

Object-Oriented Software
Reengineering

Dr. S. Demeyer
Dr. S. Ducasse

Prof. Dr. O. Nierstrasz

Wintersemester 1999/2000

 Ta ii.

1. O

G
C
L
W
S
W
F
W
D
R
G
R
G
R
A
R
T
S

2. C

O
C
H
W
H
W
W
C
C
G
S

Associations 64
Associations: Conceptual Perspective 65
Associations: Specification Perspective 66
Arrows: Nagivability 67
Generalization 68
Road Map 69
Need for a Clear Mapping 70
Private you said?! Which one? 71
Class Method Inheritance?! 72
Some Possible Smalltalk Conventions 73
Stereotypes: to Represent Conventions! 74
Another Example: Instance/Class Associations 75
RoadMap 76
Association Extractions (i) 77
Language Impact on Extraction 78
Method Signature for Extracting Relation 79
Convention Based Association Extraction 80
Operation Extraction (i) 81
Operation Extraction (ii) 82
Road map 83
Design Patterns as Documentation Elements 84
Road map 85
Evolution Impact Analysis: Reuse Contract 86
Example 87
Reuse Contracts: General Idea 88
Example 89
Road Map 90
Documenting Dynamic Behaviour 91
Sequence Diagrams 92
Statically Extracting Interactions 93
Dynamically Extracting Interactions 94
Lessons Learnt 95
ble of C

Table of

bject-O
oals of t
ourse O

ehman’s
hat is a

oftware
hy is So

actors A
hat abo
efinition
everse a
oals of R
everse E
oals of R
eengine
rchitect
efactori
ools Arch
ummary

ode Dup
verview
ode is C
ow Muc
hat Is C
ow Cod
hy Cod
hat Pro
ode Du
ode Du
eneral S

imple De
ontents

February 9, 2000

 Table of Contents
Contents ii

riented Software Reengineering 1
his course 2
verview 3
 Laws 4
 Legacy System? 5
Maintenance 6
ftware Maintenance Expensive? 7
ffecting Maintenance 8
ut OO? 9

s 10
nd Reengineering 11
everse Engineering 12

ngineering Techniques 13
eengineering 14

ering Techniques 15
ural Problems 16
ng Opportunities 17
itectures 18

19

lication 20
21

opied 22
h Code is Duplicated? 23
onsidered To Be Copied Code? 24
e Gets Copied 25
e Gets Copied 26
blems Stem From Copied Code? 27
plication: Problem Statement 28
plication Detection 29
chema of Detection Process 30
tection Approach I 31

Simple Detection Approach II 32
Detection Using Parameterized Matching I 33
Detection Using Parameterized Matching II 34
Detection using Abstract Syntax Trees I 35
Detection using Abstract Syntax Trees II 36
Refactoring Duplicated Code I 37
Refactoring Duplicated Code II 38
Visualization of Duplicated Code 39
Visualization of Copied Code Sequences 40
Visualization of Repetitive Structures 41
Visualization of Cloned Classes 42
Visualization of Clone Families 43
Summary 44
References 45

3. Lab session — Duploc 46

4. Design Extraction 47
Goals 48
Outline 49
Why Design Extraction is needed? 50
UML (Unified Modelling Language) 51
The Little Static UML 52
Road Map 53
Let us practice! 54
A First View 55
Evaluation 56
A Cleaner View 57
Road Map 58
Three Essential Questions 59
Interpreting UML 60
Levels of Interpretations: Perspectives 61
Attributes in Perspectives 62
Operations in Perspectives 63

Ta iii.

 5. S

 W
W
G
M
C
E
A
M
L
F
P
T
B
C
P
M
D
C
V
P
M
S

6. M
 for

C
I
M
M
M
W
C
C
H

Software Models (Meta Models) (1/4) 165
Software Models (Meta Models) (2/4) 166
Software Models (Meta Models) (3/4) 167
Software Models (Meta Models) (4/4) 168
Software Metrics (1/2) 169
Software Metrics (2/2) 170
Results of a Field Study (1/4) 171
Results of a Field Study (2/4) 172
Results of a Field Study (3/4) 173
Results of a Field Study (4/4) 174
An Example (1/5) 175
An Example (2/5) 176
An Example (3/5) 177
An Example (4/5) 178
An Example (5/5) 179
Future Work 180

9. Metrics in OO Reengineering 181

Why Metrics in OO Reengineering? 182
Quantitative Quality Model 183
Process Attributes & External Attributes 184
Internal Product Attributes 185
“Define your own” Quality Model 186
Conclusion: Metrics for Quality Assessment 187
The KISS principle 188
Trend Analysis via Change Metrics 189
Conclusion: Metrics for Trend Analysis 190
Identifying Refactorings via Change Metrics 191
Split into Superclass / Merge with Superclass 192
Example: Inferring the Bridge Protocol 193
Split into Subclass / Merge with Subclass 194
Example: Adding new Functionality 195
Move to Superclass, Subclass or Sibling Class 196
Example: Introducing Layers 197
Split Method / Factor Common Functionality 198
Example: Creation of Template Method 199
ble of Contents

February 9, 2000

oftware Metrics 96
hy Measure Software? 97
hat is a Metric? 98
QM 99
etrics assumptions 100
ost estimation objectives 101

stimation techniques 102
lgorithmic cost modelling 103
easurement-based estimation 104

ines of code 105
unction points 106
rogrammer productivity 107
he COCOMO model 108
asic COCOMO Formula 109
OCOMO assumptions 110
roduct quality metrics 111
aintainability Metrics 112
esign maintainability 113
oupling metrics 114
alidation of quality metrics 115
rogram quality metrics 116
etrics maturity 117

ummary 118

etrics, Visualisations and Interactions
 Reverse Engineering 119
ontents 120

ntroduction 121
etrics 122
etrics and Measurements 123
etrics for Reverse Engineering 124
hich Metrics to Collect (Definitions)? 125
lass size 126
lass Complexity 127
ierarchy Layout 128

Method Size129

Class Cohesion (i) 130
Class Cohesion (ii) 131
Class Coupling (I) 132
Class Coupling (Ii) 133
Metrics? Stepping Back 134
Visualisation 135
The Motivation: Why are we visualising stuff? 136
Visualisation: Possible Approaches 137
Example: Goose/ Graphlet 138
Example: Mermaid 139
Let’s summarise... 140
Our Approach: CodeCrawler 141
The Idea: Visualising Metrics 142
CodeCrawler: Some Examples 143
System Complexity 144
Method Efficiency Correlation 145
Inheritance Classification 146
Service Class Detection 147
CodeCrawler’s Logic 148
CodeCrawler: Pro And Contra 149
CodeCrawler: The Case Studies 150
Example: Visualisation of a very large system 151
Example: Flying Saucers 152
Conclusion & Possible Projects 153
Bibliography 154

7. Lab session — CodeCrawler 155

8. Object-Oriented Software Cost Estimation 156
Topics 157
Measurements & Estimates (1/2) 158
Measurements & Estimates (2/2) 159
A Measurement-Based Estimation Process (1/3)160
A Measurement-Based Estimation Process (2/3)161
A Measurement-Based Estimation Process(3/3) 162
Software Process Models (1/2) 163
Software Process Models (2/2) 164

Ta iv.

C
C
Q

10.

W
W
T
B
H
H
H
H
A
A
A
E
E
E
M
C
M
C
U
C
Q

11.

W
W
I
E
T
C
P
P
P

RoadMap 270
A Step Back: Design Recovery 271
Design Recovery through Visualization 272
Selective Instrumentation & Filtering 273
Clustering 274
Recognizing Patterns: example of Jinsight 275
Summary of Visualization for Design Recovery 276
RoadMap 277
Gaudi: overview of Approach 278
Gaudi: Implementation 279
Gaudi: Formulating Derived Relations 283
Gaudi: Using Derived Relations for Querying 284
Gaudi: Simple vs. Composed Views 285
Gaudi: Instance Level View 286
Gaudi Summary 287
Instrumentation 288
References 290
ble of Contents

February 9, 2000

onclusion: Identifying Refactorings 200
onclusion 201
uestions 202

 Tool Integration 203
hy Integrate Tools? 204
hich Tools to Integrate? 205

ool Integration Issues 206
asic Tool Architecture 207
elp Yourself - Parser 208
elp Yourself - File Formats 209
elp Yourself - API 210
elp Yourself - Execution Trace 211
PI Example - Java 212
PI Example - SNiFF+ 213
PI Example - Rational/Rose 214
xchange Standards 215
xchange Standards - Reference Format 216
xchange Standards - Openness 217
eta Models 218
DIF sample (propriety syntax) 219
OF Sample (XML syntax) 220
ORBA Interface for MOF 221
ML shortcomings 222
onclusion 223
uestions 224

 Refactoring 225
hat is Refactoring? 226
hy Refactoring? 227

terative Development Life-cycle 228
xample: Rename Class 229
ool Support for Refactoring 230
ase Study: Internet Banking 231
rototype Design: Class Diagram 232
rototype Design: Contracts 233
rototype Implementation 234

Prototype Consolidation 235
Expansion 236
Expanded Design: Class Diagram 237
Expanded Implementation 239
Consolidation: Problem Detection 240
Consolidation: Refactored Class Diagram 241
Refactoring Sequence (1/5) 242
Refactoring Sequence (2/5) 243
Refactoring Sequence (3/5) 244
Refactoring Sequence (4/5) 245
Refactoring Sequence (5/5) 246
Conclusion (1/2) 247
Conclusion: Culture shock (2/2) 248
Projects and More Information 249

12. Using Dynamic Information for Reverse Engineering
250

Outline 251
Why Dynamic Information? 252
Why Dynamic Information (cont’d)? 253
What is Dynamic Information? 254
Static vs. Dynamic Information 255
Problems with using Dynamic Information 256
Roadmap 257
Frequency Spectrum 258
FSA: low vs. high frequencies 259
FSA: related frequencies 260
FSA: specific frequencies 261
Dynamic Differencing 262
Summary of Spectrum Techniques 263
Roadmap 264
Visualization 265
Animated Summaries 266
Animated Summaries Example: Jinsight 267
Information Mural 268
Information Mural Example: ISVis 269

Object-Oriented Software Reengineering 1.

I bject-Oriented Software Reengineering

 engineering

r. O. Nierstrasz

 Rieger, Sander Tichelaar

Wesley, 5th edn., 1995

EE Computer Society, 1993
AM, U. Berne O

1. Object-Oriented Software Re

Lecturers: Dr. S. Demeyer, Dr. S. Ducasse, Prof. D
with Michele Lanza, Tamar Richner, Matthias

WWW: http://www.iam.unibe.ch/~scg

Sources
❑ Software Engineering, Ian Sommerville, Addison-

❑ Software Reengineering, Ed. Robert S. Arnold, IE

http://www.iam.unibe.ch/~scg/

Object-Oriented Software Reengineering 2.

I bject-Oriented Software Reengineering

e practices

ntenance problems

 ned”

s they pose

dels from existing systems

 them more maintainable

f reengineering object
AM, U. Berne O

Goals of this course

The “Software Crisis” is an artefact of short-sighted softwar
❑ try to understand factors that lead to software mai

Legacy systems are “old systems that must still be maintai
❑ study legacy systems to understand what problem

Reverse Engineering
❑ examine ways to recover design and analysis mo

Reengineering
❑ explore techniques to transform systems to make

Object-Oriented Reengineering
❑ survey the particular problems and opportunities o

oriented legacy systems

Object-Oriented Software Reengineering 3.

I bject-Oriented Software Reengineering

AM, U. Berne O

Course Overview

1. 29/10 Introduction
2. 05/11 Duplicated code
3. 12/11 Lab session — Duploc
4. 19/11 UML extraction
5. 26/11 Software metrics
6. 03/12 Visualizing software metrics
7. 10/12 Lab session — Codecrawler
8. 17/12 Metrics in industry
9. 14/01 Metrics and reengineering
10. 21/01 Code repositories
11. 28/01 Refactoring
12. 04/02 Lab session — Refactoring browser
13. 04/02 Exploiting run-time information

Object-Oriented Software Reengineering 4.

I bject-Oriented Software Reengineering

eral “laws” of system change.

t

must change, or become

 and extra resources are

AM, U. Berne O

Lehman’s Laws

A classic study by Lehman and Belady (1985) identified sev

Continuing change
❑ A program that is used in a real-world environmen

progressively less useful in that environment.

Increasing complexity
❑ As a program evolves, it becomes more complex,

needed to preserve and simplify its structure.

Object-Oriented Software Reengineering 5.

I bject-Oriented Software Reengineering

er by will;
r.

— OED

ade

 expensive
AM, U. Berne O

What is a Legacy System?

legacy

A sum of money, or a specified article, given to anoth
anything handed down by an ancestor or predecesso

A legacy system is a piece of software that:
❑ you have inherited, and
❑ is valuable to you.

Typical problems with legacy systems are:
❑ original developers no longer available
❑ outdated development methods used
❑ extensive patches and modifications have been m
❑ missing or outdated documentation

so, further evolution and development may be prohibitively

Object-Oriented Software Reengineering 6.

I bject-Oriented Software Reengineering

duct after delivery to correct
pt the product to a changed

 maintenance (65%)
ing new functional or
nal requirements
AM, U. Berne O

Software Maintenance

Software Maintenance is the “modification of a software pro
faults, to improve performance or other attributes, or to ada
environment” [ANSI/IEEE Std. 729-1983]

Corrective maintenance (17%)
fixing reported errors in the software

Perfective
implement
non-functio

Adaptive maintenance (18%)
adapting the software to a new
environment (e.g., platform or
O/S)

Object-Oriented Software Reengineering 7.

I bject-Oriented Software Reengineering

xpensive?

nt on maintenance.

familiar with the application

loped without modern
d for efficiency, not

further changes

rade, which makes it harder

e implementation
AM, U. Berne O

Why is Software Maintenance E

Various studies show 50% to 75% of available effort is spe

Costs can be high because:
❑ Maintenance staff are often inexperienced and un

domain

❑ Programs being maintained may have been deve
techniques; they may be unstructured, or optimize
maintainability

❑ Changes may introduce new faults, which trigger

❑ As a system is changed, its structure tends to deg
to change

❑ With time, documentation may no longer reflect th

Object-Oriented Software Reengineering 8.

I bject-Oriented Software Reengineering
AM, U. Berne O

Factors Affecting Maintenance

❑ Module independence
❑ Programming language
❑ Programming style
❑ Program validation and testing
❑ Quality of documentation
❑ Configuration management techniques
❑ Application domain
❑ Staff stability
❑ Age of program
❑ Dependence on external environment
❑ Hardware stability

Object-Oriented Software Reengineering 9.

I bject-Oriented Software Reengineering

ms of legacy systems.

s whose architecture and

e the same.

ty, maintainability etc. etc.,

lexible and maintainable
AM, U. Berne O

What about OO?

Any successful software system will suffer from the sympto

Object-oriented legacy systems are successful OO system
design no longer responds to changing requirements.

❑ The symptoms and the source of the problems ar
❑ The technical details and solutions may differ.

Although OO techniques promise better flexibility, reusabili
they do not come for free

The claim:
A culture of continuous reengineering is a prerequisite for f
object-oriented systems.

Object-Oriented Software Reengineering 10.

I bject-Oriented Software Reengineering

rom high-level abstractions
ysical implementation of a

 system to
lationships and
rm or at a higher level of

ject system to reconstitute it
w form.”

Cross [in Arnold, 1993]
AM, U. Berne O

Definitions

“Forward Engineering is the traditional process of moving f
and logical, implementation-independent designs to the ph
system.”

“Reverse Engineering is the process of analyzing a subject
❑ identify the system’s components and their interre
❑ create representations of the system in another fo

abstraction.”

“Reengineering ... is the examination and alteration of a sub
in a new form and the subsequent implementation of the ne

— Chikofsky and

Object-Oriented Software Reengineering 11.

I bject-Oriented Software Reengineering

w requirements
AM, U. Berne O

Reverse and Reengineering

Requirements Ne

Designs (models)

System (software)

F
orw

ard engineering

R
ev

er
se

 e
ng

in
ee

rin
g Reengineering

Object-Oriented Software Reengineering 12.

I bject-Oriented Software Reengineering

stems

ems

ts

Cross [in Arnold, 1993]
AM, U. Berne O

Goals of Reverse Engineering

Cope with complexity
❑ need techniques to understand large, complex sy

Generate alternative views
❑ automatically generate different ways to view syst

Recover lost information
❑ extract what changes have been made and why

Detect side effects
❑ help understand ramifications of changes

Synthesize higher abstractions
❑ identify latent abstractions in software

Facilitate reuse
❑ detect candidate reusable artifacts and componen

— Chikofsky and

Object-Oriented Software Reengineering 13.

I bject-Oriented Software Reengineering

s

lly equivalent representation

bination of code, existing
eral knowledge about
AM, U. Berne O

Reverse Engineering Technique

“Redocumentation is the creation or revision of a semantica
within the same relative abstraction level.”

❑ pretty printers
❑ diagram generators
❑ cross-reference listing generators

“Design recovery recreates design abstractions from a com
documentation (if available), personal experience, and gen
problem and application domains.” [Biggerstaff]

❑ software metrics
❑ browsers, visualization tools
❑ static analyzers
❑ dynamic (trace) analyzers

Object-Oriented Software Reengineering 14.

I bject-Oriented Software Reengineering

parately marketed

endent modules

tc.
AM, U. Berne O

Goals of Reengineering

Unbundling
❑ split a monolithic system into parts that can be se

Performance
❑ “first do it, then do it right, then do it fast”

Port to other Platform
❑ the architecture must distinguish the platform dep

Design extraction
❑ to improve maintainability, portability, etc.

Exploitation of New Technology
❑ i.e., new language features, standards, libraries, e

Object-Oriented Software Reengineering 15.

I bject-Oriented Software Reengineering

 form to another at the same
ernal behaviour.”
tti”) code to structured (“goto-

izing the data structures (and
derstandable.”

xt
AM, U. Berne O

Reengineering Techniques

“Restructuring is the transformation from one representation
relative abstraction level, while preserving the system’s ext

❑ automatic conversion from unstructured (“spaghe
less”) code

❑ source code translation

“Data reengineering is the process of analyzing and reorgan
sometimes the data values) in a system to make it more un

❑ integrating and centralizing multiple databases
❑ unifying multiple, inconsistent representations
❑ upgrading data models

Refactoring is restructuring within an object-oriented conte
❑ renaming/moving methods/classes etc.

Object-Oriented Software Reengineering 16.

I bject-Oriented Software Reengineering

nsistent documentation

o maintenance nightmares

ion

nd adaptability
AM, U. Berne O

Architectural Problems

Insufficient documentation
❑ most legacy systems suffer from inexistent or inco

Duplicated functionality
❑ “cut, paste and edit” is quick and easy, but leads t

Lack of modularity
❑ strong coupling between modules hampers evolut

Improper layering
❑ missing or improper layering hampers portability a

Object-Oriented Software Reengineering 17.

I bject-Oriented Software Reengineering

hism

haviour

d of inside classes
AM, U. Berne O

Refactoring Opportunities

Misuse of inheritance
❑ for composition, code reuse rather than polymorp

Missing inheritance
❑ duplicated code, and case statements to select be

Misplaced operations
❑ unexploited cohesion — operations outside instea

Violation of encapsulation
❑ explicit type-casting, C++ “friends” ...

Class misuse
❑ lack of cohesion — classes as namespaces

Object-Oriented Software Reengineering 18.

I bject-Oriented Software Reengineering

ineering use the same basic

)

New view(s)
of product
AM, U. Berne O

Tools Architectures
“Most tools for reverse engineering, restructuring and reeng
architecture.”

Software
work product

Parser,
Semantic
analyzer

Information
base

View
composer(s

Object-Oriented Software Reengineering 19.

I bject-Oriented Software Reengineering

uable software systems

es with OO legacy software

esigns from legacy software

re valuable legacy software
nd in the future
AM, U. Berne O

Summary

❑ We will always have legacy systems, because val
outlive their original requirements

❑ Early adopters of OO methods now find themselv

❑ Reverse engineering techniques help to recover d

❑ Reengineering techniques are needed to restructu
so that it can meet new requirements, both now, a

Object-Oriented Software Re-Engineering: Code Duplication 20.

U Code Duplication

g, Code Scavenging

n Group

ionionion
niversität Bern

2. Code Duplication

a.k.a. Software Cloning, Copy&Paste Programmin

Matthias Rieger
FAMOOS Project, Software Compositio

University of Berne
rieger@iam.unibe.ch

Code DuplicatDuplicatDuplicat

Object-Oriented Software Re-Engineering: Code Duplication 21.

U Code Duplication
niversität Bern

Overview

❑ What is Code Duplication?

– How Much Code Is Copied

– What Do We Call Copied Code

❑ The Life and Times of Copied Code

– How Code Gets Copied

– Why Code Gets Copied

– What Problems Stem From Copied Code

❑ We have to detect Duplicated Code

– Simple Detection Approach

– Detection Using Parameterized Matches

– Detection Using Abstract Syntax Trees

❑ Refactoring Duplicated Code
❑ Visualizing Duplicated Code

Object-Oriented Software Re-Engineering: Code Duplication 22.

