/033 Programmierung 2

Prof. O. Nierstrasz

Sommersemester 1998

Table of Contents

Table of Contents
C++ Programming Rules, Hints and Guidelines

. P2 — Introduction to C++
Essential C++ Texts
Overview

What You Will Be Expected To Learn
History

C++ Design Goals

C Features

C++ Features

“Hello World”

C++ Storage Classes
Memory Layout
Declarations and Definitions
Hello World Project
Compiling C++ Programs
Basic Makefile

Summary

2. A Taste of C++ — Comparison with Eiffel

Data Abstraction — Line Reverser Example
Eiffel Line Reverser

An Eiffel Stack Implementation

The (Hidden) Eiffel Stack Cells

A C++ Line Reverser

A C++ Stack Interface

A C++ Stack Implementation
Differences Between Eiffel and C++
A C++ Template Line Reverser

A C Line Reverser

A Recursive Line Reverser

A Perl Line Reverser

Some Timing Differences

<

©O© 00 ~NO O~ WN R

I i~ S R S S T
o uh wWNERO

17
18
19
20
21
22
23
24
25
26
27
28
29
30

Table of Contents

Summary

3. C++ Basic Language Features
Symbols
Keywords
Comments
Commenting Conventions
Built-In Data Types
Expressions
Operator Precedence and Associativity
C++ Arrays
Pointers
References
Strings
Assignment — Ivalues and rvalues
Statements
Enumeration Types
Functions
Summary

4. Decomposition and Recursion
Document Assumptions
Comment Selectively
Divide and Conquer
Recursion
Recursion — Pros and Cons
Iteration vs. Recursion
Binary Search
Binary Search — Recursive Solution
Records as Objects
Tail Recursion
Binary Search — Iterative Solution
Sorting
MergeSort Example

March 9, 1998

31

32
33
34
35
36
37
38
39
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63

Merge Sort

Merge

Refactoring Merge()
Optimizing MergeSort ...
MergeSort with a Fixed Buffer
A Faster MergeSort

Summary

5. Specifying Classes

Abstract Data Types and Invariants
Example: Tic Tac Toe

C++ Classes

Designing a Tic Tac Toe Game
Desired Interaction

The Tic Tac Toe Driver

Determining the Interface
Exceptions

Specifying the Interface

Instance Variables

Implementing the Constructor
Implementing the Game

Static Declarations

Constant Declarations

Playing the Game

Printing the Game

The Complete TicTacToe Interface
Summary

. Data Abstraction

The Run-time Stack

Stack as a Data Abstraction
Postfix Expressions

A Postfix Expression Interpreter
Stacks as Linked Lists

64
65
66
67
68
69
70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90
91
92
93
94
95

Table of Contents

Stacks, Queues and Linked Lists

Linked List Operations

Class Invariants

LList Declaration

Implementing List Methods

List Constructor and Destructor
Growing the List

Checking Pre-conditions

Implementing a Stack with a Linked List
Example: Balancing Parentheses
Parenthesis balancer

Implementing a Queue with a Linked List
The Dangers of Call by Value

Guard Against Shallow Copies
Summary

7. Managing Memory
Orthodox Canonical Form
Example: A String Class
First version of String.h
Default Constructors
Automatic and Dynamic Objects
Destructors
Copy Constructors
Other Constructors
Refactoring Common Code
Assighment Operators
Shallow and Deep Copying
Inline Functions
Using the Constructors
Implicit Conversion
Conditional Compilation
Operator Overloading
Overloadable Operators
Friends
IOStream Operators

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

Dynamic Memory Management
The Final String.h
Summary

. Inheritance

The Board Game
Interaction

Class Hierarchy

Uses of Inheritance
Polymorphism
Polymorphic Destruction
The BoardGame Interface
Virtual Members

Default Initializers

Arrays of arrays
Non-Virtual Functions
Using Virtual Functions
Defining Virtual Functions
Public Inheritance

Base Class Initialization
Keeping Score

Using Function Pointers
Using Static Functions
Implementation Inheritance
Summary

. Tools

Makefiles

Make Options

Description File Lines
Macros and Special Targets
Gomoku Makefile

Makefile for g++

Version Control

RCS

RCS Usage

Additional RCS Features

March 9, 1998

131
132
133

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

155
156
157
158
159
160
161
162
163
164
165

Debuggers

Using dbx

GUI Debuggers — CodeWarrior
Profilers

Using gprof

SNiFF+

Using SNiFF+

SNiFF+ Source Editor
SNiFF+ Hierarchy Browser
SNiFF+ Class Browser
Purify

Using Purify

Other tools

Summary

10. An Introduction to Java

Java

Java and C++ — Similarities and Extensions
Java and C++ — Simplifications
The “Hello World” Program
Packages

Java Basics

Classes and Objects

Garbage Collection
Inheritance

Dynamic Binding

Downcasting

Feature Visibility

Modifiers

Exceptions

Defining Exceptions

Multiple Inheritance

Interfaces

Overriding and Overloading
Arrays

Arrays and Generics

ii.

166
167
168
169
170
171
172
173
174
175
176
177
178
179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

Table of Contents

The Java API 201
Applets 202
The Hello World Applet 203
Frameworks vs. Libraries 204
Standalone Applets 205
Events 206
The Scribble Applet 207
Responding to Events 208
Running the Scribble Applet 209
Summary 210
11. Design Rules 211
Basic Rules 212
Deleting Objects 213
Running out of Memory 214
Constructors 215
Initialization 216
Virtual Destructors 217
Assignment 218
Assignment and Inheritance 219
Classes and Functions 220
Class Interfaces 221
References and Values 222
Data Accessibility 223
Const Member Functions 224
Overloading vs. Default Parameters 225
Ambiguous Overloading 226
Common Errors 227
Summary 228

March 9, 1998

P2 — C++ Iv.

C++ Programming Rules, Hints and Guidelines

C++ Basic Language Features - - - - - - = - = = - - - - o - o - oo oo oo oo oo oo oo oo oo h oo o e oo oo oo 32
Use // comments exclusively within functions so that any part can be commented out USING COMMENt PAIIS.ttt e e e 35
Use meaningful names to make your code as self-documenting as poSSible.o e 36
DON'T use comments to restate what is 0bvious from the SOUICE COOE. e e e e e e 36
DO use comments to improve the readability Of YOUr Programs. e e 36
Avoid cryptic expressions! Use comments to explain MySterioUS COUE.ottt it e e e e e e e e e e e e e e e 38
References should generally be preferred to pointers eXCept When:o e e 43
It is generally better to use a C++ string class instead of buUilt-in Char arrays!. e e e e 44

Decomposition and ReCUrsion - - - - - = = = = = = = = o o - . o oo oo oo oo oo oo oo oo oo oo oo oo e o oo 50
Use descriptive names for variables; use short names only when their purpose is obvious from the context. e 51
Always state explicitly all pre- and PoSt-CONAItIONS. e 51
DocumMeENt All BSSUMIPLIONS. . . . o ot ottt e e e e et e e e e e e e 51
Avoid making assumptions that You Can't CheCK! 51
Avoid complex or cryptic code; write code that is self-doCUmeNnting. e 52
Use comments to explain any code that is not Self-doCUMENtING.o e e e e 52
Ensure your programs are correct before you try 10 Optimize them. e 52
Never try to optimize code that is not a proven source of System INEffiCIENCY. e e e e e 52
If possible, check your assumptions, and raise exceptions when they are violated. 54
If a problem is inherently recursive, implement a correct recursive solution before deciding whether a non-recursive solutionisbetter. 55
A function or procedure should always have a clear responsibility; promote readability by decomposing complex algorithms into helper functions. 64
State loop invariants explicitly, and check that they hold through all execution paths. e e e 65
Eliminate duplicate code through refactoring Or reOrganiZiNg. oottt it et et e e e e e e e e e e e e e e 66

Specifying Classes - - - - - - - - - - - - - - - - - e o o oo oo oo oo o o oo e oo o oo e oo oo oo oo - - 71
Prototyping strategy: always work with a running, if incomplete program, and incrementally “grow” the full version.. 77
Describe services at highest level of abstraction possible. Determine who is responsible for what!. e 78
Exceptions should only be used to signal abnormal situations, not normal flow of CONtrol.. e 79
Use symbolic names and enumerated types to make your code as self-documenting as posSible. e 81

Data Abstraction - - - - - - - - - - - - - o o o e e o o o oo e e e o o e e e o oo e e e e e e o oo e e oo a oo oo oo - - 90
Always encapsulate data structures as data abStraCtioNs. e e 92
A method should always do one thing well; don’t mix Up reSPONSIDIlTIES. oo e 100
Methods should be Short and asy 10 FEAU.ot e e e e 100
Declare a private copy constructor, if your objects should not be passed by value. e 109

Managing Memory- - - - - - = - - = = = & - - - - o - oo oo oo oo oo oo - o oo - o - s oo oo o oo oo oo oo 111
Use the orthodox canonical form for any non-trivial class whose objects will be copied or assigned t0. e 112
Decide what your class invariant is and make sure that each constructor correctly establishes the invariant. 115
If you use new, make sure that there will be exactly one matching deletel 117
Destructors should deallocate all memory belonging to an object’s private State..o e 117
Clearly document whether helper functions assume or ensure Class INVariants! e e e e e e e 120

Universitat Bern

P2 — C++

An assignment operator should always test for CoOpYIiNg Of Self 121
Don’t bother declaring inline functions unless (or until) you can be sure you will get a real improvement in performance. it . 123
Short, frequently called functions may be good candidates for INlNING. e 123
Don’t worry too much about unnecessary copying, but be aware of its overhead in computationally intensive code! 125
INheritance - - - - - = - = = = = = o o - o o e o o L oo oo oo oo o h o oo oo h oo m oo o oo oo 134
A subclass should only redefine a member function if it has been declared virtuall e 142
Be sure that the implicit signatures of functions with default initializers do not overlap with those of other declared functions! 143
e o] = R R T 155
Always define makefiles, even for your MOSt triVial PrOJECES. oot 157
You should use a version control system for any project that is non-trivial, developed by a team, or delivered to multiple clients. 162
Use a debugger whenever you are unsure why your program is NOt WOTKING.ttt et et e e e e e e e e e e e e e e e 166
Use a profiler to gain insight into where your program is spending most Of itS time. e 169
Always use an integrated programming environment if one is available! 171
Use purify (or an equivalent utility) while developing C++ programs to catch errors in managing memory.ttt e e e e e e 176
Anntroductionto Java - oo oo oo oo oo oo oo - oo oo oo oo oo - oo oo oo 180
Design Rules - - - - - - - - - - - o - o o o o o o e o e o e o e o o o o o oo o o e o e o o oo o oo oo oo oo - oo oo - 211
Use const andinline instead of #define 212
Prefer iostream.h tostdio.h. 212
Use the same form in corresponding callstonewand delete 213
Call delete 0N pointer MEMDbDErS IN AESIUCIONS oo ettt e e e e e e e e e e e e e 213
Check thereturnvalue Of NEW e e e e 214
Define a copy constructor and an assignment operator for classes with dynamically allocated memory 215
Prefer initialization to assigNMeENt iN CONSIIUCIONS oottt e e e e et e e e e e e e e e e e e e e e e e e e 215
List members in an initialization list in the order in which they are declared e 216
Make destructors Virtual in Dase ClasSSESot e 217
Have operator= return areference to *this. 218
Check for assignment to self in operator=. e 218
Assign to all data members in Operator= 219
Differentiate among member functions, global functions and friend fUNCLIONS. e e 220
Avoid data members in the PUDlIC INtEIaCE e 221
Use CoNSt Wherever POSSIDIE. o e e 221
Pass and return objects by reference instead Of By ValUe e e e 222
Don't try to return a reference when you MUSE retUrn @n ODJECT.ottt e e e e e e e e e 222
Never return a reference to a local object or a dereferenced pointer initialized by new within the function. e 223
Avoid member functions that return pointers or references to members less accessible than themselves. 223
Avoid returning “handles” to internal data from const member fUNCHONS 224
Choose carefully between function overloading and parameter defaultingo o 225
Avoid overloading on a pointer and a NUMEIICAl Ty P8ottt e e e e e 226

Universitat Bern

P2 — C++ 1.

1. P2 — Introduction to C++

Lecturer: Prof. Oscar Nierstrasz
Schiutzenmattstr. 14/103, Tel. 631.4618

Secretary: Frau |. Huber, Tel. 631.4692
Assistants: Franz Achermann, Stefan Kneubuehl, Matthias Scheidegger
WWW: http://www.iam.unibe.ch/~scg

Principle Text:
[0 Stanley B. Lippman, C++ Primer, Second Edition, Addison-Wesley, 1991.

Universitat Bern P2 — Introduction to C++

P2 — C++ 2.

Essential C++ Texts

[0 Magaret A. Ellis and Bjarne Stroustrup, The Annotated C++ Reference Manual,
Addison-Wesley, 1990.

[0 Marshall P. Cline and Greg A. Lomow, C++ FAQs, Addison-Wesley, 1995.
[0 Scott Meyers, Effective C++, 2d ed., Addison-Wesley, 1997.

[0 James O. Coplien, Advanced C++: Programming Styles and Ildioms, Addison-
Wesley, 1992.

[0 Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design
Patterns, Addison Wesley, Reading, MA, 1995.

[1 David R. Musser and Atul Saini, STL Tutorial and Reference Guide, Addison-
Wesley, 1996.

Universitat Bern P2 — Introduction to C++

P2 — C++
Overview
1. 30.03 Introduction
2. 06.04 A Taste of C++ — Comparison with Eiffel
13.04 Easter Monday — no lecture
3. 20.04 C++ Basic Language Features
4, 27.04 Decomposition and Recursion
5. 04.05 Specifying Classes
6. 11.05 Data Abstraction
7. 18.05 Managing Memory
8. 25.05 Inheritance
01.06 Whit Monday — no lecture
9. 08.06 Tools
10. 15.06 An Introduction to Java
22.06 Final Exam

Universitat Bern

P2 — Introduction to C++

P2 — C++ 4.

What You Will Be Expected To Learn

How to implement abstract data types with C++ classes

How to use assertions and exceptions to develop correct programs
How to use the C++ type system effectively

How to use inheritance to support polymorphism and code reuse
How to manage memory effectively

How to organize C++ programs into source and header files

How to use makefiles, debuggers and other basic tools

(N O I O O I B

Universitat Bern P2 — Introduction to C++

P2 — C++

History
FORTRAN
Algol ,
1960 —~ -~~~ = —1 A0 | [cosoL | Lisp |-
Simula 67 UL #
Algol 68
1970 [galiak 72] ~ o~ [c |V - 7 Prolog
Pascal ;
Clu Modula-2
1980 | Smalltalk 80\ — - - - /= > > __ _X_ ______ ~_
++
Objective C ¢ Ada Oberon
Self Eiffel Modula-3
190 """\ """ """ "~~~ [~ T T T T T T T T T T T T T To
ANSI| C++
LEIYE Ada 95

Universitat Bern

P2 — Introduction to C++

P2 — C++ 6.

C++ Design Goals

“C with Classes” designed by Bjarne Stroustrup in early 1980s; grew into C++
[0 Originally a translator to C
[0 Difficult to debug and potentially inefficient
[0 Mostly upward compatible extension of C
0 “As close to C as possible, but no closer”
[0 Stronger type-checking
[0 Support for data abstraction
[0 Support for object-oriented programming
[0 Run-time efficiency
[0 Language primitives close to machine instructions
[0 Minimal cost for new features
Conflicts:

[0 Modern compiler optimization techniques are hard to apply because of low-
level features (e.g.. arbitrary memory pointers)

[0 Software engineering principles require rigid discipline due to availability of
iInherited C features

Universitat Bern P2 — Introduction to C++

P2 — C++ /.

C Features

C was developed in 1972 by Dennis Ritchie and Brian Kernighan as a systems language
for Unix on the PDP-11. A successor to B [Thompson, 1970], in turn derived from BCPL.

C was designed as a general-purpose language with a very direct mapping from data
types and operators to machine instructions. C can be seen as a “high-level assembler.”

[0 C preprocessor: file inclusion, conditional compilation, macros

[0 Data types: char, short, int, long, double, float

[0 Type constructors: pointer, array, struct, union

[1 Basic operators: arithmetic, pointer manipulation, bit manipulation ...
[0 Control abstractions: if/felse, while/for loops, switch, goto ...

[0 Functions: call-by-value, side-effects through pointers

[0 Type operations: typedef, sizeof, explicit type-casting and coercion

Prime advantage: programmers have direct control over the execution cost of programs
Prime disadvantages: few opportunities for optimization; hard to debug

Universitat Bern P2 — Introduction to C++

P2 — C++

C++ Features

C++ is an evolving language ...

C with Classes
[0 Classes as structs
[Inheritance; virtual functions
[Inline functions
C++ 1.0 (1985)
[0 Strong typing; function prototypes
[0 new and delete operators
C++ 2.0
[0 Local classes; protected members
[0 Multiple inheritance
C++ 3.0
0 Templates
[0 Exception handling
ANSI C++
[0 Proposed standard

Universitat Bern

P2 — Introduction to C++

P2 — C++ 9.

“Hello World”

Pre-processor directive: look in the A comment: may also be written:
system include directory for the [

header file “iostream.h” declaring the My first C++ program!
interfaces to the standard 1/O library. *

String constant:

) ... #include <iostregm.h>
Function definition: _ an array of 1?,’
there is alwavs a L !/ My first C++ program! chars (not 12!)
y - y TS . .
main” function VOId main(void)

cout << "Hello world!” << endl;

/ AN f

|

Global variable: cout is the Operator overloading: two different
“standard output stream” << operators are disambiguated by
their argument types!

Universitat Bern P2 — Introduction to C++

P2 — C++

C++ Storage Classes

C++ requires that you explicitly manage storage space for objects

1. Static
[1 static objects exist for the entire life-time of the process
[0 scope may be local, global or class-specific

2. Automatic
[0 only live during function invocation on the “run-time stack”

3. Dynamic

[0 dynamic objects live between calls to new and delete
(or malloc and free)

0 their lifetimes typically extend beyond their scope

10.

Universitat Bern P2 — Introduction to C++

P2 — C++

11.
‘ Memory Layout
N\
\ 5o g0 | f0 main()
— : S
a O
N\ @

“Text” Static Heap Stack

The address space available to a running process consists of (at least) four conceptually
different parts:

1. Text: the executable program text (not writable)

2. Static: static global data

3. Heap: dynamically allocated global memory (grows upward)

4. Stack: local memory (stack frames) for function calls (grows downward)

The total number of memory pages available to a process varies at run-time according
to need (i.e., function calls and requests to increase the heap).

Stack memory is automatically reclaimed when a function call returns;
heap memory must be explicitly managed by the program!

Universitat Bern P2 — Introduction to C++

P2 — C++ 12.

Declarations and Definitions

[0 A declaration of a variable (or function) announces that the variable (function)
exists and is defined somewhere else.

[0 A definition of a variable (function) causes storage to be allocated
[0 In C++ a variable must be declared or defined before it is used

C++ does not support an explicit module concept — instead one may break a program
into separate source and header files. The source files typically contain definitions that
may be separately compiled. The header files contain declarations that allow other parts
of the program to know about and use the variables and functions exported by a given

“module.”

extern int size; /l declaration

void hello(void); Il declaration (function prototype)
int size; /l definition

void hello(void) { /l definition

cout << “hello!” << endl;

}

Universitat Bern P2 — Introduction to C++

P2 — C++

Hello World Project

pProg.cpp contains main program;
#include “hello.h” Il needed to declare hello()

int main(void)
{
hello();
return O;

hello.h declares all functions defined and exported from hello.cpp:

void hello(void); Il

hello.cpp contains definitions of library functions:

#include <iostream.h> /l needed to declare cout and end|
#include “hello.h” /! needed to declare functions defined here
void hello (void)

{

cout << “hello world” << endl;

}

13.

Universitat Bern

P2 — Introduction to C++

P2 — C++ 14.

Compiling C++ Programs

Single file compilation:
[0 CC prog.cpp — generates executable a.out
[0 CC -0 prog prog.cpp — generates executable prog
Multi-file compilation:
[0 CC -0 prog prog.cpp hello.cpp
Library pre-compilation:

[0 CC -c hello.cpp — generates object code hello.o
[CC -0 prog prog.cpp hello.o — compiles prog.cpp and links hello.o
includes |~ Pro9:cPP ~ T Prog.o \
// prog
¥
hello.h < - +- hello.cpp —> hello.o /T ¥
inking
compilation

Header files contain declarations needed to link separately compiled “modules”

Universitat Bern P2 — Introduction to C++

P2 — C++ 15.

Basic Makefile

A basic makefile consists of comments, macros, dependency lines and commands:
Version of the C++ compiler; link and compile options:

CXX =CC
LFLAGS = -L/opt/SUNWSspro/SC3.0.1/lib
CFLAGS =-0

Object files needed to create prog:
PROGO = prog.o hello.o
prog is made by linking together the object files:

prog : ${PROGO}
${CXX} ${LFLAGS} ${PROGO} -0 prog

prog.o and hello.o each depend on a source file and a header file:

prog.o : prog.cpp hello.h

${CXX} ${CFLAGS} -c prog.cpp
hello.o : hello.cpp hello.h

${CXX} ${CFLAGS]} -c hello.cpp

clean :
rm -rf *.0

Universitat Bern P2 — Introduction to C++

P2 — C++ 16.

summary

You should know the answers to these questions:
[0 What were the design goals of C++?
What improvements did C++ introduce to C?
What is an “include file”?
What is the structure of a C++ program?
What kinds of storage classes exist in C++, and what are they for?
What is meant by “separate compilation”?

