S7057
Programmiersprachen

Prof. O. Nierstrasz

Sommersemester 2001

1. Programming Languages

Sources

Schedule

Themes Addressed in this Course
Themes Addressed in this Course ...
What is a Programming Language?
Generations of Programming Languages
How do Programming Languages Differ?
Programming Paradigms
Compilers and Interpreters

A Brief Chronology

Fortran

Fortran ...

ALGOL 60

ALGOL &0 ...

COBOL

4GLs

PL/I

Interactive Languages

Interactive Languages ...
Special-Purpose Languages
Special-Purpose Languages ...
Functional Languages

Prolog

Object-Oriented Languages
Object-Oriented Languages ...
Scripting Languages

Scripting Languages ...

What you should know!

Can you answer these questions?

1
2
3
4
5
6
7
8

9
10
11
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Table of Contents

2. Stack-based Programming

PostScript

Postscript variants

Syntax

Semantics

Object types

The operand stack

Stack and arithmetic operators
Drawing a Box

Path construction operators
Coordinates

Hello World

Character and font operators
Procedures and Variables

A Box procedure

Graphics state and coordinate operators
A Fibonacci Graph

Numbers and Strings

Factorial

Factorial ...

Boolean, control and string operators
A simple formatter

A simple formatter ...

Array and dictionary operators
Using Dictionaries — Arrowheads
Instantiating Arrows
Encapsulated PostScript

What you should know!

Can you answer these questions?

32
33
34
35
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
59
60
61

62

3. Functional Programming
References
A Bit of History
A Bit of History
Programming without State

Pure Functional Programming Languages
Key features of pure functional languages

Haskell

Referential Transparency
Evaluation of Expressions

Tail Recursion

Tail Recursion ...

Equational Reasoning
Equational Reasoning ...
Pattern Matching

Lists

Using Lists

Higher Order Functions
Anonymous functions

Curried functions
Understanding Curried functions
Currying

Multiple Recursion

Lazy Evaluation

Lazy Lists

Programming lazy lists
Declarative Programming Style
What you should know!

Can you answer these questions?

4. Type Systems
References
Whatis a Type?

63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91

92

93
94

Whatis a Type?

Static and Dynamic Types
Static and Dynamic Typing
Kinds of Types

Type Completeness

Function Types

List Types

Tuple Types

Monomorphism

Polymorphism

Composing polymorphic types
Polymorphic Type Inference
Type Specialization

Kinds of Polymorphism
Coercion vs overloading
Overloading

Instantiating overloaded operators
User Data Types

Enumeration types

Union types

Recursive Data Types

Using recursive data types
Equality for Data Types
Equality for Functions

What you should know!

Can you answer these questions?

5. An application of Functional Programming

Reference

Encoding ASCII
Huffmann encoding
Huffmann decoding
Generating optimal trees

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

121
122
123
124
125
126

Architecture

A Simple testing framework
Testing

Frequency Counting

How to use recursion correctly!
Freqcount tests

Trees

Testing Trees

Merging trees

Tree merging ...

Extracting the Huffmann free
Generating the tree
Extracting the encoding map
Applying the encoding map
foldr

Decoding by walking the tree
Testing

Representing trees as text
Representing trees as text ...
Using a stack to parse stored trees
Parsing stored trees

Parsing stored tfrees ...
Reading and Writing Files
Using the program (1)

Using the program (Il

Tracing our program
Frequency Counting Revisited
Tracing eager evaluation
Final version

What you should know!

Can you answer these questions?

127
128
129
130
131
132
133
134
135
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

6. Infroduction to the Lambda Calculus

References

What is Computable?
Church’s Thesis
Uncomputability

What is a Function? (1)

What is a Function? (II)

The Lambda Calculus — syntax
Lambda Calculus — semantics
Beta Reduction

Lambda expressions in Haskell
Free and Bound Variables

Why macro expansion is wrong
Substitution

Alpha Conversion

Eta Reduction

Normal Forms

Evaluation Order

The Church-Rosser Property
Non-termination

Currying

Representing Booleans
Representing Tuples

Tuples as functions
Representing Numbers
Working with numbers

What you should know!

Can you answer these questions?

7. Fixed Points and other Calculi

Recursion
Recursive functions as fixed points
Fixed Points

159
160
161

162
163
164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181

182
183
184
185
186

187
188
189
190

Fixed Point Theorem

Using the Y Combinator

Recursive Functions are Fixed Points
Unfolding Recursive Lambda Expressions
The Typed Lambda Calculus

The Polymorphic Lambda Calculus
Hindley-Milner Polymorphism
Polymorphism and self application
Other Calculi

What you should know!

Can you answer these questions?

8. Infroduction to Denotational Semantics

Defining Programming Languages
Uses of Semantic Specifications
Methods for Specifying Semantics
Methods for Specifying Semantics ...
Concrete and Abstract Syntax

A Calculator Language
Calculator Semantics

Calculator Semantics...

Semantic Domains

Data Structures for Abstract Syntax
Representing Syntax

Implementing the Calculator
Implementing the Calculator ...

A Language with Assignment
Representing abstract syntax trees
An abstract syntax tfree

Modelling Environments
Functional updates

Semantics of assignments
Semantics of assignments ...

191
192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221

222

Running the interpreter

Practical Issues

Theoretical Issues

What you should know!

Can you answer these questions?

9. Logic Programming
References
Logic Programming Languages
Prolog Facts and Rules
Prolog Questions
Horn Clauses
Resolution and Unification
Prolog Databases
Simple queries
Queries with variables
Unification
Unification ...
Evaluation Order
Closed World Assumption
Backtracking
Comparison
Comparison ...
Sharing Subgoals
Disjunctions
Recursion
Recursion ...
Evaluation Order
Failure
Negation as failure
Changing the Database
Changing the Database ...
Functions and Arithmetic

223
224
225
226
227

228
229
230
231

232
233
234
235
236
237
238
239
240
241

242
243
244
245
246
247
248
249
250
251

252
253
254

Defining Functions

Lists

Pattern Matching with Lists
Pattern Matching with Lists ...
Inverse relations

Exhaustive Searching

Limifs of declarative programming
What you should know!

Can you answer these questions?

10. Applications of Logic Programming
[. Solving a puzzle
A non-solution:
A non-solution ...
A first solution
A first solution ...
A second (non-)solution
A second (non-)solution ...
A third solution
A third solution ...
A third solution ...
A fourth solution
A fourth solution ...
A fourth solution ...
ll. Reasoning about functional dependencies
Operator overloading
Computing closures
Computing closures ...
A closure predicate
Manipulating sets
Evaluating closures
Testing
Finding keys

255
256
257
258
259
260
261
262
263

264
265
266
267
268
269
270
271

272
273
274
275
276
277
278
279
280
281

282
283
284
285
286

Finding keys ...

Evaluating candidate keys
Testing for BCNF

Evaluating the BCNF test

BCNF decomposition

BCNF decomposition — top level
BCNF decomposition — recursion
Finding “bad” FDs

Evaluating BCNF decomposition
Can you answer these questions?

11. Symbolic Interpretation

Interpretation as Proof
Representing Programs as Trees
Prefix and Infix Operators
Prefix and Infix Operators ...
Operator precedence
Standard Operators

Building a Simple Interpreter
Building a Simple Interpreter ...
Running the Interpreter
Lambda Calculus Interpreter
Semantics

Free Variables

Free Variables ...

Substitution

Avoiding name capture
Renaming

Renaming ...

Normal Form Reduction
Normal Form Reduction ...
Viewing Intermediate States
Viewing Intermediate States ...

287
288
289
290
291
292
293
294
295
296

297
298
299
300
301

302
303
304
305
306
307
308
309
310
311

312
313
314
315
316
317
318

PS — 52001

vi.

Lazy Evaluation

Lazy Evaluation ...

Booleans

Tuples

Natural Numbers

Natural Numbers ...

Fixed Points

Recursive Functions as Fixed Points

Recursive Functions as Fixed Points ...

What you should know!
Can you answer these questions?

319
320
321
322
323
324
325
326
327
328
329

® O. Nierstrasz — U. Berne

1. Programming Languages

Prof. Oscar Nierstrasz

Lecturer: | s hiitzenmattstr. 14/103

Tel: 631.4618

Email: Oscar.Nierstrasz@iam.unibe.ch

Assistants: Franz Achermann, Nathanael Schaerli

WwWW: |www.iam.unibe.ch/~scg/Teaching/

http://www.iam.unibe.ch/~scg/Teaching/

Sources

Text:

[0 Kenneth C. Louden, Prolgramming Languages: Principles
and Practice, PWS Publishing (Boston), 1993.

Other Sources:

(0 PostScript” Language Tutorial and Cookbook, Adobe
Systems Incorporated, Addison-Wesley, 1985

0 Paul Hudak, "Conception, Evolution, and Application of
Functional Programming Languages,” ACM Computing
Surveys 21/3, pp 359-411.

[0 Clocksin and Mellish, Programming in Prolog, Springer
Verlag, 1981.

—_ = e —
SREBOVENO O AW

03-27
04 -03
04 -10
04-17
04 -24
05-01
05-08
05-15
05-22
05-29
06-05
06-12
06-19
06 - 26

Schedule

Introduction

Stack-based Programming
Functional Programming

Type systems

An application of Functional Programming
Lambda Calculus

Fixed Points; Other Calculi
Programming language semantics
Logic Programming

Applications of Logic Programming
Symbolic Interpretation

TBA

TBA

Final exam

Themes Addressed in this Course

Paradigms

0 What computational paradigms are supported by
modern, high-level programming languages?

0 How well do these paradigms match classes of
programming problems?

Abstraction

0 How do different languages abstract away from the low-
level details of the underlying hardware
implementation?

0 How do different languages support the specification of
software abstractions needed for a specific task?

Themes Addressed in this Course ...

Types

[0 How do type systems help in the construction of
flexible, reliable software?

Semantics
0 How can one formalize the meaning of a programming
language?

[0 How can semantics aid in the implementation of a
programming language?

What is a Programming Language?

A formal language for describing computation
A "user interface” to a computer
“Turing tar pit" — equivalent computational power

Programming paradigms — different expressive
power

Syntax + semantics
Compiler, or interpreter, or translator

I I R I R

1 [

"A pr grammmg language is a notational system for
describing computation in a machine-readable and
human-readable form.”

— Louden

Generations of Programming Languages

16L: machine codes
26L: symbolic assemblers

36L: (machine independent) imperative languages
(FORTRAN, Pascal ...)

4GL: domain specific application generators

Each generation is at a higher level of abstraction

How do Programming Languages Differ?

Common Constructs:

0 basic data types (numbers, etc.); variables;
expressions; statements; keywords; control
constructs; procedures; comments; errors ...

Uncommon Constructs:

[0 type declarations; special types (strings, arrays,
matrices, ...); sequential execution; concurrency
constructs; packages/modules; objects; general
functions; generics; modifiable state; ...

Programming Paradigms

A programming language is a problem-solving tool.

Imperative style:

program = algorithms + data
good for decomposition

Functional style:

program = functions o functions
good for reasoning

Logic programming style:

program = facts + rules
good for searching

Object-oriented style:

program = objects + messages
good for encapsulation

Other styles and paradigms: blackboard, pipes and filters,

constraints, lists, ...

Compilers and Interpreters

Compilers and interpreters have similar front-ends, but have
different back-ends:

Pre-processor Parser Code Generator) (Assembler/linker

| Program Parse tree Assembly code Machine code

Interpreter Code Generator

Byte code Interpreter
Program -

Details will differ, but the general scheme remains the same ...

A Brief Chronology

Early 1950s "order codes” (primitive assemblers)

1957 |FORTRAN the first high-level programming
language (36L is invented)

1958 | ALGOL the first modern, imperative language

1960 |LISP, COBOL

1962 |APL, SIMULA |the birth of OOP (SIMULA)

1964 BASIC, PL/I

1966 ISWIM first modern functional language
(a proposal)

1970 |Prolog logic programming is born

1972 |C the systems programming language

1975 |Pascal, Scheme | two teaching languages

1978

CSP

1978

FP

1980

dBASE II

1983

Smalltalk-80,
Ada

QOOP is reinvented

1984

Standard ML

FP becomes mainstream (?)

1986

C++, Eiffel

OOP is reinvented (again)

1988

CLOS, Oberon,
Mathematica

1990

Haskell

FP is reinvented

1995

Java

QOOP is reinvented for the internet

Fortran

History

John Backus (1953) sought to write programs in conventional
mathematical notation, and generate code comparable to good
assembly programs.

0 No language design effort
(made it up as they went along)

[0 Most effort spent on code generation and optimization
0 FORTRANTI released April 1957; working by April 1958
0 Current standards are FORTRAN 77 and FORTRAN 90

Fortran ...

Innovations

[]

I I R R

Symbolic notation for subroutines and functions
Assignments to variables of complex expressions
DO loops

Comments

Input/output formats

[0 Machine-independence
Successes
0 Easy to learn; high level

[]

Promoted by IBM; addressed large user base
(scientific computing)

ALGOL 60

History

0 Committee of PL experts formed in 1955 to design
universal, machine-independent, algorithmic language

O First version (ALGOL 58) never implemented; criticisms
led to ALGOL 60

ALGOL 60 ...