U Code Duplication

tone 9)

 /dom/src/base/nsLocation.cpp

g

();

[497] NS_IMETHODIMP
[498] LocationImpl::GetPort(nsString& aPo
[499] {
[500] nsAutoString href;
[501] nsIURI *url;
[502] nsresult result = NS_OK;
[503]
[504] result = GetHref(href);
[505] if (NS_OK == result) {
[506] #ifndef NECKO
[507] result = NS_NewURL(&url, href);
[508] #else
[509] result = NS_NewURI(&url, href);
[510] #endif // NECKO
[511] if (NS_OK == result) {
[512] aPort.SetLength(0);
[513] #ifdef NECKO
[514] PRInt32 port;
[515] (void)url->GetPort(&port);
[516] #else
[517] PRUint32 port;
[518] (void)url->GetHostPort(&port);
[519] #endif
[520] if (-1 != port) {
[521] aPort.Append(port, 10);
[522] }
[523] NS_RELEASE(url);
5

niversität Bern

Code is Copied
❑ Small Example from the Mozilla Distribution (Miles

Extract from

[432] NS_IMETHODIMP
[433] LocationImpl::GetPathname(nsString
[434] {
[435] nsAutoString href;
[436] nsIURI *url;
[437] nsresult result = NS_OK;
[438]
[439] result = GetHref(href);
[440] if (NS_OK == result) {
[441] #ifndef NECKO
[442] result = NS_NewURL(&url, href);
[443] #else
[444] result = NS_NewURI(&url, href);
[445] #endif // NECKO
[446] if (NS_OK == result) {
[447] #ifdef NECKO
[448] char* file;
[449] result = url->GetPath(&file);
[450] #else
[451] const char* file;
[452] result = url->GetFile(&file);
[453] #endif
[454] if (result == NS_OK) {
[455] aPathname.SetString(file);
[456] #ifdef NECKO
[457] nsCRT::free(file);
[458] #endif

5

[467] NS_IMETHODIMP
[468] LocationImpl::SetPathname(const nsStrin
[469] {
[470] nsAutoString href;
[471] nsIURI *url;
[472] nsresult result = NS_OK;
[473]
[474] result = GetHref(href);
[475] if (NS_OK == result) {
[476] #ifndef NECKO
[477] result = NS_NewURL(&url, href);
[478] #else
[479] result = NS_NewURI(&url, href);
[480] #endif // NECKO
[481] if (NS_OK == result) {
[482] char *buf = aPathname.ToNewCString
[483] #ifdef NECKO
[484] url->SetPath(buf);
[485] #else
[486] url->SetFile(buf);
[487] #endif
[488] SetURL(url);
[489] delete[] buf;
[490] NS_RELEASE(url);
[491] }
[492] }
[493]

l

Object-Oriented Software Re-Engineering: Code Duplication 23.

U Code Duplication

?

e

uplication %

8.7% (5.6%)

6.4% (23.3%)

9.3% (25.4%)

9.4% (17.4%)
niversität Bern

How Much Code is Duplicated

❑ Usual estimates: 8 to 10% in normal industrial cod
❑ Our Research:

Case Study Language LOC D

gcc C 460’000

Database Server Smalltalk 245’000 3

Payroll Cobol 40’000 5

Message Board Python 6500 2

Object-Oriented Software Re-Engineering: Code Duplication 24.

U Code Duplication

ed Code?
 different places of a system.

n be abstracted, i.e.

ions, to data structures, and

is not considered
duplicated code.

could be abstracted
to a new function;
niversität Bern

What Is Considered To Be Copi
Duplicated Code = Source code segments that are found in

❑ in different files
❑ in the same file but in different functions
❑ in the same function

The segments must contain some logic or structure that ca

❑ Copied artefacts range from expressions, to funct
to entire subsystems.

...
getIt(hash(tail(z)));
...

...
getIt(hash(tail(a)))
...

...
computeIt(a,b,c,d);
...

...
computeIt(w,x,y,z);
...

Object-Oriented Software Re-Engineering: Code Duplication 25.

U Code Duplication

ub-component C is needed.
ality, but ...
.
ioning of C in old contexts.

onality
e deleted remains as red

, we all copy!
niversität Bern

How Code Gets Copied

A possible scenario from Software Maintenance:

14. New functionality similar to the one provided by a s
15. C could be extended to assimilate the new function
16. ... this requires lengthy and difficult analysis of C ...
17. ... and significant regression testing to ensure funct

Add time pressure.

18. A copy of C is made.
19. The component is tailored to provide the new functi
20. Code that is not understood and therefore cannot b

herring or even dead code.

I copy, you copyProgramming Truism:

Object-Oriented Software Re-Engineering: Code Duplication 26.

U Code Duplication

 programming:

y it.

 produced by copying
niversität Bern

Why Code Gets Copied

Causes apart from time pressure that lead to copy&paste

❑ Laziness
Producing reusable software takes a lot of effort.

❑ Efficiency Considerations
Procedure Calls can cost too much.

❑ Code Ownership
I cannot adapt my neighbours code, so I must cop

❑ Maintaining Versions For Multiple Platforms
Separate files instead of a lot of #ifdef’s.

❑ Programmer Productivity Evaluation Methods
It is easy way to boost the number of lines of code
them.

Object-Oriented Software Re-Engineering: Code Duplication 27.

U Code Duplication

ied Code?

intended aliasing

are Entropy” increases
cult to effect
niversität Bern

What Problems Stem From Cop

General negative effect:
❑ Code bloat

Negative effects on Software Maintenance:
❑ Copied Defects
❑ Changes take double, triple, quadruple, ... work
❑ Red herrings and dead code

☞ add to the cognitive load of future maintainers
❑ Copying as additional source of defects

☞ Errors in the systematic renaming produce un

Metaphorically speaking:
Software Aging, “hardening of the arteries”, “Softw
☞ even small design changes become very diffi

Object-Oriented Software Re-Engineering: Code Duplication 28.

U Code Duplication

tement

r to expand:

pied

and for that we need tools...
niversität Bern

Code Duplication: Problem Sta

Frequent consolidation to keep a system flexible and easie
❑ Reorganize system components
❑ Refactor functionality
❑ Rationalize interfaces

and

❑ Remove Duplicated Code

Nontrivial problem:

No a priori knowledge about which code has been co

☞ Detect Duplicated Code

Object-Oriented Software Re-Engineering: Code Duplication 29.

U Code Duplication

egments?
niversität Bern

Code Duplication Detection
How do we find all clone pairs among all possible pairs of s

Lexical Equivalence

Semantic Equivalence

Syntactical Equivalence

Object-Oriented Software Re-Engineering: Code Duplication 30.

U Code Duplication

Process

de Comparison
Technique

String-Matching

gs String-Matching

ings String-Matching

Discrete comparison

Euclidean distance

Tree-Matching

Duplication Data

ison
niversität Bern

General Schema of Detection

Author Level Transformed Co

Johnson, 1994 Lexical Substrings

Rieger et. al., 1999 Lexical Normalized Strin

Baker, 1992 Syntactical Parameterized Str

Mayrand et. al., 1996 Syntactical Metric Tuples

Kontogiannis, 1996 Syntactical Metric Tuples

Baxter et. al., 1998 Syntactical AST

Source Code Transformed Code

Transformation Compar

Object-Oriented Software Re-Engineering: Code Duplication 31.

U Code Duplication

 at a few places

ents (e.g. just ‘else’ or ‘}’)

ULL;
r*fidptr=getFastid();
r!=NULL){
len(fidptr);
ewchar[l+1];
=(char*)fastid;
=0;i<l;i++)
idptr[i];
\0’;
niversität Bern

Simple Detection Approach I
Assumption: Code segments are just copied and changed

Code Transformation Step
❑ remove white space
❑ remove comments
❑ remove lines that contain uninteresting code elem

...
// assign same fastid as container
fastid = NULL;
const char* fidptr = getFastid();
if(fidptr != NULL) {

int l = strlen(fidptr);
fastid = new char[l+1];
char *tmp = (char*) fastid;
for (int i =0;i<l;i++)

tmp[i] = fidptr[i];
tmp[l] = ’\0’;

}
...

...
fastid=N
constcha
if(fidpt
intl=str
fastid=n
char*tmp
for(inti
tmp[i]=f
tmp[l]=’
...

Object-Oriented Software Re-Engineering: Code Duplication 32.

U Code Duplication

hanged during copying)

 each line
 same hash bucket
uences

every line
niversität Bern

Simple Detection Approach II

Code Comparison Step
❑ Line based comparison (Assumption: Layout not c
❑ Compare each line with each other line.

– Reduce search space by hashing:

1. Preprocessing: Compute the hash value for
2. Actual Comparison: Compare all lines in the

❑ Collect consecutive matching lines into match seq

Evaluation of the Approach

Advantages language independent

Disadvantages misses copies with (small) changes on

Object-Oriented Software Re-Engineering: Code Duplication 33.

U Code Duplication

 Matching I
tematically replace variable

riables by generic names

P1= getFastid();
L) {
= strlen(P1);
 char[P3+1];
4 = (char*) P0;
t P5=0;P5<P3;P5++)
5] = P1[P5];
= ’\0’;
niversität Bern

Detection Using Parameterized
Assumption: Programmers copy code segments and sys

names to fit in the new context.

Code Transformation Step
❑ Lexical analysis to generate a token stream
❑ Replace the identifiers of tokens that represent va

❑ Token stream regarded as one large string

...
fastid = NULL;
const char* fidptr = getFastid();
if(fidptr != NULL) {

int l = strlen(fidptr);
fastid = new char[l+1];
char *tmp = (char*) fastid;
for (int i =0;i<l;i++)

tmp[i] = fidptr[i];
tmp[l] = ’\0’;

}
...

...
P0 = NULL;
const char*
if(P1 != NUL

int P3
P0= new
char *P
for (in

P4[P
P4[P3]

}
...

Object-Oriented Software Re-Engineering: Code Duplication 34.

U Code Duplication

 Matching II

ffix Tries)

erized matches

 dependent

x = b - c;

if (b>c) n = 1;

h = f(x);

c = x;
niversität Bern

Detection Using Parameterized
Code Comparison Step

❑ Find all maximal matching substrings (by using Su

Evaluation of the Approach

Advantages
finds large range of duplication
can generate code that unifies paramet

Disadvantages
requires lexical analysis, thus language
algorithmically complicated

x = y - z;

if (y>z) m = 1;

h = f(x);

y = x;

} y=b
z=c
m=n

{y=c}
{

Object-Oriented Software Re-Engineering: Code Duplication 35.

U Code Duplication

x Trees I
dental properties like layout,

putations

ees (e.g. functions)

(part of the for-loop)

Statement

for

iteration

definition

relational

expression

expression

unary

block

Bodycondition

condition change

identifier

reference

relational

rhs

ntifier

erence

i

efined

name

operator

<

relational

operator

relational

lhs

defined

name

l

operator

increment

operator

unary

identifier

reference

expression

i

defined

name
niversität Bern

Detection using Abstract Synta
Idea: Abstract view on the code is not disturbed by acci

parameter names or even operand order.
ASTs are handy format for a large number of com

Code Transformation Step
❑ Parse source code into an abstract syntax tree

❑ Calculate tuples of metric values for specific subtr

...
fastid = NULL;
const char* fidptr = getFastid();
if(fidptr != NULL) {

int l = strlen(fidptr);
fastid = new char[l+1];
char *tmp = (char*) fastid;
for (int i =0;i<l;i++)

tmp[i] = fidptr[i];
tmp[l] = ’\0’;

}
...

statement

assignement

anchor

identifier

reference

i

defined name

assignement

lhs

Literal

integer

assignement

rhs

ide

ref

dinteger

value

0

Object-Oriented Software Re-Engineering: Code Duplication 36.

U Code Duplication

x Trees II

)

ble

 duplication
rom the AST

uire la lot of memory
niversität Bern

Detection using Abstract Synta
Code Comparison Step

❑ Tree matching
or

❑ Comparison of metrics tuples (Euclidean distance

Evaluation of the Approach

Advantages

- fine grained similarity analysis is possi

☞ approach finds largest range of
- code generation can be done directly f

Disadvantages
- very language dependent
- scalability is a problem since ASTs req

Object-Oriented Software Re-Engineering: Code Duplication 37.

U Code Duplication

e same class

classes.
 common superclass

ust similar, (e.g. the same
details)
rn (Gamma et. al., 1995)

e (Kent Beck)
niversität Bern

Refactoring Duplicated Code I
The Mantra of the Ideal Programmer

Refactoring in a Class Hierarchy

❑ If you have a piece of duplication in methods of th
☞ refactor code into a function or method

❑ If you have pieces of duplication in two sibling sub
☞ refactor code into a method and put it into the

❑ If the code in the subclasses is not the same but j
algorithmic structure with some differences in the
☞ consider applying the Template Method Patte

Write every piece of logic once and only onc

Object-Oriented Software Re-Engineering: Code Duplication 38.

U Code Duplication

I
y design pattern
ctionality
r to the context from which it

nality that occurs in the

s1

1()

OriginalClass2

ClonedMethod2()
IdInterface()

<<interface>>
IdStrategy

IdInterface()

s>>
niversität Bern

Refactoring Duplicated Code I
Automatic refactoring of Java clones using the strateg

❑ CloneHandler class captures the duplicated fun
❑ IdStrategy interface connects the CloneHandle

is called
❑ DiffStrategy interface holds the variant functio

different clones

OriginalClas

ClonedMethod
IdInterface()

CloneHandler

ClonedMethod()

Concrete diff strategy 1

DiffInterface()

Concrete diff strategy 2

DiffInterface()

<<interface>>
DiffStrategy

DiffInterface()

<<uses>> <<use

Object-Oriented Software Re-Engineering: Code Duplication 39.

U Code Duplication

e

 a dot in the matrix

cation situation

tes Repetitive

dc e x b c x d e x f xg ha

Code Elements
niversität Bern

Visualization of Duplicated Cod
Scatterplots-Technique from DNA Analysis

❑ Code is put on vertical as well as horizontal axis
❑ A match between two elements is represented as

Interpretation of Dot Configurations

❑ Visualization allows intuitive insights into the dupli
❑ Easy source code access is important

Exact Copies Copies with Inserts/Dele

a b c d e f a b c d e f a b c d e fa b x y e f b c d e a b x ya

Variations

Object-Oriented Software Re-Engineering: Code Duplication 40.

U Code Duplication

equences

y (1 Mio LOC C++ System)

 A File B
niversität Bern

Visualization of Copied Code S

All Examples on this an the following slides are from an industrial case stud

File

File A

File B

Detected Problem:

File A contains two copies of
a piece of code.
File B contains another copy
of this code.

Object-Oriented Software Re-Engineering: Code Duplication 41.

U Code Duplication

tures
niversität Bern

Visualization of Repetitive Struc

Detected Problem:
4 Object factory clones:
a switch statement over
a type variable is used
to call individual
construction code.

Possible Solution:
Strategy Method

Object-Oriented Software Re-Engineering: Code Duplication 42.

U Code Duplication

Class BA
niversität Bern

Visualization of Cloned Classes

Class A

Class B

Class

Detected Problem:
Class A is an edited
copy of class B:
Editing & Insertion

Typical case of code
scavenging.

Object-Oriented Software Re-Engineering: Code Duplication 43.

U Code Duplication

Detail
niversität Bern

Visualization of Clone Families

20 Classes implementing lists for different data types

Overview

Object-Oriented Software Re-Engineering: Code Duplication 44.

U Code Duplication

arder to change

tically

tive research area
niversität Bern

Summary

❑ Duplicated code is a real problem

❑ Duplicated Code makes a system progressively h

❑ To Detect Duplicated Code is a hard problem
☞ tool support is needed

❑ Refactoring duplicated code can be done automa

❑ Code Duplication Detection and Removal is an ac

Object-Oriented Software Re-Engineering: Code Duplication 45.

U Code Duplication

tems Based on Clone
se Engineering, pages 326-

tion in Large-Software-
Reverse Engineering, pages

rn Languages. TAPOS,

n and Change Tracking. In
aintenance (ICSM), pages

ion of Programming Patterns
is Verhoef, editors,
Society, 1997.
niversität Bern

References

M. Balazinska et. al. Partial Redesign of Java software Sys
Analysis, Proceedings Sixth Working Conference on Rever
336, IEEE Computer Society, 1999.

Brenda S. Baker. On Finding Duplication and Near-Duplica
Systems. In Proceedings Second Working Conference on
86-95, IEEE Computer Society, 1995.

Jonathan Helfman. Dotplot Patterns: A Literal Look at Patte
2(1):31-41,1995.

J Howard Johnson. Substring Matching For Clone Detectio
Proceedings of the International Conference on Software M
120-126, 1994.

Kostas Kontogiannis. Evaluation Experiments on the Detect
Using Software Metrics, In Ira Baxter, Alex Quilici, and Chr
Proceedings Fourth WCRE, pages 44-54, IEEE Computer

Object-Oriented Software Re-Engineering: Code Duplication 46.

U Lab session — Duploc
niversität Bern

3. Lab session — Duploc

Object-Oriented Software Reengineering 47 .

© Design Extraction

 world market).

ount new client requirements.
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

4. Design Extraction

War story:
“Company X is in trouble.
Their product is successful (they have 60% of the
But:

- all the original developers left,
- there is no documentation at all,
- there is no comment in the code,
- the few comments are obsolete,
- there is no architectural description,...

And they must change the product to take into acc
They asked a student to reconstruct the design.”

Object-Oriented Software Reengineering 48 .

© Design Extraction

s

n to filter out
d produce design”

rucial
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Goals

❑ Design is not code displayed with boxes and arrow
❑ Design extraction is not trivial

- scalability
- not fully automatized -> needs human interventio

❑ Give a critic view on hype: “we read your code an
❑ Show that UML is not that simple and clear
❑ Show that conventions for the interpretation are c

- Language mapping
- UML interpretation

Object-Oriented Software Reengineering 49 .

© Design Extraction
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Outline
❑ Why Extracting Design? Why Uml?
❑ Basic Uml Static Elements
❑ Experimenting With Extraction
❑ Interpreting Uml
❑ Language Specific Issues
❑ Tracks For Extraction
❑ Extracting Intention: Design Pattern
❑ Extraction For The Reuser
❑ Extraction of Interaction
❑ Conclusion

Object-Oriented Software Reengineering 50 .

© Design Extraction

d?

mplexity)

ut its interpretation
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Why Design Extraction is neede

❑ Documentation inexistent, obsolete or too prolix
❑ Abstraction needed to understand applications (co
❑ Original programmers left
❑ Only the code available

Why UML?
❑ Standard
❑ Communication based on a common language
❑ Can support documentation if we are precise abo
❑ Extensible
❑ Hype and market!

Object-Oriented Software Reengineering 51 .

© Design Extraction

ge)

rly 90
 [Booc98a] [Rumb99a]

logy (no process)

language)

semantics” of a model
t weak!
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

UML (Unified Modelling Langua
What is the Unified Modelling Language?

- Successor of OOAD&D methods of late 80 & ea
- Unifies Booch, Rumbaugh (OMT) and Jacobson
- Currently standardized by OMG

- UML = a modelling language and not a methodo

- UML defines
- a notation (the syntax of the modelling

Ex:

- a meta-model = a model to define the “
(what is well-formed), defines in itself bu

Customer
name
address

creditRating(): String

Object-Oriented Software Reengineering 52 .

© Design Extraction

Customer

Personal
Customer

Customer

1 name
address

creditRating(): String

e
g

th(Integer)

creditCard#

a Class
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

The Little Static UML

Order

OrderLine

Product

Employee
Corporate

dateReceived
isPrepaid
number: String
price: Money

dispatch()
close()

quantity: Integer
price: Money
isSatified: Boolean

* 1

1

*line items

*

contactNam
creditRatin
creditLimit
remind()
billForMon

0..1 *

sales
rep

an Association

some attributes

some operations

Object-Oriented Software Reengineering 53 .

© Design Extraction
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Road Map
❑ Why Extracting Design? Why Uml?
❑ Basic Uml Static Elements

☞ Experimenting With Extraction
❑ Interpreting Uml
❑ Language Specific Issues
❑ Tracks For Extraction
❑ Extracting Intention: Design Pattern
❑ Extraction For The Reuser
❑ Extraction of Interaction
❑ Conclusion

Object-Oriented Software Reengineering 54 .

© Design Extraction
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Let us practice!
A small example in C++: A Tic-Tac-Toe Game!
You will do it now........
But:

❑ do not interpret the code
❑ do not make any assumption about it
❑ do not filter out anything

Object-Oriented Software Reengineering 55 .

© Design Extraction
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

A First View

Object-Oriented Software Reengineering 56 .

© Design Extraction
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Evaluation
We should have heuristics to extract the design.

Try to clean the previous solution you found
Try some heuristics like removing:

❑ private information,
❑ remove association with non domain entities,
❑ simple constructors,
❑ destructors, operators

Object-Oriented Software Reengineering 57 .

© Design Extraction
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

A Cleaner View

Object-Oriented Software Reengineering 58 .

© Design Extraction
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Road Map
❑ Why Extracting Design? Why Uml?
❑ Basic Uml Static Elements
❑ Experimenting With Extraction

☞ Interpreting Uml
❑ Language Specific Issues
❑ Tracks For Extraction
❑ Extracting Intention: Design Pattern
❑ Extraction For The Reuser
❑ Extraction of Interaction
❑ Conclusion

Object-Oriented Software Reengineering 59 .

© Design Extraction

tion?
 are applying?
mework users, high level
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Three Essential Questions
When we extract design we should be precise about:

❑ What are we talking about? Design or implementa
❑ What are the conventions of interpretation that we
❑ What is our goal: documentation programmers, fra

views, contracts

Object-Oriented Software Reengineering 60 .

© Design Extraction

, they refer to the UML

are necessary!
d inheritance between

lk (subclassing)
eralization of Set

ns + Clear goal + UML
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Interpreting UML
UML purists do not propose different levels of interpretation
semantics!

❑ Levels of interpretations are not of UML but there
What is the sense of representing subclassing base
two classes using generalization?

Dictionary is a subclass of Set in Smallta
but a Dictionary is not a subtype nor gen

So at the minimum we should have:
☞ Clear level of interpretation + Clear conventio

extensions: stereotypes

Object-Oriented Software Reengineering 61 .

© Design Extraction

ctives
ives [Fowl97a]:

 concepts that are somehow
apping.
t not implementation, types
at may have many
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Levels of Interpretations: Perspe
Fowler proposed 3 levels of interpretations called perspect

- conceptual
- specification
- implementation

Three Perspectives:
❑ Conception: we draw a diagram that represents the

related to the classes but there is often no direct m
❑ Specification: we are looking at interfaces of objec

rather than classes. Types represent interfaces th
implementations

❑ Implementation: implementation classes

Object-Oriented Software Reengineering 62 .

© Design Extraction

lue

y to query and set the name

e

e
ge it
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Attributes in Perspectives
Syntax:

visibility attributeName: attributeType = defaultVa
+ name: String

Conceptual:
Customer name = Customer has a name

Specification:
Customer class is responsible to propose some wa

Implementation:
Customer has an attribute that represents its nam

Possible Refinements
Attribute Qualification - Immutable: Value never chang

- Read-only: Client cannot chan

Object-Oriented Software Reengineering 63 .

