
7033 Programmierung 2

Prof. O. Nierstrasz

Sommersemester 1998

Table of Conte i.

Table of Co
C++ Progra

1. P2 — Introd
Essential C+
Overview
What You W
History
C++ Design
C Features
C++ Featur
“Hello Worl
C++ Storag
Memory La
Declaration
Hello World
Compiling
Basic Make
Summary

2. A Taste of C
Data Abstr
Eiffel Line R
An Eiffel Sta
The (Hidde
A C++ Line
A C++ Stac
A C++ Stac
Differences
A C++ Tem
A C Line Re
A Recursive
A Perl Line
Some Timin

Merge Sort 64
Merge 65
Refactoring Merge() 66
Optimizing MergeSort ... 67
MergeSort with a Fixed Buffer 68
A Faster MergeSort 69
Summary 70

5. Specifying Classes 71
Abstract Data Types and Invariants 72
Example: Tic Tac Toe 73
C++ Classes 74
Designing a Tic Tac Toe Game 75
Desired Interaction 76
The Tic Tac Toe Driver 77
Determining the Interface 78
Exceptions 79
Specifying the Interface 80
Instance Variables 81
Implementing the Constructor 82
Implementing the Game 83
Static Declarations 84
Constant Declarations 85
Playing the Game 86
Printing the Game 87
The Complete TicTacToe Interface 88
Summary 89

6. Data Abstraction 90
The Run-time Stack 91
Stack as a Data Abstraction 92
Postfix Expressions 93
A Postfix Expression Interpreter 94
Stacks as Linked Lists 95
nts

March 9, 1998

ntents i
mming Rules, Hints and Guidelines iv

uction to C++ 1
+ Texts 2

3
ill Be Expected To Learn 4

5
 Goals 6

7
es 8
d” 9
e Classes 10
yout 11
s and Definitions 12
 Project 13
C++ Programs 14
file 15

16

++ — Comparison with Eiffel 17
action — Line Reverser Example 18
everser 19
ck Implementation 20

n) Eiffel Stack Cells 21
 Reverser 22
k Interface 23
k Implementation 24
 Between Eiffel and C++ 25
plate Line Reverser 26
verser 27
 Line Reverser 28

Reverser 29
g Differences 30

Summary 31

3. C++ Basic Language Features 32
Symbols 33
Keywords 34
Comments 35
Commenting Conventions 36
Built-In Data Types 37
Expressions 38
Operator Precedence and Associativity 39
C++ Arrays 41
Pointers 42
References 43
Strings 44
Assignment — lvalues and rvalues 45
Statements 46
Enumeration Types 47
Functions 48
Summary 49

4. Decomposition and Recursion 50
Document Assumptions 51
Comment Selectively 52
Divide and Conquer 53
Recursion 54
Recursion — Pros and Cons 55
Iteration vs. Recursion 56
Binary Search 57
Binary Search — Recursive Solution 58
Records as Objects 59
Tail Recursion 60
Binary Search — Iterative Solution 61
Sorting 62
MergeSort Example 63

Table of Contents

Tab ii.

S
L
C
L
Im
L
G
C
Im
E
P
Im
T
G
S

7. M
O
E
F
D
A
D
C
O
R
A
S
In
U
Im
C
O
O
F
IO

Debuggers 166
Using dbx 167
GUI Debuggers — CodeWarrior 168
Profilers 169
Using gprof 170
SNiFF+ 171
Using SNiFF+ 172
SNiFF+ Source Editor 173
SNiFF+ Hierarchy Browser 174
SNiFF+ Class Browser 175
Purify 176
Using Purify 177
Other tools 178
Summary 179

10. An Introduction to Java 180
Java 181
Java and C++ — Similarities and Extensions 182
Java and C++ — Simplifications 183
The “Hello World” Program 184
Packages 185
Java Basics 186
Classes and Objects 187
Garbage Collection 188
Inheritance 189
Dynamic Binding 190
Downcasting 191
Feature Visibility 192
Modifiers 193
Exceptions 194
Defining Exceptions 195
Multiple Inheritance 196
Interfaces 197
Overriding and Overloading 198
Arrays 199
Arrays and Generics 200
le of Contents

March 9, 1998

tacks, Queues and Linked Lists 96
inked List Operations 97
lass Invariants 98

List Declaration 99
plementing List Methods 100

ist Constructor and Destructor 101
rowing the List 102
hecking Pre-conditions 103
plementing a Stack with a Linked List 104

xample: Balancing Parentheses 105
arenthesis balancer 106

plementing a Queue with a Linked List 107
he Dangers of Call by Value 108
uard Against Shallow Copies 109

ummary 110

anaging Memory 111
rthodox Canonical Form 112

xample: A String Class 113
irst version of String.h 114
efault Constructors 115
utomatic and Dynamic Objects 116
estructors 117
opy Constructors 118
ther Constructors 119
efactoring Common Code 120
ssignment Operators 121
hallow and Deep Copying 122
line Functions 123
sing the Constructors 124
plicit Conversion 125

onditional Compilation 126
perator Overloading 127
verloadable Operators 128

riends 129
Stream Operators 130

Dynamic Memory Management 131
The Final String.h 132
Summary 133

8. Inheritance 134
The Board Game 135
Interaction 136
Class Hierarchy 137
Uses of Inheritance 138
Polymorphism 139
Polymorphic Destruction 140
The BoardGame Interface 141
Virtual Members 142
Default Initializers 143
Arrays of arrays 144
Non-Virtual Functions 145
Using Virtual Functions 146
Defining Virtual Functions 147
Public Inheritance 148
Base Class Initialization 149
Keeping Score 150
Using Function Pointers 151
Using Static Functions 152
Implementation Inheritance 153
Summary 154

9. Tools 155
Makefiles 156
Make Options 157
Description File Lines 158
Macros and Special Targets 159
Gomoku Makefile 160
Makefile for g++ 161
Version Control 162
RCS 163
RCS Usage 164
Additional RCS Features 165

Tab iii.

T
A
T
F
S
E
T
R
R
S

11.
B
D
R
C
In
V
A
A
C
C
R
D
C
O
A
C
S

le of Contents

March 9, 1998

he Java API 201
pplets 202

he Hello World Applet 203
rameworks vs. Libraries 204
tandalone Applets 205
vents 206
he Scribble Applet 207
esponding to Events 208
unning the Scribble Applet 209
ummary 210

Design Rules 211
asic Rules 212
eleting Objects 213
unning out of Memory 214
onstructors 215
itialization 216
irtual Destructors 217
ssignment 218
ssignment and Inheritance 219
lasses and Functions 220
lass Interfaces 221
eferences and Values 222
ata Accessibility 223
onst Member Functions 224
verloading vs. Default Parameters 225
mbiguous Overloading 226
ommon Errors 227

ummary 228

P2 — C++ iv.

U

 - 32
 . 35
 . 36
 . 36
 . 36
 . 38
 . 43
 . 44

 - 50
 . 51
 . 51
 . 51
 . 51
 . 52
 . 52
 . 52
 . 52
 . 54
 solution is better. . 55

gorithms into helper functions. 64
 . 65
 . 66

 - 71
 . 77
 . 78
 . 79
 . 81

 - 90
 . 92
 . 100
 . 100
 . 109

 - -111
 . 112
 . 115
 . 117
 . 117
 . 120
niversität Bern

C++ Programming Rules, Hints and Guidelines
C++ Basic Language Features -

Use // comments exclusively within functions so that any part can be commented out using comment pairs.
Use meaningful names to make your code as self-documenting as possible. .
DON’T use comments to restate what is obvious from the source code. .
DO use comments to improve the readability of your programs.. .
Avoid cryptic expressions! Use comments to explain mysterious code. .
References should generally be preferred to pointers except when:. .
It is generally better to use a C++ string class instead of built-in char arrays!. .

Decomposition and Recursion -
Use descriptive names for variables; use short names only when their purpose is obvious from the context.
Always state explicitly all pre- and post-conditions. .
Document all assumptions. .
Avoid making assumptions that you can’t check! .
Avoid complex or cryptic code; write code that is self-documenting.. .
Use comments to explain any code that is not self-documenting. .
Ensure your programs are correct before you try to optimize them. .
Never try to optimize code that is not a proven source of system inefficiency. .
If possible, check your assumptions, and raise exceptions when they are violated. .
If a problem is inherently recursive, implement a correct recursive solution before deciding whether a non-recursive
A function or procedure should always have a clear responsibility; promote readability by decomposing complex al
State loop invariants explicitly, and check that they hold through all execution paths. .
Eliminate duplicate code through refactoring or reorganizing.. .

Specifying Classes -
Prototyping strategy: always work with a running, if incomplete program, and incrementally “grow” the full version..
Describe services at highest level of abstraction possible. Determine who is responsible for what!.
Exceptions should only be used to signal abnormal situations, not normal flow of control.. .
Use symbolic names and enumerated types to make your code as self-documenting as possible.

Data Abstraction - - - - - - -
Always encapsulate data structures as data abstractions. .
A method should always do one thing well; don’t mix up responsibilities. .
Methods should be short and easy to read.. .
Declare a private copy constructor, if your objects should not be passed by value. .

Managing Memory- - - - - -
Use the orthodox canonical form for any non-trivial class whose objects will be copied or assigned to.
Decide what your class invariant is and make sure that each constructor correctly establishes the invariant.
If you use new, make sure that there will be exactly one matching delete! .
Destructors should deallocate all memory belonging to an object’s private state.. .
Clearly document whether helper functions assume or ensure class invariants! .

P2 — C++ v.

U

 . 121
nce. . 123
 . 123
 . 125

 - -134
 . 142
unctions! . 143

 - -155
 . 157
ltiple clients. 162
 . 166
 . 169
 . 171
 . 176

 - -180
 - -211

 . 213

 . 215
 . 215
 . 216
 . 217

 . 220
 . 221
 . 221
 . 222
 . 222
 . 223
 . 223
 . 224
 . 225
 . 226
niversität Bern

An assignment operator should always test for copying of self .
Don’t bother declaring inline functions unless (or until) you can be sure you will get a real improvement in performa
Short, frequently called functions may be good candidates for inlining. .
Don’t worry too much about unnecessary copying, but be aware of its overhead in computationally intensive code!

Inheritance -
A subclass should only redefine a member function if it has been declared virtual! .
Be sure that the implicit signatures of functions with default initializers do not overlap with those of other declared f

Tools -
Always define makefiles, even for your most trivial projects.. .
You should use a version control system for any project that is non-trivial, developed by a team, or delivered to mu
Use a debugger whenever you are unsure why your program is not working. .
Use a profiler to gain insight into where your program is spending most of its time. .
Always use an integrated programming environment if one is available! .
Use purify (or an equivalent utility) while developing C++ programs to catch errors in managing memory.

An Introduction to Java - - - - - -
Design Rules -

Use const and inline instead of #define . 212
Prefer iostream.h to stdio.h. 212
Use the same form in corresponding calls to new and delete . 213
Call delete on pointer members in destructors .
Check the return value of new . 214
Define a copy constructor and an assignment operator for classes with dynamically allocated memory
Prefer initialization to assignment in constructors .
List members in an initialization list in the order in which they are declared .
Make destructors virtual in base classes .
Have operator= return a reference to *this. 218
Check for assignment to self in operator= . 218
Assign to all data members in operator= . 219
Differentiate among member functions, global functions and friend functions. .
Avoid data members in the public interface .
Use const wherever possible. .
Pass and return objects by reference instead of by value .
Don’t try to return a reference when you must return an object. .
Never return a reference to a local object or a dereferenced pointer initialized by new within the function.
Avoid member functions that return pointers or references to members less accessible than themselves.
Avoid returning “handles” to internal data from const member functions .
Choose carefully between function overloading and parameter defaulting .
Avoid overloading on a pointer and a numerical type .

P2 — C++ 1.

U P2 — Introduction to C++

tthias Scheidegger

 Addison-Wesley, 1991.
niversität Bern

1. P2 — Introduction to C++

Lecturer: Prof. Oscar Nierstrasz
Schützenmattstr. 14/103, Tel. 631.4618

Secretary: Frau I. Huber, Tel. 631.4692

Assistants: Franz Achermann, Stefan Kneubuehl, Ma

WWW: http://www.iam.unibe.ch/~scg

Principle Text:
❑ Stanley B. Lippman, C++ Primer, Second Edition,

P2 — C++ 2.

U P2 — Introduction to C++

ted C++ Reference Manual,

, Addison-Wesley, 1995.

ley, 1997.

Styles and Idioms, Addison-

 John Vlissides, Design

Reference Guide, Addison-
niversität Bern

Essential C++ Texts

❑ Magaret A. Ellis and Bjarne Stroustrup, The Annota
Addison-Wesley, 1990.

❑ Marshall P. Cline and Greg A. Lomow, C++ FAQs

❑ Scott Meyers, Effective C++, 2d ed., Addison-Wes

❑ James O. Coplien, Advanced C++: Programming
Wesley, 1992.

❑ Erich Gamma, Richard Helm, Ralph Johnson and
Patterns, Addison Wesley, Reading, MA, 1995.

❑ David R. Musser and Atul Saini, STL Tutorial and
Wesley, 1996.

P2 — C++ 3.

U P2 — Introduction to C++

l

niversität Bern

Overview

1. 30.03 Introduction
2. 06.04 A Taste of C++ — Comparison with Eiffe

13.04 Easter Monday — no lecture
3. 20.04 C++ Basic Language Features
4. 27.04 Decomposition and Recursion
5. 04.05 Specifying Classes
6. 11.05 Data Abstraction
7. 18.05 Managing Memory
8. 25.05 Inheritance

01.06 Whit Monday — no lecture
9. 08.06 Tools
10. 15.06 An Introduction to Java

22.06 Final Exam

P2 — C++ 4.

U P2 — Introduction to C++

earn

asses
correct programs

nd code reuse

ader files
 tools
niversität Bern

What You Will Be Expected To L

❑ How to implement abstract data types with C++ cl
❑ How to use assertions and exceptions to develop
❑ How to use the C++ type system effectively
❑ How to use inheritance to support polymorphism a
❑ How to manage memory effectively
❑ How to organize C++ programs into source and he
❑ How to use makefiles, debuggers and other basic

P2 — C++ 5.

U P2 — Introduction to C++

BOL

a

Lisp

Prolog

Modula-2

Modula-3

Oberon

a 95
niversität Bern

History

1960

1970

1980

1990

FORTRAN
Algol 60

CO

PL/1
Simula 67

Smalltalk 72

Smalltalk 80

Objective C

C

C++ Ad

Pascal

ANSI C++

Self
Eiffel

Algol 68

Clu

Java Ad

P2 — C++ 6.

U P2 — Introduction to C++

80s; grew into C++

tions

hard to apply because of low-
)
iscipline due to availability of
niversität Bern

C++ Design Goals

“C with Classes” designed by Bjarne Stroustrup in early 19
❑ Originally a translator to C

☞ Difficult to debug and potentially inefficient
❑ Mostly upward compatible extension of C

☞ “As close to C as possible, but no closer”
☞ Stronger type-checking
☞ Support for data abstraction
☞ Support for object-oriented programming

❑ Run-time efficiency
☞ Language primitives close to machine instruc
☞ Minimal cost for new features

Conflicts:
☞ Modern compiler optimization techniques are

level features (e.g.. arbitrary memory pointers
☞ Software engineering principles require rigid d

inherited C features

P2 — C++ 7.

U P2 — Introduction to C++

ghan as a systems language
], in turn derived from BCPL.
 direct mapping from data
as a “high-level assembler.”

al compilation, macros
ouble, float
nion
ipulation, bit manipulation ...
switch, goto ...
cts through pointers
 type-casting and coercion

execution cost of programs
rd to debug
niversität Bern

C Features

C was developed in 1972 by Dennis Ritchie and Brian Kerni
for Unix on the PDP-11. A successor to B [Thompson, 1970
C was designed as a general-purpose language with a very
types and operators to machine instructions. C can be seen

❑ C preprocessor: file inclusion, condition
❑ Data types: char, short, int, long, d
❑ Type constructors: pointer, array, struct, u
❑ Basic operators: arithmetic, pointer man
❑ Control abstractions: if/else, while/for loops,
❑ Functions: call-by-value, side-effe
❑ Type operations: typedef, sizeof, explicit

Prime advantage: programmers have direct control over the
Prime disadvantages: few opportunities for optimization; ha

P2 — C++ 8.

U P2 — Introduction to C++
niversität Bern

C++ Features
C++ is an evolving language ...

C with Classes
❑ Classes as structs
❑ Inheritance; virtual functions
❑ Inline functions

C++ 1.0 (1985)
❑ Strong typing; function prototypes
❑ new and delete operators

C++ 2.0
❑ Local classes; protected members
❑ Multiple inheritance

C++ 3.0
❑ Templates
❑ Exception handling

ANSI C++
❑ Proposed standard

P2 — C++ 9.

U P2 — Introduction to C++

ent: may also be written:

y first C++ program!

String constant:
an array of 13
chars (not 12!)

rloading: two different
are disambiguated by

nt types!
niversität Bern

“Hello World”

#include <iostream.h>

// My first C++ program!

void main(void)
{

cout << ”Hello world!” << endl;
}

A comm
/*

M
*/

Pre-processor directive: look in the
system include directory for the
header file “iostream.h” declaring the
interfaces to the standard I/O library.

Function definition:
there is always a
“main” function

Global variable: cout is the
“standard output stream”

Operator ove
<< operators
their argume

P2 — C++ 10.

U P2 — Introduction to C++

bjects

e process

-time stack”

delete

ope
niversität Bern

C++ Storage Classes

C++ requires that you explicitly manage storage space for o

1. Static
☞ static objects exist for the entire life-time of th
☞ scope may be local, global or class-specific

2. Automatic
☞ only live during function invocation on the “run

3. Dynamic
☞ dynamic objects live between calls to new and

(or malloc and free)
☞ their lifetimes typically extend beyond their sc

P2 — C++ 11.

U P2 — Introduction to C++

f (at least) four conceptually

)

ws upward)
calls (grows downward)

aries at run-time according
ap).
all returns;

Stack

main()f()g()
niversität Bern

Memory Layout

The address space available to a running process consists o
different parts:

1. Text: the executable program text (not writable
2. Static: static global data
3. Heap: dynamically allocated global memory (gro
4. Stack: local memory (stack frames) for function

The total number of memory pages available to a process v
to need (i.e., function calls and requests to increase the he
Stack memory is automatically reclaimed when a function c
heap memory must be explicitly managed by the program!

“Text” HeapStatic

P2 — C++ 12.

U P2 — Introduction to C++

s that the variable (function)

e to be allocated

 before it is used

d one may break a program
cally contain definitions that
rations that allow other parts
ctions exported by a given

prototype)
niversität Bern

Declarations and Definitions

❑ A declaration of a variable (or function) announce
exists and is defined somewhere else.

❑ A definition of a variable (function) causes storag

☞ In C++ a variable must be declared or defined

C++ does not support an explicit module concept — instea
into separate source and header files. The source files typi
may be separately compiled. The header files contain decla
of the program to know about and use the variables and fun
“module.”

extern int size; // declaration

void hello(void); // declaration (function

int size; // definition

void hello(void) { // definition
cout << “hello!” << endl;

}

P2 — C++ 13.

U P2 — Introduction to C++

llo.cpp:

ed here
niversität Bern

Hello World Project

prog.cpp contains main program:
#include “hello.h” // needed to declare hello()

int main(void)
{

hello();
return 0;

}

hello.h declares all functions defined and exported from he
void hello(void); //

hello.cpp contains definitions of library functions:
#include <iostream.h> // needed to declare cout and endl

#include “hello.h” // needed to declare functions defin

void hello (void)
{

cout << “hello world” << endl;
}

P2 — C++ 14.

U P2 — Introduction to C++

executable a.out
executable prog

object code hello.o
rog.cpp and links hello.o

 compiled “modules”

prog

linking
niversität Bern

Compiling C++ Programs
Single file compilation:

☞ CC prog.cpp — generates
☞ CC -o prog prog.cpp — generates

Multi-file compilation:
☞ CC -o prog prog.cpp hello.cpp

Library pre-compilation:
☞ CC -c hello.cpp — generates
☞ CC -o prog prog.cpp hello.o — compiles p

Header files contain declarations needed to link separately

prog.cpp

hello.cpphello.h

prog.o

hello.o

includes

compilation

P2 — C++ 15.

U P2 — Introduction to C++

cy lines and commands:
niversität Bern

Basic Makefile
A basic makefile consists of comments, macros, dependen

Version of the C++ compiler; link and compile options:

CXX = CC
LFLAGS = -L/opt/SUNWspro/SC3.0.1/lib
CFLAGS = -O

Object files needed to create prog:

PROGO = prog.o hello.o

prog is made by linking together the object files:

prog : ${PROGO}
${CXX} ${LFLAGS} ${PROGO} -o prog

prog.o and hello.o each depend on a source file and a header file:

prog.o : prog.cpp hello.h
${CXX} ${CFLAGS} -c prog.cpp

hello.o : hello.cpp hello.h
${CXX} ${CFLAGS} -c hello.cpp

clean :
rm -rf *.o

P2 — C++ 16.

U P2 — Introduction to C++

hat are they for?

 they are used?

mpilation?
niversität Bern

Summary

You should know the answers to these questions:
❑ What were the design goals of C++?
❑ What improvements did C++ introduce to C?
❑ What is an “include file”?
❑ What is the structure of a C++ program?
❑ What kinds of storage classes exist in C++, and w
❑ What is meant by “separate compilation”?

Can you answer the following questions?
✎ When is C++ a good (resp. bad) choice to program in?
✎ What is meant by “overloaded operators”?
✎ Why does C++ require functions to be declared before
✎ What are the dangers of using new and delete ?
✎ What are positive and negative aspects of separate co

P2 — C++ 17.