N O O O

Can you answer the following questions?

When is C++ a good (resp. bad) choice to program in?

What is meant by “overloaded operators”?

Why does C++ require functions to be declared before they are used?
What are the dangers of using new and delete ?

What are positive and negative aspects of separate compilation?

N O O O B B

Universitat Bern P2 — Introduction to C++

P2 — C++ 17.

2. A Taste of C++ — Comparison with Eiffel

]

Example: reversing lines of a file
Implementation in Eiffel using a dynamic stack
Equivalent implementation in C++

[0 Differences between Eiffel and C++
Software reuse with templates

C implementation (without data abstraction)
Recursive implementation (functional paradigm)
Perl implementation (specialized language)
Timing differences

1 [

N O O O

Universitat Bern A Taste of C++ — Comparison with Eiffel

P2 — C++

18.

‘ Data Abstraction — Line Reverser Example

T’'was brillig,

and gimble in

the wabe
and the slithy e RN
toves did gyre / P

Pop

and gimble in

toves did gyre

<@ | T'was brillig

<@ |and the slithy | «— @ [toves did gyre

the wabe :
and the slithy
T’'was brillig
We can implement our Stack
abstraction as a linked list of Strings.
size =3

Universitat Bern

A Taste of C++ — Comparison with Eiffel

P2 — C++

Eiffel Line Reverser

-- File: erev.e

-- Reverses the order of lines in the input
-- using a dynamic stack.
-- The stack is implemented as a linked list.

class EREV

creation { ANY }
make

feature { NONE }

Universitat Bern

end --

19.

llioStack.make

-- Push input lines onto stack
from
io.readline
until
io.input.end_of_file
loop
ioStack.push(io.last_string)
io.readline
end

-- Pop them off in reverse order
-- and print them all
from
until ioStack.empty
loop
io.putstring(ioStack.top)
i0.new_line
ioStack.pop
end
end -- make
class EREV

A Taste of C++ — Comparison with Eiffel

P2 — C++

20.

An Eiffel Stack Implementation

-- File: dynamicStack.e
class DYNAMICSTACKT]

creation { ANY }
make

feature { NONE }

topCell : MYCELL [T]
size : INTEGER

make is
do
size := 0 ; 'topCell.make
end -- make
feature { ANY }
count: INTEGER is
do
Result := size
end -- count
empty : BOOLEAN is
do

Result := (size = 0)
end -- empty

top:Tis
require
not empty
do
Result := topCell.value
end -- top

Universitat Bern

push(x:T)is

local

do
size :=size + 1
IlnewCell.make
newCell.setValue(deep_clone (x))
newCell.setNext(topCell)
topCell := newCell

ensure
not empty
deep_equal(top,x)
size =oldsize +1

end -- push

pop is

require
not empty

do
-- don’t deference if empty!
topCell := topCell.next
size :=size -1

ensure
size =old size - 1

end-- pop

invariant
0 <= size

end -- class DYNAMICSTACK

A Taste of C++ — Comparison with Eiffel

P2 — C++

The (Hidden) Eiffel Stack Cells

-- File: mycell.e
class MYCELLT]

-— structure for implementation of linked lists
-— NB: an exception will be raised if next is dereferenced

— without first being set

creation { DYNAMICSTACK }
make

feature { NONE }

make is
do
end -- make

feature { DYNAMICSTACK }
value : T
next : like Current

setValue (v:T)is
do

value :=v
end -- setValue

setNext (n: like Current) is
do
next :=n
end -- setNext

end -- class MYCELL

Universitat Bern

21.

A Taste of C++ — Comparison with Eiffel

P2 — C++

I
I
I
I
I

A C++ Line Reverser

File: cpprev.cpp

Reverses the order of lines in the input
using a dynamic stack.
The stack is implemented as a linked list.

#include <iostream.h>
#include <exception.h>
#include "dstack.h"

const int bufSize = 256;

Universitat Bern

22.

int main(void)

{
DStack ioStack;

char* buf;.

try {
buf = new char[bufSize];

Il Push input lines onto stack

while (Icin.getline(buf, bufSize).eof()) {
ioStack.push(buf);
buf = new char[bufSize];

}

Il Pop them off in reverse order
Il and print them all
while (ioStack.count() != 0) {
cout << ioStack.top() << endl;;
delete [] ioStack.top();
ioStack.pop();
}
}
catch (xmsg & err){
cout << "Exception: "
<< err.why() << endl;
return -1;

}

return O;

A Taste of C++ — Comparison with Eiffel

P2 — C++

A C++ Stack Interface

Il File: dstack.h

I

Il An absolutely minimal stack interface
Il using linked lists.

#ifndef DSTACK_H
#define DSTACK_H

#include <exception.h>
typedef char* Item; //

class DStack
{

public:
DStack(void);
~DStack(void);

Il inline functions:
int count(void) { return size; };
int empty(void) { return size == 0; }

Redefine as necessary

Il NB: pop() does not return a value
Il use top() before pop() to retrieve
Il the value

void push(item item) throw();
Item top(void) throw(xmsg);
void pop(void) throw(xmsg);

Universitat Bern

private:

Il NB: The Cell interface is only

Il visible within DStack.

class Cell

{

public:
ltem value;_
Cell * next,_

h

Cell* topCell; _

int size;_

|
#endif

23.

A Taste of C++ — Comparison with Eiffel

P2 — C++ 24.

A C++ Stack Implementation

Il File: dstack.cpp
I
Il An absolutely minimal stack implementation

Il using linked lists.
Il push makes a new top cell holding the new

#include "dstack.h Il value and pointing to the existing cells:
I/l constructor for an empty stack: void
Dstack::DStack (void) DStack::push (Item item) throw()
: size(0), topCell(0) {
{ Cell* newCell;_
} newCell = new Cell;

newCell->value = item;

Il cells:
/I destructor pops all cells newCell->next = this->topCell;

E ______ this->topCell = newCell;

while (Ithis->empty()) { Slze++;

this->pop(); }

} Il deallocates the top cell and resets the top:
} void
I/l this is the only way to get values Dstack::pop (void) throw(xmsg)
Il from the stack: { e
ltem if (this->empty()) {
DStack::top (void) throw(xmsg) } throw(xmsg("Can’t pop an empty stack!"));
{

Cell* oldTop = topCell,
topCell = topCell->next;
delete oldTop;

size—;

if (this->empty()) {
throw(xmsg("Empty stack has no top!"));
}

return this->topCell->value;

Universitat Bern A Taste of C++ — Comparison with Eiffel

P2 — C++

25.

Differences Between Eiffel and C++

Eiffel

C++

“Pure” object-oriented language

Hybrid language (global variables ...)

Uniform type system

Baroque type specifications
Header files; declaration vs. definition
Explicit type casting

Generic types; “like current” type

Templates (purely syntactic)

Feature visibility

Public/private/protected declarations;
“friends”; nested classes

Automatic garbage collection
Only object creation is specified

Explicit delete operator, destructors
Can implement own memory management

Safe object identifiers

Object/pointer distinction; pointer arithme

tic

Assertions to support “design by contract”

Exception handling; exception values

Automatic inlining

Explicit inlining, virtual declarations

Myth: C++ is inherently more “efficient” than Eiffel.
Fact: C++ gives the programmer more control than Eiffel.

Universitat Bern

A Taste of C++ — Comparison with Eiffel

P2 — C++

A C++ Template Line Reverser

Il File: rwrev.cpp
I
Il Rogue Wave template implementation of line reverser.

#include <iostream.h>
#include <exception.h>

#include <rw/cstring.h>
#include <rw/tstack.h>
#include <rw/tvdlist.h>

typedef RWTStack<RWCString, RWTValDIlist<RWCString> > |OStack;

int main (void)

{
RWCString buf;
IOStack ioStack;
Il Push input lines onto stack
while (buf.readLine(cin, FALSE)) // don’t ignore white space!
{
ioStack.push(buf);
}
Il Pop them off in reverse order and print them all
while (ioStack.entries() != 0)
{
cout << ioStack.pop() << endl;;
}
return O;
}

Universitat Bern

26.

A Taste of C++ — Comparison with Eiffel

P2 — C++

/*

*/

A C Line Reverser

File: crev.c

A C implementation of the line reverser program.

#include <stdlib.h>
#include <stdio.h>

int

{

main_(void)

const int bufSize = 256, stackSize = 32000;

char* buf_** stack;_
int top=0;

stack = (char**) malloc(sizeof(char*) * stackSize);
buf = (char*) malloc(sizeof(char) * bufSize);
stack[top] = buf;

while (fgets(buf, bufSize, stdin) = NULL) {
if (top>stackSize) {
fprintf(stderr, "frev: buffer overflow!"\n");
exit(-1);
}
buf = (char*) malloc(sizeof(char) * bufSize);
stack[++top] = buf;

Universitat Bern

27.

/~k
don’t use last allocated
top since not null-terminated
*/
free(stack[top—]);
while (top>=0) {
printf("%s", stack[top]);
free(stack[top—]);
}

return O;

A Taste of C++ — Comparison with Eiffel

P2 — C++ 28.

A Recursive Line Reverser

Il File: hrev.cpp
Il A hybrid (recursive) line reverser.

#include <iostream.h>
#include <rw/cstring.h>

void recrev(void);

int main (void)

{
recrev();
return O;
}
void recrev()
{
RWCString buf;
if (buf.readLine(cin, FALSE)) { I read a line
recrev(); I reverse the rest of the input
cout << buf << endl; Il now output this line
}
}

Universitat Bern A Taste of C++ — Comparison with Eiffel

P2 — C++ 29.

A Perl Line Reverser

#! Jusr/local/bin/perl

#

File: prev

#

A Perl line reverser

while (<>) { # or simply: @file = <>;
push(@file, $_);
}

while ($#file>=0) {
print pop(@file);
}

END

Universitat Bern A Taste of C++ — Comparison with Eiffel

P2 — C++ 30.

Some Timing Differences

Input file: 20960 lines, 366167 characters

Real Time User Time System Time
rwrev (RW Templates) 4.6 3.3 1.1
erev (Eiffel) 4.6 3.2 1.1
hrev (C++) 4.3 2.9 1.2
cpprev (C++) 3.2 1.6 1.4
prev (Perl) 2.0 1.2 0.5
crev (C) 1.9 0.9 0.7

What are the reasons for the differences in execution speed?
(Probably not what you think!)

Universitét Bern A Taste of C++ — Comparison with Eiffel

P2 — C++ 31.

summary

You should know the answers to these questions:

[0 What are the essential differences between Eiffel and C++7?
What is a “function prototype”?
What is the difference between a declaration and a definition?
What is a header file for?
What is a “destructor” and why do we need them?

N O O B

Can you answer the following questions?
[0 What does it mean to allocate objects “on the stack” or “on the heap”?
[0 When is an object paradigm better than a procedural or functional paradigm?

[0 What are the tradeoffs between programmer productivity and program
performance?

Universitat Bern A Taste of C++ — Comparison with Eiffel

P2 — C++ 32.

3. C++ Basic Language Features

C++ is a complex and evolving language.
This lecture gives an overview of the basic language features.

Symbols and Keywords

Comments and commenting conventions
Built-in data types

Expressions and operator precedence
Arrays, pointers, references and strings
Assignment — lvalues and rvalues
Statements and control flow
Enumeration types

“Functions” (i.e., procedures)

(N O O O O

Not covered yet:
[0 classes, inheritance, exceptions, templates, overloading ...

Universitédt Bern C++ Basic Language Features

P2 — C++

Symbols

33.

C++ programs are built up from symbols:

[] Names:

[Keywords:
[] Constants:

[0 Operators:

[1 Punctuation:

Universitat Bern

main, IOStack , store , x10
{ alphabetic or underscore } followed by
{ alphanumerics or underscores }

const ,int ,if , throw

"hello world" 'a' , 10, 077, Ox1F, 1.23e10
+1 >>7) *1 &
{ ’ } [|

C++ Basic Language Features

P2 — C++

Keywords

asm continue float
auto default for
break delete friend
case do goto
catch double if
char else inline
class enum int
const extern long

34.

new signed try

operator sizeof typedef
private static union

protected struct unsigned

public switch virtual
register template void

return this volatile

short throw while

C++ has a large number of keywords, including all those inherited from C.
Italic keywords are use in type declarations. Keywords in bold affect control flow.

Underlined

Universitat Bern

keywords are used in statements and expressions.

C++ Basic Language Features

P2 — C++ 35.

Comments

Two styles:
/~k
* C-style comment pairs are generally used

* for longer comments that span several lines.
*/

/I C++ comments are useful for short comments to end-of-line

Be careful! Comment pairs do not nest!!!
[* Don’t need these variables for now:

int opt; /* keep track of the current options */
char * optDesc;/* a description of the current option */

*
Only the first of the two variables has been commented out!

[0 Use // comments exclusively within functions so that any part can be commented out
using comment pairs.

Universitédt Bern C++ Basic Language Features

P2 — C++ 36.

Commenting Conventions

Use comments for:

1. each source file stating, e.g., file name, purpose, author, manual references,
hints for maintenance, etc.

2. classes and templates

3. every non-trivial function stating its purpose, algorithm used (unless this is
obvious), and any assumptions about its environment

4. global variables
5. any non-obvious or non-portable code
6. little else

[0 Use meaningful names to make your code as self-documenting as possible.
0 DON’T use comments to restate what is obvious from the source code.

[0 DO use comments to improve the readability of your programs.

[Stroustrup, C++ 2nd edn., p. 105]

Universitédt Bern C++ Basic Language Features

P2 — C++ 37.

Built-In Data Types

Data type | No. of bits Minimal value Maximal value
signed char 8 -128 127
signed short 16 -32768 32797
signed int 16 /32 -32768/-2147483648 32767 | 214748647
signed long 32 -2147483648 214748647
unsigned chaf 8 0 25%
unsigned short 16 0 6553p
unsigned int 16 / 32 0 65535/42949672P5
unsigned long 32 G 4294967295

Data type | No. of bytes Min. exponent Max. exponent Decimal accdnracy
float 4 -38 +38 6
double 8 -308 +308 15
long double 8/10 -308/-4932 +308/4932 15 /19

Universitat Bern

C++ Basic Language Features

P2 — C++

Expressions

int a, b, ¢
double d;
float f:

a=b=c=7; /l
a=(b==7); Il
b=la; Il
a = (b>=0) && (c<10); /I
a*= (b +=c++), I
a=11/4; Il
b=11% 4; Il
d=11/4; /l
f=11.0/4.0; Il

a = bjc; /l
b =a’c; Il
c = a&b; /1l
b = a<<c; /l
a = (b++,c--); /l

b = (a>c)?a:c; /l

assignment:
equality test:
negation:
logical AND:
increment:

integer division:
remainder:

bitwise OR:
bitwise XOR:
bitwise AND:
left shift:

comma operator:

38.

a==7; b == /i Cc ==
a==1(7==7)
b==0(1)
a == 1 ((0>=0)&&(7<10))
a==17; b == 7;Cc==
a==
b ==
== 2.0 (not 2.75!)
f==2.75
a == 11 (03/010)
b == 3 (013"010)
¢ == 3 (013&03)
b == 88 (11<<3)
a==3b==89 c==

conditional operator:b == 3 ((3>2)?3:2)

[Avoid cryptic expressions! Use comments to explain mysterious code.

Universitat Bern

C++ Basic Language Features

P2 — C++ 39.

Operator Precedence and Associativity

Level Operator Function
17R :: global scope (unary)
17L > class scope (binary)
16L > member selectors
[] array index
§) function call
0 type construction
15R sizeof size in bytes
++, -- increment, decrement
~ bitwise NOT
! logical NOT
+, - unary plus, minus
* & dereference, address-of
§) type conversion (cast)
new, delete free store management
14L > member pointer selectors

Universitédt Bern C++ Basic Language Features

P2 — C++

Level Operator Function
13L * 1, % times, divide, remainder
121 +, - add, subtract
11L <<, >> bitwise shift left/right
10L <, <=, > >= comparisons

oL ==, I= equality, inequality

8L & bitwise AND

7L A bitwise XOR

6L | bitwise OR

SL && logical AND

4L | logical OR

3L ?: arithmetic if (ternary)

2R =, *=, /=, %=, assignment operators

+=, -=, <<=, >>=¢|
&=, |=, "=
1L : comma operator (eval left to right)

Universitat Bern

40.

C++ Basic Language Features

P2 — C++

C++ Arrays

Arrays are fixed sequences of homogeneous elements
Type a[n]; defines a one-dimensional array a in a contiguous block of

[]

N N B

(n*sizeof(Type)) bytes

n must be a compile-time constant

Arrays bounds run from 0 to n-1

Size cannot vary at run-time

No range-checking is performed at run-time:
{

int a[10];
for (int i=0; i<=10; i++)
alij=0; 1/ disaster! a[10] is not part of the array!

}
Can be initialized at compile time:

int eightPrimes[8] ={2, 3,5,7, 11, 13,17, 19 };
int idMatrix[2][2] ={{1,0},{0,1}}

Universitat Bern

41.

C++ Basic Language Features

P2 — C++ 42.
Pointers
A pointer is a variable that can hold the address of another variable:
int i=10;
int* ip=&i;
[0 Pointers can be used to indirectly access and update variables:
*Ip = *ip + 1; /l increment i
[0 Array variables are treated as pointers to their first element
int* ep = eightPrimes;
[0 Pointers can be treated like arrays:
ep[7] = 23; Il update 8th element of eightPrimes|]
[1 But have differents sizes:
sizeof(eightPrimes) == 32 /l 8 *4 bytes
sizeof(ep) == Il pointer is 4 bytes
[0 new and delete respectively return and operate on object pointers
[0 A pointer to an unknown data type can be declared void*
void * vp =ep;
[0 But must be typecast to the appropriate type before it is used:
((int*)vp)[7] = 29; /l update 8th element of eightPrimes[]

Universitédt Bern C++ Basic Language Features

P2 — C++ 43.

References

A reference is an alias for another variable;

int 1=10;
int& ir=i
ir=ir+1; Il increment i
[0 Once initialized, references cannot be changed
[References are most useful in procedure calls to avoid the overhead of passing

arguments by value, without the clutter of explicit pointer dereferencing

void reflnc(int & n) Il compare with Pascal’s “var” declaration
{
n=n+1; Il increment the variable that n refers to

}

[0 References should generally be preferred to pointers except when:
[J using arrays
[0 manipulating dynamically allocated objects (i.e., using new)
[1 avariable must range over a set of objects

Universitédt Bern C++ Basic Language Features

P2 — C++

Strings

44.

A string is a pointer to a NULL-terminated (i.e., \O’) character array:

char* cp;

char * hi ="hello";
char hello[6] = "hello";
cp = hello;

cp[l] ="u’;

cp[4] = NULL,;

sizeof(cp) ==
strlen(cp) ==
sizeof(hi) ==
strlen(hi) ==
sizeof(hello) ==
strlen(hello) ==

I

I

I
I
I

I
I

I
I

I
I

I

uninitialized string (pointer to a char)
initialized string

initialized char array

cp now points to hellof]

cp and hello now point to “hullo”
cp and hello now point to “hull”

a char pointer
four characters in string “hull”

another char pointer
five characters in string “hello”

array of six chars
four characters in string “hull”

Various standard string manipulation routines (including strlen() and strcpy()) are
declared in the header file <string.h> (usually in the directory /usr/include)

[1 It is generally better to use a C++ string class instead of built-in char arrays!

Universitat Bern

C++ Basic Language Features

P2 — C++ 45.

Assignment — Ivalues and rvalues

An assignment expression is valid only if the left hand side is a modifiable Ivalue:

lvalue = rvalue

0 “An ‘object’is a region of storage”
0 “An Ivalue is an expression referring to an ‘object’ or function”

[e.g., variable names, *ptr, array[n]
0 “An lvalue is modifiable if it is not a function name, an array name or const ”

int X, y[10];

X=X+1; /l ok -- X is a variable name

X+1 = X; Il not ok -- x+1 does not refer to storage
*(y+1) = Xx; /l ok -- same as: y[1] = x;

Universitédt Bern C++ Basic Language Features

P2 — C++ 46.

Statements

Expressions and Blocks:

{int a=7;at+;} /l a block is a statement with its own scope
lteration:
for (i=0;i<n;i++){... }/ init, control and update are any expressions
while (notDone){...} // can also break out of or continue loop
do{..} while (notDone);// loop executed at least once
Conditional:
if (a>b){..} Il NB: any int can be used as a boolean
else {..} Il else part is optional
Multi-case statement:
switch (i) { /l integer or expression that may be cast to int
case 0: x=0; Il constant expression to compare to
break ; Il break to end of block (else fall through)
case 1. /l can group cases together
case 2. x=1,;
y=2;
break ;
default :x=-1; Il at most one of these
}

Universitédt Bern C++ Basic Language Features

P2 — C++ 47.

Enumeration Types

An enumeration type declares a set of symbolic integer constants:
enum Colour { red, green, blue }; /l red == 0; green == 1; blue == 2

An instance of an enumeration type can (normally) only be set or tested:

Colour c;
c =red; Il ok; but not: ¢ = 0 etc.
cout << “colour “ <<int(c) << *is*; /I can convert to int if necessary
switch (c) {
case red :
cout << “red” << endl;
break;
case green :
cout << “green” << endl;
break;
case blue :
cout << “blue” << endl;
break;
default : Il should never happen!
cout << “unknown colour!” << endl;
break;
}

Universitédt Bern C++ Basic Language Features

P2 — C++ 48.