© Design Extraction

 described as a sentence

ore like abstract methods

te of an object)
ed Value (depends
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Operations in Perspectives
Syntax: visibility name (parameter-list):return-type
+ public, # protected, - private

- Conceptual: principal functionality of the object. It is often
- Specification: public methods on a type
- Implementation: methods

Operations can be approximate to methods but they are m

Possible Refinements:
-Method qualification: Query (does not change the sta
Cache (does cache the result of a computation), Deriv
on the value of other values), Getter, Setter

Object-Oriented Software Reengineering 64 .

© Design Extraction

 the association.
target class
 source class to a target class

rder to OrderLines

ines
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Associations
- Represent relationships between instances

- Each association has two roles: each role is a direction on
- a role can be explicitly named, labelled near the
if not named from the target class and goes from a
- a role has a multiplicity: 1, 0, 1..*, 4

 LineItems = role of direction O
 LineItems role = OrderLine role
 One Order has several OrderL

Order

dateReceived
isPrepaid
number: String
price: Money

dispatch()
close()

OrderLine
quantity: Integer
price: Money
isSatified: Boolean

*

1

LineItems

Object-Oriented Software Reengineering 65 .

© Design Extraction

ective
l relationships between

roduct.
.

Customer
me
dress

ditRating(): String
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Associations: Conceptual Persp
Conceptual Perspective: associations represent conceptua
classes

An Order has to come from a single Customer.
A Customer may make several Orders.
Each Order has several OrderLines that refers to a single P
A single Product may be referred to by several OrderLines

Order

dateReceived
isPrepaid
number: String
price: Money

dispatch()
close()

* 1 na
ad

cre

OrderLine

Product
quantity: Integer
price: Money
isSatified: Boolean

* 1

*

1

Object-Oriented Software Reengineering 66 .

© Design Extraction

spective
bilities

 a given Customer has made.
ced a given Order and what

elationship, like:
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Associations: Specification Per
Specification Perspective: Associations represent responsi

Implications:
- One or more methods of Customer should tell what Orders
- Methods within Order will let me know which Customer pla
Line Items compose an Order

Associations also implies responsibilities for updating the r
- specifying the Customer in the constructor for the Order
- add/removeOrder methods associated with Customer

Order Customer
* 1

Object-Oriented Software Reengineering 67 .

© Design Extraction

er it is for but Customer don’t

n’t

Customer
me
dress

ditRating(): String
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Arrows: Nagivability

No arrow = navigability in both sides or unknown
☞ conventions needed!!

- Conceptual perspective: no real sense
- Specification perspective: responsibility

an Order has the responsibility to tell which Custom
- Implementation perspective:

an Order points to a Customer, an Customer does

Order

dateReceived
isPrepaid
number: String
price: Money

dispatch()
close()

* 1 na
ad

cre

OrderLine

Product
quantity: Integer
price: Money
isSatified: Boolean

* 1

*

1

Object-Oriented Software Reengineering 68 .

© Design Extraction

tance.

n instance of a superclass is
ns, attributes, operations).
omer

ubtype must include all
 a superclass.

e. But we should interpret it
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Generalization
UML semantics only supports generalization and not inheri

Conceptual: What is true for a
true for a subclass (associatio
Corporate Customer is a Cust

Specifications: interface of a s
elements from the interface of

Implementation: Generalization semantics is not inheritanc
this way for representing extracted code.

Customer

Personal
Customer

Corporate Customer

creditRating(): String

remind()
billForMonth(Integer)

creditRating()
creditRating()

Object-Oriented Software Reengineering 69 .

© Design Extraction
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Road Map
❑ Why Extracting Design? Why Uml?
❑ Basic Uml Static Elements
❑ Experimenting With Extraction
❑ Interpreting Uml

☞ Language Specific Issues
❑ Tracks For Extraction
❑ Extracting Intention: Design Pattern
❑ Extraction For The Reuser
❑ Extraction of Interaction
❑ Conclusion

Object-Oriented Software Reengineering 70 .

© Design Extraction
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Need for a Clear Mapping
UML

❑ language independent even if influenced by C++
❑ fuzzy (navigability, package...)

☞ We should define how we interpret it
☞ Define some conventions

In C++, examples show that:
Board& board()

Board& operator =(const Board& other) throw (const char*);

board(): Board
Piece* myMap;

myMap: Piece
class Gomoku: public Boardgame {

«public inherits»
virtual void checkWinner(int x, int y);

checkWinner
static int width();

width:Integer

Object-Oriented Software Reengineering 71 .

© Design Extraction

lk)?
gram
 that defines it
at defines it or its subclasses

d

ed only by instances of other

sses but also by any other

s in the same package
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Private you said?! Which one?
What is the semantics of private, protected and public.

is it class-based (C++) or instance based (Smallta
in C++: - any public member is visible anywhere in the pro

- a private member may be used only by the class
- a protected member may be used by the class th
class based private

in Smalltalk: - instance variables are private = C++ protecte
- instance based private
- methods are public

in Java class based like C++ but package rules:
- a member with package visibility may be access
classes in the same package
- a protected member may be accessed by subcla
classes in the same package as the owing class
=> protected is more public than package
- classes can be marked as public or package
a package class may be used only by other classe

Object-Oriented Software Reengineering 72 .

© Design Extraction

efault class constructor.
rd() is called

s not work

Board

CustomizedBoard

Board (s String):Board
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Class Method Inheritance?!

Does it mean that CustomizedBoard can be instantiated
by calling Board("Player 1")?

In Smalltalk: Yes this is normal inheritance between
(meta) classes.

In Java and C++: No there is no inheritance between non-d
CustomizedBoard instance = new CustomizedBoard() -> Boa

CustomizedBoard instance = new Board(“player 1”) -> doe

☞ Conventions needed

Object-Oriented Software Reengineering 73 .

© Design Extraction

ntions

o you may choose to only
s.

ories’
les and instance variables of

oo

r class

ce of class Class
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Some Possible Smalltalk Conve

❑ In Smalltalk all methods returns self per default, s
specify return type if it is not the same as the clas

❑ Attributes are all private
❑ All methods are public but there are ‘private categ
❑ How do I distinguish between class instance variab

the class?
❑ UML can be confusing when classes are objects t

- uniqueInstance (c Class): Scheduler
returns an instance of Schedule

- defaultWindowClass (): Class
returns the class window instan

Object-Oriented Software Reengineering 74 .

© Design Extraction

entions!
ts

s select a close element and

 = operation, a = attribute, d
 instance (r), implementation
inherits (g), interface (c),
y (classifier) (only class scope

 standard

Board

ustomizedBoard

rd (s String):Board

<<inherits protected>>
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Stereotypes: to Represent Conv
Mechanism to specialize the semantics of the UML elemen

❑ New properties are added to an element
❑ When a concept is missing or does not fit your need

extend it.

❑ 40 predefined stereotypes (c = class, r = relation, o
= dependency, g = generalization): metaclass (c),
class (c) constructor (o), destructor(o), friend (d),
private (g), query (o), subclass (g), subtype (g), utilit
operations and attributes)

❑ Do not push stereotypes to the limits else you lose

 «GUI»

+ BoardWindow(String,Integer,

+putPiece(x Integer, y Integer, p Piece)
+putText(x Integer, y Integer, t String)
+clear(Integer,Integer,Integer,Integer)
+getEvent(e Event)
+width():Integer
+height():Integer

Integer,Integer,Integer,String)

BoardWindow

C

Boa

Object-Oriented Software Reengineering 75 .

© Design Extraction

ss

and association between

lass

f UILookPolicy
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Another Example: Instance/Cla
Associations

How to distinguish between associations between classes
instances?

In VisualWorks, UIBuilder class is related to UILookPolicy c

But an instance of UIBuilder is also related to an instance o
☞ Use a stereotype or a constraint

UIBuilder UILookPolicy

UIBuilder UILookPolicy«class»

{class}

Object-Oriented Software Reengineering 76 .

© Design Extraction
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

RoadMap

❑ Why Extracting Design? Why Uml?
❑ Basic Uml Static Elements
❑ Experimenting With Extraction
❑ Interpreting Uml
❑ Language Specific Issues

☞ Tracks For Extraction
❑ Extracting Intention: Design Pattern
❑ Extraction For The Reuser
❑ Extraction of Interaction
❑ Conclusion

Object-Oriented Software Reengineering 77 .

© Design Extraction

s that are not

position
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Association Extractions (i)
Goal: Explicit references to domain classes

❑ Domain Objects
Qualify as attributes only implementation attribute
related to domain objects.

Value objects -> attributes and not associations,
Object by references -> associations

Ex: String name -> an attribute
Order order -> an association
Piece myPiece (in C++) -> com

❑ Define your own conventions
Ex: integer x integer -> point attribute

❑ Two classes possessing attributes on each other
-> an association with navigability at both side

Object-Oriented Software Reengineering 78 .

© Design Extraction

n

ion or assocation
ion or association
--> composition

 to extract
iation or aggregation
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Language Impact on Extractio

Attributes interpretation (like in the pictures)
- In C++ =>

Piece* myPiece ---> aggregat
Piece& my Piece ---> aggregat
Piece myPiece (copied so not shared) --

- In Smalltalk and Java
Aggregation and composition is not easy
Piece myPiece ----> attribute or assoc

Object-Oriented Software Reengineering 79 .

© Design Extraction

 Relation
 an object,
od parameter, returned value

tation [Beck97], Double

implicit relationships

 is not clear!
reference)
 [Winston87]
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Method Signature for Extracting
- Having attributes is not always necessary to interact with
 => temporary references exist: temporary variable, meth

- An instance can be dynamically created
- An instance can pass itself as a parameter

Some relevant idioms: Self Delegation, Dispatched Interpre
Dispatch,...

=> Do not limit yourself to attributes, methods also contain

void putPiece (int x, int y, Piece piece)
=> relation between a Board and a Piece

When should we extract an aggregation and not a relation

=> Analyse the language semantics (by copy, by
=> Consider the various semantics of composition

Object-Oriented Software Reengineering 80 .

© Design Extraction

 Extraction

ay filter out attributes

ubclasses.

rder Customer

Received
paid

ber: String
: Money

tch()
()

* 1 name
address

creditRating(): String

OrderLine
quantity: Integer
price: Money
isSatified: Boolean

*1
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Convention Based Association
❑ Filtering based coding conventions or visibility

In Java, C++ filter out private attributes
_*

❑ In Smalltalk depending on coding practices you m
- attributes
- that have accessors and are not accessed into s
- with name: *Cache.
- attributes that are only used by private methods.

❑ If there are some coding conventions
class Order {

public Customer customer(); (single value)

public Enumerator orderLines(); (multi-values)}
O

date
isPre
num
price

dispa
close

Object-Oriented Software Reengineering 81 .

© Design Extraction

rameters in Java)

tract
ing of the objects

inting’, ‘accessing’, ‘ini

n:,
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Operation Extraction (i)
You may not extract

- accessors, methods with the name of an attribute
- operators,
- simple instance creation methods

(new in Smalltalk, constructor with no pa
- non-public methods,
- methods already defined in superclass,
- methods already defined in superclass that are not abs
- methods that are responsible for the initialization, print

Example in Smalltalk, do not show
- methods that belongs to categories: ‘pr
tialize-release’, ‘private’...
- methods with name: #printOn:, #storeO

Use company conventions to filter
- Access to database
- Calls for the UI
- Naming patterns

Object-Oriented Software Reengineering 82 .

© Design Extraction

ent
he details

ays you can invoke them

f time they are referenced

portant

.
,
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Operation Extraction (ii)

If there are several methods with more or less the same int
- if you want to know that the functionality exists not all t

=> select the method with the smallest prefix

- if you want to know all the possibilities but not all the w
=> select the method with the more parameters

- if you want to focu on important methods
=> categorize methods according to the number o
by clients
=> but a hook method is not often called but still im

What is important to show: the Creation Interface
- Smalltalk class methods in ‘instance creation’ category
- Non default constructors in Java or C++

Object-Oriented Software Reengineering 83 .

© Design Extraction
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Road map
❑ Why Extracting Design? Why Uml?
❑ Basic Uml Static Elements
❑ Experimenting With Extraction
❑ Interpreting Uml
❑ Language Specific Issues
❑ Tracks For Extraction

☞ Extracting Intention: Design Pattern
❑ Extraction For The Reuser
❑ Extraction of Interaction
❑ Conclusion

Object-Oriented Software Reengineering 84 .

© Design Extraction

tion Elements

itively appealing for

gy from the code point

eep the use of patterns and
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Design Patterns as Documenta

❑ Design Patterns reveal the intent so they are defin
supporting documentation [John92a] [Oden97a]

But.
❑ Difficult to identify design patterns from the code

[Brow96c, Wuyt98a, Prec98a]

What is the difference between a State and a Strate
of view?

❑ Need somebody that knows
❑ Lack of support for code annotation so difficult to k

the code evolution [Flor97a]

Object-Oriented Software Reengineering 85 .

© Design Extraction
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Road map
❑ Why Extracting Design? Why Uml?
❑ Basic Uml Static Elements
❑ Experimenting With Extraction
❑ Interpreting Uml
❑ Language Specific Issues
❑ Tracks For Extraction
❑ Extracting Intention: Design Pattern

☞ Extraction For The Reuser
❑ Extraction of Interaction
❑ Conclusion

Object-Oriented Software Reengineering 86 .

© Design Extraction

se Contract
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Evolution Impact Analysis: Reu
How to identify the impact of changes?

Object-Oriented Software Reengineering 87 .

© Design Extraction

OrderedCollection

dd(Element)
ddAll(Collection)

CountingOrderedCollection

dd(Element)
ddAll(Collection)

crement

ll the elements are counted

 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Example

OrderedCollection

add(Element)
addAll(Collection)

CountingOrderedCollection

add(Element)
addAll(Collection)

increment

a
a

a
a

in

New Version

Not a

Object-Oriented Software Reengineering 88 .

© Design Extraction

xtraction

 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Reuse Contracts: General Idea

Reuse Contracts [Stey96a] propose a methodology to:
- specify and qualify extensions
- specify evolution
- detect conflicts
- Classification Browser support Reuse Contract e

Object-Oriented Software Reengineering 89 .

© Design Extraction

kes (reuse contracts)

OrderedCollection

add
addAll

CountingOrderedCollection

dd(Element) [increment]
increment

timate
ll needs to be overrident too

 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

 Example

Extend UML to specify which other methods a method invo
In class Set

+ addAll: (c Collection): Collection {invokes add}

OrderedCollection

add
addAll [add]

CountingOrderedCollection

add [increment]
increment

a

effort es

Refinement
add [+ increment]

Coarsening
addAll [- all]

addA

Object-Oriented Software Reengineering 90 .

© Design Extraction

 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Road Map

 ❑ Why Extracting Design? Why Uml?

❑ Basic Uml Static Elements

❑

Experimenting With Extraction

❑

Interpreting Uml

❑

Language Specific Issues

❑

Tracks For Extraction

❑

Extracting Intention: Design Pattern

❑

Extraction For The Reuser

☞

Extraction of Interactions

❑

Conclusion

Object-Oriented Software Reengineering 91 .

© Design Extraction

our

s (class, attribute, method) is

B)
diator

or Collaboration Diagram

 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Documenting Dynamic Behavi

❑

Focusing only at static element structural element
limited, does not support:
- protocols description (message A call message
- describe the role that a class may play e.g. a me

 ❑

Calling relationships is well suited for
- method interrelationships
- class interrelationships

UML proposes Interaction Diagrams = Sequence Diagram

Object-Oriented Software Reengineering 92 .

© Design Extraction

r

phone rings

answer phone

ringing stops

hone Line Callee

 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Sequence Diagrams

caller lifts receive

dial tone begins

dial (1)

dial tone ends

dial (2)

dial (2)

ringing tone

tone stops
tim

e

Caller PA

sequence diagram

 depicts a
scenario by showing the
interactions among a set of
objects in temporal order.

Objects (not classes!) are shown
as vertical bars.
Events or message dispatches
are shown as horizontal (or
slanted) arrows from the send to
the receiver.

Recall that a scenario describes a
typical

example

 of a use case, so
conditionality is not expressed!

Object-Oriented Software Reengineering 93 .

© Design Extraction

s

 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Statically Extracting Interaction

Pros:

- Limited resources needed
- Do not require code instrumentation

Cons:

- Need a good understanding of the system
- state of the objects for conditional
- compilation state #ifdef...
- dynamic creation of objects

- Potential behavior not the real behaviour
- Blur important scenario

Object-Oriented Software Reengineering 94 .

© Design Extraction

tions

e system

e passing control)

e extracted

 the same...)
ger that generates specific

 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Dynamically Extracting Interac

Pros:

- Help to focus on a specific scenario
- Can be applied without deep understanding of th

Cons:

- Need reflective language support (MOP, messag
or code instrumentation (heavy)
 - Storing retrieved information (may be huge)

For dealing with the huge amount of information
- selection of the parts of the system that should b
- selection of the functionality
- selection of the use cases
- filters should be defined
(several classes as the same, several instance as

☞

A simple approach is to open a special debug
traces

Object-Oriented Software Reengineering 95 .

© Design Extraction

 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Lessons Learnt

You should be clear about:

❑

Your goal (detailed or architectural design)

❑

Conventions like navigability,

❑

Language mapping based on stereotypes

❑

Level of interpretations

For Future Development

❑

Emphasize literate programming approach

❑

Extract design to keep it synchronized

UML as Support for Design Extraction

❑

Often fuzzy

❑

Composition aggregation limited

❑

Do not support well reflexive models

❑

But UML is extensible, define your own stereotype

Object-Oriented Software Reengineering 96.

I Software Metrics

ach, Norman Fenton and
 Co., 1997.

Wesley, 5th edn., 1995
 Henderson-Sellers, C.

AM, U. Berne

5. Software Metrics

Outline

❑

What are metrics? Why do we need them?

❑

Metrics for cost estimation

❑

Metrics for software quality evaluation

Sources

❑ Software Metrics: A Rigorous and Practical Appro
Shari Lawrence Pfleeger, 2d edn, PWS Publishing

❑ Software Engineering, Ian Sommerville, Addison-
❑ Tutorial on Software Metrics, Simon Moser, Brian

Mingins, 1997

Object-Oriented Software Reengineering 97.

I Software Metrics

nal product

 Marco, 1982

eo
AM, U. Berne

Why Measure Software?

Estimate cost and effort
❑ measure correlation between specifications and fi

Improve productivity
❑ measure value and cost of software

Improve software quality
❑ measure usability, efficiency, maintainability ...

Improve reliability
❑ measure mean time to failure, etc

Evaluate methods and tools
❑ measure productivity, quality, reliability ...

...

“You cannot control what you cannot measure” — De

“What is not measurable, make measurable” — Galil

Object-Oriented Software Reengineering 98.

I Software Metrics

are system, process or

 component

 quantified
AM, U. Berne

What is a Metric?

Software metrics
❑ Any type of measurement which relates to a softw

related documentation
☞ Lines of code in a program
☞ the Fog index
☞ number of person-days required to develop a
☞ ...

❑ Allow the software and the software process to be
❑ Measures of the software process or product
❑ Should be captured automatically if possible

Object-Oriented Software Reengineering 99.

I Software Metrics

Z?”

?”

..
AM, U. Berne

GQM

Goal - Question - Metrics approach [Basili et al. 1984]
❑ Define Goal

☞ e.g., “How effective is the coding standard XY

❑ Break down into Questions
☞ “Who is using XYZ?”
☞ “What is productivity/quality with/without XYZ

❑ Pick suitable Metrics
☞ Proportion of developers using XYZ
☞ Their experience with XYZ ...
☞ Resulting code size, complexity, robustness .

Object-Oriented Software Reengineering 100.

I Software Metrics

sure and what we want to

d

ble quality attributes

ollected data is very difficult
ailable

account
AM, U. Berne

Metrics assumptions

Assumptions
❑ A software property can be measured
❑ The relationship exists between what we can mea

know
❑ This relationship has been formalized and validate

It may be difficult to relate what can be measured to desira

Measurement analysis
❑ Not always obvious what data means. Analysing c
❑ Professional statisticians should be consulted if av
❑ Data analysis must take local circumstances into

Object-Oriented Software Reengineering 101.

I Software Metrics

ly related activities
AM, U. Berne

Cost estimation objectives

❑ To establish a budget for a software project
❑ To provide a means of controlling project costs
❑ To monitor progress against the budget

☞ comparing planned with estimated costs
❑ To establish a cost database for future estimation
❑ Cost estimation and planning/scheduling are close

Object-Oriented Software Reengineering 102.

I Software Metrics
AM, U. Berne

Estimation techniques

❑ Expert judgement
❑ Estimation by analogy
❑ Parkinson's Law
❑ Pricing to win
❑ Top-down estimation
❑ Bottom-up estimation
❑ Algorithmic cost modelling

Object-Oriented Software Reengineering 103.

I Software Metrics

roduct, project and process
anagers

osting data
timation is LOC (code size)
t attribute values
AM, U. Berne

Algorithmic cost modelling

❑ Cost is estimated as a mathematical function of p
attributes whose values are estimated by project m

❑ The function is derived from a study of historical c
❑ Most commonly used product attribute for cost es
❑ Most models are basically similar but with differen

Object-Oriented Software Reengineering 104.

I Software Metrics

n

 to

cts

pret
he effort with respect to a
 development project plan
AM, U. Berne

Measurement-based estimatio

A. Measure
Develop a system model
and measure its size

B. Estimate
Determine the effort with respect
an empirical database of
measurements from similar proje

C. Inter
Adapt t
specific

Object-Oriented Software Reengineering 105.

I Software Metrics

 languages

the system?

nd volume of documentation

efits of redesign
ctive the programmer
r the productivity
AM, U. Berne

Lines of code

Lines of Code as a measure of system size?

❑ Easy to measure; but not well-defined for modern
☞ What's a line of code?
☞ What programs should be counted as part of

❑ Assumes linear relationship between system size a

❑ A poor indicator of productivity
☞ Ignores software reuse, code duplication, ben
☞ The lower level the language, the more produ
☞ The more verbose the programmer, the highe

Object-Oriented Software Reengineering 106.

I Software Metrics

s:

g each raw count by the

 project

he average number of LOC

or. They cannot be counted
AM, U. Berne

Function points
Function Points (Albrecht, 1979)

❑ Based on a combination of program characteristic
☞ external inputs and outputs
☞ user interactions
☞ external interfaces
☞ files used by the system

❑ A weight is associated with each of these
❑ The function point count is computed by multiplyin

weight and summing all values
❑ Function point count modified by complexity of the

Good points, bad points
❑ Can be measured already after design
❑ FPs can be used to estimate LOC depending on t

per FP for a given language
❑ LOC can vary wildly in relation to FP
❑ FPs are very subjective — depend on the estimat

automatically

Object-Oriented Software Reengineering 107.