U Taste of C++ — Comparison with Eiffel

n with Eiffel
niversität Bern A

2. A Taste of C++ — Compariso

❑ Example: reversing lines of a file
❑ Implementation in Eiffel using a dynamic stack
❑ Equivalent implementation in C++

☞ Differences between Eiffel and C++
❑ Software reuse with templates
❑ C implementation (without data abstraction)
❑ Recursive implementation (functional paradigm)
❑ Perl implementation (specialized language)
❑ Timing differences

P2 — C++ 18.

U Taste of C++ — Comparison with Eiffel

er Example

pop

toves did gyre

k
f Strings.
niversität Bern A

Data Abstraction — Line Revers

and gimble in
toves did gyre
and the slithy
T’was brillig

T’was brillig,
and the slithy
toves did gyre
and gimble in
the wabe

T’was brillig

the wabe

push

and the slithy

size = 3

We can implement our Stac
abstraction as a linked list o

P2 — C++ 19.

U Taste of C++ — Comparison with Eiffel

ck.make

sh input lines onto stack

readline

put.end_of_file

tack.push(io.last_string)
readline

p them off in reverse order
d print them all

ioStack.empty

putstring(ioStack.top)
new_line
tack.pop

ake
V

niversität Bern A

Eiffel Line Reverser

-- File: erev.e
--
-- Reverses the order of lines in the input
-- using a dynamic stack.
-- The stack is implemented as a linked list.

class EREV

creation { ANY }
make

feature { NONE }

ioStack : DYNAMICSTACK [STRING]

make is
do

!!ioSta

-- Pu
from

io.
until
 io.in
loop

ioS
io.

end

-- Po
-- an
from
until
loop

io.
io.
ioS

end
end -- m

end -- class ERE

P2 — C++ 20.

U Taste of C++ — Comparison with Eiffel

l : MYCELL [T]

ize + 1
ll.make

l.setValue(deep_clone (x))
l.setNext(topCell)
:= newCell

ty
qual(top,x)
ld size + 1
sh

ty

’t deference if empty!
:= topCell.next
ize - 1

ld size - 1
p

MICSTACK
niversität Bern A

An Eiffel Stack Implementation
-- File: dynamicStack.e
class DYNAMICSTACK [T]

creation { ANY }
make

feature { NONE }
topCell : MYCELL [T]
size : INTEGER

make is
do

size := 0 ; !!topCell.make
end -- make

feature { ANY }
count : INTEGER is

do
Result := size

end -- count

empty : BOOLEAN is
do

Result := (size = 0)
end -- empty

top : T is
require

not empty
do

Result := topCell.value
end -- top

push (x : T) is
local

newCel
do

size := s
!!newCe
newCel
newCel
topCell

ensure
not emp
deep_e
size = o

end -- pu

pop is
require

not emp
do

-- don
topCell
size := s

ensure
size = o

end -- po

invariant
0 <= size

end -- class DYNA

P2 — C++ 21.

U Taste of C++ — Comparison with Eiffel
niversität Bern A

The (Hidden) Eiffel Stack Cells
-- File: mycell.e

class MYCELL [T]
-– structure for implementation of linked lists
-– NB: an exception will be raised if next is dereferenced
–- without first being set

creation { DYNAMICSTACK }
make

feature { NONE }

make is
do
end -- make

feature { DYNAMICSTACK }

value : T

next : like Current

setValue (v : T) is
do

value := v
end -- setValue

setNext (n : like Current) is
do

next := n
end -- setNext

end -- class MYCELL

P2 — C++ 22.

U Taste of C++ — Comparison with Eiffel

bufSize];

lines onto stack
e(buf, bufSize).eof()) {
h(buf);
har[bufSize];

ff in reverse order
em all
ount() != 0) {
tack.top() << endl;;
tack.top();
();

) {
ion: "
) << endl;
niversität Bern A

A C++ Line Reverser
// File: cpprev.cpp
//
// Reverses the order of lines in the input
// using a dynamic stack.
// The stack is implemented as a linked list.

#include <iostream.h>
#include <exception.h>
#include "dstack.h"

const int bufSize = 256;

int main(void)
{

DStack ioStack;
char * buf;

try {
buf = new char[

// Push input
while (!cin.getlin

ioStack.pus
buf = new c

}

// Pop them o
// and print th
while (ioStack.c

cout << ioS
delete [] ioS
ioStack.pop

}
}
catch (xmsg & err

cout << "Except
<< err.why(

return -1;
}
return 0;

}

P2 — C++ 23.

U Taste of C++ — Comparison with Eiffel

l interface is only
 DStack.

;
t;
niversität Bern A

A C++ Stack Interface
// File: dstack.h
//
// An absolutely minimal stack interface
// using linked lists.

#ifndef DSTACK_H
#define DSTACK_H

#include <exception.h>

typedef char* Item; // Redefine as necessary

class DStack
{

public:
DStack(void);
~DStack(void);

// inline functions:
int count(void) { return size; };
int empty(void) { return size == 0; };

// NB: pop() does not return a value
// use top() before pop() to retrieve
// the value

void push(Item item) throw();
Item top(void) throw(xmsg);
void pop(void) throw(xmsg);

private:
// NB: The Cel
// visible within
class Cell
{
public:

Item value
Cell * nex

};

Cell * topCell;
int size;

};

#endif

P2 — C++ 24.

U Taste of C++ — Comparison with Eiffel

ew top cell holding the new
ng to the existing cells:

item) throw()

l;
Cell;
 = item;
 this->topCell;
ewCell;

top cell and resets the top:

row(xmsg)

) {
("Can’t pop an empty stack!"));

= topCell;
ll->next;
niversität Bern A

A C++ Stack Implementation
// File: dstack.cpp
//
// An absolutely minimal stack implementation
// using linked lists.

#include "dstack.h"

// constructor for an empty stack:
DStack::DStack (void)

: size(0), topCell(0)
{
}

// destructor pops all cells:
DStack::~DStack (void)
{

while (!this->empty()) {
this->pop();

}
}

// this is the only way to get values
// from the stack:
Item
DStack::top (void) throw(xmsg)
{

if (this->empty()) {
throw(xmsg("Empty stack has no top!"));

}
return this->topCell->value;

}

// push makes a n
// value and pointi
void
DStack::push (Item
{

Cell * newCel
newCell = new
newCell->value
newCell->next =
this->topCell = n
size++;

}

// deallocates the
void
DStack::pop (void) th
{

if (this->empty()
throw(xmsg

}
Cell * oldTop
topCell = topCe
delete oldTop;
size–-;

}

P2 — C++ 25.

U Taste of C++ — Comparison with Eiffel

C++
C++

uage (global variables ...)

 specifications
eclaration vs. definition
sting

urely syntactic)

/protected declarations;
d classes

operator, destructors
t own memory management

r distinction; pointer arithmetic

andling; exception values

g, virtual declarations
niversität Bern A

Differences Between Eiffel and

Myth: C++ is inherently more “efficient” than Eiffel.
Fact: C++ gives the programmer more control than Eiffel.

Eiffel

“Pure” object-oriented language Hybrid lang

Uniform type system Baroque type
Header files; d
Explicit type ca

Generic types; “like current” type Templates (p

Feature visibility Public/private
“friends”; neste

Automatic garbage collection
Only object creation is specified

Explicit delete
Can implemen

Safe object identifiers Object/pointe

Assertions to support “design by contract” Exception h

Automatic inlining Explicit inlinin

P2 — C++ 26.

U Taste of C++ — Comparison with Eiffel
niversität Bern A

A C++ Template Line Reverser
// File: rwrev.cpp
//
// Rogue Wave template implementation of line reverser.

#include <iostream.h>
#include <exception.h>

#include <rw/cstring.h>
#include <rw/tstack.h>
#include <rw/tvdlist.h>

typedef RWTStack<RWCString, RWTValDlist<RWCString> > IOStack;

int main (void)
{

RWCString buf;
IOStack ioStack;

// Push input lines onto stack
while (buf.readLine(cin, FALSE)) // don’t ignore white space!
{

ioStack.push(buf);
}

// Pop them off in reverse order and print them all
while (ioStack.entries() != 0)
{

cout << ioStack.pop() << endl;;
}
return 0;

}

P2 — C++ 27.

U Taste of C++ — Comparison with Eiffel

don’t use last allocated
top since not null-terminated

stack[top–-]);
 (top>=0) {

printf("%s", stack[top]);
free(stack[top–-]);

n 0;
niversität Bern A

A C Line Reverser

/*
File: crev.c
A C implementation of the line reverser program.

*/

#include <stdlib.h>
#include <stdio.h>

int main (void)
{

const int bufSize = 256, stackSize = 32000;
char * buf, ** stack;
int top=0;

stack = (char**) malloc(sizeof(char*) * stackSize);
buf = (char*) malloc(sizeof(char) * bufSize);
stack[top] = buf;

while (fgets(buf, bufSize, stdin) != NULL) {
if (top>stackSize) {

fprintf(stderr, "frev: buffer overflow!!!\n");
exit(-1);

}
buf = (char*) malloc(sizeof(char) * bufSize);
stack[++top] = buf;

}

/*

*/
free(
while

}
retur

}

P2 — C++ 28.

U Taste of C++ — Comparison with Eiffel

ut
niversität Bern A

A Recursive Line Reverser

// File: hrev.cpp
// A hybrid (recursive) line reverser.

#include <iostream.h>
#include <rw/cstring.h>

void recrev(void);

int main (void)
{

recrev();
return 0;

}

void recrev()
{

RWCString buf;

if (buf.readLine(cin, FALSE)) { // read a line
recrev(); // reverse the rest of the inp
cout << buf << endl; // now output this line

}
}

P2 — C++ 29.

U Taste of C++ — Comparison with Eiffel
niversität Bern A

A Perl Line Reverser

#! /usr/local/bin/perl
#
File: prev
#
A Perl line reverser

while (<>) { # or simply: @file = <>;
push(@file, $_);

}

while ($#file>=0) {
print pop(@file);

}
__END__

P2 — C++ 30.

U Taste of C++ — Comparison with Eiffel

d?

e System Time

1.1

1.1

1.2

1.4

0.5

0.7
niversität Bern A

Some Timing Differences

Input file: 20960 lines, 366167 characters

What are the reasons for the differences in execution spee
(Probably not what you think!)

Real Time User Tim

rwrev (RW Templates) 4.6 3.3

erev (Eiffel) 4.6 3.2

hrev (C++) 4.3 2.9

cpprev (C++) 3.2 1.6

prev (Perl) 2.0 1.2

crev (C) 1.9 0.9

P2 — C++ 31.

U Taste of C++ — Comparison with Eiffel

and C++?

a definition?

 “on the heap”?
r functional paradigm?
ity and program
niversität Bern A

Summary

You should know the answers to these questions:
❑ What are the essential differences between Eiffel
❑ What is a “function prototype”?
❑ What is the difference between a declaration and
❑ What is a header file for?
❑ What is a “destructor” and why do we need them?

Can you answer the following questions?
✎ What does it mean to allocate objects “on the stack” or
✎ When is an object paradigm better than a procedural o
✎ What are the tradeoffs between programmer productiv

performance?

P2 — C++ 32.

U C++ Basic Language Features

s

es.

verloading ...
niversität Bern

3. C++ Basic Language Feature

C++ is a complex and evolving language.
This lecture gives an overview of the basic language featur

❑ Symbols and Keywords
❑ Comments and commenting conventions
❑ Built-in data types
❑ Expressions and operator precedence
❑ Arrays, pointers, references and strings
❑ Assignment — lvalues and rvalues
❑ Statements and control flow
❑ Enumeration types
❑ “Functions” (i.e., procedures)

Not covered yet:
☞ classes, inheritance, exceptions, templates, o

P2 — C++ 33.

U C++ Basic Language Features

wed by
 }

, 0x1F , 1.23e10
niversität Bern

Symbols

C++ programs are built up from symbols:

❑ Names: main , IOStack , _store , x10
{ alphabetic or underscore } follo
{ alphanumerics or underscores

❑ Keywords: const , int , if , throw

❑ Constants: "hello world" , 'a' , 10 , 077

❑ Operators: +, >>, :: , * , &

❑ Punctuation: { , } , ,

P2 — C++ 34.

U C++ Basic Language Features

signed try

sizeof typedef
ic union
truct unsigned

switch virtual
late void
this volatile
throw while

herited from C.
n bold affect control flow.
sions.
niversität Bern

Keywords

asm continue float new

auto default for operator
break delete friend private stat
case do goto protected s
catch double if public
char else inline register temp
class enum int return

const extern long short

C++ has a large number of keywords, including all those in
Italic keywords are use in type declarations. Keywords i
Underlined keywords are used in statements and expres

P2 — C++ 35.

U C++ Basic Language Features

 */
 */

!

part can be commented out
niversität Bern

Comments
Two styles:

/*
* C-style comment pairs are generally used
* for longer comments that span several lines.
*/

// C++ comments are useful for short comments to end-of-line

Be careful! Comment pairs do not nest!!!
/* Don’t need these variables for now:

int opt; /* keep track of the current options
char * optDesc; /* a description of the current option

*/

Only the first of the two variables has been commented out

✔ Use // comments exclusively within functions so that any
using comment pairs.

P2 — C++ 36.

U C++ Basic Language Features

thor, manual references,

m used (unless this is
nt

enting as possible.
e source code.
grams.
niversität Bern

Commenting Conventions

Use comments for:
1. each source file stating, e.g., file name, purpose, au

hints for maintenance, etc.
2. classes and templates
3. every non-trivial function stating its purpose, algorith

obvious), and any assumptions about its environme
4. global variables
5. any non-obvious or non-portable code
6. little else

✔ Use meaningful names to make your code as self-docum
✔ DON’T use comments to restate what is obvious from th
✔ DO use comments to improve the readability of your pro

[Stroustrup, C++ 2nd edn., p. 105]

P2 — C++ 37.

U C++ Basic Language Features

Maximal value

127

32767

32767 / 214748647

214748647

255

65535

65535 / 4294967295

4294967295

onent Decimal accuracy

8 6

08 15

932 15 / 19
niversität Bern

Built-In Data Types
Data type No. of bits Minimal value

signed char 8 -128

signed short 16 -32768

signed int 16 / 32 -32768 / -2147483648

signed long 32 -2147483648

unsigned char 8 0

unsigned short 16 0

unsigned int 16 / 32 0

unsigned long 32 0

Data type No. of bytes Min. exponent Max. exp

float 4 -38 +3

double 8 -308 +3

long double 8 / 10 -308 / -4932 +308 / 4

P2 — C++ 38.

U C++ Basic Language Features

 == 7; c == 7
 7)
1)
>=0)&&(7<10))
 == 7; c == 8

.0 (not 2.75!)
.75

03|010)
13^010)
13&03)
<3)

 == 89; c == 2
)?3:2)

sterious code.
niversität Bern

Expressions
int a, b, c;
double d;
float f;

a = b = c = 7; // assignment: a == 7; b
a = (b == 7); // equality test: a == 1 (7 ==
b = !a; // negation: b == 0 (!
a = (b>=0) && (c<10); // logical AND: a == 1 ((0
a *= (b += c++); // increment: a == 7; b

a = 11 / 4; // integer division: a == 2
b = 11 % 4; // remainder: b == 3

d = 11 / 4; // d == 2
f = 11.0 / 4.0; // f == 2

a = b|c; // bitwise OR: a == 11 (
b = a^c; // bitwise XOR: b == 3 (0
c = a&b; // bitwise AND: c == 3 (0
b = a<<c; // left shift: b == 88 (11<

a = (b++,c--); // comma operator: a == 3; b
b = (a>c)?a:c; // conditional operator:b == 3 ((3>2

✔ Avoid cryptic expressions! Use comments to explain my

P2 — C++ 39.

U C++ Basic Language Features

ociativity
nction

ary)
ary)

rs

ment

s
ress-of

(cast)
ement

selectors
niversität Bern

Operator Precedence and Ass
Level Operator Fu

17R
17L

::
::

global scope (un
class scope (bin

16L ->, .
[]
()
()

member selecto
array index
function call
type construction

15R sizeof
++, --

~
!

+, -
*, &

()
new, delete

size in bytes
increment, decre
bitwise NOT
logical NOT
unary plus, minu
dereference, add
type conversion
free store manag

14L ->*, .* member pointer

P2 — C++ 40.

U C++ Basic Language Features

ainder

ight

ity

ary)

ators

 (eval left to right)

nction
niversität Bern

13L *, /, % times, divide, rem

12L +, - add, subtract

11L <<, >> bitwise shift left/r

10L <, <=, >, >= comparisons

9L ==, != equality, inequal

8L & bitwise AND

7L ^ bitwise XOR

6L | bitwise OR

5L && logical AND

4L || logical OR

3L ?: arithmetic if (tern

2R =, *=, /=, %=,
+=, -=, <<=, >>=,

&=, |=, ^=

assignment oper

1L , comma operator

Level Operator Fu

P2 — C++ 41.

U C++ Basic Language Features

n a contiguous block of

ay!
niversität Bern

C++ Arrays

Arrays are fixed sequences of homogeneous elements
❑ Type a[n]; defines a one-dimensional array a i

(n*sizeof(Type)) bytes
❑ n must be a compile-time constant
❑ Arrays bounds run from 0 to n-1

❑ Size cannot vary at run-time
❑ No range-checking is performed at run-time:

{
int a[10];

for (int i=0; i<=10; i++)
a[i] = 0; // disaster! a[10] is not part of the arr

}

❑ Can be initialized at compile time:
int eightPrimes[8] = { 2, 3, 5, 7, 11, 13, 17, 19 };
int idMatrix[2][2] = { { 1, 0 }, { 0, 1 } };

P2 — C++ 42.

U C++ Basic Language Features

r variable:

ate variables:

t element

f eightPrimes[]

on object pointers
d void* :

e it is used:
f eightPrimes[]
niversität Bern

Pointers
A pointer is a variable that can hold the address of anothe

int i = 10;
int * ip = &i;

❑ Pointers can be used to indirectly access and upd
*ip = *ip + 1; // increment i

❑ Array variables are treated as pointers to their firs
int * ep = eightPrimes;

❑ Pointers can be treated like arrays:
ep[7] = 23; // update 8th element o

❑ But have differents sizes:
sizeof(eightPrimes) == 32 // 8 * 4 bytes
sizeof(ep) == 4 // pointer is 4 bytes

❑ new and delete respectively return and operate
❑ A pointer to an unknown data type can be declare

void * vp = ep;

❑ But must be typecast to the appropriate type befor
((int*)vp)[7] = 29; // update 8th element o

P2 — C++ 43.

U C++ Basic Language Features

void the overhead of passing
ointer dereferencing
eclaration

 refers to

cept when:

e., using new)
niversität Bern

References

A reference is an alias for another variable:
int i = 10;
int & ir = i;

ir = ir + 1; // increment i

❑ Once initialized, references cannot be changed
❑ References are most useful in procedure calls to a

arguments by value, without the clutter of explicit p
void refInc(int & n) // compare with Pascal’s “var” d
{

n = n+1; // increment the variable that n
}

✔ References should generally be preferred to pointers ex
☞ using arrays
☞ manipulating dynamically allocated objects (i.
☞ a variable must range over a set of objects

P2 — C++ 44.

U C++ Basic Language Features

er array:
r to a char)

 “hullo”
 “hull”

hull”

hello”

hull”

len() and strcpy()) are
ry /usr/include)

 built-in char arrays!
niversität Bern

Strings

A string is a pointer to a NULL-terminated (i.e., ‘\0’) charact
char * cp; // uninitialized string (pointe
char * hi = "hello"; // initialized string
char hello[6] = "hello"; // initialized char array

cp = hello; // cp now points to hello[]
cp[1] = ’u’; // cp and hello now point to
cp[4] = NULL; // cp and hello now point to

sizeof(cp) == 4 // a char pointer
strlen(cp) == 4 // four characters in string “

sizeof(hi) == 4 // another char pointer
strlen(hi) == 5 // five characters in string “

sizeof(hello) == 6 // array of six chars
strlen(hello) == 4 // four characters in string “

Various standard string manipulation routines (including str
declared in the header file <string.h> (usually in the directo

✔ It is generally better to use a C++ string class instead of

P2 — C++ 45.

U C++ Basic Language Features

ues

is a modifiable lvalue:

or function”

, an array name or const ”
niversität Bern

Assignment — lvalues and rval

An assignment expression is valid only if the left hand side
lvalue = rvalue

❑ “An ‘object’ is a region of storage”
❑ “An lvalue is an expression referring to an ‘object’

☞ e.g., variable names, *ptr, array[n]
❑ “An lvalue is modifiable if it is not a function name

int x, y[10];

x = x + 1; // ok -- x is a variable name

x+1 = x; // not ok -- x+1 does not refer to storage

*(y+1) = x; // ok -- same as: y[1] = x;

P2 — C++ 46.

U C++ Basic Language Features

n scope

 expressions

continue loop

lean

 cast to int
to
rough)
niversität Bern

Statements
Expressions and Blocks:

{ int a=7; a++; } // a block is a statement with its ow

Iteration:
for (i=0; i<n; i++) { ... }// init, control and update are any

while (notDone) { ... } // can also break out of or

do { ... } while (notDone);// loop executed at least once

Conditional:
if (a>b) { ... } // NB: any int can be used as a boo
else { ... } // else part is optional

Multi-case statement:
switch (i) { // integer or expression that may be
case 0: x = 0; // constant expression to compare

break ; // break to end of block (else fall th

case 1: // can group cases together
case 2: x = 1;

y = 2;
break ;

default : x = -1; // at most one of these

}

P2 — C++ 47.

U C++ Basic Language Features

stants:
n == 1; blue == 2

set or tested:

= 0 etc.

 int if necessary

happen!
niversität Bern

Enumeration Types
An enumeration type declares a set of symbolic integer con

enum Colour { red, green, blue }; // red == 0; gree

An instance of an enumeration type can (normally) only be
Colour c;

c = red; // ok; but not: c

cout << “colour “ << int(c) << “ is “; // can convert to

switch (c) {
case red :

cout << “red” << endl;
break;

case green :
cout << “green” << endl;
break;

case blue :
cout << “blue” << endl;
break;

default : // should never
cout << “unknown colour!” << endl;
break;

}

P2 — C++ 48.