Innovations

[]

[]

[]
[]
[]

BNF (Backus-Naur Form) introduced to define syntax
(led to syntax-directed compilers)

First block-structured language; variables with local
scope

Structured control statements
Recursive procedures
Variable size arrays

Successes

[]

Highly influenced design of other PLs but never
displaced FORTRAN

COBOL

History
[0 Designed by committee of US computer manufacturers
0 Targeted business applications
[0 Intended to be readable by managers (!)

Innovations

[0 Separate descriptions of environment, data, and
processes

Successes
[0 Adopted as de facto standard by US DOD
[0 Stable standard for 25 years
O Still the most widely used PL for business applications (!)

4GLs

"Problem-oriented” languages
0 PLs for "non-programmers”

O Very High Level (VHL) languages for specific problem
domains

Classes of 46GLs (no clear boundaries)

0 Report Program Generator (RPG)

0 Application generators

0 Query languages

O Decision-support languages
Successes

0 Highly popular, but generally ad hoc

PL/I

History
[Designed by committee of IBM and users (early 1960s)

0 Intended as (large) general-purpose language for broad
classes of applications

Innovations
0 Support for concurrency (but not synchronization)
0 Exception-handling by on conditions

Successes

0 Achieved both run-time efficiency and flexibility (at
expense of complexity)

O First "complete” general purpose language

Interactive Languages

Made possible by advent of time-sharing systems (early 1960s
through mid 1970s).

BASIC
0 Developed at Dartmouth College in mid 1960s

O Minimal; easy to learn

0 Incorporated basic O/S commands (NEW, LIST,
DELETE, RUN, SAVE)

Interactive Languages ...

APL

[Developed by Ken Iverson for concise description of
numerical algorithms

0 Large, non-standard alphabet (52 characters in addition
to alphanumerics)

Primitive objects are arrays (lists, tables or matrices)

Operator-driven (power comes from composing array
operators)

(] {\l]cé 3per'a’ror' precedence (statements parsed right to
ert

1 [

Special-Purpose Languages

SNOBOL

0 First successful string manipulation language
Influenced design of text editors more than other PLs
String operations: pattern-matching and substitution
Arrays and associative arrays (tables)
Variable-length strings

I I R R

Lisp

1 OO0 O

Special-Purpose Languages ...

Performs computations on symbolic expressions
Symbolic expressions are represented as /ists

Small set of constructor/selector operations to create
and manipulate lists

Recursive rather than iterative control
No distinction between data and programs

First PL o implement storage management by garbage
collection

Affinity with lambda calculus

Functional Languages

ISWIM (If you See What I Mean)
0 Peter Landin (1966) — paper proposal

FP
[0 John Backus (1978) — Turing award lecture

ML

Edinburgh

initially designed as meta-language for theorem proving
Hindley-Milner type inference

“non-pure” functional language (with assignments/side
effects)

Miranda, Haskell
O “pure" functional languages with "lazy evaluation”

I I R I R

Prolog

History

0 Originated at U. Marseilles (early 1970s), and compilers
develo)ped at Marseilles and Edinburgh (mid to late
1970s

Innovations
0 Theorem proving paradigm
[0 Programs as sets of clauses: facts, rules and guestions
0 Computation by "unification"
Successes
0 Prototypical logic programming language
0 Used in Japanese Fifth Generation Initiative

Object-Oriented Languages

History

[0 Simula was developed by Nygaard and Dahl (early 1960s)
in Oslo as a language for simulation programming, by
adding classes and inheritance to ALGOL 60

0 Smalltalk was developed by Xerox PARC (early 1970s) to
drive graphic workstations

Object-Oriented Languages ...

Innovations
0 Encapsulation of data and operations (contrast ADTs)
(1 Inheritance to share behaviour and interfaces

Successes
0 Smalltalk project pioneered OO user interfaces
0 Large commercial impact since mid 1980s

[Countless new languages: C++, Objective C, Eiffel, Betq,
Oberon, Self, Perl 5, Python, Java, Ada 95 ...

Scripting Languages

History

[]

[]

[]

Countless "shell languages” and "command languages” for
operating systems and configurable applications

Unix shell (ca. 1971) developed as user shell and
scripting tool

HyperTalk (1987) was developed at Apple to script
HyperCard stacks

TCL (1990) developed as embedding language and
scripting language for X windows applications (via Tk)

Perl (~1990) became de facto web scripting language

Scripting Languages ...

Innovations
0 Pipes and filters (Unix shell)
[0 Generalized embedding/command languages (TCL)

Successes

0 Unix Shell, awk, emacs, HyperTalk, AppleTalk, TCL,
Python, Perl, VisualBasic ...

COoobOo0gnQ

What you should know!

What, exactly, is a programming language?

How do compilers and interpreters differ?

Why was FORTRAN developed?

What were the main achievements of ALGOL 60?
Why do we call Pascal a "Third Generation Language"?
What is a "Fourth Generation Language"?

Can you answer these questions?

[J Why are there so many programming languages?

[J Why are FORTRAN and COBOL still important programming
languages?

[J Which language should you use to implement a spelling
checker?
A filter to translate upper-to-lower case?
A theorem prover?
An address database?
An expert system?
A game server for initiating chess games on the internet?
A user interface for a network chess client?

2. Stack-based Programming

Overview
[0 PostScript objects, types and stacks
0 Arithmetic operators
0 Graphics operators
0 Procedures and variables
[0 Arrays and dictionaries

References:

0 PostScript” Language Tutorial and Cookbook, Adobe
Systems Incorporated, Addison-Wesley, 1985

0 PostScript” Language Reference Manual, Adobe
Systems Incorporated, second edition, Addison-Wesley,
1990

PostScript

PostScript "is a simple interpretive programming language ... to
describe the appearance of text, graphical shapes, an
sampled images on printed or displayed pages.”

[introduced in 1985 by Adobe

0 display standard now supported by all major printer
vendors

simple, stack-based programming language
minimal syntax
large set of built-in operators

PostScript programs are usually generated from
applications, rather than hand-coded

I I O I R

Postscript variants

Level 1:
0 the original 1985 PostScript

Level 2:
0 additional support for dictionaries, memory management

Display PostScript:
O special support for screen display

Level 3:
0 the current incarnation with "workflow" support

Syntax

Comments:

from "%" to next newline or formfeed

% This 1s a conment

signed integers, reals and radix numbers

Numbers: 123 -98 0 +17 -.002 34.5
123. 6e10 1E-5 8#17/77 16#FFE 2#1000

text in parentheses or hexadecimal in angle

Strings: | brackets (Special characters are escaped: \n
\EACN) W L)
tokens consisting of "regular characters” but
which aren’t numbers

Names:

abc Ofset $$ 23A 13-456 a.b
$M/Di ct @attern

Literal |start with slash

names: [buffer /proc

enclosed in square brackets

A .
rays: 1123 Tabe (hello)]

enclosed in curly brackets

Procedures:| { add 2 div }
%add top two stack Itens and di vide by 2

Semantics

A PostScript program is a sequence of tokens, representing
typed objects, that is interpreted to manipulate the display
and four stacks that represent the execution state of a
PostScript program:

holds (arbitrary) operands and results of

holds only dictionaries where keys and

Dictionary stack: values may be stored

holds executable objects (e.q.

Execution stack: procedures) in stages of execution

Graphics state |keeps track of current coordinates etc.
stack:

Object types

Every object is either /iteral or executable:
Literal objects are pushed on the operand stack:

0 integers, reals, string constants, literal names, arrays,
procedures

Executable objects are interpreted:
0 built-in operators

[0 names bound to procedures (in the current dictionary
context)

Simple Object Types are copied by value

[0 boolean, fontID, integer, name, null, operator, real ...
Composite Object Types are copied by reference

0 array, dictionary, string ...

The operand stack

Compute the average of 40 and 60:
40 60 add 2 div

60 2
40 40 100 | | 100 50

At the end, the result is left on the top of the operand stack.

Stack and arithmetic operators

Stack | Op New Stack Function
numq num, (add | sum numi + hum»
nhum; hum, | sub | difference numj - nump
hum; num, | mul product num; > nump
numq; hum, |div | quotient numy; / nump
intyint, |idiv |quotient integer divide
int;into [mod | remainder int; mod int,
num den|atan |angle arctangent of num/den
any |pop |- discard top element
any; any, | exch | any, any; exchange top two elements
any | dup |any any duplicate top element
anyi ... any, h|copy |anyj ... any, anys ... any, | duplicate top nelements
anyy, ... anyg n| i ndex | any, ... anyg any, duplicate n+1th element

and many others ...

Drawing a Box

"A pathis aset of straight lines and curves that define a region
to be filled or a trajectory that is to be drawn on the current

page."

newpat h

100 100 noveto
100 200 |1 neto
200 200 lineto
200 100 lineto
100 100 |1 neto
10 setlinew dth
st roke

showpage

% clear the current drawi ng path
% nmove to (100, 100)
%draw a line to (100, 200)

% set wdth for draw ng
% draw al ong current path
% and di splay current page

Path construction operators

- | newpat h - | initialize current path to be empty
- |current poi nt | Xy |return current coordinates
Xy | movet o - | set current point to (x, y)
dx dy | rnovet o - |relative moveto
xy|lineto - | append straight line to (x, y)
dx dy|rlineto - | relative lineto
Xy rangj ang, | arc - | append counterclockwise arc
- | cl osepath - | connect subpath back to start
-1 fill - | fill current path with current colour
- | stroke - | draw line along current path
- | showpage - |output and reset current page

Others: arcn, arcto, curveto, rcurveto, flattenpath, ...

Coordinates

Coordinates are
measured in points:

72 points = 1 inch A4 paper
=2.54 cm.

(0.0)

~21 cm = 595 points

, (595, 840)

y

29.7 cm = 840 points

Hello World

Before you can print text, you must (1) /ook up the desired
font, (2§ scale it o the required size, and (3) set it to be the
current font.

[Ti mes- Roman findfont %1l ook up Times Roman font

18 scal ef ont %scale it to 18 points

set f ont %set this to be the current font
100 500 noveto % go to coordinate (100, 500)
(Hello world) show %drawthe string “Hello world”
showpage % render the current page

Hello world

Character and font operators

key | fi ndf ont font | return font dict identified by key

font scale |scal efont | font' |scale font by scale to produce font’

font | set f ont - set font dictionary
-|currentfont | font |return current font
string | show - print string

string|stringw dth |wy wy |width of stringin current font

Others: definefont, makefont, FontDirectory,
StandardEncoding

Procedures and Variables

Variables and procedures are defined by binding names to
literal or executable objects.

key value | def | -|associate key and value in current dictionary

Define a general procedure to compute averages:
[average { add 2 div } def
% bi nd the name “average” to “{ add 2 div }”
40 60 average

{ add 2 div } 60 2
/average | | /average 40 | |40 | |100| |100 | |50

PS — 52001 47.

A Box procedure

Most PostScript programs consist of a prologue and a script.

% Prol ogue -- application specific procedures
[box { %grey x y ->

newpat h

novet o xy->__

0 150 rlineto %relative lineto
150 0 rlineto
0 -150 rlineto
cl osepath % cl eanly cl ose pat h!
set gray %grey ->
fill % col our in region

} def

% Script -- usually generated
0 100 100 box

0.4 200 200 box

0.6 300 300 box

0 setgray

showpage

© O. Nierstrasz — U. Berne Stack-based Programming

Graphics state and coordinate operators

num |setlinew dth |- set line width
num | set gray - set colour to gray value
(0 = black; 1 = white)
Sx Sy |scal e - scale use space by s, and s,
angle [rotate - rotate user space by angle degrees
tx ty|translate - translate user space by (7, t,)
- matrix matrix | create identity matrix
matrix | currentmatrix | matrix | fill matrix with CTM
matrix | set mat rix - replace CTM by matrix
- | gsave - save graphics state
-|grestore - restore graphics state

gsave saves the current path, gray value, line width and user
coordinate system

A Fibonacci Graph

[fiblnc { %mn ->n (mn)
exch %mn ->nm
1 i ndex %%n m->nmn
add
} def
Ix 0 def /y O def /dx 10 def
newpat h
100 100 transl ate % make (100, 100) the origin
X y noveto %i.e., relative to (100, 100)
0125
[x x dx add def % 1 ncrement X
dup /y exch 100 idiv def %set y to 1/100 last fib val ue
Xy lineto % dr aw segnent
fiblnc
} repeat
2 setlinewdth
stroke

showpage

Numbers and Strings

Numbers and other objects must be converted to strings
before they can be printed:

int |string|string create string of capacity int
any string|cvs substring | convert to string

Factorial

/LM 100 def %Il eft margin
| FS 18 def % font size
[sBuf 20 string def %string buffer of length 20
[fact { %n ->n!
dup 1 It % -> n bool
{ pop 1} %0 ->1
{
dup %n ->nn
1 %->nnl
sub %->n (n-1)
fact %->n (n-1)! NB: recursive |ookup
mul % n!
}
| felse
} def
/ show nt { %n ->
sBuf cvs show % convert an integer to a string and show it

1 def

/ showFact {
dup show nt
(! =) show
fact showl nt

} def

[new ine {

current point exch pop

FS 2 add sub
LM exch noveto
} def

Factorial ...

%n->
% show n
%! =

% show n!