I Software Metrics

d in software development

 the software process. This
e instructions, etc.
of the functionality of the
nown of this type of measure

nth

ecause they do not take

st of quality
related
AM, U. Berne

Programmer productivity
A measure of the rate at which individual engineers involve
produce software and associated documentation
Productivity metrics

❑ Size related measures based on some output from
may be lines of delivered source code, object cod

❑ Function-related measures based on an estimate
delivered software. Function-points are the best k

Productivity estimates
❑ Real-time embedded systems, 40-160 LOC/P-mo
❑ Systems programs , 150-400 LOC/P-month
❑ Commercial applications, 200-800 LOC/P-month

Quality and productivity
❑ All metrics based on volume/unit time are flawed b

quality into account
❑ Productivity may generally be increased at the co
❑ It is not clear how productivity/quality metrics are

Object-Oriented Software Reengineering 108.

I Software Metrics

nt projects

product attributes
roject and process attributes

rts separately
AM, U. Berne

The COCOMO model

❑ Developed at TRW, a US defense contractor
❑ Based on a cost database of more than 60 differe
❑ Exists in three stages

☞ Basic - Gives a 'ball-park' estimate based on
☞ Intermediate - modifies basic estimate using p
☞ Advanced - Estimates project phases and pa

Object-Oriented Software Reengineering 109.

I Software Metrics

rge projects
d development attributes (~1)

ell-understood applications,

erience mixture, system may
rganization may have less

straints, unusual for team to
AM, U. Berne

Basic COCOMO Formula
❑ Effort = C × PMS × M

☞ C is a complexity factor
☞ PM is a product metric (size or functionality)
☞ exponent S is close to 1, but increasing for la
☞ M is a multiplier based on process, product an

Project classes
❑ Organic mode small teams, familiar environment, w

no difficult non-functional requirements (EASY)

☞ Effort = 2.4 (KDSI) 1.05 × M
❑ Semi-detached mode Project team may have exp

have more significant non-functional constraints, o
familiarity with application (HARDER)

☞ Effort = 3 (KDSI) 1.12 × M
❑ Embedded Hardware/software systems, tight con

have deep application experience (HARD)

☞ Effort = 3.6 (KDSI) 1.2 × M
NB: KDSI = Kilo Delivered Source Instructions

Object-Oriented Software Reengineering 110.

I Software Metrics

 size
ility

evelopment time by the

 depending on the phase of

re total effort is usually

 schedule slippage
AM, U. Berne

COCOMO assumptions

❑ Implicit productivity estimate
☞ Organic mode = 16 LOC/day
☞ Embedded mode = 4 LOC/day

❑ Time required is a function of total effort NOT team
❑ Not clear how to adapt model to personnel availab

Staffing requirements
❑ Staff required can’t be computed by dividing the d

required schedule
❑ The number of people working on a project varies

the project
❑ The more people who work on the project, the mo

required
❑ Very rapid build-up of people often correlates with

Object-Oriented Software Reengineering 111.

I Software Metrics

uality.
d are concerned with
ign.
y as judged by a human may
ot it is generally true.
AM, U. Berne

Product quality metrics

❑ A quality metric should be a predictor of product q
❑ Most quality metrics are design quality metrics an

measuring the coupling or the complexity of a des
❑ The relationship between these metrics and qualit

hold in some cases but it is not clear whether or n

Object-Oriented Software Reengineering 112.

I Software Metrics

y

y in terms of the graph of its

 number of unique operators

n different metrics
AM, U. Berne

Maintainability Metrics

Hypothesis: Program maintainability is related to complexit

❑ McCabe (1976): measures a program’s complexit
decision structure

❑ Halstead (1977): measures complexity in terms of
and operands, and total frequency of operands

❑ Kafura and Reddy (1987): used a cocktail of seve

Object-Oriented Software Reengineering 113.

I Software Metrics

ated?

unction?
AM, U. Berne

Design maintainability

❑ Cohesion
☞ How closely are the parts of a component rel

❑ Coupling
☞ How independent is a component?

❑ Understandability
☞ How easy is it to understand a component’s f

❑ Adaptability
☞ How easy is to change a component?

Object-Oriented Software Reengineering 114.

I Software Metrics

fan-in and fan-out' in a

 high coupling because of

ling because of control

mplistic because it ignores

nt.
l data structures updated.

cludes updated procedure
 a module.

as LOC.
AM, U. Berne

Coupling metrics

Associated with Yourdon's 'Structured Design'/ Measures '
structure chart:

❑ High fan-in (number of calling functions) suggests
module dependencies.

❑ High fan-out (number of calls) suggests high coup
complexity.

Henry and Kafura’s modifications
❑ The approach based on the calls relationship is si

data dependencies.
❑ Informational fan-in/fan-out takes these into accou

☞ Number of local data flows + number of globa
☞ Data-flow count subsumes calls relation. It in

parameters and procedures called from within

❑ Complexity = Length * (Fan-in * Fan-out)2

☞ Length is any measure of program size such

Object-Oriented Software Reengineering 115.

I Software Metrics

n-in/fan-out allowed complex

nches are as useful in
-out.

lity predictor.

 practically applicable.
AM, U. Berne

Validation of quality metrics

❑ Some studies with Unix found that informational fa
and potentially faulty components to be identified.

❑ Some studies suggest that size and number of bra
predicting complexity than informational fan-in/fan

❑ Fan-out on its own also seemed to be a better qua

❑ The whole area is still a research area rather than

Object-Oriented Software Reengineering 116.

I Software Metrics

gram control

ay contain an above average
d

gested it is a good predictor

ability
. May be a contributor to an
AM, U. Berne

Program quality metrics

Design metrics also applicable to programs
❑ Other metrics include

☞ Length. The size of the program source code
☞ Cyclomatic complexity. The complexity of pro
☞ Length of identifiers
☞ Depth of conditional nesting

❑ Anomalous metric values suggest a component m
number of defects or may be difficult to understan

Metric utility
❑ Length of code is simple but experiments have sug

of problems
❑ Cyclomatic complexity can be misleading
❑ Long names should increase program understand
❑ Deeply nested conditionals are hard to understand

understandability index

Object-Oriented Software Reengineering 117.

I Software Metrics

y collected
what we want to know are not

ween organizations makes
AM, U. Berne

Metrics maturity

❑ Metrics still have a limited value and are not widel
❑ Relationships between what we can measure and

well-understood
❑ Lack of commonality across software process bet

universal metrics difficult to develop

Object-Oriented Software Reengineering 118.

I Software Metrics

titude, domain experience,
port and the working

. Estimates should be

e need to estimate attributes

ly proportional to the number

 product
about the software project.
timated
lly problematical components
AM, U. Berne

Summary

❑ Factors affecting productivity include individual ap
the development project, the project size, tool sup
environment

❑ Prepare cost estimates using different techniques
comparable

❑ Algorithmic cost estimation is difficult because of th
of the finished product

❑ The time required to complete a project is not simp
of people working on the project

❑ Metrics gather information about both process and
❑ Control metrics provide management information

Predictor metrics allow product attributes to be es
❑ Quality metrics should be used to identify potentia

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 119 .

© Metrics, Visualization ...

teractions
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

6. Metrics, Visualisations and In
 for Reverse Engineering

Michele Lanza
lanza@iam.unibe.ch
031 631 3547

Stéphane Ducasse
ducasse@iam.unibe.ch
031 631 4903

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 120 .

© Metrics, Visualization ...
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Contents

❑ Introduction
❑ Metrics and Measurements
❑ Visualisation

– Possible Approaches

– Examples

❑ Our Approach: CodeCrawler

– Examples

❑ Online Demo
❑ Conclusion

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 121 .

© Metrics, Visualization ...

eering platform.

ce next week.
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Introduction

❑ Goals of this Lecture:

– Metrics. Why? Which ones?

– Visualisation. Why? How?

– CodeCrawler: An example of a Reverse Engin

– Industrial Experiences.

– Online Demo: Preparation for the Lab Experien

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 122 .

© Metrics, Visualization ...
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Metrics

❑ Metrics and Measurement
❑ Metrics for reverse engineering
❑ Selection of OO metrics
❑ Step back and look

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 123 .

© Metrics, Visualization ...

uld hold [Fenton for critics].
nton]

ays be found such that m (P) != m(Q)

) = m(Q)

he metric value. Even if a cclass
e.

ination of the classes P and Q.

ere R is an interaction with the class.

ease the metric value
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Metrics and Measurements
[Wey88] defined nine properties that a software metric sho
For OO only 6 properties are really interesting [Chid 94, Fe

Noncoarseness: Given a class P and a metric m, another class Q can alw
-> not every class has the same value for a metric

Nonuniqueness. There can exist distinct classes P and Q such that m(P
-> two classes can have the same metric

Design Details are Important. The specifics of a class must influence t
performs the same actions details should have an impact on the metric valu

Monotonicity. m(P) <= m (P+Q) and m(Q) <= m (P+Q), P+Q is the comb

Nonequivalence of Interaction. m(P) = m(Q) ! -> m(P+R) = m(Q+R) wh

Interaction Increases Complexity. m(P) + (Q) < m (P+Q).
-> when two classes are combined, the interaction between the too can incr

Conclusion: Not every measurement is a metric.
But take care because this is fuzzy and academic

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 124 .

© Metrics, Visualization ...

h big entities

tand

sive entities

ss

 be limited
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Metrics for Reverse Engineering
Pragmatic Criteria to evaluate OO metrics

❑ Easy to Compute (E)
❑ Based on Code
❑ Simple stable definition (S)

Size of the system, system entities
❑ Class size, method size, inheritance

The intuition: a system should not contain too muc
Pro really big entities may be problematic
Cons can be really difficult and complex to unders

Cohesion of the entities
❑ Class internals,

The intuition: a good system is composed by cohe
Coupling between entities

❑ Within inheritance: coupling between class-subcla
❑ Outside of inheritance

The intuition: the coupling between entities should

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 125 .

© Metrics, Visualization ...

itions)?

Attribute

o

ze Metrics
hods (NOM)
nce attributes (NIA, NCA)

 method size (WMC)
ion (LCOM), CBO
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Which Metrics to Collect (Defin

Inheritance Metrics
• hierarchy nesting level (HNL)
• # immediate children (NOC)
• # inherited methods, unmodified

(NMI)
• #overridden methods (NMO)

Class

Method

inherits
belongsT

access

invokes

Class Si
• # met
• # insta
• # Σ of
• Cohes

Method Size Metrics
• # invocations (NOI)
• # statements (NOS)
• # lines of code (LOC)

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 126 .

© Metrics, Visualization ...

, S++)
) (E++, S++)
te, protected)(E++, S++)

tatements (E, S+)
+)

 exit or McCabe
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Class size
❑ (NIV) [Lore94] Number of Instance Variables (E++
❑ (NCV) [Lore94] Number of Class Variables (static
❑ (NOM) [Lore94] Number of Methods (public, priva
❑ (LOC) Lines of Code (E+, S++)
❑ (NSC) Number of semicolons [Li93]-> number of S
❑ (WMC) [Chid94] Weighted Method Count (E--, S+

WMC = SUM ci

where c is the complexity of a method (number of
Cyclomatic Complexity Metric)

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 127 .

© Metrics, Visualization ...

an be executed in response

 the set of all the methods in
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Class Complexity
❑ (RFC) Response For a Class [Chid94]

Response Set for a Class (RS) is the set of methods that c
to a message.

RS = {M} Unioni {Ri}, RFC = | RS |

where {Ri} is the set of methods called by method i and {M}
the class.

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 128 .

© Metrics, Visualization ...

93] Deep of Inheritance Tree

xtended (super call)

ods
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Hierarchy Layout

❑ (HNL) [Chid94] Hierarchy Nesting Level , (DIT) [Li
(E++, S++)
HNL, DIT = max hierarchy level

❑ (NOC) [Chid94] Number of Children (E++, S++)

❑ (WNOC) Total number of Children (E++, S++)

❑ (NMO, NMA, NMI, NME) [Lore94] (E+, S++)
Number of Method Overriden, Added, Inherited, E

❑ (SIX) [Lore94] (E+,S+, Sceptic interpretation)
SIX (C) = NMO * HNL / NOM

Weighted percentage of Overriden Meth

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 129 .

© Metrics, Visualization ...

thods
, messages with para = 3....
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Method Size

❑ (MSG) Number of Message Sends
❑ (LOC)
❑ (MCX) Method complexity (E-, S+)

Total Number of Complexity / Total number of me
API calls= 5, Assignment = 0.5, arithmetics op = 2

❑ (NP) Number of Parameters

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 130 .

© Metrics, Visualization ...

,S--, not reliable) [Hitz95a]

ty
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Class Cohesion (i)
❑ (LCOM) [Chid94] Lack of Cohesion in Methods (E

Ii = set of instance variables used by method Mi

let P = { (Ii, Ij) | Intersection (Ii,Ij) is Empty,

Q = { (Ii, Ij) | Intersection (Ii,Ij) is not Emp

if all the sets are empty, P is empty
LCOM = |P| - |Q| if |P|>|Q|

= 0 otherwise

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 131 .

© Metrics, Visualization ...

ally used, complex)
methods

 indirect connected

Method (AM)
nstance variables by M
C)]
 of C and C’s ancestors.
 in AC(C)

ally used, complex)
 connected methods
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Class Cohesion (ii)

❑ (TCC) [Biem95] Tight Class Cohesion (E,S, not re
TCC is the relative number of directly connected
TCC = NDC / NP
NDC = Number of Direct Connection
NP = n * (n -1) /2 = Maximum possible direct and
methods
A class is represented by a collection of Abstract
AM (M) = set of directly and indirectly accessed i
Abstracted Class: AC = [AM (M) | M belongs to V(

V(C) = Visible method
NP (C) = total number of abstracted method pairs

❑ (LCC) [Biem95] Loose Class Cohesion (E,S not re
TCC is the relative number of directly or indirectly

LCC = (NDC + NIC) / PC
NIC = Number of Indirect Connections

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 132 .

© Metrics, Visualization ...

d (E, S+, fuzzy definition)

asses (E-, S+, not simple, not

lient (CC).

 by a change
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Class Coupling (I)
❑ (CBO) [Chid94] Coupling Between Objects

CBO = number of other class to which it is couple
See [Hitz94] for a discussion

❑ (DAC) [Li93] Data Abstraction Coupling (E-, S+)
DAC = number of ADT’s defined in a class

❑ (CDBC) [Hitz96] Change Dependency Between Cl
used, not commented in the literature)
Impact of changes from a server class (SC) to a c
CDBC(CC,SC)= min (n, A)
n = number of methods of CC
A = SUM (m1, ai)+ (1-k) SUM (m2, ai)
1-k = degree of stability of SC
a = number of methods of CC potentially affected
m1 accesses of CC to the implemention of SC
m2 accesses of CC to the interface of SC

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 133 .

© Metrics, Visualization ...

t commented)

ted of superclass, static

al variables (??)
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Class Coupling (Ii)

❑ (LD) [Hitz96] Locality of Data (E+,S+, not used, no
LD = SUM |Li | / SUM |Ti |

Mi = methods without accessors
Li = non public instance variables, inherited protec
variables of the class
Ti = all variables used in Mi, except non-static loc

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 134 .

© Metrics, Visualization ...

tic, instance, operator,

ltiplication of oranges and
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Metrics? Stepping Back
About the impact of the computation
Example:

❑ number of attributes
should we count private attributes in NIV?
Why not?

❑ number of methods (private, protected, public, sta
constructeurs, friends)

What to do?
❑ Try first simple metrics, with simple extraction
❑ Take care about absolute threshold

Metrics are good as a differential
Metrics should be etalonned

❑ Do not numerically combine them: what is the mu
apples: Jam!

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 135 .

© Metrics, Visualization ...
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Visualisation

❑ The Motivation: why are we doing it?
❑ Possible Approaches

– Examples

❑ Our Approach: CodeCrawler

– The Idea

– Examples

– The Interaction

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 136 .

© Metrics, Visualization ...

ualising stuff?

size. Software
software visible by
behaviour."

a higher abstract
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

The Motivation: Why are we vis

"Software is intangible, having no physical shape or
visualisation tools use graphical techniques to make
displaying programs, program artifacts and program

T.S. Ball & S.E.Eick

❑ Reduction of Complexity:

– Transformation from purely text-based form to
representation

❑ Generate different views on software system.
❑ Let the system tell you what it’s all about
❑ Documentation of the system

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 137 .

© Metrics, Visualization ...

hes

!

 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Visualisation: Possible Approac

❑ A decent graph layout can be a hard task...

– Efficient space use (physical limits of a screen)

– Edge crossing problem

– UML

– Colors are nice, but... there are no conventions

❑ Tradeoff between usefulness and complexity
❑ Keeping a focus is hard:

– Where should we look?

– What should we look for?

❑ Examples from real-world visualisation systems

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 138 .

© Metrics, Visualization ...
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Example: Goose/ Graphlet

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 139 .

© Metrics, Visualization ...
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Example: Mermaid

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 140 .

© Metrics, Visualization ...

out an entity?

 see that?

splay?
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Let’s summarise...

❑ What kind of information do we want to convey ab

– Name

– Structure

– Size

– Role

– etc.

❑ How do they communicate and how do we want to

– Colored Edges

– Weighted Edges

– Edges?

– etc.

❑ At what granularity level can we apply a certain di

– Full system

– Single class or small subsystem

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 141 .

© Metrics, Visualization ...
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Our Approach: CodeCrawler

❑ A lightweight combination of:

– Visualisation

– OO Metrics

– Interaction

❑ The main constraint is:

– Simplicity

❑ OO Entities are rendered as colored rectangles:

– Classes, Methods, Attributes, etc.

❑ OO Relationships are rendered as edges:

– Inheritance, Invocation, Access, etc.

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 142 .

© Metrics, Visualization ...

idth

one
Height

Relationship
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

The Idea: Visualising Metrics

❑ Directly render up to five metrics on node node:

– Size (2)

– Color (1)

– Position (2)

X Coordinate

Y Coordinate
W

Color T

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 143 .

© Metrics, Visualization ...

hs...
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

CodeCrawler: Some Examples
❑ Taken from the Refactoring Browser
❑ Try to understand and interpret the following grap

– System Complexity

– Method Efficiency Correlation

– Inheritance Classification

– Service Class Detection

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 144 .

© Metrics, Visualization ...
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

System Complexity

Metrics: NIV, NOM, LOC

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 145 .

© Metrics, Visualization ...

LOC
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Method Efficiency Correlation

Metrics: NOP, NOP, HNL, LOC, NOS

NOS

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 146 .

© Metrics, Visualization ...
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Inheritance Classification

Metrics: NMA, NMO, NME

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 147 .

© Metrics, Visualization ...
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Service Class Detection

Metrics: NOM, LOC, LOC

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 148 .

© Metrics, Visualization ...

VisualWorks 3.0)

HotDraw
e

deCrawler
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

CodeCrawler’s Logic

❑ Language Independent (CDIF Interface)
❑ Platform Independent (Smalltalk)

Smalltalk (

Moos

Co

CDIF
Ada

Java

C++

Smalltalk

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 149 .

© Metrics, Visualization ...

rs, i.e. parsing. The
 cost...
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

CodeCrawler: Pro And Contra

❑ Pro:

– Intuitive Approach: simple is beautiful

– Quick Insights

– Language Independence

– Platform Independence

❑ Contra:

– Simplicity

– Its reliability depends on several external facto
language idependence does come at a certain

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 150 .

© Metrics, Visualization ...

s

 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

CodeCrawler: The Case Studie

❑ Academic:

– VisualWorks 3.0 (> 500 classes)

– Refactoring Browser (> 150 classes)

– Duploc (> 100 classes)

❑ Industrial:

– XXX (C++, 1.2 MLOC, > 2300 classes)

– XXY (C++/Java, 120 kLOC, > 400 classes)

❑ The Approach Works!

– Let’s have a look at some examples...

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 151 .

© Metrics, Visualization ...

 large system
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Example: Visualisation of a very

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 152 .

© Metrics, Visualization ...
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Example: Flying Saucers

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 153 .

© Metrics, Visualization ...

h in their pure textual form

des

s

he system will find its own

played to make it tell you
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Conclusion & Possible Projects

❑ Visualisation is necessary, because...

– Systems have become too complex to cope wit

❑ Possible Projects

– Add Grouping Techniques, i.e. collapsing of no

– Generate Graph Views based on OO Heuristic

– Add (animated?) Spring Layouting Algorithms: t
layout.

– Closer views on a class: how can a class be dis
what kind it is...

There’s a lot to be done...come around and ask!

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 154 .

© Metrics, Visualization ...

asures", IEEEE Transactions

ject Oriented Design", IEEE
94

Oriented Paradigm", IEEE

ohesion in Object-Oriented
d Corporate Computing,

t-Oriented Systems", Object

bject Oriented Reverse

id Reverse Engineering
CRE’99 Proceedings (6th
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Bibliography

[Weyu88] E. Weyuker, "Evaluating Software Complexity Me
on Software Engineering, vol 14, n 9. 1988.
[Chid94] S. Chidamber, C Kemerer "A Metrics Suite for Ob
Transactions on Software Engineering, vol 20, n 6, June 19
[Li93] W. Li, S. Henri, "Maintenance Metrics for the Object
Proc. First International Software Metrics, 1993
[Hitz95a] M. Hitz, B. Montazeri, "Measuring Coupling and C
Systems", Proceedings International Symposium on Applie
1995.
[Hitz96] M. Hitz, B. Montazeri, "Measuring Coupling in Objec
Currents, Vol 1, N 4, 1996
[Lanz99a] M. Lanza, "Combining Metrics and Graphs for O
Engineering",University of Bern,1999
[Deme99] S. Demeyer, S. Ducasse and M. Lanza, "A Hybr
Platform Combining Metrics and Program Visualization", W
Working Conference on Reverse Engineering), 1999

Object-Oriented Reengineering (OOPSLA’99 Tutorial) 155 .