U C++ Basic Language Features

re used
e n is optional

d

ession
niversität Bern

Functions

Functions must be either declared or defined before they a
int fact (int n); // declaration only; parameter nam

int fact (int n) // definition
{

if (n==0)
return 1; // obligatory if return type is not voi

else
return n*fact(n-1); // NB: return value may be an expr

}

To be covered later:
☞ optional and default arguments
☞ overloading
☞ scope resolution
☞ static variables

P2 — C++ 49.

U C++ Basic Language Features

nce?
ter variable? Vice versa?

pointer?
value?

i; i++);

her?

r?
niversität Bern

Summary

You should know the answers to these questions:
❑ What are the built-in data types of C++?
❑ What does operator << do? In which contexts?
❑ Why do operators have different levels of precede
❑ What happens when you assign an array to a poin
❑ What type of value does new return?
❑ What is the difference between a reference and a
❑ What is the difference between an lvalue and an r

Can you answer the following questions?
✎ Why was the language called C++ and not ++C?
✎ What does this statement do?: for(i=0; n >= 1<<

✎ Can you assign the value of one array variable to anot
✎ Why does C++ have both references and pointers?
✎ Why do C++ strings have to end with a NULL characte

P2 — C++ 50.

U Decomposition and Recursion

n

and exceptions
niversität Bern

4. Decomposition and Recursio

❑ Divide and Conquer: principle of recursion
❑ Documenting assumptions: assertions, invariants
❑ Iteration vs. Recursion
❑ Binary search
❑ Tail recursion and iteration
❑ Merge sort
❑ A faster merge sort

P2 — C++ 51.

U Decomposition and Recursion

nly when their purpose is

ed!
ugh!
niversität Bern

Document Assumptions

✔ Use descriptive names for variables; use short names o
obvious from the context.

✔ Always state explicitly all pre- and post-conditions.
✔ Document all assumptions.

// Requires: s1[] holds NULL-terminated string;
// s2[] is long enough to hold a copy of s1[]
// Ensures: s2[] will hold a copy of s1[]

void strCopy(char s1[], char s2[])
{

int i = 0;
while (s1[i] != ’\0’) { // Assume s1 is NULL-terminat

s2[i] = s1[i]; // Blithely assume s2 is big eno
i++;

}
s2[i] = ’\0’;

}

✔ Avoid making assumptions that you can’t check!

P2 — C++ 52.

U Decomposition and Recursion

cumenting.
enting.

NULL character

ct than an unreadable one.
clearly better to have a slow
rong!

ize them.
 system inefficiency.
niversität Bern

Comment Selectively

✔ Avoid complex or cryptic code; write code that is self-do
✔ Use comments to explain any code that is not self-docum

void strCopy2(char * s1, char * s2)
{

while (*s2++ = *s1++); // copy string s1 to buffer s2 up to
} // assumes s2 is big enough!

It is easier to demonstrate that a readable program is corre
Although readability sometimes interferes with efficiency, it is
program that works correctly, than an fast program that is w

✔ Ensure your programs are correct before you try to optim
✔ Never try to optimize code that is not a proven source of

P2 — C++ 53.

U Decomposition and Recursion

enting algorithms in a

can be solved by combining

solved directly.

ler cases.

e base cases directly, and
niversität Bern

Divide and Conquer

Recursion is a powerful technique for designing and implem
declarative, decompositional fashion.

❑ Determine how a complex instance of the problem
the solution to one or more simpler instances.

❑ Determine how the simplest (base) cases can be

❑ Ensure that complex cases always reduce to simp
(Otherwise the recursion may not terminate!)

❑ Implement the general solution by implementing th
the complex cases by recursion.

P2 — C++ 54.

U Decomposition and Recursion

gth >= 2
 length

ds for l2
rsively

1 and m2

s when they are violated.
niversität Bern

Recursion

Problem: find the minimum element of an array of integers.
// Requires: num[] an array with length > 0
// Ensures: result is smallest element of num[]

int findMin(int num[], int length)
{

if (length <= 0) {
throw(xmsg("findMin() called with empty array!"));

} else if (length == 1) {
// base case -- the only element is the smallest one:
return num[0];

} else { // now we know len
int l1 = length/2; // so l1 >= 1 but l1 <
int l2 = length - l1; // and the same hol
int m1 = findMin(num, l1); // call findMin() recu
int m2 = findMin(num+l1, l2);
return (m1<m2) ? m1 : m2; // result is min of m

}
}

✔ If possible, check your assumptions, and raise exception

P2 — C++ 55.

U Decomposition and Recursion

,

ive algorithms.

 function call overhead).
cursion is deep).

 recursive solution before
niversität Bern

Recursion — Pros and Cons

Pros:
❑ Recursive functions are easy to develop top-down
❑ they are usually easy to prove correct, and
❑ they are often much simpler than equivalent iterat

Cons:
❑ One must be careful about base cases.
❑ Recursion is typically slower than iteration (due to
❑ Recursive functions can exhaust stack space (if re
❑ Not all problems are inherently recursive.

✔ If a problem is inherently recursive, implement a correct
deciding whether a non-recursive solution is better.

P2 — C++ 56.

U Decomposition and Recursion

 adopt the simplest solution.
niversität Bern

Iteration vs. Recursion

Sometimes iteration is more natural than recursion. Always

// Requires: num[] a non-empty array with size length > 0
// Ensures: result is min element of num[]
int findMin2(int num[], int length)
{

if (length <= 0) {
throw(xmsg("findMin() called with empty array!"));

}
int min = num[0];
int i;
for (i=1; i<length; i++) {

min = (min < num[i]) ? min : num[i];
}
return min;

}

P2 — C++ 57.

U Decomposition and Recursion

m:

4 7 8 9 11 19 20

arch for key value 7:

4 7 8

7 8

7

niversität Bern

Binary Search

Problem: find a key element in a sorted array of integers.

Binary search is naturally expressed as a recursive algorith

3

Se

3

If the array has more than one element,
then

split it in two,
eliminate the sub-array containing
larger/smaller values.
Recurse on the other array.

else
check if the element is the one we
are searching for

P2 — C++ 58.

U Decomposition and Recursion

tion

igh)

ange

f size 1

 (== low)

...
niversität Bern

Binary Search — Recursive Solu
// Requires: num[] is sorted, high, low in range of num[]
// Ensures: (result.keyFound == 0)
// or ((result.keyfound == 1) and (num[result.index] = key))

keyIndex binSearch(int key, int num[], int low, int h
{

keyIndex result(0,0);
if (low > high) { // Base case 1: empty r

return keyIndex(0,0); // not found
} else if (low == high) { // Base case 2: range o

if (key == num[high]) {
return keyIndex(1,high); // found at position high

} else {
return keyIndex(0,0); // not found

}
} else { // high > low

int mid = (high+low)/2; // => mid < high
if (key <= num[mid]) { // Two recursive cases

return binSearch(key, num, low, mid);
} else {

return binSearch(key, num, mid+1, high);
}

}

}

P2 — C++ 59.

U Decomposition and Recursion

rimitive in C++, we must

alid index

e initialized with a given pair
niversität Bern

Records as Objects

BinSearch returns a pair of values. Since tuples are not a p
encode the pair of values as an object:

class keyIndex {
public :

keyIndex(int k, int i) { keyFound = k; index = i; }
int keyFound; // == 0 or 1
int index; // if keyFound == 1, then should be a v

};

KeyIndex has a constructor that allows a new instance to b
of integers.

P2 — C++ 60.

U Decomposition and Recursion

en returning its result:

 with n-1

signed int n,
signed int result=1)

ult;

ctorial(n-1, n*result);

ive!
niversität Bern

Tail Recursion
A function is tail-recursive if it calls itself recursively only wh

Tail-recursion can easily be transformed into iteration:
int ifactorial(unsigned int n)
{

int result = 1;
while (n != 0) { // terminate loop with base case(s)

result = n*result;
n--; // loop instead of calling recursively

}
return result;

}

int rfactorial(unsigned int n)
{

if (n==0) {
return 1;

} else {
return n*rfactorial(n-1);

}
} // recursive, but not tail-recursive

int trfactorial(un
un

{
if (n==0) {

return res
} else {

return trfa
}

} // tail recurs

P2 — C++ 61.

U Decomposition and Recursion

ion

high)

 is empty
ge size 1

high (== low)

es
cursing

cursing

ty range
niversität Bern

Binary Search — Iterative Solut

Since binSearch() is tail-recursive, it is easy to transform:
keyIndex ibinSearch(int key, int num[], int low, int
{

while (low <= high) { // terminate if range
if (low == high) { // Base case 2: ran

if (key == num[high]) {
return keyIndex(1,high); // found at position

} else {
return keyIndex(0,0); // not found

}
} else { // high > low

int mid = (high+low)/2; // => mid < high
if (key <= num[mid]) { // Two complex cas

high = mid; // loop instead of re
} else {

low = mid+1; // loop instead of re
}

}
} // Base case 1: emp
return keyIndex(0,0); // not found

}

P2 — C++ 62.

U Decomposition and Recursion

plement correctly, and is

cursive solution:

se
niversität Bern

Sorting

Problem: sort an array of integers

The “obvious” solution — insertion sort — is not trivial to im
inherently slow (N elements will be sorted in O(N2) time).

The principle of divide and conquer leads to an efficient, re
❑ We want to sort an array of integers
❑ Split the array into two smaller arrays, and sort tho
❑ Merge the two sorted arrays into one

Two questions remain:
❑ What are the base cases?

☞ arrays of length 0 or 1 are trivially sorted
❑ How can we merge two sorted arrays into one?

☞ in the obvious way!

P2 — C++ 63.

U Decomposition and Recursion
niversität Bern

MergeSort Example

3 6 2 9 1 1 7

3 6 2 9 1 1 7

3 6 2 9 1 1 7

3 6 2 9 1 1 7

3 2 6 1 9 1 7

2 3 6 1 1 7 9

1 1 2 3 6 7 9

split

split

split

merge

merge

merge

done!

P2 — C++ 64.

U Decomposition and Recursion

nsibility; promote readability
s.

nts
niversität Bern

Merge Sort
✔ A function or procedure should always have a clear respo

by decomposing complex algorithms into helper function
// Requires: a is an array of ints, length len
// Ensures: a will be sorted
void mergeSort(int a[], int len)
{

if (len <= 1) {
return; // trivially sorted!

}

int * a1 = a; // a1 points to the first half of a
int l1 = len/2; // len >= 2, so l1 >= 1
mergeSort(a1, l1); // a1 is now sorted

int * a2 = a + l1; // a2 points to the second half of a
int l2 = len - l1; // l1 < len, so l2 >= 1
mergeSort(a2, l2); // a2 is now sorted

int * b = new int[len]; // need a buffer to merge into
merge(a1, l1, a2, l2, b); // merging is done by a separate function

int i;
for (i=0; i<len; i++) { // copy result from b back to a

a[i] = b[i]; // this is a serious source of inefficiency
} // since each recursive call copies its argume
delete [] b; // don’t forget to delete b!

}

P2 — C++ 65.

U Decomposition and Recursion

through all execution paths.

 (len = l1 + l2)

pare

(i1 == l1) && (i2 == l2)
niversität Bern

Merge

✔ State loop invariants explicitly, and check that they hold

// Requires: a1 and a2 are sorted arrays of length l1 and l2 resp
// Ensures: b will contain sorted merge of a1 and a2
void merge(int a1[], int l1, int a2[], int l2, int b[])
{

int i1 = 0;
int i2 = 0;
int len = l1 + l2;
int i;
for (i=0; i<len; i++) { // Invariant: (i == i1 + i2) &&

if (i1 < l1) { // a1 not exhausted
if (i2 >= l2) { // but a2 is exhausted

b[i] = a1[i1++]; // so copy rest of a1 to b
} else if (a1[i1] <= a2[i2]) { // a2 not exhausted, so com

b[i] = a1[i1++]; // a1[i1] smaller
} else {

b[i] = a2[i2++]; // a2[i2] smaller
}

} else { // a1 is exhausted
b[i] = a2[i2++]; // so copy rest of a2 to b

}
} // Done when (i == len) &&

}

P2 — C++ 66.

U Decomposition and Recursion

zing.

)

niversität Bern

Refactoring Merge()

✔ Eliminate duplicate code through refactoring or reorgani

// Requires: a1 and a2 are sorted arrays of length l1 and l2 resp
// Ensures: b will contain sorted merge of a1 and a2

void merge(int a1[], int l1, int a2[], int l2, int b[])
{

int i1 = 0;
int i2 = 0;
int len = l1 + l2;
int i;
for (i=0; i<len; i++) { // Invariant: (i == i1 + i2) && (len = l1 + l2

if ((i1 < l1) && ((i2 >= l2) || (a1[i1] <= a2[i2]))) {
b[i] = a1[i1++]; // a2 exhausted, or a1[i1] is smaller

} else {
b[i] = a2[i2++]; // a1 is exhausted, or a2[i2] is smaller

}
}

}

P2 — C++ 67.

U Decomposition and Recursion

but copies the result of each
ad.

ore complex.

 delivers the sorted array

 with the help of ms2b()
2b()
niversität Bern

Optimizing MergeSort ...

Our mergesort() has O(N*log(N)) complexity, which is good,
merge back to the original array, which adds a fixed overhe

We can improve the performance, but make the program m

Idea:
❑ allocate a fixed buffer for merging into
❑ define an auxiliary mergeSort function ms2b() that

directly into the buffer
❑ define another function ms2a() that sorts the array
❑ define mergeSort() with the help of ms2a() and ms

P2 — C++ 68.

U Decomposition and Recursion

uffer, two versions of
 or back to the original

buffer b

2 9 1 1 7

6 1 1 7 9
niversität Bern

MergeSort with a Fixed Buffer

Instead of each instance of mergeSort() allocating its own b
mergeSort() cooperate, either merging into the fixed buffer,
argument array:

input a

3 6 2 9 1 1 7

3 6 2 9 1 1 7

3 6 2 9 1 1 7

3 6 2 9 1 1 7

3 6 2 1 9 1 7

1 1 2 3 6 7 9

3 6

2 3

split

split

split

merge

P2 — C++ 69.

U Decomposition and Recursion

 of readability ...

 sorted into b
, int b[], int len)

{
[0];

;
;

;

 l2, b);
niversität Bern

A Faster MergeSort
We can improve the performance of MergeSort, at the cost
void mergeSort2(int a[], int len)
{

int * b = new int[len];
ms2a(a, b, len);
delete [] b;

}

// Ensures: a will be sorted into a
void ms2a(int a[], int b[], int len)
{

if (len <= 1) {
return;

}

int * a1 = a;
int * b1 = b;
int l1 = len/2;
ms2b(a1, b1, l1);

int * a2 = a + l1;
int * b2 = b + l1;
int l2 = len - l1;
ms2b(a2, b2, l2);

merge(b1, l1, b2, l2, a);
}

// Ensures: a will be
void ms2b(int a[]
{

if (len <= 1) {
if (len == 1)

b[0] = a
}
return;

}

int * a1 = a;
int * b1 = b;
int l1 = len/2;
ms2a(a1, b1, l1);

int * a2 = a + l1
int * b2 = b + l1
int l2 = len - l1
ms2a(a2, b2, l2);

merge(a1, l1, a2,
}

P2 — C++ 70.

U Decomposition and Recursion

n?
itions?

?

rter than the advertised

on?
niversität Bern

Summary

You should know the answers to these questions:
❑ When can you implement algorithms with recursio
❑ Why should you explicitly state pre- and post-cond
❑ When should you raise an exception?
❑ What is tail recursion? How can you eliminate it?
❑ What are loop invariants? Why are they important
❑ When should you start optimizing your program?

Can you answer the following questions?
✎ Our mergeSort() will crash if the argument array is sho

length; how can we fix this?
✎ How would you implement mergeSort() without recursi
✎ Why is code duplication a Bad Thing?

P2 — C++ 71.

U Specifying Classes

s

niversität Bern

5. Specifying Classes

❑ Abstract Data Types, Contracts and Invariants
❑ C++ Classes:

☞ public , protected and private member
❑ Example of data abstraction:

☞ a TicTacToe object
❑ Exceptions:

☞ try , catch and throw

❑ Restricting visibility and write access:
☞ static and constant declarations

P2 — C++ 72.

U Specifying Classes

ants

 consistency)
s

in lecture 2!

vices/contracts)
y rules)
nd operations)
niversität Bern

Abstract Data Types and Invari

Why do we need ADTs?
❑ to program at a higher level of abstraction
❑ to program with reusable software components
❑ to maintain program invariants (ensure server data
❑ to encapsulate and maintain client/server contract
❑ to protect clients from variations in implementation

Contrast C++ (cpprev) and C (crev) stack implementations

Design guidelines:
❑ What abstractions do you need? (i.e., abstract ser
❑ What are the program invariants? (i.e., consistenc
❑ Which data belong together? (i.e., via invariants a

P2 — C++ 73.

U Specifying Classes

the English Language]

 crosses and another
ks in any of the nine
 crossed by two
e of his marks in any

us turn)

of X
or there is a winner
 marked

variants are respected
niversität Bern

Example: Tic Tac Toe
Requirements specification: [Random House Dictionary of

“A simple game in which one player marks down only
only ciphers [zeroes], each alternating in filling in mar
compartments of a figure formed by two vertical lines
horizontal lines, the winner being the first to fill in thre
row or diagonal.”

Explicit invariants:
☞ turn (current player) is either X or O
☞ X and O swap turns (turn never equals previo
☞ game state is 3×3 array marked X, O or blank
☞ winner is X or O iff winner has three in a row

Implicit invariants:
☞ initially winner is nobody; initially it is the turn
☞ game is over when all squares are occupied,
☞ a player cannot mark a square that is already

Contracts:
☞ the current player may make a move, if the in

P2 — C++ 74.

U Specifying Classes

uctor for records.

 of information hiding.

rs & destructors

es and friends only

cope ends

 deleted
niversität Bern

C++ Classes

C++ classes are an extension to the C struct type constr

Class members are data and “functions” with varying levels

class ClassName {
public :

// Data and methods accessible to clients, including constructo
protected :

// Data and methods accessible to class methods, derived class
private :

// Data and methods accessible to class methods and friends only
}

Automatic (stack) instantiation:
ClassName oVal; // Constructor called; destroyed when s

Dynamic (heap) instantiation:
ClassName * oPtr; // Pointer, so no constructor called
oPtr = new ClassName; // Constructor called; must be explicitly

P2 — C++ 75.

U Specifying Classes

e

)

g instantiation and updates

s needed by driver
 and services
niversität Bern

Designing a Tic Tac Toe Game

tttMain.cpp:
❑ Driver — responsible for interacting with user
❑ Creates and destroys instances of TicTacToe gam

TicTacToe.h:
❑ Abstract interface to TicTacToe game (header file
❑ Declares public/private methods
❑ Shared by both driver and game implementation

TicTacToe.cpp:
❑ Includes needed libraries
❑ Implementation of TicTacToe game
❑ Responsible for maintaining game invariants durin

What should be the interface?
☞ Top-down strategy: consider abstract service
☞ Bottom-up strategy: consider game invariants

P2 — C++ 76.

U Specifying Classes

ues ...

 another game? (y/n): n
niversität Bern

Desired Interaction
Welcome to Tic Tac Toe!
Would you like to play a game? (y/n): y

1|2|3

4|5|6

7|8|9

X plays: 5

1|2|3

4|X|6

7|8|9

O plays: 5
Error: Square already occupied

1|2|3

4|X|6

7|8|9

O plays: 0
Error: Move out of range 1-9

1|2|3

4|X|6

7|8|9

O plays: 1

The game contin

X plays: 9

O|X|O

X|X|O

X|O|X

Nobody wins!!!

Would you like to play
Goodbye!

P2 — C++ 77.

U Specifying Classes

t stream

without error

mplete program, and
niversität Bern

The Tic Tac Toe Driver
/*

File: tttMain.cpp
Author: Oscar Nierstrasz 29.2.96
Driver for Tic Tac Toe program

*/

#include <iostream.h> // Declare cout and endl
#include "TicTacToe.h" // Declare TicTacToe class

void playTicTacToe (void);
// void playTicTacToe(void) { cout << "not implemented yet" << endl; } // for testing

int main (void)
{

cout << "Welcome to Tic Tac Toe!" << endl;
cout << "Would you like to play a game? (y/n): ";

char reply;
cin >> reply; // Read from standard inpu
while (reply == ’y’) {

playTicTacToe();
cout << "Would you like to play another game? (y/n): ";
cin >> reply;

}
cout << "Goodbye!" << endl;
return 0; // Unix process terminates

}

✔ Prototyping strategy: always work with a running, if inco
incrementally “grow” the full version.

P2 — C++ 78.

U Specifying Classes

. Determine who is

it my job?”

stance

iver in abstract terms!

ail!
onsibility is it to check?

ass in <exception.h>
 err.why()
niversität Bern

Determining the Interface

✔ Describe services at highest level of abstraction possible
responsible for what!

Always ask yourself, “can the object perform this task or is
void playTicTacToe (void)
{

TicTacToe game; // new local in
int move;

while (game.notover()) { // Describe dr
game.print();
cout << game.turn() << " plays: ";
cin >> move;
try { // This could f

game.play(move); // Whose resp
}
catch (xmsg & err) { // Standard cl

cout << "Error: " << err.what() << endl; // Or possibly
}

}
game.print();
cout << game.winner() << " wins!!!" << endl << endl;

}

P2 — C++ 79.