% __ ->
% get current y
% subtract offset

% nove to new x y

/ Ti mes- Roman findfont FS scal efont setfont

LM 600 noveto

0120 { showract newine } for %do fromO to 20

showpage

ol=1
1'=1
21=2
3'=6

41 =24

5! =120

6! =720

/1 =5040
8! =40320
9! = 362880
10! = 3628800

11! = 39916800

12! = 479001600
13! =6.22702e+0!
14! = 8.71783e+1{
15! =1.30767e+1
16! = 2.09228e+1]
17! = 3.55687e+14
18! = 6.40237e+1]
191 =1.21645e+1
20! = 2.4329e+18

Boolean, control and string operators

any; any; | eq bool | test equal
any; any, | ne bool | fest not equal
anyi any, | ge bool | test greater or equal
-|true | true |push boolean value true
-|fal se |bool | test equal
bool proc |i f - execute proc if bool is true
bool procy proc, |ifel se |- execute proc; if bool is true else proc,
init incr limit proc | f or - execute proc with values init to limit by
steps of incr
int proc |repeat |- execute proc int times
string |l ength |int | number of elements in string
string index | get int | get element at position index
string index int | put - put int into string at position index
string proc |foral | |- execute proc for each element of string

A simple formatter

/LM 100 def %Il eft margin

/| RM 250 def % right margin

| FS 18 def % font size

[showstr { %string ->
dup stringw dth pop % get (just) string’s wdth
current point pop % current x position
add % where printing would bring us
RMgt { newline } if %newine if this would overfl ow RM
show

} def

[newl i ne { % __ ->
current point exch pop % get current y
FS 2 add sub % subtract offset
LM exch noveto % nmove to new X y

} def

[format { { showStr () show } forall } def Y%array -> _
[Ti mes- Roman findfont FS scal efont setfont
LM 600 noveto

A simple formatter ...

[(Now) (is) (the) (tinme) (for) (all) (good) (nen) (to)
(come) (to) (the) (aid) (of) (the) (party.)] fornmat

showpage

Now is the time for
all good men to
come to the aid of
the party.

Array and dictionary operators

[

mark

start array construction

mark objg ... 0bj,_1 |1 array | end array construction
int |array array | create array of length n
array || ength int number of elements in array
array index | get any |get element at index position
array index any | put - put element at index position
array proc |foral | - execute proc for each array element
int | di ct dict |create dictionary of capacity int
dict |l ength int | number of key-value pairs
dict \maxl ength |int | capacity
dict | begi n - push dict on dict stack
- | end - pop dict stack

Using Dictionaries — Arrowheads

[arrowdi ct 14 dict def % make a new dictionary
arrowdi ct begin
[mrx matrix def % al | ocate space for a matrix
end headthickness
[arrow { - >
arrowdi ct begin % open the dictionary
[headl engt h exch def %qgrab args Cﬁpxj;igs////"hea ngth

/ hal f headt hi ckness exch 2 div def

[hal fthi ckness exch 2 div def

[tipy exch def : :
[tipx exch def (tailx, taily)
[taily exch def

[tailx exch def A V
[dx tipx tailx sub def ‘ﬁ;ﬁzﬁazgs
[dy tipy taily sub def

[arrow ength dx dx nmul dy dy nmul add sqrt def

[angl e dy dx atan def

/ base arrow engt h headl ength sub def

[savematrix ntrx currentmatri x def % save the coordi nate system

tailx taily translate %translate to start of arrow
angle rotate % rotate coordinates
0 hal fthickness neg noveto %draw as if starting from (0, 0)

base hal fthickness neg lineto
base hal f headt hi ckness neg |ineto
arrom ength 0 lineto
base hal f headt hi ckness |ineto
base hal fthi ckness lineto
0 hal fthickness lineto
cl osepat h
savematrix setmatrix % restore coordi nate system
end
} def

PS — 52001 59.

Instantiating Arrows

newpat h
318 340 72 340 10 30 72 arrow
fill
newpat h
382 400 542 560 72 232 116 arrow B E—
3 setlinew dth stroke
newpat h

400 300 400 90 90 200 200 3 sqgrt mul 2 div arrow
.65 setgray fill
showpage

© O. Nierstrasz — U. Berne Stack-based Programming

Encapsulated PostScript

EPSF is a standard format for importing and exporting
PostScript files between applications.

% PS- Adobe-3.0 EPSF-3.0

%@oundi ngBox: 90 490 200 520

/ Ti res- Roman findfont (200, 520)
18 scal ef ont : Helloworldj:
setfont S TTT T

100 500 noveto

(Hel o worl d) show

showpage

(90, 490)

COoobO0OnQ

What you should know!

What kinds of stacks does PostScript manage?

When does PostScript push values on the operand stack?
What is a path, and how can it be displayed?

How do you manipulate the coordinate system?

Why would you define your own dictionaries?

How do you compute a bounding box for your PostScript

graphic?

Can you answer these questions?

[J How would you program this graphic? Zi‘:{!

[1 When should you use translate instead of moveto?

[J How could you use dictionaries to simulate object-oriented
programming?

3. Functional Programming

Overview
0 Functional vs. Imperative Programming
Referential Transparency
Recursion
Pattern Matching
Higher Order Functions
Lazy Lists

N I I B I B

References

0 Paul Hudak, "Conception, Evolution, and Application of
Functional Programming Languages,” ACM Computing
Surveys 21/3, pp 359-411.

O Paul Hudak and Joseph H. Fasel, "A Gentle Introduction
to Haskell," ACM SIGPLAN Notices, vol. 27, no. 5, May
1992, pp. T1-TH3.

[0 Simon Peyton Jones and John Hughes [editors], Report
on the Programming Language Haskell 98 A Non-strict,
Purely Functional Language, February 1999

0 www.haskell.org

http://www.haskell.org

A Bit of History

Lambda Calculus
(Church, 1932-33)

formal model of computation

Lisp symbolic computations with lists
(McCarthy, 1960)
APL algebraic programming with arrays

(Iverson, 1962)

ISWIM
(Landin, 1966)

let and where clauses

equational reasoning; birth of “pure”
functional programming ...

A Bit of History

ML originally meta language for theorem
(Edinburgh, 1979) |proving

SASL, KRC, lazy evaluation
Miranda
(Turner, 1976-85)

Haskell "Grand Unification" of functional
(Hudak, Wadler, et |languages ...
al., 1988)

Programming without State

Imperative style:

n := Xx;

a .= 1;

while n>0 do

begin a:= a*n;
n:=n-1;

end;

Declarative (functional)
style:

fac n =
| f n ==
then 1
else n* fac (n-1)

Programs in pure functional languages have no explicit state.
Programs are constructed entirely by composing expressions.

Pure Functional Programming Languages

Imperative Programming:
0 Program = Algorithms + Data

Functional Programming:
0 Program = Functions - Functions

What is a Program?

A program (computation) is a transformation from input data
to output data.

Key features of pure functional languages

—

All programs and procedures are functions

2. There are no variables or assignments — only input
parameters

There are no loops — only recursive functions

4. The value of a function depends only on the values of its
parameters

B. Functions are first-class values

w

Haskell

Haskell is a general purpose, purely functional
programming language incorporating many recent
innovations in programming language design. Haskell
provides higher-order functions, non-strict
semantics, static polymorphic typing, user-defined
algebraic datatypes, pattern-matching, list
comprehensions, a module system, a monadic I/0
system, and a rich set of primitive datatypes, including
lists, arrays, arbitrary and fixed precision integers,
and floating-point numbers. Haskell is both the
culmination and solidification of many years of
research on lazy functional languages.

— The Haskell 98 report

Referential Transparency

A function has the property of referential transparency if its
value depends only on the values of its parameters.

[1 Does f(x)+f(x) equal 2*f(x) ? In C? In Haskell?

Referential transparency means that “equals can be replaced
by equals”.

In a pure functional language, all functions are referentially
transparent, and therefore always yield the same result no
matter how often they are called.

Evaluation of Expressions

Expressions can be (formally) evaluated by substituting
arguments for formal parameters in function bodies:

fac 4

L] if 4 ==0then 1 else 4 * fac (4-1)

L] 4 * fac (4-1)

L] 4 * (if (4-1) == 0 then 1 else (4-1) * fac (4-1-1))
[]4* (if 3==0then 1 else (4-1) * fac (4-1-1))

L] 4 * ((4-1) * fac (4-1-1))

54 * ((4-1) * (if (4-1-1) == 0 then 1 else (4-1-1) * ...))

04 ((4-1) * ((41-1) * ((4-1-1-1) * 1)))

Of course, real functional languages are not implemented by
syntactic substitution ...

Tail Recursion

Recursive functions can be less efficient than loops because of
the high cost of procedure calls on most hardware.

A tail recursive function calls itself only as its last operation,
so the recursive call can be optimized away by a modern
compiler since it needs only a single run-time stack frame:

fact 5 - |fact 5|fact 4 - |fact 5|fact 4|fact 3

sfac 5 -~ |sfac 4 -~ |sfac 3

Tail Recursion ...

A recursive function can be converted to a tail-recursive one
by representing partial computations as explicit function

parameters:
sfac s n = if n ==
then s
else sfac (s*n) (n-1)
sfac 1 4 O sfac (1*4) (4-1)
[0 sfac 4 3
[0 sfac (4*3) (3-1)
[0 sfac 12 2
[0 sfac (12*2) (2-1)
[0 sfac 24 1
] [0 24

Equational Reasoning

Theorem:
Foralln=0,fac n = sfac 1 n
Proof of theorem:
n=0:fac 0 =1 =sfac 1 0
n>0: Suppose
fac (n-1) =sfac 1 (n-1)
fac n =n * fac (n-1)

— by def

=n * sfac 1 (n-1)

=sfac n (n-1)
=sfac 1 n

— by lemma
— by def

Equational Reasoning ...

Lemma:
Foralln>0,sfac s n=s * sfac 1 n

Proof of lemma:
h=0:sfac s 0=s=s * sfac 1 0
n>0: Suppose:
sfac s (n-1) =s * sfac 1 (n-1)
sfac s n =sfac (s*n) (n-1)
=s * n* sfac 1 (n-1)
=s * sfac n (n-1)
=s * sfac 1 n

Pattern Matching

Haskell support multiple styles for specifying case-based
function definitions:

Patterns:
fac' 0 =1
fac' n =n * fac' (n-1)

- or: fac’ (n+l) = (n+tl) * fac’ n

Guards:
fac'' n| n ==
| n>=1

n* fac'' (n-1)

Lists

Lists are pairs of elements and lists of elements:
0 [] — stands for the empty list

[0 x:Xxs — stands for the list with x as the head and xs as
the rest of the list

0 [1,2,3] —issyntactic sugar for 1:2:3:[]

0 [1..n] —stands for[1,2,3, ... nj

Using Lists

Lists can be deconstructed using patterns:

head (x:) =X

len [] =0
l en (X:XS) =1+ len xs
prod [] =1
prod (x:Xs) = x * prod xs
fac''' n = prod [1..n]

Higher Order Functions

Hi?her'-or'der functions treat other functions as first-class
values that can be composed to produce new functions.

mep f []
map f (X:Xxs)

[]
f x: mp f xs

map fac [1..5]
O [1, 2, 6, 24, 120]

NB: map fac is a new function that can be applied to lists:
nfac = map fac
nfac [1..3]
0 [1, 2, 6]

Anonymous functions

Anonymous functions can be written as "lambda abstractions®”.
The function (\x -> x * x) behaves exactly like sqr:
sqr x =X * X

sqr 10 (1100
(\x ->x * x) 10 0100

Anonymous functions are first-class values:
mp (\x ->x * x) [1..10]
011, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Curried functions

A Curried function [named after the logician H.B. Curry] takes
its arguments one at a time, allowing it to be treated as a
higher-order function.

plus xy =x+y -- curried addition

plus 1 2 03

I nNC = plus 1 -- bind first argunent to 1
inc 2 03
fac = sfac 1 -- binds first argument of
where sfac s n -- a curried factori al
| n==0 =5

| n >= 1= sfac (s*n) (n-1)

Understanding Curried functions

plus x y = x +y
is the same as:
plus x =\y -> x+y

Inother words, plus is a function of one argument that returns
a function as its result.

plus 5 6

is the same as:
(plus 5) 6

In other words, we invoke (plus 5), obtaining a function,
\y ->35 +y
which we then pass the argument 6, yielding 11.

Currying

The following (pre-defined) function takes a binary function as
an argument and turns it into a curried function:

curry f ab =1 (a, Db)

plus(x,y) =x +vy -- not curried!

I nC = (curry plus) 1

sfac(s, n) =if n == -- not curried
then s

el se sfac (s*n, n-1)

fac = (curry sfac) 1 -- bind first argunent

Multiple Recursion

Naive recursion may result in unnecessary recalculations:
fib 1 1
fib 2 1
fib (n+2) =fibn + fib (n+l)

Eflfucuency can be regained by explicitly passing calculated
values:

fib" 1 =1
fib' n = a where (a,) = fibPair n
fibPair 1

(1,0)
fi1bPair (n+2) (a+b a)
where (a,b) = fibPair (n+l)

[1 How would you write a tail-recursive Fibonacci function?

Lazy Evaluation

“Lazy”, or "normal-order” evaluation only evaluates expressions
when they are actually needed. Clever implementation
techniques (Wadsworth, 1971) allow replicated expressions to
be shared, and thus avoid needless recalculations.
So:

sqr n =n *n

sqr (2+5) O (2+5) * (2+5) O 7 * 7 O 49

Lazy evaluation allows some functions to be evaluated even if
they are passed incorrect or non-terminating arguments:

| fTrue True x y = X

| fTrue False x y =y

| fTrue True 1 (5/0) O1

Lazy Lists

Lazy lists are infinite data structures whose values are
generated by need:

fromn =n : from(n+l)
from10 0O [10, 11, 12, 13, 14, 15, 16, 17,
take 0 _

take []
take (n+l1) (Xx:Xxs)

]
]

(LI I
><|—||—|

take n Xxs

take 5 (from10) O[10, 11, 12, 13, 14]

NB: The lazy list (from n) has the special syntax: [n..]