Functions

Functions must be either declared or defined before they are used

int fact (int n); Il declaration only; parameter name n is optional
int fact (int n) I/l definition
{
if (n==0)
return 1; Il obligatory if return type is not void
else
return n*fact(n-1); // NB: return value may be an expression
}

To be covered later:
[0 optional and default arguments
[0 overloading
[J scope resolution
[static variables

Universitédt Bern C++ Basic Language Features

P2 — C++ 49.

summary

You should know the answers to these questions:
[0 What are the built-in data types of C++?
What does operator << do? In which contexts?
Why do operators have different levels of precedence?
What happens when you assign an array to a pointer variable? Vice versa?
What type of value does new return?
What is the difference between a reference and a pointer?
What is the difference between an lvalue and an rvalue?

N O O O A

Can you answer the following questions?

Why was the language called C++ and not ++C?

What does this statement do?: for(1=0; n >= 1<<i; i++);
Can you assign the value of one array variable to another?
Why does C++ have both references and pointers?

Why do C++ strings have to end with a NULL character?

N O O O B B

Universitédt Bern C++ Basic Language Features

P2 — C++ 50.

4. Decomposition and Recursion

Divide and Conquer: principle of recursion

Documenting assumptions: assertions, invariants and exceptions
lteration vs. Recursion

Binary search

Talil recursion and iteration

Merge sort

A faster merge sort

(N O I O O I B

Universitat Bern Decomposition and Recursion

P2 — C++

Document Assumptions

51.

[0 Use descriptive names for variables, use short names only when their purpose is

obvious from the context.

[0 Always state explicitly all pre- and post-conditions.

[]

Document all assumptions.

Il Requires: s1[] holds NULL-terminated string;
Il s2[] is long enough to hold a copy of s1f]
Il Ensures: s2[] will hold a copy of s1]]

void strCopy(char s1[], char s2[])
{

int 1=0;

while (s1[i]'="\0){ // Assume s1 is NULL-terminated!
s2[i] = s1]i]; /l Blithely assume s2 is big enough!
I++;

}

s2[i] ="\0’;

0 Avoid making assumptions that you can’t check!

Universitat Bern

Decomposition and Recursion

P2 — C++ 52.

Comment Selectively

0 Avoid complex or cryptic code; write code that is self-documenting.
[0 Use comments to explain any code that is not self-documenting.

void strCopy2(char * sl,char* s2)

{
while (*s2++ = *s1++); // copy string s1 to buffer s2 up to NULL character

} Il assumes sZ2 is big enough!

It is easier to demonstrate that a readable program is correct than an unreadable one.

Although readability sometimes interferes with efficiency, it is clearly better to have a slow
program that works correctly, than an fast program that is wrong!

1 Ensure your programs are correct before you try to optimize them.
[1 Never try to optimize code that is not a proven source of system inefficiency.

Universitat Bern Decomposition and Recursion

P2 — C++ 53.

Divide and Conquer

Recursion is a powerful technique for designing and implementing algorithms in a
declarative, decompositional fashion.

[0 Determine how a complex instance of the problem can be solved by combining
the solution to one or more simpler instances.

[0 Determine how the simplest (base) cases can be solved directly.

[1 Ensure that complex cases always reduce to simpler cases.
(Otherwise the recursion may not terminate!)

[0 Implement the general solution by implementing the base cases directly, and
the complex cases by recursion.

Universitat Bern Decomposition and Recursion

P2 — C++ 24.

Recursion

Problem: find the minimum element of an array of integers.
Il Requires: num|] an array with length > 0

Il Ensures: result is smallest element of num|]
int findMin(int numfj, int length)
{

if (length <= 0) {
throw(xmsg("findMin() called with empty array!"));

} else if (length == 1) {
I/l base case -- the only element is the smallest one:
return num|O0];

} else { /l now we know length >= 2
int 11 =length/2; Il sol1>=1 butl1 <length
int 12 =length - I1; Il and the same holds for 12
int ml = findMin(num, 11); /l call findMin() recursively
int m2 = findMin(num+I1, 12);
return (m1l<m2) ? m1l: mz2; Il result is min of m1 and m2
}

[If possible, check your assumptions, and raise exceptions when they are violated.

Universitat Bern Decomposition and Recursion

P2 — C++ 55.

Recursion — Pros and Cons

Pros:
[1 Recursive functions are easy to develop top-down,
[they are usually easy to prove correct, and

[they are often much simpler than equivalent iterative algorithms.
Cons:
[One must be careful about base cases.
[1 Recursion is typically slower than iteration (due to function call overhead).
[1 Recursive functions can exhaust stack space (if recursion is deep).
[1 Not all problems are inherently recursive.

[If a problem is inherently recursive, implement a correct recursive solution before
deciding whether a non-recursive solution is better.,

Universitat Bern Decomposition and Recursion

P2 — C++ 56.

[teration vs. Recursion

Sometimes iteration is more natural than recursion. Always adopt the simplest solution.

Il Requires: num[] a non-empty array with size length > 0
Il Ensures: result is min element of num([]
int findMin2(int numfj, int length)
{
if (length <= 0) {
throw(xmsg("findMin() called with empty array!"));
}
int min = num|OJ;
int i;
for (i=1; i<length; i++) {
min = (min < num(i]) ? min : num[i];
}

return min;

Universitat Bern Decomposition and Recursion

P2 — C++ 57.

Binary Search

Problem: find a key element in a sorted array of integers.

Binary search is naturally expressed as a recursive algorithm:

Ifthe array has more than one element, Search for key value 7:
then #
SPIt It in two, . 3| 4] 7] 8] 9] 11 19 20
eliminate the sub-array containing
larger/smaller values.
Recurse on the other array. #
else 31478
check if the element is the one we
are searching for #
7|8

~N |-

Universitat Bern Decomposition and Recursion

P2 — C++ 58.

Binary Search — Recursive Solution

Il Requires: numf]is sorted, high, low in range of num[]
Il Ensures: (result.keyFound == 0)

/l or ((result.keyfound == 1) and (numf[result.index] = key))
keylndex binSearch(int key, int num[], int low, int high
{
keylndex result(0,0);
if (low > high) { I Base case 1: empty range
return keylndex(0,0); Il not found
} else if (low == high) { Il Base case 2: range of size 1
if (key == num[high]) {
return keylndex(1,high); // found at position high (== low)
} else {
return keylndex(0,0); Il not found
}
} else { Il high > low
int mid = (high+low)/2; Il =>mid < high
if (key <= num[mid]) { Il Two recursive cases ...
return binSearch(key, num, low, mid);
} else {
return binSearch(key, num, mid+1, high);
}
}
}

Universitat Bern Decomposition and Recursion

P2 — C++ 59.

Records as Objects

BinSearch returns a pair of values. Since tuples are not a primitive in C++, we must
encode the pair of values as an object:

class keylndex {

public :
keylndex(int K, int i) { keyFound = k; index =1i; }
int keyFound: Il ==Q0orl
int index; /l if keyFound == 1, then should be a valid index

Keylndex has a constructor that allows a new instance to be initialized with a given pair
of integers.

Universitat Bern Decomposition and Recursion

P2 — C++

Tail Recursion

A function is tail-recursive if it calls itself recursively only when returning its result:

int

{

1/

rfactorial(unsigned int n)

if (n==0) {
return 1;
} else {
return n*rfactorial(n-1);

}

recursive, but not tail-recursive

int trfactorial(unsigned int n,
unsigned int result=1)
{
if (n==0) {
return result;
} else {

return trfactorial(n-1, n*result);

}

} /I tail recursive!

Tail-recursion can easily be transformed into iteration:
int ifactorial(unsigned int

{

int result=1;
while (n !=0) { Il
result = n*result;
n--; Il
}

return result;

Universitat Bern

terminate loop with base case(s)

loop instead of calling recursively with n-1

60.

Decomposition and Recursion

P2 — C++

Binary Search — lIterative Solution

Since binSearch() is tail-recursive, it is easy to transform:

keylndex ibinSearch(int key, int

{
while (low <= high) {
if (low == high) {
if (key == num[high]) {
return keylndex(1,high);
} else {
return keylndex(0,0);
}
} else {
int mid = (high+low)/2;
if (key <= num[mid]) {
high = mid;
} else {
low = mid+1;
}
}
}
return keylndex(0,0);
}

Universitat Bern

numf], int

I
I

I

I

I
I
I
I

I

I
I

low, int high

terminate if range is empty
Base case 2: range size 1

found at position high (== low)
not found

high > low

=>mid < high

Two complex cases

loop instead of recursing

loop instead of recursing

Base case 1: empty range
not found

61.

Decomposition and Recursion

P2 — C++ 62.

Sorting

Problem: sort an array of integers

The “obvious” solution — insertion sort — is not trivial to implement correctly, and is
inherently slow (N elements will be sorted in O(N?) time).

The principle of divide and conquer leads to an efficient, recursive solution:
[0 We want to sort an array of integers
[0 Split the array into two smaller arrays, and sort those
[0 Merge the two sorted arrays into one

Two questions remain:
[0 What are the base cases?
[0 arrays of length O or 1 are trivially sorted
[0 How can we merge two sorted arrays into one?
[J inthe obvious way!

Universitat Bern Decomposition and Recursion

P2 — C++

MergeSort Example

Universitat Bern

split

split

split
merge
merge
merge

done!

63.

Decomposition and Recursion

P2 — C++

Merge Sort

64.

[A function or procedure should always have a clear responsibility; promote readability

Il
Il
void

{

by decomposing complex algorithms into helper functions.

Requires: a is an array of ints, length len

Ensures: a will be sorted

mergeSort(int a[], int

if len<=1){
return; /!
}

int* al=a; /!
int 11 =len/2; 1l
mergeSort(al, 11); Il

int* a2=a+I1; /l
int 12=len-I1; /!
mergeSort(a2, 12); Il

int* b =new int[len]; 1
merge(al, 11, a2, 12, b); //

int i
for (i=0; i<len; i++) { I
a[i] = b[i]; I
} I
delete [] b; I

len)

Universitat Bern

trivially sorted!

al points to the first half of a
len>=2s0l1>=1
al is now sorted

a2 points to the second half of a
I1<len,sol2>=1
az is now sorted

need a buffer to merge into
merging is done by a separate function

copy result from b back to a

this is a serious source of inefficiency

since each recursive call copies its arguments
don'’t forget to delete b!

Decomposition and Recursion

P2 — C++ 65.

Merge

[State loop invariants explicitly, and check that they hold through all execution paths.

Il Requires: al and a2 are sorted arrays of length 11 and 12 resp
Il Ensures: b will contain sorted merge of al and a2
void merge(int alf], int 11, int a2[], int 12, int bl[])

{
int i1=0;
int i2=0;
int len=11+12
int i
for (i=0; i<len; i++) { I Invariant: (i ==i1 +i2) && (len =11 + I12)
if (i1<11){ Il al not exhausted
if (1I2>=12){ Il but a2 is exhausted
b[i] = al[il++]; I so copy restofaltob
} else if (al]il] <= a2[i2]) { /l a2 not exhausted, so compare
b[i] = al[il++]; I allil] smaller
} else {
b[i] = a2[i2++]; I az[i2] smaller
}
} else { Il al is exhausted
b[i] = a2[i2++]; I Sso copy rest of a2 to b
}
} Il Done when (i == len) && (i1 == 11) && (i2 == 12)
}

Universitat Bern Decomposition and Recursion

P2 — C++ 66.

Refactoring Merge()

0 Eliminate duplicate code through refactoring or reorganizing.

Il Requires: al and a2 are sorted arrays of length 11 and 12 resp
Il Ensures: b will contain sorted merge of al and a2

void merge(int alf], int 11, int a2[], int 12, int bl[])

{
int i1=0;
int i2=0;
int len=11+12;
int i
for (i=0; i<len; i++) { I Invariant: (i ==il1 +i2) && (len =11 + I2)
if ((I1<I1) && ((i2 >=12) || (al[i1l] <= a2[i2]))) {
b[i] = al[il++]; 1l a2 exhausted, or alfil] is smaller
} else {
b[i] = a2[i2++]; I al is exhausted, or a2[i2] is smaller
}
}
}

Universitat Bern Decomposition and Recursion

P2 — C++ 67.

Optimizing MergeSotrt ...

Our mergesort() has O(N*log(N)) complexity, which is good, but copies the result of each
merge back to the original array, which adds a fixed overhead.

We can improve the performance, but make the program more complex.

ldea:
[0 allocate a fixed buffer for merging into

[0 define an auxiliary mergeSort function ms2b() that delivers the sorted array
directly into the buffer

[0 define another function ms2a() that sorts the array with the help of ms2b()
define mergeSort() with the help of ms2a() and ms2b()

]

Universitat Bern Decomposition and Recursion

P2 — C++

68.

MergeSort with a Fixed Buffer

Instead of each instance of mergeSort() allocating its own buffer, two versions of
mergeSort() cooperate, either merging into the fixed buffer, or back to the original

argument array:

input a
3162 9|1 split
3| 6|2 9] 1 split
3162|091 split
3 5 5 9 1 7 buffer b
I 6| 2 9| 1 1| 7
3/ [6l2] [1] 9 7l
[2]3l6|[1] 1] 7] 9
11| 2| 3| 6 -
merge

Universitat Bern

Decomposition and Recursion

P2 — C++ 69.

A Faster MergeSort

We can improve the performance of MergeSort, at the cost of readabillity ...

void mergeSort2(int af], int len)
{
int* b =new int[len];
ms2a(a, b, len); Il Ensures: a will be sorted into b
delete [] b; void ms2b(int afl,int bf,int len)
} L
Il Ensures: a will be sorted into a f (Ieri} Z;nl):{: 1) {
}/oid ms2a(int af], int b[], int len) } b[0] = a[0];
i (lerrleiu:r r}) { return;
) | }
6% al=a int* al=a;
!nt* ‘B‘—l:ﬁj int* bl=Db;
nt L= lenf2, nt L= len/

ms2b(al, b1, I1);

int* a2=a+l1;
int* b2=>b+I1;
int 12=len-I1;
ms2b(a2, b2, 12);

merge(bl, 11, b2, 12, a);

Universitat Bern

ms2a(al, b1, 11);

int* a2=a+l1;
int* b2=Db+I1;
int [2=len-I1;
ms2a(az, b2, 12);

merge(al, 11, a2, 12, b);

Decomposition and Recursion

P2 — C++ 70.

summary

You should know the answers to these questions:

[0 When can you implement algorithms with recursion?
Why should you explicitly state pre- and post-conditions?
When should you raise an exception?

What is tail recursion? How can you eliminate it?
What are loop invariants? Why are they important?
When should you start optimizing your program?

N O O O

Can you answer the following questions?

[0 Our mergeSort() will crash if the argument array is shorter than the advertised
length; how can we fix this?

[0 How would you implement mergeSort() without recursion?
[0 Why is code duplication a Bad Thing?

Universitat Bern Decomposition and Recursion

P2 — C++ 71.

5. Specifying Classes

]

Abstract Data Types, Contracts and Invariants
C++ Classes:
[0 public , protected and private members
[0 Example of data abstraction:
[0 aTicTacToe object
[0 Exceptions:
0 try ,catch and throw
[0 Restricting visibility and write access:
[0 static and constant declarations

]

Universitédt Bern Specifying Classes

P2 — C++ 72.

Abstract Data Types and Invariants

Why do we need ADTs?
[0 to program at a higher level of abstraction
to program with reusable software components
to maintain program invariants (ensure server data consistency)
to encapsulate and maintain client/server contracts
to protect clients from variations in implementation

N O O B

Contrast C++ (cpprev) and C (crev) stack implementations in lecture 2!

Design guidelines:
[0 What abstractions do you need? (i.e., abstract services/contracts)
[0 What are the program invariants? (i.e., consistency rules)
[0 Which data belong together? (i.e., via invariants and operations)

Universitédt Bern Specifying Classes

P2 — C++ /3.

Example: Tic Tac Toe

Requirements specification: [Random House Dictionary of the English Language]

“A simple game in which one player marks down only crosses and another
only ciphers [zeroes], each alternating in filling in marks in any of the nine
compartments of a figure formed by two vertical lines crossed by two
horizontal lines, the winner being the first to fill in three of his marks in any
row or diagonal.”
Explicit invariants:
[0 turn (current player) is either X or O
[0 X and O swap turns (turn never equals previous turn)
[0 game state is 3x3 array marked X, O or blank
[0 winneris X or O iff winner has three in a row
Implicit invariants:
0 initially winner is nobody; initially it is the turn of X
[0 game is over when all squares are occupied, or there is a winner
[0 a player cannot mark a square that is already marked
Contracts:
[0 the current player may make a move, if the invariants are respected

Universitédt Bern Specifying Classes

P2 — C++ 74.

C++ Classes

C++ classes are an extension to the C struct type constructor for records.

Class members are data and “functions” with varying levels of information hiding.

class ClassName {
public

I/l Data and methods accessible to clients, including constructors & destructors
protected

Il Data and methods accessible to class methods, derived classes and friends only
private

I/l Data and methods accessible to class methods and friends only

}

Automatic (stack) instantiation:

ClassName oVal; /l Constructor called; destroyed when scope ends
Dynamic (heap) instantiation:
ClassName * oPtr; Il Pointer, so no constructor called
oPtr = new ClassName; // Constructor called; must be explicitly deleted
Universitédt Bern

Specifying Classes

P2 — C++ 75.

Designing a Tic Tac Toe Game

tttMain.cpp:

[0 Driver — responsible for interacting with user

[0 Creates and destroys instances of TicTacToe game
TicTacToe.h:

[0 Abstract interface to TicTacToe game (header file)

[0 Declares public/private methods

[0 Shared by both driver and game implementation
TicTacToe.cpp:

[0 Includes needed libraries

[0 Implementation of TicTacToe game

[0 Responsible for maintaining game invariants during instantiation and updates

What should be the interface?
[0 Top-down strategy: consider abstract services needed by driver
[0 Bottom-up strategy: consider game invariants and services

Universitédt Bern Specifying Classes

P2 — C++

Desired Interaction

Welcome to Tic Tac Toe!
Would you like to play a game? (y/n): y

Oplays: 5
Error. Square already occupied

Oplays: O
Error: Move out of range 1-9

Universitat Bern

O plays: 1
The game continues ...
X plays: 9

Nobody wins!!!

Would you like to play another game? (y/n):

Goodbye!

/6.

Specifying Classes

P2 — C++ /7.

The Tic Tac Toe Driver

/~k
File: tttMain.cpp
Author: Oscar Nierstrasz 29.2.96
Driver for Tic Tac Toe program
*/
#include <iostream.h> /! Declare cout and end|
#include "TicTacToe.h" /! Declare TicTacToe class

void playTicTacToe (void);
Il void playTicTacToe(void) { cout << "not implemented yet" << endl, } // for testing

int main (void)

{
cout << "Welcome to Tic Tac Toe!" << endl;
cout << "Would you like to play a game? (y/n): ",

char reply:;
cin >> reply; 1 Read from standard input stream
while (reply =="y’) {
playTicTacToe();
cout << "Would you like to play another game? (y/n): ";
cin >> reply;
}
cout << "Goodbye!" << end|;
return O; I Unix process terminates without error

[Prototyping strategy: always work with a running, if incomplete program, and
incrementally “grow” the full version.

Universitédt Bern Specifying Classes

P2 — C++ /8.

Determining the Interface

[1 Describe services at highest level of abstraction possible. Determine who is
responsible for what!

Always ask yourself, “can the object perform this task or is it my job?”
void playTicTacToe (void)

{
TicTacToe game; Il new local instance
int move;
while (game.notover()) { /l Describe driver in abstract terms!
game.print();
cout << game.turn() << " plays: ;
cin >> move;
try { I This could fail!
game.play(move); Il Whose responsibility is it to check?
}
catch (xmsg & err) { 1 Standard class in <exception.h>
cout << "Error: " << err.what() << endl; /l Or possibly err.why/()
}
}
game.print();
cout << game.winner() << " wins!!!" << endl << endl;
}

Universitédt Bern Specifying Classes

P2 — C++ 79.

Exceptions

A server (i.e., a function, typically a member function of an object) may throw an
exception if it cannot provide the requested service:

1 the request was invalid (contract violated by client)
[0 the server failed (abnormal situation, e.g., out of memory)
The server should:
1. attempt to restore the invariant, and
2. inform the client by returning a suitable exception value

An exception is a value thrown by server to client:
[0 anumber, an enum value, a string, an xmsg instance
[0 an instance of a specially designed exception class

Client may catch an exception and take appropriate action using try/catch construct.

[1 Exceptions should only be used to signal abnormal situations, not normal flow of
control.

Universitédt Bern Specifying Classes

P2 — C++

Specifying the Interface

/~k
File: TicTacToe.h
Author: Oscar Nierstrasz 29.2.96
Tic Tac Toe interface

*/

#ifndef TICTACTOE_H I

#define TICTACTOE_H

#include <exception.h> I

class TicTacToe {

public :
TicTacToe(void); 1l
int notover (void); /1
const char * winner (void); Il
char turn (void); Il
void play (int move) Il

throw(xmsg); 1l

void print (void); 1l

private : Il

%

#endif // TICTACTOE_H

Universitat Bern

Include at most once!

Declare xmsg class (needed for interface of play())

Constructor

True if game is not over
Winner is "X", "O" or "Nobody"
Whose turn is it?

Current player marks a square
Invalid move raises exception

Pretty-print the current state
Private instance variables, types and methods ...

80.

Specifying Classes

P2 — C++ 81.

Instance Variables

Instance variables are needed to provide the services and induce the invariants.

Often most of these can be determined by considering the specification.
class TicTacToe

public : 1 As before ...
private :
enum Player {nobody, X, O}, /l Symbolic names for players
Il Private instance variables
Player _winner, /l Initially nobody
Player _turn; 1 Initially X
int squaresLeft; 1l Initially 9
Player square[9]; I Initially all nobody

|8

Remaining instance variables and other private members will be “discovered” during
implementation ...

