int
myDepth : int

= myHeight | int = (height)
=+ mvPiecesToWin : int = (piecesToWin)

checkWinner() TicTacToe

myWhite :long

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering

Evaluation

We should have heuristics to extract the design.

Try to clean the previous solution you found
Try some heuristics like removing:

[]

O O O

private information,

remove association with non domain entities,
simple constructors,

destructors, operators

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

56 .

Design Extraction

Object-Oriented Software Reengineering 57 .

A Cleaner View

RefGomoku Board Player

play() ESwidth() redraw()
RefGomoku() .height() Plaéer()d()
i Board() setBoar
lid
ézrlngover() 1 IputPiece() &‘ getEvent()

turn() 1 Boardgame / I operator =() | 1| Bmessage()
winner() play() [18 getPiece() error().
board() .Boardgame() 1 1 drawPlece()

=% checkField() [Svalid()
=5 checkWinner() 1 | [SgameOver()

t turn() i 1
z 1 winner() 4
board() 1 1 BoardWindow
PlayerlD | #m 1 Error Message BoardWindow()
putPiece()
Gomoku ~BoardWindow()
4 putText()
G ki I .
Ggmgkzg Driver 0..1 clear()
ay() Driver() - [SgetEvent()
A run() 1oce width()
i checkField(~Driver() type() height()
CheCkWInner() init() bi.tmap() 1 1 Pixmaplnfo 0.1 addPiece()
4 handleEvent() Z;)Zi‘:gr L . (from BoardWindow)
| quit() $width()
VierGewinnt $height()
S vierGewinnt() . operator ==()
play() TicTacToe - operator !=()
valid() IS TicTacToe()

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering

Road Map

[]

1 O

O O0O0f-0anQ

Why Extracting Design? Why Uml|?
Basic Uml Static Elements
Experimenting With Extraction

[Interpreting Uml

Language Specific Issues

Tracks For Extraction

Extracting Intention: Design Pattern
Extraction For The Reuser
Extraction of Interaction
Conclusion

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

58 .

Design Extraction

Object-Oriented Software Reengineering 59.

Three Essential Questions

When we extract design we should be precise about:

[0 What are we talking about? Design or implementation?
[0 What are the conventions of interpretation that we are applying?

[0 What is our goal: documentation programmers, framework users, high level
views, contracts

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 60 .

Interpreting UML

UML purists do not propose different levels of interpretation, they refer to the UML
semantics!

[0 Levels of interpretations are not of UML but there are necessary!

What is the sense of representing subclassing based inheritance between
two classes using generalization?

Dictionary is a subclass of Set in Smalltalk (subclassing)
but a Dictionary is not a subtype nor generalization of Set

So at the minimum we should have:

[0 Clear level of interpretation + Clear conventions + Clear goal + UML
extensions: stereotypes

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 61 .

Levels of Interpretations: Perspectives

Fowler proposed 3 levels of interpretations called perspectives [Fowl97a].
- conceptual
- specification
- implementation

Three Perspectives:

[0 Conception: we draw a diagram that represents the concepts that are somehow
related to the classes but there is often no direct mapping.

[0 Specification: we are looking at interfaces of object not implementation, types
rather than classes. Types represent interfaces that may have many
implementations

0 Implementation: implementation classes

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 62 .

Attributes in Perspectives

Syntax:
visibility attributeName: attributeType = defaultValue
+ name: String

Conceptual:
Customer name = Customer has a name

Specification:
Customer class is responsible to propose some way to query and set the name

Implementation:
Customer has an attribute that represents its name

Possible Refinements
Attribute Qualification - Immutable: Value never change
- Read-only: Client cannot change it

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 63 .

Operations in Perspectives

Syntax: visibility name (parameter-list).return-type
+ public, # protected, - private

- Conceptual: principal functionality of the object. It is often described as a sentence
- Specification: public methods on a type
- Implementation: methods

Operations can be approximate to methods but they are more like abstract methods

Possible Refinements:
-Method qualification: Query (does not change the state of an object)
Cache (does cache the result of a computation), Derived Value (depends
on the value of other values), Getter, Setter

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 64 .

Associations

- Represent relationships between instances

- Each association has two roles: each role is a direction on the association.
- a role can be explicitly named, labelled near the target class

if not named from the target class and goes from a source class to a target class
- a role has a multiplicity: 1, 0, 1.*, 4

p— Lineltems = role of direction Order to OrderLines
raer

dateReceived Lineltems role = OrderLine role
isPrepaid .
AUMber: String One Order has several OrderLines
price: Money

dispatch()
close()

1

Lineltems *

OrderLine
quantity: Integer
price: Money
isSatified: Boolean

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 65 .

Associations: Conceptual Perspective

Conceptual Perspective: associations represent conceptual relationships between
classes

Customer

name
address

Order * 1

dateReceived
isPrepaid

number: String creditRating(): String
price: Money

dispatch()
close()

1

*

OrderLine

quantity: Integer * 1
price: Money Product
isSatified: Boolean

An Order has to come from a single Customer.

A Customer may make several Orders.

Each Order has several OrderLines that refers to a single Product.
A single Product may be referred to by several OrderLines.

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 66 .

Associations: Specification Perspective

Specification Perspective: Associations represent responsibilities

Order . 1 Customer

Implications:

- One or more methods of Customer should tell what Orders a given Customer has made.
- Methods within Order will let me know which Customer placed a given Order and what
Line Items compose an Order

Associations also implies responsibilities for updating the relationship, like:
- specifying the Customer in the constructor for the Order
- add/removeOrder methods associated with Customer

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 67 .

Arrows: Nagivability

Order * 1 ppp—

dateReceived address
isPrepaid
number: String creditRating(): String
price: Money

dispatch()
close()

1

*

OrderLine
quantity: Integer * 1
price: Money
isSatified: Boolean

Product

No arrow = navigability in both sides or unknown
[conventions needed!!

- Conceptual perspective: no real sense
- Specification perspective: responsibility

an Order has the responsibility to tell which Customer it is for but Customer don't
- Implementation perspective:

an Order points to a Customer, an Customer doesn’t

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering

68 .

Generalization

UML semantics only supports generalization and not inheritance.

Customer

creditRating(): String

AN

Corporate Customer

Personal

creditRating()
remind()

billForMonth(Integer)

Customer

creditRating(

Conceptual: What is true for an instance of a superclass is
true for a subclass (associations, attributes, operations).

Corporate Customer is a Customer

Specifications: interface of a subtype must include all
elements from the interface of a superclass.

Implementation: Generalization semantics is not inheritance. But we should interpret it
this way for representing extracted code.

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Design Extraction

Object-Oriented Software Reengineering

Road Map

N I I

O OO0

Why Extracting Design? Why Uml|?
Basic Uml Static Elements
Experimenting With Extraction
Interpreting Uml

[1 Language Specific Issues
Tracks For Extraction

Extracting Intention: Design Pattern
Extraction For The Reuser
Extraction of Interaction
Conclusion

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

69 .

Design Extraction

Object-Oriented Software Reengineering

Need for a Clear Mapping

UML
[0 language independent even if influenced by C++
[0 fuzzy (navigability, package...)
[0 We should define how we interpret it
[0 Define some conventions

In C++, examples show that:
Boar d& board()
Boar d& operator =(const Board& other) throw (const char*);

board(): Board
Pi ece* nyMap;
myMap: Piece
cl ass Gonoku: public Boardgane {

«public inherits»

virtual void checkWnner(int x, int y);

checkWinner
static int wdth();

width:Integer

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

70 .

Design Extraction

Object-Oriented Software Reengineering 71.

Private you said?! Which one?

What is the semantics of private, protected and public.
IS it class-based (C++) or instance based (Smalltalk)?
in C++: - any public member is visible anywhere in the program
- a private member may be used only by the class that defines it
- a protected member may be used by the class that defines it or its subclasses
class based private
in Smalltalk: - instance variables are private = C++ protected
- instance based private
- methods are public
in Java class based like C++ but package rules:
- a member with package visibility may be accessed only by instances of other
classes in the same package
- a protected member may be accessed by subclasses but also by any other
classes in the same package as the owing class
=> protected is more public than package
- classes can be marked as public or package
a package class may be used only by other classes in the same package

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 72 .

Class Method Inheritance?!

Does it mean that CustomizedBoard can be instantiated

. Board
mn 1 f)
by Ca”mg Board(Player 1) Board (s String):Board
JZAN
In Smalltalk: Yes this is normal inheritance between
(meta) C|asses_ CustomizedBoard

In Java and C++: No there is no inheritance between non-default class constructor.
Cust om zedBoard i nstance = new Qustom zedBoard() -> Board() is called
Cust om zedBoard i nstance = new Board(“player 1”) -> does not work

[1 Conventions needed

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 73.

Some Possible Smalltalk Conventions

0 In Smalltalk all methods returns self per default, so you may choose to only
specify return type if it is not the same as the class.

[0 Attributes are all private
[0 All methods are public but there are ‘private categories’
[0 How do I distinguish between class instance variables and instance variables of

the class?
[0 UML can be confusing when classes are objects too
- uniquelnstance (c Class): Scheduler
returns an instance of Scheduler class
- defaultWindowClass (): Class
returns the class window instance of class Class

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 74 .

Stereotypes:. to Represent Conventions!

Mechanism to specialize the semantics of the UML elements
[New properties are added to an element
[0 When a concept is missing or does not fit your needs select a close element and

extend it.
«GUI»
BoardWindow Boérd
+ BoardWindow(String.Integer, Board (s String):Board
Integer.Integer.Integer,String) N

+putPiece(x Integer, y Integer, p Piece) <<inherits protected>>

+putText(x Integer, y Integer, t String)
+clear(Integer,Integer,Integer,Integer) -
+getEvent(e Event) CustomizedBoard
+width():Integer
+height():Integer

[0 40 predefined stereotypes (c = class, r = relation, o = operation, a = attribute, d
= dependency, g = generalization): metaclass (c), instance (r), implementation
class (c) constructor (0), destructor(o), friend (d), inherits (g), interface (c),
private (g), query (0), subclass (g), subtype (g), utility (classifier) (only class scope
operations and attributes)

[0 Do not push stereotypes to the limits else you lose standard

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 75.

Another Example: Instance/Class
Associations

How to distinguish between associations between classes and association between
instances?

In VisualWorks, UlBuilder class is related to UlLookPolicy class

UlBuilder UlLookPolicy

UlBuilder «class» UlLookPolicy
{class}

But an instance of UlBuilder is also related to an instance of UlLookPolicy
[1 Use a stereotype or a constraint

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 76 .

RoadMap

Why Extracting Design? Why Uml|?
Basic Uml Static Elements
Experimenting With Extraction
Interpreting Uml

Language Specific Issues

[0 Tracks For Extraction
Extracting Intention: Design Pattern
Extraction For The Reuser
Extraction of Interaction

Conclusion

O OO0 O

N I I

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering

Association Extractions (i)

Goal: Explicit references to domain classes

[]

Domain Objects
Qualify as attributes only implementation attributes that are not

related to domain objects.

Value objects -> attributes and not associations,
Object by references -> associations
EX: String name -> an attribute
Order order -> an association
Piece myPiece (in C++) -> composition

Define your own conventions
EX: integer X integer -> point attribute

Two classes possessing attributes on each other
-> an association with navigability at both side

7.

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Design Extraction

Object-Oriented Software Reengineering 78.

Language Impact on Extraction

Attributes interpretation (like in the pictures)

-In C++ =>
Piece* myPiece ---> aggregation or assocation
Piece& my Piece ---> aggregation or association

Piece myPiece (copied so not shared) ----> composition

- In Smalltalk and Java
Aggregation and composition is not easy to extract
Piece myPiece ----> attribute or association or aggregation

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 79.

Method Signature for Extracting Relation

- Having attributes is not always necessary to interact with an object,
=> temporary references exist: temporary variable, method parameter, returned value

- An instance can be dynamically created
- An instance can pass itself as a parameter

Some relevant idioms: Self Delegation, Dispatched Interpretation [Beck97], Double
Dispatch,...

=> Do not limit yourself to attributes, methods also contain implicit relationships
void putPiece (int x, int 'y, Piece piece)
=> relation between a Board and a Piece

When should we extract an aggregation and not a relation is not clear!
=> Analyse the language semantics (by copy, by reference)
=> Consider the various semantics of composition [Winston87]

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 80.

Convention Based Association Extraction

[Filtering based coding conventions or visibility
In Java, C++ filter out private attributes

*

[0 In Smalltalk depending on coding practices you may filter out attributes

- attributes
- that have accessors and are not accessed into subclasses.
- with name: *Cache.
- attributes that are only used by private methods.
[0 If there are some coding conventions

class O der {

publ i c Custoner custoner(); (single value)
Order Customer
public Enunerator orderLines(); (nulti-values)} dateReceived 1 name
isPrepaid address
Blrjignet?e,&bﬁter;/ng creditRating(): String
dispatch 1 *
C|oge() 0 OrderLine
quantity: Integer

price: Money
isSatified: Boolean

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 81.

Operation Extraction (i)

You may not extract
- accessors, methods with the name of an attribute
- operators,
- simple instance creation methods
(new in Smalltalk, constructor with no parameters in Java)
- non-public methods,
- methods already defined in superclass,
- methods already defined in superclass that are not abstract
- methods that are responsible for the initialization, printing of the objects
Example in Smalltalk, do not show
- methods that belongs to categories: ‘printing’, ‘accessing’, ‘ini
tialize-release’, ‘private’...
- methods with name: #printOn:, #storeOn:,
Use company conventions to filter
- Access to database
- Calls for the Ul
- Naming patterns

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 82.

Operation Extraction (ii)

If there are several methods with more or less the same intent
- if you want to know that the functionality exists not all the details
=> select the method with the smallest prefix

- if you want to know all the possibilities but not all the ways you can invoke them
=> select the method with the more parameters

- if you want to focu on important methods
=> categorize methods according to the number of time they are referenced
by clients
=> but a hook method is not often called but still important

What is important to show: the Creation Interface.
- Smalltalk class methods in ‘instance creation’ category,
- Non default constructors in Java or C++

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 83.

Road map
[0 Why Extracting Design? Why Uml|?
[1 Basic Uml Static Elements
[0 Experimenting With Extraction
[Interpreting Uml
[0 Language Specific Issues
[0 Tracks For Extraction
[1 Extracting Intention: Design Pattern
[1 Extraction For The Reuser
[1 Extraction of Interaction
[J Conclusion

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 84 .

Design Patterns as Documentation Elements

[0 Design Patterns reveal the intent so they are definitively appealing for
supporting documentation [John92a] [Oden97a]

But.
[Difficult to identify design patterns from the code
[Brow96c, Wuyt98a, Prec98a]

What is the difference between a State and a Strategy from the code point

of view?
[0 Need somebody that knows
[0 Lack of support for code annotation so difficult to keep the use of patterns and

the code evolution [Flor97a]

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 85.

Road map

Why Extracting Design? Why Uml|?
Basic Uml Static Elements
Experimenting With Extraction
Interpreting Uml

Language Specific Issues

Tracks For Extraction

Extracting Intention: Design Pattern
[1 Extraction For The Reuser
Extraction of Interaction
Conclusion

O O0O0-0od

1 O

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 86 .

Evolution Impact Analysis: Reuse Contract

How to identify the impact of changes?

change
ywmain Propagation

'

1p]i Cal1omn

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 87 .

Example
New Version
OrderedCollection OrderedCollection
C»add(Element) >C»add(Element)
L addAll(Collection) - addAll(Collection)
JZAN ZN\
CountingOrderedCollection CountingOrderedCollection
-increment - increment
,C_;: add(Element) X/C_; add(Element)
‘~ — — 1 addAll(Collection) ~ — — 1 addAll(Collection)

Not all the elements are counted

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 88 .

Reuse Contracts: General |ldea

provicker

ikt B

s

Reuse Contracts [Stey96a] propose a methodology to:
- specify and qualify extensions
- specify evolution
- detect conflicts
- Classification Browser support Reuse Contract extraction

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 89.

Example
ﬁ
- Coarsening :
OrderedCollection addAll]- al] OrderedCollection
C»add add
L addAll [add] addAll
Z\ Refinement N\
add [+ increment]
CountingOrderedCollection CountingOrderedCollection
C» increment increment
radd [increment] add(Element) [increment]

effort estimate
addAll needs to be overrident too

Extend UML to specify which other methods a method invokes (reuse contracts)
In class Set
+ addAll: (c Collection): Collection {invokes add}

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 90.