Programming lazy lists

Many sequences are naturally implemented as lazy lists.
Note the top-down, declarative style:

fibs =1 : 1 : fibsFollowing 1 1
where fibsFollowng a b =
(a+b) : fibsFollowng b (a+b)

take 10 fi bs
o[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

[J How would you re-write fibs so that (a+b) only appears

once?

Declarative Programming Style

prinmes = prinmeskFrom 2

primesFromn = p : primeskFrom (p+l)
where p = nextPrime n

nextPrime n

| IsPrime n =n
| otherwse = nextPrinme (n+l)
| SPrime 2 = True
| SPrime n = notDivisible prinmes n
notDivisible (k:ips) n
(k*k) > n = True
(mod n k) == 0 = Fal se
ot herw se = notDivisible ps n

take 100 prinmes [2, 3, 5, 7, 11, 13, ... 523, 541]

OO OoOOo0oO

What you should know!

What is referential transparency? Why is it important?
When is a function tail recursive? Why is this useful?
What is a higher-order function? An anonymous function?
What are curried functions? Why are they useful?

How can you avoid recalculating values in a multiply
recursive function?

What is lazy evaluation?
What are lazy lists?

o 0O O 0O 0O

Can you answer these questions?

Why don‘t pure functional languages provide loop
constructs?

When would you use patterns rather than guards to specify
functions?

Can you build a list that contains both numbers and
functions?

How would you simplify fi bs so that (a+b) is only called
once?

What kinds of applications are well-suited to functional
programming?

4. Type Systems

Overview

[]

N I I B I B

What is a Type?

Static vs. Dynamic Typing
Kinds of Types
Polymorphic Types
Overloading

User Data Types

References

0 Paul Hudak, "Conception, Evolution, and Application of
Functional Programming Languages,” ACM Computing
Surveys 21/3, Sept. 1989, pp 359-411.

O L. Cardelli and P. Wegner, "On Understanding Types,
Data Abstraction, and Polymorphism,”ACM Computing
Surveys, 17/4, Dec. 1985, pp. 471-522.

0 D. Watt, Programming Language Concepts and
Paradigms, Prentice Hall, 199

What is a Type?

Type errors:
?5+ []
ERROR: Type error in application
*** expression . 5 + []
**FF term: S
*** type : Int
*** does not match : [a]

A type is a set of values?
0O int={..-2,-1,0,1,2,3, ..}
O bool ={True, Fal se }
O Point ={[x=0,y=0],[x=1,y=0],[x=0,y=1] ...}

What is a Type?

A type is a partial specification of behaviour?
O n,mint O n+mis valid, but not (n) is an error

O n:int O n := lisvalid,butn := “hello worl d” isan
error

What kinds of specifications are interesting? Useful?

Static and Dynamic Types

Values have static types defined by the programming language.

Variables and expressions have dynamic types determined by
the values they assume at run-time.

declared, static type is Applet
\ static type of value is GameApplet

Appl et myAppl et = new GanmeAppl et () ;

actual dynamic type is GameApplet

Static and Dynamic Typing

A language is statically typed if it is always possible to
determine the (static) type of an expression based on the
program text alone.

A language is strongly typed if it is possible to ensure that
e;/er'y expression is type consistent based on the program text
alone.

A language is dynamically typed if only values have fixed type.
Variables and parameters may take on different types at run-
time, and must be checked immediately before they are used.

Tlpe consistency may be assured by (i) compile-time Tyfe_
checking, (ii) type inference, or (iii) dynamic type-checking.

Kinds of Types

All programming languages provide some set of built-in
types.

O Primitive types: booleans, integers, floats, chars ...
[0 Composite types: functions, lists, tuples ...

Most strongly-typed modern languages provide for additional
user-defined types.

0 User-defined types: enumerations, recursive types,
generic types, objects ...

Type Completeness

The Type Completeness Principle:

No operation should be arbitrarily restricted in the
types of values involved. — Watt

First-class values can be evaluated, passed as arguments and
used as components of composite values.

Functional languages attempt to make no class distinctions,
whereas imperative languages typically treat functions (at
best) as second-class values.

Function Types

Function types allow one to deduce the types of expressions
without the need to evaluate them:

fact :: Int -> Int
42 :: | nt [] fact 42 :: Int

Curried types:
Int ->1Int -> Int

and

plus 5 6 = ((plus 5) 6).
So:

plus::Int->lInt->Int [] plus 5::1Int->Int

Int -> (Int -> Int)

List Types

List Types

A list of values of type a has the type [a] :

[1] ::

[Int]

NB: All of the elements in a list must be of the same type!

[‘a", 2,

Fal se] - -

thisis illegal! can't be typed!

Tuple Types

Tuple Types

If the expressions x1, x2, ..., xn have typest1,t2, .., tn
respectively, then the tuple (x1, x2, ..., xn)has the type
(t1, t2, ..., tn):

(1, [2], 3) :: (Int, [Int], Int)
(a', False) :: (Char, Bool)
((1,2),(3,4)) :: ((Int, Int), (Int, Int))

The unit type is written () and has a single element which is
also written as ().

Monomorphism

Languages like Pascal have monomorphic type systems: every
constant, variable, parameter and function result has a unigue

Type.
0 good for type-checking

[0 bad for writing generic code

O it is impossible in Pascal to write a generic sort
procedure

Polymorphism

A polymorphic function accepts arguments of different types:

| engt h .. [a] -> Int

length [] =0

length (x:xs) =1 + length xs

map 0 (a->b) ->[a] ->[Db]
mp [] []

map f (X:Xxs) f x: mp f xs

(.) . (b->c¢) ->(a->Db) ->(a->c)
f (g9 x)

—~~

—
(@]

~
>
I

Composing polymorphic types

We can deduce the types of expressions using polymorphic
functions by simply binding type variables to concrete types.

Consider:
| engt h . [a] -> Int
map 0 (a->b) ->[a] ->[Db]
Then:
map | ength o [[a]] -> [Int]
[“Hello”, “World”] . [[Char]]
map length [“Hello”, “World”] :: [Int]

Polymorphic Type Inference

Hindley-Milner Type Inference provides an effective
algorithm for automatically determining the types of

polymorphic functions.
@

map f =
map f =
map

mp :: (a->b) ->

The corresponding type system is used in many modern
functional languages, including ML and Haskell.

Type Specialization

A polymorphic function may be explicitly assigned a more

specific type:
1dint :: Int -> Int
1dint x = X

Note that the :t command can be used to find the type of a
particular expression that is inferred by Haskell:

? 0t \x ->[X]
O\x ->[x] :: a->[a]

?7 0t (\x ->[x]) :: Char -> String
O\x ->[x] :: Char -> String

Kinds of Polymorphism

Polymorphism:
O Universal:

— Parametric: polymorphic map function in Haskell; nil
pointer type in Pascal

— Inclusion: subtyping — graphic objects
0 Ad Hoc:
— Overloading: + applies to both integers and reals

— Coercion: integer values can be used where reals are
expected and v.v.

Coercion vs overloading

Coercion or overloading — how does one distinguish?
3+ 4

w W w
o + O
+ B~ +
>~ O B

[1 Are there several overloaded + functions, or just one, with
values automatically coerced?

Overloading

Overloaded operators are introduced by means of type classes:
class Eq a where
==), (/=) :: a ->a -> Bool
X /=y =not (x ==Y)

A type class must be instantiated to be used:
| nstance Eq Bool where
True == True
Fal se == Fal se

True
True
Fal se

Instantiating overloaded operators

For each overloaded instance a separate definition must be
given ...

| nstance Eq Int where (==) = prinkqglnt
| nstance Eq Char where ¢ == =ord c ==ord d
I nstance (Eq a, Eq b) => Eq (a, b) where
(x,y¥) == (u,V) = X==U && y==v
I nstance Eq a => Eq [a] where
[1 =11 = True
[== (y:vys) = Fal se
(X:xs) ==] = Fal se

(X:Xs) == (y:ys) X==y && XS==VySs

User Data Types

New data types can be introduced by specifying (i) a datatype
name, (ii) a set of parameter types, and (iii) a set of
constructors for elements of the type:

data DatatypeNane al ... an =constrl | ... | constrm

where the constructors may be either:
1. Named constructors:
Nanme typel ... typek

2. Binary constructors (i.e., starting with ™:"):
typel CONOP type?2

Enumeration types

User data types that do not hold any data can model
enumerations:

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

Functions over user data types must deconstruct the
arguments, with one case for each constructor:

“rel ax”
“go shoppi ng”
“guess |I'll have to go to work”

what Shal | | Do Sun
what Shal | | Do Sat
what Shal | | Do

Union types

data Tenmp = Centigrade Float | Fahrenheit Fl oat

freezing :: Tenp -> Bool
freezing (Centigrade tenp)=tenp <= 0.0
freezing (Fahrenheit tenp)= tenp <= 32.0

Recursive Data Types

A recursive data type provides constructors over the type
itself:

data Tree a = Lf a | Tree a :*:. Tree a

nytree = (Lf 12 :~: (Lf 23 :/~: Lf 13)) :~: Lf 10

« A\
_ A Lf 10
tree =
v f 12 A

Lf 23 Lf 13

?:t mytree Onytree :: Tree Int

Using recursive data types

| eaves, leaves' :: Tree a -> [4]
| eaves (Lf |) =[]
| eaves (I :*: r) = leaves | ++ |eaves r
| eaves' t = leavesAcc t []
where | eavesAcc (Lf 1) = (I:)
| eavesAcc (I :”™: r) = leavesAcc | . |eavesAcc r

[1 What do these functions do?
[J Which function should be more efficient? Why?
[0 What is (I:) and what does it do?

Equality for Data Types
Why not automatically provide equality for all types of values?

User data types:
data Set a = Set | a]
I nstance Eq a => Eq (Set a) where
Set xs == Set ys = XS subset ys && ys subset XS
where xs subset ys = all (elem ys) xs

NB: all (elem’ys) xs tests that every x in xs is an element of ys

Equality for Functions

Functions:
? (1:: == (\X- >1zzx)
ERRCR: Cannot derive Instance in expression
*** Expression . (==) d148 ((==) {dict} 1) (\x-

>(==) {dict} 1 Xx)
*** Required instance : Egq (Int -> Bool)

Determining equality of functions is undecidable in generall

oo OoOoo On

What you should know!

How are the types of functions, lists and tuples specified?

How can the type of an expression be inferred without
evaluating it?

What is a polymorphic function?

How can the type of a polymorphic function be inferred?
How does overloading differ from parametric
polymorphism?

How would you define == for tuples of length 3?

How can you define your own data types?

Why isn't == pre-defined for all types?

Can you answer these questions?

[1 Can any set of values be considered a type?

[1 Why does Haskell sometimes fail to infer the type of an
expression?

[J What is the type of the predefined functional | 2 How
would you implement it?

5. An application of Functional
Programming

Overview
0 Huffmann encoding

[0 variable length encoding based on character
frequency

Architecture of a functional Huffmann encoder

How to use recursion correctly O ensuring termination
Representing and manipulating trees

Encoding trees as text; parsing stored trees
Continuation-style IO

"It doesn't always pay to be lazy!" — forcing eager
evaluation

N I Y Y N B O

Reference

O H. Abelson, 6. Sussman and J.Sussman, Structure and
Interpretation of Computer Programs, MIT electrical
engineering and computer science series., McGraw-Hill,

1991.

Encoding ASCIT

"I amwhat | am

Naive encoding requires at least 4 bits to
encode 9 different characters:

16 characters x 4 bits/character = 64 bits
0000 0001 0010 0011 0100 0010 0101
0110 0011 0111 0010 OO0O1 0010 0011
0100 0000

0000

0001

(blank)

0010

0011

0100

0101

-+ | > | 3

0110

0111

1000

Huffmann encoding

Huffmann encoding assigns fewer
bits to more frequently used
characters.

4x2 + 9x3 + 4x4 = b1 bits
011 100 00 010 101 OO0 1100
1101 010 1110 OO0 100 OO 010
101 011

char | frequency | encoding
(blank) 4 00
a 3 010
! 2 011
I 2 100
m 2 101
w 1 1100
h 1 1101
t 1 1110
1 1111

Huffmann decoding

A Huffmann encoded text can be decoded by using the bits to
walk down the encoding tree and outputting the characters at
the leaves:

0 1
0 1 0 1
(blank) 0 1 0 1 0 1
a " I m
0 1 0 1
w h t

011 100 00 010 101 OO 1100 1101 010 1110 00
1“1 am what

Generating optimal trees

Huffmann's algorithm generates the optimal encoding/
decoding tree by recursively merging the two smalles’r” (by
weight) subtrees:

0 blankg a3 I, mo wy hy 11 .1
blan L(4 a3z Io, mo wyq hl (t .)2
blan k4 as Iz mo (W h)z (1' .)2
blank4 a3z I mp ((w h) (1 .))4
blanks a3z (I m)4 ((w h) (t .))4
(blank a)7 (I m)4 ((w h) (T .))4
(blank a)7 ((T m) ((w h) (1 .)))s

0 ((blank a) ((T m) ((w h) (t)15
[J Write a program to Huf fmann encode and decode text files.