© Metrics, Visualization ...
 Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

7. Lab session — CodeCrawler

OST ESTIMATION
OBJECT-ORIENTED SOFTWARE C

December 1999
Dr. Simon Moser

moser@acm.org

1/24

stimates

rocess

)

OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

Topics:

The Importance of Measurements & E

A Measurement-Based Estimation P

Software Models (Meta-Models

Software Metrics

Results of a Field Study

An Example

Future Work

2/24

Estimates (1/2)

ol:

 stand

gement
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

The Importance of Measurements &

3 Process Parameters to Contr

Process Parameters

Product
(Quantity and

 Quality)

Effort
(Cost)

Duration

Measurement = Knowing where you

Prerequisite for:
• Generic problem solving

• Process improvement / Quality mana

3/24

Estimates (2/2)

roject

ple turnover
 "maintenance dilemma"
lation

to an under-estimate

on process
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

The Importance of Measurements &

Estimate = The expectations of a p

Under-estimates:
time pressure ! stress ! frustration ! peo

too tight budget ! save on functionality and quality !
no more money ! late project cance

Over-estimates:
time for fancy stuff ! the over-estimate will turn in

Estimation evaluation criteria:
(1) Accuracy

(2) Cost and speed of the overall estimati

4/24

 Process (1/3)

 the estimated deadline...]

process!
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

A Measurement-Based Estimation

[People throwing darts to a calender, the date hit will be

A non-measurement-based estimation

5/24

 Process (2/3)

n of a bush-walk

 map
 rule-of-thumb
ts on the way, ...)

n

acy:

 into account)
l rule-of-thumb

timation:
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

A Measurement-Based Estimation

A non-software example: estimating the duratio

(A) Measure the walk distance on a
(B) Derive a first duration according to some

(C) Interpret this estimate to specifics (restauran

= measurement-based estimatio

Improvements with respect to accur
• more detailed map or model

• better metric (e.g. taking height differences
• specific empirical database instead of genera

Improvements with respect to cost of es
• lower-resolution map

6/24

 Process(3/3)

el

 Version 5

 Person Days
C

[1])
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

A Measurement-Based Estimation

NJ

NJ

Testpro tokolle

EDIS V 1.10

Testprotokolle

EDIS V1.1 0

S yste m 1

n ach best. Zeit

N achf olgepro-

zesse

Auswer tung

von Q-Da ten

Testprotokolle

EDIS V1.1 0

T estprotokolle

E D IS V1.10

Q ualit ätsdaten

K onfigurations-

m gmt.

Syst em 2

Syst em 1

Messung

Id een und

Auskünfte der

Kunden

P rü fvorgaben

Ausbildung

f ür Vorgaben

E rstellung /

Pflege v on

V or gaben

Praxi s i.O.?

Checkliste n

T estprotokolle

E D IS V1.10

T estproto kolle

E DIS V1. 10

c lever?

P rozess-

vorgabe

P rü fen des

Monatsjournals für

Januar

P rüfen des

Monatsjour nals für

Januar

S ystem 1

m odifizieren

Revi ewprotokolle

Review

Prüfling

E rzeugen eines

M onat sjournals

Erzeugen eines

M onatsjournals

O utputProzessInput

Systement wicklung

System Model Process Mod

Cairo: Project Plan

A
e.g. 2034 System Meters

empirical DB: FP vs PD

Func tion Point s

Person

0
200
400
600
800

1000
1200
1400
1600
1800

2000

010020030040050060070080090010001100120013001400150016001700180019002000

Empirical Database

days

2034

986

e.g. 986

B

(adapted from T. DeMarco, 1982

7/24

(1/2)

in the montains, encountering lots
 not be like this!)]

ess?
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

Software Process Models

[The "standard" software process is like biking on gravel roads
of detours and ... wasting lots of money (it should

What is the standard software proc

8/24

(2/2)

s Completeness Percentages ([2])
inal&maintained%)

mpleteness Percentage
 - 20% - 35%
 - 9% - 11%

% - 6% - 8%
 - 25% - 35%

% - 3% - 5%
% - 4% - 6%
dditional %]

) - 4% - 6% - 10%
lan, ...) - 3% - 5% - 8%
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

Software Process Models

Process Standardisation through Artefact Standards and Proces
(per Artefact release state: draft% - validated% - f

Artefact Process Co
1 Requirements (=Analysis) 10%
2 Design 4%
3 Test-suites 3
4 Code 10%
5 Documentation 1
6 Installation/Acceptance 2
... [optional/repeated artefacts] [a

+ supporting artefacts:
a) Project Management results (plans, reports, ...

b) Quality Management results (risk analysis, quality p

9/24

ls) (1/4)

models are...]

e first question is:
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

Software Models (Meta Mode

[Nobody agrees on what systems or system

When we want to measure a system (model), th
What is a system (model)?

10/24

ls) (2/4)

are-Life-Cycle):

odels
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

Software Models (Meta Mode

Layers of Software Product and Process (Softw

Most relevant for estimation:
Analysis models = Requirements m

11/24

ls) (3/4)

 layer
stem modelling

ld system modelling
 system (=user manual)

r] .
', } .
 .
' ,
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

Software Models (Meta Mode

Further sub-layering of the analysis
(1) Preliminary Analysis = coarse real-world sy

(2) Domain/Business Analysis = detailed real-wor
(3) Application Analysis = user view of the computer

Preliminary Model:

is contained in

has sub-functionalities

Subject Area

Functionality

Functionality "name" [complexity numbe
Functionality "name" = { 'sub-functionality

Subject Area "name" number of classes
Subject Area 'name' contains 'functionality

12/24

ls) (4/4)

st standards [4], [5]):

el
<n> attr < class model object>} .
 to one|many <class2> .
name> , ...] .
ject > ,

<class model object > , ...] .
] = <class model object > ,
> ,

odel object > , ...] .
bject > , ...] {triggers|isTriggeredBy
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

Software Models (Meta Mode

A Domain Model - Metamodel (compliant with mo

(1) Domain Analysis Class Mod
Domain Class <ddd> { isSubTypeOf <base-class> } { contains

Domain Association <assoc-name> one|many <class1>
Function Type <ddd> [ofKind <parameter-

Consistency Rule <rrr> = < class model ob

(2) Use Case Model
Use Case <rrr> isTriggeredBy <event/time indication> [=

Signal [<sss>] of <use case / function type> [from|to <actor>
Domain Subsystem <dss> = <use case

(3) State Transition Model
State <st> isSubStateOf <state/class> [= < class m

Transition <tr> startsAt <state1> endsAt <state2> [= < class model o
<signal>}.

13/24

UG [3]):

mplex and giving „points“
s to classes in the use cases
tion Points
rcent point
ts = "adjusted" Function Points

s

ns
effort high)
nt
le measurement)
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

Software Metrics (1/2)

Function Point (Allan J. Albrecht, IFP

(1) Classifying the domain classes into easy-medium-co
(2) Analogue procedure for rating the persistency-accesse

(3) Sum of all points = "unadjusted" Func
(4) Rating of 10 influence factors with pe

(5) Adjustment (70%-130%) of the "unadjusted" Function Poin

Advantages:
• understandable / „intuitive“

• useful for database application

Disadvantages:
• restricted to database applicatio

• requires the business model (modelling
• does not take reuse into accou

• needs expert assessment (no fully automatab
• formally unsound

14/24

5 cited in [6])

el entity:
ntained in the name)

eNewCurrentWindow" = 1]

el entity
es that define the one in focus
 and „members“,
ting „messages“]

ity for reusable objects)

re counted)

odels as well as code
bjective
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

Software Metrics (2/2)

New approach: System Meter (Moser, 199

(1) External complexity of a single mod
 = #new tokens in the name (+ 1, if old tokens are co

 = 1, if object is anonymous
 [z.B. "theCurrentWindow" = 3; "theNewWindow" = 2; "th

(2) Internal complexity of a single mod
 = Sum of the external complexity of those other model entiti

 [z.B. a class is defined through its super-classes
 a method through its parameters and implemen

 (3) Sum up all complexities (just the external complex

Advantages:
• generic (also non-persistency features a

• takes reuse into account
• can be applied on preliminary models, business m

• measurement is fully automated and o

15/24

1/4)

bias

rsitary projects
1994/95)
: 26
s: 29
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

Results of a Field Study (

Main analysis: Effort estimation

Probability of
effective outcome
equal to estimate

Estimate

36 Projects:

• 33 industry projects (6 companies); 3 unive
• time span: completion date mainly in

• C++: 4 4GL: 6 Smalltalk
• client/server database-application

16/24

2/4)

2500 3000

79 · s2 , dA = ±33%

n Points):

rojects
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

Results of a Field Study (

PRE System Meter

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000

PRE Syst em Meter

P
er

so
n

D
ay

s

PRE-SM Survey Results: A = 0.605 · s + 0.00017

Additional analysis (compared to Functio
• Better adjustment for reuse

• Better correlation in the 7 non-IS p

17/24

3/4)

erson Days

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

· s2 , dA = ±20%
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

Results of a Field Study (

Function Points:

Empirical Database: ESA Function Points vs. P

0

500

1000

1500

2000

2500

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

ESA Funct ion Point s

P
er

so
n

 D
ay

s

FPM survey results: A = 0.656 · s + 0.000235

18/24

4/4)

000 7000 8000

126 · s2 , dA = ±9%

ksum-test):
 significant
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

Results of a Field Study (

DOME System Meter:

0

200

400

600

800

1000

1200

1400

1600

1800

0 1000 2000 3000 4000 5000 6

DOME System Meter

P
er

so
n

D
ay

s

DOME-SM Survey Results: A = 0.151 · s + 0.0000

Additional analysis (Wilcoxon-signed-ran
• The correlation improvement over FP is

19/24

odel ...

ion system

ge Objects’ .

bjects’ .

bjects’,

out reuse:
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

An Example (1/5)

Prerequisite for Step A: a System M

; PRE description of TOIS, the tiny order informat

Subject Area “Customer Information“ 5 .

Subject Area “Order Information“ 3 .

Subject Area “Stock Information“ 5 .

Functionality “Manage Objects“ 4 .

Functionality “Do Statistics“ 2 .

Functionality “Do Forecasts“ 2 .

Subject Area ’Customer Information’ contains ’Mana

Subject Area ’Order Information’ contains ’Manage O

Subject Area ’Stock Information’ contains ’Manage O
’Do Statistics’, ’Do Forecasts’ .

... eventually refined with information ab
...

;ma-entry: category library

Functionality “Manage Objects“ 4 .

;ma-entry: category project

...

20/24

del

 automated tool
basic toolkit from
ip, use the unzipper
pkunzip.exe)

OS) command ...

ut:

w.softengprod.com
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

An Example (2/5)

Step A: measuring the System Mo

Measurement should be algorithmic ⇒ use an
(download, e.g., SEBT, the software estimation

ftp://ftp.csse.swin.edu.au/outgoing/simonm/sebt.z
ftp://ftp.csse.swin.edu.au/outgoing/simonm/

Measurement is then as simple as typing some (D

ma -v -f tois.sdf

... and watch the result to plop o

System Meters = 563

November 1999: New tool with GUI: http://ww

21/24

Empirical Database
pleted projects

ed in SEBT (37 projects)

ase

01779 , dA = ±33%

 56.4 = 397 PD
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

An Example (3/5)

Prerequisite for Step B: setting-up or obtaining an
= measuring predictor and result values of com

Use the databases (edb_pre.xls, edb_dome.xls) contain

Step B: using the Empirical Datab

PRE-SM Survey Results: A = s · 0.605 + s2 · 0.00

563 × 0.605 + 563_ × 0.0001779 = 340.6 +

22/24

% = standard, * = repeatable)
Result Exp. % Evol. % Full %

eplication cont.]

anual / Online Help * 1 % 3 % 4 %

(for manual processes) 1/2 % 1/2 % 1 %

Acceptance 1/2 % 2 % 3 %

Installations * 1/4 % 1 % 1 %

ser Instruction * 1% 1 1/2% 2 %

anisational Changes 1/2 % 1 1/2 % 2 %

Data Migration 2 % 3 % 4 %

Plans 1 % 1 1/2 % 2 %

Estimates 1/2 % 1 % 1 %

nfiguration Mgmt 2 % 2 % 3 %

m and Change Mgmt 1 % 2 % 3 %

olling and Reporting 1 % 1 % 1 %

Evaluations * 1/2 % 2 % 3 %

rganisational Changes 1/2 % 2 % 3 %

. User Instructions 1 % 2 % 3 %

p. Data Migration 2 % 2 % 3 %

nalysis / Quality Plans 1 % 1 1/2 % 2 %

Measurements 1 % 2 % 3 %

efining Standards 1/2 % 1 1/2 % 3 %

veloper Instruction 1/4 % 1/2 % 1/2 %

roject Reviews 1/4 % 1/2 % 1/2 %
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

An Example (4/5)
Prerequisite for Step C: a Software Process Model (XX

BIO Layer Result Exp. % Evol. % Full % BIO Layer

Preliminary Subject Areas 1/2 % 1 % 2 % [r

Analysis 5% Goals 1/2 % 1 % 3 % User M

Domain Use Case Model 1 % 3 % 5 % Forms

Analysis 14% Domain Class Model 1 % 3 % 5 % Delivery 6%

State-Transition Models 1 % 2 % 4 %

Non-essential Requirements 1 % 2 % 4 % U

Application Specification Types * 1 % 3 % 5 % Org

Analysis 18% Models 2 % 3 % 5 %

System States 2 % 3 % 4 % Project

Application Class Model 2 % 4 % 6 % Management

Non-functional Requirements 1/2 % 1 % 2 % 10% Co

Construc- Implementation Patterns * 2 % 4 % 5 % Proble

tion 19% Relational Model 1 % 3 % 4 % Contr

Technical Class Model 1 % 2 % 2 %

Test Data 1 % 3 % 4 % Prep. O

Test Cases 2 % 3 % 4 % Prep

Replica- Tuned Items * 2 % 4 % 5 % Pre

tion 38% Code 10 % 25 % 30 % Quality Risk A

Admin. & Installation Code 1 % 4 % 5 % Management

Platform Port * 2 % 8 % 10% 8% D

Layout (GUI) Translation * 4 % 5 % 5 % De

System Admin. Manual * 1 % 2 % 3 % P

23/24

red process model

ical construction focussing on 3
t preparation:
%

re is:

f development
"buffer effort"
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

An Example (5/5)

Step C: adapting the original estimate to the tailo

Example: we conduct a full application analysis and a prototyp
implementation patterns without formal tes

= 18% + 3x2% + 1% + 1% = 26

The resulting effort estimate therefo

397PD × 26% = 103PD

Additional adaptations:

• Optimum team sizes, maximising speed o
• Reducing budget overrun risks by adding

24/24

stry

 used in derived measures

 1982
nsmodell, Bedag Informatik, Berne,

ML) Ref. Manual, Addison-Wesley,

ML) Ref. Manual, SIGS Books, NY,

s, Ph.D. thesis, University of Berne,

ion, Addison-Wesley, UK, 1998
OBJECT-ORIENTED SOFTWARE COST ESTIMATION

Object-Oriented Software Cost Estimation, Dr. Simon Moser, December 1999

Future Work

• The System Meter is used in indu

• Due to its formal properties the System Meter may be

References:
1. DeMarco T, Controlling SW Projects, Prentice-Hall, Englewood Cliffs, N.J.,
2. Moser S, Cherix R, Flueckiger J, HERMES/Bedag Informatik Vorgehe

Switzerland, 1993-1999
3. IFPUG, Counting Practices Manual V4.0, Westerville, Ohio, USA, 1996
4. Rumbaugh J, Jacobson I, Booch G, The Unified Modeling Language (U

Reading MA, 1999
5. Firesmith D, Henderson-Sellers B, Graham I, OPEN Modeling Language (O

1997
6. Moser S, Measurement and Estimation of Software and Software Processe

Berne, Switzerland, 1996
7. Henderson-Sellers B, Graham IM, Younessi H, The OPEN Process Specificat

Object-Oriented Software Reengineering 181.

I Metrics in OO Reengineering

etrics: A rigorous & Practical

 Metrics”, Prentice Hall, 1994.
s: Measures of Complexity”,
AM, U. Berne

9. Metrics in OO Reengineering
Outline

❑ Why Metrics in OO Reengineering?
❑ Applicability for...

- Quality Assessment
- Process Control
- Reverse Engineering

❑ Conclusion

Literature
❑ Norman E. Fenton, Shari l. Pfleeger, “Software M

Approach”, Thompson Computer Press, 1996.
❑ Mark Lorenz, Jeff Kidd, “Object-Oriented Software
❑ Brian Henderson-Sellers, “Object-Oriented Metric

Prentice Hall, 1996.

Object-Oriented Software Reengineering 182.

I Metrics in OO Reengineering

ing?

t from scratch?

ould be reengineered)
ould be reverse engineered)

!

AM, U. Berne

Why Metrics in OO Reengineer

Estimating Cost
❑ Is it worthwhile to reengineer, or is it better to star

=> See previous lectures

Assessing Software Quality
❑ Which components have poor quality? (Hence sh
❑ Which components have good quality? (Hence sh

=> Metrics as a reengineering tool!

Controlling the Reengineering Process
❑ Trend analysis: which components did change?
❑ Which refactorings have been applied?

=> Metrics as a reverse engineering tool

Object-Oriented Software Reengineering 183.

I Metrics in OO Reengineering

ality model”
utes

c Metric

e

defect density
= #defects / size

correction impact
= #components

changed

correction time
AM, U. Berne

Quantitative Quality Model
Quality according to ISO 9126 standard

❑ Divide-and conquer approach via “hierarchical qu
❑ Leaves are simple metrics, measuring basic attrib

Software
Quality

Functionality

Reliability

Efficiency

Usability

Maintainability

Portability

ISO 9126 Factor Characteristi

Error toleranc

Accuracy

Simplicity

Modularity

Consistency

Object-Oriented Software Reengineering 184.

I Metrics in OO Reengineering

tributes

 produces a product
nents changed per correction

 to the customer

 its environment
e to learn the system

ss took place
 intervention/interpretation
ult
AM, U. Berne

Process Attributes & External At
Process Attribute

❑ Definition: measure aspects of the process which
❑ example: time to correct defect, number of compo

Product Attribute
❑ Definition: measure aspects of artifacts delivered

External Product Attribute
❑ Definition: measures how the product behaves in
❑ example: number of system defects perceived, tim

Pros and Cons
❑ advantages:

- close relationship with quality factors
❑ disadvantages:

- measure only after the product is used or proce
- data collection is difficult often involves human
- relating external effect to internal cause is diffic

Object-Oriented Software Reengineering 185.

I Metrics in OO Reengineering

uct, separate from behaviour
n

ty

ated
 and cause

ly validated

rs, i.e. a heuristic
AM, U. Berne

Internal Product Attributes
Internal Product Attribute

❑ Definition: is measured purely in term of the prod
❑ example: method size, class coupling and cohesio

Quality Assumption
☞ Internal product attributes directly affect quali

Pros and Cons
❑ advantages:

- can be measured at any time
- data collection is quite easy and can be autom
- direct relationship between measured attribute

❑ disadvantage:
- relationship with quality factors is not empirical

☞ measurements may only be used as indicato

Object-Oriented Software Reengineering 186.

I Metrics in OO Reengineering

el

es, metrics...

Metric

 number of private
attributes]2, 10[

number of public
attributes]0, 0[

number of public
methods]5, 30[

average number of
arguments [0, 4[
AM, U. Berne

“Define your own” Quality Mod
Define the quality model with the development team

❑ Team chooses the characteristics, design principl
❑ ... and the thresholds

Maintainability

Factor Characteristic Design Principle

Modularity

design class as an
abstract data-type

encapsulate all
attributes

avoid complex
interfaces

Object-Oriented Software Reengineering 187.

I Metrics in OO Reengineering

 Assessment

ents have good/

 quality

r quality

titative quality model

r)

ics

resholds
r further inspection)

nents first!
AM, U. Berne

Conclusion: Metrics for Quality
Question:

❑ Can internal product metrics reveal which compon
poor quality?

Yes, but...
❑ Not reliable

– false positives: “bad” measurements, yet good

– false negatives: “good” measurements, yet poo

❑ Heavy Weighth Approach

– Requires team to develop (customize?) a quan

– Requires definition of thresholds (trial and erro

❑ Difficult to interpret

– Requires complex combinations of simple metr

However...
❑ Cheap once you have the quality model and the th
❑ Good focus (± 20% of components are selected fo

Note: focus on the most complex compo

Object-Oriented Software Reengineering 188.

I Metrics in OO Reengineering

etrics during reengineering?
AM, U. Berne

The KISS principle

Keep

It

Stupidly

Simple

Question
❑ Wouldn’t there lightweight approaches to exploit m

Object-Oriented Software Reengineering 189.

I Metrics in OO Reengineering

rics

for the same metric and the
e software system

s “Event” in release 1.0

ent::process()” in release

 the system
AM, U. Berne

Trend Analysis via Change Met

Change Metric
❑ Definition: difference between two metric values

same component in two subsequent releases of th
❑ Examples:

– difference between number of methods for clas
and 1.1

– difference between lines of code for method “Ev
1.0 and 1.1

Change Assumption
☞ Changes in metric values indicate changes in

Object-Oriented Software Reengineering 190.

I Metrics in OO Reengineering

nalysis

ents have been changed?

 changes are real
 positives (but lot of noise)

ealing!

at the leaf of the hierarchy
AM, U. Berne

Conclusion: Metrics for Trend A
Question:

❑ Can internal product metrics reveal which compon

• changes may go unnoticed
=> false negatives are possible

• all detected
=> no false

Sometimes the kind of changes are rev

in the middle
of the hierarchy

change in “Hierarchy Nesting Level”

change in “Number of Children”

Object-Oriented Software Reengineering 191.

I Metrics in OO Reengineering

ange Metrics

icate movement of

sis more precise
e situation before and after

ings redistribute functionality
AM, U. Berne

Identifying Refactorings via Ch

Refactorings Assumption
☞ Decreases (or Increases) in metric values ind

functionality

Basic Principle of “Identify Refactorings” Heuristics

❑ Use one change metric as an indicator (1)

❑ Complement with other metrics to make the analy
❑ Include other metrics for quicker assessment of th

(1) Most often we look for decreases in size, as most refactor
by splitting components.

Object-Oriented Software Reengineering 192.