Road Map

Why Extracting Design? Why Uml|?
Basic Uml Static Elements
Experimenting With Extraction
Interpreting Uml

Language Specific Issues

Tracks For Extraction

Extracting Intention: Design Pattern
Extraction For The Reuser

[1 Extraction of Interactions
Conclusion

O o0Oodgodd

]

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 91.

Documenting Dynamic Behaviour

[1 Focusing only at static element structural elements (class, attribute, method) is
limited, does not support:

- protocols description (message A call message B)
- describe the role that a class may play e.g. a mediator

[0 Calling relationships is well suited for
- method interrelationships

- class interrelationships

UML proposes Interaction Diagrams = Sequence Diagram or Collaboration Diagram

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering

Sequence Diagrams

A sequence diagram depicts a Caller

scenario by showing the 1
interactions among a set of

caller lifts receiver

objects in temporal order.

dial tone begins

dial (1)

Objects (not classes!) are shown
as vertical bars.

Events or message dispatches

dial tone ends

are shown as horizontal (or
slanted) arrows from the send to

time

the receiver.

Recall that a scenario describes a

Phone Line

92.

Callee

dial (2)

dial (2)

ringing tone phone rings
answer phone

tone stops ringing stops

typical example of a use case, so
conditionality is not expressed!

-+ - — — — — — — — — — — — - — - — — — -

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Design Extraction

Object-Oriented Software Reengineering 93.

Statically Extracting Interactions

Pros:
- Limited resources needed
- Do not require code instrumentation

cons:
- Need a good understanding of the system
- state of the objects for conditional
- compilation state #ifdef...
- dynamic creation of objects
- Potential behavior not the real behaviour
- Blur important scenario

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering 94 .

Dynamically Extracting Interactions

Pros:

- Help to focus on a specific scenario
- Can be applied without deep understanding of the system

cons:
- Need reflective language support (MOP, message passing control)
or code instrumentation (heavy)
- Storing retrieved information (may be huge)

For dealing with the huge amount of information
- selection of the parts of the system that should be extracted
- selection of the functionality
- selection of the use cases
- filters should be defined
(several classes as the same, several instance as the same...)

[0 A simple approach is to open a special debugger that generates specific
traces

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Design Extraction

Object-Oriented Software Reengineering

Lessons Learnt

You should be clear about:
[J Your goal (detailed or architectural design)
[0 Conventions like navigability,
[0 Language mapping based on stereotypes
[0 Level of interpretations

For Future Development
[0 Emphasize literate programming approach
[1 Extract design to keep it synchronized

UML as Support for Design Extraction

Often fuzzy

Composition aggregation limited

Do not support well reflexive models

But UML is extensible, define your own stereotype

N I

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

95.

Design Extraction

Object-Oriented Software Reengineering 96.

5. Software Metrics

Outline
0 What are metrics? Why do we need them?
[1 Metrics for cost estimation
[0 Metrics for software quality evaluation

Sources

[0 Software Metrics: A Rigorous and Practical Approach, Norman Fenton and
Shari Lawrence Pfleeger, 2d edn, PWS Publishing Co., 1997.

[1 Software Engineering, lan Sommerville, Addison-Wesley, 5th edn., 1995

[1 Tutorial on Software Metrics, Simon Moser, Brian Henderson-Sellers, C.
Mingins, 1997

IAM, U. Berne Software Metrics

Object-Oriented Software Reengineering 97.

Why Measure Software?

Estimate cost and effort
[0 measure correlation between specifications and final product
Improve productivity
[0 measure value and cost of software
Improve software quality
[0 measure usability, efficiency, maintainability ...
Improve reliability
[0 measure mean time to failure, etc
Evaluate methods and tools
[measure productivity, quality, reliability ...

“You cannot control what you cannot measure” — De Marco, 1982
“What is not measurable, make measurable” — Galileo

IAM, U. Berne Software Metrics

Object-Oriented Software Reengineering 98.

What is a Metric?

Software metrics

[]

(N I O

Any type of measurement which relates to a software system, process or
related documentation

[0 Lines of code in a program

[0 the Fog index

[0 number of person-days required to develop a component
O ..

Allow the software and the software process to be quantified
Measures of the software process or product

Should be captured automatically if possible

IAM, U. Berne Software Metrics

Object-Oriented Software Reengineering

GOQOM

Goal - Question - Metrics approach [Basili et al. 1984]
[0 Define Goal
0 e.g., “How effective is the coding standard XYZ?”

[0 Break down into Questions
O “Who is using XYZ?”
O “What is productivity/quality with/without XYZ?”

[0 Pick suitable Metrics
[0 Proportion of developers using XYZ
[0 Their experience with XYZ ...
[0 Resulting code size, complexity, robustness ...

IAM, U. Berne

99.

Software Metrics

Object-Oriented Software Reengineering 100.

Metrics assumptions

Assumptions
[0 A software property can be measured

[0 The relationship exists between what we can measure and what we want to
know

[0 This relationship has been formalized and validated
It may be difficult to relate what can be measured to desirable quality attributes

Measurement analysis
[0 Not always obvious what data means. Analysing collected data is very difficult
[0 Professional statisticians should be consulted if available
[1 Data analysis must take local circumstances into account

IAM, U. Berne Software Metrics

Object-Oriented Software Reengineering 101.

Cost estimation objectives

[0 To establish a budget for a software project
[0 To provide a means of controlling project costs
[To monitor progress against the budget
[1 comparing planned with estimated costs
[0 To establish a cost database for future estimation
[0 Cost estimation and planning/scheduling are closely related activities

IAM, U. Berne Software Metrics

Object-Oriented Software Reengineering 102.

Estimation techniques

Expert judgement
Estimation by analogy
Parkinson's Law

Pricing to win

Top-down estimation
Bottom-up estimation
Algorithmic cost modelling

O O0O0-0od

IAM, U. Berne Software Metrics

Object-Oriented Software Reengineering 103.

Algorithmic cost modelling

[0 Costis estimated as a mathematical function of product, project and process
attributes whose values are estimated by project managers

[0 The function is derived from a study of historical costing data
[0 Most commonly used product attribute for cost estimation is LOC (code size)
[0 Most models are basically similar but with different attribute values

IAM, U. Berne Software Metrics

Object-Oriented Software Reengineering 104.

Measurement-based estimation

A. Measure

Develop a system model
and measure its size

C. Interpret

Adapt the effort with respect to a
specific development project plan

B. Estimate

Determine the effort with respect to
an empirical database of
measurements from similar projects

IAM, U. Berne Software Metrics

Object-Oriented Software Reengineering 105.

Lines of code

Lines of Code as a measure of system size?

[0 Easy to measure; but not well-defined for modern languages
[0 What's a line of code?
[0 What programs should be counted as part of the system?

[0 Assumes linear relationship between system size and volume of documentation

[0 A poor indicator of productivity
[0 Ignores software reuse, code duplication, benefits of redesign
[0 The lower level the language, the more productive the programmer
[0 The more verbose the programmer, the higher the productivity

IAM, U. Berne Software Metrics

Object-Oriented Software Reengineering 106.

Function points

Function Points (Albrecht, 1979)

[]

[]
[]

[]

Based on a combination of program characteristics:
[0 external inputs and outputs

[J user interactions

[0 external interfaces

[0 files used by the system

A weight is associated with each of these

The function point count is computed by multiplying each raw count by the
weight and summing all values

Function point count modified by complexity of the project

Good points, bad points

[]
[]

[
[

Can be measured already after design

FPs can be used to estimate LOC depending on the average number of LOC
per FP for a given language

LOC can vary wildly in relation to FP

FPs are very subjective — depend on the estimator. They cannot be counted
automatically

IAM, U. Berne Software Metrics

Object-Oriented Software Reengineering 107.

Programmer productivity

A measure of the rate at which individual engineers involved in software development
produce software and associated documentation

Productivity metrics

[0 Size related measures based on some output from the software process. This
may be lines of delivered source code, object code instructions, etc.

[0 Function-related measures based on an estimate of the functionality of the
delivered software. Function-points are the best known of this type of measure

Productivity estimates
[0 Real-time embedded systems, 40-160 LOC/P-month
[0 Systems programs , 150-400 LOC/P-month
[0 Commercial applications, 200-800 LOC/P-month
Quality and productivity

[0 All metrics based on volume/unit time are flawed because they do not take
guality into account

[0 Productivity may generally be increased at the cost of quality
[Itis not clear how productivity/quality metrics are related

IAM, U. Berne Software Metrics

Object-Oriented Software Reengineering 108.

The COCOMO model

[0 Developed at TRW, a US defense contractor
[Based on a cost database of more than 60 different projects
[0 Exists in three stages

[1 Basic - Gives a 'ball-park’' estimate based on product attributes
[0 Intermediate - modifies basic estimate using project and process attributes
[0 Advanced - Estimates project phases and parts separately

IAM, U. Berne Software Metrics

Object-Oriented Software Reengineering 1009.

Basic COCOMOQO Formula

0 Effort=C x PM> x M
[0 Cis a complexity factor
[0 PMis a product metric (size or functionality)
[0 exponent Sis close to 1, but increasing for large projects
[0 Mis amultiplier based on process, product and development attributes (~1)
Project classes

[0 Organic mode small teams, familiar environment, well-understood applications,
no difficult non-functional requirements (EASY)

0 Effort = 2.4 (KDSI) 195 x M

[0 Semi-detached mode Projectteam may have experience mixture, system may
have more significant non-functional constraints, organization may have less
familiarity with application (HARDER)

O Effort =3 (KDSI) +12 x M

[0 Embedded Hardware/software systems, tight constraints, unusual for team to
have deep application experience (HARD)

0 Effort = 3.6 (KDSI) 1% x M
NB: KDSI = Kilo Delivered Source Instructions

IAM, U. Berne Software Metrics

Object-Oriented Software Reengineering 110.

COCOMO assumptions

[0 Implicit productivity estimate

[1 Organic mode = 16 LOC/day

[0 Embedded mode =4 LOC/day
[0 Time required is a function of total effort NOT team size
[Not clear how to adapt model to personnel availability

Staffing requirements

[0 Staff required can’'t be computed by dividing the development time by the
required schedule

[0 The number of people working on a project varies depending on the phase of
the project

[0 The more people who work on the project, the more total effort is usually
required

[0 Very rapid build-up of people often correlates with schedule slippage

IAM, U. Berne Software Metrics

Object-Oriented Software Reengineering

111.

Product quality metrics

1 O

IAM, U. Berne

A quality metric should be a predictor of product quality.

Most quality metrics are design quality metrics and are concerned with
measuring the coupling or the complexity of a design.

The relationship between these metrics and quality as judged by a human may
hold in some cases but it is not clear whether or not it is generally true.

Software Metrics

Object-Oriented Software Reengineering 112.

Maintainability Metrics

Hypothesis: Program maintainability is related to complexity

[0 McCabe (1976): measures a program’s complexity in terms of the graph of its
decision structure

[0 Halstead (1977): measures complexity in terms of number of unique operators
and operands, and total frequency of operands

[0 Kafura and Reddy (1987): used a cocktail of seven different metrics

IAM, U. Berne Software Metrics

Object-Oriented Software Reengineering 113.

Design maintainability

[Cohesion
[0 How closely are the parts of a component related?
[0 Coupling
[0 How independent is a component?
[0 Understandability
[0 How easy is it to understand a component’s function?
[0 Adaptability
[0 How easy is to change a component?

IAM, U. Berne Software Metrics

Object-Oriented Software Reengineering 114.

Coupling metrics

Associated with Yourdon's 'Structured Design'/ Measures 'fan-in and fan-out' in a
structure chart:

[0 High fan-in (number of calling functions) suggests high coupling because of
module dependencies.

[0 High fan-out (number of calls) suggests high coupling because of control
complexity.

Henry and Kafura’s modifications

[0 The approach based on the calls relationship is simplistic because it ignores
data dependencies.

[0 Informational fan-in/fan-out takes these into account.
[0 Number of local data flows + number of global data structures updated.

[0 Data-flow count subsumes calls relation. It includes updated procedure
parameters and procedures called from within a module.

[0 Complexity = Length * (Fan-in * Fan—out)2
[0 Length is any measure of program size such as LOC.

IAM, U. Berne Software Metrics

Object-Oriented Software Reengineering 115.

Validation of quality metrics

[Some studies with Unix found that informational fan-in/fan-out allowed complex
and potentially faulty components to be identified.

[0 Some studies suggest that size and number of branches are as useful in
predicting complexity than informational fan-in/fan-out.

[J Fan-out on its own also seemed to be a better quality predictor.

[0 The whole area is still a research area rather than practically applicable.

IAM, U. Berne Software Metrics

Object-Oriented Software Reengineering 116.

Program quality metrics

Design metrics also applicable to programs

1 Other metrics include
[0 Length. The size of the program source code
[0 Cyclomatic complexity. The complexity of program control
[0 Length of identifiers
[0 Depth of conditional nesting

[0 Anomalous metric values suggest a component may contain an above average
number of defects or may be difficult to understand

Metric utility

[0 Length of code is simple but experiments have suggested it is a good predictor
of problems

[0 Cyclomatic complexity can be misleading

[0 Long names should increase program understandability

[0 Deeply nested conditionals are hard to understand. May be a contributor to an

understandability index

IAM, U. Berne Software Metrics

Object-Oriented Software Reengineering 117.

Metrics maturity

]

Metrics still have a limited value and are not widely collected

Relationships between what we can measure and what we want to know are not
well-understood

[0 Lack of commonality across software process between organizations makes
universal metrics difficult to develop

]

IAM, U. Berne Software Metrics

Object-Oriented Software Reengineering 118.

Ssummary

[J Factors affecting productivity include individual aptitude, domain experience,
the development project, the project size, tool support and the working
environment

[0 Prepare cost estimates using different techniques. Estimates should be
comparable

[Algorithmic cost estimation is difficult because of the need to estimate attributes
of the finished product

[0 The time required to complete a project is not simply proportional to the number
of people working on the project

[0 Metrics gather information about both process and product

[0 Control metrics provide management information about the software project.
Predictor metrics allow product attributes to be estimated

[0 Quality metrics should be used to identify potentially problematical components

IAM, U. Berne Software Metrics

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 119.

6. Metrics, Visualisations and Interactions
for Reverse Engineering

Michele Lanza
lanza@iam.unibe.ch
031 631 3547

Stéphane Ducasse
ducasse@iam.unibe.ch
031 631 4903

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 120 .

Contents

[0 Introduction

[0 Metrics and Measurements

[0 Visualisation
— Possible Approaches
— Examples

[0 Our Approach: CodeCrawler
— Examples

[0 Online Demo

[0 Conclusion

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 121 .

Introduction

[0 Goals of this Lecture:
— Metrics. Why? Which ones?
— Visualisation. Why? How?
— CodeCrawler: An example of a Reverse Engineering platform.
— Industrial Experiences.
— Online Demo: Preparation for the Lab Experience next week.

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 122 .

Metrics
[1 Metrics and Measurement
[1 Metrics for reverse engineering
[0 Selection of OO metrics
[1 Step back and look

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 123.

Metrics and Measurements

[Wey88] defined nine properties that a software metric should hold [Fenton for critics].
For OO only 6 properties are really interesting [Chid 94, Fenton]

Noncoarseness: Given a class P and a metric m, another class Q can always be found such that m (P) != m(Q)
-> not every class has the same value for a metric

Nonuniqueness. There can exist distinct classes P and Q such that m(P) = m(Q)
-> two classes can have the same metric

Design Details are Important. The specifics of a class must influence the metric value. Even if a cclass
performs the same actions details should have an impact on the metric value.

Monotonicity. m(P) <=m (P+Q) and m(Q) <= m (P+Q), P+Q is the combination of the classes P and Q.
Nonequivalence of Interaction. m(P) =m(Q) ! ->m(P+R) = m(Q+R) where R is an interaction with the class.

Interaction Increases Complexity. m(P) + (Q) < m (P+Q).
-> when two classes are combined, the interaction between the too can increase the metric value

Conclusion: Not every measurement is a metric.
But take care because this is fuzzy and academic

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 124 .

Metrics for Reverse Engineering

Pragmatic Criteria to evaluate OO metrics
[0 Easy to Compute (E)
[1 Based on Code
[0 Simple stable definition (S)

Size of the system, system entities
[0 Class size, method size, inheritance
The intuition: a system should not contain too much big entities
Pro really big entities may be problematic
Cons can be really difficult and complex to understand
Cohesion of the entities
[0 Class internals,
The intuition: a good system is composed by cohesive entities
Coupling between entities
[0 Within inheritance: coupling between class-subclass
[1 Outside of inheritance
The intuition: the coupling between entities should be limited

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 125.

Which Metrics to Collect (Definitions)?