U Specifying Classes

object) may throw an

lient)
 of memory)

lue

nstance
 class

using try/catch construct.

tions, not normal flow of
niversität Bern

Exceptions
A server (i.e., a function, typically a member function of an
exception if it cannot provide the requested service:

☞ the request was invalid (contract violated by c
☞ the server failed (abnormal situation, e.g., out

The server should:
1. attempt to restore the invariant, and
2. inform the client by returning a suitable exception va

An exception is a value thrown by server to client:
☞ a number, an enum value, a string, an xmsg i
☞ an instance of a specially designed exception

Client may catch an exception and take appropriate action

✔ Exceptions should only be used to signal abnormal situa
control.

P2 — C++ 80.

U Specifying Classes

ce of play())

ethods ...
niversität Bern

Specifying the Interface
/*

File: TicTacToe.h
Author: Oscar Nierstrasz 29.2.96
Tic Tac Toe interface

*/

#ifndef TICTACTOE_H // Include at most once!
#define TICTACTOE_H

#include <exception.h> // Declare xmsg class (needed for interfa

class TicTacToe {
public :

TicTacToe(void); // Constructor

int notover (void); // True if game is not over
const char * winner (void); // Winner is "X", "O" or "Nobody"
char turn (void); // Whose turn is it?

void play (int move) // Current player marks a square
throw(xmsg); // Invalid move raises exception

void print (void); // Pretty-print the current state

 private : // Private instance variables, types and m
};

#endif // TICTACTOE_H

P2 — C++ 81.

U Specifying Classes

induce the invariants.
specification.

ill be “discovered” during

ur code as self-documenting
niversität Bern

Instance Variables

Instance variables are needed to provide the services and
Often most of these can be determined by considering the
class TicTacToe {
public : // As before ...

private :
enum Player { nobody, X, O }; // Symbolic names for players

// Private instance variables
Player _winner; // Initially nobody
Player _turn; // Initially X
int squaresLeft; // Initially 9
Player square[9]; // Initially all nobody

};

Remaining instance variables and other private members w
implementation ...

✔ Use symbolic names and enumerated types to make yo
as possible.

P2 — C++ 82.

U Specifying Classes

ere

 TicTacToe class

bers here!

one in body

 a return value
rent kinds of initializers
niversität Bern

Implementing the Constructor

/*
File: TicTacToe.cpp
Author: Oscar Nierstrasz 29.2.96

Tic Tac Toe implementation
*/

#include <iostream.h> // Declare cout and endl
#include "TicTacToe.h" // Declare everything to be defined h

// Implementations of public and private methods ...

// Constructor:
TicTacToe::TicTacToe (void) : // NB: TicTacToe() is within scope of

_winner(nobody), // Member initialization list
_turn(X), // Whenever possible, initialize mem
squaresLeft(9)

{
for (int i=0; i<9; i++) // Cannot be initialized in MI list, so d

square[i] = nobody;
}

☞ Constructors may have arguments, but never
☞ Multiple constructors may be defined for diffe

P2 — C++ 83.

U Specifying Classes

!

!

finition!
r[] and winners[]
niversität Bern

Implementing the Game
int
TicTacToe::notover (void)
{

return (squaresLeft > 0) && (_winner == nobody);
}

const char * // Result string may not be modified by clients
TicTacToe::winner (void)
{

return winners[_winner]; // String representation of winner
}

char
TicTacToe::turn (void)
{

return player[_turn]; // Char representation of current player
}

// Char and string names of players -- share one constant copy for all game instances!
// Oops! We should add their declarations to the list of private members in TicTacToe.h
// Initialization of constant static members:
const char TicTacToe:: player [3] = { ' ', 'X', 'O' };
const char * TicTacToe:: winners [3] = { "Nobody", "X", "O" };

enum Player { // Oops! Now we need to change this type de
nobody = 0, // Representation fixed so we can index playe
X = 1, // This goes in TicTacToe.h
O = 2

};

P2 — C++ 84.

U Specifying Classes

of these arrays.
.

 invocations
e file scope

: [ARM p. 98]

c globals outside the class:
niversität Bern

Static Declarations
class TicTacToe {
public : // as before ...
private : // as before ...

static const char player [3]; // Only one, unmodifiable local copy
static const char * winners [3]; // Both are indexed by Player values

};

A static local variable has class scope, and persists across
A static global variable has file scope, and is invisible outsid

NB: A static class member must be initialized just once!

Warning! Two separate but interacting meanings of static

☞ “allocated once at a fixed address”
☞ “local to a translation unit”

We could also have defined player and winners as stati
// Global variables are declared “static” so they are private to this module
static const char player [] = { ’ ’, ’X’, ’O’ };
static const char * winners [] = { "Nobody", "X", "O" };

P2 — C++ 85.

U Specifying Classes

s interfaces:

ed game

tring

 to const game!

iler:
on-const!

constant string!
 what it points to!

t what it points to!
t constant

constant!
niversität Bern

Constant Declarations
const declarations are an important part of specifying clas

Function promises not to modify arguments:
void printGame (const TicTacToe&); // won’t modify referenc

Client promises not to modify return results
const char * winner (void); // client won’t change s

Object promises not to modify itself
const char * winner (void) const; // can be safely applied

Inconsistent use of const variables is detected by the comp
char * s = game.winner(); // illegal conversion to n

const char * s = game.winner();
s = ’’; // illegal assignment to

// s is not constant; only

Be careful exactly what is being declared constant!
char * const hi = "Hello world"; // hi is constant, but no
hi[0] = 'B'; // OK, since string is no

hi = "oh no!"; // illegal assignment to

P2 — C++ 86.

U Specifying Classes

 be assertions!

dex square from 0-8)

r
 to maintain invariants!
niversität Bern

Playing the Game
/*

Current player makes a move by marking a square from 1-9.
An exception is raised if the square is out of range or is already marked.

*/
void
TicTacToe::play (int move) throw(xmsg)
{

if (!notover()) { // In Eiffel, these would
throw(xmsg("This game is already over!"));
return;

}

if ((move<1) || (move>9)) {
throw(xmsg("Move out of range 1-9"));
return;

}
move--; // OK, so decrement (in

if (square[move] == nobody) { // Not already marked
square[move] = _turn; // Mark the square
squaresLeft--;
_turn = (_turn == X) ? O : X; // Switch current playe
checkWinner(); // Need helper function

} else {
throw(xmsg("Square already occupied"));

}
}

P2 — C++ 87.

U Specifying Classes

ow by row

lper function!
niversität Bern

Printing the Game
// Pretty print the current state of the game:
void
TicTacToe::print(void)
{

cout << endl;
for (int row=0; row<3; row++) { // Print the game r

int first = 3*row;
cout << '\t'

<< showSquare(first) << '|' // Need another he
<< showSquare(first+1) << '|'
<< showSquare(first+2) << endl;

if (row < 2)
cout << "\t-----" << endl;

}
cout << endl;

}

/*
Helper function for TicTacToe::print()
Return ascii char for squares 0-8
Returns ’X’ or ’O’ if occupied; otherwise square number as ascii char

*/
char
TicTacToe::showSquare(int m)
{

Player state = square[m];
return (state == nobody)?(’1’+m):player[state];

}

P2 — C++ 88.

U Specifying Classes

ce

of these arrays.
.

ree())
winner if there is
niversität Bern

The Complete TicTacToe Interfa
class TicTacToe {
public :

TicTacToe(void); // Constructor

int notover (void); // Public methods
const char * winner (void);
char turn (void);
void play (int move) throw(xmsg);
void print (void);

private :
enum Player { nobody = 0, // Local type

X = 1,
O = 2

};

Player _winner; // Instance variables
Player _turn;
int squaresLeft;
Player square[9];

static const char player [3]; // Only one, unmodifiable local copy
static const char * winners [3]; // Both are indexed by Player values

char showSquare(int); // Local helper functions ...
void checkWinner(void); // Check for a winner (uses matchTh
int matchThree(int,int,int); // Check for three in a row, and set _

};

P2 — C++ 89.

U Specifying Classes

sign?
embers?

dy) of a constructor?
TacToe?
niversität Bern

Summary

You should know the answers to these questions:
❑ What are invariants? How do they help in class de
❑ What can one specify as public or private class m
❑ How are object created?
❑ How do exceptions work?
❑ What belongs in a header file?
❑ What are static and const declarations for?

Can you answer the following questions?
✎ When and how are objects destroyed?
✎ What belongs in the member initialization list (resp. bo
✎ Can you implement the missing helper functions for Tic
✎ Does it make sense to declare a function as static ?

P2 — C++ 90.

U Data Abstraction
niversität Bern

6. Data Abstraction

❑ Run-time Stacks; Stacks as Data Abstractions
❑ Using a Stack to Interpret Postfix Expressions
❑ Stacks, Queues and Linked Lists
❑ Class Invariants
❑ Implementing the Linked List Abstraction
❑ Implementing Stacks
❑ Using a Stack to Balance Parentheses
❑ C++ trap: Shallow Copying and Call by Value

P2 — C++ 91.

U Data Abstraction

context that will be returned
 a run-time stack:

ion call ...

rn 1

turn.
niversität Bern

The Run-time Stack
The stack is a fundamental data structure used to record a
to at a later point in time. Most programming languages use

void main (void) { cout << "fact(5) = " << fact(5) << endl; }

int fact (int n) {
if (n==0) return 1;
else return n*fact(n-1);

}

main ... The stack grows with each funct

main; fact(3)=? fact(3) ...

main; fact(3)=? fact(3); fact(2)=? fact(2) ...

main; fact(3)=? fact(3); fact(2)=? fact(2); fact(1)=? fact(1) ...

main; fact(3)=? fact(3); fact(2)=? fact(2); fact(1)=? fact(1); fact(0)=? fact(0) ...

main; fact(3)=? fact(3); fact(2)=? fact(2); fact(1)=? fact(1); fact(0)=? fact(0); retu

main; fact(3)=? fact(3); fact(2)=? fact(2); fact(1)=? fact(1); return 1

main; fact(3)=? fact(3); fact(2)=? fact(2); return 2

main; fact(3)=? fact(3); return 6

main; fact(3)=6 ... and shrinks with each re

P2 — C++ 92.

U Data Abstraction

.

tack
d its contents

ms the Stack holds

of the Stack
p Item

eption

n abstract interface can you
 the rest of your program.
niversität Bern

Stack as a Data Abstraction

✔ Always encapsulate data structures as data abstractions

class Stack
{
public:

Stack(void); // Construct an empty S
~Stack(void); // Destroy the Stack an

int count(void); // Return how many Ite
int empty(void); // Is the Stack empty?

void push(Item item); // Push an Item on top
Item top(void) throw(xmsg); // Return value of the to
void pop(void) throw(xmsg); // Pop off the top Item

// If empty, raise an exc

private:
// Somehow, keep track of the state of the Stack ...

};

A naked data structure is easily corrupted. Only by defining a
ensure that your data will remain consistent independent of

P2 — C++ 93.

U Data Abstraction

hmetic expressions.
 a stack:

3

2

niversität Bern

Postfix Expressions

A Stack Machine is a simple architecture for evaluating arit
Expressions written in postfix form are easy to interpret with

Example: 6 7 3 + 2 * -

Operation Stack

push 6 6

push 7 6 7

push 3 6 7

apply + 6 10

push 2 6 10

apply * 6 20

apply - 14

P2 — C++ 94.

U Data Abstraction

ent with a Stack:

igits

y operator to top numbers
niversität Bern

A Postfix Expression Interpreter
A postfix expression interpreter is straightforward to implem
void postfix(void) {

Stack intStack;
char c = ’ ’;
cout << "Enter postfix expressions (\".\" to stop!)" << endl;
while (c != ’.’) {

try {
int arg1, arg2;
cin >> c;
if ((’0’<=c) && (c<=’9’)) { // push d

intStack.push(c - ’0’);
} else {

switch (c) { // or appl
case ’+’:

arg1 = intStack.top(); intStack.pop();
arg2 = intStack.top(); intStack.pop();
intStack.push(arg1 + arg2);
cout << arg1 << " + " << arg2 << " = " << (arg1+arg2) << endl;
break;

// add other operators here ...
default:

cerr << "Invalid char " << c << " ignored" << endl;
break;

}
}

} catch (xmsg & err) { cout << "Exception: " << err.why() << endl; }
}

}

P2 — C++ 95.

U Data Abstraction

cture:

stack.pop()
niversität Bern

Stacks as Linked Lists

A Stack can easily be implemented using a linked data stru

size = 3

6 7 3

top =

size = 2

6 7

top =

stack.push(3)

P2 — C++ 96.

U Data Abstraction

s

t can be implemented using

abstraction that can be used

push

pop

dequeue
niversität Bern

Stacks, Queues and Linked List

Stacks and Queues are both dynamic data abstractions tha
linked data structures.

This suggests that we should develop a separate Linked List
to implement both Stacks and Queues.

Stack

Queue

enqueue

P2 — C++ 97.

U Data Abstraction

size = 1

6

back front

6 7

front

7

niversität Bern

Linked List Operations

size = 2

6

back

7

front

size = 3

6

back

7 3

front

size = 3

2

back

pop_front()

push_front(3)

push_back(2)

P2 — C++ 98.

U Data Abstraction

e class constructor must
public method is responsible

rs, and a set of linked cells,

ints to the first cell, and each
e.

cell.
niversität Bern

Class Invariants

Recall that we implement data abstractions as classes — th
create instances that establish the class invariant, and each
for maintaining the invariant.

A valid linked list instance has a size, front and back pointe
such that:

❑ Initially size is zero; front and back point nowhere.

❑ When size is n > 0, there are n linked cells; front po
cell points to the next; the back cell points nowher

❑ In case size = 1, front and back point to the same

P2 — C++ 99.

U Data Abstraction

ntents!

mpty
empty

f the list on os

ink items

Constructor

 the back cell

kCell->next == 0
niversität Bern

LList Declaration
class LList { // Declared in llist.h
public:

LList(void); // Make an empty list
~LList(void); // Destroy the list and its co

int count(void) { return size; };
int empty(void) { return size == 0; };

void push_front(Item item); // Add item to front
Item front(void) throw(xmsg); // Return front item, if not e
void pop_front(void) throw(xmsg); // Remove front item, if not

void push_back(Item item); // Add item to back
Item back(void) throw(xmsg); // Remove back item

void print(ostream &os); // Output a representation o

private:
class Cell { // Private class (record) to l
public:

Cell(Item val, Cell * nxt) { value = val; next = nxt; } //
Item value;
Cell * next; // Is zero if and only if this is

};

// Invariant: If size == 0, then frontCell == 0 and backCell == 0
// else if size == 1, then frontCell == backCell and backCell->next == 0
// else frontCell->...->next == backCell and bac

Cell * frontCell; // initially 0
Cell * backCell;
int size; // >= 0

};

P2 — C++ 100.

U Data Abstraction

 clear responsibility.

 responsibilities.

el of abstraction as possible.

e.
0 to 25 lines of code.

lper methods.
niversität Bern

Implementing List Methods

Recall that functions and procedures should always have a

✔ A method should always do one thing well; don’t mix up

Methods, like procedures, should be written at as high a lev

✔ Methods should be short and easy to read.

Rules of thumb:
❑ An ordinary method is typically 5 to 10 lines of cod
❑ A method that implements an algorithm might be 2

Complex methods should be decomposed using private he

P2 — C++ 101.

U Data Abstraction

d:

lls will persist

stack);
ic values.
niversität Bern

List Constructor and Destructor

The constructor establishes the invariant:
// constructor for an empty stack:
LList::LList (void)

: size(0), frontCell(0), backCell(0)
{
}

The destructor empties the stack so it can be cleanly delete
// destructor pops all cells:
LList::~LList(void)
{

while (!this->empty()) {
this->pop_front(); // If we don’t do this, the Ce

} // after the Stack is gone!
}

The C++ run-time will only delete automatic values (on the
the destructor of a class is responsible for freeing all dynam

P2 — C++ 102.

U Data Abstraction

d, but the invariant must be

ariant holds

of invariant!
et backCell
niversität Bern

Growing the List

Each method can assume that the object is in a valid state.
The state may be temporarily inconsistent inside the metho
re-established when the method terminates.

void
LList::push_front(Item item) // Assume only that inv
{

Cell * newCell;
newCell = new Cell(item, this->frontCell);
// NB: the new Cell now points to frontCell,
// even if frontCell == 0

this->frontCell = newCell; // Always do this

if (this->empty()) { // Handle special case
this->backCell = newCell; // no longer empty, so s

} // to point here too

size++; // Always do this
}

✎ Can you implement pop_front() and push_back()?

P2 — C++ 103.

U Data Abstraction

 if they are violated.
niversität Bern

Checking Pre-conditions

Remember to check pre-conditions, and raise an exception

// Requires: stack is non-empty

Item
LList::front(void) throw(xmsg)
{

if (this->empty()) {
throw(xmsg("Empty list has no front!"));

}
return this->frontCell->value;

}

P2 — C++ 104.

U Data Abstraction

nked List
header file

re
niversität Bern

Implementing a Stack with a Li
#ifndef STACK_H // NB: this implementation is a
#define STACK_H

#include <iostream.h> // Declare ostream
#include <exception.h> // Declare xmsg
#include "llist.h"

typedef int Item ; // Redefine as necessary ...

class Stack { // NB: all methods are inline
public:

Stack(void) { }; // Empty default constructor
~Stack(void) { }; // Empty destructor

int count(void) { return myList.count(); };
int empty(void) { return myList.empty(); };

void push(Item item) { myList.push_front(item); }
Item top(void) throw(xmsg) { return myList.front(); }
void pop(void) throw(xmsg) { myList.pop_front(); }

void print(ostream &os) { myList.print(os); }

private:
LList myList; // All methods implemented he

};

#endif // STACK_H

P2 — C++ 105.

U Data Abstraction

s

ntheses, brackets and

off when a right parenthesis
empty at the end, the whole
niversität Bern

Example: Balancing Parenthese

Problem: Determine whether an expression containing pare
braces (i.e., (), [], and { }) is correctly balanced.

Example: “([[]] { ({ [] () }) [] })” is balanced, “] {“ is not.

Approach: Push each left parenthesis on a stack, and pop it
is encountered. If the parentheses match, and the stack is
expression is balanced.

Example: “([{ }]]”
push(“(”) → “(”
push(“[”) → “([”
push(“{”) → “([{”
“{” matches “}” so pop() → “([”
“[” matches “]” so pop() → “(”
“(” doesn’t matches “]” so not balanced

P2 — C++ 106.

U Data Abstraction

CII string

Too many right parens
OK, so continue
Mismatch

 right parens
niversität Bern

Parenthesis balancer
int balanced(char s[]) throw(xmsg) // Assume s[] is a null-terminated AS
{

Stack myStack;
int i = 0;
while (s[i] != ’\0’) {

switch (s[i]) {
case ’(’:

myStack.push(’)’); // Push the matching parenthesis,
break; // so we just need to test for equality

case ’[’:
myStack.push(’]’);
break;

case ’{’:
myStack.push(’}’);
break;

case ’)’:
case ’]’:
case ’}’:

if (myStack.empty()) { return 0; } //
else if (s[i] == myStack.top()) { myStack.pop();} //
else { return 0; } //
break;

default:
break;

}
i++;

}
return myStack.empty(); // Equal number of matching left and

}

P2 — C++ 107.

U Data Abstraction

Linked List

ked list:

ctions
niversität Bern

Implementing a Queue with a

We can also implement a Queue as a wrapper around a lin

class Queue { // NB: all methods are inline fun
public:

Queue(void) { };
~Queue(void) { };
int count(void) { return myList.count(); };
int empty(void) { return myList.empty(); };

// join queue at tail with enqueue()

Item tail(void) throw(xmsg) { return myList.back(); }
void enqueue(Item item) { myList.push_back(item); }

// leave queue at head with dequeue()

Item head(void) throw(xmsg) { return myList.front(); }
void dequeue(void) throw(xmsg) { myList.pop_front(); }

void print(ostream & os) { myList.print(os); }

private:
LList myList;

};

P2 — C++ 108.

U Data Abstraction

are passed by value. Since
 have allocated, only a
 when the function returns.

// Get a shallow copy of q

// and destroy it!

back

size = 3

ill be destroyed by
hen peekq() returns!
niversität Bern

The Dangers of Call by Value

Our LList class has a serious flaw. Parameters, by default,
C++ does not know about the dynamic data your class may
shallow copy is passed. The copy’s destructor will be called

front back

size = 3myList
q

void peekq(Queue q)
{

q.print();
}

front

myList
q

Run-time Stack

Heap

peekq(q)

These Cells w
LList::~LList w

P2 — C++ 109.

U Data Abstraction

tate, you must guard against
.

rectly

ce.
e a compile-time error.

uld not be passed by value.
niversität Bern

Guard Against Shallow Copies

If instances create and delete dynamic data as part of their s
shallow copies being made when they are passed by value

There are two possible solutions:
1. Implement a copy constructor that builds a copy cor
2. Declare a copy constructor as private .

☞ Instances can then only be passed by referen
☞ Attempts to pass instances by value will caus

✔ Declare a private copy constructor, if your objects sho
class LList {
public: ...
private:

LList(const LList&);// not implemented
...

};

LList::LList(const LList& arg) { // throw an exception if accidentally called
throw(xmsg("LList::LList(LList&) not implemented"));

}

P2 — C++ 110.

U Data Abstraction

a linked list?
 within classes?
ecify?

stead of two?
ist class?
niversität Bern

Summary

You should know the answers to these questions:
❑ What is the purpose of the run-time stack?
❑ What are typical applications of stacks?
❑ How can a stack or a queue be implemented with
❑ Why is it important to encapsulate data structures
❑ What is a class invariant? Why is it important to sp
❑ How can call by value invalidate a class invariant?

Can you answer the following questions?
✎ Can you implement the missing methods of LList ?
✎ How could you implement LList with only one pointer in
✎ How would you implement copying correctly for the LL

✎ Why can’t C++ copy objects by value correctly?

P2 — C++ 111.