I Metrics in OO Reengineering

ith Superclass

 main indicator
 “# instance attributes” (NIA)
 push down of functionality
d “# overridden methods”

A’

B’

A

X

B

MERGE
AM, U. Berne

Split into Superclass / Merge w
Recipe

❑ Use change in “Hierarchy Nesting Level” (HNL) as
❑ Complement with changes in “# methods” (NOM),

and “# class attributes” (NCA) to look for push-up,
❑ Include changes in “# inherited methods” (NMI) an

(NMI) to assess overall protocol

A

B

A’

X

B’

SPLIT
Split B into X and B’
(delta_HNL(B’) > 0) and

((delta_NOM(B’) < 0)
or (delta_NIA(B’) < 0)
or (delta_NCA(B’) < 0))

Merge X and B into B’
(delta_HNL(B’) < 0) and

((delta_NOM(B’) >0)
or (delta_NIA(B’) > 0)
or (delta_NCA(B’) > 0))

Object-Oriented Software Reengineering 193.

I Metrics in OO Reengineering

rotocol
ich revealed parts of the

cButton

edButton

shButton

M
a
c

M
o
t
i
f

W
i
n
3

RadioButton

M
a
c

M
o
t
i
f

W
i
n
3

AM, U. Berne

Example: Inferring the Bridge P
In VisualWorks we detected a “Merge with Superclass” wh
interaction protocol of the Bridge Pattern

Basi

Label

PuCheckButton

BasicLabeledButton

Mac... Motif... Win3...

M
a
c

M
o
t
i
f

W
i
n
3

R
a
d
i
o
b
u
t
t
o
n

C
h
a
c
k
B
u
t
t
o
n

BasicButton

VisualPairButton

R
a
d
i
o
b
u
t
t
o
n

C
h
a
c
k
B
u
t
t
o
n

R
a
d
i
o
b
u
t
t
o
n

C
h
a
c
k
B
u
t
t
o
n

Object-Oriented Software Reengineering 194.

I Metrics in OO Reengineering

 Subclass

ain indicator
 “# instance attributes” (NIA)
 push down of functionality

MERGE

A

C XB

A

B C

X
A’

B’ C’

A’

B’ C’
AM, U. Berne

Split into Subclass / Merge with
Recipe

❑ Use change in “# immediate children” (NOC) as m
❑ Complement with changes in “# methods” (NOM),

and “# class attributes” (NCA) to look for push-up,

A

B

SPLIT Split A into X and A’
(delta_NOC(A’) <> 0) and

((delta_NOM(A’) < 0)
or (delta_NIA(A’) < 0)
or (delta_NCA(A’) < 0))

Merge X and A into A’
(delta_NOC(A’) <> 0) and

((delta_NOM(A’) >0)
or (delta_NIA(A’) > 0)
or (delta_NCA(A’) > 0))

C

A’

B’ C’X

A’

B’ C’

X

A

B C

Object-Oriented Software Reengineering 195.

I Metrics in OO Reengineering

ality
s” which enabled adding new

LintRule

n added.
lockLintRule
 two subclasses
AM, U. Berne

Example: Adding new Function
In the Refactoring Browser we detected a “Split into Subclas
functionality.

BasicLintRule

ParseTreeBlockLintRule

2 subclasses of BasicLintRule have bee
2 attributes have been pushed down into B

70 methods have been redistributed across the

Object-Oriented Software Reengineering 196.

I Metrics in OO Reengineering

r Sibling Class

attributes” (NIA) and “# class

” (NOC) and “Hierarchy

om B to A’, C’ or D’
lta_NOM(B’) < 0)
(delta_NIA(B’) < 0)
(delta_NCA(B’) < 0))

lta_HNL(B’) = 0)
lta_NOC(B’) = 0)
AM, U. Berne

Move to Superclass, Subclass o
Recipe

❑ Use decreases in “# methods” (NOM), “# instance
attributes” (NCA) as main indicator

❑ Select only the cases where “# immediate children
Nesting Level” (HNL) remains equal

MOVE Move fr
((de

or
or

and (de
and (de

A

BD

C

A’

BD’

C’

Object-Oriented Software Reengineering 197.

I Metrics in OO Reengineering

” introducing layers.

ator

avigator

ClassSelectorNavigator

MultiNavigator
AM, U. Berne

Example: Introducing Layers
In the Refactoring Browser, we detected a “Move to Sibling

RefactoringBrowser Navig

BrowserN

SystemNavigator

+- 50 methods have been moved.

Result: Methods in navigator do not
call any more on their aggregate.

Object-Oriented Software Reengineering 198.

I Metrics in OO Reengineering

 Functionality

dicator
of Code” (LOC)
 on the same class

rt of A.a() in A’.x()
lta_NOI(A’.a()) < 0)

out part of A.a() and A.b()
()
lta_NOI(A’.a()) < 0)
lta_NOI(A’.b()) < 0)
lta_NOI(A’.a())
elta_NOI(A’.b()))
AM, U. Berne

Split Method / Factor Common
Recipe

❑ Use decreases in “# invocations” (NOI) as main in
❑ Combine with “# statements” (NOS) and “# Lines
❑ Check similar decreases in other methods defined

A’.a()
{ ...
self.x()
...}

A’.b()
{ ...
self.x()
...}

Split pa
(de

Factor
into A’.x

(de
and (de
and (de

= d

A.a()
{ ...
...
...
...}

A.b()
{ ...
...
...
...}

A’.x()
{ ...
...}

Object-Oriented Software Reengineering 199.

I Metrics in OO Reengineering

 Method
hich corresponded with the

:

gainst:
AM, U. Berne

Example: Creation of Template
In the Refactoring Browser we detected a “Split Method” w
introduction of a template method.

BRMetaMessageNode::matchArgumentsAgainst

BRMetaMethodNode::matchArgumentsAgainst:

BRMetaMethodNode::matchSelectorA

Object-Oriented Software Reengineering 200.

I Metrics in OO Reengineering

rings

 been applied?

 (scaleability)

ss interaction

 early stages
AM, U. Berne

Conclusion: Identifying Refacto
Question:
Can internal product metrics reveal which refactorings have

• vulnerable to renaming
• imprecise for many changes
• requires experience
• considerable resources

=> inherent to reverse engineering based
on source code

• good focus
• reliable
• reveals cla
• unbiased

=> good in the

Object-Oriented Software Reengineering 201.

I Metrics in OO Reengineering

.e., size, inheritance,

Not reliably

Yes

Yes
AM, U. Berne

Conclusion

Question

Can metrics (1) help to answer the following questions?

(1) Metrics = Measure internal product attributes (i
coupling, cohesion,...)

1. Which components have good/poor quality?

2. Which components did change?

3. Which refactorings have been applied?

Object-Oriented Software Reengineering 202.

I Metrics in OO Reengineering

external product attribute?
ocess attribute?
tes instead of process

ge metrics?
ss or Sibling Class on page
re “# immediate children”
in equal?

ributes directly affect quality)
.
l in a reengineering project?
o look for decreases in size?
ble to renaming?
AM, U. Berne

Questions

You should know the answers to these questions.
❑ What’s the difference between an internal and an

What’s the difference between a product and a pr
❑ Why is it preferable to use internal product attribu

attributes or external product attributes?
❑ Why is it possible to have false negatives for chan
❑ Why do we state for “Move to Superclass, Subcla

196” that you should select only those cases whe
(NOC) and “Hierarchy Nesting Level” (HNL) rema

Can you answer the following questions?
❑ Is the quality assumption (i.e., Internal product att

reasonable? Find both arguments for and against
❑ When would you apply a quantitative quality mode
❑ If you are looking for refactorings, why is it better t
❑ Why do you think that change metrics are vulnera

Object-Oriented Software Reengineering 203.

I Tool Integration

n, Addison-Wesley, 1996.
ctitioner’s Approach,

ment, McGraw-Hill, 1995.
AM, U. Berne

10. Tool Integration
Outline

❑ Why Integrate Tools?
❑ Which Tools to Integrate?
❑ Tool Integration Issues
❑ The “Help yourself” approach

- How to Obtain Data?
- API Examples (Java, SNiFF+, Rational/Rose)

❑ Exchange Standards
- CDIF & MOF
- UML shortcomings

Literature
❑ Ian Sommerville, Software Engineering Fifth Editio
❑ Roger S. Pressman, Software Engineering: A Pra

McGraw-Hill, 1994.
❑ Alan M.Davis, 201 Principles of Software Develop

Object-Oriented Software Reengineering 204.

I Tool Integration

t bad engineers to
vi95a].

facturing - Late 70’s
ufacturing processes
eering - Late 80’s
ss
 - Mid 90’s
AM, U. Berne

Why Integrate Tools?

Tool Adage
Tools are necessary to improve productivity.

Tool Principle
Give Software Tools to Good Engineers. You wan
produce less, not more, poor-quality software [Da

Towards CARE
❑ CAD/CAM Computer Aided Design / Manu

Create and validate design diagrams & steer man
❑ CASE Computer Aided Software Engin

Support (parts of) the Software Engineering Proce
❑ CARE Computer Aided Reengineering

Support Software Reengineering Activities
☞ Y2K tools
☞ Round-trip engineering

Object-Oriented Software Reengineering 205.

I Tool Integration

visualization

refactoring tools

configuration &
rsion management
AM, U. Berne

Which Tools to Integrate?

editors/browsers

metric tools

testing tools

CASE-tools

repository

ve
requirement &
bug tracking

Object-Oriented Software Reengineering 206.

I Tool Integration

.
eady in place.

erience

dards
AM, U. Berne

Tool Integration Issues

Reengineering vs. forward engineering
❑ Forward engineering tools are chosen deliberately
❑ Reengineering tools must integrate with what’s alr

☞ Tool integration in reengineering is harder
... but we can rely on forward engineering exp

☞ “Help yourself” approach

Tools must work together
❑ share data => repository
❑ synchronize activities => API
❑ different vendors => interoperability stan

Object-Oriented Software Reengineering 207.

I Tool Integration

ineering use the same basic

)

New view(s)
of product
AM, U. Berne

Basic Tool Architecture
“Most tools for reverse engineering, restructuring and reeng
architecture.” [Chik90a], [Chik90b]

Software
work product

Parser,
Semantic
analyzer

Information
base

View
composer(s

Object-Oriented Software Reengineering 208.

I Tool Integration

uage

mpiling tricks)
nerators
AM, U. Berne

Help Yourself - Parser
Build your own parser

• Technique
❑ Use parser generator to build a parser for the lang

• Advantage
❑ Full control (dialects, pre-compilers)

• Disadvantage
❑ Experts only (formal syntax grammars)
❑ Costly
❑ Uncertain about reliability and scalability
❑ Build your own = Maintain your own
❑ Tools to integrate with require source code or API

• Remarks
❑ C++ requires full control (lot’s of dialects + pre-co
❑ ... but 100% reliability is very difficult for parser ge

Object-Oriented Software Reengineering 209.

I Tool Integration

ng import/export file formats

ted)

nge file-formats)

)
ts” problems
AM, U. Berne

Help Yourself - File Formats
Translate between file-formats

• Technique
❑ Build gateways between existing tools by translati

• Advantage
❑ Relatively cheap (assuming formats are documen
❑ Offers reasonable integration
❑ Reasonable scalability (limited by file system)

• Disadvantage
❑ Faith in external tools
❑ Maintenance is difficult (future releases easily cha
❑ Effort to be duplicated for every tool

• Remarks
❑ Works only when few gateways must be build
❑ Standardization efforts are under way (CDIF, MOF

=> tackles “maintenance” and “duplication of effor
=> improves scalability and allows multiple tools

Object-Oriented Software Reengineering 210.

I Tool Integration

rface)

ers that extract info via API’s

nge that frequently)

mats”
AM, U. Berne

Help Yourself - API
Communicate via API’s (application programmer’s inte

• Technique
❑ Build gateways between existing tools using wrapp

• Advantage
❑ Cheap
❑ Good integration
❑ Good scale-up (limited by wrapping tool)
❑ Maintenance effort is reasonable (API’s don’t cha

• Disadvantage
❑ Faith in external tools
❑ Effort to be duplicated for every tool
❑ Robustness

• Remarks
❑ Works only when few gateways must be build
❑ May be combined with “Translate between file-for

Object-Oriented Software Reengineering 211.

I Tool Integration

s
r, virtual machines)

sults
AM, U. Berne

Help Yourself - Execution Trace
Collect Execution Traces

• Technique
❑ Acquire traces of sequences of method invocation

(code instrumentation, method wrapping, debugge
• Advantage

❑ Good insight in the ‘real’ execution trace
• Disadvantage

❑ Expensive with current state of the art
❑ Relies on reliable usage scenarios
❑ Explosive data-growth

• Remarks
❑ Currently not often used, but gives spectacular re

Object-Oriented Software Reengineering 212.

I Tool Integration

t class elements

 Print... */

s “ + c.getName());
AM, U. Berne

API Example - Java
A piece of Java-code using the reflection facilities to inspec

import java.lang.reflect.*;

public class ClassInspector
{

... /* definition of auxiliary methods

public static void Inspect (Class c) {
System.out.println(“Contents of clas
PrintFields (c.getFields());
PrintConstructors(c.getConstructors());
PrintMethods(c.getMethods());

}
}

Object-Oriented Software Reengineering 213.

I Tool Integration

y the symbol table

session);

j))
0);
in ‘full’ */
AM, U. Berne

API Example - SNiFF+
A piece of C-code which accesses the SNiFF+ API to quer

int main (int argc, char *argv[])
{ SNiFFACCESS slot;

.... /*other declarations */

ParseArgs(argc, argv, &host, &proj, &
__si__module__init();
slot = si_open(session, host);
if(slot && si_open_project(slot, pro

{full = si_Query(eQImplFiles,eSGlobal,
.... /* enumerate pointer structure
si_close_project(slot, proj);
}

si_exit(slot);
return 0;
}

Object-Oriented Software Reengineering 214.

I Tool Integration

Rational/Rose repository
ing,

lassName)

me As String,
gory As Category)

GetFirst(_

l("", _
AM, U. Berne

API Example - Rational/Rose
Pieces of VisualBasic-code to generate elements into the

Sub GenerateClassIn (theClassName As Str
theCategory As Category)

Dim theClass As Class

Set theClass = theCategory.AddClass(theC
End Sub

Sub GenerateInheritanceIn (theSubclassNa
theSuperclassName As String, theCate

Dim theSub As Class
Dim theInherit As InheritRelation

Set theSub = theCategory.GetAllClasses().
theSubclassName)

Set theInherit = theSubclass.AddInheritRe
theSuperclassName)

End Sub

Object-Oriented Software Reengineering 215.

I Tool Integration

/www.eigroup.org/

/www.omg.org/

ed

S

AM, U. Berne

Exchange Standards

Standardization Efforts
❑ CDIF (CASE data interchange format) - see http:/

Mature standard (being approved by ISO)
Little commitment from tool vendors

❑ MOF (Meta-Object Facility) from OMG - see http:/
Currently immature (approved by OMG late 1997)
Major commitment from tool vendors to be expect
Builds on UML and CORBA/IDL

EXCHANGE VIA (ASCII) STREAM

Object-Oriented Software Reengineering 216.

I Tool Integration

ce Format

ange
in Esperanto.

tice

R
eference

m
odel
AM, U. Berne

Exchange Standards - Referen

❑ Issue

How can tools exchange information without being
aware of each other?

❑ Answer
Tools agree on a single reference model

reference model = meta model
❑ Analogy

How can French, German and Italian persons exch
documents? They agree to write their documents

❑ Advantage
Only need for one translation dictionary

❑ Disadvantage
Centralised reference models do not work in prac
- Need for specialised constructs (i.e. jargon)
- Cannot predict future specializations

Object-Oriented Software Reengineering 217.

I Tool Integration

ss

lised

e
odel.
del

eta

glossary

+

meta meta
model
AM, U. Berne

Exchange Standards - Openne
Specialised Constructs

❑ Issue
How can tools extend the meta model with specia
constructs?

❑ Answer
Each tool includes an extra glossary, explaining th
specialised constructs in terms of a core reference m

core reference model = meta meta mo

Multiple Standards

❑ Issue
How can tools deal with future extensions?

❑ Answer
All glossaries (=meta model extensions) define
mapping with the core reference model (= meta m
model)

Object-Oriented Software Reengineering 218.

I Tool Integration

inology

taEntity, MetaAttribute
ss, MofAttribute

ss, Attribute, Association
) Table, Column, Row

ourse, enrolled_in

, Course#5,
.enrolled_in.Course#5
AM, U. Berne

Meta Models
Exchange standards community cultivated specialised term

☞ the Four Layer Metamodeling Architecture

Layer Description Example

Meta Meta
Model

Defines the core ingredients
sufficient for defining languages
for specifying meta-models

(CDIF) Me
(MOF) Cla

Meta
Model

Defines a language for
specifying Models

(UML) Cla
(Database

Model Defines a language to describe
an information domain.

Student, C

User
Objects

Describes a specific situation in
an information domain.

Student#3
Student#3

Object-Oriented Software Reengineering 219.

I Tool Integration

NCODING "ENCODING.1"

AttributableMetaOb-

ligatory Introduction Stuff

odel concept “Class”
te “name”

dent” & “Course”
AM, U. Berne

CDIF sample (propriety syntax)
CDIF, SYNTAX "SYNTAX.1" "02.00.00", E
"02.00.00"

(:HEADER ...)
(:META-MODEL

(:SUBJECTAREAREFERENCE Foundation
(:VERSIONNUMBER "01.00"))

...)

(MetaEntity Class
(Name *Class*))

(MetaAttribute nameClass
(Name *name*)
(DataType <StringValue>)
(isOptional -FALSE-))

(MetaAttribute.IsLocalMetaAttributeOf.
ject

nameClass Class)
...

Ob

Definition of a meta-m
as having one attribu

Definition of 2 classes “Stu

Object-Oriented Software Reengineering 220.

I Tool Integration

”?>

rsion="1.1" />

">
ge1</Mof.Model....>
/>
Root

02">
lass1</Mof.....>

bligatory Introduction Stuff

ined UML meta model

 a package with
age1” and some attributes

 class named “class1”
AM, U. Berne

MOF Sample (XML syntax)
<?xml version="1.0" encoding=”ISO-8859-1
<!DOCTYPE XMI SYSTEM "mof.dtd">
<XMI xmi.version="1.0">

<XMI.header>
<XMI.metamodel xmi.name="uml" xmi.ve

</XMI.header>
<XMI.content>

<MoF.Model.Package xmi.id="i00000001
<Mof.Model.ModelElement.name>packa
<Mof.Model.ModelElement.annotation
<Mof.Model.GeneralizableElement.is

XMI.value="yes"/>
...
<Mof.Model.Namespace.contents>

<Mof.Model.Class xmi.id="i000000
<Mof.Model.ModelElement.name>c

O

Load predef

Definition of
name “pack

This package contains

Object-Oriented Software Reengineering 221.

I Tool Integration

FeatureClass {

tribute;

tribute;

meType name,

ss, StructuralFeature

lue)
AM, U. Berne

CORBA Interface for MOF
interface MofAttributeClass : Structural

readonly attribute
MofAttributeUList all_of_kind_mof_at

readonly attribute
MofAttributeUList all_of_type_mof_at

MofAttribute create_mof_attribute (
/* from ModelElement */ in ::Model::Na
...

}; // end of interface MofAttributeClass

interface MofAttribute : MofAttributeCla
{

boolean is_derived ()
raises (Reflective::StructuralError,

Reflective::SemanticError);
void set_is_derived (in boolean new_va

raises (Reflective::SemanticError);

Object-Oriented Software Reengineering 222.

I Tool Integration

 meta-model)

EENGINEERING

Invocation

Access
AM, U. Berne

UML shortcomings
Current standardization efforts are geared towards UML.

☞ not enough for reengineering
☞ need “Invocation” & “Access”

❑ use extension mechanisms on the meta-model
=> how standard is standard?

❑ define a special reengineering standard (i.e., own

UML R

Aggregation

Composition

Attribute

Class

Generalization
= Inheritance

Method + Operation =
Method

...

Object-Oriented Software Reengineering 223.

I Tool Integration

ure)
AM, U. Berne

Conclusion
❑ Reengineering requires Tools

- Much in common with forward engineering
- Must integrate with what’s already in place

❑ “Help yourself” approach
- Build your own parser
- Translate between file-formats
- Communicate via API’s
- Collect Execution Traces

❑ Standardization Efforts
- CDIF is mature / MOF is safest bet for future
- Extensibility via Meta models (4 layer architect
- UML has shortcomings

Object-Oriented Software Reengineering 224.

I Tool Integration

orward angineering and

 Java source code, how

nging information between

eling Architecture”
AM, U. Berne

Questions

You should know the answers to these questions.
❑ What’s the difference between tool integration in f

reengineering?
❑ If you need to build a tool that generates UML from

would you conceive it ? Why ?
❑ Why do we need a meta meta model when excha

tools?

Can you answer the following questions?
❑ How would you explain the “Four Layer Metamod

Object-Oriented Software Reengineering 225 .

U Refactoring
niversity of Berne

11. Refactoring

Outline
❑ What is Refactoring?
❑ Why Refactoring?
❑ Iterative Development Life-cycle
❑ Example: Rename Class
❑ Which Tools for Refactoring?
❑ Case-study: Internet Banking

- prototype
- consolidation: design review
- expansion: concurrent access
- consolidation: more reuse

❑ Conclusion

Object-Oriented Software Reengineering 226 .

U Refactoring

h a way that it does not alter
s internal structure [Fowl99a]
 transformation [Robe98a]
hanged, but enhances some
tandability, performance

Attribute Refactorings

add variable to class

rename variable

remove variable

push variable down

pull variable up

create accessors
niversity of Berne

What is Refactoring?
Some definitions

❑ The process of changing a software system in suc
the external behaviour of the code, yet improves it

❑ A behaviour-preserving source-to-source program
❑ A change to the system that leaves its behavior unc

nonfunctional quality - simplicity, flexibility, unders
[Beck99a]

Typical Refactorings

Class Refactorings Method Refactorings

add (sub)class to hierarchy add method to class

rename class rename method

remove class remove method

push method down

push method up

move method to component

Object-Oriented Software Reengineering 227 .

U Refactoring

ost of fixing mistakes
[Davi95a]

 costs tremendously
our project lives on.

x 10

x 20

x 200

ign

coding
testing

delivery
niversity of Berne

Why Refactoring?

✔ make change less costly in later stages!