I O A N

Architecture

At the coarsest granularity, we need three components to

encode and decode files:

Plain text file >

Character frequency

'

Cipher text file o

Huffmann tree

'

Huffmann tree file

Encoding map

A Simple testing framework

A test consists of a single named test case, or a suite of tests:
data Test nanme test =
Test nanme test
| Test nane test :+. Test nane test
deriving Show

We return only the names of tests that fail:
dotest (Test nane test) =
If (test ())
then ""
el se name ++ " FAILED\n"
dotest (tl1l :+: t2) =
(dotest t1) ++ (dotest t2)

Testing

assert test =
let result = dotest test
I n
If length(result) >0
then putStr result
el se putStr "PASSED all tests”

tests =
Test "testl1l" (\x -> 1 == 1)
.+ Test "test2" (\x -> 2 == 2)

assert all Tests
[1 PASSED all tests

Frequency Counting

We represent frequencies as lists of pairs of Chars and Ints:
type CharCount = (Char,Int)

Compute a [CharCount] for a given String
freqgCount :: String -> [Char Count]
fregCount "" =[]
freqCount (c:s) = incCount c¢ (freqCount s)

Increment the [CharCount] for a given Char
| ncCount :: Char -> [CharCount] -> [Char Count]

| ncCount c [] =[(c,1)]
I ncCount ¢ ((cl1,n):ccList)
| ¢ ==cl = (cl, n+l):ccli st
| ot herw se = (c1,n):(incCount c ccList)

How to use recursion correctly!

In order to ensure that a recursive function will terminate:

1. Carefully establish the base cases:
freqgCount "" =[]

[0 base case is an empty string

2. Ensure that every recursive invocation reduces some
measure of size, and therefore will eventually reach a
base case:

fregCount (c:s) = i1ncCount c (fregCount s)

0 recursive call reduces length of argument string O
will reach base case

Freqcount tests

lam="\"] amwhat | am\""

freqgCount I am
oy, (0, ('my2), (fFat,3), (L 4),
(1,2, ("t",1), ("h",1), ("w,1)]

testFreqCount = let result = fregCount Tamin
Test "freqCount |ength”
(\x ->length result == 9)
.+ Test "freqCount sunf
(\x -> sum (map snd result) == 17)

[1 What other tests make sense to specify?
[1 How are sum and snd defined?

Trees

We can represent a Huffmann tree as a user data type:

data Tree a = Leaf a
| Tree a : . Tree a

Weigh a Tree
wei ght :: Tree CharCount -> Int
wei ght (Leaf (ch,n)) n
wei ght (treel :~: tree2) (wei ght treel)
+ (wel ght tree2)

Testing Trees

Constructors are functions too:
map Leaf (fregCount 1am

O Leaf (""',2), Leaf ('.',1), Leaf ('nm,2),
Leaf ('a',3), Leaf (' ',4), Leaf ('I',2),
Leaf ('t',1), Leaf ('h',1), Leaf ('W,1)]

map wei ght (map Leaf (freqCount 1am)
o[2, 1, 2, 3, 4, 2, 1, 1, 1]

test Wi ght = Test "weight"
(\x -> sum (map weight (map Leaf (freqCount iam))
== 17)

Merging trees

Recursively merge smallest trees together till a single tree
results

mergelrees .. [Tree CharCount] -> Tree Char Count

mergelrees [tree] = tree -- base case
mergeTrees (treel:tree2:treeList) -- otherw se
| wl < w2 = m treeList treel tree2 []
| otherw se = nm treeList tree2 treel []

where { wl = (weight treel);
W2 = (weight tree2) }

We can decompose tree merging by means of a helper function

Usage: mt untested trl tr2 tested, where weight(trl) <
weight(tr2) and tested is a list of trees with weights bigger
than either trl or tr2

m [] trl tr2 [] =trl (™ tr2
m [] trl tr2 tested =

mergeTrees ((trl :": tr2):tested)
m (tr3:untested) trl tr2 tested

w3 < wl = m untested tr3 trl (tr2:tested)
W3 < w2 =m untested trl tr3 (tr2:tested)
ot herw se =m untested trl tr2 (tr3:tested)

where { w1l = (weight trl); w2 = (weight tr2);
w3 = (weight tr3) }

[J How do we know this terminates?
[1 Is there a more efficient way to merge trees?

Tree merging ...

mergeTrees (map Leaf (fregCount iam)
O ((Leaf ('m,2)

.(i_eaf (‘w,1) :~: Leaf ("h',1))
)

A

.(.(Leaf ('."',1) :~: Leaf ('t',1))

Leaf ("', 2)
)
)

A

.(.Leaf (" ',4)

(Leaf ("1',2) -~ Leaf (‘a',3))
)

Extracting the Huffmann tree

We remove the character counts to leave the Huffmann tree:
Strip out the character counts from a Tree of CharCounts
charTree :: Tree CharCount -> Tree Char
char Tree (Leaf (ch,n)) = Leaf ch
charTree (trl :”: tr2) = (charTree trl)
N (charTree tr2)

Generate an optimal Huffmann encoding tree for a given text
huf :: String -> Tree Char
huf text = charTree (nergeTrees
(map Leaf (fregCount text)))

Generating the tree

huf 1am
O((Leaf 'ni
N (Leaf 'w 7 Leaf '"h'))
N ((Leaf '"." /N Leaf 't')
N Leaf """))
N (Leaf !
N
(Leaf 'I" :”: Leaf '"a'))

NB: The resulting tree is not necessarily unigue.

Extracting the encoding map

To encode text, we need to store the path to each Char in the
tree:

nkEncode :: String -> (Tree Char) -> [(Char, String)]
nkEncode prefix (Leaf ch) = [(ch, prefix)]
nkEncode prefix (trl :": tr2)
(nkEncode (prefix ++ "0") tr1l)
++ (nkEncode (prefix ++ "1") tr2)

mkEncode "" (huf 1am
O[('m,"000"), ("w,"0010"), ('h',"0011"),
(*.","0100"), ('t',"0101"), ('"","011"),
(" ',"10"), ("I',"110"), ('a',"111")]

Applying the encoding map

To encode text, we just look up characters in the encoding map:
encChar :: [(Char, String)] -> Char -> String
encChar [] _ = undefined -- shoul dn’t happen!
encChar ((ch,str):table) c

| ¢ == ch str
| otherw se encChar table c

encode :: Tree Char -> String -> String
encode tree text = foldr (++) ""
(map (encChar (nkEncode "" tree)) text)

encode (huf 1Tam 1am [
011110101110001000100011111010110110101110000100011

foldr

NB: f ol dr is defined in the standard prelude:
foldr :: (a->b->Db) ->b->[a] ->D
foldr f z []= 2
foldr f z (x:xs)=f x (foldr f z xs)

foldr (*) 1 [1..10]
[3628800

Decoding by walking the tree

To decode text, we just walk the tree, keeping a copy of the
original tfree so we can start over from the root each time we

reach a leaf:
decode :: Tree Char -> String -> String
decode tree = walk tree tree -- NB: higher order
walk :: Tree Char -> Tree Char -> String -> String
wal k tree (trl:”:tr2) ("0 :rest) =walk tree trl rest
wal k tree (trl:”:tr2) ("1':rest) =walk tree tr2 rest
wal k tree (Leaf ch) rest =[ch] ++ walk tree tree rest
wal k tree nav [|] =[]

decode (huf 1am (encode (huf 1am 1am
O"\"l amwhat | am\""

Testing

Test that decoding the encoded text yields the original:
test HUf text = Test "huf encode/ decode”

(\x -> decode (huf text) (encode (huf text) text)
== text)

assert (testHuf 1am
[1 PASSED al | tests

assert (testHuf "")
O Programerror: {mergeTrees []}

Is this a reasonable thing to happen?

Representing trees as text

We need a way to store Huffmann trees as plain text.

We represent leaves by their character values, and
intermediate nodes as parenthesized expressions, taking care
to encode parentheses:

showlree :: Tree Char -> String
showlree (Leaf ch

ch =="(' = "\\ ("

ch ==")' "\\)"

ch == "\\"' = "\
ch =="'\n' = "\\n"
ot herw se = [ch]

showlree (trl :”*: tr2)="(" ++ (showlree trl)
++ (showlree tr2) ++ ")"

Representing trees as text ...

showTree (huf iam
O (CCmtwn)) (C. 1)) ((Ta)))”

showTree (huf "()\\\n")
O "((\VANNAN) (VY (VL))

put Str (showlree (huf "()\\\n"))
O (W) (V(V)))

Using a stack to parse stored trees

Naturally, we need a way to parse and reconstruct the stored
trees.

A standard solution is to push the leaves on a stack of trees,
joining the top two elements every time a right parenthesis is
encountered:

Example: ((ab)(cd))

d
b C C c/d
alla |a‘b||a*b||a*b || a*b | (a*b)”*(c”d)

If the parentheses are balanced, a single tree will be left on
the stack.

Parsing stored trees

Parse a Lisp-style parenthesized string, generating a Tree Char

parseTree :: String -> Tree Char
parseTree =pt [] -- initial stack is enpty
pt [Tree Char] -> String -> Tree Char

pt [tree] [] = tree

pt stack (ch:str)

ch == "(= pt stack str

ch ==") = pt (join stack) str

ch == "\\'" = pt
(Leaf (unescape (head str)):stack)
(tail str)

otherwse = pt (Leaf ch:stack) str

Parsing stored trees ...

Join the top two trees of the stack into one
join :: [Tree a] -> [Tree a]
join (trl:tr2:stack)= (tr2:”:trl):stack
Unescape the character following a backslash
unescape : :

unescape
unescape
unescape
unescape

I(I
I)I
I\\I
Inl

Char -> Char
— l(l

l)l

l\\l

I\nl

parseTree (showlree (huf "()\\\n"))

[0 (Leaf "\’

N Leaf '\n') /™ (Leaf ' (°

- N\

. Leaf

"))

Reading and Writing Files

Now we just need some functions to read the input file and
write the result files:

Reads a plain text file and generates the cipher and tree files
enc .. FilePath -> 10 ()

Reads the cipher and tree files and regenerates the plain text
dec :: FilePath -> 1 Q)

There are standard libraries for dealing with user and file I/0.

[J How can you make sense of I/0 in a purely functional world
with no state changes?

See chapter 7 of "A Gentle Introduction to Haskell” for the
complete story on IO!

Using the program (I)

From shell:
echo '"|I amwhat | am"' > | am

From Haskell:
enc "1 ant
From shell:
% cat 1 am huf

U (CCC) (wh))) ((m) (%) a)))

% cat 1 am enc

[111011010111110001001000111111100011010111110000011
1010000

[0 Why do we get a different Hufmann encoding tree?

Using the program (II)

Let'’s encode the source code of the program itself.

From Haskell:

enc "huf"
[(8598 reductions, 12940 cells)
| NTERNAL ERROR: Appl ication paraneter stack overfl ow.

[1 What went wrong?

—h

reqgCount "ab
| ncCount '
i ncCount '
| ncCount '
| ncCount '
i ncCount '
| ncCount '
(‘c',1) :
(‘c',1) :
(‘c',1) :
(‘c',1) :

N O O

Tracing our program

c"
(freqCount "bc")

(incCount 'b'" (freqCount "c"))
(incCount 'b" (incCount 'c' (freqgCount
(incCount 'b" (incCount 'c' []))
(incCount '"b" (('c',1) : []))

]
]

DY DY DD

(("c',1) : incCount

]
b)
IncCount 'a" (incCount 'Db)
[
]

O
O
incCount "a" (('b',1) :
("b',1) : incCount "a' |
("b',1) : ("a,1) : []

]

"))

Because Haskell is lazy, nothing will happen until the entire

input has been read, thereby exhausting stack space for larger

input files!

Frequency Counting Revisited

We need frequency counting to be evaluated eagerly!
We can force evaluation by requiring values to be produced

fcEager (c:s) front back -- front does not contain c, back to be
checked

fcEager :: String -> [CharCount] -> [CharCount]
-> [Char Count |
fceEager "" [] ccl = ccl

fcEager (c:s) front [] = fcEager s [] ((c,1):front)
fcEager (c:s) front ((cl,n): back)

| (¢ ==cl) =fckager s [] (front ++ ((c, n+l): back))
| otherwse = fcEager (c:s) ((cl,n):front) back

w—
()

N I O Y

Tracing eager evaluation

Eager "abc" [] []

fcEager “bc” [] (‘a ,1):[] - new char
fcEager “bc” (‘a',1):[] [] ‘b’ I="'4d
fcEager “c” [] (‘b',1):(‘a,1):[] - new char
fckager “c” (‘b ,1):[] (‘a,1):[] -- et =1
fckager “c” (‘a’ ,1):(‘b,1):[] [] -- et I=a
fceager “” [] (‘c',1):('a ,):('b,1:[] [] -- base case
(‘c’,1):('a,l):('b,1):[] [] ‘¢ I=ta

Final version

fc2 s = fckager s [] [] -- eager fc
enc2 = ...
enc2 "huf"

[0 (2117457 reductions, 6145824 cells,
100 gar bage col |l ections)

O 0o O 0O

What you should know!

How can you be sure a recursive function will terminate?
How do we know that walk terminates?

How do you know where characters end in Huffmann
encoded bit strings?

How can you generate a tree from its string
representation?

How can you force eager evaluation?

o OO O

Can you answer these questions?