Class Size Metrics
* # methods (NOM)
 # instance attributes (NIA, NCA)
» # 2 of method size (WMC)
» Cohesion (LCOM), CBO

Inheritance Metrics
* hierarchy nesting level (HNL)
» # immediate children (NOC)
 # inherited methods, unmodified

(NMI) C ass
 #overridden methods (NMO)
Inherits belongsTo
Met hod aCCessS Attribute

Method Size Metrics
INvokes * # invocations (NOI)
 # statements (NOS)
 # lines of code (LOC)

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 126 .

Class size

(NIV) [Lore94] Number of Instance Variables (E++, S++)

(NCV) [Lore94] Number of Class Variables (static) (E++, S++)

(NOM) [Lore94] Number of Methods (public, private, protected)(E++, S++)
(LOC) Lines of Code (E+, S++)

(NSC) Number of semicolons [Li93]-> number of Statements (E, S+)
(WMC) [Chid94] Weighted Method Count (E--, S++)

WMC = SUM c;

where c is the complexity of a method (number of exit or McCabe
Cyclomatic Complexity Metric)

O O0O0f-0anQ

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 127 .

Class Complexity

[0 (RFC) Response For a Class [Chid94]
Response Set for a Class (RS) is the set of methods that can be executed in response
to a message.
RS = {M} Union; {Rj}, RFC = | RS |
where {R;} is the set of methods called by method i and {M} the set of all the methods in
the class.

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 128 .

Hierarchy Layout

[]

(HNL) [Chid94] Hierarchy Nesting Level, (DIT) [Li93] Deep of Inheritance Tree
(E++, S++)
HNL, DIT = max hierarchy level

(NOC) [Chid94] Number of Children (E++, S++)
(WNOC) Total number of Children (E++, S++)

(NMO, NMA, NMI, NME) [Lore94] (E+, S++)
Number of Method Overriden, Added, Inherited, Extended (super call)

(SIX) [Lore94] (E+,S+, Sceptic interpretation)
SIX (C) = NMO * HNL / NOM
Weighted percentage of Overriden Methods

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 129.

Method Size

0 (MSG) Number of Message Sends
0 (LOC)
0 (MCX) Method complexity (E-, S+)

Total Number of Complexity / Total number of methods
API calls= 5, Assignment = 0.5, arithmetics op = 2, messages with para = 3....
[0 (NP) Number of Parameters

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial)

Class Cohesion (i)

130 .

[0 (LCOM) [Chid94] Lack of Cohesion in Methods (E,S--, not reliable) [Hitz95a]

l; = set of instance variables used by method M;
let P={()| Intersection (I;1;) is Empty,
Q={(liI) | Intersection (l;,l;) is not Empty
if all the sets are empty, P is empty
LCOM = |P|-|Q[if |P[>|Q]
= 0 otherwise

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 131.

Class Cohesion (ii)

0 (TCC) [Biem95] Tight Class Cohesion (E,S, not really used, complex)
TCC is the relative number of directly connected methods
TCC =NDC/NP
NDC = Number of Direct Connection
NP =n*(n-1) /2 = Maximum possible direct and indirect connected
methods
A class is represented by a collection of Abstract Method (AM)
AM (M) = set of directly and indirectly accessed instance variables by M
Abstracted Class: AC = [AM (M) | M belongs to V(C)]

V(C) = Visible method of C and C’s ancestors.

NP (C) = total number of abstracted method pairs in AC(C)

[0 (LCC) [Biem95] Loose Class Cohesion (E,S not really used, complex)
TCC is the relative number of directly or indirectly connected methods
LCC = (NDC + NIC) / PC
NIC = Number of Indirect Connections

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 132.

Class Coupling (1)

[0 (CBO) [Chid94] Coupling Between Objects
CBO = number of other class to which it is coupled (E, S+, fuzzy definition)
See [Hitz94] for a discussion

0 (DAC) [Li93] Data Abstraction Coupling (E-, S+)
DAC = number of ADT’s defined in a class

[0 (CDBC) [Hitz96] Change Dependency Between Classes (E-, S+, not simple, not
used, not commented in the literature)

Impact of changes from a server class (SC) to a client (CC).
CDBC(CC,SC)=min (n, A)

n = number of methods of CC

A = SUM (m1, ai)+ (1-k) SUM (m2, ai)

1-k = degree of stability of SC

a = number of methods of CC potentially affected by a change
m1 accesses of CC to the implemention of SC

m2 accesses of CC to the interface of SC

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 133.

Class Coupling (li)

[0 (LD) [Hitz96] Locality of Data (E+,S+, not used, not commented)
LD =SUM |L; | / SUM [T; |
Mi = methods without accessors
Li = non public instance variables, inherited protected of superclass, static

variables of the class
Ti = all variables used in Mi, except non-static local variables (??)

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 134 .

Metrics? Stepping Back

About the impact of the computation
Example:

[]

number of attributes

should we count private attributes in NIV?
Why not?

[0 number of methods (private, protected, public, static, instance, operator,

constructeurs, friends)
What to do?

0 Try first simple metrics, with simple extraction

[1 Take care about absolute threshold
Metrics are good as a differential
Metrics should be etalonned

[]

Do not numerically combine them: what is the multiplication of oranges and
apples: Jam!

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 135.

Visualisation
[0 The Motivation: why are we doing it?
[Possible Approaches
— Examples
[0 Our Approach: CodeCrawler
— The Idea
— Examples

— The Interaction

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 136 .

The Motivation: Why are we visualising stuff?

"Software is intangible, having no physical shape or size. Software
visualisation tools use graphical techniques to make software visible by
displaying programs, program artifacts and program behaviour."

T.S. Ball & S.E.Eick

[0 Reduction of Complexity:
— Transformation from purely text-based form to a higher abstract

representation
[0 Generate different views on software system.
[0 Letthe system tell you what it’s all about
[0 Documentation of the system

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 137 .

Visualisation.: Possible Approaches

[0 A decent graph layout can be a hard task...
— Efficient space use (physical limits of a screen)
— Edge crossing problem
— UML
— Colors are nice, but... there are no conventions!

]

Tradeoff between usefulness and complexity
Keeping a focus is hard:

]

— Where should we look?
— What should we look for?
[0 Examples from real-world visualisation systems

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial)

Example: Goose/ Graphlet

=

Graphlet: corba.highlnAndOutDegree.gml

138 .

Eile Edit Select ¥iew Graph Node Edge Tool Layout
0= & % B o [79.34782607 T
7~ A
7
Py environmentConfigError_c CrgFilesinTree o
A SHMPHManager
>
~A
- shmpCollectorc
= requesTILR p _
E ErrorAndindex pstd@
serverDef appError_c
\ environmentContiy_c [serverDet]
SMMPCAlleciur |
csServerconi_c =g
T LS [FRmCaripledErception | [AlarmAlreadyEr:
trapFiercont ¢ Pracess \
[irap] L |application_c
SNMP Confairuct urﬁ;}fﬁ- irik / o — vali
[appGroup_c
Faterinr Traprifer =
ActiveAlamStruct
[Eventsiruct
@iﬁfer Rant 1 [s4lafRFCUploadAlarmFile_c |
alre dyDeﬂnerﬂ linkToUCDToolki S *
[Eventreceiver| [Activeslarmsto
P [Alarmlist
TEGUES_C | {collector_c / [sqlalRPCHearth 5
[Eemaphare] [frapFilter_c] [Thread | Condifich ik
/" — il e
ﬁ@_ s sdlalfRPCSender_c
Thio . — AFFacade 'i-—"l: =
[EAremal o] alartnObjecl_c Ik] —
responseCallback_c Al - == /
— 4 :
e ~[s#alfRFCMain_c
SMMpSession_c | ThreadMutex | T
e / [Elarminfo] [AlarmStore Carrupt
s M AlarmEvent
rapidinfo —
EELf._Z{gEmDE:,:ripUE
R fime_t
hreadSafeHashEUelE | [Falamizarrelaiion_c STETTEVERT T
Al CancelAlarm
HashtableElement idY aluePair_t
Conneclion 7
= [l =l
111 [304 | return -code O

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial)

Example: Mermaid

139 .

SNMPCollector

GetFactory()
continnous_poll{PollDescription, SNMPManager,long)
poll_agent(PollDescription)

ConfigFile Process
BackupConfigFiles() RunStatus ProcessStatus
DeleteConfigFile(string) ExecuteCommand(string)
DiscardConfigurationInfo() p ForkProcess(string)
PushConfigFile(string, string) h GetRuntimeDebugInfo()
ReadConfigFiles() KillProcess()
RefrieveBootLog() Pause()
RefrieveRuntimeLog() Run()
RollbackConfigFiles() TryHeartBeat()

ProcessSupervision
GetServerInstance(string)
GetServers()
RaiseAlarm(string,string)
Analyzer

AnalyzeEvent{SNMPOid,unsignedlong, SnmpGeneric Trap,long,unsignedlong, VarBind)

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

CsServer

GetConfiguration(string)

UCDLink

TrapFilter

EveniReceiver
long ALARMTEXTLENGTH

CancelAlarms{string unsignedlong)
GetActiveAlarms()
HandleEvent{EventStruct)
RegisterUI{ AlarmFEvent)
UnregisterUL{long)

Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 140 .

Let’s summarise...

[0 What kind of information do we want to convey about an entity?
— Name
— Structure
— Size
— Role
— etc.
[0 How do they communicate and how do we want to see that?
— Colored Edges
— Weighted Edges
— Edges?
— efc.
[0 At what granularity level can we apply a certain display?
— Full system
— Single class or small subsystem

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 141 .

Our Approach.: CodeCrawiler

[0 A lightweight combination of:
— Visualisation
— OO Metrics
— Interaction
[0 The main constraint is:
— Simplicity
[0 OO Entities are rendered as colored rectangles:
— Classes, Methods, Attributes, etc.
[0 OO Relationships are rendered as edges:
— Inheritance, Invocation, Access, etc.

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 142 .

The Idea: Visualising Metrics

[0 Directly render up to five metrics on node node:

— Size (2)
— Color (1)
— Position (2)
XCoortljmate Width
Y Coordinate
Color Tone Height
— Relationship

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial)

CodeCrawiler: Some Examples

[0 Taken from the Refactoring Browser

[0 Try to understand and interpret the following graphs...

— System Complexity

— Method Efficiency Correlation
— Inheritance Classification

— Service Class Detection

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

143 .

Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 144 .

‘ System Complexity
Metrics: NIV, NOM, LOC

i

%U”DDD

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 145 .

Method Efficiency Correlation

Metrics: NOP, NOP, HNL, LOC, NOS

O
LOC
o
=
o
o
T8 0y =
= %5‘ B -
o
" T o
o o m m
O m| |
- o
=
NOS m|

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 146 .

‘ Inheritance Classification

Metrics: NMA, NMO, NME

/

4

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 147 .

Service Class Detection

Metrics: NOM, LOC, LOC

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 148 .

CodeCrawler’s Logic

[1 Language Independent (CDIF Interface)
[0 Platform Independent (Smalltalk)

CodeCrawler
Smalltalk
C++
—
Moose
Java CDIF HotDraw
Ada >

Smalltalk (VisualWorks 3.0)

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 149 .

CodeCrawler: Pro And Contra

1 Pro:
— Intuitive Approach: simple is beautiful
— Quick Insights
— Language Independence
— Platform Independence
[0 Contra:
— Simplicity

— Its reliability depends on several external factors, i.e. parsing. The
language idependence does come at a certain cost...

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 150 .

CodeCrawler: The Case Studies

[0 Academic:
— VisualWorks 3.0 (> 500 classes)
— Refactoring Browser (> 150 classes)
— Duploc (> 100 classes)

[0 Industrial:
— XXX (C++, 1.2 MLOC, > 2300 classes)
— XXY (C++/Java, 120 KLOC, > 400 classes)

[0 The Approach Works!
— Let's have a look at some examples...

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 151.

Example: Visualisation of a very large system

CodeCrawler HE E

File ‘Window Graph Model MWodez Edges

Graph Mame: ternpaorarny | Metrics: | MO MO HNL--]----- |===== | || Shrink: 27 2|
el e = feisfetelefer it mSaooe: iof
OO00@E0000.L ICOICOC JCL CX L
COCCICECOCOCOCE 1CO1CI0] TH[m Al
[[mTs] (=[] [=]s

T [[[[[[
] | L
1000 0O00000000000000aEROO0O0RC O 000000000800 000008083000000000080000805EL DOOO0B00000CCT]

HERHEHHEH
CIE 1L ICT IC T IC I E I IC L | N I N Y HIHIHIHIHIHHJUH.HF I o o o o T
o o o || [|| || 1[o o o [o o |_||_|,|_|1|_|HH—|I_I' I 0
[O I] I O 1L 5 I III_|I_|] ICICICICICICT o o
o u | I) o o | LI I | I I I
| I I N O I I o O [II II II II II II II | [=[]
IIIIIIIIIIIIIIIIIIIIIIIIII_IlIIIIIIIIIIIIIl_lflIII I T Y I
I | II Il II | II Il II I I-I Il II Il II | O N

5 1 T A T T
DEDEDEDEDEDDDDDDIDDDDDDDLLLI_ILLI I I I“ [
B OO I TS I BT 00 LI T I LIL]

TR T TR T T[] |
HEN |

i | —";I

: MessageBox (308.308.2.0.0) | <heoc 308,306.9.0,0> | <Modes/Edges: 2309.0> |

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 152 .

Example: Flying Saucers

[=[O]x]

#* CodeCrawler
File ‘“Window Graph Model Modes Edges

Graph Mame: temporary | Metrics: | WY NOM NOC--]----- | MAAMCH Mad - | || Shrink: 1/ 1|

‘E IIIIIIK!Il_I_l|l|||IIIIIIIIIIIIIIIIIIIIJIK[]i{l'l T T

=
||||||||||||||||||||||||||||||||||||

T LI T AT T I

-.........;........,.,,,,';,,',,“""mm;.-

<MNodes/Edges: 455,434

y |
C: AED_EwentType (2141.0,0) <M 33.83.96.0.0>

Metrics, Visualization ...

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 153.

Conclusion & Possible Projects

[0 Visualisation is necessary, because...

Systems have become too complex to cope with in their pure textual form

[0 Possible Projects

Add Grouping Techniques, i.e. collapsing of nodes
Generate Graph Views based on OO Heuristics

Add (animated?) Spring Layouting Algorithms: the system will find its own
layout.

Closer views on a class: how can a class be displayed to make it tell you
what kind it is...

There's a lot to be done...come around and ask!

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 154 .

Bibliography

[Weyu88] E. Weyuker, "Evaluating Software Complexity Measures", IEEEE Transactions
on Software Engineering, vol 14, n 9. 1988.

[Chid94] S. Chidamber, C Kemerer "A Metrics Suite for Object Oriented Design", IEEE
Transactions on Software Engineering, vol 20, n 6, June 1994

[Li93] W. Li, S. Henri, "Maintenance Metrics for the Object Oriented Paradigm", IEEE
Proc. First International Software Metrics, 1993

[Hitz95a] M. Hitz, B. Montazeri, "Measuring Coupling and Cohesion in Object-Oriented
Systems", Proceedings International Symposium on Applied Corporate Computing,
1995.

[Hitz96] M. Hitz, B. Montazeri, "Measuring Coupling in Object-Oriented Systems", Object
Currents, Vol 1, N 4, 1996

[Lanz99a] M. Lanza, "Combining Metrics and Graphs for Object Oriented Reverse
Engineering”,University of Bern,1999

[Deme99] S. Demeyer, S. Ducasse and M. Lanza, "A Hybrid Reverse Engineering
Platform Combining Metrics and Program Visualization", WCRE’99 Proceedings (6th
Working Conference on Reverse Engineering), 1999

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 155.

/. Lab session — CodeCrawler

© Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz Metrics, Visualization ...

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

December 1999
Dr. Simon Moser

moser@acm.org

-+ - BEDAG:-
| MNFOERMMA | K
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Topics:

The Importance of Measurements & Estimates
A Measurement-Based Estimation Process
Software Models (Meta-Models)
Software Metrics
Results of a Field Study
An Example

Future Work

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 1/24

-~ - BEDAG- -
INFORMAT K

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

The Importance of Measurements & Estimates (1/2)

3 Process Parameters to Control:

Process Parameters

Product
(Quantity and
Quiality)

Measurement = Knowing where you stand

Prerequisite for:
» Generic problem solving
* Process improvement / Quality management

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 2124

- BEDAG: -

INFORMAT I K

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

The Importance of Measurements & Estimates (2/2)

Estimate = The expectations of a project

Under-estimates:
time pressure = stress = frustration = people turnover
too tight budget = save on functionality and quality = "maintenance dilemma"
no more money = late project cancelation

Over-estimates:
time for fancy stuff = the over-estimate will turn into an under-estimate

Estimation evaluation criteria:
(1) Accuracy
(2) Cost and speed of the overall estimation process

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 3/24

- BEDAG: -

INFORMAT I K

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

A Measurement-Based Estimation Process (1/3)

[People throwing darts to a calender, the date hit will be the estimated deadline...]