[Use symbolic names and enumerated types to make your code as self-documenting
as possible.

Universitédt Bern Specifying Classes

P2 — C++ 82.

Implementing the Constructor

/~k
File: TicTacToe.cpp
Author: Oscar Nierstrasz 29.2.96
Tic Tac Toe implementation
*/
#include <iostream.h> Il Declare cout and endl
#include "TicTacToe.h" I Declare everything to be defined here

Il Implementations of public and private methods ...
I/l Constructor:

TicTacToe::TicTacToe (void) : /l NB: TicTacToe() is within scope of TicTacToe class
_winner(nobody), I Member initialization list
_turn(X), Il Whenever possible, initialize members here!
squaresLeft(9)

{
for (int i=0; i<9; i++) Il Cannot be initialized in Ml list, so done in body

square[i] = nobody;

[0 Constructors may have arguments, but never a return value
[0 Multiple constructors may be defined for different kinds of initializers

Universitédt Bern Specifying Classes

P2 — C++ 83.

Implementing the Game

int
TicTacToe::notover (void)

{
}

const char * Il Result string may not be modified by clients!
TicTacToe::winner (void)

{
}

char
TicTacToe::turn (void)

{
}

Il Char and string names of players -- share one constant copy for all game instances!
Il Oops! We should add their declarations to the list of private members in TicTacToe.h!
Il Initialization of constant static members:

return (squaresLeft > 0) && (_winner == nobody);

return winners[_winner]; // String representation of winner

return player[_turn]; I Char representation of current player

const char TicTacToe:: player [3]={"", 'X,'O"};

const char * TicTacToe:: winners [3] = { "Nobody", "X", "O" };

enum Player { /1 Oops! Now we need to change this type definition!
nobody = 0, Il Representation fixed so we can index player[] and winners[]
X =1, I This goes in TicTacToe.h
O =2

Universitédt Bern Specifying Classes

P2 — C++ 84.

Static Declarations

class TicTacToe

public : I as before ...

private : Il as before ...
static const char player [3]; Il Only one, unmodifiable local copy of these arrays.
static const char * winners [3]; // Both are indexed by Player values.

%
A static local variable has class scope, and persists across invocations
A static global variable has file scope, and is invisible outside file scope

NB: A static class member must be initialized just once!
Warning! Two separate but interacting meanings of static : [ARM p. 98]
[0 “allocated once at a fixed address”

1 “local to a translation unit”

We could also have defined player and winners as static globals outside the class:

Il Global variables are declared “static” so they are private to this module

static const char player[]={"", 'X’,’O" };
static const char * winners [] = { "Nobody", "X", "O" };

Universitédt Bern Specifying Classes

P2 — C++ 85.

Constant Declarations

const declarations are an important part of specifying class interfaces:

Function promises not to modify arguments:

void printGame (const TicTacToe&); // won'’t modify referenced game
Client promises not to modify return results

const char * winner (void); Il client won’t change string
Object promises not to modify itself

const char * winner (void) const; // can be safely applied to const game!

Inconsistent use of const variables is detected by the compiler:

char* s =game.winner(); /l illegal conversion to non-const!
const char * s = game.winner();
*S =" Il illegal assignment to constant string!

Il s is not constant; only what it points to!
Be careful exactly what is being declared constant!

char * const hi ="Hello world"; // hi is constant, but not what it points to!
hi[0] = 'B"; /l OK, since string is not constant
hi = "oh no!"; I/ illegal assignment to constant!

Universitédt Bern Specifying Classes

P2 — C++ 86.

Playing the Game

/~k
Current player makes a move by marking a square from 1-9.
An exception is raised if the square is out of range or is already marked.
*/
void
TicTacToe::play (int move) throw(xmsg)
{
if (Inotover()) { Il In Eiffel, these would be assertions!
throw(xmsg("This game is already over!"));
return;
}
if ((move<1l) || (move>9)) {
throw(xmsg("Move out of range 1-9"));
return;
}
move--; I OK, so decrement (index square from 0-8)
if (square[move] == nobody) { Il Not already marked
square[move] = _turn; /l Mark the square
squaresLeft--;
_turn=(turn==X)? O : X; Il Switch current player
checkWinner(); 1l Need helper function to maintain invariants!
} else {
throw(xmsg("Square already occupied"));
}
}

Universitédt Bern Specifying Classes

P2 — C++ 87.

Printing the Game

Il Pretty print the current state of the game:

void
TicTacToe::print(void)
{
cout << endl;
for (int row=0; row<3; row++) { Il Print the game row by row
int first = 3*row;
cout << '\t'
<< showSquare(first) << | I Need another helper function!
<< showSquare(first+1) <<’
<< showSquare(first+2) << endl;
if (row < 2)
cout << "\t-----" << endl;
}
cout << endl:
}
/*
Helper function for TicTacToe::print()
Return ascii char for squares 0-8
Returns X’ or 'O’ if occupied; otherwise square number as ascii char
*/
char
TicTacToe::showSquare(int m)
{
Player state = square[m];
return (state == nobody)?(’'1’+m):player[state];
}

Universitédt Bern Specifying Classes

P2 — C++

The Complete TicTacToe Interface

class TicTacToe {
public :
TicTacToe(void);

int notover (void);
const char * winner (void);

char turn (void);
void play (int move) throw(xmsg);
void print (void);

private :

enum Player { nobody = 0,
X=1,
0=2

¥

Player _winner;

Player _turn;

int squaresLeft;

Player square[9];
static const char player [3];

I
I

I

I

I

static const char * winners [3]; //

char showSquare(int);
void checkWinner(void);
int matchThree(int,int,int);

Universitat Bern

I

I
I

Constructor
Public methods

Local type

Instance variables

Only one, unmodifiable local copy of these arrays.
Both are indexed by Player values.

Local helper functions ...
Check for a winner (uses matchThree())
Check for three in a row, and set _winner if there is

88.

Specifying Classes

P2 — C++ 89.

summary

You should know the answers to these questions:

[0 What are invariants? How do they help in class design?
What can one specify as public or private class members?
How are object created?

How do exceptions work?
What belongs in a header file?
What are static and const declarations for?

N O O O

Can you answer the following questions?

[0 When and how are objects destroyed?

What belongs in the member initialization list (resp. body) of a constructor?
Can you implement the missing helper functions for TicTacToe?

Does it make sense to declare a function as static ?

[

Universitédt Bern Specifying Classes

P2 — C++ 90.

6. Data Abstraction

Run-time Stacks; Stacks as Data Abstractions
Using a Stack to Interpret Postfix Expressions
Stacks, Queues and Linked Lists

Class Invariants

Implementing the Linked List Abstraction
Implementing Stacks

Using a Stack to Balance Parentheses

C++ trap: Shallow Copying and Call by Value

N I O O O B

Universitat Bern Data Abstraction

P2 — C++

91.

The Run-time Stack

The stack is a fundamental data structure used to record a context that will be returned
to at a later point in time. Most programming languages use a run-time stack:

void main (void) { cout << "fact(5) =" << fact(5) << endl; }

int fact (int n) {
if (n==0) return 1,
else return n*fact(n-1);
}
main ... The stack grows with each function call ...
main; fact(3)=? fact(3) ...
main; fact(3)=? fact(3); fact(2)=? fact(2) ...
main; fact(3)=? fact(3); fact(2)=? fact(2); fact(1)=? fact(l) ...
main; fact(3)=? fact(3); fact(2)=? fact(2); fact(1)=? fact(1); fact(0)=? [fact(0) ...
main; fact(3)=? fact(3); fact(2)=? fact(2); fact(1)=? fact(1); fact(0)=? [fact(0); return 1
main; fact(3)=? fact(3); fact(2)=? fact(2); fact(1)=? fact(1); return 1
main; fact(3)=? fact(3); fact(2)=? fact(2); return 2
main; fact(3)=? fact(3); return 6
main; fact(3)=6 ... and shrinks with each return.

Universitat Bern

Data Abstraction

P2 — C++ 92.

Stack as a Data Abstraction

[0 Always encapsulate data structures as data abstractions.

class Stack

{
public:
Stack(void); /l Construct an empty Stack
~Stack(void); /l Destroy the Stack and its contents
int count(void); /l Return how many Items the Stack holds
int empty(void); /l Is the Stack empty?
void push(ltem item); /l Push an Item on top of the Stack
Item top(void) throw(xmsg); Il Return value of the top Item
void pop(void) throw(xmsg); Il Pop off the top Item
Il If empty, raise an exception
private:
Il Somehow, keep track of the state of the Stack ...
%

A naked data structure is easily corrupted. Only by defining an abstract interface can you
ensure that your data will remain consistent independent of the rest of your program.

Universitat Bern Data Abstraction

P2 — C++ 93.

Postfix Expressions

A Stack Machine is a simple architecture for evaluating arithmetic expressions.
Expressions written in postfix form are easy to interpret with a stack:

Example: 673+2*-
Operation Stack

push 6 6

push 7 6 7

push 3 6 7 3
apply + 6 10

push 2 6 10 2
apply * 6 20

apply - 14

Universitat Bern Data Abstraction

P2 — C++ 94.

A Postfix Expression Interpreter

A postfix expression interpreter is straightforward to implement with a Stack:

void postfix(void) {
Stack intStack;

char c=""
cout << "Enter postfix expressions (\".\" to stop!)" << end|;
while (c 1=".){
try {
int argl, arg2;
cin >> ¢;
if ((0'<=c) && (c<='9")) { /l push digits
intStack.push(c - '0%);
} else {
switch (c) { /l or apply operator to top numbers
case '+
argl = intStack.top(); intStack.pop();
arg2 = intStack.top(); intStack.pop();
intStack.push(argl + arg2);
cout<<argl <<"+"<<arg2 <<" =" << (argl+arg2) << endl;
break;
I/l add other operators here ...
default:
cerr << "Invalid char " << ¢ << " ignored" << endl;
break;
}
}

} catch (xmsg & err) { cout << "Exception: " << err.why() << endl; }

Universitat Bern Data Abstraction

P2 — C++

Stacks as Linked Lists

A Stack can easily be implemented using a linked data structure:

Size=2 | top= ?
-— @ | 6 — @ |7
stack.push(3)
Size =3 top = ?
- @ |6 -@® 7 - @® 3

Universitat Bern

stack.pop()

95.

Data Abstraction

P2 — C++ 96.

Stacks, Queues and Linked Lists

Stacks and Queues are both dynamic data abstractions that can be implemented using
linked data structures.

Stack push
- Pop
Queue
enqueue—* — dequeue

This suggests that we should develop a separate Linked List abstraction that can be used
to implement both Stacks and Queues.

Universitat Bern Data Abstraction

P2 — C++

Linked List Operations

97.

Universitat Bern

size = 2 pop_front() size =1
back ? front ? push_back(2) back ? front/‘
¢ ¢ P
-~ @ 6 - @ |7 push_front(3) -~@ 6=« @® 7
Size = 3 Size = 3
back ? front ? back ? front ?
Y Y Y Y
-~ @ | 6 @ 7 <@ 3 @ | 2 - @ -@ | 7

Data Abstraction

P2 — C++ 98.

Class Invariants

Recall that we implement data abstractions as classes — the class constructor must
create instances that establish the class invariant, and each public method is responsible

for maintaining the invariant.

A valid linked list instance has a size, front and back pointers, and a set of linked cells,
such that:

(I Initially size is zero; front and back point nowhere.

[0 Whensizeis n >0, there are n linked cells; front points to the first cell, and each
cell points to the next; the back cell points nowhere.

[0 Incase size = 1, front and back point to the same cell.

Universitat Bern Data Abstraction

P2 — C++

LList Declaration

class LList { /l Declared in llist.h
public:
LList(void); I Make an empty list

~LList(void); Il

int count(void) { return size; };
int empty(void) { return size == 0; };

Destroy the list and its contents!

void push_front(ltem item); Il Add item to front
Item front(void) throw(xmsg); I Return front item, if not empty
void pop_front(void) throw(xmsg); Il Remove front item, if not empty
void push_back(ltem item); Il Add item to back
Iltem back(void) throw(xmsg); I Remove back item
void print(ostream &o0s); Il Output a representation of the list on os
private:
class Cell { I/l Private class (record) to link items
public:
Cell(ltem val, Cell * nxt) { value = val; next = nxt; } // Constructor
ltem value;
Cell * next; I Is zero if and only if this is the back cell
%
Il Invariant: If size == 0, then frontCell == 0 and backCell == 0
Il else if size == 1, then frontCell == backCell and backCell->next ==
Il else frontCell->...->next == backCell and backCell->next == 0
Cell * frontCell; Il initially O
Cell * backCell;
int size; Il >=0

99.

Universitat Bern

Data Abstraction

P2 — C++ 100.

Implementing List Methods

Recall that functions and procedures should always have a clear responsibility.
0 A method should always do one thing well; don’t mix up responsibilities.
Methods, like procedures, should be written at as high a level of abstraction as possible.
[0 Methods should be short and easy to read.
Rules of thumb:
[0 An ordinary method is typically 5 to 10 lines of code.

[0 A method that implements an algorithm might be 20 to 25 lines of code.

Complex methods should be decomposed using private helper methods.

Universitat Bern Data Abstraction

P2 — C++

List Constructor and Destructor

The constructor establishes the invariant:
I/l constructor for an empty stack:
LList::LList (void)
: size(0), frontCell(0), backCell(0)

{
}

The destructor empties the stack so it can be cleanly deleted:

Il destructor pops all cells:
LList::~L List(void)

{

while (this->empty()) {
this->pop_front(); /l If we don'’t do this, the Cells will persist
} I/l after the Stack is gone!

The C++ run-time will only delete automatic values (on the stack);
the destructor of a class is responsible for freeing all dynamic values.

101.

Universitat Bern

Data Abstraction

P2 — C++ 102.

Growing the List

Each method can assume that the object is in a valid state.

The state may be temporarily inconsistent inside the method, but the invariant must be
re-established when the method terminates.

void
LList::push_front(ltem item // Assume only that invariant holds
{

Cell * newCell;

newCell = new Cell(item, this->frontCell);

Il NB: the new Cell now points to frontCell,
Il even if frontCell ==

this->frontCell = newCell; // Always do this

if (this->empty()) { /l Handle special case of invariant!
this->backCell = newCell; Il no longer empty, so set backCell

} /[to point here too

Size++,; /l Always do this

[0 Can you implement pop_front() and push_back()?

Universitat Bern Data Abstraction

P2 — C++ 103.

Checking Pre-conditions

Remember to check pre-conditions, and raise an exception if they are violated.

Il Requires: stack is non-empty

ltem
LList::front(void) throw(xmsg)
{

if (this->empty()) {
throw(xmsg("Empty list has no front!"));

}
return this->frontCell->value;
}
Universitat Bern

Data Abstraction

P2 — C++ 104.

Implementing a Stack with a Linked List

#ifndef STACK_H Il NB: this implementation is a header file
#define STACK_H
#include <iostream.h> /l Declare ostream
#include <exception.h> Il Declare xmsg
#include "llist.h"
typedef int Item ; Il Redefine as necessary ...
class Stack { Il NB: all methods are inline
public:
Stack(void) {} Il Empty default constructor
~Stack(void) {}h Il Empty destructor

int count(void) {return myList.count(); };

int empty(void) {return myList.empty(); };

void push(ltem item) { myList.push_front(item); }
Item top(void) throw(xmsg) {return myList.front(); }

void pop(void) throw(xmsg) { myList.pop_front(); }

void print(ostream &0S) { myList.print(os); }
private:
LList myList; /l All methods implemented here

3
#endif // STACK _H

Universitat Bern Data Abstraction

P2 — C++ 105.

Example: Balancing Parentheses

Problem: Determine whether an expression containing parentheses, brackets and
braces (i.e., (), [], and {}) is correctly balanced.

Example: “([[11{({[1()})[]1})"is balanced, “] {* is not.

Approach: Push each left parenthesis on a stack, and pop it off when a right parenthesis
IS encountered. If the parentheses match, and the stack is empty at the end, the whole
expression is balanced.

Example:"([{}]]"

push(‘(") -
push([") - ‘([
push(*{") - “([{"
“{” matches “}" so pop() - “r
“["’ matches “]” so pop() - “(

“(” doesn’'t matches “]” so not balanced

Universitat Bern Data Abstraction

P2 — C++

Parenthesis balancer

int balanced(char s[]) throw(xmsg) //
{

Assume s[] is a null-terminated ASCII string

Stack myStack;
int 1i=0;
while (s[i] '="\0") {
switch (s]i]) {
case ("
myStack.push(’)’); Il Push the matching parenthesis,
break; Il So we just need to test for equality
case [
myStack.push(’]);
break;
case {"
myStack.push(’});
break;
case’)”
case ']
case '}:
if (myStack.empty()) {return O; } Il
else if (s[i] == myStack.top()) { myStack.pop();} //
else {return 0; } Il Mismatch
break;
default:
break;
}

i++;
}

return myStack.empty(); I Equal number of matching left and right parens

Too many right parens
OK, so continue

106.

Universitat Bern

Data Abstraction

P2 — C++ 10v.

Implementing a Queue with a Linked List

We can also implement a Queue as a wrapper around a linked list:

class Queue { Il NB: all methods are inline functions
public:

Queue(void) {}h

~Queue(void) {}h

int count(void) {return myList.count(); };

int empty(void) {return myList.empty(); };

Il join queue at tail with enqueue()

Item tail(void) throw(xmsg) { return myList.back(); }
void enqueue(ltem item) { myList.push_back(item); }

Il leave queue at head with dequeue()

Iltem head(void) throw(xmsg) { return myList.front(); }
void dequeue(void) throw(xmsg) { myList.pop_front(); }

void print(ostream & 0S) { myList.print(os); }
private:
LList myList;

|3

Universitat Bern Data Abstraction

P2 — C++ 108.

The Dangers of Call by Value

Our LList class has a serious flaw. Parameters, by default, are passed by value. Since
C++ does not know about the dynamic data your class may have allocated, only a
shallow copy is passed. The copy’s destructor will be called when the function returns.

Run-time Stack }/oid Rgeka(Queue Q) // Get a shallow copy of q

g.print();
peekq (q) > } Il and destroy it!
q : , q : ,
myList size =3 myList size =3
front back front back

Heap \ .

These Cells will be destroyed by

= e LList::~LList when peekq() returns!

Universitat Bern Data Abstraction

P2 — C++ 109.

Guard Against Shallow Copies

If instances create and delete dynamic data as part of their state, you must guard against
shallow copies being made when they are passed by value.

There are two possible solutions:
1. Implement a copy constructor that builds a copy correctly
2. Declare a copy constructor as private
[0 Instances can then only be passed by reference.
[0 Attempts to pass instances by value will cause a compile-time error.

[Declare a private copy constructor, if your objects should not be passed by value.

class LList {

public: ...
private:
LList(const LList&);// not implemented
¥
LList::LList(const LList& arg) { / throw an exception if accidentally called

throw(xmsg("LList::LList(LList&) not implemented"));
}

Universitat Bern Data Abstraction

P2 — C++

summary

You should know the answers to these questions:

[]

N O O O

What is the purpose of the run-time stack?

What are typical applications of stacks?

How can a stack or a queue be implemented with a linked list?
Why is it important to encapsulate data structures within classes?
What is a class invariant? Why is it important to specify?

How can call by value invalidate a class invariant?

Can you answer the following questions?
[0 Can you implement the missing methods of LList ?

[

How could you implement LList with only one pointer instead of two?
How would you implement copying correctly for the LList class?
Why can’t C++ copy objects by value correctly?

110.

Universitat Bern

Data Abstraction

P2 — C++ 111.

/. Managing Memory

Orthodox Canonical Form
Copy Constructors

new and delete
Assignment operators
Inline functions
Conditional compilation
Operator overloading
Friends

|O Stream operators

(N O O O O

Sources:
[0 Stanley B. Lippman, C++ Primer, Second Edition, Addison-Wesley, 1991.

0 James O. Coplien, Advanced C++: Programming Styles and Idioms, Addison-
Wesley, 1992.

Universitédt Bern Managing Memory

P2 — C++ 112.

Orthodox Canonical Form

Most of your classes should look like this:

class myClass

{
public:
myClass (void); /l default constructor
myClass (const myClass& copy); Il copy constructor
Il other constructors
~myClass (void); Il destructor
myClass& operator= (const myClass&); // assignment operator

I

other public member functions

private:

[Use the orthodox canonical form for any non-trivial class whose objects will be copied
or assigned to.

Universitédt Bern Managing Memory

P2 — C++ 113.

Example: A String Class

C-style strings are inherently unsafe:
[strings are indistinguishable from char pointers
[string updates may cause memory to be corrupted

We would like to implement a String abstraction that protects us from common errors.
Should support:
[1 creation and destruction
initialization from char arrays
copying
safe indexing
safe concatenation and updating
input and output
length, comparison and other common functions

N O O O B

Universitédt Bern Managing Memory

P2 — C++ 114.

First version of String.h

Our String class will provide an interface to a hidden char array:

#ifndef STRING_H
#define STRING_H

#include <iostream.h> 1l declare istream and ostream
#include <exception.h> I declare xmsg

class String

{
public:
String (void); I default constructor
String (const String& copy); I copy constructor
String (const char* s); /l char* constructor
~String (void); /l destructor
String& operator= (const String&); Il assignment operator
int strlen (void); Il number of non-NULL chars
char& operator[] (const int n) throw (xmsg);// safely return nth element
int getline (istream&); Il read into istream -- return 0 upon eof
void print (ostream&); I print onto ostream
private:
Il invariant: _s points to a NULL-terminated string on the heap
char *_s;
I3

#endif // STRING_H

Universitédt Bern Managing Memory

P2 — C++ 115.