Can you prove that Huffmann's algorithm really generates
the optimal map?

What would happen if encode used foldl instead of foldr?

Can parse Tree be re-written so it uses the run-time stack
instead of representing a stack as a list?

Our Huffmann encoder actually outputs one byte for each
"0" or "1”l How would you adapt the program to produce bits
instead of bytes?

Which functions implement the arrows in the architecture
diagram?

6. Introduction to the Lambda

Calculus

Overview
0 What is Computability? — Church's Thesis
0 Lambda Calculus — operational semantics
0 The Church-Rosser Property
[0 Modelling basic programming constructs

References

0 Paul Hudak, "Conception, Evolution, and Application of
Functional Programming Languages,” ACM Computing
Surveys 21/3, Sept. 1989, pp 359-411.

[0 Kenneth C. Louden, Programming Languages: Principles
and Practice, PWS Publishing (Boston), 1993.

0 H.P. Barendregt, The Lambda Calculus — I'ts Syntax and
Semantics, North-Holland, 1984, Revised edition.

What is Computable?

Computation is usually modelled as a mapping from inputs to
outputs, carried out by a formal "machine,”" or program, which
processes its input in a sequence of steps.

Problem
" : yes
— Effectively
™ computable”
B function ™\
no
input program/machine output

An "effectively computable” function is one that can be
computed in a finite amount of time using finite resources.

Church’'s Thesis

Effectively computable functions [from positive
integers to positive integers]are just those definable
in the lambda calculus.

Or, equivalently:

It is not possible to build a machine that is more
powerful than a Turing machine.

Church'’s thesis cannot be proven because “"effectively

computable” is an infuitive notion, not a mathematical one. It
can only be refuted by giving a counter-example — a machine
that can solve a problem not computable by a Turing machine.

So far, all models of effectively computable functions have
shown to be equivalent to Turing machines (or the lambda
calculus).

Uncomputability

A problem that cannot be solved by any Turing machine in finite
time (or any equivalent formalism) is called uncomputable.

Assuming Church's thesis is true, an uncomputable problem
cannot be solved by any real computer.

The Halting Problem:

Given an arbitrary Turing machine and its input tape,
will the machine eventually halt?

The Halting Problem is provably uncomputable — which means
that it cannot be solved in practice.

What is a Function? (I)

Extensional view:

A (total) functionf: A — Bisa subsetof A xB (i.e.,a relation)
such that:

1. for each aUJA, there exists some (a,b) O f
(i.e., f(a) is defined), and

2. if (Cl,bl) 0 f and (C(, bz) [] f, then b1 = b2
(i.e., f(a) is unigue)

What is a Function? (IT)

Intensional view:

A functionf: A - Bis an abstraction A x . e, where x is a
variable name, and e is an expression, such that when a value
alJA is substituted for x in e, then this expression (i.e., f(a))
evaluates to some (unique) value b[IB.

The Lambda Calculus — syntax

The Lambda Calculus was invented by Alonzo Church [1932] as
a mathematical formalism for expressing computation by
functions.

Syntax:
e = X a variable
| Ax.e anabstraction (function)
| eje; a (function) application

A x . x — is a function taking an argument x, and returning x

Lambda Calculus — semantics

(Operational) Semantics:

a conversion AX.eo Ay.[y/x]e wherey is not
(renaming): freein e

B reduction (Ax.e))er,— [eyx/x]e; avoiding name

(application): capture

n reduction: AXx.(ex)- e ;;z is not free

The lambda calculus can be viewed as the simplest possible
pure functional programming language.

Beta Reduction

Beta reduction is the computational engine of the lambda
calculus:

Define: T=Ax.Xx

Now consider:

IT=(Ax.x)(Ax.x) [(Ax.x)/ x]x 3 reduction
(A Xx.Xx) substitution

I

i1

Lambda expressions in Haskell

We can implement most lambda expressions directly in Haskell:

| = \X -> X

?71 5

5

(2 reductions, 6 cells)
?1 1 5

5

(3 reductions, 7 cells)

Free and Bound Variables

The variable x is bound by A in the expression: A x.e
A variable that is not bound, is free:

fv(x) = { x}

fv(e; e,) = fv(eq) O fv(e,)
fv(A x .e) = fv(e) - { x }

An expression with no free variables is closed.
(AKA a combinator.) Otherwise it is open.

For example, y is bound and x is free in the (open) expression:
AY.XYy

Why macro expansion is wrong

Syntactic substitution will not work:

(AX.Ay.xy)y -[y/x](Ay.xy) Breduction
zZ (Ay.yy) incorrect substitution!

Since y is already boundin (A\y . X y), we cannot directly
substitute y for x.

Substitution

We must define substitution carefully to avoid name capture:

[e/x]x=e
[e/x]y=y if xXZy
[e/x] (e1 e2) = ([e/x] eq) ([e/x] &)

[e/xX](Ax.e))=(AX.eq)
[e/x](Ay.e))=(\y.[e/x]eq) if xZyandy [Jfv(e)
[e/xX](Ay.e))=(Az.[e/x][z/y]ey) if xZyand
z [fv(e) U fv(ey)
Consider:
r v T

(AX. (ANY.X)(Ax.x)D)x)y -[y/x]J((Ay.x)(Ax.x))x
=((Az.y)(Ax.x))y

Alpha Conversion

Alpha conversions allows us to rename bound variables.

A bound name x in the lambda abstraction (A x.e) may be
substituted by any other name y, as long as there are no free

occurrences of y in e:

Consider:
(AX.Ay.Xy)y

(AX.Az.x2)y a conversion
[y/x](Az.x2z) B reduction
Az.yz)

y n reduction

Eta Reduction

Eta reductions allows one to remove "redundant lambdas”.

Suppose that f is a closed expression
(i.e., there are no free variables in f).

Then:
(Ax.fx)y - fy B reduction

So, (A x.f x) behaves the same as f |

Eta reduction says, whenever x does not occur free in f, we can
rewrite (A x.f x)as f.

Normal Forms

A lambda expression is in normal form if it can no longer be
reduced by beta or eta reduction rules.

Not all lambda expressions have normal forms!

Q=(AX.xXX)(Ax. XX)>[(Ax.xx)/x](xx)
=(Ax.xx)(AXx.xx) [Breduction
S (Ax.xXx)(Ax.xx) Breduction
S (Ax.xXx)(Ax.xx) Breduction

H LN]

Reduction of a lambda expression to a normal form is analogous
to a Turing machine halting or a program terminating.

Evaluation Order

Most programming languages are strict, that is, all expressions
passed to a function call are evaluated before control is passed
to the function.

Most modern functional languages, on the other hand, use lazy
evaluation, that is, expressions are only evaluated when they
are needed.

Consider:
sqr n =n * n
Applicative-order reduction:
sgqr (2+5) U sqr 7 O 7*7 U 49
Normal-order reduction:
sqr (2+5) O (2+5) * (2+5) O 7 * (2+5) O 7 * 7 O 49

The Church-Rosser Property

"I'f an expression can be evaluated at all, it can be
evaluated by consistently using normal-order
evaluation. If an expression can be evaluated in
several different orders (mixing normal-order and
applicative order reduction), then all of these
evaluation orders yield the same result.”

So, evaluation order “"does not matter” in the lambda calculus.

Non-termination

However, ap#olicaﬁve order reduction may not terminate, even
if a normal form exists!

(AX.Y)((Ax.xx)(AXx.xXx))

Applicative order reduction Normal order reduction

S (AX.y)((Ax.xx)(Ax.xXx)) Y
S (AXx.y)((Ax.xx)(Ax.xXx))

— aaas

Compare to the Haskell expression:
(\x ->\y ->x)1(5/0) 01

Currying
Since a lambda abstraction only binds a single variable,

functions with multiple parameters must be modelled as
Curried higher-order functions.

To improve readability, multiple lambdas can be suppressed, so:

AXY.X=AX.Ay.X
Abxy.bxy=Ab.Ax.Ay.(bx)y

Representing Booleans

Many programming concepts can be directly expressed in the
lambda calculus. Let us define:

True = AXy.Xx
False = Axy.y
not = Ab . b False True
if bthenxelsey =Abxy.bxy

then:
not True = (Ab .b False True) (A xy.x)
-~ (AXxy.x)False True
— False
if True thenxelsey = (Abxy.bxy)(Axy.x)xy
- (Axy.x)xy

— X

Representing Tuples

Although tuples are not supported by the lambda calculus, they
can easily be modelled as higher-order functions that "wrap"
pairs of values.

n-tuples can be modelled by composing pairs ...

Define: pair = (AXyz.zxYy)
first = (Ap.p True)
second = (Ap.p False)

then: (1,2) = pair12
~(Az.z12)
first (pair 1 2) — (pair 1 2) True
~ Truel?2
-1

In Haskell:

t

f

pair
first
second

\ X -
\ X -
\ X -
\p -
\p -

V V V V V

Tuples as functions

? first (pair 1 2)

1

? first (second (pair 1 (pair 2 3)))

2

Representing Numbers

There is a "standard encoding” of natural numbers into the
lambda calculus:

Define:

O=(Ax.x)
succ = (An. (False, n))

then:
1 =succO —~ (False, 0)
2 = succ 1 —~ (False, 1)
3 = succ 2 —~ (False, 2)
4 = succ 3 —~ (False, 3)

Working with numbers

We can define simple functions to work with our numbers.
Consider:
iszero = first
pred = second

then:
iszero 1 = first (False, O) ~ False
iszeroO=(Ap.pTrue)(Ax.x) - True
pred 1 = second (False, 0) -0

[J What happens when we apply pred 0O? What does this mean?

oo Oogo O

What you should know!

Is it possible to write a Pascal compiler that will generate
code just for programs that terminate?

What are the alpha, beta and eta conversion rules?

What is name capture? How does the lambda calculus avoid
it?

What is a normal form? How does one reach it?

What are normal and applicative order evaluation?

Why is normal order evaluation called lazy?

How can Booleans, tuples and numbers be represented in
the lambda calculus?

O 0O OO0Ofn

Can you answer these questions?

How can name capture occur in a programming language?
What happens if you try to program Q in Haskell? Why?

What do you get when you try to evaluate (pred 0)? What
does this mean?

How would you model negative integers in the lambda
calculus? Fractions?

Is it possible to model real numbers? Why, or why not?

/. Fixed Points and other Calculi

Overview
0 Recursion and the Fixed-Point Combinator
0 The typed lambda calculus
0 The polymorphic lambda calculus
0 A quick look at process calculi

References:

0 Paul Hudak, "Conception, Evolution, and Application of
Functional Programming Languages,” ACM Computing
Surveys 21/3, Sept. 1989, pp 359-411.

Recursion

Suppose we want to define arithmetic operations on our
lambda-encoded numbers.

In Haskell we can program:
plus n m
| n ==

| otherw se

m
plus (n-1) (mtl)

so we might try to "define":
plus=Anm.iszeronm (plus (predn) (succm))

Unfortunately this is not a definition, since we are trying to use
plus before it is defined. IL.e, plus is free in the "definition"l

Recursive functions as fixed points

We can obtain a closed expression by abstracting over plus:
rplus = A plus nm . iszero n
m
(plus (predn) (succm))

rplus takes as its argument the actual plus function to use and
returns as its result a definition of that function in terms of

itself. In other words, if fplus is the function we want, then:
rplus fplus ~ fplus

I.e., we are searching for a fixed point of rplus ...

Fixed Points

A fixed point of a functionf is a value p such thatf p = p.

Examples:
fact 1 =1
fact 2 = 2
fib O =0
fib1l1 =1

Fixed points are not always "well-behaved":
succ n =n +1

[0 What is a fixed point of succ?

Fixed Point Theorem

Theorem:

Every lambda expression e has a fixed point p such that
(ep) - p.

Proof: Left:

Y= A . (Ax.f(xx)Ax.f(xx))
Now consider:
p=Ye - Ax.e(xx)) (Ax.e(xx))
S e((Ax.e(xx))(Ax.e(xx)))
= ep

So, the "magical Y combinator” can always be used to find a
fixed point of an arbitrary lambda expression.

Using the Y Combinator

Consider:
f = Ax. True
then:
YT > f(YT) by FP theorem
= (A x. True) (Y)
- True
Consider:
Y succ - succ (Y succ) by FP theorem

— (False, (Y succ))

[J What are succ and pred of (False, (Y succ))? What does this
represent?

Recursive Functions are Fixed Points

We seek a fixed point of:
rplus = A plus nm . iszero nm (plus (pred n) (succm))
By the Fixed Point Theorem, we simply take:
plus =Y rplus
Since this guarantees that:

rplus plus ~ plus
as desired!

Unfolding Recursive Lambda Expressions

plus11 = (Y rplus)11
rplus plus 11
iszero 11 (plus (pred 1) (succ 1))
False 1 (plus (pred 1) (succ 1))
plus (pred 1) (succ 1)
rplus plus (pred 1) (succ 1)
iszero (pred 1) (succ 1)

(plus (pred (pred 1)) (succ (succ 1)))
iszero O (succ 1) (...)
True (succ 1) (...)
succ 1
2

A

Vol

The Typed Lambda Calculus

There are many variants of the lambda calculus.