A non-measurement-based estimation process!

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 4/24

- BEDAG: -

INFORMAT I K

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

A Measurement-Based Estimation Process (2/3)

A non-software example: estimating the duration of a bush-walk

(A) Measure the walk distance on a map
(B) Derive a first duration according to some rule-of-thumb
(C) Interpret this estimate to specifics (restaurants on the way, ...)

= measurement-based estimation

Improvements with respect to accuracy:
» more detailed map or model
* better metric (e.g. taking height differences into account)
« specific empirical database instead of general rule-of-thumb

Improvements with respect to cost of estimation:
 lower-resolution map

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 524

BEDAG:

INFORMAT I K

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

A Measurement-Based Estimation Process(3/3)

Process Model

System Model

Caira Project Plan Version 5

e.g. 2034 System Meters

c

e.g. 986 Person Days

Empirical Database

empirical DB: FP vs PD

010‘203090‘50600090@0901110160) m‘éc%memwmeamooo
Functon Points

(adapted from T. DeMarco, 1982 [1])

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

6/24

" BEDAG -

INFORMAT I K

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Software Process Models (1/2)

[The "standard" software process is like biking on gravel roads in the montains, encountering lots
of detours and ... wasting lots of money (it should not be like this!)]

What is the standard software process?

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 7124

" BEDAG -

INFORMAT I K

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Software Process Models (2/2)

Process Standardisation through Artefact Standards and Process Completeness Percentages ([2])
(per Artefact release state: draft% - validated% - final&maintained%o)

Artefact Process Completeness Percentage
1 Requirements (=Analysis) 10% - 20% - 35%
2 Design 4% - 9% - 11%
3 Test-suites 3% - 6% - 8%
4 Code 10% - 25% - 35%
5 Documentation 1% - 3% - 5%
6 Installation/Acceptance 2% - 4% - 6%
[optional/repeated artefacts] [additional %]

+ supporting artefacts:
a) Project Management results (plans, reports, ...) - 4% - 6% - 10%
b) Quality Management results (risk analysis, quality plan, ...) - 3% - 5% - 8%

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 8/24

- BEDAG: -

INFORMAT I K

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Software Models (Meta Models) (1/4)

[Nobody agrees on what systems or system models are...]

When we want to measure a system (model), the first question is:
What is a system (model)?

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 9/24

- BEDAG: -

INFORMAT I K

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Software Models (Meta Models) (2/4)

Layers of Software Product and Process (Software-Life-Cycle):

Most relevant for estimation:
Analysis models = Requirements models

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 10/24

-~ - BEDAG- -
INFORMAT K

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Software Models (Meta Models) (3/4)

Further sub-layering of the analysis layer
(1) Preliminary Analysis = coarse real-world system modelling
(2) Domain/Business Analysis = detailed real-world system modelling
(3) Application Analysis = user view of the computer system (=user manual)

Preliminary Model:

has sub-tunctionalities

Functionality P

is conthined in

Subject Area

Functionality "name" [complexity number] .
Functionality "name" = { 'sub-functionality’, } .
Subject Area "name" number of classes .
Subject Area 'name' contains ‘functionality’ ,

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 11/24

-~ - BEDAG- -
INFORMAT K

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Software Models (Meta Models) (4/4)

A Domain Model - Metamodel (compliant with most standards [4], [5]):

(1) Domain Analysis Class Model
Domain Class <ddd> { isSubTypeOf <base-class> } { contains <n> attr < class model object>} .
Domain Association <assoc-name> one|many <class1> to one|many <class2> .
Function Type <ddd> [ofKind <parameter-name> , ...] .
Consistency Rule <rrr> = < class model object >,

(2) Use Case Model
Use Case <rrr> isTriggeredBy <event/time indication> [= <class model object >, ...].
Signal [<sss>] of <use case / function type> [from|to <actor>] = <class model object >,
Domain Subsystem <dss> = <use case>,

(3) State Transition Model
State <st> isSubStateOf <state/class> [= < class model object >, ...] .
Transition <tr> startsAt <statel> endsAt <state2> [= < class model object >, ...] {triggers|isTriggeredBy
<signal>}.

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 12/24

" BEDAG -

INFORMAT I K

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Software Metrics (1/2)

Function Point (Allan J. Albrecht, IFPUG [3]):

(1) Classifying the domain classes into easy-medium-complex and giving ,,points*
(2) Analogue procedure for rating the persistency-accesses to classes in the use cases
(3) Sum of all points = "unadjusted" Function Points
(4) Rating of 10 influence factors with percent point
(5) Adjustment (70%-130%) of the "unadjusted"” Function Points = "adjusted" Function Points

Advantages:
 understandable / ,,intuitive*
o useful for database applications

Disadvantages:
o restricted to database applications
e requires the business model (modelling effort high)
* does not take reuse into account
 needs expert assessment (no fully automatable measurement)
 formally unsound

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 13/24

- BEDAG: -

INFORMAT I K

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Software Metrics (2/2)

New approach: System Meter (Moser, 1995 cited in [6])

(1) External complexity of a single model entity:
= #new tokens in the name (+ 1, if old tokens are contained in the name)
=1, if object is anonymous
[z.B. "theCurrentWindow" = 3; "theNewWindow" = 2; "theNewCurrentWindow" = 1]

(2) Internal complexity of a single model entity
= Sum of the external complexity of those other model entities that define the one in focus
[z.B. a class is defined through its super-classes and ,,members*,
a method through its parameters and implementing ,,messages“]

(3) Sum up all complexities (just the external complexity for reusable objects)

Advantages:
 generic (also non-persistency features are counted)
» takes reuse into account
 can be applied on preliminary models, business models as well as code
» measurement is fully automated and objective

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 14/24

- BEDAG: -

INFORMAT I K

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Results of a Field Study (1/4)

Main analysis: Effort estimation bias

Probability of
effective outcome
equal to estimate

Estimate

36 Projects:

33 industry projects (6 companies); 3 universitary projects
* time span: completion date mainly in 1994/95)
e C++: 4 4GL: 6 Smalltalk: 26
* client/server database-applications: 29

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

15/24

-+ - BEDAG:-
| N FORMMA | K
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Results of a Field Study (2/4)

PRE System Meter

3000

[]
2500
® 2000
3
e -
S 1500
% . .
g »
»
1000 *® %
@)
]
500 4'.%‘
o Hu® ‘
0 500 1000 1500 2000 2500 3000

PRE System Metel
PRE-SM Survey Results: A = 0.605 - s + 0.0001779 - s2 , dA = +33%
Additional analysis (compared to Function Points):

« Better adjustment for reuse
 Better correlation in the 7 non-IS projects

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 16/24

-+ - BEDAG:-
| N FORMMA | K
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Results of a Field Study (3/4)

Function Points:

Person Days

Empirical Database: ESA Function Points vs. Person Days

2500

2000+

1500+

1000+

500+

; - - o
8 8 % O N ¥ © ®
O N S © ©
3 o NN NN

3000
3200

ESA Function Point s

3400

FPM survey results: A = 0.656 - s + 0.000235 - s2 , dA = +20%

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

17/24

- BEDAG
NFORMAT

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Results of a Field Study (4/4)

9 "

DOME System Meter:

1800

1600 -

1400

1200

[y
o
o
o

800 %

Person Days
a

600 "

400 ™
200 '#

T T T T T T T 1
1000 2000 3000 4000 5000 6000 7000 8000

JOME System Meter

o

DOME-SM Survey Results: A = 0.151 - s + 0.0000126 - s2 , dA = £9%

Additional analysis (Wilcoxon-signed-ranksum-test):
 The correlation improvement over FP is significant

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 18/24

-~ - BEDAG- -
INFORMAT K

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

An Example (1/5)

Prerequisite for Step A: a System Model ...

; PRE description of TOIS, the tiny order information system
Subject Area “Customer Information* 5 .

Subject Area “Order Information“ 3 .

Subject Area “Stock Information“ 5 .

Functionality “Manage Objects” 4 .

Functionality “Do Statistics* 2 .

Functionality “Do Forecasts* 2 .

Subject Area ’Customer Information® contains “Manage Objects’
Subject Area *Order Information® contains ’Manage Objects’

Subject Area *Stock Information® contains “Manage Objects’,
Do Statistics’, Do Forecasts” .

... eventually refined with information about reuse:

;ma—entry: category library
Functionality “Manage Objects” 4 .
;ma-entry: category project

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 19/24

- BEDAG: -

INFORMAT I K

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

An Example (2/5)

Step A: measuring the System Model

Measurement should be algorithmic [J use an automated tool
(download, e.g., SEBT, the software estimation basic toolkit from
ftp://ftp.csse.swin.edu.au/outgoing/simonm/sebt.zip, use the unzipper
ftp://ftp.csse.swin.edu.au/outgoing/simonm/pkunzip.exe)

Measurement is then as simple as typing some (DOS) command ...

ma -v -f tois.sdf

... and watch the result to plop out:

System Meters = 563

November 1999: New tool with GUI: http://www.softengprod.com

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 20/24

- BEDAG: -

INFORMAT I K

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

An Example (3/5)

Prerequisite for Step B: setting-up or obtaining an Empirical Database
= measuring predictor and result values of completed projects

Use the databases (edb_pre.xls, edb_dome.xIs) contained in SEBT (37 projects)

Step B: using the Empirical Database
PRE-SM Survey Results: A =s - 0.605 + s2 - 0.0001779 , dA = £33%

563 x 0.605 + 563_ x 0.000177/9 = 340.6 + 56.4 = 397 PD

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 21724

- B

DAG -

INFORMAT I K

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

An Example (4/5)

Prerequisite for Step C: a Software Process Model (XX% = standard, * = repeatable)

BIO Layer Result Exp. % | Evol. % | Full % BIO Layer Result Exp. % | Evol. % | Full %
Preliminary Subject Areas 1/2 % 1% 2% [replication cont.]
Analysis 5% Goals 1/2 % 1% 3% User Manual / Online Help * 1% 3% 4%
Domain Use Case Model 1% 3% 5% Forms (for manual processes) 12 % 12 % 1%
Analysis 14% Domain Class Model 1% 3% 5% Delivery 6% Acceptance 1/2 % 2% 3%
State-Transition Models 1% 2% 4% Installations * 1/4 % 1% 1%
Non-essential Requirements 1% 2% 4% User Instruction * 1% 1 1/2% 2%
Application Specification Types * 1% 3% 5% Organisational Changes 12 % 112 % 2%
Analysis 18% Models 2% 3% 5% Data Migration 2% 3% 4%
System States 2% 3% 4% Project Plans 1% 112 % 2%
Application Class Model 2% 4% 6 % Management Estimates 12 % 1% 1%
Non-functional Requirements 1/2 % 1% 2% 10% Configuration Mgmt 2% 2% 3%
Construc- Implementation Patterns * 2% 4% 5% Problem and Change Mgmt 1% 2% 3%
tion 19% Relational Model 1% 3% 4% Controlling and Reporting 1% 1% 1%
Technical Class Model 1% 2% 2% Evaluations * 1/2 % 2% 3%
Test Data 1% 3% 4% Prep. Organisational Changes 172 % 2% 3%
Test Cases 2% 3% 4% Prep. User Instructions 1% 2% 3%
Replica- Tuned Items * 2% 4% 5% Prep. Data Migration 2% 2% 3%
tion 38% Code 10 % 25 % 30 % Quality Risk Analysis / Quality Plans 1% 112 % 2%
Admin. & Installation Code 1% 4% 5% Management Measurements 1% 2% 3%
Platform Port * 2% 8 % 10% 8% Defining Standards 1/2 % 11/2% 3%
Layout (GUI) Translation * 4% 5% 5% Developer Instruction 1/4 % 12 % 1/2 %
System Admin. Manual * 1% 2% 3% Project Reviews 1/4 % 12 % 12 %
Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 22/24

" BEDAG -

INFORMAT I K

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

An Example (5/5)

Step C: adapting the original estimate to the tailored process model
Example: we conduct a full application analysis and a prototypical construction focussing on 3
Implementation patterns without formal test preparation:
= 18% + 3x2% + 1% + 1% = 26%

The resulting effort estimate therefore is:
397PD x 26% = 103PD
Additional adaptations:

e Optimum team sizes, maximising speed of development
* Reducing budget overrun risks by adding "buffer effort"

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 23/24

-~ - BEDAG- -
INFORMAT K

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Future Work

» The System Meter is used in industry

» Due to its formal properties the System Meter may be used in derived measures

References:

DeMarco T, Controlling SW Projects, Prentice-Hall, Englewood Cliffs, N.J., 1982

Moser S, Cherix R, Flueckiger J, HERMESBedag Informatik Vorgehensmodell, Bedag Informatik, Berne,
Switzerland, 1993-1999

IFPUG, Counting Practices Manual V4.0, Westerville, Ohio, USA, 1996

Rumbaugh J, Jacobson I, Booch G, The Unified Modeling Language (UML) Ref. Manual, Addison-Wesley,
Reading MA, 1999

Firesmith D, Henderson-Sellers B, Graham |, OPEN Modeling Language (OML) Ref. Manual, SIGS Books, NY,
1997

Moser S, Measurement and Estimation of Software and Software Processes, Ph.D. thesis, University of Berne,
Berne, Switzerland, 1996

Henderson-Sellers B, Graham IM, Y ounessi H, The OPEN Process Specification, Addison-Wesley, UK, 1998

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999 24124

Object-Oriented Software Reengineering 181.

9. Metrics in OO Reengineering

Outline
[0 Why Metrics in OO Reengineering?
[0 Applicability for...
- Quality Assessment
- Process Control
- Reverse Engineering
[1 Conclusion

[[Ca==aas:

Literature

[0 Norman E. Fenton, Shari |. Pfleeger, “Software Metrics: A rigorous & Practical
Approach”, Thompson Computer Press, 1996.

[0 Mark Lorenz, Jeff Kidd, “Object-Oriented Software Metrics”, Prentice Hall, 1994.

[0 Brian Henderson-Sellers, “Object-Oriented Metrics: Measures of Complexity”,
Prentice Hall, 1996.

IAM, U. Berne Metrics in OO Reengineering

Object-Oriented Software Reengineering 182.

Why Metrics in OO Reengineering?

Estimating Cost
0 Is it worthwhile to reengineer, or is it better to start from scratch?
=> See previous lectures

Assessing Software Quality
[0 Which components have poor quality? (Hence should be reengineered)
[0 Which components have good quality? (Hence should be reverse engineered)
=> Metrics as a reengineering tool!

Controlling the Reengineering Process
[0 Trend analysis: which components did change?
[0 Which refactorings have been applied?
=> Metrics as a reverse engineering tool!

IAM, U. Berne Metrics in OO Reengineering

Object-Oriented Software Reengineering 183.

Quantitative Quality Model

Quality according to ISO 9126 standard
[0 Divide-and conquer approach via “hierarchical quality model”
[1 Leaves are simple metrics, measuring basic attributes

@uncﬂonaht@{ Error tolerance< %

C Reliability S

— Accuracy defect density
Efficiency >< = #defects / size

Consistency {

correction time

Simplicity

@aintainability

correction impact

C Portability){ Modularity (= #components

changed

IAM, U. Berne Metrics in OO Reengineering

Object-Oriented Software Reengineering 184.

Process Attributes & External Attributes

Process Attribute
[0 Definition: measure aspects of the process which produces a product
[0 example: time to correct defect, number of components changed per correction

Product Attribute

[0 Definition: measure aspects of artifacts delivered to the customer
External Product Attribute

[0 Definition: measures how the product behaves in its environment

[0 example: number of system defects perceived, time to learn the system

Pros and Cons
[0 advantages:
- close relationship with quality factors
[J disadvantages:
measure only after the product is used or process took place
data collection is difficult often involves human intervention/interpretation
relating external effect to internal cause is difficult

IAM, U. Berne Metrics in OO Reengineering

Object-Oriented Software Reengineering 185.