Default Constructors

The default constructor for a class is called when a new instance is declared without any
initialization parameters:

String anEmptyString; Il String::String() is called
String stringVector[10]; Il String::String() is called ten times

Each constructor is responsible for properly initializing the state of a new object (i.e.,
establishing the class invariant).

String::String (void) I NB: no member initialization list needed

{
_S =new char[1]; /l allocate a char array of length 1 on the heap
_s[0] ="\0y; Il make sure the string is NULL terminated

[1 Decide what your class invariant is and make sure that each constructor correctly
establishes the invariant,

Universitédt Bern Managing Memory

P2 — C++ 116.

Automatic and Dynamic Objects

Recall that objects can either be allocated “on the stack” or “on the heap”:

[0 Automatic objects are local to functions

[J constructors are called for objects where they are defined
[0 destructors are called when functions exit
[0 can only be returned “by value” (i.e., copying)

void f (void) {

String s; Il constructor String::String() is called
} Il destructor String::~String() is called

[0 Dynamic objects reside in global memory

[J created and destroyed by explicit calls to new and delete

[0 may be shared by pointers or references
String* g (void) {

String * S; Il just a pointer; no constructor is called

S = new String; // constructor String.:String() is called

return(s); Il client obtains a pointer to the new String
} Il no destructor is called

Universitédt Bern Managing Memory

P2 — C++ 117.

Destructors

Dynamic objects are only needed if your objects must persist across function calls.

[0 A class constructor may need to allocate an array of new objects for its
internal representation if the number of elements is not known in advance.

A single instance may be destroyed with a call to delete

void h(void) {
String * s=9(); Il g() constructs a new instance of String
delete s; Il String::~String() is called here

An array of instances must be destroyed with a call to delete[]

String::~String (void)
{

}

delete [] _s; /l NB: an array, so not just "delete _s"!!!

[If you use new, make sure that there will be exactly one matching delete!
[Destructors should deallocate all memory belonging to an object’s private state.

Universitédt Bern Managing Memory

P2 — C++ 118.

Copy Constructors

It can be very convenient to construct a new object from an existing instance.
A copy constructor takes an existing instance as an argument:

#include <string.h> /l declare strcpy() ...
String::String (const String& copy)
{

_s = new char[copy.strlen() + 1]; Il leave room for NULL at end

if (s==0) /l new might fail!!!

throw(xmsg(“"can't allocate string"));

.:strepy(_s, copy._S); Il want strepy() in the global scope

}
NB:
[0 If we do not declare copy as const, we cannot construct copies of const Strings

]

If we declare copy as String rather than String& , a new copy will be made
before it is passed to the constructor!

[0 Functions arguments are always passed by value in C++
[0 The “value” of a reference or a pointer is a pointer!
[0 Within a single class, all private members are visible (as is copy._S)

Universitédt Bern Managing Memory

P2 — C++ 1109.

Other Constructors

Class constructors may have arbitrary arguments, as long as their signatures are unigue
and unambiguous:

String::String (const char* S) Il Initialize from ordinary string
{

_s = new char[::strlen(s) + 1]; Il must use global strlen()!

if (_s==0)

throw(xmsg("can't allocate string™));
::strepy(s, S);

Since the argument is not modified, we can declare it as const . This will allow us to
construct String instances from constant char arrays.

The implementation of this constructor is uncomfortably similar to that of the copy
constructor. Factoring out the common parts will give us less code to maintain!

Universitédt Bern Managing Memory

P2 — C++ 120.

Refactoring Common Code

Helper functions are often implemented as private member functions:

String::String (const String& copy) I/l copy constructor
{ become (copy._S);
}
String::String (const char* S) I/l char* constructor
{ become (s);
}
void
String::become (const char* s) throw(xmsg)
{ Il Establishes, but does not assume class invariant:
Il The caller must ensure that _s is currently unassigned,
Il or that its previous value is deleted!
_s =new char[::strlen(s) + 1];
if (s==0)
throw(xmsg("can't allocate string")); Il cleanup needed?
strepy(s, S);
}

0 Clearly document whether helper functions assume or ensure class invariants!

Universitédt Bern Managing Memory

P2 — C++ 121.

Assignment Operators

Assignment is different from the copy constructor because an instance already exists:

String&
String::operator= (const String& copy)
{
if (this '= ©) { Il copying self would lead to an inconsistent state!
delete [] _s; /l be sure to delete the previous value!
become(copy._S); // (re-)initialization is the same as before
}
return *this; Il return a reference, not a copy!
}
NB:
[0 Return String& rather than void so the result can be used in an expression

[]

Return String& rather than String so the result won't be copied!
this is a pseudo-variable whose value is a pointer to the current object
[0 so *this is the value of the current object, which is returned by reference

[]

I An assignment operator should always test for copying of self

Universitédt Bern Managing Memory

P2 — C++ 122.

Shallow and Deep Copying

If you do not define a copy constructor or assignment operator for your class, the C++
compiler will automatically generate one for you.

[0 The default copy semantics is a shallow copy: the values of each data
member are copied from one instance to another

[0 If some of the data members are pointers, only the pointers will be copied,
not the objects pointed to.

If we do not define our own assignment operator, instances of String will share the same
representation after an assignment!

[Modifying one String will also cause the other to be changed since they
now share the same representation

[0 Worse, if either object is destroyed, the other will be left in an inconsistent
State.

A deep copy causes data members to be recursively copied. In general it is not possible
for the compiler to tell whether deep or shallow copying is required, so you should always
implement your own copying functions for non-trivial objects.

Universitédt Bern Managing Memory

P2 — C++ 123.

Inline Functions

An inline function is like a macro: its body is copied wherever it is called rather than
generating a run-time function call.

[0 Aninline declaration is only a “hint” to the compiler, and may be ignored!
Inline class member functions can be declared directly in the header file:

inline int strlen (void) const { return ::strlen(_s); }

Note that strlen() is declared as const, so it can be applied to constant String objects

[0 if it is not declared const, a compiler error will be generated when it is
applied to a constant String!

[0 Don'’t bother declaring inline functions unless (or until) you can be sure you will get a
real improvement in performance.

[Short, frequently called functions may be good candidates for inlining.

Universitédt Bern Managing Memory

P2 — C++ 124.

Using the Constructors

Default constructor:
String str; Il initialized to empty string by String::String()

Char array constructor:
String hi ("howdy!); /l initialized by String::String(char*)

Copy constructor:
String hello (hi); /l initialized from hi by String::String(String&)

Assignment operator:

str = hi; /l copies value from hi using operator=
Warning:
String s (); Il not a constructor call -- declares a function s()

Universitédt Bern Managing Memory

P2 — C++ 125.

Implicit Conversion

When an argument of the “wrong” type is passed to a function, the C++ compiler looks
for a constructor that will convert it to the “right” type:

str = "hello world"; // Oops -- String& String::operator=(char*) not defined!

Is implicitly converted to:

str = String("hello world");

since String::operator= expects a String argument and there is a constructor
String::String(char*) that can be used to convert a char* to a String
NB: 0 A new String object will be created from the “hello world” char array, used

to assign its value to str, and then destroyed.

[Don’t worry too much about unnecessary copying, but be aware of its overhead in
computationally intensive code!

Universitédt Bern Managing Memory

P2 — C++ 126.

Conditional Compilation

We can use conditional compilation to turn debug messages on and off:

In String.cpp:

Il Comment out the following line to turn off debug msgs:
#define DEBUG
#include "Debug.h"

String::String (const String& copy)
{

debug("Made a new string = "); I let me know whenever a new String is constructed
debug(copy._s);
become(copy._s);

}
In Debug.h:
inline void debug (const char?*); I function prototype
#ifdef DEBUG
inline void
debug (const char * msQ) Il debug messages are printed if DEBUG is defined
{
cerr << "DEBUG> " << msg << end; Il print to standard error stream
}
#else
inline void debug (const char * msg){;} // else an empty statement is inlined ...
#endif

Universitédt Bern Managing Memory

P2 — C++ 127.

Operator Overloading

Not only assignment, but other useful operators can be “overloaded” provided their
signatures are unique:

char&
String::operator[] (const int n) throw(xmsg) // safely return the nth element
{

if (n<0) || (strlen()<=n)) { Il complain if index is invalid

throw(xmsg("array index out of bounds"));

}

return _s[n];

NB: A reference to the nth element is returned, so it can be used as an Ivalue in an
assignment expression:

str[0] = 'X"; /l will raise an exception if str has length O

To prohibit String instances from being updated by indexing, we can declare:
const char& String::operator[] (const int n{..}

Universitédt Bern Managing Memory

P2 — C++

Overloadable Operators

The following operators may be overloaded:

128.

Overloadable Operators
+ - * / % A & |
- I ’ = < > <= >=
++ - << >> == = && |
+= -= = 0= N= = = *=
<<= >>=] 0 -> ->* new delete

Universitat Bern

1 [

It is not possible to introduce new operators (i.e., such as ** for
exponentiation)

Operator precedence is fixed by the language

The arity may not be changed (i.e., unary operators like ! cannot be
overloaded with a binary definition)

Class member functions always take this as an implicit argument

Managing Memory

P2 — C++ 129.

Friends

Instead of:

cout << "str=";
str.print();
cout << endl;

We would like to say:

cout << "str =" << str << endl;

So ... we need a binary function << that takes a cout and a String as arguments, prints
the string, and returns the value of cout.

[0 Can’t be a member function of String since target is cout
[0 But must have access to String ’'s implementation

Solution: declare this foreign function as a “friend” of String:
class String

{

friend ostream& operator<<(ostreamé&, const String&);
public: ...
private: ...

Universitédt Bern Managing Memory

P2 — C++

[IOStream Operators

The binary operator<< is a member of neither String nor ostream:

ostream& operator<< (ostreamé& outStream, const String& S)

{
}

return outStream << s._s; /l only friends can access _s

Friend functions can often be avoided by:
1. providing a class member function that does most of the work
2. defining a binary function that reverses the arguments

inline

istream& operator>> (istreamé& inStream, String& s)
{
s.getline(inStream); /l getline() updates the String
return inStream; Il now we can write: cin >> str >> ...
}

130.

Universitat Bern

Managing Memory

P2 — C++ 131.

Dynamic Memory Management

int
String::getline (istreamé& in) I dynamically read string from input stream
{
char c; Il last char read
int curLen =0, maxLen = strlen(); I current string length and buffer available
while ((c = in.get()) '= EOF) { I read to end of file or next newline
if (curLen == maxLen) { Il oops -- out of space: need some more!
_s[curLen] ="\07; Il sanity: current string must be NULL-terminated
maxLen = (maxLen==0)?2:(maxLen*2); /I well, let’s just double the current size
grow(maxLen); I call helper function to double size
}
if (c=="\n"){ Il got end of line, so clean up and return
_S[curLen] = "0
return 1; I return 1 (true) is all is OK
}
_S[curLen++] = c; Il remember the char read
}
return O; I hit end of file, so return 0 (false)
}
void
String::grow (int newsSize) throw(xmsg) 1l make a new String object of length newSize
{
char* old=s;
_Ss = new char[newSize];
if (_s==0)
throw(xmsg("can't allocate string"));
s:strepy(_s, old);
delete [] old;
}

Universitédt Bern Managing Memory

P2 — C++ 132.

The Final String.h

#ifndef STRING_H
#define STRING_H

#include <iostream.h> // declare istream and ostream
#include <exception.h> // declare xmsg
class String
{
friend ostream& operator<<(ostreamé&, const String&);
public:
String(void); I default constructor
~String (void); /l destructor
String (const String& copy); I copy constructor
String (const char*s); /l char* constructor
String& operator= (const String&); Il assignment
inline int strlen (void) const { return ::strlen(_s); } // current length
char& operator[] (const int n) throw (xmsg); Il safe indexing
String& operator+= (const String&) throw (xmsg); /l concatenation (exercise)
int getline (istream&); I read state from input stream
private:
char *_s;
void become (const char*) throw (xmsg); Il internal copy function
void grow (int) throw (xmsg); Il helper for getline()
%

#endif // STRING_H

Universitédt Bern Managing Memory

P2 — C++ 133.

summary

You should know the answers to these questions:
[0 When should you use the “orthodox canonical form”?
When are the different kinds of constructors called?
When do you need new and delete ?
What is the difference between delete and delete]] ?
How do the copy constructor and the assignment operator differ?
When should you use inline functions?
How can you overload operators?
What are friend declarations useful for?

(N I I O O I B

Can you answer the following questions?

0 Why would you overload operator()? new? delete?

Is it always possible to design classes so that friend s are not necessary?
Can you define in-place concatenation as an operator+= member function?
Can you define general concatenation as a global operator+ function?

[

Universitédt Bern Managing Memory

P2 — C++ 134.

8. Inheritance

Uses of inheritance

Polymorphism and virtual member functions
Default function arguments

Public inheritance

Base class initialization

Function pointers

N O O O O B

Universitat Bern Inheritance

P2 — C++ 135.

The Board Game

Tic Tac Toe is a pretty dull game, but there are many other interesting games that can
be played by two players with a board and two colours of markers.

Example: Go-moku [Random House Dictionary of the English Language]

“A Japanese game played on a go board with players alternating and
attempting to be first to place five counters in a row.”

[0 We would like to implement a program that can be used to play several
different kinds of games using the same game-playing abstractions

To start with, our program will let us play either Go-moku or Tic Tac Toe. We hope to use
our experience implementing Tic Tac Toe to factor out the common abstractions as an
abstract BoardGame class ...

Universitat Bern Inheritance

P2 — C++

Interaction

136.

We will have to change the display and interaction to handle larger board games:

Welcome to The Board Game!
Would you like to play a game? (y/n):
What game would you like to play?
Tic Tac Toe (t) or Go-moku (g)?:

A B C

O
+— +— +— +

X plays: bB

O plays: q

Are you sure you want to quit this game? (y/n):

Would you like to play another game? (y/n):
Goodbye!

Universitat Bern

Inheritance

P2 — C++

Class Hierarchy

BoardGame

abstract

#rows : int

#cols : int

#turn : Player

#square : Player[rows][cols]

+create ()

+notover () : Boolean
+winner () : String
+turn () : char

+print ()

#checkWinner (row : int, col

+play (String) - — — — — — —

#makeMove (row : int, col : int)
- int)

137.

makeMove(row, col)

el

Gomoku

+create ()

#checkWinner (row : int, col : int)

Universitat Bern

AN

TicTacToe

+create ()

#checkWinner (row : int, col : int)

Inheritance

P2 — C++ 138.

Uses of Inheritance

Inheritance in object-oriented programming languages can be used for (at least) three
different, but closely related purposes:

Conceptual hierarchy:
[1 Go-moku is-a kind of Board Game: Tic Tac Toe is-a kind of Board Game

Polymorphism:

[0 Instances of Gomokuand TicTacToe can be uniformly manipulated as
instances of BoardGame by a client program

Software reuse:
[1 Gomokuand TicTacToe reuse the BoardGame interface

[0 Gomokuand TicTacToe reuse and extend the BoardGame representation and
the implementations of its operations

Universitat Bern Inheritance

P2 — C++ 139.

Polymorphism

playGame() becomes more generic by making the abstract game a parameter.

void
playGame (BoardGame& game) Il Can be called with an instance of either Gomoku or TicTacToe
{

String move;

while (game.notover()) {
cout << game << game.turn() << " plays: ";
cin >> move;

try {
Il Here we should check if the player wants to quit the game ...

game.play(move);

}
catch (xmsg & err) {
cout << "Error: " << err.why() << endl;
}
}

cout << game << game.winner() << " wins!!!" << end| << end|;

Universitat Bern Inheritance

P2 — C++ 140.

Polymorphic Destruction

The main program is now responsible for creating and destroying BoardGame instances:

BoardGame * game; I/l abstract, so we can only declare a pointer
game = makeGame(); /1 we get a pointer to some kind of game
playGame(*game); /l we can play it

delete game; I and ask it to destroy itself

Only one function needs to know the concrete subclasses of BoardGame:

BoardGame* Il Return type is abstract class
makeGame (void)
{

cout << "What game would you like to play?" << endl;

cout << "Tic Tac Toe (t) or Go-moku (g)?: ";

String reply;
cin >> reply;

switch (reply[0]) { I What happens if reply.strlen() == 0?
case 't':
return new TicTacToe; I We call new, so the client must call delete
break;
case 'g':
return new Gomoku; Il Either TicTacToe or Gomoku instances can be returned
break;
default:
cout << "Hm ... | guess you want to play Tic Tac Toe ..." << end];
return new TicTacToe;

Universitat Bern Inheritance

P2 — C++

The BoardGame Interface

class

BoardGame {

public :

BoardGame (int rows =8 ,intcols
throw(xmsg);

virtual ~ BoardGame (void) =0;

int notover (void);
const char * winner (void);

char turn (void);

void play (String move)
throw (xmsg);

void print(void);

8)

protected

enum Player { nobody =0,X=1,0=2};

const int rows,
Player _winner;
Player _turn;

int squaresLeft;
Player ** square;

static const char
static const char *

cols:

layer[3];
winners [3];

virtual void makeMove (int row, int col)
throw (xmsg);
virtual void checkWinner (int row, int col)

int inRange (int row, int col);

Universitat Bern

I
I
I

I
I
I

I
I

I

I
I
I
I
I

I
I

I
I

I

141.

Constructor with default arguments
Out of memory raises exception
Pure, virtual destructor

True if game is not over
Winner is "X", "O" or "Nobody"
Whose turn is it? ‘X’ ‘O’ or *’

Current player marks a square
Invalid move raises exception

Pretty-print the current state

Shape of the board

Initially nobody

Initially X

Initially rows*cols

The board; initially all nobody

Char names of the players
Char* names of the players

Current players makes a move
Exception if invalid
Check if the last move wins

(row,col) are in range for this board

Inheritance

P2 — C++ 142.

Virtual Members

Data and methods that will be accessible to, or redefined by, subclasses should be
declared as protected , not private

Member functions that may be redefined by subclasses should be declared virtual

[Calls to virtual functions will be dynamically resolved to the correct
implementation (or “method”) defined for the target instance

[0 Any function that might be redefined should be virtual
[0 Constructors cannot be declared virtual
[1 Destructors should always be virtual

Member functions that must be redefined should be declared pure virtual:
[0 Classes with pure virtual functions are abstract, and cannot be instantiated

[1 Pure virtual destructors must nevertheless be defined!

1 A subclass should only redefine a member function if it has been declared virtual!

Universitat Bern Inheritance

P2 — C++

143.

Default Initializers

Default values may be specified for any function:

[

[

When the function is called with missing arguments, default values are taken
0 e.g.,f() isthesame asf(3) if we declare void f(int n = 3);
Arguments with default initializers must follow those without

[0 if we declare void nonsense (int x = 1, int y);
then what does it mean to call nonsense(5) 7!

Default initializers effectively declare several functions with different signatures
[i.e., we now have both void f(int); and void f(void);

Default initializers must appear in the declaration of a function, not in its
definition

[Ii.e., in the header file, not the implementation

[1 Be sure that the implicit signatures of functions with default initializers do not overlap
with those of other declared functions!

Universitat Bern Inheritance

P2 — C++

Arrays of arrays

BoardGame::BoardGame (int rs, int cs) throw(xmsg) :
rows(rs), cols(cs), 1
_winner(nobody),

_turn(X),
squaresLeft(rs*cs) /l

{
debug("calling BoardGame constructor"); Il
square = new Player* [rows]; Il
if (square == 0) Il

throw(xmsg("Can't allocate board"));
for (int r=0; r<rows; r++) {
square[r] = new Player [cols]; 1l

if (square[r] == 0)
throw(xmsg("Can't allocate board"));

for (int ¢c=0; c<cols; c++)
square]r][c] = nobody; Il
}
}
BoardGame::~BoardGame (void) I
{
debug("calling BoardGame destructor");
for (int r=0; r<rows; r++)
delete [] squarelr]; Il
delete [] square; /l
}

Universitat Bern

144.

I Boardgame constructor
Initialize constant data members

NB: can use expressions to initialize members

Notify when constructor/destructor is called

square now points to an array of rows pointers
Might fail for a ridiculously large board!

Each row pointer now points to cols Players

Should explicitly initialize, even if nobody = 0

BoardGame destructor

Delete the array pointed to by square[r]
And delete the array pointers too!

Inheritance

P2 — C++ 145.

Non-Virtual Functions

Do not declare base class functions virtual if they will never be overridden:
int
BoardGame::notover (void) 1l Game isn’t over if squares are left and there is no winner

{
}

const char *
BoardGame::winner (void) /l Return the char * name of the winner

{
}

char
BoardGame::turn (void) I Return the char name of the current player

{
}

int
BoardGame::inRange (int row, int col)// (row,col) are valid on this board

{
}

return (squaresLeft > 0) && (_winner == nobody);

return winners[_winner];

return player[_turn];

return (O<=row) && (row<rows) && (0<=col) && (col<cols);

[0 Are any of these functions good candidates to be declared virtual ?

Universitat Bern Inheritance

P2 — C++ 146.