The typed lambda calculus just decorates terms with type
annotations:

Syntax: e = x' | elT2—>Tl ezTZ | ()\ xr2.er1)T2_>r1
Operational Semantics:
Axte et o Ay [y®/x e y'2 not free in "
()\ XTZ . eltl) eZTZ [[eZTZ/XTZ] elTl
A X (e x™@) O e x'2 not free in e™

Example:
True = (AxA . (AyB . xA)B-AyA-(E-A)

The Polymorphic Lambda Calculus

Polymorphic functions like "map” cannot be typed in the typed
lambda calculus!

Need type variables to capture polymorphism:
B reduction (ii): (A x¥ . e/ e,? 0 [12/ v][e,%/x" Je™t

Example:
True = (A . (AyP . x®)P-0ya-(B-0a)
True®~ B~ gApB (AyP oA)B-ApE
A
- a

Hindley-Milner Polymorphism

Hindley-Milner polymorphism (i.e., that adopted by ML and
Haskell) works by inferr'in? the type annotations f%r' a slightly
restricted subcalculus: polymorphic functions.

If.

doubl eLen Ien len' xs ys = (len xs) + (len' ys)
then

doubl eLen length length “aaa” [1, 2, 3]
is ok, but if

doubl eLen' len xs ys = (len xs) + (len ys)

then
doubl eLen' length “aaa” [1, 2, 3]

is a type error since the argument | en cannot be assigned a
unique typel

Polymorphism and self application

Even the polymorphic lambda calculus is not powerful enough to
express certain lambda terms.

Recall that both Q and the Y combinator make use of “self
application”:

Q=(Ax.XX)(AXx.xx)

[J What type annotation would you assign to (A x . x x)?

Other Calculi

Many calculi have been developed to study the semantics of
programming languages.

Object calculi: model inheritance and subtyping ..
[0 lambda calculi with records

Process calculi: model concurrency and communication
0 CSP, CCS, rtcalculus, CHAM, blue calculus

Distributed calculi: model /location and failure
[0 ambients, join calculus

What you should know!

[J Why isn't it possible to express recursion directly in the
lambda calculus?

What is a fixed point? Why is it important?

[]

[J How does the typed lambda calculus keep track of the types
of terms?

[]

How does a polymorphic function differ from an ordinary
one?

Can you answer these questions?

[J Are there more fixed-point operators other than ¥?

[J How can you be sure that unfolding a recursive expression
will terminate?

[J Would a process calculus be Church-Rosser?

8. Introduction to Denotational
Semantics

Overview:
[0 Syntax and Semantics
0 Approaches to Specifying Semantics
[0 Semantics of Expressions
0 Semantics of Assignment
0 Other Issues

References:

0 D. A. Schmidt, Denotational Semantics, Wm. C. Brown
Publ., 1986

0 D. Watt, Programming Language Concepts and
Paradigms, Prentice Hall, 199

Defining Programming Languages

Three main characteristics of programming languages:

1. Syntax: What is the appearance and structure of its
programs?

2. Semantics: What is the meaning of programs?

The static semantics tells us which (syntactically valid)
programs are semantically valid (i.e., which are type
correct) and the dynamic semantics tells us how to
interpret the meaning of valid programs.

3. Pragmatics: What is the usability of the language?

How easy is it to implement? What kinds of applications
does it suit?

Uses of Semantic Specifications

Semantic specifications are useful for language designers to
communicate with implementors as well as with programmers.

A precise standard for a computer implementation:

How should the language be implemented on
different machines?

User documentation: What is the meaning of a
program, given a particular combination of language
features?

A tool for design and analysis: How can the language
definition be funed so that it can be implemente
efficiently?

Input to a compiler generator: How can a reference
implementation be obtained from the specification?

Methods for Specifying Semantics

Operational Semantics:
O [program]| = abstract machine program
0 can be simple to implement
0 hard to reason about

Denotational Semantics:

O [program]| = mathematical denotation
(typically, a function)

0 facilitates reasoning
0 not always easy to find suitable semantic domains

Methods for Specifying Semantics ...

Axiomatic Semantics:
O [program]| = set of properties
0 good for proving theorems about programs
0 somewhat distant from implementation

Structured Operational Semantics:

[0 [[program]| = transition system
(defined using inference rules)

[0 good for concurrency and non-determinism
[0 hard to reason about equivalence

Concrete and Abstract Syntax

How to parse "4 * 2 + 1"?
Abstract Syntax is compact but ambiguous:

Expr ::= Num | Expr Op Expr
Op SRRV
Concrete Syntax is unambiguous but verbose:
Expr ::= Expr LowOp Term | Term
Term ::= Term HighOp Factor | Factor
Factor ::= Num | (Expr)
LowOp nz | -
HighOp n= x|

Concrete syntax is needed for parsing, abstract syntax
suffices for semantic specifications.

A Calculator Language

Abstract Syntax:

Prog = 'ON' Stmt

Stmt = Expr 'TOTAL' Stmt
| Expr 'TOTAL' 'OFF'

Expr = Expr; '+ Expr;

Expr; * " Expr;

'IF Expry ', " Expr, ', " Exprs
'LASTANSVER'

‘(" Expr)’

Num

The program "ON 4 * (3 + 2) TOTAL OFF" should print out
20 and stop.

Calculator Semantics

We need three semantic functions: one for programs, one for
statements (expression sequences) and one for expressions.

The meaning of a program is the list of integers printed:
Programs:
P : Program - Int*
PIONST =S[IST(0)
A statement may use and update LASTANSWER:
Statements:
S :: ExprSequence - Int - Int*
SLETOTALS QI (n) = letn'=E [E] (n)
incons(n', SIS T (n))
STETOTALOFF [(n) = [ETE T (n)]

Calculator Semantics. ..

Expressions:
E : Expression — Int - Int

ETE1I+E2T(n)=ETE1T(M+ET[E2
ETE1*E2T(n)=ETE1T(MxET[E2

EJIFEl, E2, E3](n) =/ fFEJE1IT(n)=0
then€E [[E2 T (n)
e/seE [E3 I (n)

EEEDM)

E [LASTANSVER] (n
EL(E) I(n
E[[N]](

vvv
mn n n

I (n)
I (n)

Semantic Domains

In order to define semantic mappings of programs and their
features to their mathematical denotations, the semantic
domains must be precisely defined:

data Bool = True | Fal se

(&), (|]|) :: Bool -> Bool -> Bool
False && x = False

True && x =X

False || x =x

True || x = True

not :: Bool -> Bool

not True = Fal se

not Fal se True

Data Structures for Abstract Syntax

We can represent programs in our calculator language as
syntax trees:

data Program = On Expr Sequence

dat a ExprSequence = Total Expression ExprSequence
| Total OFf Expression

data Expression = Plus Expression Expression

Ti mes Expression Expression

| f Expression Expression Expression

Last Answer

Braced Expression

N | nt

Representing Syntax

The test program " ON 4 * (3 + 2) TOTAL OFF " can be parsed
as:

A

*/ 3
S—

ON TOTAL CFF ~>

Prog —— Stmt

And represented as:
test =On (Total Of (Tinmes (N 4)
(Braced (Plus (N 3)
(N 2

)))))

Implementing the Calculator

We can implement our denotational semantics directly in a
functional language like Haskell:
Programs:

pp :: Program-> [Int]

pp (On s) =sss 0

Statements:
sS .. ExprSequence -> Int -> [Int]
ss (Total e s) n =1let n' = (ee e n)
inn : (sssn')
ss (TotalOf e) n = (eeen) : []

Implementing the Calculator ...

Expressions:
ee .. Expression -> Int -> Int
ee (Plus el e2) n (ee el n) + (ee e2 n)
ee (Tines el e2) n (ee el n) * (ee e2 n)
ee (If el e2 e3) n

| (ee el n) == = (ee e2 n)
| otherw se = (ee e3 n)
ee (Last Answer) n =n
ee (Braced e) n = (ee e n)
ee (N num n = num

A Language with Assignment

Prog = Cmd'.’

Cmd == Cmd;';' Cmd,
| 'if' Bool 'then' Cmd; ‘el se’ Cmd,
| Id ": =" Exp

Exp u= Expp '+ Exp;
| Id
| Num

Bool := Expy '=" Exp,
| 'not ' Bool

Example:
“z:=1; 1f a=0thenz :=3elsez:=z+a.’

Input number initializes a, output is final value of z.

Representing abstract syntax trees

Data Structures:

data Program
dat a Command

Dot Conmand

CSeq Conmand Conmmand

Assign ldentifier Expression
| f Bool eanExpr Command Conmand
Pl us Expression Expression

|d Identifier

Num | nt

Equal Expression Expression
Not Bool eanExpr

Char

dat a Expression

dat a Bool eanExpr

type Identifier

An abstract syntax tree

Example:
“z:=1:1f a=0thenz :=3 elsez:=z + a.”

Is represented as:

Dot (CSeq (Assign 'z" (Num 1))
(If (Equal (Id 'a') (NumO))
(Assign 'z' (Num 3))
(Assign 'z' (Plus (Id 'z") (Id "a")))

Modelling Environments

A store is a mapping from identifiers to values:
type Store = ldentifier -> Int

newstore :: Store
newstore id = 0
update :: ldentifier ->Int -> Store -> Store
update id val store = store
where store' 1d
| 1d" =1d = val
| otherw se =

store i d'

Functional updates

Example:
envl = update 'a'" 1 (update 'b' 2 (newstore))
env2 = update 'b'" 3 envl

envl ‘Db’
1 2
env2 ‘b’
1 3
env2 ‘'z’
10

pp - :

Semantics of assignments

Program-> |Int -> Int

pp (Dot ¢) n = (cc ¢ (update 'a" n newstore))

CC ..

CC
CC
CC

Command -> Store -> Store

(CSeq cl1 c2) s cc c2 (cc cl s)
(Assign id e) s update id (ee e s) s
(If bclc2) s I felse (bb b s)

(cc ¢l s) (cc c2 s)

I21

Semantics of assignments ...

ee .. Expression -> Store -> Int

ee (Plus el e2) s = (ee e2 s) + (ee el s)
ee (Idid) s =s id

ee (Numn) s =n

bb :: Bool eanExpr -> Store -> Bool

bb (Equal el e2) s= (ee el s) == (ee e2 s)
bb (Not b) s = not (bb b s)

ifelse :: Bool ->a ->a->a

|felse True x vy = X

Ifelse False xy =y

Running the interpreter

srcl="z:=1; 1fa=0thenz :=3elsez:.:=z+a."
astl = Dot (CSeq
(Assign '"z' (Num 1))
(If (Equal (Id 'a') (NumO))
(Assign 'z' (Num 3))
(Assign 'z' (Plus (Id "z') (Id "a")))))

pp astl 10
0 11

Practical Issues

Modelling:
0 Errors and non-termination:
0 need a special "error” value in semantic domains
0 Branching:

[0 semantic domains in which "continuations” model "the
rest of the program” make it easy to transfer control

Interactive input
Dynamic typing

1 00 O

Theoretical Issues

What are the denotations of lambda abstractions?
0 need Scott's theory of semantic domains

What is the semantics of recursive functions?
0 need least fixed point theory

How to model concurrency and non-determinism?
[0 abandon standard semantic domains
0 use “interleaving semantics”
0 "frue concurrency” requires other models ...

What you should know!

[1 What is the difference between syntax and semantics?

[1 What is the difference between abstract and concrete
syntax?

[1 What is a semantic domain?

[1 How can you specify semantics as mappings from syntax to
behaviour?

[J How can assignments and updates be modelled with (pure)
functions?

Can you answer these questions?

[1 Why are semantic functions typically higher-order?

[1 Does the calculator semantics specify strict or lazy
evaluation?

[1 Does the implementation of the calculator semantics use
strict or lazy evaluation?

[1 Why do commands and expressions have different semantic
domains?

9. Logic Programming

Overview
[0 Facts and Rules
[0 Resolution and Unification
0 Searching and Backtracking
[0 Recursion, Functions and Arithmetic
0 Lists and other Structures

References

0 Kenneth C. Louden, Programming Languages: Principles
and Practice, PWS Publishing (Boston), 1993.

[Sterling and Shapiro, The Art of Prolog, MIT Press,
1986

0 Clocksin and Mellish, Programming in Prolog, Springer
Verlag, 1981

Logic Programming Languages

What is a Program?

A program is a database of facts (axioms) together with a set
of inference rules for proving theorems from the axioms.

Imperative Programming:
0 Program = Algorithms + Data

Logic Programming:
0 Program = Facts + Rules
or
0 Algorithms = Logic + Control

Prolog Facts and Rules

A Prolog program consists of facts, rules, and questions:

Facts are named relations between objects:
parent (charles, elizabeth).
% elizabeth is a parent of charles
femal e(el 1 zabet h).
%elizabeth is female

Rules are relations (goals) that can be inferred from other
relations (subgoals):

mother(X, M :- parent(X,M, female(M.
%Mis a nother of X
%if Mis a parent of X and Mis female

Prolog Questions

Questions are statements that can be answered using facts
and rules:

?- parent(charles, elizabeth).
[l yes

?- nother(charles, M.
[0M = elizabeth
yes

Horn Clauses

Both rules and facts are instances of Horn clauses, of the
form:

Ao if Aq and Ao and ... An
Ag is the head of the Horn clause and "A;and A, and ... A" is
the body

Facts are just Horn clauses without a body:

parent(charles, elizabeth) if True
female(elizabeth) if True
mother(X, M) if parent(X,M)

and female(M)

Resolution and Unification

Questions (or goals) are answered by matching 3oals against
facts or rules, unifying variables with terms, and backtracking
when subgoals fail.