Internal Product Attributes

Internal Product Attribute
[0 Definition: is measured purely in term of the product, separate from behaviour
[0 example: method size, class coupling and cohesion

Quality Assumption
[0 Internal product attributes directly affect quality

Pros and Cons
[0 advantages:
- can be measured at any time
- data collection is quite easy and can be automated
- direct relationship between measured attribute and cause
[0 disadvantage:
- relationship with quality factors is not empirically validated

[0 measurements may only be used as indicators, i.e. a heuristic

IAM, U. Berne Metrics in OO Reengineering

Object-Oriented Software Reengineering 186.

“Define your own” Quality Model

Define the quality model with the development team
[1 Team chooses the characteristics, design principles, metrics...
[0 ... and the thresholds

design class as an number of private

abstract data-type attributes]2, 10[

Y : encapsulate all number of public
@Ialntalnab ity Modularity attributes attributes]0, O

number of public
avoid complex methods]5, 30[

interfaces average number of
arguments [0, 4]

m Characteristic Design Principle ﬁetric\‘ ‘

IAM, U. Berne Metrics in OO Reengineering

Object-Oriented Software Reengineering 187.

Conclusion: Metrics for Quality Assessment

Question:
[Can internal product metrics reveal which components have good/
poor quality?
Yes, but...
[0 Not reliable

— false positives: “bad” measurements, yet good quality

O

— false negatives: “good” measurements, yet poor quality
[0 Heavy Weighth Approach
— Requires team to develop (customize?) a quantitative quality model
— Requires definition of thresholds (trial and error)
[0 Difficult to interpret
— Requires complex combinations of simple metrics

However...
[1 Cheap once you have the quality model and the thresholds

[0 Good focus (= 20% of components are selected for further inspection)
Note: focus on the most complex components first!

IAM, U. Berne Metrics in OO Reengineering

Object-Oriented Software Reengineering 188.

The KISS principle

Keep

|+
Stupidly
Simple

Question
[0 Wouldn’t there lightweight approaches to exploit metrics during reengineering?

IAM, U. Berne Metrics in OO Reengineering

Object-Oriented Software Reengineering 189.

Trend Analysis via Change Metrics

Change Metric

[0 Definition: difference between two metric values for the same metric and the
same component in two subsequent releases of the software system

[0 Examples:

— difference between number of methods for class “Event” in release 1.0
and 1.1

— difference between lines of code for method “Event::process()” in release
1.0and 1.1

Change Assumption
[Changes in metric values indicate changes in the system

IAM, U. Berne Metrics in OO Reengineering

Object-Oriented Software Reengineering 190.

Conclusion: Metrics for Trend Analysis

Question:
[0 Can internal product metrics reveal which components have been changed?

« changes may go unnoticed « all detected changes are real
=> false negatives are possible => no false positives (but lot of noise)

Sometimes the kind of changes are revealing!

change in “Hierarchy Nesting Leve]”
: A
in the middle
of the hierarchy 4

change in “Number oﬁma." %the leaf of the hierarchy

IAM, U. Berne Metrics in OO Reengineering

Object-Oriented Software Reengineering 191.

Identifying Refactorings via Change Metrics

Refactorings Assumption

[0 Decreases (or Increases) in metric values indicate movement of
functionality

Basic Principle of “ldentify Refactorings” Heuristics

[0 Use one change metric as an indicator (1)
[0 Complement with other metrics to make the analysis more precise
[Include other metrics for quicker assessment of the situation before and after

(1) Most often we look for decreases in size, as most refactorings redistribute functionality
by splitting components.

IAM, U. Berne Metrics in OO Reengineering

Object-Oriented Software Reengineering

192.

Split into Superclass / Merge with Superclass

Recipe

[0 Use change in “Hierarchy Nesting Level” (HNL) as main indicator

[0 Complement with changes in “# methods” (NOM), “# instance attributes” (NIA)
and “# class attributes” (NCA) to look for push-up, push down of functionality

[0 Include changes in “# inherited methods” (NMI) and “# overridden methods”
(NMI) to assess overall protocol

SPLIT

A’

T
Y

IAM, U. Berne

A

X
A

B’

Split B into X and B’

(delta_ HNL(B’) > 0) and
((delta_ NOM(B’) <0)
or (delta NIA(B’) <0)
or (delta NCA(B’) <0))

Merge X and B into B’

(delta. HNL(B’) < 0) and
((delta_ NOM(B’) >0)
or (delta_NIA(B’) > 0)
or (delta_ NCA(B’) > 0))

MERGE
A
il

Metrics in OO Reengineering

Object-Oriented Software Reengineering 193.

‘ Example: Inferring the Bridge Protocol

In VisualWorks we detected a “Merge with Superclass” which revealed parts of the
interaction protocol of the Bridge Pattern

Basi cButt on Basi cButt on

VisuaIJairButton
Label edButt on

Basi cLabel edButt on

=

NBE.-- Motif.. 'AS... CheckPutton PushB?tton RadioB$tton
élj éJ_1 élj | | | | | | | | |
o - c o - c O o £
£ =z £ 5=z £ 8=z

Radi obutto
ChackBut t on
Radi obutto
ChackBut t on
Radi obutto
ChackBut t on

IAM, U. Berne Metrics in OO Reengineering

Object-Oriented Software Reengineering

194.

‘ Split into Subclass / Merge with Subclass

Recipe

[0 Use change in “# immediate children” (NOC) as main indicator

[0 Complement with changes in “# methods” (NOM), “# instance attributes” (NIA)
and “# class attributes” (NCA) to look for push-up, push down of functionality

SPLIT

A AA’

A!

)
AN

B

IAM, U. Berne

Split A into X and A’

(delta._ NOC(A’) <> 0) and
((delta_ NOM(A) <0)
or (delta NIA(A) <0)
or (delta_ NCA(A’) <0))

Merge X and A into A’

(delta. NOC(A’) <> 0) and
((delta_ NOM(A) >0)
or (delta_NIA(A’) > 0)
or (delta_ NCA(A’) > 0))

MERGE

SO

A

o

B

Metrics in OO Reengineering

Object-Oriented Software Reengineering 195.

Example: Adding new Functionality

In the Refactoring Browser we detected a “Split into Subclass” which enabled adding new
functionality.

Basi cLi nt Rul e

Bl ockLi nt Rul e Par seTr eeLi nt Rul e

2 subclasses of BasicLintRule have been added.
2 attributes have been pushed down into BlockLintRule
70 methods have been redistributed across the two subclasses

IAM, U. Berne Metrics in OO Reengineering

Object-Oriented Software Reengineering 196.

Move to Superclass, Subclass or Sibling Class

Recipe

[Use decreases in “# methods” (NOM), “# instance attributes” (NIA) and “# class
attributes” (NCA) as main indicator

[0 Select only the cases where “# immediate children” (NOC) and “Hierarchy
Nesting Level” (HNL) remains equal

MOVE Move from Bto A’, C' or D’
— A ((delta_ NOM(B’) <0)
A A or (delta NIA(B’) <0)
i i Zf i or (delta NCA(B’) <0))
D and (delta. HNL(B’) = 0)
ji zr and (delta_ NOC(B’) = 0)
~— 3 C

IAM, U. Berne Metrics in OO Reengineering

Object-Oriented Software Reengineering 197.

Example: Introducing Layers

In the Refactoring Browser, we detected a “Move to Sibling” introducing layers.

Ref act ori ngBr owser Navi gat or

Br owser Navi gat or

A

[™

Syst enNavi gat or C assSel ect'or Navi gat or

Mul ti Navi gat or
+- 50 methods have been moved.

Result: Methods in navigator do not
call any more on their aggregate.

IAM, U. Berne Metrics in OO Reengineering

Object-Oriented Software Reengineering

198.

Split Method / Factor Common Functionality

Recipe

[0 Use decreases in “# invocations” (NOI) as main indicator
[0 Combine with “# statements” (NOS) and “# Lines of Code” (LOC)
[0 Check similar decreases in other methods defined on the same class

A a()
{ ...

) SA

A

.:}

IAM, U. Berne

. . X()
A b() {

A . a()
{ ...
sel f.x()
.}
.} A . b()
{ ...
sel f.x()
.}

Split part of A.a() in A’.x()
(delta_NOI(A’.a()) < 0)

Factor out part of A.a() and A.b()
into A’.x()

(delta_NOI(A’.a()) < 0)
and (delta_NOI(A’.b()) < 0)
and (delta_NOI(A’.a())

= delta_NOI(A'.b()))

Metrics in OO Reengineering

Object-Oriented Software Reengineering 199.

Example: Creation of Template Method

In the Refactoring Browser we detected a “Split Method” which corresponded with the
introduction of a template method.

BRMVet aMessageNode: : mat chAr gunent sAgai nst :

BRMVet aMet hodNode: : mat chSel ect or Agai nst :

4

BRMet aMet hodNode: : mat chAr gunent sAgai nst .

IAM, U. Berne Metrics in OO Reengineering

Object-Oriented Software Reengineering 200.

Conclusion: Identifying Refactorings

Question:
Can internal product metrics reveal which refactorings have been applied?

o O e O
2% 2
* vulnerable to renaming » good focus (scaleability)
 imprecise for many changes e reliable
* requires experience * reveals class interaction
 considerable resources unbiased

=> inherent to reverse engineering based => good in the early stages
on source code

IAM, U. Berne Metrics in OO Reengineering

Object-Oriented Software Reengineering

Conclusion

[[Ca==aas:

Question

Can metrics (1) help to answer the following questions?
1. Which components have good/poor quality?
2. Which components did change?

3. Which refactorings have been applied?

201.

Not reliably
Yes

Yes

(1) Metrics = Measure internal product attributes (i.e., size, inheritance,

coupling, cohesion,...)

IAM, U. Berne

Metrics in OO Reengineering

Object-Oriented Software Reengineering 202.

Questions

You should know the answers to these questions.

[0 What's the difference between an internal and an external product attribute?
What's the difference between a product and a process attribute?

[0 Why is it preferable to use internal product attributes instead of process
attributes or external product attributes?

Why is it possible to have false negatives for change metrics?

Why do we state for “Move to Superclass, Subclass or Sibling Class on page
196” that you should select only those cases where “# immediate children”
(NOC) and “Hierarchy Nesting Level” (HNL) remain equal?

1 O

Can you answer the following questions?

[0 Is the quality assumption (i.e., Internal product attributes directly affect quality)
reasonable? Find both arguments for and against.

[0 When would you apply a quantitative quality model in a reengineering project?
[If you are looking for refactorings, why is it better to look for decreases in size?
[0 Why do you think that change metrics are vulnerable to renaming?

IAM, U. Berne Metrics in OO Reengineering

Object-Oriented Software Reengineering 203.

10. Tool Integration

QOutline
[0 Why Integrate Tools?
Which Tools to Integrate?
Tool Integration Issues
The “Help yourself” approach
- How to Obtain Data?
- APl Examples (Java, SNiFF+, Rational/Rose)
[0 Exchange Standards
- CDIF & MOF
- UML shortcomings

O O O

Literature
O lan Sommerville, Software Engineering Fifth Edition, Addison-Wesley, 1996.

[0 Roger S. Pressman, Software Engineering: A Practitioner’'s Approach,
McGraw-Hill, 1994.

[0 Alan M.Davis, 201 Principles of Software Development, McGraw-Hill, 1995.

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering 204.

Why Integrate Too0Is?

Tool Adage
Tools are necessary to improve productivity.

Tool Principle

Give Software Tools to Good Engineers. You want bad engineers to
produce less, not more, poor-quality software [Davi95a].

Towards CARE

[0 CAD/CAM Computer Aided Design / Manufacturing - Late 70’s
Create and validate design diagrams & steer manufacturing processes
[0 CASE Computer Aided Software Engineering - Late 80’s
Support (parts of) the Software Engineering Process
[0 CARE Computer Aided Reengineering - Mid 90’s
Support Software Reengineering Activities
[0 YZ2K tools

[Round-trip engineering

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering

Which Tools to Integrate?

¢
‘ CASE-tools
metric tools visualization
— —
I
— y

m\%%

refactoring tools

editors/browsers

testing tools -d

requirement & configuration &
bug tracking version management

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering 206.

Tool Integration Issues

Reengineering vs. forward engineering
[0 Forward engineering tools are chosen deliberately.
[0 Reengineering tools must integrate with what's already in place.

[0 Tool integration in reengineering is harder
... but we can rely on forward engineering experience

0 “Help yourself” approach

Tools must work together

[0 share data => repository
[1 synchronize activities => API
[0 different vendors => interoperability standards

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering

Basic Tool Architecture

207.

“Most tools for reverse engineering, restructuring and reengineering use the same basic
architecture.” [Chik90a], [Chik90b]

/

Software
work product

Parser,
Semantic
analyzer

View

composer(s)

Information
base

T~

New view(s)
of product

IAM, U. Berne

Tool Integration

Object-Oriented Software Reengineering 208.

Help Yourself - Parser

Build your own parser
* Technique
[J Use parser generator to build a parser for the language
» Advantage
[0 Full control (dialects, pre-compilers)
» Disadvantage
[1 Experts only (formal syntax grammars)
[0 Costly
[0 Uncertain about reliability and scalability
[J Build your own = Maintain your own
[0 Tools to integrate with require source code or API

 Remarks
[0 C++ requires full control (lot’s of dialects + pre-compiling tricks)
0 ... but 100% reliability is very difficult for parser generators

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering 2009.

Help Yourself - File Formats

Translate between file-formats
* Technique

[0 Build gateways between existing tools by translating import/export file formats
» Advantage

[0 Relatively cheap (assuming formats are documented)
[1 Offers reasonable integration

[0 Reasonable scalability (limited by file system)
» Disadvantage

[0 Faith in external tools
[0 Maintenance is difficult (future releases easily change file-formats)
[1 Effort to be duplicated for every tool
 Remarks
[0 Works only when few gateways must be build
[1 Standardization efforts are under way (CDIF, MOF)
=> tackles “maintenance” and “duplication of efforts” problems
=> improves scalability and allows multiple tools

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering 210.

Help Yourself - API

Communicate via API's (application programmer’s interface)
* Technique
[0 Build gateways between existing tools using wrappers that extract info via API's
» Advantage
[0 Cheap
[1 Good integration
[Good scale-up (limited by wrapping tool)
[0 Maintenance effort is reasonable (API's don’t change that frequently)
» Disadvantage
[0 Faith in external tools
[1 Effort to be duplicated for every tool
[Robustness
 Remarks
[0 Works only when few gateways must be build
[0 May be combined with “Translate between file-formats”

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering 211.

Help Yourself - Execution Trace

Collect Execution Traces
* Technique
[0 Acquire traces of sequences of method invocations
(code instrumentation, method wrapping, debugger, virtual machines)
» Advantage
[1 Good insight in the ‘real’ execution trace
» Disadvantage
[0 Expensive with current state of the art
[0 Relies on reliable usage scenarios
[0 Explosive data-growth
 Remarks
[0 Currently not often used, but gives spectacular results

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering 212.

APl Example - Java

A piece of Java-code using the reflection facilities to inspect class elements
| nport java.lang.reflect.*;

public class Cl assl nspector

{
[* definition of auxiliary nmethods Print... */
public static void Inspect (Class c) {
Systemout. println(“Contents of class “ + c.getName());
PrintFields (c.getFields());
Pri nt Construct ors(c.getConstructors()) ;
Pri nt Met hods(c.getMethods()) ;
}
}

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering 213.

APl Example - SNIFF+

A piece of C-code which accesses the SNiFF+ API to query the symbol table

int main (int argc, char *argv|[])
{ SN FFACCESS sl ot;
[*ot her declarations */

Par seArgs(argc, argv, &host, &proj, &session);
__si__module__init() ;

sl ot = si _open(session, host);

i f(slot && si _open_project(slot, proj))

{full = si Query(eQ npl Files, eSAd obal , 0);
: /* enunerate pointer structure in ‘full’ */
si_close project(sl ot, proj);
}
si_exit(sl ot);
return O;

}

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering 214,

APl Example - Rational/Rose

Pieces of VisualBasic-code to generate elements into the Rational/Rose repository

Sub GenerateC assln (theC assNane As String,
t heCat egory As Category)
DimtheC ass As C ass

Set theC ass = theCategory. AddClass(t heCl assNane)
End Sub

Sub Generatel nheritanceln (theSubclassName As String,
t heSupercl assNane As String, theCategory As Category)
DimtheSub As Cl ass
Dimthelnherit As InheritRelation

Set theSub = theCategory. GetAllClasses() . Get Fi rst (_

t heSubcl assNane)
Set thelnherit = theSubcl ass. AddInheritRel("",

t heSuper cl assNane)
End Sub

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering 215.