U Managing Memory

 Addison-Wesley, 1991.
Styles and Idioms, Addison-
niversität Bern

7. Managing Memory

❑ Orthodox Canonical Form
❑ Copy Constructors
❑ new and delete
❑ Assignment operators
❑ Inline functions
❑ Conditional compilation
❑ Operator overloading
❑ Friends
❑ IO Stream operators

Sources:
❑ Stanley B. Lippman, C++ Primer, Second Edition,
❑ James O. Coplien, Advanced C++: Programming

Wesley, 1992.

P2 — C++ 112.

U Managing Memory

nstructor
tructor

structors

r

nt operator

lic member functions

whose objects will be copied
niversität Bern

Orthodox Canonical Form

Most of your classes should look like this:

class myClass
{

public:
myClass (void); // default co
myClass (const myClass& copy); // copy cons

... // other con

~myClass (void); // destructo

myClass& operator= (const myClass&); // assignme

... // other pub

private:

...
};

✔ Use the orthodox canonical form for any non-trivial class
or assigned to.

P2 — C++ 113.

U Managing Memory

ts us from common errors.
niversität Bern

Example: A String Class

C-style strings are inherently unsafe:
❑ strings are indistinguishable from char pointers
❑ string updates may cause memory to be corrupted

We would like to implement a String abstraction that protec
Should support:

❑ creation and destruction
❑ initialization from char arrays
❑ copying
❑ safe indexing
❑ safe concatenation and updating
❑ input and output
❑ length, comparison and other common functions

P2 — C++ 114.

U Managing Memory

rray:

and ostream

tor
r

r

rator

ULL chars

h element
 -- return 0 upon eof
m

niversität Bern

First version of String.h
Our String class will provide an interface to a hidden char a

#ifndef STRING_H
#define STRING_H

#include <iostream.h> // declare istream
#include <exception.h> // declare xmsg

class String
{

public:
String (void); // default construc
String (const String& copy); // copy constructo

String (const char* s); // char* constructo
~String (void); // destructor

String& operator= (const String&); // assignment ope

int strlen (void); // number of non-N

char& operator[] (const int n) throw (xmsg);// safely return nt
int getline (istream&); // read into istream
void print (ostream&); // print onto ostrea

private:
// invariant: _s points to a NULL-terminated string on the heap
char *_s;

};

#endif // STRING_H

P2 — C++ 115.

U Managing Memory

ance is declared without any

en times

tate of a new object (i.e.,

ion list needed

ngth 1 on the heap
ULL terminated

ach constructor correctly
niversität Bern

Default Constructors

The default constructor for a class is called when a new inst
initialization parameters:

String anEmptyString; // String::String() is called

String stringVector[10]; // String::String() is called t

Each constructor is responsible for properly initializing the s
establishing the class invariant):

String::String (void) // NB: no member initializat
{

_s = new char[1]; // allocate a char array of le
_s[0] = '\0'; // make sure the string is N

}

✔ Decide what your class invariant is and make sure that e
establishes the invariant.

P2 — C++ 116.

U Managing Memory

ts

 “on the heap”:

 are defined

() is called
() is called

 and delete

ctor is called
() is called
 the new String
niversität Bern

Automatic and Dynamic Objec

Recall that objects can either be allocated “on the stack” or

❑ Automatic objects are local to functions
☞ constructors are called for objects where they
☞ destructors are called when functions exit
☞ can only be returned “by value” (i.e., copying)

void f (void) {
String s; // constructor String::String

} // destructor String::~String

❑ Dynamic objects reside in global memory
☞ created and destroyed by explicit calls to new

☞ may be shared by pointers or references
String* g (void) {

String * s; // just a pointer; no constru
s = new String; // constructor String::String
return(s); // client obtains a pointer to

} // no destructor is called

P2 — C++ 117.

U Managing Memory

ist across function calls.
rray of new objects for its
nts is not known in advance.

 of String
e

e[] :

lete _s"!!!

 matching delete!
n object’s private state.
niversität Bern

Destructors

Dynamic objects are only needed if your objects must pers
☞ A class constructor may need to allocate an a

internal representation if the number of eleme

A single instance may be destroyed with a call to delete :
void h(void) {

String * s = g(); // g() constructs a new instance
delete s; // String::~String() is called her

}

An array of instances must be destroyed with a call to delet
String::~String (void)
{

delete [] _s; // NB: an array, so not just "de
}

✔ If you use new, make sure that there will be exactly one
✔ Destructors should deallocate all memory belonging to a

P2 — C++ 118.

U Managing Memory

 existing instance.
nt:

trcpy() ...

m for NULL at end
t fail!!!

y() in the global scope

struct copies of const Strings
, a new copy will be made

alue in C++
inter!
le (as is copy._s)
niversität Bern

Copy Constructors

It can be very convenient to construct a new object from an
A copy constructor takes an existing instance as an argume

#include <string.h> // declare s

String::String (const String& copy)
{

_s = new char[copy.strlen() + 1]; // leave roo
if (_s == 0) // new migh

throw(xmsg("can't allocate string"));
::strcpy(_s, copy._s); // want strcp

}

NB:
❑ If we do not declare copy as const, we cannot con
❑ If we declare copy as String rather than String&

before it is passed to the constructor!
☞ Functions arguments are always passed by v
☞ The “value” of a reference or a pointer is a po

❑ Within a single class, all private members are visib

P2 — C++ 119.

U Managing Memory

s their signatures are unique

ze from ordinary string

use global strlen()!

nst . This will allow us to

ilar to that of the copy
s code to maintain!
niversität Bern

Other Constructors

Class constructors may have arbitrary arguments, as long a
and unambiguous:

String::String (const char* s) // initiali
{

_s = new char[::strlen(s) + 1]; // must
if (_s == 0)

throw(xmsg("can't allocate string"));
::strcpy(_s, s);

}

Since the argument is not modified, we can declare it as co
construct String instances from constant char arrays.

The implementation of this constructor is uncomfortably sim
constructor. Factoring out the common parts will give us les

P2 — C++ 120.

U Managing Memory

 functions:
constructor

 constructor

eanup needed?

nsure class invariants!
niversität Bern

Refactoring Common Code
Helper functions are often implemented as private member

String::String (const String& copy) // copy
{

become (copy._s);
}

String::String (const char* s) // char*
{

become (s);
}

void
String::become (const char* s) throw(xmsg)
{

// Establishes, but does not assume class invariant:
// The caller must ensure that _s is currently unassigned,
// or that its previous value is deleted!
_s = new char[::strlen(s) + 1];
if (_s == 0)

throw(xmsg("can't allocate string")); // cl
::strcpy(_s, s);

}

✔ Clearly document whether helper functions assume or e

P2 — C++ 121.

U Managing Memory

an instance already exists:

an inconsistent state!
s value!
as before

y!

n be used in an expression
t won’t be copied!
r to the current object

hich is returned by reference

f self
niversität Bern

Assignment Operators

Assignment is different from the copy constructor because
String&
String::operator= (const String& copy)
{

if (this != ©) { // copying self would lead to
delete [] _s; // be sure to delete the previou
become(copy._s); // (re-)initialization is the same

}
return *this; // return a reference, not a cop

}

NB:
❑ Return String& rather than void so the result ca
❑ Return String& rather than String so the resul
❑ this is a pseudo-variable whose value is a pointe

☞ so *this is the value of the current object, w

✔ An assignment operator should always test for copying o

P2 — C++ 122.

U Managing Memory

tor for your class, the C++

: the values of each data
ther
y the pointers will be copied,

of String will share the same

 to be changed since they

will be left in an inconsistent

. In general it is not possible
quired, so you should always
s.
niversität Bern

Shallow and Deep Copying

If you do not define a copy constructor or assignment opera
compiler will automatically generate one for you.

☞ The default copy semantics is a shallow copy
member are copied from one instance to ano

☞ If some of the data members are pointers, onl
not the objects pointed to.

If we do not define our own assignment operator, instances
representation after an assignment!

☞ Modifying one String will also cause the other
now share the same representation

☞ Worse, if either object is destroyed, the other
state.

A deep copy causes data members to be recursively copied
for the compiler to tell whether deep or shallow copying is re
implement your own copying functions for non-trivial object

P2 — C++ 123.

U Managing Memory

er it is called rather than

piler, and may be ignored!

e header file:

to constant String objects
 be generated when it is

u can be sure you will get a

es for inlining.
niversität Bern

Inline Functions

An inline function is like a macro: its body is copied wherev
generating a run-time function call.

☞ An inline declaration is only a “hint” to the com

Inline class member functions can be declared directly in th

inline int strlen (void) const { return ::strlen(_s); }

Note that strlen() is declared as const, so it can be applied
☞ if it is not declared const, a compiler error will

applied to a constant String!

✔ Don’t bother declaring inline functions unless (or until) yo
real improvement in performance.

✔ Short, frequently called functions may be good candidat

P2 — C++ 124.

U Managing Memory

tring::String()

ar*)

tring(String&)

erator=

clares a function s()
niversität Bern

Using the Constructors

Default constructor:
String str; // initialized to empty string by S

Char array constructor:
String hi ("howdy!"); // initialized by String::String(ch

Copy constructor:
String hello (hi); // initialized from hi by String::S

Assignment operator:
str = hi; // copies value from hi using op

Warning:
String s (); // not a constructor call -- de

P2 — C++ 125.

U Managing Memory

ion, the C++ compiler looks

ar*) not defined!

 and there is a constructor
char* to a String

ello world” char array, used

e aware of its overhead in
niversität Bern

Implicit Conversion

When an argument of the “wrong” type is passed to a funct
for a constructor that will convert it to the “right” type:

str = "hello world"; // Oops -- String& String::operator=(ch

is implicitly converted to:

str = String("hello world");

since String::operator= expects a String argument
String::String(char*) that can be used to convert a

NB: ☞ A new String object will be created from the “h
to assign its value to str, and then destroyed.

✔ Don’t worry too much about unnecessary copying, but b
computationally intensive code!

P2 — C++ 126.

U Managing Memory

s on and off:

new String is constructed

ted if DEBUG is defined

eam

is inlined ...
niversität Bern

Conditional Compilation
We can use conditional compilation to turn debug message

In String.cpp:
// Comment out the following line to turn off debug msgs:
#define DEBUG
#include "Debug.h"

String::String (const String& copy)
{

debug("Made a new string = "); // let me know whenever a
debug(copy._s);
become(copy._s);

}

In Debug.h:
inline void debug (const char*); // function prototype

#ifdef DEBUG
inline void
debug (const char * msg) // debug messages are prin
{

cerr << "DEBUG> " << msg << endl; // print to standard error str
}
#else
inline void debug (const char * msg) { ; } // else an empty statement
#endif

P2 — C++ 127.

U Managing Memory

erloaded” provided their

 return the nth element

lain if index is invalid

 used as an lvalue in an

, we can declare:
niversität Bern

Operator Overloading

Not only assignment, but other useful operators can be “ov
signatures are unique:

char&
String::operator[] (const int n) throw(xmsg) // safely
{

if ((n<0) || (strlen()<=n)) { // comp
throw(xmsg("array index out of bounds"));

}
return _s[n];

}

NB: A reference to the nth element is returned, so it can be
assignment expression:

str[0] = 'X'; // will raise an exception if str has length 0

To prohibit String instances from being updated by indexing
const char& String::operator[] (const int n) { ... }

P2 — C++ 128.

U Managing Memory

i.e., such as ** for

rators like ! cannot be

 an implicit argument

^
>

!=
&=
>*

&
<=
&&
|=

new

|
>=
||
*=

delete
niversität Bern

Overloadable Operators

The following operators may be overloaded:

☞ It is not possible to introduce new operators (
exponentiation)

☞ Operator precedence is fixed by the language
☞ The arity may not be changed (i.e., unary ope

overloaded with a binary definition)
☞ Class member functions always take this as

Overloadable Operators

+
-

++
+=

<<=

-
!

--
-=

>>=

*
,

<<
/=
[]

/
=

>>
%=
()

%
<

==
^=
-> -

P2 — C++ 129.

U Managing Memory

tring as arguments, prints

 target is cout

tation

:

niversität Bern

Friends
Instead of:

cout << "str = ";
str.print();
cout << endl;

We would like to say:
cout << "str = " << str << endl;

So ... we need a binary function << that takes a cout and a S
the string, and returns the value of cout.

☞ Can’t be a member function of String since
☞ But must have access to String ’s implemen

Solution: declare this foreign function as a “friend” of String
class String
{

friend ostream& operator<<(ostream&, const String&);
public: // ...
private: // ...

};

P2 — C++ 130.

U Managing Memory

ostream:

s)

s

f the work
ts

ng
 str >> ...
niversität Bern

IOStream Operators

The binary operator<< is a member of neither String nor

ostream& operator<< (ostream& outStream, const String&
{

return outStream << s._s; // only friends can access _
}

Friend functions can often be avoided by:
1. providing a class member function that does most o
2. defining a binary function that reverses the argumen

inline
istream& operator>> (istream& inStream, String& s)
{

s.getline(inStream); // getline() updates the Stri
return inStream; // now we can write: cin >>

}

P2 — C++ 131.

U Managing Memory

t
ng from input stream

and buffer available
next newline
 need some more!
 must be NULL-terminated
 the current size
 double size

an up and return

 OK

ead

rn 0 (false)

bject of length newSize
niversität Bern

Dynamic Memory Managemen
int
String::getline (istream& in) // dynamically read stri
{

char c; // last char read
int curLen = 0, maxLen = strlen(); // current string length
while ((c = in.get()) != EOF) { // read to end of file or

if (curLen == maxLen) { // oops -- out of space:
_s[curLen] = '\0'; // sanity: current string
maxLen = (maxLen==0)?2:(maxLen*2); // well, let’s just double
grow(maxLen); // call helper function to

}
if (c == '\n') { // got end of line, so cle

_s[curLen] = '\0';
return 1; // return 1 (true) is all is

}
_s[curLen++] = c; // remember the char r

}
return 0; // hit end of file, so retu

}

void
String::grow (int newSize) throw(xmsg) // make a new String o
{

char * old = _s;
_s = new char[newSize];
if (_s == 0)

throw(xmsg("can't allocate string"));
::strcpy(_s, old);
delete [] old;

}

P2 — C++ 132.

U Managing Memory

default constructor
destructor
copy constructor

char* constructor

assignment

current length
safe indexing
concatenation (exercise)
read state from input stream

internal copy function
helper for getline()
niversität Bern

The Final String.h
#ifndef STRING_H
#define STRING_H

#include <iostream.h> // declare istream and ostream
#include <exception.h> // declare xmsg

class String
{

friend ostream& operator<<(ostream&, const String&);

public:
String(void); //
~String (void); //
String (const String& copy); //

String (const char*s); //

String& operator= (const String&); //

inline int strlen (void) const { return ::strlen(_s); } //
char& operator[] (const int n) throw (xmsg); //
String& operator+= (const String&) throw (xmsg); //
int getline (istream&); //

private:
char *_s;

void become (const char*) throw (xmsg); //
void grow (int) throw (xmsg); //

};

#endif // STRING_H

P2 — C++ 133.

U Managing Memory

”?
?

e[] ?
operator differ?

s are not necessary?
= member function?

rator+ function?
niversität Bern

Summary

You should know the answers to these questions:
❑ When should you use the “orthodox canonical form
❑ When are the different kinds of constructors called
❑ When do you need new and delete ?
❑ What is the difference between delete and delet

❑ How do the copy constructor and the assignment
❑ When should you use inline functions?
❑ How can you overload operators?
❑ What are friend declarations useful for?

Can you answer the following questions?
✎ Why would you overload operator()? new? delete?
✎ Is it always possible to design classes so that friend

✎ Can you define in-place concatenation as an operator+
✎ Can you define general concatenation as a global ope

P2 — C++ 134.

U Inheritance
niversität Bern

8. Inheritance

❑ Uses of inheritance
❑ Polymorphism and virtual member functions
❑ Default function arguments
❑ Public inheritance
❑ Base class initialization
❑ Function pointers

P2 — C++ 135.

U Inheritance

 interesting games that can
arkers.

sh Language]

 alternating and

n be used to play several
e-playing abstractions

Tic Tac Toe. We hope to use
common abstractions as an
niversität Bern

The Board Game

Tic Tac Toe is a pretty dull game, but there are many other
be played by two players with a board and two colours of m

Example: Go-moku [Random House Dictionary of the Engli

“A Japanese game played on a go board with players
attempting to be first to place five counters in a row.”

☞ We would like to implement a program that ca
different kinds of games using the same gam

To start with, our program will let us play either Go-moku or
our experience implementing Tic Tac Toe to factor out the
abstract BoardGame class ...

P2 — C++ 136.

U Inheritance

e larger board games:
niversität Bern

Interaction
We will have to change the display and interaction to handl
Welcome to The Board Game!
Would you like to play a game? (y/n): y
What game would you like to play?
Tic Tac Toe (t) or Go-moku (g)?: t

A B C
+---+---+---+

a | | | |
+---+---+---+

b | | | |
+---+---+---+

c | | | |
+---+---+---+

X plays: bB
A B C

+---+---+---+
a | | | |

+---+---+---+
b | | X | |

+---+---+---+
c | | | |

+---+---+---+
O plays: q
Are you sure you want to quit this game? (y/n): y
Would you like to play another game? (y/n): n
Goodbye!

P2 — C++ 137.

U Inheritance

TicTacToe

eate ()
eckWinner (row : int, col : int)

...
makeMove(row, col)
...
niversität Bern

Class Hierarchy
BoardGame

abstract

#rows : int
#cols : int
#turn : Player
#square : Player[rows][cols]

+create ()
+notover () : Boolean
+winner () : String
+turn () : char
+play (String)
+print ()
#makeMove (row : int, col : int)
#checkWinner (row : int, col : int)

Gomoku

+create ()
#checkWinner (row : int, col : int)

+cr
#ch

P2 — C++ 138.

U Inheritance

be used for (at least) three

-a kind of Board Game

ormly manipulated as

terface
rdGame representation and
niversität Bern

Uses of Inheritance

Inheritance in object-oriented programming languages can
different, but closely related purposes:

Conceptual hierarchy:
❑ Go-moku is-a kind of Board Game; Tic Tac Toe is

Polymorphism:
❑ Instances of Gomoku and TicTacToe can be unif

instances of BoardGame by a client program

Software reuse:
❑ Gomoku and TicTacToe reuse the BoardGame in
❑ Gomokuand TicTacToe reuse and extend the Boa

the implementations of its operations

P2 — C++ 139.

U Inheritance

 game a parameter.

moku or TicTacToe
niversität Bern

Polymorphism

playGame() becomes more generic by making the abstract

void
playGame (BoardGame& game) // Can be called with an instance of either Go
{

String move;

while (game.notover()) {
cout << game << game.turn() << " plays: ";
cin >> move;
try {

// Here we should check if the player wants to quit the game ...
game.play(move);

}
catch (xmsg & err) {

cout << "Error: " << err.why() << endl;
}

}
cout << game << game.winner() << " wins!!!" << endl << endl;

}

P2 — C++ 140.

U Inheritance

oying BoardGame instances:
ter

f BoardGame:

ete

 can be returned
niversität Bern

Polymorphic Destruction
The main program is now responsible for creating and destr
BoardGame * game; // abstract, so we can only declare a poin
game = makeGame(); // we get a pointer to some kind of game
playGame(*game); // we can play it
delete game; // and ask it to destroy itself

Only one function needs to know the concrete subclasses o
BoardGame* // Return type is abstract class
makeGame (void)
{

cout << "What game would you like to play?" << endl;
cout << "Tic Tac Toe (t) or Go-moku (g)?: ";
String reply;
cin >> reply;

switch (reply[0]) { // What happens if reply.strlen() == 0?
 case 't' :

return new TicTacToe; // We call new, so the client must call del
break;

 case 'g' :
return new Gomoku; // Either TicTacToe or Gomoku instances
break;

 default:
cout << "Hm ... I guess you want to play Tic Tac Toe ..." << endl;
return new TicTacToe;

}
}

P2 — C++ 141.

U Inheritance

ctor with default arguments
memory raises exception
irtual destructor

game is not over
 is "X", "O" or "Nobody"
 turn is it? ‘X’ ‘O’ or ‘ ’

t player marks a square
move raises exception

rint the current state

of the board
 nobody
 X
 rows*cols
ard; initially all nobody

ames of the players
ames of the players

t players makes a move
ion if invalid
if the last move wins

l) are in range for this board
niversität Bern

The BoardGame Interface
class BoardGame {

public :
BoardGame (int rows = 8 , int cols = 8) // Constru

throw(xmsg); // Out of
virtual ~ BoardGame (void) = 0 ; // Pure, v

int notover (void); // True if
const char * winner (void); // Winner
char turn (void); // Whose

void play (String move) // Curren
throw (xmsg); // Invalid

void print(void); // Pretty-p

protected :
enum Player { nobody = 0, X = 1, O = 2 };

const int rows, cols; // Shape
Player _winner; // Initially
Player _turn; // Initially
int squaresLeft; // Initially
Player ** square; // The bo

static const char player[3]; // Char n
static const char * winners [3]; // Char* n

virtual void makeMove (int row, int col) // Curren
throw (xmsg); // Except

virtual void checkWinner (int row, int col) = 0 ; // Check

int inRange (int row, int col); // (row,co
};

P2 — C++ 142.

U Inheritance

y, subclasses should be

uld be declared virtual :
solved to the correct
arget instance
e virtual

d pure virtual:
t, and cannot be instantiated
 defined!

as been declared virtual!
niversität Bern

Virtual Members

Data and methods that will be accessible to, or redefined b
declared as protected , not private .

Member functions that may be redefined by subclasses sho
☞ Calls to virtual functions will be dynamically re

implementation (or “method”) defined for the t
☞ Any function that might be redefined should b
☞ Constructors cannot be declared virtual
☞ Destructors should always be virtual

Member functions that must be redefined should be declare
☞ Classes with pure virtual functions are abstrac
☞ Pure virtual destructors must nevertheless be

✔ A subclass should only redefine a member function if it h

P2 — C++ 143.