17 % Corrective

18 % Adaptive
65 % Perfective

Relative Effort of Maintenance
[Somm96a]

Between 50% and 75% of available effort
is spent on maintenance. 65% of that
concerns new functionality, which you
could not foresee when you started.

Relative c

Changes
while y

x 5
x 1

requirement
des

(new functionality)

(fixing errors)

(new environments)

Object-Oriented Software Reengineering 228 .

U Refactoring

le

ception !

EXPANSION

OTYPING
niversity of Berne

Iterative Development Life-cyc

Change is the norm, not the ex

New / Changing
Requirements

More
Reuse

CONSOLIDATION

Initial
Requirements

PROT

Object-Oriented Software Reengineering 229 .

U Refactoring

gts

 new WinWdgts()

;

ets() {...}

WinWdgts

dgts;

sWidgetFactory
niversity of Berne

Example: Rename Class

subclasses: MyWidgets extends WinWd

contructors: WinWdgts()
and their calls: widgets =

types: WinWdgts currentWidgets

public WinWdgts getWidg

public void setWidgets(
widgets){...}

class method calls: WinWdgts.instance();

class attribute accesses: WinWdgts.properties;

casts: (WinWdgts) Object

imports: import gui.widgets.WinW

filename: WinWdgts.java

WinWdgts Window

Object-Oriented Software Reengineering 230 .

U Refactoring
niversity of Berne

+ precondition checking

Object-Oriented Software Reengineering 231 .

U Refactoring

ailure Proof

esting
ating past tests

s require no user interaction
s are deterministic
er per test is yes / no

proved structure does not
ous work

n & Version Management
 track of versions that
sent project milestones
to go back to previous
niversity of Berne

Tool Support for Refactoring
Change Efficient

Refactoring
❑ Source-to-source program

transformation
❑ Behaviour preserving

=> improve the program structure

Programming Environment
❑ Fast edit-compile-run cycles
❑ Support small-scale reverse

engineering activities
=> convenient for “local” ameliorations

F

Regression T
❑ Repe
❑ Test
❑ Test
❑ Answ

=> verify if im
damage previ

Configuratio
❑ keep

repre
=> possibility
version

Object-Oriented Software Reengineering 232 .

U Refactoring

ount
state
niversity of Berne

Case Study: Internet Banking

Initial Requirements

❑ a bank has customers
❑ customers own account(s) within a bank
❑ with the accounts they own, customers may

- deposit / withdraw money
- transfer money
- see the balance

❑ secure: only authorised users may access an acc
❑ reliable: all transactions must maintain consistent

Object-Oriented Software Reengineering 233 .

U Refactoring

m
IBAccount
: int
int = 0

(): int
():int
 (amount:int)

an
er): int
unt:int) : boolean
t) : int
fromAccount:int,
niversity of Berne

Prototype Design: Class Diagra
IBCustomer

customerNr : int

customerNr():int

accountNr
balance :

accountNr
getBalance
setBalance

IBBank

validCustomer(cust:IBCustomer) : boole
createAccountForCustomer(cust:IBCustom
customerMayAccess(cust:IBCustomer, acco
seeBalance(cust:IBCustomer, account:in
transfer(cust:IBCustomer, amount:int,

toAccount:int)
checkSumAccounts() : boolean

Object-Oriented Software Reengineering 234 .

U Refactoring

tomer): int

sult>>)

:int) : int

nt))

t, fromAccount:int,

romAccount))
oAccount))
niversity of Berne

Prototype Design: Contracts
Ensure the “secure” and “reliable” requirements.

IBBank::createAccountForCustomer(cust:IBCus
require: validCustomer(cust)
ensure: customerMayAccess(cust, <<re

IBBank::seeBalance(cust:IBCustomer, account
require: (validCustomer(cust)) AND

(customerMayAccess(cust, accou
ensure: checkSumAccounts()

IBBank::transfer(cust:IBCustomer, amount:in
toAccount:int)

require: (validCustomer(cust))
AND (customerMayAccess(cust, f
AND (customerMayAccess(cust, t

ensure: checkSumAccounts()

Object-Oriented Software Reengineering 235 .

U Refactoring

lude test cases for
Customer
tomerNr()
Account
tBalance()
Balance()
Bank
ateAccountFor
tomer()
nsfer() / seeBalance() (single
sfer)
nsfer() / seeBalance()
ltiple transfers)
niversity of Berne

Prototype Implementation
=> see demo “IBanking1”

Inc
❑ IB
-cus
❑ IB
-ge
-set
❑ IB
-cre
Cus
-tra
tran
-tra
(mu

aTest

setUp

anAccount

testAccount
accountNr

newAccount(1)

[= 1]

getBalance

[= 0]

setBalance(100)

getBalance

[= 100]

Object-Oriented Software Reengineering 236 .

U Refactoring

ESTS!)

” (run test!)
the above

 IBClient

o “init))
st!)
niversity of Berne

Prototype Consolidation

Design Review (i.e., apply refactorings AND RUN THE T
❑ Rename attribute

- manually rename “blnce” into “amountOfMoney
- apply “rename attribute” refactoring to reverse

+ run test!
+ check the effect on source code

❑ Rename class
- check all references to “IBCustomer”
- apply “rename class” refactoring to rename into

+ run test!
+ check the effect on source code

❑ Rename method
- rename “init()” into “initialize()” (run test!)
- see what happens if we rename “initialize()” int
- change order of arguments for “transfer” (run te

Object-Oriented Software Reengineering 237 .

U Refactoring

ultaneously transfer money
niversity of Berne

Expansion

Additional Requirement
❑ concurrent access of accounts

Add test case for
❑ IBBank

- testConcurrent: Launches 2 processes that sim
between same accounts

=> test fails!

Object-Oriented Software Reengineering 238 .

U Refactoring

m
BAccount
 int
nt
int
e : int
): int
transaction : int):int
(transaction : int,
t)
n : int)
ction : int)
ion : int)
olean
nsaction : int) : boolean
niversity of Berne

Expanded Design: Class Diagra
IBCustomer

…

…

I
accountNr :
balance : i
transactionId :
workingBalanc
accountNr (
getBalance(
setBalance

amount:in
lock (transactio
commit (transa
abort (transact
isLocked() : bo
isLockedBy (tra

IBBank

…

Object-Oriented Software Reengineering 239 .

U Refactoring

nt: int)

ount
niversity of Berne

Expanded Design: Contracts

IBAccount::getBalance(transaction:int): int
require: isLockedBy(transaction)
ensure:

IBAccount::setBalance(transaction:int, amou
require: isLockedBy(transaction)
ensure: getBalance(transaction) = am

IBAccount::lock(transaction:int)
require:
ensure: isLockedBy(transaction)

IBAccount::commit(transaction:int)
require: isLockedBy(transaction)
ensure: NOT isLocked()

IBAccount::abort(transaction:int)
require: isLockedBy(transaction)
ensure: NOT isLocked()

Object-Oriented Software Reengineering 240 .

U Refactoring

nId” and “workingBalance”
alance()” with “transaction”
alance()” and “transfer()”

)” should now fail
niversity of Berne

Expanded Implementation

Adapt implementation
❑ apply “add attribute” on IBAccount with “transactio
❑ apply “add parameter” to “getBalance()” and “setB
❑ use normal editing to expand functionality of “seeB

=> load “IBanking2”

Expand Tests
❑ previous tests for “getBalance()” and “setBalance(

=> adapt tests
❑ new contracts, incl. commit and abort

=> new tests
❑ testConcurrent works!

=> we can confidently ship a new release

Object-Oriented Software Reengineering 241 .

U Refactoring

ion

IBCustomer
r : int
ring
 String
: String
Id : int

e : String

ransaction : int):String
transaction : int, name:String)

ction : int)
nsaction : int)
action : int)
: boolean
 (transaction : int) : boolean
niversity of Berne

Consolidation: Problem Detect

More Reuse
❑ A design review reveals that this

“transaction” stuff is a good idea and
should be applied to IBCustomer as
well.

=> Code Smells
❑ duplicated code (lock, commit, abort

+ transactionId)
❑ large classes (extra methods, extra

attributes)
=> Refactor

❑ “Lockable” should become a
separate component, to be reused in
IBCustomer and IBAccount

customerN
name : St
address :
password
transaction
workingNam
…

getName(t
setName (
…
lock (transa
commit (tra
abort (trans
isLocked()
isLockedBy

Object-Oriented Software Reengineering 242 .

U Refactoring

s Diagram
IBLockable

nId : int

saction : int)
ansaction : int)
nsaction : int)
 : boolean
 (transaction : int) :

IBAccount
: int
int
ance : int

(): int
(transaction : int):int
(transaction : int,
int)
niversity of Berne

Consolidation: Refactored Clas
IBAccount

transactionId : int
accountNr : int
balance : int
workingBalance : int
accountNr (): int
getBalance(transaction :

int):int
setBalance (transaction : int,

amount:int)
lock (transaction : int)
commit (transaction : int)
abort (transaction : int)
isLocked() : boolean
isLockedBy (transaction : int) :

boolean

transactio

lock (tran
commit (tr
abort (tra
isLocked()
isLockedBy

boolean

accountNr
balance :
workingBal

accountNr
getBalance
setBalance

amount:

Split the class

Object-Oriented Software Reengineering 243 .

U Refactoring

 an empty “IBLockable” with

IBCustomer

IBLockable
niversity of Berne

Refactoring Sequence (1/5)

Refactoring: Create Subclass
❑ apply “Create Subclass” on “IBAbstract” to create

subclass(es) “IBAccount” & “IBCustomer”

IBAccount

IBAbstract

IBBank

Object-Oriented Software Reengineering 244 .

U Refactoring

transactionId” up
niversity of Berne

Refactoring Sequence (2/5)

Refactoring: Pull Up Attribute
❑ apply “pull up attribute” on “IBLockable” to move “

IBLockable

IBAccount
transactionId : int
accountNr : int
balance : int
workingBalance : int

…

Object-Oriented Software Reengineering 245 .

U Refactoring

Locked”, “isLockedBy”,

ance” attributes

an
niversity of Berne

Refactoring Sequence (3/5)

Refactoring: Pull Up Method
❑ apply “pull up method” on “IBAccount” to move “is

“notLocked” up

❑ apply “pull up” to “abort:”, “commit:”, “lock:”
=> failure: accesses to “balance” and “workingBal

IBLockable
…

IBAccount
…

isLocked() : boolean
notLocked() : boolean
isLockedBy (transaction : int) : boole

Object-Oriented Software Reengineering 246 .

U Refactoring

balance” and

k:” (-> copyToWorkingState)
bort:”, “commit:”, “lock:” up

n transaction"

ansactionID]
al.

commitWorkingState
niversity of Berne

Refactoring Sequence (4/5)

Refactoring: Extract Method + Pull Up Method
❑ apply “extract method” on groups of accesses to “

“WorkingBalance”

❑ similar for “abort:” (-> clearWorkingState) and “loc
❑ apply “pull up method” on “IBAccount” to move “a

commit: transactionID
"Commit myself as part of the give

self require: [self isLockedBy: tr
usingException: #lockFailureSign

balance := workingBalance.
workingBalance := nil.
transactionIdentifier := nil.

self ensure: [self notLocked].

Object-Oriented Software Reengineering 247 .

U Refactoring

e them as new abstract

e “public-locking” into

arWorkingState”,
“IBLockable>protected-

t
g

niversity of Berne

Refactoring Sequence (5/5)

Clean-up: make the extracted methods protected and defin
methods in the IBLocking class

❑ Apply “rename protocol” on “IBAccount” to renam
“protected-locking”

Refactoring: Copy Method
❑ Apply “move method” on “IBAccount” to copy “cle

“copyToWorkingState”, “commitWorkingState” to
locking”

❑ Make “IBLockable::clearWorkingState”, … abstrac
☞ This is destructive editing and not a refactorin

Are we done?
❑ Run the tests …
❑ Expand functionality of the IBCustomer

Object-Oriented Software Reengineering 248 .

U Refactoring

ing

ly Once” (Kent Beck)

talk C++ Java

- (?) …
- +-

- +- +-
+ +
+ +
niversity of Berne

Conclusion (1/2)
Refactoring Philosophy

❑ Combine simple refactorings into larger restructur
=> improved design
=> ready to add new functionality

❑ Do not apply refactoring tools in isolation

Know when is as important as know-how
❑ Refactored designs are more complex
❑ Use “code smells” as symptoms
❑ Rule of the thumb: State everything “Once and On

Small

refactoring tools +
rapid edit-compile-run cycles +
reverse engineering facilities +
regression testing +
version & configuration management +

Object-Oriented Software Reengineering 249 .

U Refactoring

)

ign

coding

test

delivery

x 5 x 5 x 5

l support
ture shock
nagement support
uce the costs between
 phases in the
t cycles.

e there …
niversity of Berne

Conclusion: Culture shock (2/2

x 5
x 1

x 10

x 20

x 200

requirement
design

coding
testing

delivery
x 5

x 1

requirement

des

With proper
❑ too
❑ cul
❑ ma

one can red
the different
developmen

The tools ar

n their way already)

SBN=0-201-48567-2
Projects and More Information

Possible projects:
❑ Analysis when to apply refactorings

– resolve duplicated code

– resolve design problems (such as big classes)

– resolve unwanted dependencies

– enforce architectures

❑ Refactorings in Java (some open source efforts o

More about code smells and refactoring
❑ Book on refactoring [Fowl99a].

http://cseng.aw.com/bookdetail.qry?I

❑ Wiki-web with discussion on code smells
http://c2.com/cgi/wiki?CodeSmells

Object-Oriented Software Reengineering 250.

T ic Information for Reverse Engineering

 for Reverse

erstanding
ngineering

formation
amar Richner Using Dynam

12. Using Dynamic Information
Engineering

Tamar Richner
Software Composition Group

❑ dynamic information is important for program und
❑ how dynamic information can be used in reverse e
❑ problems in analyzing and interpreting dynamic in

Object-Oriented Software Reengineering 251.

T ic Information for Reverse Engineering
amar Richner Using Dynam

Outline

❑ Why dynamic information?
❑ What is dynamic information?

– dynamic vs. static information

– problems with using dynamic information

❑ Frequency spectrum analysis
❑ Visualization
❑ Design Recovery
❑ Queries and Views: Gaudi
❑ Instrumentation
❑ Conclusions

Object-Oriented Software Reengineering 252.

T ic Information for Reverse Engineering
amar Richner Using Dynam

Why Dynamic Information?

Object-Oriented Software Reengineering 253.

T ic Information for Reverse Engineering

t’d)?

aborations of objects

ethod is actually executing
amar Richner Using Dynam

Why Dynamic Information (con

we are already familiar with its use for:
❑ debugging: examine program state
❑ analysing memory use
❑ profiling: measure time spent executing

For reverse engineering:

functionality in OO programs comes from coll

but,
❑ control flow is hard to derive statically
❑ polymorphism makes it hard to figure out which m

Object-Oriented Software Reengineering 254.

T ic Information for Reverse Engineering

m.

s Y from t1 to t2

 engineering?

View
amar Richner Using Dynam

What is Dynamic Information?
any information that we can collect from executing a progra
for example:

❑ value of a variable at time t
❑ number of milliseconds spent executing method m
❑ instance x of class X created 25 instances of clas
❑ methods on the call stack at time t
❑ X.x invokes method m on Y.y at time t

and so on.....
Which kind of information is useful for reverse

Software

information
base

extractor analyzer

Object-Oriented Software Reengineering 255.

T ic Information for Reverse Engineering

r
other

mic

alse
ives

mic
amar Richner Using Dynam

Static vs. Dynamic Information

❑ dynamic information relates a scenario to behavio
❑ static and dynamic information complement each

Static Dyna

Precision ✔

Completeness ✔

False Positives
No F
Posit

False
Negatives

dyna

No False
Negatives

static

Object-Oriented Software Reengineering 256.

T ic Information for Reverse Engineering

nformation

for static information)

ware?
amar Richner Using Dynam

Problems with using Dynamic I

❑ huge amount of information generated by tracing
❑ from low-level information to high-level model (as
❑ problem of coverage (as for testing)
❑ instrumentation (not always easy)
❑ how do we express behavioral models of OO soft

Object-Oriented Software Reengineering 257.

T ic Information for Reverse Engineering
amar Richner Using Dynam

Roadmap
❑ Why dynamic information
❑ What is dynamic information

– dynamic vs. static information

– problems with using dynamic information

❑ Frequency spectrum analysis
☞ looking at execution frequencies

– some heuristics

❑ Visualization
❑ Design Recovery
❑ Queries and Views: Gaudi
❑ Instrumentation
❑ Conclusions

Object-Oriented Software Reengineering 258.

T ic Information for Reverse Engineering

d, procedure, program path
amar Richner Using Dynam

Frequency Spectrum

❑ For a single execution:
frequency spectrum analysis (FSA) [Ball99]

– low vs. high frequencies

– related frequencies

– specific frequencies

❑ Comparing executions:

– Dynamic Differencing [Reps97][Agra98]

– Concept Coverage Analysis [Ball 99]

4000

2000

Execution

Static Unit: e.g. metho

Frequency
4000

2000

E1

E2

Object-Oriented Software Reengineering 259.

T ic Information for Reverse Engineering
amar Richner Using Dynam

FSA: low vs. high frequencies

❑ high frequencies -> lower level abstractions
❑ low frequencies -> higher level abstractions

4000

2000

Object-Oriented Software Reengineering 260.

T ic Information for Reverse Engineering
amar Richner Using Dynam

FSA: related frequencies

❑ same frequency -> frequency clusters

4000

2000

Object-Oriented Software Reengineering 261.

T ic Information for Reverse Engineering

71 records -> method X
amar Richner Using Dynam

FSA: specific frequencies

❑ associate frequency to input, e.g. input file with 20
handles this input

4000

2000

2071

X

Object-Oriented Software Reengineering 262.

T ic Information for Reverse Engineering

re a feature is implemented

eatures like call setup,

tive code (e.g. year
em)

st case selection is
portant to get good results
amar Richner Using Dynam

Dynamic Differencing
T1

T2

T1 - T2
x y z

❑ locate whe
e.g.
telephony f
call waiting
data-sensi
2000 probl

➪ te
im

Object-Oriented Software Reengineering 263.

T ic Information for Reverse Engineering

ues

 test cases necessary to
rted is in research labs.
amar Richner Using Dynam

Summary of Spectrum Techniq

are these really used in practice?
❑ on a small scale - yes.
❑ on a large scale - probably not:

– test case preparation is critical and number of
get meaningful information is large. Work repo

Object-Oriented Software Reengineering 264.

T ic Information for Reverse Engineering
amar Richner Using Dynam

Roadmap

❑ Why dynamic information
❑ What is dynamic information
❑ Frequency spectrum analysis
❑ Visualization

☞ visualization techniques

– some examples

❑ Design Recovery
❑ Queries and Views: Gaudi
❑ Instrumentation
❑ Conclusions

Object-Oriented Software Reengineering 265.

T ic Information for Reverse Engineering

ween objects

][Sefi97][Walk98]

ion mural [Jerd98]
amar Richner Using Dynam

Visualization
of what?

❑ summary information about the execution
❑ sequence diagrams: showing message sends bet

how?
techniques for displaying lots of information:

❑ remove time element through animation [DePa94
❑ navigation through hyperlinks [Kosk96]
❑ compress information into visual pattern: informat

Object-Oriented Software Reengineering 266.

T ic Information for Reverse Engineering

ities (frequency of calls)[Sefi97]

 allocated (green) and
ated through a high-level model
amar Richner Using Dynam

Animated Summaries
❑ affinity diagram

– inter-class call graph

❑ histogram

– number of instances

these can be animated real-time or offline - they can also
summarize data without animation

animates the class affin

shows total # of objects
deallocated (red), anim
[Walk98]

Object-Oriented Software Reengineering 267.

T ic Information for Reverse Engineering

: Jinsight
[DePa94]
amar Richner Using Dynam

Animated Summaries Example

Object-Oriented Software Reengineering 268.

T ic Information for Reverse Engineering

ing what information would

 pixel instead of presence of

olours

i i+1

J
J+1. .

. .
amar Richner Using Dynam

Information Mural
display all the information on one window or screen - mimic
look like in its entirety [Jerd98] :

❑ represent the relative information density at each
absence of information.

❑ density is visuallized as grey scale value, or with c
.

m

n

Object-Oriented Software Reengineering 269.

T ic Information for Reverse Engineering

is
ural is a navigational guide

hrough the long sequence
iagram
isual pattern recognition
Jerd98]
amar Richner Using Dynam

Information Mural Example: ISV
m
t
d
v
[

Object-Oriented Software Reengineering 270.

T ic Information for Reverse Engineering
amar Richner Using Dynam

RoadMap
❑ Why dynamic information
❑ What is dynamic information
❑ Frequency spectrum analysis
❑ Visualization
❑ Design Recovery

☞ requirements: focus and granularity

– using clustering and filtering in visualization

❑ Queries and Views: Gaudi
❑ Instrumentation
❑ Conclusions

Object-Oriented Software Reengineering 271.

T ic Information for Reverse Engineering

oftware of interest for
amar Richner Using Dynam

A Step Back: Design Recovery

issues in dealing with information extracted:

❑ Granularity:
build high-level model of the software

❑ Focus:
need a model which describes the aspect of the s
the task

Object-Oriented Software Reengineering 272.

T ic Information for Reverse Engineering

lization

tractions
amar Richner Using Dynam

Design Recovery through Visua
❑ techniques for displaying lots of information

But, more important:
❑ focusing on relevant information:

– instrumenting selectively

– filtering out uninteresting information

❑ higher granularity

– clustering elements to create higher-level abs

Object-Oriented Software Reengineering 273.

T ic Information for Reverse Engineering

ering
s, methods.
, e.g. self-sends, sends to

 remove actors (vertical line)
amar Richner Using Dynam

Selective Instrumentation & Filt
❑ look at dynamic information only for certain classe
❑ eliminate message sends based on certain criteria

metaclass, constructors, etc.)

Example: ISVis [Jerd97]: can edit the sequence diagram to
or interactions (several horizontal lines).

Object-Oriented Software Reengineering 274.

T ic Information for Reverse Engineering

g interactions
amar Richner Using Dynam

Clustering

clustering events: can use pattern matching to find recurrin

clustering objects

clustering events

Object-Oriented Software Reengineering 275.