Exchange Standards

‘AV
EXCHANGE I1) STREAMS

TN

Standardization Efforts

[0 CDIF (CASE data interchange format) - see http://www.eigroup.org/
Mature standard (being approved by ISO)
Little commitment from tool vendors

0 MOF (Meta-Object Facility) from OMG - see http://www.omg.org/
Currently immature (approved by OMG late 1997)
Major commitment from tool vendors to be expected
Builds on UML and CORBA/IDL

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering 216.

Exchange Standards - Reference Format

[1 Issue

How can tools exchange information without being
aware of each other?

[1 Answer
Tools agree on a single reference model
reference model = meta model
[0 Analogy

How can French, German and Italian persons exchange
documents? They agree to write their documents in Esperanto.

0 Advantage
Only need for one translation dictionary
[0 Disadvantage
Centralised reference models do not work in practice
- Need for specialised constructs (i.e. jargon)
- Cannot predict future specializations

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering 217.

Exchange Standards - Openness

Specialised Constructs

[l Issue
How can tools extend the meta model with specialised
constructs? 4+
[0 Answer
Each tool includes an extra glossary, explaining the

specialised constructsinterms of acore reference model. |glossary
core reference model = meta meta model

Multiple Standards meta meta

O Issue model

How can tools deal with future extensions?

[] Answer (& §>

All glossaries (=meta model extensions) define
mapping with the core reference model (= meta meta

model)

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering 218.

Meta Models

Exchange standards community cultivated specialised terminology
[0 the Four Layer Metamodeling Architecture

Layer Description Example
MetaMeta | Defines the core ingredients (CDIF) MetaEntity, MetaAttribute
Model sufficient for defining languages | (MOF) Class, MofAttribute

for specifying meta-models
Meta Defines a language for (UML) Class, Attribute, Association
Model specifying Models (Database) Table, Column, Row
Model Defines a language to describe | Student, Course, enrolled _in

an information domain.
User Describes a specific situation in | Student#3, Course#5,
Objects | an information domain. Student#3.enrolled_in.Course#5

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering 219.

CDIF sample (propriety syntax)
CDI F, SYNTAX "SYNTAX. 1" "02.00.001, ENCODI NG "ENCODI NG 1"
"02. 00. 00"

Obligatory Introduction Stuff
(: HEADER . ..)

(: META- MODEL
(: SUBJECTAREAREFERENCE Foundat i on
(: VERSI ONNUMBER " 0}. 00"))

)

_ Definition of a meta-model concept “Class”
(MetaEntity C ass as having one attribute “name”
(Name *Cl ass*))

(Met aAttri bute naneCljass
(Nanme *name*)
(Dat aType <StringVal ue>)
(i sOptional -FALSE-))
(MetaAttribute.l 4Local MetaAttri buteOf . Attri but abl eMet aOb-

j ect Definition of 2 classes “Student” & “Course”
naneCl ass C as§)

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering 220.

MOF Sample (XML syntax)

<?xm version="1.0" encodi ng="1 SO 8859-1" ?>

<I DOCTYPE XM SYSTEM "nof . dtd">

<XM xm . version="1.0"> Obligatory Introduction Stuff

<XM . heade
<XM (rret anodel xm . narrez"@xn‘i version="1.1" />

</ XM . hea
\Load predefined UML meta model

<XM . cont ent >
<MoF. Mbdel . Package xm .1 dg"i 00000001" >

<Mof . Model . Model El enent] nane>packagel</ Mof. Mbdel>
<Mbf . Model . Model El enent]. annot ati on/ >

<Mbf . Mbdel . Gener al i zablEl enent . | sRoot

XM . val ue="yes"/ > Definition of a package with
name “packagel” and some attributes

<Mof . Model . Naneppace. cont ent s>
<Mbf . Model . CRpss xm .id="100000002">
<NMbf . Model .[Mbdel El enent . nane>cl assl1</ Mof. >

This package contains class named “class1”

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering 221.

CORBA Interface for MOF

i nterface Mof Attri buteCl ass : Structural Featured ass {
readonly attribute
Mof Attri buteULi st all_of kind nof _attribute;
readonly attribute
Mof Attri buteULi st all _of type nof _attribute;

Mof Attri bute create nof _attribute (
/* from Model El ement */ in ::Mdel::NaneType nane,

}; I/ end of interface Mof Attri buteCd ass

interface Mof Attribute : MfAttributeC ass, Structural Feature
{
bool ean i s _derived ()
rai ses (Reflective::Structural Error,
Refl ective:: Semanti cError);
void set is derived (in boolean new val ue)
rai ses (Reflective:: SemanticError);

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering 222.

UML shortcomings

Current standardization efforts are geared towards UML.
[1 not enough for reengineering
[0 need “Invocation” & “Access”

UML REENGINEERING

Attribute

Aggregation Class Invocation

Generalization
= Inheritance

Composition Access

Method + Operation =
Method

[1 use extension mechanisms on the meta-model
=> how standard is standard?
[0 define a special reengineering standard (i.e., own meta-model)

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering 223.

Conclusion

[Reengineering requires Tools
- Much in common with forward engineering
Must integrate with what's already in place
‘Help yourself” approach
Build your own parser
Translate between file-formats
Communicate via API's
Collect Execution Traces
[0 Standardization Efforts
- CDIF is mature / MOF is safest bet for future
- Extensibility via Meta models (4 layer architecture)
- UML has shortcomings

]

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering 224,

Questions

You should know the answers to these questions.
[0 What's the difference between tool integration in forward angineering and
reengineering?
[0 If you need to build a tool that generates UML from Java source code, how
would you conceive it ? Why ?

0 Why do we need a meta meta model when exchanging information between
tools?

Can you answer the following questions?
[0 How would you explain the “Four Layer Metamodeling Architecture”

IAM, U. Berne Tool Integration

Object-Oriented Software Reengineering 225 .

11. Refactoring

Outline

]

What is Refactoring?

Why Refactoring?

Iterative Development Life-cycle
Example: Rename Class

Which Tools for Refactoring?
Case-study: Internet Banking
prototype

consolidation: design review
expansion: concurrent access
consolidation: more reuse

[0 Conclusion

NN I O By

University of Berne Refactoring

Object-Oriented Software Reengineering 226 .

What is Refactoring?

Some definitions

[1 The process of changing a software system in such a way that it does not alter
the external behaviour of the code, yet improves its internal structure [Fowl99a]

[0 A behaviour-preserving source-to-source program transformation [Robe98a]

[0 Achange to the system that leaves its behavior unchanged, but enhances some
nonfunctional quality - simplicity, flexibility, understandability, performance
[Beck99a]

Typical Refactorings

Class Refactorings Method Refactorings Attribute Refactorings
add (sub)class to hierarchy | add method to class add variable to class
rename class rename method rename variable
remove class remove method remove variable

push method down push variable down

push method up pull variable up

move method to component | create accessors

University of Berne Refactoring

Object-Oriented Software Reengineering 227 .

Why Refactoring?
Relative Effort of Maintenance Relative cost of fixing mistakes
[Somm964a] [Davi95a]
Between 50% and 75% of available effort Changes costs tremendousl:*
IS spent on maintenance. 65% of that while your project lives on.

concerns new functionality, which you
could not foresee when you started.

x 200
17 % Correcti
(fixing errors) x 20
65 % Perfective x 10
18 % (new functionality) X5
(new X 1
requirement COding delivery
design teStIng

[make change less costly in later stages!

University of Berne Refactoring

Object-Oriented Software Reengineering 228 .

[terative Development Life-cycle

Change is the norm, not the exception !

Initial
Requirements

PROTOTYPING

N

New / Changing
Requirements

EXPANSION

CONSOLIDATION

More
Reuse

University of Berne Refactoring

Object-Oriented Software Reengineering

Example: Rename Class

Winwdgts

subclasses:
contructors:

types:

w dgets){...}
class method calls:

class attribute accesses:

casts:
imports:
fillename:

University of Berne

229 .

—_—p | WindowsWidgetFactory

MyW dget s extends W nWigts
W nWigt s()

and their calls: w dgets = new W nWigt s()
W nWigt s current Wdgets;
public WnWligts get Wdgets() {...}
public void set Wdget s(W nWigt s

W nWigt s. i nst ance() ;

W nWigt s. properti es;

(W nWigts) Object

| mport gui.w dgets. WnWigt s;
W nWigt s. j ava

Refactoring

Object-Oriented Software Reengineering 230 .

+ precondition checking

University of Berne Refactoring

Object-Oriented Software Reengineering 231.

Tool Support for Refactoring

Change Efficient Failure Proof
Refactoring Regression Testing
[Source-to-source program [1 Repeating past tests
transformation [Tests require no user interaction
[J Behaviour preserving 0 Tests are deterministic
=> improve the program structure O Answer per test is yes / no

=> verify if improved structure does not
damage previous work

Programming Environment Configuration & Version Management
[0 Fast edit-compile-run cycles [keep track of versions that
0 Support small-scale reverse represent project milestones

engineering activities => possibility to go back to previous
=> convenient for “local” ameliorations version

University of Berne Refactoring

Object-Oriented Software Reengineering

Case Study: Internet Banking

Initial Requirements

(N I

1 O

a bank has customers

customers own account(s) within a bank
with the accounts they own, customers may
- deposit / withdraw money

- transfer money

- see the balance

secure: only authorised users may access an account
reliable: all transactions must maintain consistent state

232 .

University of Berne

Refactoring

Object-Oriented Software Reengineering

Prototype Design: Class Diagram

| BCust oner

custonmer Nr : 1 nt

custonmerNr () :int

233.

| BAccount

account Nr : 1 nt
bal ance : int = 0

University of Berne

accountNr (): int
get Bal ance() : i nt
set Bal ance (anount:int)

| BBank

val i dCust oner (cust : | BCust oner) bool ean

cr eat eAccount For Cust oner (cust : | BCust oner): int

cust omer MayAccess(cust : | BCust oner, account:int) : bool ean
seeBal ance(cust: | BCustoner, account:int) : int

transfer(cust:|BCustoner, anpunt:int, fromAccount:int,
t oAccount : i nt)

checkSumAccount s() bool ean

Refactoring

Object-Oriented Software Reengineering

Prototype Design. Contracts

Ensure the “secure” and “reliable” requirements.

| BBank: : cr eat eAccount For Cust oner (cust: | BCust oner): int
require: validCustoner(cust)
ensure: custoner MayAccess(cust, <<result>>)

| BBank: : seeBal ance(cust: | BCustoner, account:int) : int
require: (validCustoner(cust)) AND
(cust oner MayAccess(cust, account))
ensure: checkSumAccount s()

| BBank: :transfer(cust: | BCustonmer, anount:int, fromAccount:

t oAccount :int)
require: (validCustoner(cust))
AND (cust oner MayAccess(cust, fromAccount))
AND (cust oner MayAccess(cust, toAccount))
ensure: checkSumAccount s()

234 .

| nt,

University of Berne

Refactoring

Object-Oriented Software Reengineering 235.

Prototype Implementation

=> see demo “IBankingl”

Include test cases for

set U _aTe|st IBCustomer
P » [newAccount (1) -customerNr()
> anAccount
[1IBAccount
t est Account | ‘
> account Nr -getBalance()
[= 1] > -setBalance()
- J1BBank
get Bal ance
- -createAccountFor
(=0 _ Customer()
set Bal ance(100) -transfer() / seeBalance() (single
> transfer)
-transfer() / seeBalance()
get Bal ance o (multiple transfers)
[= 100]

-« — — ‘

University of Berne Refactoring

Object-Oriented Software Reengineering

Prototype Consolidation

Design Review (i.e., apply refactorings AND RUN THE TESTS!)
[0 Rename attribute
- manually rename “bince” into “amountOfMoney” (run test!)

- apply “rename attribute” refactoring to reverse the above
+ run test!
+ check the effect on source code

[1 Rename class
- check all references to “IBCustomer”

- apply “rename class” refactoring to rename into IBClient
+ run test!
+ check the effect on source code

[1 Rename method
- rename “init()” into “initialize()” (run test!)
- see what happens if we rename “initialize()” into “init))
- change order of arguments for “transfer” (run test!)

236 .

University of Berne

Refactoring

Object-Oriented Software Reengineering 237 .

Expansion

Additional Requirement
[J concurrent access of accounts

Add test case for
[1 IBBank

- testConcurrent: Launches 2 processes that simultaneously transfer money
between same accounts
=> test fails!

University of Berne Refactoring

Object-Oriented Software Reengineering 238 .

Expanded Design: Class Diagram

| BCust oner S | BAccount
account Nr : 1 nt
bal ance : i nt
transactionld : int

workingBalance : int
accountNr (): int
get Bal ance(transaction : int) : i nt

set Bal ance (transaction : int,
anount :int)

lock (transaction : int)

commit (transaction : int)

abort (transaction : int)

isLocked() : boolean

IsLockedBy (transaction : int) : boolean

| BBank

University of Berne Refactoring

Object-Oriented Software Reengineering

Expanded Design: Contracts

| BAccount : : get Bal ance(transaction:int):
require: isLockedBy(transaction)
ensure:

| BAccount : : set Bal ance(transaction:int,
require: isLockedBy(transaction)
ensure: getBal ance(transacti on)

| BAccount : : | ock(transaction:int)
require:
ensure: isLockedBy(transacti on)

| BAccount::conmmt (transaction:int)
require: isLockedBy(transaction)
ensure: NOT isLocked()

| BAccount : : abort (transaction:int)
require: isLockedBy(transaction)
ensure: NOT isLocked()

University of Berne

I nt

anmount :

anmount

239 .

Refactoring

Object-Oriented Software Reengineering 240 .

Expanded Implementation

Adapt implementation
1 apply “add attribute” on IBAccount with “transactionld” and “workingBalance”
0 apply “add parameter” to “getBalance()” and “setBalance()” with “transaction”

[0 use normal editing to expand functionality of “seeBalance()” and “transfer()”
=> |oad “IBanking2”

Expand Tests

[0 previous tests for “getBalance()” and “setBalance()” should now fail
=> adapt tests

[1 new contracts, incl. commit and abort
=> new tests

[testConcurrent works!
=> we can confidently ship a new release

University of Berne Refactoring

Object-Oriented Software Reengineering

Consolidation: Problem Detection

More Reuse

[0 A design review reveals that this
“transaction” stuff is a good idea and
should be applied to IBCustomer as
well.

=> Code Smells

[0 duplicated code (lock, commit, abort
+ transactionld)

[large classes (extra methods, extra
attributes)

=> Refactor

[0 “Lockable” should become a
separate component, to be reused in
IBCustomer and IBAccount

University of Berne

241 .

| BCust oner

custonerNr © int
name : String
address : String
password : String
transactionld : int
workingName : String

get Nane(transaction : int) : Stri ng
set Nane (transaction : int, nane: Stri ng)

lock (transaction : int)

commit (transaction : int)

abort (transaction : int)

iIsLocked() : boolean

isLockedBYy (transaction : int) : boolean

Refactoring

Object-Oriented Software Reengineering

Consolidation: Refactored Class Diagram

[BAccount
transactionld : int
accountNr : int
bal ance : int
wor ki ngBal ance : int

accountNr (): int
get Bal ance(transaction :

int):int

set Bal ance (transaction : int,
anount : i nt)

| ock (transaction : int)

commt (transaction : int)

abort (transaction : int)

| sLocked() bool ean

| sLockedBy (transaction : int)
bool ean

Split the class

University of Berne

242 .

| BLockabl e

transactionld : int

| ock (transaction : int)

abort (transaction : int)
| sLocked() bool ean

| sLockedBy (transaction :
bool ean

commt (transaction : int)

i nt)

| BAccount

account Nr : int
bal ance : int
wor ki ngBal ance : int

accountNr (): int
get Bal ance(transacti on :

set Bal ance(transaction :
anmount : i nt)

int):i

I nt,

nt

Refactoring

Object-Oriented Software Reengineering

Refactoring Sequence (1/5)

Refactoring: Create Subclass

243 .

0 apply “Create Subclass” on “IBAbstract” to create an empty “IBLockable” with

subclass(es) “IBAccount” & “IBCustomer”

| BAbstr act

| BLockabl e

|
| BBank

University of Berne

| BAccount

| BQust oner

Refactoring

Object-Oriented Software Reengineering

Refactoring Sequence (2/5)

Refactoring: Pull Up Attribute

0 apply “pull up attribute” on “IBLockable” to move “transactionld” up

| BLockabl e
[BAccount
™transactionld : int
accountNr : int
bal ance : int
wor ki ngBal ance : int

University of Berne

244 .

Refactoring

Object-Oriented Software Reengineering 245 .