U Inheritance

ts, default values are taken
oid f(int n = 3);

e without

?!
ions with different signatures
oid f(void);

f a function, not in its

ult initializers do not overlap
niversität Bern

Default Initializers

Default values may be specified for any function:
❑ When the function is called with missing argumen

☞ e.g., f() is the same as f(3) if we declare v

❑ Arguments with default initializers must follow thos
☞ if we declare void nonsense (int x = 1, int y);

then what does it mean to call nonsense(5)

❑ Default initializers effectively declare several funct
☞ i.e., we now have both void f(int); and v

❑ Default initializers must appear in the declaration o
definition
☞ i.e., in the header file, not the implementation

✔ Be sure that the implicit signatures of functions with defa
with those of other declared functions!

P2 — C++ 144.

U Inheritance

Boardgame constructor
ta members

ions to initialize members

tor/destructor is called

 an array of rows pointers
ously large board!

 points to cols Players

ialize, even if nobody = 0

or

ted to by square[r]
 pointers too!
niversität Bern

Arrays of arrays
BoardGame::BoardGame (int rs, int cs) throw(xmsg) : //

rows(rs), cols(cs), // Initialize constant da
_winner(nobody),
_turn(X),
squaresLeft(rs*cs) // NB: can use express

{
debug("calling BoardGame constructor"); // Notify when construc

square = new Player* [rows]; // square now points to
if (square == 0) // Might fail for a ridicul

throw(xmsg("Can't allocate board"));

for (int r=0; r<rows; r++) {
square[r] = new Player [cols]; // Each row pointer now
if (square[r] == 0)

throw(xmsg("Can't allocate board"));
for (int c=0; c<cols; c++)

square[r][c] = nobody; // Should explicitly init
}

}

BoardGame::~BoardGame (void) // BoardGame destruct
{

debug("calling BoardGame destructor");

for (int r=0; r<rows; r++)
delete [] square[r]; // Delete the array poin

delete [] square; // And delete the array
}

P2 — C++ 145.

U Inheritance

 be overridden:

left and there is no winner

er

nt player

red virtual ?
niversität Bern

Non-Virtual Functions

Do not declare base class functions virtual if they will never
int
BoardGame::notover (void) // Game isn’t over if squares are
{

return (squaresLeft > 0) && (_winner == nobody);
}

const char *
BoardGame::winner (void) // Return the char * name of the winn
{

return winners[_winner];
}

char
BoardGame::turn (void) // Return the char name of the curre
{

return player[_turn];
}

int
BoardGame::inRange (int row, int col)// (row,col) are valid on this board
{

return (0<=row) && (row<rows) && (0<=col) && (col<cols);
}

✎ Are any of these functions good candidates to be decla

P2 — C++ 146.

U Inheritance

edures

move (might throw exception)
e (if so, set _winner)
niversität Bern

Using Virtual Functions

Virtual functions are useful for parameterizing generic proc
/*

Current player makes a move by marking a square labelled aA-zZ.
An exception is raised if the square is out of range or if the move is invalid.

*/
void
BoardGame::play (String move) throw(xmsg)
{

if (!notover()) {
throw(xmsg("This game is already over!"));
return;

}

if (move.strlen() != 2) {
throw(xmsg("Improper response: please give coordinates [a-z][A-Z]"));

}

// Check if move is in range, and convert to index into square[][]
int row = move[0] - 'a';
int col = move[1] - 'A';
if (!inRange(row, col)) {

throw(xmsg("Row out of range"));
}

makeMove (row, col); // Try to make the requested
checkWinner (row, col); // Check if this is a winning mov

}

P2 — C++ 147.

U Inheritance

t already marked
he square

current player

st be defined, since they will
re destroyed.
niversität Bern

Defining Virtual Functions

Virtual functions can implement default behaviour:
/*

The default implementation assumes you can mark any empty square.
(This is all you need for Tic Tac Toe or Go-moku.)
Override this to implement a different logic for valid moves.

*/
void
BoardGame::makeMove (int row, int col)
{

if (square[row][col] == nobody) { // If square no
square[row][col] = _turn; // then mark t
squaresLeft--;
_turn = (_turn == X) ? O : X; // and switch

} else {
throw(xmsg("Square already occupied"));

}
}

Pure virtual functions are declared but not defined.
☞ Pure virtual destructors, on the other hand, mu

be called when instances of derived classes a

P2 — C++ 148.

U Inheritance

inheritance.
nherited features.
ual must be redefined
 overridden!
n constructors, destructors

 features of the base class.
of BoardGame will stay public

 default arguments
onstructor fails

r needed for derived class

er (instance variable)

irtual must be overridden

mber

o be reclassified accordingly
niversität Bern

Public Inheritance
A new class can be derived from an existing base class by
The derived class may introduce new features or override i

☞ If the derived class is to be concrete, pure virt
☞ Only virtual base member functions should be
☞ The derived class should always define its ow

and (if needed) the assignment operator.
Derived class functions may access all public and protected
class Gomoku : public BoardGame { // Public members

public :
Gomoku (int r=19, int c=19, int ws=5) // Constructor with

throw(xmsg); // Can fail if base c

virtual ~Gomoku (void); // Virtual destructo

protected :
const int winningScore; // New data memb

virtual void checkWinner (int row, int col);// Inherited pure v

void checkScore (int row, // New function me
int col,
void (* thisMove) (int&,int&),
void (* thatMove) (int&, int&));

};

Protected or private inheritance causes inherited features t

P2 — C++ 149.

U Inheritance

led by derived classes:

d with r rows and c columns

structors are called

atically called!

 derived members:
niversität Bern

Base Class Initialization
Abstract classes must have constructors since they are cal
Gomoku::Gomoku (int r, int c, int ws) throw(xmsg) :

BoardGame(r,c), // Base members are initialize
winningScore(ws)

{
debug("calling Gomoku constructor"); // Notify when base/derived con

}

Gomoku::~Gomoku (void)
{

debug("calling Gomoku destructor"); // Base destructor will be autom
}

Base members are constructed before and destructed after
Welcome to The Board Game!
Would you like to play a game? (y/n): y
What game would you like to play?
Tic Tac Toe (t) or Go-moku (g)?: g
DEBUG> calling BoardGame constructor
DEBUG> calling Gomoku constructor

A B C D E ...
+---+---+---+---+---

a | | | | | ...
+---+---+---+---+ ...

X plays: q
Are you sure you want to quit this game? (y/n): y
DEBUG> calling Gomoku destructor
DEBUG> calling BoardGame destructor

P2 — C++ 150.

U Inheritance

ning Go-moku score.
quare marked, so we search
in a row:

 search?
niversität Bern

Keeping Score
The Go board is too large to search it exhaustively for a win
Instead, we know a winning sequence must include the last s
in all directions starting from that square to see if we find 5

We must do the same thing in four directions.
How can we parameterize the algorithm by the directions to

P2 — C++ 151.

U Inheritance

mmon algorithm
 directions

function pointers

 the address of a function!
as: void *thatMove(int&, int&)!

rent location

 direction

e as me, so increase score
hisMove)(r,c)

ing square
osite direction

 row!
r is the winner.
niversität Bern

Using Function Pointers
void
Gomoku::checkWinner (int row, int col)
{

checkScore(row, col, right, left); // Factor out the co
checkScore(row, col, up, down); // Apply in the four
checkScore(row, col, northeast, southwest); // right, left etc. are
checkScore(row, col, northwest, southeast);

}

void
Gomoku::checkScore (int row, int col,

void (* thisMove) (int&, int&), // Value passed is
void (* thatMove) (int&, int&)) // Not the same

{
int score = 1, r=row, c=col; // Score is 1 at cur

thisMove(r,c); // Increment in this
while (inRange(r,c) && square[r][c] == square[row][col]) {

score++; // Neighbour is sam
thisMove(r,c); // NB: same as (*t

}
r = row; c = col; // Go back to start
thatMove(r,c); // Continue in opp
while (inRange(r,c) && square[r][c] == square[row][col]) {

score++;
thatMove(r,c);

}
if (score >= winningScore) // We found 5 in a

_winner = square[row][col]; // so current playe
}

P2 — C++ 152.

U Inheritance

milarly-named functions that

 in Gomoku.cpp

 they make checkWinner()
e and maintain!
niversität Bern

Using Static Functions

Static functions are private to a file and cannot clash with si
might be defined in other files:

static void right (int&, int&); // Declared and defined
static void left (int&, int&);
static void up (int&, int&);
static void down (int&, int&);
static void northeast (int&, int&);
static void southwest (int&, int&);
static void northwest (int&, int&);
static void southeast (int&, int&);

void right (int& row, int& col) { col++; } // Boring functions, but
void left (int& row, int& col) { col--; } // much easier to defin

void up (int& row, int& col) { row++; }
void down (int& row, int& col) { row--; }

void northeast (int& row, int& col) { row++; col++; }
void southwest (int& row, int& col) { row--; col--; }

void northwest (int& row, int& col) { row++; col--; }
void southeast (int& row, int& col) { row--; col++; }

P2 — C++ 153.

U Inheritance

 score of 3 instead of 5.
r:

omoku constructor:

ng score of 3

d after
oku constructors

uct!

rse order
niversität Bern

Implementation Inheritance
Tic Tac Toe is just Go-moku on a 3x3 board with a winning
TicTacToe.h must declare a new constructor and destructo
#ifndef TICTACTOE_H
#define TICTACTOE_H

#include "Gomoku.h"

class TicTacToe : public Gomoku {
public :

TicTacToe (void) throw(xmsg);
virtual ~TicTacToe (void);

} ;

#endif // TICTACTOE_H

TicTacToe.cpp just overrides the default initializers of the G
#include "TicTacToe.h"

TicTacToe::TicTacToe (void) throw(xmsg) :
Gomoku(3,3,3) // 3x3 board with winni

{
debug("calling TicTacToe constructor"); // NB: This will be calle

} // BoardGame and Gom

TicTacToe::~TicTacToe (void) // Nothing new to destr
{

debug("calling TicTacToe destructor"); // Destruction is in reve
}

P2 — C++ 154.

U Inheritance

de?
 to realize polymorphism?

r than public or private?
ine?
ctors?
cating code?

ator<< ?
? Why should we?
me? By Gomoku?
tor= for BoardGame?
ckScore() have been
niversität Bern

Summary

You should know the answers to these questions:
❑ How does polymorphism help in writing generic co
❑ How can you use inheritance and virtual functions
❑ What are pure virtual functions?
❑ When should features be declared protected rathe
❑ What features can and should a derived class def
❑ Why should destructors be virtual, but not constru
❑ When can you use function pointers to avoid dupli

Can you answer the following questions?
✎ Can you implement BoardGame::print() and oper

✎ How can we improve BoardGame’s protected interface
✎ Can you specify the invariants maintained by BoardGa

✎ Should we have defined a copy constructor and opera
✎ Should Gomoku::winningScore and Gomoku::che

declared private instead of protected ?

P2 — C++ 155.

U Tools

s

on instance
e

niversität Bern

9. Tools

❑ Makefiles: manage file dependencies
❑ Version Control: manage multiple versions of file
❑ Debuggers: explore state of running program
❑ Profilers: analyze call graph of an executi
❑ SNiFF+: browse and navigate source cod
❑ Purify: monitor memory accesses
❑ Other tools ...

Sources
❑ “UNIX in a Nutshell,” O’Reilly, 1994

P2 — C++ 156.

U Tools

 and executable programs)

ies and update commands
 set of files to regenerate.

t (prog).
priate commands are run
lib.h?
niversität Bern

Makefiles

Make is a tool for updating generated files (e.g., object files
when files they depend on are modified.

☞ Make uses a user-specified list of dependenc
defined in a makefile to compute the minimum

Makefile for prog

prog depends on two object files:

prog : prog.o mylib.o
CC prog.o mylib.o -o prog

prog.o and mylib.o each depend on a source file and a header file:

prog.o : prog.cpp mylib.h
CC -c prog.cpp

mylib.o : mylib.cpp mylib.h
CC -c mylib.cpp

Running ‘make’ with no arguments will create the first targe
If any of the dependent files have been modified, the appro
✎ What happens if mylib.cpp is modified? What about my

P2 — C++ 157.

U Tools

 file.
te them.
mand lines.

hem to be updated.

cts.
niversität Bern

Make Options

Usage:
make [options] [targets]

Options:
-f makefile Use makefile as the description
-n Print commands but don’t execu
-s Execute, but do not display com
-t Touch the target files, causing t

Run ‘man make’ for further options ...

✔ Always define makefiles, even for your most trivial proje

P2 — C++ 158.

U Tools

ite is newer.

se with the second.

dency line or a suffix rule.
”, echoing is suppressed

ferenced by either $(name)
niversität Bern

Description File Lines

Blank lines are ignored
Comment lines:

❑ Everything following a ‘#’ is ignored.
Dependency lines:

❑ The target should be regenerated if any prerequis
targets : prerequisites

NB: dependency lines must never start with a tab!
Suffix rules:

❑ All files with the first suffix are prerequisites for tho
. suffix . suffix :

Commands:
❑ Command lines start with a tab, following a depen

If the line starts with “-”, errors are ignored; with “@
Macros:

❑ Macros have the form name = string and are re
or ${name}

P2 — C++ 159.

U Tools

an the target.

er than the target.

et has no rules.
ption).
ds (same as -s).
 as targets in suffix rules.
niversität Bern

Macros and Special Targets

Internal Macros
❑ $@ The current target.
❑ $? The list of prerequisites that are newer th

Can’t be used in suffix rules.
❑ $< The name of the current prerequisite new

Only in suffix rules.
❑ $* Like $<, but with the suffix removed.

Only in suffix rules.

Special Target Names:
❑ .DEFAULT: What to make if the request targ
❑ .IGNORE: Ignore error codes (same as -i o
❑ .SILENT: Execute but don’t echo comman
❑ .SUFFIXES: Recognize the following suffixes

P2 — C++ 160.

U Tools

h

niversität Bern

Gomoku Makefile
Make macros:

GMKO = gmkMain.o BoardGame.o Gomoku.o TicTacToe.o String.o

CXX = CC
LFLAGS = -L/opt/SUNWspro/SC3.0.1/lib
CFLAGS = -O

Suffix rules:

.SUFFIXES: .cpp .C

.cpp.o:
$(CXX) $(CFLAGS) -c $<

.C.o:
$(CXX) $(CFLAGS) -c $<

all : gomoku

gomoku : ${GMKO}
$(CXX) ${GMKO} ${LFLAGS} -o $@

clean :
rm -rf *.o

gmkMain.o : TicTacToe.h Gomoku.h BoardGame.h String.h Debug.
BoardGame.o : BoardGame.h String.h Debug.h
Gomoku.o : Gomoku.h BoardGame.h String.h Debug.h
TicTacToe.o : TicTacToe.h Gomoku.h BoardGame.h String.h Debug.h
String.o : String.h

P2 — C++ 161.

U Tools

 a different compiler:

d and updated by running a

kefile

g source and header files
niversität Bern

Makefile for g++

A properly parameterized Makefile can easily be adapted to

Compile .cxx files with g++:
CXX = g++
LFLAGS = -lstdc++
CFLAGS = -fhandle-exceptions -O

Makedepend
Dependencies between files can be automatically generate
tools like makedepend

❑ Dependencies must be listed at the end of the ma
❑ Intermediate files are generated by suffix rules
❑ Dependencies are generated by recursively parsin

P2 — C++ 162.

U Tools

s:

ultiple “deltas”)

that is non-trivial, developed

r UNIX.
niversität Bern

Version Control

A version control system keeps track of multiple file revision
❑ check-in and check-out of files
❑ logging changes (who, where, when)
❑ merge and comparison of versions
❑ retrieval of arbitrary versions
❑ “freezing” of versions as releases
❑ reduces storage space (manages sources files + m

✔ You should use a version control system for any project
by a team, or delivered to multiple clients

SCCS and RCS are two popular version control systems fo

P2 — C++ 163.

U Tools

CS files
 RCS file

les into a third
isions
CS files into a third

 not been changed
nfiguration
niversität Bern

RCS

Overview of RCS commands:
❑ ci Check in revisions
❑ co Check out revisions
❑ rcs Set up or change attributes of R
❑ ident Extract keyword values from an
❑ rlog Display a summary of revisions
❑ merge Incorporate changes from two fi
❑ rcsdiff Report differences between rev
❑ rcsmerge Incorporate changes from two R
❑ rcsclean Remove working files that have
❑ rcsfreeze Label the files that make up a co

P2 — C++ 164.

U Tools

reated in the RCS directory:

iling, etc.)

 ci/co)

 latest revision
niversität Bern

RCS Usage

When file is checked in, and RCS file called file ,v is c
mkdir RCS # create subdirectory for RCS files

ci file # put file under control of RCS

Working copies must be checked out and checked in.
co -l file # check out (and lock) file for editing

ci file # check in a modified file

co file # check out a read-only copy (i.e., for comp

ci -u file # check in file, but leave a read-only copy (=

rcsdiff file # report changes between working copy and

P2 — C++ 165.

U Tools

:
me)

d during check-in)

file
niversität Bern

Additional RCS Features

Keyword substitution
❑ Various keyword variables are maintained by RCS

$Author$ who checked in revision (userna
$Date$ date and time of check-in
Log description of revision (prompte
and several others ...

Revision numbering:
❑ Usually each revision is numbered release.level
❑ Level is incremented upon each check-in
❑ A new release is created explicitly: ci -r2

P2 — C++ 166.

U Tools

f a running program:

am

re file”)

pile with the -g option

d with programs compiled
 dbx for CC; gdb for g++)

gram is not working.
niversität Bern

Debuggers

A debugger is a tool that allows you to examine the state o
❑ step through the program instruction by instruction
❑ view the source code of the executing program
❑ execute up to a specified breakpoint
❑ set and unset breakpoints anywhere in your progr
❑ display values of variables in various formats
❑ manually set the values of variables
❑ examine the state of an aborted program (in a “co

Various debuggers are available for UNIX: gdb, sdb, dbx
☞ To use a debugger effectively, you must com

NB: debuggers are object code specific, so can only be use
with compilers generating compatible object files. (sdb and

✔ Use a debugger whenever you are unsure why your pro

P2 — C++ 167.

U Tools

lay(this = ???, move = CLASS)
at 0x16180 (line ~81)
me.cpp"

e = CLASS) (optimized),
line ~67) in "gmkMain.cpp"

ed), at 0x154f8 (line ~19)
.cpp"

C
-+

|
-+

|
-+

|
-+

ant to quit this game? (y/n): y
 another game? (y/n): n

 exit code is 0
niversität Bern

Using dbx
oscar@pogo 1: dbx gomoku
Reading symbolic information for gomoku

...
(dbx) stop inmethod checkWinner
(2) stop inmember checkWinner
(dbx) run
Running: gomoku
(process id 27536)
Welcome to The Board Game!
Would you like to play a game? (y/n): y
What game would you like to play?
Tic Tac Toe (t) or Go-moku (g)?: t

A B C
+---+---+---+

a | | | |
+---+---+---+

b | | | |
+---+---+---+

c | | | |
+---+---+---+

X plays: aA
stopped in Gomoku::checkWinner (optimized)

at line 44 in file "Gomoku.cpp"
(dbx) where

=>[1] Gomoku::checkWinner(this = 0x3d0c8,
row = 0, col = 0) (optimized),
at 0x16a20 (line ~44) in "Gomoku.cpp"

[2] BoardGame::p
(optimized),
in "BoardGa

[3] playGame(gam
at 0x15888 (

[4] main() (optimiz
in "gmkMain

(dbx) cont

A B
+---+---+--

a | X | |
+---+---+--

b | | |
+---+---+--

c | | |
+---+---+--

O plays: q
Are you sure you w
Would you like to play
Goodbye!

execution completed,
(dbx) exit

P2 — C++ 168.

U Tools

r

niversität Bern

GUI Debuggers — CodeWarrio

P2 — C++ 169.

U Tools

of an executed program
(e.g., -pg) that will cause
un
n.out)
 profile data and the object

 (e.g., by decreasing total
me, by symbol address ...)

spending most of its time.
rofiling it first!
een “exercised”.
niversität Bern

Profilers

A profiler can be used to display the call graph profile data
❑ the program must be compiled with a special flag

profile data to be generated when the program is r
❑ profile data is generated in a special file (e.g., gmo
❑ the profiler (e.g., gprof, lprof or prof) is run with the

file (containing the symbol table) as arguments
❑ the call graph can be displayed in various formats

time, by decreasing number of calls, by symbol na

✔ Use a profiler to gain insight into where your program is
☞ Never try to “optimize” your program without p
☞ Use a profiler to check which functions have b

P2 — C++ 170.

U Tools

 int) [58]
 int, void (*)
nt&, int&)) [59]
t) [60]
) [61]

63]

ardGame&) [66]
7]

t, int) [74]
) [75]
6]
int, int) [77]
niversität Bern

Using gprof
Profilers can generate statistics in a variety of formats ...
granularity: each sample hit covers 2 byte(s) for 50.00% of 0.02 seconds

%cumulative self self total
time seconds seconds calls ms/call ms/call name
50.0 0.01 0.01 filebuf::overflow(int) [1]
50.0 0.02 0.01 ostream::tellp(void) [2]

0.0 0.02 0.00 57 0.00 0.00 BoardGame::inRange(int,
0.0 0.02 0.00 24 0.00 0.00 Gomoku::checkScore(int,

(int&, int&), void (*)(i
0.0 0.02 0.00 20 0.00 0.00 String::operator [](const in
0.0 0.02 0.00 13 0.00 0.00 BoardGame::notover(void
0.0 0.02 0.00 9 0.00 0.00 String::grow(int) [62]
0.0 0.02 0.00 9 0.00 0.00 String::getline(istream&) [
0.0 0.02 0.00 8 0.00 0.00 down(int&, int&) [64]
0.0 0.02 0.00 7 0.00 0.00 up(int&, int&) [65]
0.0 0.02 0.00 7 0.00 0.00 operator <<(ostream&, Bo
0.0 0.02 0.00 7 0.00 0.00 BoardGame::print(void) [6
0.0 0.02 0.00 6 0.00 0.00 left(int&, int&) [68]
0.0 0.02 0.00 6 0.00 0.00 right(int&, int&) [69]
0.0 0.02 0.00 6 0.00 0.00 northeast(int&, int&) [70]
0.0 0.02 0.00 6 0.00 0.00 northwest(int&, int&) [71]
0.0 0.02 0.00 6 0.00 0.00 southeast(int&, int&) [72]
0.0 0.02 0.00 6 0.00 0.00 southwest(int&, int&) [73]
0.0 0.02 0.00 6 0.00 0.00 Gomoku::checkWinner(in
0.0 0.02 0.00 6 0.00 0.00 BoardGame::play(String&
0.0 0.02 0.00 6 0.00 0.00 BoardGame::turn(void) [7
0.0 0.02 0.00 6 0.00 0.00 BoardGame::makeMove(

...