Using Virtual Functions

Virtual functions are useful for parameterizing generic procedures

/~k
Current player makes a move by marking a square labelled aA-zZ.
An exception is raised if the square is out of range or if the move is invalid.
*/
void
BoardGame::play (String move) throw(xmsg)
if ('notover()) {
throw(xmsg("This game is already over!"));
return;
}
if (move.strlen() '=2) {
throw(xmsg("Improper response: please give coordinates [a-z][A-Z]"));
}
Il Check if move is in range, and convert to index into square(][]
int row = move[0] - 'a’;
int col = move[l] - 'A’;
if (linRange(row, col)) {
throw(xmsg("Row out of range"));
}
makeMove (row, col); Il Try to make the requested move (might throw exception)
checkWinner (row, col); I Check if this is a winning move (if so, set _winner)
}

Universitat Bern Inheritance

P2 — C++ 147.

Defining Virtual Functions

Virtual functions can implement default behaviour:

/~k
The default implementation assumes you can mark any empty square.
(This is all you need for Tic Tac Toe or Go-moku.)
Override this to implement a different logic for valid moves.

*/

void
BoardGame::makeMove (int row, int col
{
if (square[row][col] == nobody) { /l If square not already marked
square[row][col] = _turn; /l then mark the square
squaresLeft--;
_turn=(turn==X)? O : X; Il and switch current player
} else {
throw(xmsg("Square already occupied"));
}
}

Pure virtual functions are declared but not defined.

[1 Pure virtual destructors, on the other hand, must be defined, since they will
be called when instances of derived classes are destroyed.

Universitat Bern Inheritance

P2 — C++ 148.

Public Inheritance

A new class can be derived from an existing base class by inheritance.

The derived class may introduce new features or override inherited features.
[If the derived class is to be concrete, pure virtual must be redefined
[0 Only virtual base member functions should be overridden!

[0 The derived class should always define its own constructors, destructors
and (if needed) the assignment operator.

Derived class functions may access all public and protected features of the base class.

class Gomoku: public BoardGame { 1 Public members of BoardGame will stay public

public :

Gomoku (int r=19, int c=19, int ws=5) I/l Constructor with default arguments

throw(xmsg); 1 Can fail if base constructor fails

virtual ~Gomoku (void); Il Virtual destructor needed for derived class
protected :

const int winningScore; 1 New data member (instance variable)

virtual void checkWinner (int row, int col);// Inherited pure virtual must be overridden

void checkScore (int row, Il New function member

int col,

void (* thisMove) (int&,int&),
void (* thatMove) (int&, int&));
I3

Protected or private inheritance causes inherited features to be reclassified accordingly

Universitat Bern Inheritance

P2 — C++ 149.

Base Class Initialization

Abstract classes must have constructors since they are called by derived classes:

Gomoku::Gomoku (int r, int c, int ws) throw(xmsg) :
BoardGame(r,c), I Base members are initialized with r rows and c¢ columns
winningScore(ws)

{
debug(“calling Gomoku constructor"); // Notify when base/derived constructors are called
}
Gomoku::~Gomoku (void)
{
debug("calling Gomoku destructor"); // Base destructor will be automatically called!
}

Base members are constructed before and destructed after derived members:

Welcome to The Board Game!
Would you like to play a game? (y/n): y
What game would you like to play?
Tic Tac Toe (t) or Go-moku (g)?: g
DEBUG> calling BoardGame constructor
DEBUG> calling Gomoku constructor
A B C D E..
T S U S Y

al || 1 1.

RCEEL EEEL FEEE FEEL
X plays: q
Are you sure you want to quit this game? (y/n): y
DEBUG> calling Gomoku destructor
DEBUG> calling BoardGame destructor

Universitat Bern Inheritance

P2 — C++ 150.

Keeping Score

The Go board is too large to search it exhaustively for a winning Go-moku score.

Instead, we know a winning sequence must include the last square marked, so we search
in all directions starting from that square to see if we find 5 in a row:

We must do the same thing in four directions.
How can we parameterize the algorithm by the directions to search?

Universitat Bern Inheritance

P2 — C++

Using Function Pointers

void
Gomoku::checkWinner (int row, int col

{

checkScore(row, col, right, left); I
checkScore(row, col, up, down); 1
checkScore(row, col, northeast, southwest); Il
checkScore(row, col, northwest, southeast);

}

void

Gomoku::checkScore (int row, int col,
void (* thisMove) (int&, int&), Il
void (* thatMove) (int&, int&)) I

int score =1, r=row, c=col; /!

thisMove(r,c); Il

while (inRange(r,c) && square[r][c] == square[row][col]) {
score++; I
thisMove(r,c); Il

}

r=row; c =col; Il

thatMove(r,c); I

while (inRange(r,c) && square[r][c] == square[row][col]) {
score++;
thatMove(r,c);

}

if (score >= winningScore) Il
_winner = square[row][col]; /l

Universitat Bern

151.

Factor out the common algorithm
Apply in the four directions
right, left etc. are function pointers

Value passed is the address of a function!
Not the same as: void *thatMove(int&, int&)!

Score is 1 at current location

Increment in this direction

Neighbour is same as me, so increase score
NB: same as (*thisMove)(r,c)

Go back to starting square
Continue in opposite direction

We found 5 in a row!
So current player is the winner.

Inheritance

P2 — C++ 152.

Using Static Functions

Static functions are private to a file and cannot clash with similarly-named functions that
might be defined in other files:

static void right (int&, int&); I Declared and defined in Gomoku.cpp
static void left (int&, int&);

static void up (int&, int&);

static void down (int&, int&);

static void northeast (int&, int&);
static void southwest (int&, int&);
static void northwest (int&, int&);
static void southeast (int&, int&);

void right (int& row, int& col) { col++; } Il Boring functions, but they make checkWinner()
void left (int& row, int& col) { col--; } Il much easier to define and maintain!

void up (int& row, int& col) { row++; }

void down (int& row, int& col) { row--; }

void northeast (int& row, int& col) { row++; col++; }
void southwest (int& row, int& col) { row--; col--; }

void northwest (int& row, int& col) { row++; col--; }
void southeast (int& row, int& col) { row--; col++; }

Universitat Bern Inheritance

P2 — C++ 153.

Implementation Inheritance

Tic Tac Toe is just Go-moku on a 3x3 board with a winning score of 3 instead of 5.

TicTacToe.h must declare a new constructor and destructor:

#ifndef TICTACTOE_H
#define TICTACTOE_H

#include "Gomoku.h"

class TicTacToe : public Gomoku {
public :

TicTacToe (void) throw(xmsg);
virtual ~TicTacToe (void);

s
#endif // TICTACTOE H

TicTacToe.cpp just overrides the default initializers of the Gomoku constructor:
#include "TicTacToe.h"

TicTacToe::TicTacToe (void) throw(xmsg) :

Gomoku(3,3,3) 1 3x3 board with winning score of 3
{
debug("calling TicTacToe constructor"); /l NB: This will be called after
} I/l BoardGame and Gomoku constructors
TicTacToe::~TicTacToe (void) I Nothing new to destruct!
{
debug("calling TicTacToe destructor"); /l Destruction is in reverse order
}

Universitat Bern Inheritance

P2 — C++ 154.

summary

You should know the answers to these questions:
[0 How does polymorphism help in writing generic code?
How can you use inheritance and virtual functions to realize polymorphism?
What are pure virtual functions?
When should features be declared protected rather than public or private?
What features can and should a derived class define?
Why should destructors be virtual, but not constructors?
When can you use function pointers to avoid duplicating code?

N O O O A

Can you answer the following questions?

Can you implement BoardGame::print() and operator<< ?

How can we improve BoardGame's protected interface? Why should we?
Can you specify the invariants maintained by BoardGame ? By Gomoku?
Should we have defined a copy constructor and operator= for BoardGame ?

Should Gomoku::winningScore and Gomoku::checkScore() have been
declared private instead of protected ?

N O O O

Universitat Bern Inheritance

P2 — C++
9. Tools
[1 Makefiles:
[1 Version Control:
[0 Debuggers:
[1 Profilers:
[1 SNiFF+:
[Purify:
[1 Other tools ...
Sources

manage file dependencies

manage multiple versions of files

explore state of running program

analyze call graph of an execution instance
browse and navigate source code

monitor memory accesses

O “UNIX in a Nutshell,” O'Reilly, 1994

Universitat Bern

155.

Tools

P2 — C++ 156.

Makefiles

Make is a tool for updating generated files (e.g., object files and executable programs)
when files they depend on are modified.

[0 Make uses a user-specified list of dependencies and update commands
defined in a makefile to compute the minimum set of files to regenerate.

Makefile for prog
prog depends on two object files:

prog : prog.o mylib.o
CC prog.o mylib.o -0 prog

prog.o and mylib.o each depend on a source file and a header file:

prog.o : prog.cpp mylib.h
CC -c prog.cpp

mylib.o . mylib.cpp mylib.h
CC -c mylib.cpp

Running ‘make’ with no arguments will create the first target (prog).
If any of the dependent files have been modified, the appropriate commands are run
0 What happens if mylib.cpp is modified? What about mylib.h?

Universitat Bern Tools

P2 — C++ 157.

Make Options

Usage:
make [options] [targets]
Options:
-f makefile Use makefile as the description file.
-n Print commands but don’t execute them.
-S Execute, but do not display command lines.
-t Touch the target files, causing them to be updated.

Run ‘man make’ for further options ...

0 Always define makefiles, even for your most trivial projects.

Universitat Bern Tools

P2 — C++ 158.

Description File Lines

Blank lines are ignored
Comment lines:
[0 Everything following a ‘#' is ignored.
Dependency lines:
[0 The target should be regenerated if any prerequisite is newer.
targets . prerequisites
NB: dependency lines must never start with a tab!
Suffix rules:
[0 All files with the first suffix are prerequisites for those with the second.
. suffix . suffix
Commands:
[0 Command lines start with a tab, following a dependency line or a suffix rule.
If the line starts with “-”, errors are ignored; with “@”, echoing is suppressed
Macros:

[0 Macros have the form nhame = string and are referenced by either $(name)
or ${name}

Universitat Bern Tools

P2 — C++ 1509.

Macros and Special Targets

Internal Macros
0 $@ The current target.

0 $? The list of prerequisites that are newer than the target.
Can’t be used in suffix rules.

0 $< The name of the current prerequisite newer than the target.
Only in suffix rules.

O $* Like $<, but with the suffix removed.

Only in suffix rules.

Special Target Names:

0 .DEFAULT: What to make if the request target has no rules.

0 .IGNORE: Ignore error codes (same as -i option).

0 .SILENT: Execute but don’t echo commands (same as -S).

O .SUFFIXES: Recognize the following suffixes as targets in suffix rules.

Universitat Bern Tools

P2 — C++ 160.

Gomoku Makefile

Make macros:

GMKO = gmkMain.o BoardGame.o Gomoku.o TicTacToe.o String.o

CXX =CC
LFLAGS = -L/opt/'SUNWSspro/SC3.0.1/lib
CFLAGS =-0

Suffix rules:

.SUFFIXES: .cpp .C

.Cpp.o:
$(CXX) $(CFLAGS) -c $<

.C.o:
$(CXX) $(CFLAGS) -c $<

all : gomoku

gomoku : ${GMKO}

$(CXX) ${GMKO} ${LFLAGS} -0 $@
clean :

rm -rf *.o0

gmkMain.o : TicTacToe.h Gomoku.h BoardGame.h String.h Debug.h
BoardGame.o : BoardGame.h String.h Debug.h

Gomoku.o : Gomoku.h BoardGame.h String.h Debug.h
TicTacToe.o : TicTacToe.h Gomoku.h BoardGame.h String.h Debug.h
String.o : String.h

Universitat Bern Tools

P2 — C++

161.

Makefile for g++

A properly parameterized Makefile can easily be adapted to a different compiler:

Compile .cxx files with g++:

CXX = g++
LFLAGS = -Istdc++
CFLAGS = -fhandle-exceptions -O
Makedepend

Dependencies between files can be automatically generated and updated by running a
tools like makedepend

[0 Dependencies must be listed at the end of the makefile
[0 Intermediate files are generated by suffix rules

[0 Dependencies are generated by recursively parsing source and header files

Universitat Bern

Tools

P2 — C++ 162.

Version Control

A version control system keeps track of multiple file revisions:
[0 check-in and check-out of files
logging changes (who, where, when)
merge and comparison of versions
retrieval of arbitrary versions
“freezing” of versions as releases
reduces storage space (manages sources files + multiple “deltas”)

N O O O B

0 You should use a version control system for any project that is non-trivial, developed
by a team, or delivered to multiple clients

SCCS and RCS are two popular version control systems for UNIX.

Universitat Bern Tools

P2 — C++ 163.

RCS

Overview of RCS commands:

0 i Check in revisions

0 co Check out revisions

O rcs Set up or change attributes of RCS files

O ident Extract keyword values from an RCS file

O rlog Display a summary of revisions

[0 merge Incorporate changes from two files into a third

O rcsdiff Report differences between revisions

[0 rcsmerge Incorporate changes from two RCS files into a third
[0 rcsclean Remove working files that have not been changed
[0 rcsfreeze Label the files that make up a configuration

Universitat Bern Tools

P2 — C++ 164.

RCS Usage

When file is checked in, and RCS file called file ,v is created in the RCS directory:
mkdir RCS # create subdirectory for RCS files
ci file # put file under control of RCS

Working copies must be checked out and checked in.

co-l file # check out (and lock) file for editing

ci file # check in a modified file

co file # check out a read-only copy (i.e., for compiling, etc.)

ci -u file # check in file, but leave a read-only copy (= ci/co)

rcsdiff file # report changes between working copy and latest revision

Universitat Bern Tools

P2 — C++ 165.

Additional RCS Features

Keyword substitution
[0 Various keyword variables are maintained by RCS:

$Author$ who checked in revision (username)
$Date$ date and time of check-in
Log description of revision (prompted during check-in)

and several others ...

Revision numbering:
[0 Usually each revision is numbered release.level
[0 Level is incremented upon each check-in
[0 A new release is created explicitly: Ci -r2 file

Universitat Bern Tools

P2 — C++ 166.

Debuggers

A debugger is a tool that allows you to examine the state of a running program:
[0 step through the program instruction by instruction

view the source code of the executing program

execute up to a specified breakpoint

set and unset breakpoints anywhere in your program

display values of variables in various formats

manually set the values of variables

examine the state of an aborted program (in a “core file”)

N O O O O B

Various debuggers are available for UNIX: gdb, sdb, dbx
[0 To use a debugger effectively, you must compile with the -g option

NB: debuggers are object code specific, so can only be used with programs compiled
with compilers generating compatible object files. (sdb and dbx for CC; gdb for g++)

[Use a debugger whenever you are unsure why your program is not working.

Universitat Bern Tools

P2 — C++

Using dbx

oscar@pogo 1: dbx gomoku
Reading symbolic information for gomoku

(dbx) stop inmethod checkWinner

(2) stop inmember checkWinner

(dbx) run

Running: gomoku

(process id 27536)

Welcome to The Board Game!

Would you like to play a game? (y/n):

What game would you like to play?

Tic Tac Toe (t) or Go-moku (g)?: t

A B C

O
+—+— +— +

X plays: aA

stopped in Gomoku::checkWinner (optimized)
at line 44 in file "Gomoku.cpp”

(dbx) where

=>[1] Gomoku::checkWinner(this = 0x3d0c8,
row = 0, col = 0) (optimized),

at 0x16a20 (line ~44) in "Gomoku.cpp"

Universitat Bern

[2] BoardGame::play(this = ???, move = CLASS)

(optimized), at 0x16180 (line ~81)
in "BoardGame.cpp"

[3] playGame(game = CLASS) (optimized),
at 0x15888 (line ~67) in "gmkMain.cpp"

[4] main() (optimized), at 0x154f8 (line ~19)
in "gmkMain.cpp”

(dbx) cont

Oplays: (¢

Are you sure you want to quit this game? (y/n):

Would you like to play another game? (y/n):
Goodbye!

execution completed, exit code is 0
(dbx) exit

167.

Tools

P2 — C++

GUI Debuggers — CodeWarrior

168.

Universitat Bern

Line: 63 Source

w [afunf:

Gomoku m
File Code Data ¥ 1 B]
Breakp|= Sources 6K 2K+ [7] | P ||] ||)4 || =] || b || B |
— Condit grnkMain.cpp 1428 ETEL + [H
: - : EoardGame .cpp 2244 6711 « [H
& GomokuxcheckSore, Tine 63 Gormnaku cpp 1120 277 o [
TicTacToe.cpp |E[C] Gomoku
| Stringepp :
B ANST Libraries ||—3tart i —turn B
0 plays: bE [Mae Libraries ||main squaresleft i3
A B plauGarned Boar .. square (0201 SOF 44C
11 file(s) Bosardzame:pla... #aqUare (001 SOF 44 4
a | x| I I Gormku:check. . ®¥zquare X
Gormaku:checks.. winningScore 13
bl | o | I —
} _ {
= ! I I I - int score = 1;
' - int r=row, c=col;
§ ff check in thiz direction
L plays: cA - thizMowvelr,cl; Jdozame as: (FthiszMowve X,
- i while CinRangedr,c? &% squarelrlic] == =quarelrow]lcal
A . E . = : Jdocerr 24 "Checking o << pow <2 " " 24 oo <407
a | x| I I .u} scarett;
- thizMovedr,cl;
R - '
| % i I I Sdoearr 14 "Stopped at " 44 pow 2407 ,Y L4 o] <4 MY
o
: Sdand now in that direction
- o= ram;
0 plays: bA - c = col;
thatMowvelr,cd;

Tools

P2 — C++ 1609.

Profilers

A profiler can be used to display the call graph profile data of an executed program

[0 the program must be compiled with a special flag (e.g., -pg) that will cause
profile data to be generated when the program is run

[0 profile data is generated in a special file (e.g., gmon.out)

0 the profiler (e.qg., gprof, Iprof or prof) is run with the profile data and the object
file (containing the symbol table) as arguments

[0 the call graph can be displayed in various formats (e.g., by decreasing total
time, by decreasing number of calls, by symbol name, by symbol address ...)

[Use a profiler to gain insight into where your program Is spending most of its time.
[1 Never try to “optimize” your program without profiling it first!
[0 Use a profiler to check which functions have been “exercised”.

Universitat Bern Tools

P2 — C++

Using gprof

Profilers can generate statistics in a variety of formats ...

granularity: each sample hit covers 2 byte(s) for 50.00% of 0.02 seconds
%cumulative

time
50.0
50.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

seconds
0.01
0.02
0.02
0.02

0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02

Universitat Bern

self self total
seconds calls ms/call ms/call

0.01

0.01

0.00 57 0.00 0.00
0.00 24 0.00 0.00
0.00 20 0.00 0.00
0.00 13 0.00 0.00
0.00 9 0.00 0.00
0.00 9 0.00 0.00
0.00 8 0.00 0.00
0.00 7 0.00 0.00
0.00 7 0.00 0.00
0.00 7 0.00 0.00
0.00 6 0.00 0.00
0.00 6 0.00 0.00
0.00 6 0.00 0.00
0.00 6 0.00 0.00
0.00 6 0.00 0.00
0.00 6 0.00 0.00
0.00 6 0.00 0.00
0.00 6 0.00 0.00
0.00 6 0.00 0.00
0.00 6 0.00 0.00

170.

name

filebuf::overflow(int) [1]
ostream::tellp(void) [2]
BoardGame::inRange(int, int) [58]
Gomoku::checkScore(int, int, void (*)
(int&, int&), void (*)(int&, int&)) [59]
String::operator []J(const int) [60]
BoardGame::notover(void) [61]
String::grow(int) [62]
String::getline(istream&) [63]
down(int&, int&) [64]
up(int&, int&) [65]
operator <<(ostreamé&, BoardGame&) [66]
BoardGame::print(void) [67]
left(int&, int&) [68]
right(int&, int&) [69]
northeast(int&, int&) [70]
northwest(int&, int&) [71]
southeast(int&, int&) [72]
southwest(int&, int&) [73]
Gomoku::checkWinner(int, int) [74]
BoardGame::play(String&) [75]
BoardGame::turn(void) [76]
BoardGame::makeMove(int, int) [77]

Tools

P2 — C++ 171.

SNIFF+

SNiFF+ is an integrated environment for C++ development:
[0 project management

hierarchy browser

class browser

symbol browser

cross referencer

source code editor (using emacs, etc.)

version control with RCS

compiler error parsing (g++)

integrated make facility

N O O O

[0 Always use an integrated programming environment if one is available!

Universitat Bern Tools

P2 — C++

Using SNIFF+

L= SNiFF+ - Dscarzpogo
@ Project

Wi dows

Loaded Projects

i | Project Editor: Gomoku.proj

ufu]u}

oo File Project Make File Types

Source Files of Gomoku.proj
all _.| [~ Frivate [~ writable

= Gcmc:ku.prc:j

Universitat Bern

172.

Filter | [~ Shared [~ Read Only
ﬁ BoardGams .cpp Ganoku . proj
B PoardGame.h Gamoku . proj
% Debug.h Gamokn . proj
ﬁ ogrkMain.cpp Ganoku. proj
b Gomcku.cp Gamoku . proj
By Gomoku.h Gamoku . proj
&4 Gomoku.pra] Gomoku . proj
Makefile Gomoku . praj
ﬁ Strimg.cpp Somoku. proj
% Strimg.h Ganoku. proj
p—"
Projects
E |2| |£| Gancku . proj
I_| Frozen _| Lockers _| History

Tools

P2 — C++ 173.