Refactoring Sequence (3/5)

Refactoring: Pull Up Method

O apply “pull up method” on “IBAccount” to move “isLocked”, “isLockedByYy”,
“notLocked” up

| BLockabl e

| BAccount

isLocked() : boolean
notLocked() : boolean
isLockedBY (transaction : int) : boolean

O apply “pull up” to “abort:”, “commit:”, “lock:”
=> failure: accesses to “balance” and “workingBalance” attributes

University of Berne Refactoring

Object-Oriented Software Reengineering 246 .

Refactoring Sequence (4/5)

Refactoring: Extract Method + Pull Up Method

0 apply “extract method” on groups of accesses to “balance” and
“WorkingBalance”

commt: transactionlD
"Commit nyself as part of the given transaction”

self require: [self isLockedBy: transacti onl D
' ~ on.—#l ockFai | ureSi gnal .

. = wor ki ngBal ance.

wr ki ngBal ance = nil.

transactionldenti

self ensure: [self notlLocked].

ommitWorkingState

[0 similar for “abort.” (-> clearWorkingState) and “lock:” (-> copyToWorkingState)
O apply “pull up method” on “IBAccount” to move “abort:”, “commit:”, “lock:” up

University of Berne Refactoring

Object-Oriented Software Reengineering 247 .

Refactoring Sequence (5/5)

Clean-up: make the extracted methods protected and define them as new abstract
methods in the IBLocking class

0 Apply “rename protocol” on “IBAccount” to rename “public-locking” into
“protected-locking”

Refactoring: Copy Method

O Apply “move method” on “IBAccount” to copy “clearWorkingState”,

“copyToWorkingState”, “commitWorkingState” to “IBLockable>protected-
locking”

[0 Make “IBLockable::clearWorkingState”, ... abstract
[0 This is destructive editing and not a refactoring

Are we done?
[0 Runthe tests ...
[0 Expand functionality of the IBCustomer

University of Berne Refactoring

Object-Oriented Software Reengineering 248 .

Conclusion (1/2)

Refactoring Philosophy

[0 Combine simple refactorings into larger restructuring
=> improved design
=> ready to add new functionality

[0 Do not apply refactoring tools in isolation

Smalltalk | C++ Java
refactoring tools + - (’))
rapid edit-compile-run cycles + - +-
reverse engineering facilities +- +- +-
regression testing + + +
version & configuration management + + +

Know when is as important as know-how
[Refactored designs are more complex
[Use “code smells” as symptoms
[0 Rule of the thumb: State everything “Once and Only Once” (Kent Beck)

University of Berne Refactoring

Object-Oriented Software Reengineering 249 .

Conclusion: Culture shock (2/2)

With proper
[J tool support
[0 culture shock
[1 management support

one can reduce the costs between
the different phases in the
development cycles.

x 200
x 20 The tools are there ...
x 10
X5
x1
x5 X5 x5 X5
requirement coding delivery x 1

design testing requirement - coding delivery

de&gn\/ tost

University of Berne Refactoring

Projects and More Information

Possible projects:
[0 Analysis when to apply refactorings

— resolve duplicated code
— resolve design problems (such as big classes)
— resolve unwanted dependencies
— enforce architectures
[0 Refactorings in Java (some open source efforts on their way already)

More about code smells and refactoring
[0 Book on refactoring [Fowl99a].
http://cseng. aw. com bookdetai |l . qry?l SBN=0- 201- 48567- 2

[1 Wiki-web with discussion on code smells
http://c2.com cgi/w ki ?CodeSnel | s

Object-Oriented Software Reengineering 250.

12. Using Dynamic Information for Reverse
Engineering

Tamar Richner
Software Composition Group

0 dynamic information is important for program understanding
0 how dynamic information can be used in reverse engineering
[0 problems in analyzing and interpreting dynamic information

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 251.

Outline

]

Why dynamic information?
What is dynamic information?

]

— dynamic vs. static information
— problems with using dynamic information

Frequency spectrum analysis
Visualization

Design Recovery

Queries and Views: Gaudi
Instrumentation

Conclusions

O O0O0f-danQ

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 252.

Why Dynamic Information?
f

N
N\

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 253.

Why Dynamic Information (cont’d)?

we are already familiar with its use for:
[1 debugging: examine program state
[1 analysing memory use
[profiling: measure time spent executing

For reverse engineering:

functionality in OO programs comes from collaborations of objects

but,
[0 control flow is hard to derive statically
0 polymorphism makes it hard to figure out which method is actually executing

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering

What is Dynamic Information?

any information that we can collect from executing a program.
for example:

[]
[]
[]
[]
[]

value of a variable at time t

number of milliseconds spent executing method m
instance x of class X created 25 instances of class Y from t1 to t2
methods on the call stack at time t

X.x invokes method m on Y.y at time t
and so on.....
Which kind of information is useful for reverse engineering?

//—IV

extractor

Software

analyzer

information
base

T

View

Tamar Richner

254,

Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering

Static vs. Dynamic Information

Static Dynamic
Precision []
Completeness | []
False Positives No .F"?"Se
Positives
False dynamic
Negatives y
No False)
. static
Negatives

[0 dynamic information relates a scenario to behavior

[static and dynamic information complement each other

Tamar Richner

255.

Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 256.

Problems with using Dynamic Information

huge amount of information generated by tracing

from low-level information to high-level model (as for static information)
problem of coverage (as for testing)

instrumentation (not always easy)

how do we express behavioral models of OO software?

O OO0 O

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering

Roadmap

[]
[]

N I B

Tamar Richner

Why dynamic information
What is dynamic information

— dynamic vs. static information
— problems with using dynamic information

Frequency spectrum analysis
[0 looking at execution frequencies

— some heuristics

Visualization

Design Recovery

Queries and Views: Gaudi
Instrumentation
Conclusions

257.

Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 258.

‘ Frequency Spectrum
ol =
‘||| ‘ |‘ | | Execution
Frequency
P L) =
L — | L Static Unit: e.g. method, procedure, program path

[0 For a single execution:
frequency spectrum analysis (FSA) [Ball99]

— low vs. high frequencies
— related frequencies
— specific frequencies
[0 Comparing executions:
— Dynamic Differencing [Reps97][Agra98]
— Concept Coverage Analysis [Ball 99]

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 259.

FSA: low vs. high frequencies

4000 __

2000 __

[0 high frequencies -> lower level abstractions
0 low frequencies -> higher level abstractions

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 260.

FSA: related frequencies

4000 __

2000 _|

[0 same frequency -> frequency clusters

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 261.

FSA: specific frequencies

4000 __

2071 =

2000 _|

X

[J associate frequency to input, e.g. input file with 2071 records -> method X
handles this input

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 262.

‘ Dynamic Differencing
[0 locate where a feature is implemented
T1 ‘ g
|| |1 telephony features like call setup,
call waiting

data-sensitive code (e.g. year
12 2000 problem)

[J test case selection is
Important to get good results

T1-T2 ‘ ‘ ‘
X Yy Z

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 263.

Summary of Spectrum Techniques

are these really used in practice?
[on asmall scale - yes.
[0 on alarge scale - probably not:

— test case preparation is critical and number of test cases necessary to
get meaningful information is large. Work reported is in research labs.

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 264,

Roadmap
[0 Why dynamic information
[0 What is dynamic information
[0 Frequency spectrum analysis
[J Visualization

[0 visualization techniques
— some examples

Design Recovery

Queries and Views: Gaudi
Instrumentation
Conclusions

N I

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 265.

Visualization

of what?

[0 summary information about the execution
[sequence diagrams: showing message sends between objects

how?
techniques for displaying lots of information:

[0 remove time element through animation [DePa94][Sefi97][Walk98]
[1 navigation through hyperlinks [Kosk96]
[0 compress information into visual pattern: information mural [Jerd98]

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 266.

Animated Summaries
[affinity diagram

— inter-class call graph
[histogram

— number of instances

these can be animated real-time or offline - they can also
summarize data without animation

animates the class affinities (frequency of calls)[Sefi97]

shows total # of objects allocated (green) and
deallocated (red), animated through a high-level model

[Walk9g]

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering

267.

Animated Summaries Example. Jinsight

-_.ithEi:t::ﬂc}jﬁ:iéarEnﬁa

HEE [DePa94]

|EI_ 1__m_uu1DDDDD+ Base Time

igvaliofDatainpuiStream

javalawtizvent/ila I59F~e*IIIIIIIIIIIIIIIIIIIIIIIIIII !

r rationfavantt i1 Transe "'

*IIIIIIIIIIIIIII!IIHIIIIII
javafiang/Thraad *IIII

javatutifProperies *IIII

sunfastinin d o T oolkit i'l

javarutistingTokenizer 4IIINENRRRRRRNNDRRRRARENND
javartangistingButter #RNERNRRRNRRRRRNNN

javatio/BufferedinputStra: "'III
javation/mainsVCR] |
javafioFilelnputstream $} 1
javation/mainidavation 4
sundantinin dowsF ontPz I
javalantiEvertlueue $f]

javafutil/Hashtable +1INEN

javationimodelsStackidoc]

o e [Kf B

javaflang/Sining

r"

i;:::::::::llllllmm-';7

fh Dhjects f“ Methnds __I_J 'ava!awt!everrm-.ﬂnuseEwﬂrrt 26, reparted & 1437315, base time: 1004296, I:Eum

show mngtances or methods grovped by clags, and mdicates their level of actwaty.

Tamar Richner

Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 268.

Information Mural

display all the information on one window or screen - mimicing what information would
look like in its entirety [Jerd98] :

[0 represent the relative information density at each pixel instead of presence of
absence of information.

[0 density is visuallized as grey scale value, or with colours

0 N N J+1

i+l

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering

269.

Information Mural Example: ISVis

ion Pragram

COMPONENTS
Xmx
htmlw
w2

SCENARIOS
MIME put character
MIME put character 2
TrackMotion
anchor cb
anchor vigited pred 3

anchor visited predicate
anchor visited predicate

cache image
image resolve
3 wo

update gui on progress

[defanlt 1
trace-based

Tamar Richner

call
[retum 1

wrrrsrrerrererrsssssnlll

CLASSES

FUMCTIONS
AddColor

r...done

Using

mural is a navigational guide
through the long sequence
diagram

visual pattern recognition
[Jerd98]

Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 270.

RoadMap

Why dynamic information

What is dynamic information

Frequency spectrum analysis
Visualization

Design Recovery

[0 requirements: focus and granularity

O OO0 O

— using clustering and filtering in visualization

Queries and Views: Gaudi
Instrumentation
Conclusions

(N I O

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 271.

A Step Back: Design Recovery

iIssues in dealing with information extracted:

[0 Granularity:
build high-level model of the software
[l Focus:

need a model which describes the aspect of the software of interest for
the task

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 272.

Design Recovery through Visualization

[0 techniques for displaying lots of information

But, more important:
[0 focusing on relevant information:

— Instrumenting selectively
— filtering out uninteresting information
(1 higher granularity
— clustering elements to create higher-level abstractions

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 273.

Selective Instrumentation & Filtering

[0 look at dynamic information only for certain classes, methods.

[1 eliminate message sends based on certain criteria, e.g. self-sends, sends to
metaclass, constructors, etc.)

Example: ISVis [Jerd97]: can edit the sequence diagram to remove actors (vertical line)
or interactions (several horizontal lines).

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering

Clustering

_>

clustering objects

clustering events

274.

|

|

|

|

NS

=
I I
—»

clustering events: can use pattern matching to find recurring interactions

Tamar Richner

Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 275.

Recognizing Patterns: example of Jinsight

: Execution Pﬂtlern]ﬂVﬂfutllfPrupEmES gEtPruperly[L]ﬂvﬂ;'Iﬂnngtrlng]L] O] =

& Bns R R R SR T SRR R
getProperhiljava (time) _‘“_l
el T

etfljawvallangs/Ob
lll:3 1

00
% azhCodenl
40100
__________ . . - N 11§ O

)
o
- -

etFroperyljava i

2000 | =

el javallang/Ob

ashCadel

L T LU P AR e LA

Lpdate I HavaILmIJHashtal:Jle get(LisvalangiOhject; ILjiavalang/Chiect; | cum time: 1042, 29X

Browse recuring patterns of commurnication ansing from a selected method, each displayed as a foncton of tme.

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 276.

Summary of Visualization for Design
Recovery

good for:
[0 localizing interesting or strange interactions
[0 debugging, performance, space analysis
disadvantages:
0 still too low-level: hard to navigate, too close to debugging
[0 models are mental models: they can not be manipulated

Despite its immediate appeal, it is not clear what the real benefits are of visualization vs.
textual feedback about the system.

What are good OO models for expressing behavior?

[0 UML interaction diagrams for expressing relevant, critical scenarios: how do we
find these in the trace?

[0 role models: look at the roles that classes play in interactions

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 277.

RoadMap

Why dynamic information
What is dynamic information
Frequency spectrum analysis
Visualization

Design Recovery

Queries and Views: Gaudi

[1 overview of approach

O O0O0f-0anQ

— modelling static and dynamic information
— queries and views

]

Instrumentation
Conclusions

]

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 278.

Gaudi: overview of Approach

P, preformulated rules

dynamic information

logic-programming static information

language

Prolog engine

A ‘\CyO%\

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 279.

Gaudi: Implementation

Code Instrumentation + Execution

MethodWrappers
Specifications

D

Dynamic Facts GAUDI

\ Moose Tool Prolog Engine

Famix Meta Model —_
Smalltalk Application Smaltalk VM S Views
Parse Code Queries

Static Facts

B O

Smalltalk VM

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 280.

Modelling OO Programs and their Execution: the
Basic Relations

Static Information:
cl ass(Cl assName, Sour ceAnchor).

super cl ass(Super Cl ass, SubCl ass).
met hod(Cl ass, Met hodNane, | sCl assMet hod, Cat egory).

Dynamic information:
send(SN, SL, Cl assl, | nstancel, Cl ass2, | nst ance2, Met hod) .

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 281.

send(1,1,’'WidgetDragDropCallbacks’,650,SystemNavigator’,10956, classWantToDrag:’).
send(2,2,’SystemNavigator’,10956,'SystemNavigator’,10956, className’).
send(3,3,’SystemNavigator’,10956,’SystemNavigator’,10956, classNames’).
send(4,4,’SystemNavigator’,10956,’SystemNavigator’,10956, viewCategory’).

send(5,4, SystemNavigator’,10956,'SystemNavigator’, 10956, classNames’).
send(6,5,'SystemNavigator’,10956,” SystemNavigator’,10956, classList’).
send(7,5,’SystemNavigator’,10956,”BRMultiSelectionInList’,5250, selections’).
send(8,1,’MessageChannel’,10775,'SystemNavigator’,10956, changeRequest’).
send(9,2,’SystemNavigator’,10956,'changeRequest’,CodeModelLockPolicy_class’, 13067, flushCache’).
send(10,2,’SystemNavigator’,10956,'changeRequest’,CodeModel’,12429,'updateRequest’).
send(11,3,’CodeModel’,12429, StateLockPolicy’,6170,'isLocked’).
send(12,3,’CodeModel’,12429,’CodeModel’,12429,’updateRequest’).
send(13,4,'CodeModel’,12429,’CodeModel’,12429,’subcanvases’).
send(14,5,'CodeModel’,12429,"CodeModel’,12429,'subcanvases’).
send(15,5,’CodeModel’,12429,'CodeModel’,12429,’tool’).
send(16,5,'CodeModel’,12429,’"CodeModel’,12429,’tool’).
send(17,4,'CodeModel’,12429,’ClassNavigatorTool’,11142 'updateRequest’).

send(18,5, ClassNavigatorTool’,11142,ClassNavigatorTool’,11142,’subcanvases’).
send(19,6, ClassNavigatorTool’,11142,'ClassNavigatorTool’,11142,’subcanvases’).
send(20,6, ClassNavigatorTool’,11142,ClassNavigatorTool’,11142,’subcanvas’).
send(21,5, ClassNavigatorTool’,11142,'BrowserClassTool’,3963,'updateRequest’).
send(22,6,'BrowserClassTool’,3963, BrowserClassTool’,3963,’'updateRequest).
send(23,7,’BrowserClassTool’,3963, BrowserClassTool’,3963,’subcanvases’).
send(24,6,’BrowserClassTool’,3963,' BrowserClassTool’,3963,’isEditing’).
send(25,7,'BrowserClassTool’,3963, BrowserClassTool’,3963,’isEditing’).
send(26,8,'BrowserClassTool’,3963, BrowserClassTool’,3963,'subcanvases’).
send(27,7,’BrowserClassTool’,3963, BrowserClassTool’,3963, textController’).
send(28,8,'BrowserClassTool’,3963,' BrowserClassTool’,3963, controllerFor:’).
send(29,1,'DependentsCollection’,8382,’BRMultiSelectionInList’,5250,'update:with:from:’).
send(30,1,'BRMultiSelectionView’,2857,'BRMultiSelectionView’,2857,’'updateSelectionChannel’).
send(31,1,’MessageChannel’,2123,”SystemNavigator’,10956, changedClass’).
send(32,2,’SystemNavigator’,10956,'SystemNavigator’,10956, updateProtocolList’).