P2 — C++ 171.

U Tools

:

ne is available!
niversität Bern

SNiFF+

SNiFF+ is an integrated environment for C++ development
❑ project management
❑ hierarchy browser
❑ class browser
❑ symbol browser
❑ cross referencer
❑ source code editor (using emacs, etc.)
❑ version control with RCS
❑ compiler error parsing (g++)
❑ integrated make facility

✔ Always use an integrated programming environment if o

P2 — C++ 172.

U Tools
niversität Bern

Using SNiFF+

P2 — C++ 173.

U Tools
niversität Bern

SNiFF+ Source Editor

P2 — C++ 174.

U Tools
niversität Bern

SNiFF+ Hierarchy Browser

P2 — C++ 175.

U Tools
niversität Bern

SNiFF+ Class Browser

P2 — C++ 176.

U Tools

 memory leaks

d error-checking

ill open with error messages
cted

t does without purify, except
 40% more memory

programs to catch errors in

ry accesses!
niversität Bern

Purify

Purify is tool to help detect run-time memory corruption and
❑ Add purify to the link line in your Makefile, e.g.:

gomoku : ${GMKO}
purify CC ${GMKO} ${LFLAGS} -o $@

Purify will modify the object code at link time to ad
instructions.

❑ Run your program as usual — a special window w
displayed as various abnormal conditions are dete

❑ Your program will (almost always) run exactly as i
it will be about 3 to 5 times slower, and take about

✔ Use purify (or an equivalent utility) while developing C++
managing memory.

Remember, the most common C++ errors are invalid memo

Purify is a product of Pure Software Inc.

P2 — C++ 177.

U Tools
niversität Bern

Using Purify

P2 — C++ 178.

U Tools

!
ssible errors in C programs

al data from object files
erate/apply deltas
lysers and parsers from

cification files
 editing scripts/programs

mpress files
niversität Bern

Other tools

Be familiar with the programming tools in your environment
❑ lint : detect bugs, portability problems and other po
❑ strip : remove symbol table and other non-essenti
❑ diff and patch : compare versions of files, and gen
❑ lex and yacc [flex and bison]: generate lexical ana

regular expression and context-free grammar spe
❑ awk , sed and perl : process text files according to
❑ tar : stores files and directories as a “tape archive”
❑ compress and uncompress [gzip and gunzip]: co

P2 — C++ 179.

U Tools

upport?
?

ory accesses?

if they are not out-of-date?
 new “release”?
rint” statements to your
niversität Bern

Summary

You should know the answers to these questions:
❑ How are makefiles specified?
❑ What functionality does a version control system s
❑ What are breakpoints? Where should you set them
❑ When should you use a profiler?
❑ How can you catch memory leaks and invalid mem

Can you answer the following questions?
✎ How can you force make to recompile programs even
✎ When should you specify a version of your project as a
✎ When should you use a debugger instead of adding “p

program?
✎ When should you “strip” an executable program?

P2 — C++ 180.

U An Introduction to Java

tions ...

orial , The Java Series,

nguage spec, etc):
niversität Bern

10. An Introduction to Java

Overview
❑ Java vs. C++
❑ Java language features: packages, classes, excep
❑ The Java API
❑ Applets

Texts:
❑ David Flanagan, Java in a Nutshell, O’Reilly, 1996
❑ Mary Campione and Kathy Walrath, The Java Tut

Addison-Wesley, 1996
On-line resources:

❑ Locally installed Java resources (on-line tutorial, la
http://www.iam.unibe.ch/~scg/Resources/Java/

P2 — C++ 181.

U An Introduction to Java

+, Smalltalk ...):
nguage

, concurrency, network
tract machine

ects

d by users
niversität Bern

Java

Language design influenced by existing OO languages (C+
❑ Strongly-typed, concurrent, pure object-oriented la
❑ Syntax, type model influenced by C++
❑ Single-inheritance but multiple subtyping
❑ Garbage collection

Innovation in support for network applications:
❑ Standard API for language features, basic GUI, IO
❑ Compiled to bytecode; interpreted by portable abs
❑ Support for native methods
❑ Classes can be dynamically loaded over network
❑ Security model protects clients from malicious obj

Java applications do not have to be installed and maintaine

P2 — C++ 182.

U An Introduction to Java

d Extensions

t)

)

niversität Bern

Java and C++ — Similarities an

Java resembles C++ only superficially:

Similarities:
❑ primitive data types (in Java, platform independen
❑ syntax: control structures, exceptions ...
❑ classes, visibility declarations (public , private

❑ multiple constructors, this , new

❑ types, type casting

Extensions:
❑ garbage collection
❑ standard classes (Strings, collections ...)
❑ packages
❑ standard abstract machine
❑ final classes

P2 — C++ 183.

U An Introduction to Java

s

riented language that

 variables
 methods

ng
r can be called
d automatic inlining
interfaces

..
niversität Bern

Java and C++ — Simplification

Whereas C++ is a hybrid language, Java is a pure object-o
eliminates many of the complex features of C++:

Simplifications:
❑ no pointers — just references
❑ no functions — can declare static methods
❑ no global variables — can declare public static

❑ no destructors — garbage collection and finalize

❑ no linking — dynamic class loading
❑ no header files — can define interface

❑ no operator overloading — only method overloadi
❑ no member initialization lists — super constructo
❑ no preprocessor — static final constants an
❑ no multiple inheritance — can implement multiple
❑ no structs, unions, enums — typically not needed
❑ no templates — but generics will likely be added .

P2 — C++ 184.

U An Introduction to Java

rgv[]) {

bal functions

st have a main
in some class

 is a standard class

able a public method
niversität Bern

The “Hello World” Program

// My first Java program!

public class helloWorld {
public static void main (String a

System.out.println(“Hello World”);
}

}

helloWorld objects can be instantiated by any client

only classes can be declared (pure OO)

class methods behave like glo

Every program mu
method declared

String

a class in the package java.lang a public class vari

P2 — C++ 185.

U An Introduction to Java

ckages
ain() method

e package name:

 bytecode files (e.g.,

ponding to the package

 must be given:

ted by default

:

niversität Bern

Packages

A Java program is a collection of classes organized into pa
❑ At least one class must have a public static void m

❑ The first statement of a source file may declare th
package games.tetris;

❑ Source files (e.g., helloWorld.java) are compiled to
helloWorld.class), one for each target class

❑ Class files must be stored in subdirectories corres
hierarchy

❑ When using classes, either the full package name
java.lang.System.out.println(“Hello World”);

or classes from the package may be imported:
import java.lang.*; // this package is always impor

❑ Class names are usually capitalized for readability
a.b.c.d.e.f(); // which is the name of the class?!

P2 — C++ 186.

U An Introduction to Java

e those of C/C++:
niversität Bern

Java Basics
Java’s primitive data types and control statements resembl

Primitive Data Types:
boolean byte char double float int long short void

Literals:
false null true

Control flow:
if (boolean) { Statements } else { Statements }

for (boolean) { Statements }

while (boolean) { Statements }

do { Statements } while (boolean)

switch (variable) {
case label : Statements;

break; ...
default : ... break;

}

P2 — C++ 187.

U An Introduction to Java

ven subclasses)

rd; y = yCoord; }
n access private data here

); }

ce, not by value:

B: a & b coerced!)

odified
niversität Bern

Classes and Objects
The encapsulation boundary is a class (not an object):

public class Point {
private double x, y; // not accessible to other classes (e

// constructors:
public Point (double xCoord, double yCoord) { x = xCoo
public Point (Point p) { x = p.x; y = p.y; } // ca

// public methods:
public double getX () { return x; }
public void setX (double xCoord){ x = xCoord; }
public double getY () { return y; }
public void setY (double yCoord){ y = yCoord; }
public double distance () { return Math.sqrt(x*x + y*y

}

In pure OOLs, (non-primitive) objects are passed by referen
int a = 3, b = 4; // a and b are primitive objects
Point p1 = new Point(a,b);// p1 is a reference to an object (N

int c = a; // c gets value of a
c = 8; // c gets new value; a is unchanged

Point p2 = p1; // p2 refers to p1
Point p3 = new Point(p1); // p3 is a copy of p1
p2.setX(c); // The object p1 and p2 refer to is m

P2 — C++ 188.

U An Introduction to Java

ed to are automatically

 still in use

 method
ckets etc.)
otten”
the value null to a variable
igned variables)
niversität Bern

Garbage Collection

In Java (as in Smalltalk and Eiffel), objects no longer referr
garbage-collected:

❑ no need to explicitly delete objects
❑ no destructors need to be defined
❑ no need to write reference-counting code
❑ no danger of accidentally deleting objects that are

You can still exercise extra control:

❑ Cleanup activities can be specified in a finalize

☞ useful for freeing external resources (files, so
❑ Objects you no longer need can be explicitly “forg

☞ you can explicitly forget objects by assigning
(this is the initial value of declared, but unass

P2 — C++ 189.

U An Introduction to Java

nd possibly overriding some

radius) {

 c as Point

r; }

f overridden.
niversität Bern

Inheritance

A subclass extends a superclass, inheriting all its features, a
or adding its own:

public class Circle extends Point {
private double r;

public Circle (double xCoord, double yCoord, double
super(xCoord, yCoord); // call Point constructor
r = radius;

}

public Circle (Circle c) {
super(c); // call Point constructor with
r = c.r;

}

public double getR () { return r; }
public void setR (double radius){ r = radius; }
public double distance () { return super.distance() -

}

Public superclass features can always be accessed, even i

P2 — C++ 190.

U An Introduction to Java

ynamic binding — the actual
nds on the dynamic type of

lt.

lly bound

ically bound
niversität Bern

Dynamic Binding

One of the key features of object-oriented programming is d
method that will be executed in response to a request depe
target, not the static type of the reference:

Point p = new Circle(5, 12, 4);

System.out.println("p.distance() = " + p.distance());

yields:
p.distance() = 9

In pure OOLs, all methods are dynamically bound by defau
Static binding is the exception:

❑ static methods belong to classes, so are statica
❑ private methods have purely local scope
❑ final methods cannot be overridden, so are stat

P2 — C++ 191.

U An Introduction to Java

 upcast ok
 can’t downcast

sts and casts:

cast ok

 at run-time:

es run-time exception
niversität Bern

Downcasting

Dynamic binding can cause type information to be lost:

Point p = new Circle(5, 12, 4); // p refers to a Circle —
Circle c1 = p; // compile-time error! —

Type information can be recovered at run-time by explicit te

if (p instanceof Circle) { // run-time test
c1 = (Circle) p; // explicit run-time down

}

An attempt to cast to an invalid type will raise an exception

p = new Point(3,4);
c1 = (Circle) p; // invalid downcast rais

P2 — C++ 192.

U An Introduction to Java

:

embers of the same package

package only
al access
niversität Bern

Feature Visibility

Features can be declared with different degrees of visibility

❑ private — accessible only within the class body

❑ public — accessible everywhere

❑ protected — accessible to subclasses and to m
☞ allows access to cooperating classes

❑ default (no modifier) — accessible throughout the
☞ allows package access but prevents all extern

P2 — C++ 193.

U An Introduction to Java

other important attributes of

 also be declared abstract
stead of body

den by subclass

instances; implicitly final

nguage, usually C
niversität Bern

Modifiers

In addition to feature visibility, modifiers can specify several
classes, methods and variables:

❑ abstract — unimplemented method; class must
☞ method signature is followed by semi-colon in

❑ final — class/method/variable cannot be overrid

❑ static — method/variable belongs to class, not

❑ native — method implemented in some other la

P2 — C++ 194.

U An Introduction to Java

t catch them:

t this point

;

);

Exception {

tringException {
niversität Bern

Exceptions

A class must declare which exceptions it throws , or it mus
public class TryException {

public static void main(String args[]) {
try {

alwaysThrow(0); // NB: we never get pas
alwaysThrow("hello");

} catch (NumException e) {
System.out.println("Got NumException: " + e.getMessage())

} catch (StringException e) {
System.out.println("Got StringException: " + e.getMessage()

} finally {
System.out.println("Cleaning up");

}
}

public static void alwaysThrow(int arg) throws Num
throw new NumException("don't call me with an int arg!");

}

public static void alwaysThrow(String arg) throws S
throw new StringException("don't call me with a String arg!");

}
}

P2 — C++ 195.

U An Introduction to Java

 Exception
niversität Bern

Defining Exceptions

You can define your own exception classes that inherit from
Typically, you will only define constructors:

// Most exception classes look like this:
public class NumException extends Exception {

public NumException() { super(); }
public NumException(String s) { super(s); }

}

public class StringException extends Exception {
public StringException() { super(); }
public StringException(String s) { super(s); }

}

P2 — C++ 196.

U An Introduction to Java

ignificant pragmatic

ircle?

edPoint

edPoint
ame
ame
niversität Bern

Multiple Inheritance
Although conceptually elegant, multiple inheritance poses s
problems for language designers:

Which version of distance() should be inherited by NamedC

Circle

-r : double

+Circle
+getR
+setR
+distance

Point

- x, y

+Point
+setX
+getX
+setY
+getY
+distance

Nam

- n

+Nam
+setN
+getN

NamedCircle

+NamedCircle

P2 — C++ 197.

U An Introduction to Java

tion:

plement multiple interfaces:

e
ble radius, String name) {
ctor
dObject instance

/ forwarding

ss:
niversität Bern

Interfaces
An interface declares methods but provides no implementa

interface Named {
public void setName (String name);
public String getName ();

}

A Java class can extend at most one superclass, but may im
public class NamedCircle extends Circle implements Named {

private NamedObject n; // object composition vs. inheritanc
public NamedCircle (double xCoord, double yCoord, dou

super(xCoord, yCoord, radius); // call Circle constru
n = new NamedObject(name); // compose a Name

}
public void setName (String name) { n.setName(name); } /
public String getName () { return n.getName(); }

}

Reusable behaviour can be encapsulated as a separate cla
public class NamedObject implements Named {

private String n;
public NamedObject (String name) { n = name; }
public void setName (String name) { n = name; }
public String getName () { return n; }

}

P2 — C++ 198.

U An Introduction to Java

pes
ument types

:

ss!
niversität Bern

Overriding and Overloading
Overridden methods have the same name and argument ty
Overloaded methods have the same name but different arg

public class A {
public void f (float x) { System.out.println("A.f(float)"); }
public void g (float x) { System.out.println("A.g(float)"); }

}

public class B extends A {
public void f (float x) { System.out.println("B.f(float)"); }
public void g (int x) { System.out.println("B.g(int)"); }

}

Overloaded methods are disambiguated by their arguments
B b = new B(); // both dynamic and static type B
A a = b; // static type is A but dynamic type is B

b.f(3.14f); // B.f(float) -- overridden
b.f(3); // B.f(float) -- 3 is converted to 3.0
b.g(3.14f); // A.g(float) -- not overridden
b.g(3); // B.g(int) -- overloaded

a.f(3.14f); // B.f(float) -- overridden
a.f(3); // B.f(float) -- 3 is converted to 3.0
a.g(3.14f); // A.g(float) -- not overridden
a.g(3); // A.g(float) -- g(int) does not exist in SuperCla

P2 — C++ 199.

U An Introduction to Java
niversität Bern

Arrays
Arrays are polymorphic objects:

❑ Can declare arrays of any type
int[] array1;

MyObject s[];

❑ Can build array of arrays
int a[][] = new int[10][3];

a.length --> 10

a[0].length --> 3

Creating arrays
❑ An empty array:

int list[] = new int [50];

❑ Pre-initialized:
String names[] = { “Marc”, “Tom”, “Pete” };

❑ Cannot create static compile time arrays
int nogood[20]; // compile time error

P2 — C++ 200.

U An Introduction to Java

tainers:

returns an Object
niversität Bern

Arrays and Generics

Arrays are the only polymorphic containers in Java:

Point [] pa = new Point[3];
pa[0] = new Point(3,4);
pa[1] = new Point(5,12);
Point p = pa[0]; // ok -- pa is an array of Points

It is not possible to program other kinds of polymorphic con

Stack s = new Stack(); // defined in package java.util
s.push(pa[0]);
s.push(pa[1]);
// p = s.pop(); // compile-time error -- s.pop()
p = (Point) s.pop(); // ok -- run-time cast

P2 — C++ 201.

U An Introduction to Java

erics, strings, objects,
e only package that is

pplet class.

ams to read data from

generic data
, etc.

ockets, UDP sockets,
niversität Bern

The Java API
java.lang. contains essential Java classes, including num

compiler, runtime, security, and threads. This is th
automatically imported into every Java program.

java.awt. Abstract Windowing Toolkit

java.applet. enables the creation of applets through the A

java.io. provides classes to manage input and output stre
and write data to files, strings, and other sources.

java.util. contains miscellaneous utility classes, including
structures, bit sets, time, date, string manipulation

java.net. provides network support, including URLs, TCP s
IP addresses, and a binary-to-text converter.

And many others ...

P2 — C++ 202.

U An Introduction to Java

Server

pplet Class

downloaded from an
d by an HTTP client.
et will be init ialized

ke (restricted) use of
or other Server
ynamically.
ded, only classes!
niversität Bern

Applets
Client

API Classes

AApplet
Instance

other classes ...

Java Applet classes can be
HTTP server and instantiate
When instantiated, the Appl
and start ed by client.
The Applet instance may ma
either standard API classes
classes to be downloaded d
NB: objects are not downloa

P2 — C++ 203.

U An Introduction to Java

00 height=200>
niversität Bern

The Hello World Applet

The simplest Applet:
// From Java in a Nutshell, by David Flanagan.

import java.applet.*; // To extended Applet
import java.awt.*; // Abstract windowing toolkit

public class HelloApplet extends Applet {
// This method displays the applet.
// The Graphics class is how you do all drawing in Java.
public void paint(Graphics g) {

g.drawString("Hello World", 25, 50);
}

} // NB: there is no main() method!

HTML applet inclusion:
<title>Hello Applet</title>
<hr>
<applet codebase="HelloApplet.out" code="HelloApplet.class" width=2
</applet>
<hr>
The source.

P2 — C++ 204.

U An Introduction to Java

ke use of library functionality

ric and application code.
ion architecture:

.”

Library classes

User classes
niversität Bern

Frameworks vs. Libraries

In traditional application architectures, user applications ma
in the form of procedures or classes:

A framework reverses the usual relationship between gene
Frameworks provide both generic functionality and applicat

Essentially, a framework says: “Don’t call me — I’ll call you

User Application

main()

Framework Application

main()

P2 — C++ 205.

U An Introduction to Java

mework:

00);

width, int height) {
h the specified title.

 window.

 applet.
niversität Bern

Standalone Applets
An Applet is just a user object instantiated by the Applet fra

// Adapted from Java in a Nutshell, by David Flanagan.
// A simple example of directly instantiating an Applet.

import java.applet.*;
import java.awt.*;

public class HelloStandalone {
public static void main(String args[]) {

Applet applet = new HelloApplet();
Frame frame = new AppletFrame("Hello Applet", applet, 300, 3

}
}

class AppletFrame extends Frame {
public AppletFrame(String title, Applet applet, int

super(title); // Create the Frame wit

this.add("Center", applet); // Add the applet to the
this.resize(width, height); // Set the window size.
this.show(); // Pop it up.

applet.init(); // Initialize and start the
applet.start();

}
}

P2 — C++ 206.

U An Introduction to Java

callback methods that will be

ing Frame and Applet) and
lement.

Callback methods

... are handled by
application objects
niversität Bern

Events

Instead of actively checking for GUI events, you can define
invoked when your GUI objects receive events:

Component is the superclass of all GUI components (includ
defines all the callback methods that components must imp

AWT Framework

Hardware events ...
(mouseUp,
mouseDown, ...)

P2 — C++ 207.

U An Introduction to Java

ging the mouse:
del!

et the background colour
reate a Button

dd it to the Applet
niversität Bern

The Scribble Applet

Scribble is a simple Applet that supports drawing by drag
NB: This example uses the (deprecated) Java 1.0 event mo

// Adapted from Java in a Nutshell, by David Flanagan.

import java.applet.*;
import java.awt.*;

public class Scribble extends Applet {
private int last_x = 0;
private int last_y = 0;
private Button clear_button;

// Called to initialize the applet.
public void init() {

this.setBackground(Color.white); // S
clear_button = new Button("Clear"); // C
clear_button.setForeground(Color.black);
clear_button.setBackground(Color.lightGray);
this.add(clear_button); // A

}

P2 — C++ 208.