SNIFF+ Source Editor

i 7| Source Editor: Gomokuproj - BoardGame cpp E
=" File Edit Positioning Make Infoe Class Exec Inspect History
, 4] &l Classes =
The default asammea vou ¢0an mark any emptlr aguare. BoardGame ':1'“-1:' BoardGame
Override thia to implement a different Jlogic for valid m ~BoardGame (mi) BoardGame
oy checkdinner (mi) BoardGame
void inFange (mi) BoardGame
BoardGame: :makeMove (int row, int col) throw (xmsg) makeMove (mi) BoardGame |
i notover (mi) BoardGame
if [semarelrow] [col] == nchedy) | A4 not already m c:peratmlf{{ (£
scuarelrow] [col] = turn; A4 mark the agua pl‘:ﬂ' [rru] BoardGame
sear esLeft —; print (mi) BoardGame
_turn = [turn == X) ®* 0 . X A4 awitch curren turn imi] BeardGame
| elze | winner (mi) BoardGame
throw (xmsg (" Scmare already occupied"));
}
| J
A Pretty print the current aktakte of the game:
void
FoardGams: :print (void) y
i
= | Sl
I_| Frozen File: BeardCamecpp — fhomedsegfoscar/Courses/P2/Examples/Comaoku

Universitat Bern Tools

P2 — C++ 174.

SNIFF+ Hierarchy Browser

r1| Hierarchy Browser: Gomokuproj E
=% Info Class Hierarchy History
Entire Hierarchy of Gomoku.proj Filter | Classes
Boardzam
. WGﬂmaku TiocTacToe Wkuel
String String
TioTacTos
=
Projects
| Gamoku . pro]
I_|Fr-::zen Marked: none Project Gomaku, proj Number of nodes: 5

Universitat Bern Tools

P2 — C++

SNIFF+ Class Browser

Universitat Bern

175.
a = | Class Erowser: Gomokuproj E
B Infoe Class History
| TicTacTos Class =
&l inst vars -
Filter | __| Overridden
cols BoardGame
B player BoardiGame
rows BoardGame
Sguare BoardGame
agmaresLeft BoardGame
B winners BoardGame
winningScore Gamnolu
_turn BoardGame
_winner BoardGame
y—
Inheritance
| TicTacToe
{0 R
BoardGama
| Frozen _ | Signature [~ Sorted
Tools

P2 — C++ 176.

Purify

Purify is tool to help detect run-time memory corruption and memory leaks
[0 Add purify to the link line in your Makefile, e.qg.:

gomoku : ${GMKO}
purify CC ${GMKO} ${LFLAGS} -0 $@
Purify will modify the object code at link time to add error-checking
instructions.
[Run your program as usual — a special window will open with error messages
displayed as various abnormal conditions are detected

[0 Your program will (almost always) run exactly as it does without purify, except
it will be about 3 to 5 times slower, and take about 40% more memory

0 Use purify (or an equivalent utility) while developing C++ programs to catch errors in
managing memory.

Remember, the most common C++ errors are invalid memory accesses!

Purify is a product of Pure Software Inc.

Universitat Bern Tools

P2 — C++

Using Purify

i 7| Purify: vPurifyGomoku
File View Actions Options Help
O () PEE B

M| Purify instrumented wPurifyGomoku {pid 27091 at Wed Apr 10 14:52:40 13963
F| Current file descriptors in use: 5
-,

Memory leaked: O bytes (0gi: potentially leaked: O bytes (0E:
¥ Purify Heap Bnalysiz ¢combining =zupprezsed and unsuppressed chunks)

Churiks Bytes

Leaked]]

FPotentially Leaked]]
In-Uze 1 d

Total Allocated 1 a

*| Program exited with status code O,
% Bazic memory uszage (including Purify overhead):
287207 code
F20ED datarsbss
3137 heap {peak uzel
B120 stack
* Shared library memory usage (including Purify overhead):
153588 libm,=o,1_pure_pl_c0_032_54,20,1 (shared codel
5944 libm,=o,1_pure_pl_c0_032_54,z0,1 (private datal
30397 libw,=zo,1_pure_pl_cO_0232_54,=0,1 {shared codel

-

o |

Universitat Bern

177.

Tools

P2 — C++ 178.

Other tools

Be familiar with the programming tools in your environment!

lint : detect bugs, portability problems and other possible errors in C programs
strip : remove symbol table and other non-essential data from object files

diff and patch : compare versions of files, and generate/apply deltas

lex and yacc [flex and bison]: generate lexical analysers and parsers from
regular expression and context-free grammar specification files

awk, sed and perl: process text files according to editing scripts/programs
tar: stores files and directories as a “tape archive”
compress and uncompress [gzip and gunzip]: compress files

N O O B

[

Universitat Bern Tools

P2 — C++ 179.

summary

You should know the answers to these questions:
[0 How are makefiles specified?
What functionality does a version control system support?
What are breakpoints? Where should you set them?
When should you use a profiler?
How can you catch memory leaks and invalid memory accesses?

N O O B

Can you answer the following questions?

[0 How can you force make to recompile programs even if they are not out-of-date?

[0 When should you specify a version of your project as a new “release”?

[0 When should you use a debugger instead of adding “print” statements to your
program?

[0 When should you “strip” an executable program?

Universitat Bern Tools

P2 — C++ 180.

10. An Introduction to Java

Overview
[1 Javavs. C++

[0 Java language features: packages, classes, exceptions ...
[0 The Java API

[0 Applets

[1 David Flanagan, Java in a Nutshell, O’'Reilly, 1996

[1 Mary Campione and Kathy Walrath, The Java Tutorial , The Java Series,
Addison-Wesley, 1996

On-line resources:

[0 Locally installed Java resources (on-line tutorial, language spec, etc):
http://www.iam.unibe.ch/~scg/Resources/Java/

Universitat Bern An Introduction to Java

P2 — C++ 181.

Java

Language design influenced by existing OO languages (C++, Smalltalk ...):
[0 Strongly-typed, concurrent, pure object-oriented language
[0 Syntax, type model influenced by C++
[0 Single-inheritance but multiple subtyping
[0 Garbage collection

Innovation in support for network applications:
[0 Standard API for language features, basic GUI, 10, concurrency, network
Compiled to bytecode; interpreted by portable abstract machine
Support for native methods
Classes can be dynamically loaded over network
Security model protects clients from malicious objects

N O O B

Java applications do not have to be installed and maintained by users

Universitat Bern An Introduction to Java

P2 — C++ 182.

Java and C++ — Similarities and Extensions

Java resembles C++ only superficially:

Similarities:
[0 primitive data types (in Java, platform independent)

[0 syntax: control structures, exceptions ...
[0 classes, visibility declarations (public , private)
[0 multiple constructors, this , new
[0 types, type casting
Extensions:

[0 garbage collection

standard classes (Strings, collections ...)
packages

standard abstract machine

final classes

N O O B

Universitat Bern An Introduction to Java

P2 — C++

183.

Java and C++ — Simplifications

Whereas C++ is a hybrid language, Java is a pure object-oriented language that
eliminates many of the complex features of C++:

Simplifications:

[]

(N I O

no pointers — just references

no functions — can declare static methods

no global variables — can declare public static variables
no destructors — garbage collection and finalize methods
no linking — dynamic class loading

no header files — can define interface

no operator overloading — only method overloading

no member initialization lists — super constructor can be called
Nno preprocessor — static final constants and automatic inlining
no multiple inheritance — can implement multiple interfaces

no structs, unions, enums — typically not needed

no templates — but generics will likely be added ...

Universitat Bern An Introduction to Java

P2 — C++ 184.

The “Hello World” Program

helloWorld objects can be instantiated by any client

only classes can be declared (pure OO)

class methods behave like global functions
Every program must have a main
method declared iIn some class

Strlng IS a standard class

\// My %st Java program!
public class helloWor/d

public static void maln (String argv(]) {
System.out.printin(“Hello World”);

DTN T

a class in the package java.lang a public class variable a public method

Universitat Bern An Introduction to Java

P2 — C++ 185.

Packages

A Java program is a collection of classes organized into packages
[0 At least one class must have a public static void main() method
[0 The first statement of a source file may declare the package name:
package games.tetris;

[0 Source files (e.g., helloWorld.java) are compiled to bytecode files (e.g.,
helloWorld.class), one for each target class

[0 Class files must be stored in subdirectories corresponding to the package
hierarchy

[When using classes, either the full package name must be given:
java.lang.System.out.printin(“Hello World”);

or classes from the package may be imported:

import java.lang.*; // this package is always imported by default
[0 Class names are usually capitalized for readability:
a.b.c.d.e.f(); // which is the name of the class?!

Universitat Bern An Introduction to Java

P2 — C++ 186.

Java Basics

Java’s primitive data types and control statements resemble those of C/C++:

Primitive Data Types:
boolean byte char double float int long short void
Literals:
false null true
Control flow:
if (boolean){ Statements }else { Statements '}
for (boolean){ Statements }
while (boolean){ Statements }

do{ Statements } while (boolean)
switch (variable) {
case label : Statements;
break; ...

default : ... break;

Universitat Bern An Introduction to Java

P2 — C++

Classes and Objects

The encapsulation boundary is a class (not an object):
public class Point {

private double X, ¥ I notaccessible to other classes (even subclasses)

Il constructors:
public Point (double xCoord, double yCoord) { x = xCoord; y = yCoord; }

public Point (Point p){x=px;y=p.y,;}H/ can access private data here
I/l public methods:
public double getX () {return x; }
public void setX (double xCoord){ x = xCoord; }
public double getY () {returny;}
public void setY (double yCoord){ y = yCoord; }
public double distance () { return Math.sgrt(x*x + y*y); }
}
In pure OOLs, (non-primitive) objects are passed by reference, not by value:
int a=3, b=4; // a and b are primitive objects
Point pl = new Point(a,b);// pl is a reference to an object (NB: a & b coerced!)
int c=a; Il Cc gets value of a
c=8; Il c gets new value; a is unchanged
Point p2=pl; Il p2 refers to p1
Point p3 = new Point(pl); // p3is a copy of p1
p2.setX(c); /l The object p1 and pZ2 refer to is modified

Universitat Bern

18v7.

An Introduction to Java

P2 — C++ 188.

Garbage Collection

In Java (as in Smalltalk and Eiffel), objects no longer referred to are automatically
garbage-collected:

[0 no need to explicitly delete objects

[0 no destructors need to be defined

[0 no need to write reference-counting code

[0 no danger of accidentally deleting objects that are still in use

You can still exercise extra control;

[1 Cleanup activities can be specified in a finalize method
[0 useful for freeing external resources (files, sockets etc.)
[0 Objects you no longer need can be explicitly “forgotten”

[0 you can explicitly forget objects by assigning the value null to a variable
(this is the initial value of declared, but unassigned variables)

Universitat Bern An Introduction to Java

P2 — C++ 189.

Inheritance

A subclass extends a superclass, inheriting all its features, and possibly overriding some
or adding its own:

public class Circle extends Point {
private double r
public Circle (double xCoord, double yCoord, double radius) {
super(xCoord, yCoord); Il call Point constructor
r = radius;
}
public Circle (Circle c){
super(c); Il call Point constructor with ¢ as Point
r=c.r
}
public double getR () {returnr;}
public void setR (double radius){ r = radius; }
public double distance () { return super.distance() - r; }
}

Public superclass features can always be accessed, even if overridden.

Universitat Bern An Introduction to Java

P2 — C++ 190.

Dynamic Binding

One of the key features of object-oriented programming is dynamic binding — the actual
method that will be executed in response to a request depends on the dynamic type of
target, not the static type of the reference:

Point p = new Circle(5, 12, 4);

System.out.printin("p.distance() = " + p.distance());
yields:

p.distance() = 9

In pure OOLSs, all methods are dynamically bound by default.
Static binding is the exception:
[0 static methods belong to classes, so are statically bound
[0 private methods have purely local scope
0 final methods cannot be overridden, so are statically bound

Universitat Bern An Introduction to Java

P2 — C++ 191.

Downcasting

Dynamic binding can cause type information to be lost:

Point p = new Circle(5, 12, 4); Il p refers to a Circle — upcast ok
Circle cl =p; Il compile-time error! — can’t downcast

Type information can be recovered at run-time by explicit tests and casts:

if (p instanceof Circle) { /l run-time test
cl = (Circle) p; /l explicit run-time downcast ok

}
An attempt to cast to an invalid type will raise an exception at run-time:

p = new Point(3,4);
cl = (Circle) p; /l invalid downcast raises run-time exception

Universitat Bern An Introduction to Java

P2 — C++ 192.

Feature Visibility

Features can be declared with different degrees of visibility:

[0 private — accessible only within the class body
[0 public — accessible everywhere
[0 protected — accessible to subclasses andto members of the same package

[0 allows access to cooperating classes

[default (no modifier) — accessible throughout the package only
[0 allows package access but prevents all external access

Universitat Bern An Introduction to Java

P2 — C++ 193.

Modifiers

In addition to feature visibility, modifiers can specify several other important attributes of
classes, methods and variables:

[0 abstract — unimplemented method; class must also be declared abstract
[0 method signature is followed by semi-colon instead of body

O final — class/method/variable cannot be overridden by subclass
[1 static — method/variable belongs to class, not instances; implicitly final
[0 native — method implemented in some other language, usually C

Universitat Bern An Introduction to Java

P2 — C++

Exceptions
A class must declare which exceptions it throws , or it must catch them:
public class TryException {
public static void main(String args(]) {
try {
alwaysThrow(0); /l NB: we never get past this point

alwaysThrow("hello");
} catch (NumException e){
System.out.printin("Got NumException: " + e.getMessage());

} catch (StringException e){
System.out.printin("Got StringException: " + e.getMessage());
} finally {
System.out.printin("Cleaning up");
}
}
public static void alwaysThrow(int arg) throws NumException {
throw new NumException("don't call me with an int arg!");
}
public static void alwaysThrow(String arg) throws StringException {
throw new StringException("don't call me with a String arg!");
}

194.

Universitat Bern An Introduction to Java

P2 — C++ 195.

Defining Exceptions

You can define your own exception classes that inherit from Exception
Typically, you will only define constructors:

Il Most exception classes look like this:

public class NumException extends Exception {
public NumException() { super(); }
public NumException(String s) { super(s); }

}
public class StringException extends Exception {
public StringException() { super(); }
public StringException(String s) { super(s); }
}

Universitat Bern An Introduction to Java

P2 — C++

Multiple Inheritance

196.

Although conceptually elegant, multiple inheritance poses significant pragmatic

problems for language designers:

el

Circle

-r : double

+Circle
+getR
+setR
+distance

Point

_X,y

+Point
+setX
+getX
+setY
+getY
+distance

S

NamedPoint

-Nn

N

+NamedPoint
+setName
+getName

7

NamedCircle

+NamedCircle

Which version of distance() should be inherited by NamedCircle?

Universitat Bern

An Introduction to Java

P2 — C++ 197.

Interfaces
An interface declares methods but provides no implementation:
interface Named{
public void setName (String name);
public String getName ();
}
A Java class can extend at most one superclass, but may implement multiple interfaces:
public class NamedCircle extends Circle implements Named {
private NamedObject n; // object composition vs. inheritance
public NamedCircle (double xCoord, double yCoord, double radius, String name) {
super(xCoord, yCoord, radius); // call Circle constructor
n = new NamedObject(name); /l compose a NamedObject instance
}
public void setName (String name) { n.setName(name); } // forwarding
public String getName () { return n.getName(); }
}
Reusable behaviour can be encapsulated as a separate class:
public class NamedObject implements Named {
private String n;
public NamedObject (String name) { n = name; }
public void setName (String name) { n = name; }
public String getName () { return n; }
}

Universitat Bern An Introduction to Java

P2 — C++ 1986.

Overriding and Overloading

Overridden methods have the same name and argument types
Overloaded methods have the same name but different argument types

public class A{
public void f (float X) { System.out.printin("A.f(float)"); }
public void g (float x) { System.out.printin("A.g(float)"); }

}

public class Bextends A {
public void f (float X) { System.out.printin("B.f(float)"); }
public void g (int X) { System.out.printin("B.g(int)"); }

}

Overloaded methods are disambiguated by their arguments:

B b = new B(); Il both dynamic and static type B

Aa=b; /l static type is A but dynamic type is B

b.f(3.14f); /l B.f(float) -- overridden

b.f(3); Il B.f(float) -- 3 is converted to 3.0

b.g(3.14f); Il A.g(float) -- not overridden

b.g(3); // B.g(int) -- overloaded

a.f(3.14f); /l B.f(float) -- overridden

a.f(3); Il B.f(float) -- 3 is converted to 3.0

a.g(3.14f); /l A.g(float) -- not overridden

a.g(3); /l A.g(float) -- g(int) does not exist in SuperClass!

Universitat Bern An Introduction to Java

P2 — C++

Arrays

Arrays are polymorphic objects:

[

Can declare arrays of any type
int[] arrayl;

MyObiject s[];

Can build array of arrays

int a[][] = new int[10][3];

a.length --> 10

a[0].length --> 3

Creating arrays

1 An empty array:
int list[] = new int [50];
0 Pre-initialized:
String names|[] = { “Marc”, “Tom”, “Pete” };
[0 Cannot create static compile time arrays
int nogood[20]; // compile time error
Universitét Bern

199.

An Introduction to Java

P2 — C++ 200.

Arrays and Generics

Arrays are the only polymorphic containers in Java:

Point [] pa = new Point[3];

pa[0] = new Point(3,4);

pa[l] = new Point(5,12);

Point p = pa[0]; /l ok -- pa is an array of Points

It is not possible to program other kinds of polymorphic containers:

Stack s = new Stack(); /l defined in package java.util

s.push(pa[0]);

s.push(pa[l)]);

Il p=s.pop(); Il compile-time error -- s.pop() returns an Object
p = (Point) s.pop(); /l ok -- run-time cast

Universitat Bern An Introduction to Java

P2 — C++ 201.

The Java APl

java.lang. contains essential Java classes, including numerics, strings, objects,
compiler, runtime, security, and threads. This is the only package that is
automatically imported into every Java program.

java.awt. Abstract Windowing Toolkit
java.applet. enables the creation of applets through the Applet class.

java.io. provides classes to manage input and output streams to read data from
and write data to files, strings, and other sources.

java.util. contains miscellaneous utility classes, including generic data
structures, bit sets, time, date, string manipulation, etc.

java.net. provides network support, including URLSs, TCP sockets, UDP sockets,
IP addresses, and a binary-to-text converter.

And many others ...

Universitat Bern An Introduction to Java

P2 — C++

202.

Applets
4 Client " Server)
Applet Applet Class
Instance
other classes ...
¢
- - /
AP| Classes Java Applet classes can be downloaded from an

Universitat Bern

HTTP server and instantiated by an HTTP client.

When instantiated, the Applet will be init ialized
and start ed by client.

The Applet instance may make (restricted) use of
either standard API classes or other Server
classes to be downloaded dynamically.

NB: objects are not downloaded, only classes!

An Introduction to Java

P2 — C++

The Hello World Applet

The simplest Applet:
Il From Java in a Nutshell, by David Flanagan.

import java.applet.*; // To extended Applet
import java.awt.*; Il Abstract windowing toolkit
public class HelloApplet extends Applet {

Il This method displays the applet.
Il The Graphics class is how you do all drawing in Java.

public void paint(Graphics a){
g.drawString("Hello World", 25, 50);
}

} Il NB: there is no main() method!

HTML applet inclusion:

<title>Hello Applet</title>
<hr>

203.

<applet codebase="HelloApplet.out" code="HelloApplet.class" width=200 height=200>

</applet>
<hr>
The source.

Universitat Bern

An Introduction to Java

P2 — C++ 204.

Frameworks vs. Libraries

In traditional application architectures, user applications make use of library functionality
in the form of procedures or classes:

\
User Application >
_ - Library classes
main() -
/

A framework reverses the usual relationship between generic and application code.
Frameworks provide both generic functionality and application architecture:

\
Framework Application >
: - User classes
main() .
J

Essentially, a framework says: “Don’t call me — I'll call you.”

Universitat Bern An Introduction to Java

P2 — C++ 205.

Standalone Applets

An Applet is just a user object instantiated by the Applet framework:

Il Adapted from Java in a Nutshell, by David Flanagan.
Il A simple example of directly instantiating an Applet.

import java.applet.*;
import java.awt.*,

public class HelloStandalone {
public static void main(String args[]) {

Applet applet = new HelloApplet();
Frame frame = new AppletFrame("Hello Applet”, applet, 300, 300);

}
}
class AppletFrame extends Frame {
public AppletFrame(String title, Applet applet, int width, int height) {
super(title); /l Create the Frame with the specified title.
this.add("Center", applet); // Add the applet to the window.
this.resize(width, height); // Set the window size.
this.show(); Il Pop it up.
applet.init(); Il Initialize and start the applet.
applet.start();
}
}

Universitat Bern An Introduction to Java

P2 — C++ 206.

Events

Instead of actively checking for GUI events, you can define callback methods that will be
invoked when your GUI objects receive events:

... are handled by
application objects

AWT Framework

Hardware events ...

(mouseUp,
mouseDown, ...) Callback methods

Component is the superclass of all GUI components (including Frame and Applet) and
defines all the callback methods that components must implement.

Universitat Bern An Introduction to Java

P2 — C++ 207.

The Scribble Applet

Scribble is a simple Applet that supports drawing by dragging the mouse:
NB: This example uses the (deprecated) Java 1.0 event model!

Il Adapted from Java in a Nutshell, by David Flanagan.

import java.applet.*;
import java.awt.*;

public class Scribble extends Applet {

private int last_x = 0;
private int last_y = O;
private Button clear_button;

I/l Called to initialize the applet.

public void init() {
this.setBackground(Color.white); /l Set the background colour
clear_button = new Button("Clear"); Il Create a Button
clear_button.setForeground(Color.black);
clear_button.setBackground(Color.lightGray);
this.add(clear_button); Il Add it to the Applet

Universitat Bern An Introduction to Java

P2 — C++ 208.