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 282.

send(33,3,’SystemNavigator’,10956,’SystemNavigator’,10956, 'protocols’).
send(34,4,’SystemNavigator’,10956,'SystemNavigator’,10956, protocolList’).

send(35,4,’SystemNavigator’,10956,'BRMultiSelectioninList’,12982,’selections’).

send(36,3,’SystemNavigator’,10956,”SystemNavigator’,10956, newProtocolList:’).
send(37,4,’SystemNavigator’,10956,' SystemNavigator’,10956,'newProtocolListNoUpdate:’).
send(38,5,'SystemNavigator’,10956,'SystemNavigator’,10956, selectedClass’).
send(39,6,'SystemNavigator’,10956,'SystemNavigator’,10956,'nonMetaClass’).
send(40,7,’SystemNavigator’,10956,'SystemNavigator’,10956, className’).
send(41,8,'SystemNavigator’,10956,' SystemNavigator’,10956, classNames’).
send(42,9,’SystemNavigator’,10956,'SystemNavigator’,10956, viewCategory’).
send(43,9,’SystemNavigator’,10956,'SystemNavigator’,10956, classNames’).
send(44,10,’SystemNavigator’,10956,'SystemNavigator’,10956, classList’).
send(45,10,’SystemNavigator’,10956,'BRMultiSelectioninList’,5250, selections’).
send(46,7,’SystemNavigator’,10956,'SystemNavigator’,10956, classForName:’).
send(47,6,’SystemNavigator’,10956,'SystemNavigator’,10956, isMeta’).
send(48,7,’SystemNavigator’,10956,'SystemNavigator’,10956,'meta’).
send(49,5,’SystemNavigator’,10956,'SystemNavigator’,10956, category’).
send(50,6,'SystemNavigator’,10956,'SystemNavigator’,10956, categories’).
send(51,7,’SystemNavigator’,10956,'SystemNavigator’,10956, categoryList’).
send(52,7,’SystemNavigator’,10956,' BRMultiSelectionInList’,4697, selections’).

send(1187,13,'BrowserClassTool’,3963,'BrowserClassTool’,3963, textHolder)..

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering

283.

Gaudi: Formulating Derived Relations

sendsCreate(C1,C2).

invokesMethodClass(C1,C2,M).

methodCategory(C,M,Cat).

inHierarchy(Class,Subclass).

Tamar Richner

sendsCreate(Cl, Q): -

I nvokesMet hodd ass(CL, C, M,

nmet acl assO (MC, C2) ,

net hodCat egory(MC, M " i nstance creation’).

I nvokesMet hodd ass :-send(_, ,Cl, ,Q, .M.

nmet hodCat egory(C, M Cat):-nmethod(C M _, Cat).

nmet hodCat egory(C, M Cat) : -
I nH erar chy(Super cl ass, d ass),
nmet hod(Super cl ass, Met hod, _, Cat egory).

I nH erarchy(d ass, Supercl ass) .

I nH erarchy(d ass, Supercl ass) : -
super cl ass(d ass, Subcl ass) .

I nH erarchy(d ass, Super cl ass)
super cl ass(Super cl ass, Subcl ass),
I nH erarchy(d ass, Supercl ass) .

Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 284.

Gaudi: Using Derived Relations for Querying

SystermnNavigator

i

[]I 7- fconsulting Ahomesscesrichner/Gaudi/REExperimen®

t/basicRulesZ ., pl, ., .3
t/homessce/richner/Gaudi /EBExperimentsbasicRulesZ, pl™

' : cansulted. 340 msec O bytess
RemoveblethodChange
yes

| Y= sendsCreate(l, "PushDownMethodRefactoring .,
C = "SystemMavigator”™ 7

Ues
| Y= createSimpleViewisendsCreatel.,

ues

i F= [1

#prologs tInferior Prologz: runs——L148 :

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 285.

‘ Gaudi: Simple vs. Composed Views

e G ﬁ nvokedByB

createSimpleView(invokesClass). createView(invokedClass,component).

component('invokedByB’,L) :-
setof(ClassinvokesClass('B’,Class),L).

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 286.

Gaudi: Instance Level View

SystemNavigator/10956

.\

changes

undo changes
a eCIzerfacto |ng/13736

)
hange

CompositeRefactoryChange/10423

HlexecuteWithMessage

ZignoreChangesWhile. (- 12/adoRefactoring: 13/undoChanges - (CompositeRefactoryChange/7110) | 3/primitiveExecute RenameClassChangef11529

Tlupdate with:from;

RefactoringManager/6728 RenameClassChange/9136

el ement ary change

reverSe change

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 287.

Gaudi Summary

[Rich99]

uses Prolog rules to:
[0 query the database of static and dynamic information
[1 create views of the information

views can be:

[0 high-level: e.g. send and create relationships between classes, clusters of
classes

0 low-level: e.g. show sequence of message sends between instances

methodology:
[start with a question to be answered.
[0 create a high-level view in order to locate what we are interested in.
[0 focus the search by creating more fine-grained views and iterate.

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 288.

Instrumentation

how do we collect dynamic information?

[0 with reflective language support: e.g. Smalltalk

[0 without (C++, Java) : insert instrumentation code and recompile, or modify the
VM.

problems:
[0 a flexible facility for instrumenting selectively
[J a non-intrusive instrumentation

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 289.

Conclusions

we did not talk about using dynamic information for:
[typing and refactoring

[0 reverse engineering structural relationships (aggregation, composition -
mutable, variable)

[1 generation of state diagrams for objects
[0 understanding concurrent programs

Summary:
[0 dynamic information is important for program understanding
[0 how dynamic information can be used in reverse engineering

— most of work for OO is related to visualization
[1 problems in analyzing and interpreting dynamic information
— handling the large amount of information
— creating meaningful abstractions
— expressing behavior concisely

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 290.

References
Frequency Analysis:
[Ball99] T. Ball, The Concept of Dynamic Analysis, Proceedings ESEC '99. pp.
218-234.
[Agra98] H. Agrawal et al., Mining System Tests to Aid Software Maintenance,
IEEE Computer, July 1998, pp. 64-73.
[Rep97] T. Reps et al., The Use of Program Profiling for Software Maintenance

with Applications to the Year 2000 Problem, Proceedings ESEC '97, pp. 432-449.

Visualization of Object-oriented Applications:

[DePa94] W. De Pauw, D. Kimelman and J. Vlissides, Modeling object-oriented
program execution, Proceedings ECOOP 94, LNCS 821, pp. 163-182.

[Lang95] D.B. Lange and Y. Nakamura, Interactive visualization of design
patterns can help in framework understanding, Proceedings OOPSLA '95, pp. 342-357.
[Kosk96] K. Koskimies and H. Moessenboek, Scene: using scenario diagrams
and active test for illustrating OO programs, Proceedings ICSE 96, pp.366-374.
[Jerd97] D. Jerding and S. Rugaber, Using visualization for architectural

localization and extraction, Proceedings Working Conference on Reverse Engineering
(WCRE '97), pp. 56-65.

Tamar Richner Using Dynamic Information for Reverse Engineering

Object-Oriented Software Reengineering 291.

[Walk98] R. Walker et al., Visualizing dynamic software system information
through high-level models, Proceedings OOPSLA '98, pp. 271-283.

Gaudi:

[Rich99] T. Richner and S. Ducasse, Recovering high-level views of object-
oriented applications from static and dynamic information, Proceedings International
Conference on Software Maintenance (ICSM '99), pp. 13-22.

Visualization tools:
interaction diagram (for Smalltalk) :
http://st-www.cs.uiuc.edu/users/brant/Applications/WrapperApplications.html
Jinsight (for Java) :
http://www.research.ibm.com/jinsight/
ISVis (for C++) :
http://www.cc.gatech.edu/morale/tools/isvis/isvis.html

Tamar Richner Using Dynamic Information for Reverse Engineering

	Object-Oriented Software Reengineering
	Table of Contents
	1. Object-Oriented Software Reengineering
	Goals of this course
	Course Overview
	Lehman’s Laws
	What is a Legacy System?
	Software Maintenance
	Why is Software Maintenance Expensive?
	Factors Affecting Maintenance
	What about OO?
	Definitions
	Reverse and Reengineering
	Goals of Reverse Engineering
	Reverse Engineering Techniques
	Goals of Reengineering
	Reengineering Techniques
	Architectural Problems
	Refactoring Opportunities
	Tools Architectures
	Summary

	2. Code Duplication
	Overview
	Code is Copied
	How Much Code is Duplicated?
	What Is Considered To Be Copied Code?
	How Code Gets Copied
	Why Code Gets Copied
	What Problems Stem From Copied Code?
	Code Duplication: Problem Statement
	Code Duplication Detection
	General Schema of Detection Process
	Simple Detection Approach I
	Simple Detection Approach II
	Detection Using Parameterized Matching I
	Detection Using Parameterized Matching II
	Detection using Abstract Syntax Trees I
	Detection using Abstract Syntax Trees II
	Refactoring Duplicated Code I
	Refactoring Duplicated Code II
	Visualization of Duplicated Code
	Visualization of Copied Code Sequences
	Visualization of Repetitive Structures
	Visualization of Cloned Classes
	Visualization of Clone Families
	Summary
	References

	3. Lab session — Duploc
	4. Design Extraction
	Goals
	Outline
	Why Design Extraction is needed?
	UML (Unified Modelling Language)
	The Little Static UML
	Road Map
	Let us practice!
	A First View
	Evaluation
	A Cleaner View
	Road Map
	Three Essential Questions
	Interpreting UML
	Levels of Interpretations: Perspectives
	Attributes in Perspectives
	Operations in Perspectives
	Associations
	Associations: Conceptual Perspective
	Associations: Specification Perspective
	Arrows: Nagivability
	Generalization
	Road Map
	Need for a Clear Mapping
	Private you said?! Which one?
	Class Method Inheritance?!
	Some Possible Smalltalk Conventions
	Stereotypes: to Represent Conventions!
	Another Example: Instance/Class Associations
	RoadMap
	Association Extractions (i)
	Language Impact on Extraction
	Method Signature for Extracting Relation
	Convention Based Association Extraction
	Operation Extraction (i)
	Operation Extraction (ii)
	Road map
	Design Patterns as Documentation Elements
	Road map
	Evolution Impact Analysis: Reuse Contract
	Example
	Reuse Contracts: General Idea
	Example
	Road Map
	Documenting Dynamic Behaviour
	Sequence Diagrams
	Statically Extracting Interactions
	Dynamically Extracting Interactions
	Lessons Learnt

	5. Software Metrics
	Why Measure Software?
	What is a Metric?
	GQM
	Metrics assumptions
	Cost estimation objectives
	Estimation techniques
	Algorithmic cost modelling
	Measurement-based estimation
	Lines of code
	Function points
	Programmer productivity
	The COCOMO model
	Basic COCOMO Formula
	COCOMO assumptions
	Product quality metrics
	Maintainability Metrics
	Design maintainability
	Coupling metrics
	Validation of quality metrics
	Program quality metrics
	Metrics maturity
	Summary

	6. Metrics, Visualisations and Interactions for Reverse Engineering
	Contents
	Introduction
	Metrics
	Metrics and Measurements
	Metrics for Reverse Engineering
	Which Metrics to Collect (Definitions)?
	Class size
	Class Complexity
	Hierarchy Layout
	Method Size
	Class Cohesion (i)
	Class Cohesion (ii)
	Class Coupling (I)
	Class Coupling (Ii)
	Metrics? Stepping Back
	Visualisation
	The Motivation: Why are we visualising stuff?
	Visualisation: Possible Approaches
	Example: Goose/ Graphlet
	Example: Mermaid
	Let’s summarise...
	Our Approach: CodeCrawler
	The Idea: Visualising Metrics
	CodeCrawler: Some Examples
	System Complexity
	Method Efficiency Correlation
	Inheritance Classification
	Service Class Detection
	CodeCrawler’s Logic
	CodeCrawler: Pro And Contra
	CodeCrawler: The Case Studies
	Example: Visualisation of a very large system
	Example: Flying Saucers
	Conclusion & Possible Projects
	Bibliography

	7. Lab session — CodeCrawler
	8. Object-Oriented Software Cost Estimation
	Topics
	Measurements & Estimates (1/2)
	Measurements & Estimates (2/2)
	A Measurement-Based Estimation Process (1/3)
	A Measurement-Based Estimation Process (2/3)
	A Measurement-Based Estimation Process(3/ 3)
	Software Process Models (1/2)
	Software Process Models (2/2)
	Software Models (Meta Models) (1/4)
	Software Models (Meta Models) (2/4)
	Software Models (Meta Models) (3/4)
	Software Models (Meta Models) (4/4)
	Software Metrics (1/2)
	Software Metrics (2/2)
	Results of a Field Study (1/4)
	Results of a Field Study (2/4)
	Results of a Field Study (3/4)
	Results of a Field Study (4/4)
	An Example (1/5)
	An Example (2/5)
	An Example (3/5)
	An Example (4/5)
	An Example (5/5)
	Future Work

	9. Metrics in OO Reengineering
	Why Metrics in OO Reengineering?
	Quantitative Quality Model
	Process Attributes & External Attributes
	Internal Product Attributes
	“Define your own” Quality Model
	Conclusion: Metrics for Quality Assessment
	The KISS principle
	Trend Analysis via Change Metrics
	Conclusion: Metrics for Trend Analysis
	Identifying Refactorings via Change Metrics
	Split into Superclass / Merge with Superclass
	Example: Inferring the Bridge Protocol
	Split into Subclass / Merge with Subclass
	Example: Adding new Functionality
	Move to Superclass, Subclass or Sibling Class
	Example: Introducing Layers
	Split Method / Factor Common Functionality
	Example: Creation of Template Method
	Conclusion: Identifying Refactorings
	Conclusion
	Questions

	10. Tool Integration
	Why Integrate Tools?
	Which Tools to Integrate?
	Tool Integration Issues
	Basic Tool Architecture
	Help Yourself - Parser
	Help Yourself - File Formats
	Help Yourself - API
	Help Yourself - Execution Trace
	API Example - Java
	API Example - SNiFF+
	API Example - Rational/Rose
	Exchange Standards
	Exchange Standards - Reference Format
	Exchange Standards - Openness
	Meta Models
	CDIF sample (propriety syntax)
	MOF Sample (XML syntax)
	CORBA Interface for MOF
	UML shortcomings
	Conclusion
	Questions

	11. Refactoring
	What is Refactoring?
	Why Refactoring?
	Iterative Development Life-cycle
	Example: Rename Class
	Tool Support for Refactoring
	Case Study: Internet Banking
	Prototype Design: Class Diagram
	Prototype Design: Contracts
	Prototype Implementation
	Prototype Consolidation
	Expansion
	Expanded Design: Class Diagram
	Expanded Implementation
	Consolidation: Problem Detection
	Consolidation: Refactored Class Diagram
	Refactoring Sequence (1/5)
	Refactoring Sequence (2/5)
	Refactoring Sequence (3/5)
	Refactoring Sequence (4/5)
	Refactoring Sequence (5/5)
	Conclusion (1/2)
	Conclusion: Culture shock (2/2)
	Projects and More Information

	12. Using Dynamic Information for Reverse Engineering
	Outline
	Why Dynamic Information?
	Why Dynamic Information (cont’d)?
	What is Dynamic Information?
	Static vs. Dynamic Information
	Problems with using Dynamic Information
	Roadmap
	Frequency Spectrum
	FSA: low vs. high frequencies
	FSA: related frequencies
	FSA: specific frequencies
	Dynamic Differencing
	Summary of Spectrum Techniques
	Roadmap
	Visualization
	Animated Summaries
	Animated Summaries Example: Jinsight
	Information Mural
	Information Mural Example: ISVis
	RoadMap
	A Step Back: Design Recovery
	Design Recovery through Visualization
	Selective Instrumentation & Filtering
	Clustering
	Recognizing Patterns: example of Jinsight
	Summary of Visualization for Design Recovery
	RoadMap
	Gaudi: overview of Approach
	Gaudi: Implementation
	Gaudi: Formulating Derived Relations
	Gaudi: Using Derived Relations for Querying
	Gaudi: Simple vs. Composed Views
	Gaudi: Instance Level View
	Gaudi Summary
	Instrumentation
	References