U An Introduction to Java

turn true if event handled
niversität Bern

Responding to Events
// Called when the user clicks the mouse to start a scribble
public boolean mouseDown(Event e, int x, int y) {

last_x = x; last_y = y; return true; // Always re
}

// Called when the user scribbles with the mouse button down
public boolean mouseDrag (Event e, int x, int y) {

Graphics g = this.getGraphics();
g.setColor(Color.black); g.drawLine(last_x, last_y, x, y);
last_x = x; last_y = y; return true;

}

// Called when the user clicks the button
public boolean action (Event event, Object arg) {

// If the Clear button was clicked on, handle it.
if (event.target == clear_button) {

Graphics g = this.getGraphics();
Rectangle r = this.bounds();
g.setColor(this.getBackground());
g.fillRect(r.x, r.y, r.width, r.height);
return true;

} // Otherwise, let the superclass handle it.
else return super.action(event, arg) ;

}
}

P2 — C++ 209.

U An Introduction to Java
niversität Bern

Running the Scribble Applet

P2 — C++ 210.

U An Introduction to Java

Java and C++?

constructor?
ds not dynamically bound?
rloading?

 variable of another object?

abstract class?
niversität Bern

Summary

You should know the answers to these questions:
❑ What are the similarities and differences between
❑ What role do packages play in Java?
❑ Why should a subclass constructor call its super
❑ What is dynamic binding? Why are static metho
❑ What is the difference between overriding and ove
❑ Why doesn’t an Applet need a main() method?
❑ What are events and callbacks?

Can you answer the following questions?
✎ How can an object gain access to a private instance
✎ Why does Java (need to) support explicit type-casting?
✎ What is the difference between an interface and an

P2 — C++ 211.

U Design Rules

2.
niversität Bern

11. Design Rules

❑ Using new and delete

❑ Initialization lists vs. assignment in constructors
❑ Virtual destructors
❑ Assignment and inheritance
❑ Class members, globals and friends
❑ const declarations
❑ References vs. values
❑ Overloading

Sources:
❑ Scott Meyers, Effective C++, Addison-Wesley, 199

P2 — C++ 212.

U Design Rules

compiler; macros aren’t
cros are expanded literally

 extensible
niversität Bern

Basic Rules

✔ Use const and inline instead of #define

☞ Constants are named and understood by the
☞ Inline functions evaluate arguments once; ma

Recall the problems with the badMin() macro!

✔ Prefer iostream.h to stdio.h

☞ scanf and printf are not typesafe and not

P2 — C++ 213.

U Design Rules

lete

te the first element!

tructor
r to 0 (null)
gned to the pointer in the

r)
niversität Bern

Deleting Objects

✔ Use the same form in corresponding calls to new and de

☞ Delete objects with delete

☞ Delete arrays with delete []

If you try to delete an array with delete , you will only dele

✔ Call delete on pointer members in destructors

If your class has a pointer member, make sure that:
❑ The pointer is properly initialized within each cons

☞ If no memory is allocated, initialize the pointe
❑ Existing memory is deleted and new memory assi

assignment operator (i.e., operator=)
❑ Allocated memory is deleted in the destructor

(NB: it is always safe to call delete on a null pointe

Normally a class should not delete objects it did not create!

P2 — C++ 214.

U Design Rules

 0.

ou supply:

include <new.h>
ause new to call
reMemory()

dler, you can also locally set
niversität Bern

Running out of Memory

✔ Check the return value of new

When new cannot allocate the memory you need, it returns

Alternatively, you can tell new to call an error handler that y
void noMoreMemory(void)
{

cerr << "Ran out of memory!" << endl;
exit(1);

}

void memTest(void)
{

set_new_handler(noMoreMemory); // NB: #
char * wayTooBig = new char[1000000000]; // Will c

} // noMo

Since set_new_handler() always returns the current han
and restore handlers within classes.

P2 — C++ 215.

U Design Rules

or classes with dynamically

lently generate for you copy
 copies!

 be first initialized and then

zed, never assigned!
e.g., of arrays)

s (const String& name)
me) // initialization

s (const String& name)

me; // assignment
niversität Bern

Constructors
✔ Define a copy constructor and an assignment operator f

allocated memory

Use the orthodox canonical form — if you don’t, C++ will si
constructors and assignment operators that perform shallow

✔ Prefer initialization to assignment in constructors

❑ Assignment adds overhead, since members must
assigned to

❑ const and reference members can only be initiali
❑ Use assignment only for algorithmic initialization (

class MyClass
{

public:
MyClass (const String& name);

private:
String myName;

};

MyClass::MyClas
: myName(na

{ }

MyClass::MyClas
{

myName = na
}

P2 — C++ 216.

U Design Rules

 they are declared

, not in the order they appear

 as a square

truct h, then w

 w is still undefined

order they were constructed,
..
niversität Bern

Initialization
✔ List members in an initialization list in the order in which

Class members are initialized in the order they are declared
in the initialization list!

class Rectangle
{

public:
Rectangle (int initWidth); // Construct
int width (void) { return w; }
int height (void) { return h; }

private:
int h, w; // First cons

};

Rectangle::Rectangle (int initWidth)
: w(initWidth),

h(w) // WRONG!
{ }

Why? Because destructors destroy members in the reverse
so all constructors must create them in a consistent order .

P2 — C++ 217.

U Design Rules

sure the correct destructor is
l in the base class.

s.

ever be inherited from!
niversität Bern

Virtual Destructors

✔ Make destructors virtual in base classes

If you make use of polymorphism, the only way you can be
called when an object is deleted is if the destructor is virtua

Recall the polymorphic destruction of BoardGame instance

But ... don’t declare destructors virtual in classes that will n

P2 — C++ 218.

U Design Rules

 can write statements like:

 for this:

an inconsistent state!
s value!
as before

y!
niversität Bern

Assignment

✔ Have operator= return a reference to *this

The result should be a reference to the object itself, so you
a = b = c ;

for arbitrary classes of objects.

✔ Check for assignment to self in operator=

Recall what would happen if our String class failed to check
String&
String::operator= (const String& copy)
{

if (this != ©) { // copying self would lead to
delete [] _s; // be sure to delete the previou
become(copy._s); // (re-)initialization is the same

}
return *this; // return a reference, not a cop

}

P2 — C++ 219.

U Design Rules

f the base class, it may be

to (hidden) x_

(initVal), y_(initVal) { } ;
t B& rhs);
n y_; }
niversität Bern

Assignment and Inheritance

✔ Assign to all data members in operator=

If a derived class does not have access to data members o
necessary to explicitly call operator= of the base class

B& B::operator=(const B& rhs)
{

if (this != &rhs) {
y_ = rhs.y_; // not enough -- need to also assign
// x_ = rhs.x_; // illegal access to private member!
A::operator=(rhs); // ok call to base operator=
// ((A&) *this) = rhs; // also ok, but more obscure ...

}
return *this;

}

class A
{

public:
A(int initVal) : x_(initVal) { } ;
A& operator=(const A& rhs);
int x(void) { return x_; }

private:
int x_;

};

class B : public A
{

public:
B(int initVal) : A
B& operator=(cons
int y(void) { retur

private:
int y_;

};

P2 — C++ 220.

U Design Rules

and friend functions

oardGame::checkWinner()

rget is iostream

ment

g., “foo” + String(“bar”)
niversität Bern

Classes and Functions

✔ Differentiate among member functions, global functions
// virtual functions must be members

if (f needs to be virtual) // e.g., B
make f a member function of C ;

// operator>> and operator<< are never members

else if (f is operator>> or operator<<) {
make f a global function // ta
if (f needs access to non-public members of C)

make f a friend of C ;
}

// only nonmembers can have type conversions on their left-hand argu

else if (f needs type conversions on its lhs) { // e.
make f a global function ;
if (f needs access to non-public members of C)

make f a friend of C ;
}

// everything else should be a member function

else
make f a member function of C ;

P2 — C++ 221.

U Design Rules

ing members with or without

n of your class without

n values and member
e of constant values.

ant
niversität Bern

Class Interfaces
✔ Avoid data members in the public interface

❑ Clients don’t have to remember whether to access
parentheses (e.g., p.x vs. p.x())

❑ You have more freedom to alter the implementatio
affecting clients

✔ Use const wherever possible
You can declare values, pointers, function arguments, retur
functions as const; the compiler will ensure consistent usag

How to declare const pointers:

What’s pointed
to is constant

Pointer is const

const

const

char *

char *

char *

char *

const

const

p = “Hello”;

p = “Hello”;

p = “Hello”;

p = “Hello”;

P2 — C++ 222.

U Design Rules

objects by value, the copy
nt and return value.

object

 then the result should be

or
t

g object.
ted to call delete !
niversität Bern

References and Values

✔ Pass and return objects by reference instead of by value

In C++ everything is passed by value. If you pass or return
constructor will be called to create copies for every argume

✔ Don’t try to return a reference when you must return an

If a function creates a new object value from its arguments,
returned by value, not by reference.

Consider the global function:
String operator+ (const String& s1,const String& s2)
{

String result = s1; // call the String copy construct
return result += s2; // return a copy of the resul

}

It cannot return a reference since the result is not an existin
It also should not call new since the client cannot be expec

P2 — C++ 223.

U Design Rules

ed pointer initialized by new

ce to a local object
ction returns!

l delete result?

s to members less

ta from public functions.
niversität Bern

Data Accessibility

✔ Never return a reference to a local object or a dereferenc
within the function

Two bad ways to implement String concatenation:
String& operator+ (const String& s1,const String& s2)
{

String result = s1;
result += s2;
return result; // WRONG!!! never return a referen

} // result will be destroyed when fun

String& operator+ (const String& s1,const String& s2)
{

String * result = new String(s1);
*result += s2;
return *result; // Potential memory leak!!! Who wil

}

✔ Avoid member functions that return pointers or reference
accessible than themselves

Don’t return non-const references or pointers to private da

P2 — C++ 224.

U Design Rules

ember functions

unctions should be safe.

vate data, the “constant”

fe to use on const Strings

ps -- returns a reference!

gal implicit pointer cast
 -- operator[] is const
ps -- we just changed cs!
niversität Bern

Const Member Functions

✔ Avoid returning “handles” to internal data from const m

If an object is declared const , then all its const member f

But if these functions may return non-const pointers to pri
object may be modified by unexpected side effects:

char&
String::operator[] (const int n) const // sa
{

if ((n<0) || (strlen()<=n))
throw(xmsg("array index out of bounds"));

return _s[n]; // oo
}

Now the following code is unsafe:
const String cs = "I'm constant";
// cs = "hello world"; // ille
cout << "First char is: " << cs[0] << endl; // ok
cs[0] = 'A'; // oo

P2 — C++ 225.

U Design Rules

eters

meter defaulting

should probably declare
niversität Bern

Overloading vs. Default Param

✔ Choose carefully between function overloading and para

void f(void);
void f(int x); // f is overloaded

f(); // calls f(void)
f(10); // calls f(int)

void g(int x=0); // g has a default parameter
g(); // calls g(0)
g(10); // calls g(10)

So, what’s the difference?

Ask yourself:
❑ Is there a sensible default parameter?
❑ Is there a common algorithm?

Unless the answer to both of these questions is “yes”, you
overloaded functions rather than default parameters.

P2 — C++ 226.

U Design Rules

t this is not always what you
niversität Bern

Ambiguous Overloading

✔ Avoid overloading on a pointer and a numerical type

void f(int x);
void f(char * p);

f(0); // calls f(int) or f(char*)?

Since 0 is a literal integer constant, f(int) will be called, bu
want!

P2 — C++ 227.

U Design Rules

olon
 concerning the code

rs (e.g., game.notover())
he value of the function
niversität Bern

Common Errors

Watch out for these common errors:

❑ Forgetting to end a class declaration with a semi-c
☞ the compiler will generate non-intuitive errors

immediately following the class declaration

❑ Forgetting parentheses when calling class membe
☞ the function will never be called, but instead t

pointer will be used

P2 — C++ 228.

U Design Rules

?
structors?

rs in a derived class?
ss member?

e?

?

?
ly this ?
atic variable?
niversität Bern

Summary

You should know the answers to these questions:
❑ Where and when should you use new and delete

❑ When should you (not) use initialization lists in con
❑ How should you define operator= ?
❑ How can you update private inherited data membe
❑ When should a function be global rather than a cla
❑ When should you use const declarations?
❑ When should a function return a reference? A valu

Can you answer the following questions?
✎ How does delete[] know how many items to destroy
✎ Why can’t you initialize references by assignment?
✎ Why shouldn’t you always declare destructors virtual

✎ Why should operator= return *this instead of simp
✎ What will happen if you return a reference to an autom

	7033 Programmierung 2
	Table of Contents
	C++ Programming Rules, Hints and Guidelines
	1. P2 — Introduction to C++
	Principle Text:
	Essential C++ Texts
	Overview
	What You Will Be Expected To Learn
	History
	C++ Design Goals
	“C with Classes” designed by Bjarne Stroustrup in early 1980s; grew into C++

	C Features
	C++ Features
	C++ is an evolving language ...

	“Hello World”
	C++ Storage Classes
	Memory Layout
	Declarations and Definitions
	Hello World Project
	Compiling C++ Programs
	Basic Makefile
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	2. A Taste of C++ — Comparison with Eiffel
	Data Abstraction — Line Reverser Example
	Eiffel Line Reverser
	An Eiffel Stack Implementation
	The (Hidden) Eiffel Stack Cells
	A C++ Line Reverser
	A C++ Stack Interface
	A C++ Stack Implementation
	Differences Between Eiffel and C++
	A C++ Template Line Reverser
	A C Line Reverser
	A Recursive Line Reverser
	A Perl Line Reverser
	Some Timing Differences
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	3. C++ Basic Language Features
	Symbols
	C++ programs are built up from symbols:

	Keywords
	Comments
	Two styles:
	Use // comments exclusively within functions so that any part can be commented out using comment ...

	Commenting Conventions
	Use comments for:
	Use meaningful names to make your code as self-documenting as possible.
	DON’T use comments to restate what is obvious from the source code.
	DO use comments to improve the readability of your programs.

	Built-In Data Types
	Expressions
	Avoid cryptic expressions! Use comments to explain mysterious code.

	Operator Precedence and Associativity
	C++ Arrays
	Arrays are fixed sequences of homogeneous elements

	Pointers
	A pointer is a variable that can hold the address of another variable:

	References
	A reference is an alias for another variable:
	References should generally be preferred to pointers except when:

	Strings
	A string is a pointer to a NULL-terminated (i.e., ‘\0’) character array:
	It is generally better to use a C++ string class instead of built-in char arrays!

	Assignment — lvalues and rvalues
	Statements
	Enumeration Types
	Functions
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	4. Decomposition and Recursion
	Document Assumptions
	Use descriptive names for variables; use short names only when their purpose is obvious from the ...
	Always state explicitly all pre- and post-conditions.
	Document all assumptions.
	Avoid making assumptions that you can’t check!

	Comment Selectively
	Avoid complex or cryptic code; write code that is self-documenting.
	Use comments to explain any code that is not self-documenting.
	Ensure your programs are correct before you try to optimize them.
	Never try to optimize code that is not a proven source of system inefficiency.

	Divide and Conquer
	Recursion
	If possible, check your assumptions, and raise exceptions when they are violated.

	Recursion — Pros and Cons
	Pros:
	Cons:
	If a problem is inherently recursive, implement a correct recursive solution before deciding whet...

	Iteration vs. Recursion
	Binary Search
	Binary Search — Recursive Solution
	Records as Objects
	Tail Recursion
	Binary Search — Iterative Solution
	Sorting
	MergeSort Example
	Merge Sort
	A function or procedure should always have a clear responsibility; promote readability by decompo...

	Merge
	State loop invariants explicitly, and check that they hold through all execution paths.

	Refactoring Merge()
	Eliminate duplicate code through refactoring or reorganizing.

	Optimizing MergeSort ...
	MergeSort with a Fixed Buffer
	A Faster MergeSort
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	5. Specifying Classes
	Abstract Data Types and Invariants
	Example: Tic Tac Toe
	C++ Classes
	Designing a Tic Tac Toe Game
	Desired Interaction
	The Tic Tac Toe Driver
	Prototyping strategy: always work with a running, if incomplete program, and incrementally “grow”...

	Determining the Interface
	Describe services at highest level of abstraction possible. Determine who is responsible for what!

	Exceptions
	Exceptions should only be used to signal abnormal situations, not normal flow of control.

	Specifying the Interface
	Instance Variables
	Use symbolic names and enumerated types to make your code as self-documenting as possible.

	Implementing the Constructor
	Implementing the Game
	Static Declarations
	Constant Declarations
	Playing the Game
	Printing the Game
	The Complete TicTacToe Interface
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	6. Data Abstraction
	The Run-time Stack
	Stack as a Data Abstraction
	Always encapsulate data structures as data abstractions.

	Postfix Expressions
	A Postfix Expression Interpreter
	Stacks as Linked Lists
	Stacks, Queues and Linked Lists
	Linked List Operations
	Class Invariants
	LList Declaration
	Implementing List Methods
	A method should always do one thing well; don’t mix up responsibilities.
	Methods should be short and easy to read.

	List Constructor and Destructor
	Growing the List
	Checking Pre-conditions
	Implementing a Stack with a Linked List
	Example: Balancing Parentheses
	Parenthesis balancer
	Implementing a Queue with a Linked List
	The Dangers of Call by Value
	Guard Against Shallow Copies
	Declare a private copy constructor, if your objects should not be passed by value.

	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	7. Managing Memory
	Sources:
	Orthodox Canonical Form
	Use the orthodox canonical form for any non-trivial class whose objects will be copied or assigne...

	Example: A String Class
	First version of String.h
	Default Constructors
	Decide what your class invariant is and make sure that each constructor correctly establishes the...

	Automatic and Dynamic Objects
	Destructors
	If you use new, make sure that there will be exactly one matching delete!
	Destructors should deallocate all memory belonging to an object’s private state.

	Copy Constructors
	Other Constructors
	Refactoring Common Code
	Clearly document whether helper functions assume or ensure class invariants!

	Assignment Operators
	An assignment operator should always test for copying of self

	Shallow and Deep Copying
	Inline Functions
	Don’t bother declaring inline functions unless (or until) you can be sure you will get a real imp...
	Short, frequently called functions may be good candidates for inlining.

	Using the Constructors
	Implicit Conversion
	Don’t worry too much about unnecessary copying, but be aware of its overhead in computationally i...

	Conditional Compilation
	Operator Overloading
	Overloadable Operators
	Friends
	IOStream Operators
	Dynamic Memory Management
	The Final String.h
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	8. Inheritance
	The Board Game
	Interaction
	Class Hierarchy
	Uses of Inheritance
	Conceptual hierarchy:
	Polymorphism:
	Software reuse:

	Polymorphism
	Polymorphic Destruction
	The BoardGame Interface
	Virtual Members
	A subclass should only redefine a member function if it has been declared virtual!

	Default Initializers
	Be sure that the implicit signatures of functions with default initializers do not overlap with t...

	Arrays of arrays
	Non-Virtual Functions
	Using Virtual Functions
	Defining Virtual Functions
	Public Inheritance
	Base Class Initialization
	Keeping Score
	Using Function Pointers
	Using Static Functions
	Implementation Inheritance
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	9. Tools
	Sources
	Makefiles
	Make Options
	Always define makefiles, even for your most trivial projects.

	Description File Lines
	Macros and Special Targets
	Internal Macros
	Special Target Names:

	Gomoku Makefile
	Makefile for g++
	Makedepend

	Version Control
	You should use a version control system for any project that is non-trivial, developed by a team,...

	RCS
	RCS Usage
	Additional RCS Features
	Keyword substitution
	Revision numbering:

	Debuggers
	Use a debugger whenever you are unsure why your program is not working.

	Using dbx
	GUI Debuggers — CodeWarrior
	Profilers
	Use a profiler to gain insight into where your program is spending most of its time.

	Using gprof
	SNiFF+
	Always use an integrated programming environment if one is available!

	Using SNiFF+
	SNiFF+ Source Editor
	SNiFF+ Hierarchy Browser
	SNiFF+ Class Browser
	Purify
	Use purify (or an equivalent utility) while developing C++ programs to catch errors in managing m...

	Using Purify
	Other tools
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	10. An Introduction to Java
	Overview
	Texts:
	On-line resources:
	Java
	Java and C++ — Similarities and Extensions
	Java and C++ — Simplifications
	The “Hello World” Program
	Packages
	Java Basics
	Classes and Objects
	Garbage Collection
	Inheritance
	Dynamic Binding
	Downcasting
	Feature Visibility
	Modifiers
	Exceptions
	Defining Exceptions
	Multiple Inheritance
	Interfaces
	Overriding and Overloading
	Arrays
	Arrays and Generics
	The Java API
	Applets
	The Hello World Applet
	Frameworks vs. Libraries
	Standalone Applets
	Events
	The Scribble Applet
	Responding to Events
	Running the Scribble Applet
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	11. Design Rules
	Sources:
	Basic Rules
	Use const and inline instead of #define
	Prefer iostream.h to stdio.h

	Deleting Objects
	Use the same form in corresponding calls to new and delete
	Call delete on pointer members in destructors

	Running out of Memory
	Check the return value of new

	Constructors
	Define a copy constructor and an assignment operator for classes with dynamically allocated memory
	Prefer initialization to assignment in constructors

	Initialization
	List members in an initialization list in the order in which they are declared

	Virtual Destructors
	Make destructors virtual in base classes

	Assignment
	Have operator= return a reference to *this
	Check for assignment to self in operator=

	Assignment and Inheritance
	Assign to all data members in operator=

	Classes and Functions
	Differentiate among member functions, global functions and friend functions

	Class Interfaces
	Avoid data members in the public interface
	Use const wherever possible

	References and Values
	Pass and return objects by reference instead of by value
	Don’t try to return a reference when you must return an object

	Data Accessibility
	Never return a reference to a local object or a dereferenced pointer initialized by new within th...
	Avoid member functions that return pointers or references to members less accessible than themselves

	Const Member Functions
	Avoid returning “handles” to internal data from const member functions

	Overloading vs. Default Parameters
	Choose carefully between function overloading and parameter defaulting

	Ambiguous Overloading
	Avoid overloading on a pointer and a numerical type

	Common Errors
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