T ic Information for Reverse Engineering

 of Jinsight
amar Richner Using Dynam

Recognizing Patterns: example

Object-Oriented Software Reengineering 276.

T ic Information for Reverse Engineering

sign

bugging
ulated

nefits are of visualization vs.

 critical scenarios: how do we

interactions
amar Richner Using Dynam

Summary of Visualization for De
Recovery

good for:
❑ localizing interesting or strange interactions
❑ debugging, performance, space analysis

disadvantages:
❑ still too low-level: hard to navigate, too close to de
❑ models are mental models: they can not be manip

Despite its immediate appeal, it is not clear what the real be
textual feedback about the system.

What are good OO models for expressing behavior?
❑ UML interaction diagrams for expressing relevant,

find these in the trace?
❑ role models: look at the roles that classes play in

Object-Oriented Software Reengineering 277.

T ic Information for Reverse Engineering
amar Richner Using Dynam

RoadMap
❑ Why dynamic information
❑ What is dynamic information
❑ Frequency spectrum analysis
❑ Visualization
❑ Design Recovery
❑ Queries and Views: Gaudi

☞ overview of approach

– modelling static and dynamic information

– queries and views

❑ Instrumentation
❑ Conclusions

Object-Oriented Software Reengineering 278.

T ic Information for Reverse Engineering

ation
n

les
amar Richner Using Dynam

Gaudi: overview of Approach

logic-programming

A

dynamic inform
static informatio

preformulated ru

Prolog engine
language

?

Object-Oriented Software Reengineering 279.

mic Information for Reverse Engineering

yes
| ?-:

Dotty

ts

s

Specifications

Views

Queries

Prolog Engine

GAUDI

?
A

?

A

Tamar Richner Using Dyna

Gaudi: Implementation

MethodWrappers

Smalltalk VM

Moose Tool
Famix Meta Model

Smalltalk VMSmalltalk Application

Dynamic Fac

Static Fact

Parse Code

Code Instrumentation + Execution

Object-Oriented Software Reengineering 280.

T ic Information for Reverse Engineering

r Execution: the

tegory).

nce2,Method).
amar Richner Using Dynam

Modelling OO Programs and thei
Basic Relations

Static Information:
class(ClassName,SourceAnchor).

superclass(SuperClass,SubClass).

method(Class,MethodName,IsClassMethod,Ca

Dynamic information:
send(SN,SL,Class1,Instance1,Class2,Insta

Object-Oriented Software Reengineering 281.

T ic Information for Reverse Engineering

.

7,’flushCache’).
st’).

’).
hannel’).
amar Richner Using Dynam

send(1,1,’WidgetDragDropCallbacks’,650,SystemNavigator’,10956,’classWantToDrag:’)
send(2,2,’SystemNavigator’,10956,’SystemNavigator’,10956,’className’).
send(3,3,’SystemNavigator’,10956,’SystemNavigator’,10956,’classNames’).
send(4,4,’SystemNavigator’,10956,’SystemNavigator’,10956,’viewCategory’).
send(5,4,’SystemNavigator’,10956,’SystemNavigator’,10956,’classNames’).
send(6,5,’SystemNavigator’,10956,’’SystemNavigator’,10956,’classList’).
send(7,5,’SystemNavigator’,10956,’’BRMultiSelectionInList’,5250,’selections’).
send(8,1,’MessageChannel’,10775,’SystemNavigator’,10956,’changeRequest’).
send(9,2,’SystemNavigator’,10956,’changeRequest’,’CodeModelLockPolicy_class’,1306
send(10,2,’SystemNavigator’,10956,’changeRequest’,’CodeModel’,12429,’updateReque
send(11,3,’CodeModel’,12429,’StateLockPolicy’,6170,’isLocked’).
send(12,3,’CodeModel’,12429,’CodeModel’,12429,’updateRequest’).
send(13,4,’CodeModel’,12429,’CodeModel’,12429,’subcanvases’).
send(14,5,’CodeModel’,12429,’CodeModel’,12429,’subcanvases’).
send(15,5,’CodeModel’,12429,’CodeModel’,12429,’tool’).
send(16,5,’CodeModel’,12429,’CodeModel’,12429,’tool’).
send(17,4,’CodeModel’,12429,’ClassNavigatorTool’,11142,’updateRequest’).
send(18,5,’ClassNavigatorTool’,11142,’ClassNavigatorTool’,11142,’subcanvases’).
send(19,6,’ClassNavigatorTool’,11142,’ClassNavigatorTool’,11142,’subcanvases’).
send(20,6,’ClassNavigatorTool’,11142,’ClassNavigatorTool’,11142,’subcanvas’).
send(21,5,’ClassNavigatorTool’,11142,’BrowserClassTool’,3963,’updateRequest’).
send(22,6,’BrowserClassTool’,3963,’BrowserClassTool’,3963,’updateRequest’).
send(23,7,’BrowserClassTool’,3963,’BrowserClassTool’,3963,’subcanvases’).
send(24,6,’BrowserClassTool’,3963,’BrowserClassTool’,3963,’isEditing’).
send(25,7,’BrowserClassTool’,3963,’BrowserClassTool’,3963,’isEditing’).
send(26,8,’BrowserClassTool’,3963,’BrowserClassTool’,3963,’subcanvases’).
send(27,7,’BrowserClassTool’,3963,’BrowserClassTool’,3963,’textController’).
send(28,8,’BrowserClassTool’,3963,’BrowserClassTool’,3963,’controllerFor:’).
send(29,1,’DependentsCollection’,8382,’BRMultiSelectionInList’,5250,’update:with:from:
send(30,1,’BRMultiSelectionView’,2857,’BRMultiSelectionView’,2857,’updateSelectionC
send(31,1,’MessageChannel’,2123,’’SystemNavigator’,10956,’changedClass’).
send(32,2,’SystemNavigator’,10956,’SystemNavigator’,10956,’updateProtocolList’).

Object-Oriented Software Reengineering 282.

T ic Information for Reverse Engineering

t’,12982,’selections’).

e:’).
amar Richner Using Dynam

send(33,3,’SystemNavigator’,10956,’SystemNavigator’,10956,’protocols’).
send(34,4,’SystemNavigator’,10956,’SystemNavigator’,10956,’protocolList’).

send(35,4,’SystemNavigator’,10956,’BRMultiSelectionInLis
send(36,3,’SystemNavigator’,10956,’’SystemNavigator’,10956,’newProtocolList:’).
send(37,4,’SystemNavigator’,10956,’SystemNavigator’,10956,’newProtocolListNoUpdat
send(38,5,’SystemNavigator’,10956,’SystemNavigator’,10956,’selectedClass’).
send(39,6,’SystemNavigator’,10956,’SystemNavigator’,10956,’nonMetaClass’).
send(40,7,’SystemNavigator’,10956,’SystemNavigator’,10956,’className’).
send(41,8,’SystemNavigator’,10956,’SystemNavigator’,10956,’classNames’).
send(42,9,’SystemNavigator’,10956,’SystemNavigator’,10956,’viewCategory’).
send(43,9,’SystemNavigator’,10956,’SystemNavigator’,10956,’classNames’).
send(44,10,’SystemNavigator’,10956,’SystemNavigator’,10956,’classList’).
send(45,10,’SystemNavigator’,10956,’BRMultiSelectionInList’,5250,’selections’).
send(46,7,’SystemNavigator’,10956,’SystemNavigator’,10956,’classForName:’).
send(47,6,’SystemNavigator’,10956,’SystemNavigator’,10956,’isMeta’).
send(48,7,’SystemNavigator’,10956,’SystemNavigator’,10956,’meta’).
send(49,5,’SystemNavigator’,10956,’SystemNavigator’,10956,’category’).
send(50,6,’SystemNavigator’,10956,’SystemNavigator’,10956,’categories’).
send(51,7,’SystemNavigator’,10956,’SystemNavigator’,10956,’categoryList’).
send(52,7,’SystemNavigator’,10956,’BRMultiSelectionInList’,4697,’selections’).

.

.

.
send(1187,13,’BrowserClassTool’,3963,’BrowserClassTool’,3963,’textHolder’)..

Object-Oriented Software Reengineering 283.

T ic Information for Reverse Engineering

lations
,C2,M),

instance creation’).

send(_,_,C1,_,C2,_,M).

t):-method(C,M,_,Cat).

t):-
s,Class),
hod,_,Category).

erclass).

erclass):-
lass).

erclass)
,Subclass),
erclass).
amar Richner Using Dynam

Gaudi: Formulating Derived Re

sendsCreate(C1,C2).

invokesMethodClass(C1,C2,M).

methodCategory(C,M,Cat).

inHierarchy(Class,Subclass).

sendsCreate(C1,C2):-
invokesMethodClass(C1
metaclassOf(MC,C2),
methodCategory(MC,M,’

invokesMethodClass :-

methodCategory(C,M,Ca

methodCategory(C,M,Ca
inHierarchy(Superclas
method(Superclass,Met

inHierarchy(Class,Sup

inHierarchy(Class,Sup
superclass(Class,Subc

inHierarchy(Class,Sup
superclass(Superclass
inHierarchy(Class,Sup

Object-Oriented Software Reengineering 284.

T ic Information for Reverse Engineering

 for Querying
amar Richner Using Dynam

Gaudi: Using Derived Relations

Object-Oriented Software Reengineering 285.

T ic Information for Reverse Engineering

iews

A

E

dByB

dClass,component).

dByB’,L) :-
kesClass(’B’,Class),L).
amar Richner Using Dynam

Gaudi: Simple vs. Composed V

A

B

C D

E

F

B

Invoke

createSimpleView(invokesClass). createView(invoke

component(’invoke
 setof(Classinvo

Object-Oriented Software Reengineering 286.

T ic Information for Reverse Engineering

RenameClassChange/11529

5/executeWithMessage:

itiveExecute

6/update:with:from:/update:with:from:

RenameClassChange/9136

8/postCopy 9/10/rename:to:

undo changes

entary change

reverse change
amar Richner Using Dynam

Gaudi: Instance Level View

SystemNavigator/10956

RenameClassRefactoring/13736

1/execute

RefactoringManager/6728

2/ignoreChangesWhile: 12/addRefactoring: CompositeRefactoryChange/10423

4/addChange:

CompositeRefactoryChange/7110

11/addChangeFirst:

13/undoChanges 3/prim

7

changes

elem

Object-Oriented Software Reengineering 287.

T ic Information for Reverse Engineering

tion

een classes, clusters of

between instances

 are interested in.
ws and iterate.
amar Richner Using Dynam

Gaudi Summary
[Rich99]
uses Prolog rules to:

❑ query the database of static and dynamic informa
❑ create views of the information

views can be:
❑ high-level: e.g. send and create relationships betw

classes
❑ low-level: e.g. show sequence of message sends

methodology:
❑ start with a question to be answered.
❑ create a high-level view in order to locate what we
❑ focus the search by creating more fine-grained vie

Object-Oriented Software Reengineering 288.

T ic Information for Reverse Engineering

and recompile, or modify the
amar Richner Using Dynam

Instrumentation
how do we collect dynamic information?

❑ with reflective language support: e.g. Smalltalk
❑ without (C++, Java) : insert instrumentation code

VM.

problems:
❑ a flexible facility for instrumenting selectively
❑ a non-intrusive instrumentation

Object-Oriented Software Reengineering 289.

T ic Information for Reverse Engineering

gation, composition -

erstanding
ngineering

formation
amar Richner Using Dynam

Conclusions

we did not talk about using dynamic information for:
❑ typing and refactoring
❑ reverse engineering structural relationships (aggre

mutable, variable)
❑ generation of state diagrams for objects
❑ understanding concurrent programs

Summary:
❑ dynamic information is important for program und
❑ how dynamic information can be used in reverse e

– most of work for OO is related to visualization

❑ problems in analyzing and interpreting dynamic in

– handling the large amount of information

– creating meaningful abstractions

– expressing behavior concisely

Object-Oriented Software Reengineering 290.

T ic Information for Reverse Engineering

, Proceedings ESEC ’99. pp.

 Aid Software Maintenance,

ng for Software Maintenance
SEC ’97, pp. 432-449.

es, Modeling object-oriented
p. 163-182.
 visualization of design

s OOPSLA ’95, pp. 342-357.
ne: using scenario diagrams

SE 96, pp.366-374.
ization for architectural
ce on Reverse Engineering
amar Richner Using Dynam

References
Frequency Analysis:
[Ball99] T. Ball, The Concept of Dynamic Analysis
218-234.
[Agra98] H. Agrawal et al., Mining System Tests to
IEEE Computer, July 1998, pp. 64-73.
[Rep97] T. Reps et al., The Use of Program Profili
with Applications to the Year 2000 Problem, Proceedings E

Visualization of Object-oriented Applications:
[DePa94] W. De Pauw, D. Kimelman and J. Vlissid
program execution, Proceedings ECOOP ’94, LNCS 821, p
[Lang95] D.B. Lange and Y. Nakamura, Interactive
patterns can help in framework understanding, Proceeding
[Kosk96] K. Koskimies and H. Moessenboek, Sce
and active test for illustrating OO programs, Proceedings IC
[Jerd97] D. Jerding and S. Rugaber, Using visual
localization and extraction, Proceedings Working Conferen
(WCRE ’97), pp. 56-65.

Object-Oriented Software Reengineering 291.

T ic Information for Reverse Engineering

tware system information
271-283.

high-level views of object-
Proceedings International
2.

/WrapperApplications.html

tml
amar Richner Using Dynam

[Walk98] R. Walker et al., Visualizing dynamic sof
through high-level models, Proceedings OOPSLA ’98, pp.

Gaudi:
[Rich99] T. Richner and S. Ducasse, Recovering
oriented applications from static and dynamic information,
Conference on Software Maintenance (ICSM ’99), pp. 13-2

Visualization tools:
interaction diagram (for Smalltalk) :

http://st-www.cs.uiuc.edu/users/brant/Applications
Jinsight (for Java) :

http://www.research.ibm.com/jinsight/
ISVis (for C++) :

http://www.cc.gatech.edu/morale/tools/isvis/isvis.h

	Object-Oriented Software Reengineering
	Table of Contents
	1. Object-Oriented Software Reengineering
	Goals of this course
	Course Overview
	Lehman’s Laws
	What is a Legacy System?
	Software Maintenance
	Why is Software Maintenance Expensive?
	Factors Affecting Maintenance
	What about OO?
	Definitions
	Reverse and Reengineering
	Goals of Reverse Engineering
	Reverse Engineering Techniques
	Goals of Reengineering
	Reengineering Techniques
	Architectural Problems
	Refactoring Opportunities
	Tools Architectures
	Summary

	2. Code Duplication
	Overview
	Code is Copied
	How Much Code is Duplicated?
	What Is Considered To Be Copied Code?
	How Code Gets Copied
	Why Code Gets Copied
	What Problems Stem From Copied Code?
	Code Duplication: Problem Statement
	Code Duplication Detection
	General Schema of Detection Process
	Simple Detection Approach I
	Simple Detection Approach II
	Detection Using Parameterized Matching I
	Detection Using Parameterized Matching II
	Detection using Abstract Syntax Trees I
	Detection using Abstract Syntax Trees II
	Refactoring Duplicated Code I
	Refactoring Duplicated Code II
	Visualization of Duplicated Code
	Visualization of Copied Code Sequences
	Visualization of Repetitive Structures
	Visualization of Cloned Classes
	Visualization of Clone Families
	Summary
	References

	3. Lab session — Duploc
	4. Design Extraction
	Goals
	Outline
	Why Design Extraction is needed?
	UML (Unified Modelling Language)
	The Little Static UML
	Road Map
	Let us practice!
	A First View
	Evaluation
	A Cleaner View
	Road Map
	Three Essential Questions
	Interpreting UML
	Levels of Interpretations: Perspectives
	Attributes in Perspectives
	Operations in Perspectives
	Associations
	Associations: Conceptual Perspective
	Associations: Specification Perspective
	Arrows: Nagivability
	Generalization
	Road Map
	Need for a Clear Mapping
	Private you said?! Which one?
	Class Method Inheritance?!
	Some Possible Smalltalk Conventions
	Stereotypes: to Represent Conventions!
	Another Example: Instance/Class Associations
	RoadMap
	Association Extractions (i)
	Language Impact on Extraction
	Method Signature for Extracting Relation
	Convention Based Association Extraction
	Operation Extraction (i)
	Operation Extraction (ii)
	Road map
	Design Patterns as Documentation Elements
	Road map
	Evolution Impact Analysis: Reuse Contract
	Example
	Reuse Contracts: General Idea
	Example
	Road Map
	Documenting Dynamic Behaviour
	Sequence Diagrams
	Statically Extracting Interactions
	Dynamically Extracting Interactions
	Lessons Learnt

	5. Software Metrics
	Why Measure Software?
	What is a Metric?
	GQM
	Metrics assumptions
	Cost estimation objectives
	Estimation techniques
	Algorithmic cost modelling
	Measurement-based estimation
	Lines of code
	Function points
	Programmer productivity
	The COCOMO model
	Basic COCOMO Formula
	COCOMO assumptions
	Product quality metrics
	Maintainability Metrics
	Design maintainability
	Coupling metrics
	Validation of quality metrics
	Program quality metrics
	Metrics maturity
	Summary

	6. Metrics, Visualisations and Interactions for Reverse Engineering
	Contents
	Introduction
	Metrics
	Metrics and Measurements
	Metrics for Reverse Engineering
	Which Metrics to Collect (Definitions)?
	Class size
	Class Complexity
	Hierarchy Layout
	Method Size
	Class Cohesion (i)
	Class Cohesion (ii)
	Class Coupling (I)
	Class Coupling (Ii)
	Metrics? Stepping Back
	Visualisation
	The Motivation: Why are we visualising stuff?
	Visualisation: Possible Approaches
	Example: Goose/ Graphlet
	Example: Mermaid
	Let’s summarise...
	Our Approach: CodeCrawler
	The Idea: Visualising Metrics
	CodeCrawler: Some Examples
	System Complexity
	Method Efficiency Correlation
	Inheritance Classification
	Service Class Detection
	CodeCrawler’s Logic
	CodeCrawler: Pro And Contra
	CodeCrawler: The Case Studies
	Example: Visualisation of a very large system
	Example: Flying Saucers
	Conclusion & Possible Projects
	Bibliography

	7. Lab session — CodeCrawler
	8. Object-Oriented Software Cost Estimation
	Topics
	Measurements & Estimates (1/2)
	Measurements & Estimates (2/2)
	A Measurement-Based Estimation Process (1/3)
	A Measurement-Based Estimation Process (2/3)
	A Measurement-Based Estimation Process(3/ 3)
	Software Process Models (1/2)
	Software Process Models (2/2)
	Software Models (Meta Models) (1/4)
	Software Models (Meta Models) (2/4)
	Software Models (Meta Models) (3/4)
	Software Models (Meta Models) (4/4)
	Software Metrics (1/2)
	Software Metrics (2/2)
	Results of a Field Study (1/4)
	Results of a Field Study (2/4)
	Results of a Field Study (3/4)
	Results of a Field Study (4/4)
	An Example (1/5)
	An Example (2/5)
	An Example (3/5)
	An Example (4/5)
	An Example (5/5)
	Future Work

	9. Metrics in OO Reengineering
	Why Metrics in OO Reengineering?
	Quantitative Quality Model
	Process Attributes & External Attributes
	Internal Product Attributes
	“Define your own” Quality Model
	Conclusion: Metrics for Quality Assessment
	The KISS principle
	Trend Analysis via Change Metrics
	Conclusion: Metrics for Trend Analysis
	Identifying Refactorings via Change Metrics
	Split into Superclass / Merge with Superclass
	Example: Inferring the Bridge Protocol
	Split into Subclass / Merge with Subclass
	Example: Adding new Functionality
	Move to Superclass, Subclass or Sibling Class
	Example: Introducing Layers
	Split Method / Factor Common Functionality
	Example: Creation of Template Method
	Conclusion: Identifying Refactorings
	Conclusion
	Questions

	10. Tool Integration
	Why Integrate Tools?
	Which Tools to Integrate?
	Tool Integration Issues
	Basic Tool Architecture
	Help Yourself - Parser
	Help Yourself - File Formats
	Help Yourself - API
	Help Yourself - Execution Trace
	API Example - Java
	API Example - SNiFF+
	API Example - Rational/Rose
	Exchange Standards
	Exchange Standards - Reference Format
	Exchange Standards - Openness
	Meta Models
	CDIF sample (propriety syntax)
	MOF Sample (XML syntax)
	CORBA Interface for MOF
	UML shortcomings
	Conclusion
	Questions

	11. Refactoring
	What is Refactoring?
	Why Refactoring?
	Iterative Development Life-cycle
	Example: Rename Class
	Tool Support for Refactoring
	Case Study: Internet Banking
	Prototype Design: Class Diagram
	Prototype Design: Contracts
	Prototype Implementation
	Prototype Consolidation
	Expansion
	Expanded Design: Class Diagram
	Expanded Implementation
	Consolidation: Problem Detection
	Consolidation: Refactored Class Diagram
	Refactoring Sequence (1/5)
	Refactoring Sequence (2/5)
	Refactoring Sequence (3/5)
	Refactoring Sequence (4/5)
	Refactoring Sequence (5/5)
	Conclusion (1/2)
	Conclusion: Culture shock (2/2)
	Projects and More Information

	12. Using Dynamic Information for Reverse Engineering
	Outline
	Why Dynamic Information?
	Why Dynamic Information (cont’d)?
	What is Dynamic Information?
	Static vs. Dynamic Information
	Problems with using Dynamic Information
	Roadmap
	Frequency Spectrum
	FSA: low vs. high frequencies
	FSA: related frequencies
	FSA: specific frequencies
	Dynamic Differencing
	Summary of Spectrum Techniques
	Roadmap
	Visualization
	Animated Summaries
	Animated Summaries Example: Jinsight
	Information Mural
	Information Mural Example: ISVis
	RoadMap
	A Step Back: Design Recovery
	Design Recovery through Visualization
	Selective Instrumentation & Filtering
	Clustering
	Recognizing Patterns: example of Jinsight
	Summary of Visualization for Design Recovery
	RoadMap
	Gaudi: overview of Approach
	Gaudi: Implementation
	Gaudi: Formulating Derived Relations
	Gaudi: Using Derived Relations for Querying
	Gaudi: Simple vs. Composed Views
	Gaudi: Instance Level View
	Gaudi Summary
	Instrumentation
	References