Responding to Events

/I Called when the user clicks the mouse to start a scribble

public boolean mouseDown(Event e, int X, int y) {
last x = x; last .y = vy; return true; // Always return true if event handled
}
I/l Called when the user scribbles with the mouse button down
public boolean mouseDrag (Event e, int X, int y) {

Graphics g = this.getGraphics();
g.setColor(Color.black); g.drawLine(last_x, last vy, X, y);
last_x = x; last_y =y, return true;

}

Il Called when the user clicks the button
public boolean action (Event event, Object arg) {
Il If the Clear button was clicked on, handle it.
if (event.target == clear_button) {
Graphics g = this.getGraphics();
Rectangle r = this.bounds();
g.setColor(this.getBackground());
g.fillRect(r.x, r.y, r.width, r.height);
return true;
HI Otherwise, let the superclass handle it.
else return super.action(event, arg)

Universitat Bern An Introduction to Java

P2 — C++ 209.

Running the Scribble Applet

sS[I=———— Applet Viewer: Scribble.class

ALYl

applet started

Universitat Bern An Introduction to Java

P2 — C++ 210.

summary

You should know the answers to these questions:
[0 What are the similarities and differences between Java and C++?
What role do packages play in Java?
Why should a subclass constructor call its super constructor?
What is dynamic binding? Why are static methods not dynamically bound?
What is the difference between overriding and overloading?
Why doesn’'t an Applet need a main() method?
What are events and callbacks?

N O O O A

Can you answer the following questions?

[0 How can an object gain access to a private instance variable of another object?
0 Why does Java (need to) support explicit type-casting?

[0 What is the difference between an interface and an abstract class?

Universitat Bern An Introduction to Java

P2 — C++ 211.

11. Design Rules

Using new and delete

Initialization lists vs. assignment in constructors
Virtual destructors

Assignment and inheritance

Class members, globals and friends

const declarations

References vs. values

Overloading

N O A I O

sources:
[0 Scott Meyers, Effective C++, Addison-Wesley, 1992.

Universitédt Bern Design Rules

P2 — C++ 212.

Basic Rules

[0 Useconst andinline instead of #define
[0 Constants are named and understood by the compiler; macros aren’t
[0 Inline functions evaluate arguments once; macros are expanded literally

Recall the problems with the badMin() macro!

[1 Preferiostream.h to stdio.h
[0 scanf and printf are not typesafe and not extensible

Universitédt Bern Design Rules

P2 — C++ 213.

Deleting Objects

[Use the same form in corresponding calls to new and delete
[0 Delete objects with delete
[0 Delete arrays with delete []
If you try to delete an array with delete , you will only delete the first element!

[Call delete on pointer members in destructors

If your class has a pointer member, make sure that:
[0 The pointer is properly initialized within each constructor
0 If no memory is allocated, initialize the pointer to O (null)

[0 Existing memory is deleted and new memory assigned to the pointer in the
assignment operator (i.e., operator=)

[0 Allocated memory is deleted in the destructor
(NB: it is always safe to call delete on a null pointer)

Normally a class should not delete objects it did not create!

Universitédt Bern Design Rules

P2 — C++ 214.

Running out of Memory

[1 Check the return value of new
When new cannot allocate the memory you need, it returns 0.

Alternatively, you can tell new to call an error handler that you supply:
void noMoreMemory(void)

{

cerr << "Ran out of memory!" << endl;
exit(1);
}

void memTest(void)

{

set_new_handler(noMoreMemory); /l NB: #include <new.h>
char * wayTooBig = new char[1000000000]; /l Will cause new to call
} Il noMoreMemory()

Since set_new_handler() always returns the current handler, you can also locally set
and restore handlers within classes.

Universitédt Bern Design Rules

P2 — C++ 215.

Constructors

[Define a copy constructor and an assignment operator for classes with dynamically
allocated memory

Use the orthodox canonical form — if you don’t, C++ will silently generate for you copy
constructors and assignment operators that perform shallow copies!

[Prefer initialization to assignment in constructors

class MyClass MyClass::MyClass (const String& name)
{ : myName(name) // initialization
public: {}
MyClass (const String& name);
private: _
String myName; I{\/IvClass::I\/IvCIass (const String& name)
b myName = name;// assignment
}

[0 Assignment adds overhead, since members must be first initialized and then
assigned to

const and reference members can only be initialized, never assigned!
Use assignment only for algorithmic initialization (e.g., of arrays)

1 [

Universitédt Bern Design Rules

P2 — C++ 216.

Initialization

[List members in an initialization list in the order in which they are declared

Class members are initialized in the order they are declared, not in the order they appear
In the initialization list!

class Rectangle
{
public:
Rectangle (int initWidth); Il Construct as a square
int width (void) { return w; }
int height (void) { return h; }
private:
int h, w; I/l First construct h, then w

Rectangle::Rectangle (int initwidth)
w(initWidth),
h(w) /l WRONG! w is still undefined

{}

Why? Because destructors destroy members in the reverse order they were constructed,
so all constructors must create them in a consistent order ...

Universitédt Bern Design Rules

P2 — C++ 217.

Virtual Destructors

[1 Make destructors virtual in base classes

If you make use of polymorphism, the only way you can be sure the correct destructor is
called when an object is deleted is if the destructor is virtual in the base class.

Recall the polymorphic destruction of BoardGame instances.

But ... don't declare destructors virtual in classes that will never be inherited from!

Universitédt Bern Design Rules

P2 — C++ 218.

Assignment

[0 Have operator= return a reference to *this
The result should be a reference to the object itself, so you can write statements like:
a=b=c;

for arbitrary classes of objects.

[0 Check for assignment to self in operator=

Recall what would happen if our String class failed to check for this:

String&
String::operator= (const String& copy)
{
if (this '= ©) { Il copying self would lead to an inconsistent state!
delete [] _s; Il be sure to delete the previous value!
become(copy._S); /l (re-)initialization is the same as before
}
return *this; Il return a reference, not a copy!
}

Universitédt Bern Design Rules

P2 — C++ 219.

Assignment and Inheritance

[0 Assign to all data members in operator=

If a derived class does not have access to data members of the base class, it may be
necessary to explicitly call operator= of the base class

class A class B: public A
{ {
public: public:
A(int initvVal) : x_(initval) {}; B(int initval) : A(initval), y_(initval) {1}
A& operator=(const A& rhs); B& operator=(const B& rhs);
int x(void) { return x_; } int y(void) {returny_;}
private: private:
intx_; inty ;
3 3
B& B::operator=(const B& rhs)
{
if (this != &rhs) {
y_=rhsy_; Il not enough -- need to also assign to (hidden) x_
Il x_=rhs.x_; Il illegal access to private member!
A:.operator=(rhs); I ok call to base operator=
Il ((A&) *this) = rhs; Il also ok, but more obscure ...

}

return *this;

Universitédt Bern Design Rules

P2 — C++ 220.

Classes and Functions

[Differentiate among member functions, global functions and friend functions

/I virtual functions must be members

if (fneeds to be virtual) Il e.g., BoardGame::checkWinner()
make f a member function of C ;

Il operator>> and operator<< are never members

else if (fis operator>> or operator<<) {
make f a global function I/l target is iostream
if (fneeds access to non-public members of C)
make f a friend of C ;
}
Il only nonmembers can have type conversions on their left-hand argument
else if (fneeds type conversions on its lhs Y{ /I e.g., “foo” + String(“bar”)
make f a global function ;
if (fneeds access to non-public members of C)

make f a friend of C X
}

Il everything else should be a member function

else
make f a member function of C X

Universitédt Bern Design Rules

P2 — C++

Class Interfaces

0 Avoid data members in the public interface
[0 Clients don't have to remember whether to accessing members with or without

parentheses (e.g., p.x vs. p.x()

)

221.

[0 You have more freedom to alter the implementation of your class without

affecting clients

[1 Use const wherever possible

You can declare values, pointers, function arguments, return values and member
functions as const; the compiler will ensure consistent usage of constant values.

How to declare const pointers:

What'’s pointed
to IS constant

Pointer is constant

char *
const char *
char *

const char *

p = “Hello”;
p = “Hello”;
const p = “Hello”;
const p = “Hello”;

Universitat Bern

Design Rules

P2 — C++ 222.

References and Values

[0 Pass and return objects by reference instead of by value

In C++ everything is passed by value. If you pass or return objects by value, the copy
constructor will be called to create copies for every argument and return value.

0 Don't try to return a reference when you must return an object

If a function creates a new object value from its arguments, then the result should be
returned by value, not by reference.

Consider the global function:

String operator+ (const String& sl,const String& s2)

{
String result = s1; Il call the String copy constructor
return result += s2; /! return a copy of the result

}
It cannot return a reference since the result is not an existing object.

It also should not call new since the client cannot be expected to call delete !

Universitédt Bern Design Rules

P2 — C++ 223.

Data Accessibility

[0 Never return a reference to a local object or a dereferenced pointer initialized by new
within the function

Two bad ways to implement String concatenation:

String& operator+ (const String& sl,const String& s2)
{

String result = s1;

result += s2;

return result; Il WRONG!!! never return a reference to a local object
} Il result will be destroyed when function returns!
String& operator+ (const String& sl,const String& s2)
{

String * result = new String(sl);

*result += s2;

return *result; Il Potential memory leak!!! Who will delete result?
}

0 Avoid member functions that return pointers or references to members less
accessible than themselves

Don’t return non-const references or pointers to private data from public functions.

Universitédt Bern Design Rules

P2 — C++ 224.

Const Member Functions

0 Avoid returning “handles” to internal data from const member functions
If an object is declared const , then all its const member functions should be safe.

But if these functions may return non-const pointers to private data, the “constant”
object may be modified by unexpected side effects:

char&
String::operator[] (const int n) const I/l safe to use on const Strings
{

if (n<0) || (strlen()<=n))

throw(xmsg("array index out of bounds"));

return _s[n]; Il oops -- returns a reference!

}
Now the following code is unsafe:

const String cs ="I'm constant";
Il c¢s = "hello world"; Il illegal implicit pointer cast
cout << "First char is: " << ¢s[0] << end]; /l ok -- operator|] is const
cs[0] =A% Il oops -- we just changed cs!

Universitédt Bern Design Rules

P2 — C++ 225.

Overloading vs. Default Parameters

[0 Choose carefully between function overloading and parameter defaulting

void f(void);

void f(int X); Il f is overloaded

f0; Il calls f(void)

f(10); Il calls f(int)

void g(int x=0); Il g has a default parameter
9(); /l calls g(0)

g(10); Il calls g(10)

So, what’s the difference?

Ask yourself:
[Is there a sensible default parameter?
[Is there a common algorithm?

Unless the answer to both of these questions is “yes”, you should probably declare
overloaded functions rather than default parameters.

Universitédt Bern Design Rules

P2 — C++ 226.

Ambiguous Overloading

[0 Avoid overloading on a pointer and a numerical type

void f(int X);
void f(char * p);

f(0); /l calls f(int) or f(char*)?

Since O is a literal integer constant, f(int) will be called, but this is not always what you
want!

Universitédt Bern Design Rules

P2 — C++ 227.

Common Errors

Watch out for these common errors:

[0 Forgetting to end a class declaration with a semi-colon

[0 the compiler will generate non-intuitive errors concerning the code
immediately following the class declaration

[0 Forgetting parentheses when calling class members (e.g., game.notover())

[0 the function will never be called, but instead the value of the function
pointer will be used

Universitédt Bern Design Rules

P2 — C++ 228.

summary

You should know the answers to these questions:
[0 Where and when should you use new and delete ?
When should you (not) use initialization lists in constructors?
How should you define operator= ?
How can you update private inherited data members in a derived class?
When should a function be global rather than a class member?
When should you use const declarations?
When should a function return a reference? A value?

N O O O A

Can you answer the following questions?

How does delete]] know how many items to destroy?

Why can’t you initialize references by assignment?

Why shouldn’t you always declare destructors virtual — ?

Why should operator= return *this Iinstead of simply this ?
What will happen if you return a reference to an automatic variable?

N O O O

Universitédt Bern Design Rules

	7033 Programmierung 2
	Table of Contents
	C++ Programming Rules, Hints and Guidelines
	1. P2 — Introduction to C++
	Principle Text:
	Essential C++ Texts
	Overview
	What You Will Be Expected To Learn
	History
	C++ Design Goals
	“C with Classes” designed by Bjarne Stroustrup in early 1980s; grew into C++

	C Features
	C++ Features
	C++ is an evolving language ...

	“Hello World”
	C++ Storage Classes
	Memory Layout
	Declarations and Definitions
	Hello World Project
	Compiling C++ Programs
	Basic Makefile
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	2. A Taste of C++ — Comparison with Eiffel
	Data Abstraction — Line Reverser Example
	Eiffel Line Reverser
	An Eiffel Stack Implementation
	The (Hidden) Eiffel Stack Cells
	A C++ Line Reverser
	A C++ Stack Interface
	A C++ Stack Implementation
	Differences Between Eiffel and C++
	A C++ Template Line Reverser
	A C Line Reverser
	A Recursive Line Reverser
	A Perl Line Reverser
	Some Timing Differences
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	3. C++ Basic Language Features
	Symbols
	C++ programs are built up from symbols:

	Keywords
	Comments
	Two styles:
	Use // comments exclusively within functions so that any part can be commented out using comment ...

	Commenting Conventions
	Use comments for:
	Use meaningful names to make your code as self-documenting as possible.
	DON’T use comments to restate what is obvious from the source code.
	DO use comments to improve the readability of your programs.

	Built-In Data Types
	Expressions
	Avoid cryptic expressions! Use comments to explain mysterious code.

	Operator Precedence and Associativity
	C++ Arrays
	Arrays are fixed sequences of homogeneous elements

	Pointers
	A pointer is a variable that can hold the address of another variable:

	References
	A reference is an alias for another variable:
	References should generally be preferred to pointers except when:

	Strings
	A string is a pointer to a NULL-terminated (i.e., ‘\0’) character array:
	It is generally better to use a C++ string class instead of built-in char arrays!

	Assignment — lvalues and rvalues
	Statements
	Enumeration Types
	Functions
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	4. Decomposition and Recursion
	Document Assumptions
	Use descriptive names for variables; use short names only when their purpose is obvious from the ...
	Always state explicitly all pre- and post-conditions.
	Document all assumptions.
	Avoid making assumptions that you can’t check!

	Comment Selectively
	Avoid complex or cryptic code; write code that is self-documenting.
	Use comments to explain any code that is not self-documenting.
	Ensure your programs are correct before you try to optimize them.
	Never try to optimize code that is not a proven source of system inefficiency.

	Divide and Conquer
	Recursion
	If possible, check your assumptions, and raise exceptions when they are violated.

	Recursion — Pros and Cons
	Pros:
	Cons:
	If a problem is inherently recursive, implement a correct recursive solution before deciding whet...

	Iteration vs. Recursion
	Binary Search
	Binary Search — Recursive Solution
	Records as Objects
	Tail Recursion
	Binary Search — Iterative Solution
	Sorting
	MergeSort Example
	Merge Sort
	A function or procedure should always have a clear responsibility; promote readability by decompo...

	Merge
	State loop invariants explicitly, and check that they hold through all execution paths.

	Refactoring Merge()
	Eliminate duplicate code through refactoring or reorganizing.

	Optimizing MergeSort ...
	MergeSort with a Fixed Buffer
	A Faster MergeSort
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	5. Specifying Classes
	Abstract Data Types and Invariants
	Example: Tic Tac Toe
	C++ Classes
	Designing a Tic Tac Toe Game
	Desired Interaction
	The Tic Tac Toe Driver
	Prototyping strategy: always work with a running, if incomplete program, and incrementally “grow”...

	Determining the Interface
	Describe services at highest level of abstraction possible. Determine who is responsible for what!

	Exceptions
	Exceptions should only be used to signal abnormal situations, not normal flow of control.

	Specifying the Interface
	Instance Variables
	Use symbolic names and enumerated types to make your code as self-documenting as possible.

	Implementing the Constructor
	Implementing the Game
	Static Declarations
	Constant Declarations
	Playing the Game
	Printing the Game
	The Complete TicTacToe Interface
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	6. Data Abstraction
	The Run-time Stack
	Stack as a Data Abstraction
	Always encapsulate data structures as data abstractions.

	Postfix Expressions
	A Postfix Expression Interpreter
	Stacks as Linked Lists
	Stacks, Queues and Linked Lists
	Linked List Operations
	Class Invariants
	LList Declaration
	Implementing List Methods
	A method should always do one thing well; don’t mix up responsibilities.
	Methods should be short and easy to read.

	List Constructor and Destructor
	Growing the List
	Checking Pre-conditions
	Implementing a Stack with a Linked List
	Example: Balancing Parentheses
	Parenthesis balancer
	Implementing a Queue with a Linked List
	The Dangers of Call by Value
	Guard Against Shallow Copies
	Declare a private copy constructor, if your objects should not be passed by value.

	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	7. Managing Memory
	Sources:
	Orthodox Canonical Form
	Use the orthodox canonical form for any non-trivial class whose objects will be copied or assigne...

	Example: A String Class
	First version of String.h
	Default Constructors
	Decide what your class invariant is and make sure that each constructor correctly establishes the...

	Automatic and Dynamic Objects
	Destructors
	If you use new, make sure that there will be exactly one matching delete!
	Destructors should deallocate all memory belonging to an object’s private state.

	Copy Constructors
	Other Constructors
	Refactoring Common Code
	Clearly document whether helper functions assume or ensure class invariants!

	Assignment Operators
	An assignment operator should always test for copying of self

	Shallow and Deep Copying
	Inline Functions
	Don’t bother declaring inline functions unless (or until) you can be sure you will get a real imp...
	Short, frequently called functions may be good candidates for inlining.

	Using the Constructors
	Implicit Conversion
	Don’t worry too much about unnecessary copying, but be aware of its overhead in computationally i...

	Conditional Compilation
	Operator Overloading
	Overloadable Operators
	Friends
	IOStream Operators
	Dynamic Memory Management
	The Final String.h
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	8. Inheritance
	The Board Game
	Interaction
	Class Hierarchy
	Uses of Inheritance
	Conceptual hierarchy:
	Polymorphism:
	Software reuse:

	Polymorphism
	Polymorphic Destruction
	The BoardGame Interface
	Virtual Members
	A subclass should only redefine a member function if it has been declared virtual!

	Default Initializers
	Be sure that the implicit signatures of functions with default initializers do not overlap with t...

	Arrays of arrays
	Non-Virtual Functions
	Using Virtual Functions
	Defining Virtual Functions
	Public Inheritance
	Base Class Initialization
	Keeping Score
	Using Function Pointers
	Using Static Functions
	Implementation Inheritance
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	9. Tools
	Sources
	Makefiles
	Make Options
	Always define makefiles, even for your most trivial projects.

	Description File Lines
	Macros and Special Targets
	Internal Macros
	Special Target Names:

	Gomoku Makefile
	Makefile for g++
	Makedepend

	Version Control
	You should use a version control system for any project that is non-trivial, developed by a team,...

	RCS
	RCS Usage
	Additional RCS Features
	Keyword substitution
	Revision numbering:

	Debuggers
	Use a debugger whenever you are unsure why your program is not working.

	Using dbx
	GUI Debuggers — CodeWarrior
	Profilers
	Use a profiler to gain insight into where your program is spending most of its time.

	Using gprof
	SNiFF+
	Always use an integrated programming environment if one is available!

	Using SNiFF+
	SNiFF+ Source Editor
	SNiFF+ Hierarchy Browser
	SNiFF+ Class Browser
	Purify
	Use purify (or an equivalent utility) while developing C++ programs to catch errors in managing m...

	Using Purify
	Other tools
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	10. An Introduction to Java
	Overview
	Texts:
	On-line resources:
	Java
	Java and C++ — Similarities and Extensions
	Java and C++ — Simplifications
	The “Hello World” Program
	Packages
	Java Basics
	Classes and Objects
	Garbage Collection
	Inheritance
	Dynamic Binding
	Downcasting
	Feature Visibility
	Modifiers
	Exceptions
	Defining Exceptions
	Multiple Inheritance
	Interfaces
	Overriding and Overloading
	Arrays
	Arrays and Generics
	The Java API
	Applets
	The Hello World Applet
	Frameworks vs. Libraries
	Standalone Applets
	Events
	The Scribble Applet
	Responding to Events
	Running the Scribble Applet
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	11. Design Rules
	Sources:
	Basic Rules
	Use const and inline instead of #define
	Prefer iostream.h to stdio.h

	Deleting Objects
	Use the same form in corresponding calls to new and delete
	Call delete on pointer members in destructors

	Running out of Memory
	Check the return value of new

	Constructors
	Define a copy constructor and an assignment operator for classes with dynamically allocated memory
	Prefer initialization to assignment in constructors

	Initialization
	List members in an initialization list in the order in which they are declared

	Virtual Destructors
	Make destructors virtual in base classes

	Assignment
	Have operator= return a reference to *this
	Check for assignment to self in operator=

	Assignment and Inheritance
	Assign to all data members in operator=

	Classes and Functions
	Differentiate among member functions, global functions and friend functions

	Class Interfaces
	Avoid data members in the public interface
	Use const wherever possible

	References and Values
	Pass and return objects by reference instead of by value
	Don’t try to return a reference when you must return an object

	Data Accessibility
	Never return a reference to a local object or a dereferenced pointer initialized by new within th...
	Avoid member functions that return pointers or references to members less accessible than themselves

	Const Member Functions
	Avoid returning “handles” to internal data from const member functions

	Overloading vs. Default Parameters
	Choose carefully between function overloading and parameter defaulting

	Ambiguous Overloading
	Avoid overloading on a pointer and a numerical type

	Common Errors
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