If a subgoal of a Horn clause matches the head of another
Horn clause, resolution allows us to replace that subgoal by the
body of the matching Horn clause.

Unificationlets us bind variables to corresponding values in the
matching Horn clause:

mother(charles, M)
N parent(charles, M) and female(M)

O { M =elizabeth} True and female(elizabeth)
] { M = elizabeth} True and True

Prolog Databases

A Prolog database is a file of facts and rules to be "consulted”

before asking questions:

f emal e(anne).
f emal e(di ana).
femal e(el 1 zabet h).

mal e(andrew).
mal e(charl es).
mal e(edwar d) .
(harry).
mal e(philip).
mal e(w Il 1iam.

parent (andrew, elizabeth).
parent (andrew, philip).
parent (anne, elizabeth).
parent (anne, philip).
parent (charles, elizabeth).
parent(charles, philip).
parent (edward, elizabeth).
parent (edward, philip).
parent (harry, charles).
parent (harry, diana).
parent(wlliam charles).
parent(w lliam diana).

Simple queries

?- consult('royal'). Just anot her query

[l yes

?- mal e(charles).

[l yes

?- mal e(anne).
[no

?- mal e(m ckey).
LI no

whi ch succeeds

Queries with variables

You may accept or reject unified variables:
?- parent(charles, P).
0P = elizabeth <carriage return>
yes

You may reject a binding to search for others:
?- mal e(X).
[0 X = andrew ;
X = charles <carriage return>
yes

Use anonymous variables if you don't care:
?- parent(wlliam).
[l yes

Unification

Unification is the process of instantiating variables by pattern
matching.

1. A constant unifies only with itself:
?- charles = charl es.
[l yes
?- charles = andrew.
L] no

2. An uninstantiated variable unifies with anything:

?- parent(charles, elizabeth) =Y.
[0Y = parent(charles, elizabeth) ?
yes

Unification ...

3. A structured term unifies with another termonly if it has
the same function name and number of arguments, and
the arguments can be unified recursively:

?- parent(charles, P) = parent(X, elizabeth).
[P = elizabeth,

X = charles ?

yes

Evaluation Order

In principle, any of the parameters in a query may be
instantiated or not

?- nmother(X, elizabeth).

[X = andrew ? ;
X = anne ? ;
X = charles ? ;:
X = edward ? ;
no

?- nmother(X, M.
[0 M= elizabeth,
X = andrew ?

yes

Closed World Assumption

Prolog adoE’rs a closed world assumption — whatever cannot be
proved to be true, is assumed to be false.

?- nother(elizabeth, M.
[l no

?- mal e(m ckey).
[no

Backtracking

Prolog applies resolution in linear fashion, replacing goals left
to right, and considering database clauses top-to-bottom.

father(X, M :- parent(X, M, male(M.
?- trace(father(charles,F)).

0+ 1 1 Call: father(charles, 67) ?
+ 2 2 Call: parent(charles, 67) ?
+ 2 2 Exit: parent(charles,elizabeth) ?
+ 3 2 Call: male(elizabeth) ?
+ 3 2 Fail: male(elizabeth) ?
+ 2 2 Redo: parent(charles,elizabeth) ?
+ 2 2 Exit: parent(charles,philip) ?
+ 3 2 CGll: male(philip) ?
+ 3 2 Exit: male(philip) ?
+ 1 1 Exit: father(charles,philip) ? ...

Comparison

The predicate = attempts to unify its two arguments:
?- X = charles.
J X = charles ?
yes

The predicate == tests if the terms instantiating its arguments
are literally identical:

?- charles == charl es.

[l yes

?- X == charl es.

[l no

?- X = charles, nmale(charles) == nal e(X).

[1 X = charles ?
yes

Comparison ...

The predicate \== tests if its arguments are not literally

identical:

?- X = male(charles), Y = charles,

(1 no

X\

== mal e(Y).

Sharing Subgoals

Common subgoals can easily be factored out as relations:
sibling(X, Y) :- nother(X, M, nother(Y, M,
father(X, F), father(Y, F),
X\==Y.

brother(X, B) :- sibling(X B), male(B).
uncle(X, U :- parent(X, P), brother(P, U).

sister(X, S :- sibling(X S), female(9).
aunt (X, A - parent (X, P), sister(P, A.

Disjunctions

One may define multiple rules for the same predicate, just as
with facts:

| sparent(C, P) :- mot her (C, P).
| sparent(C, P) :- father(C, P).

Disjunctions can also be expressed using the ";" operator:
| sparent (C, P) :- mother(C, P); father(C, P).

Note that same information can be represented in different
forms — we could have decided to express mother/2 and
father/2 as facts, and parent/2 as a rule. Ask:

0 Which way is it easier to express and maintain facts?
0 Which way makes it faster to evaluate queries?

Recursion

Recursive relations are defined in the obvious way:
ancestor (X, A :- parent(X, A).
ancestor(X, A :- parent(X, P), ancestor(P, A.

?- trace(ancestor(X, philip)).

0+ 1 1 Call: ancestor(_61,philip) ?

+ 2 2 Call: parent(_61,philip) ?

+ 2 2 Exit: parent(andrew, philip) ?

+ 1 1 Exit: ancestor(andrew, philip) ?
X = andrew ?
yes

[1 Will ancestor/2 always terminate?

Recursion ...

?- trace(ancestor(harry, philip)).

0+ 1 1 Call: ancestor(harry,philip) ?
+ 2 2 Call: parent(harry,philip) ?
+ 2 2 Fail: parent(harry,philip) ?
+ 2 2 Call: parent(harry, 316) ?
+ 2 2 Exit: parent(harry,charles) ?
+ 3 2 Call: ancestor(charles,philip) ?
+ 4 3 Call: parent(charles,philip) ?
+ 4 3 Exit: parent(charles,philip) ?
+ 3 2 Exit: ancestor(charles,philip) ?
+ 1 1 Exit: ancestor(harry,philip) ?
yes

[J What happens if you query ancestor(harry, harry)?

Evaluation Order

Evaluation of recursive queries is sensitive to the order of the
rules in the database, and when the recursive call is made:

anc2(X, A :- anc2(P, A, parent(X, P).
anc2(X, A) :- parent(X, A).

?- trace(anc2(harry, X)).
0+ 1 1 Call: anc2(harry, 67) ?

+ 2 2 Call: anc2(_325, 67) ?

+ 3 3 Call: anc2(_525, 67) ?

+ 4 4 Call: anc2(_725, 67) ?

+ 5 5 Cll: anc2(925, 67) ?

+ 6 6 Call: anc2(_1125, 67) ?

+ 7 7 Call: anc2(1325, 67) ? abort
{ Execut i on abort ed}

Failure

Searching can be controlled by explicit failure:
printall (X) :- X print(X), nl, tail.
printall ().

?- printall (brother(_,)).
[l brother(andrew, charl es)
br ot her (andr ew, edwar d)

br ot her (anne, andr ew)

br ot her (anne, charl es)
br ot her (anne, edwar d)
brot her (charl es, andr ew)

Negation as failure

The cut operator (1) commits Prolog to a particular search path:
parent(C,P) :- nmother(C P), !.
parent (C,P) :- father(C P).

Negation can be implemented by a combination of cut and fail:
not(X) :- X !, fail. %i1f X succeeds, we fail
not(). %if Xfails, we succeed

Changing the Database

The Prolog database can be modified dynamically by means of
assert and retract:

rename(X, Y) -
rename(X, Y) -
rename(X, Y) :-
rename(X, Y) -

rename(_,).

retract (mal e(X)),
assert(male(Y)), renanme(XY).
retract (femal e(X)),
assert(female(Y)), rename(XY).
retract (parent (X P)),
assert(parent(Y,P)), rename(XY).
retract (parent (C, X)),
assert(parent(C, Y)), rename(XY).

Changing the Database ...

?- mal e(charles); parent(charles,).

[l yes

?- rename(charles, mckey).

Ll yes

?- male(charles); parent(charles,).
[l no

NB: With SICSTUS Prolog, such predicates must be declared
dynamic:

.- dynamc male/l, fenmale/1l, parent/?2.

Functions and Arithmetic

Functions are relations between expressions and values:
?- X1S 5 + 6.
X =117

Is syntactic sugar for:
1s(X, +(5,6))

Defining Functions

User-defined functions are written in a relational style:

fact(0,1).

fact(N,F) :- N> 0,
NLis N- 1,
fact (N1, F1),
Fis N* FI1.

?- fact (10, F).
[0 F = 3628800 ?

Lists

Lists are pairs of elements and lists:

Formal object Cons pair syntax Element syntax
(a,[]) [al[]] [a]
(a,.(b,[]) [al[b|[]]] [a.b]
(a,.(b,.(c,[DN|[allbllcl[11]] [a.b,c]
(a, b) [al|b] [al|b]
(a, (b, 0)) [al[blc]] [a.b]c]

Lists can be deconstructed using cons pair syntax:

?- [a,b,c] =1[al X].
00X =1]b,c]?

Pattern Matching with Lists

in(X [X] _1).
in(X [_| L) :-in(X L).

?- in(b, [a,b,c]).
[l yes

D

- In(X [a,b,c]).
a ?

b
C

[]

X X X
1 1 =

?
?.

>
o

Pattern Matching with Lists ...

Prolog will automatically introduce new variables to represent
unknown terms:

?- in(a, L).
JL=[al] _A] ?;

L= A, a|] B] ?;

L= A, B, al| C] ?;
L= A, B, C, al| D] ?

w

JAS

Inverse relations

A carefully designed relation can be used in many directions:

append([],L,L).

append([X| L1],L2,[X L3]) :- append(Ll, L2, L3).

?- append([a],[Db], X).

00X =[a,b]

?- append(x Y,[a,b]).
OX=1[]Y=[ab] ;
X = _a] Y = [Db] ;
X=lab] Y =1]]

yes

Exhaustive Searching

Searching for permutations:

perm([].[]).
perm([C] S1],S2) - pern(Sl, Pl),
append(X, Y,Pl), %split P1

append(X, [C Y], S2).

o

per n(|
per n(|
per (|
per (|

)

N N N N N’

Limits of declarative programming

A declarative, but hopelessly inefficient sort program:

ndsort(L,S) :-

| ssorted(]

| ssorted(
| ssorted(

1)
1),

NMS]) :-

pernm(L,S),
| ssorted(S).

N=<M
I ssorted([M9]).

Of course, efficient solutions in Prolog do exist!

oo O O0Omnm

What you should know!

What are Horn clauses?
What are resolution and unification?

How does Prolog attempt to answer a query using facts and
rules?

When does Prolog assume that the answer to a query is
false?

When does Prolog backtrack? How does backtracking work?
How are conjunction and disjunction represented?

What is meant by "negation as failure”?

How can you dynamically change the database?

Can you answer these questions?

[7 How can we view functions as relations?

[J Is it possible to implement negation without either cut or
fail?

[J What happens if you use a predicate with the wrong number
of arguments?

[0 What does Prolog reply when you ask not (mal e(X)). ?
What does this mean?

10. Applications of Logic
Programming

Overview
0 I. Solving a puzzle:
0 SEND + MORE = MONEY

0 IT.Reasoning about functional dependencies:
0 finding closures, candidate keys and BCNF
decompositions
References:

0 A. Silberschatz, H.F. Korth and S. Sudarshan, Database
System Concepts, 3d edition, McGraw Hill, 1997.

I. Solving a puzzle

[J Find values for the letters so the following equation holds:

SEND
+MORE

A non-solution:

We would /ike to write:

sol n0 : - A is 1000*S + 100*E + 10*N + D,
Bis 1000*M + 100*O + 10*R + E,
Cis 10000*M + 1000*O + 100*N + 10*E + Y,
Cis AtB,
showAnswer (A, B, C).

showAnswer (A, B,C) - witeln([A * +°, B ' ="', ().
witeln([]) - nl.
witeln([XL]) - wite(X), witeln(L).

A non-solution ...

?- sol n0.

[0 » evaluation error: [goal (_1007 is 1000 * 1008 +
100 * 1009 + 10 * 1010 + _1011),
argunment i ndex(2)]

[Execut i on abort ed]

But this doesn't work because "is” can only evaluate
expressions over instantiated variables.

?-5is 1+ X

[0» evaluation error: [goal (5 is
1+ 64), argunment i ndex(2)]
[Executi on abort ed]

A first solution

So let’s instantiate them first:
digit(0). digit(1). digit(2). digit(3). digit(4).
digit(5). digit(6). digit(7). digit(8). digit(9).

digits([]).
digits([D/L]):- digit(D), digits(L).

% pick arbitrary digits:

solnl :- digits([SEENDMOREMONE,Y]),
Ais 1000*S + 100*E + 10*N + D,
Bis 1000*M + 100*O + 10*R + E,
Cis 10000*M + 1000*O + 100*N + 10*E + Y,
Ci1s A+B, % check 1 f solution Is found
showAnswer (A, B, C).

PS — 52001 269.

A first solution ...

This is now correct, but yields a trivial solution!

sol nl.
00 +0=0
yes

© O. Nierstrasz — U. Berne Applications of Logic Programming

A second (non-)solution

So let’s constrain S and M:

soln2 :- digits([S M),
not (S==0), not(M==0), % backtrack if 0
digits([NDMOREMON,E,Y]),
Ais 1000*S + 100*E + 10*N + D,
Bis 1000*M + 100*O + 10*R + E
Cis 10000*M + 1000*O + 100*N + 10*E + Y,
Ci1s A+B,
showAnswer (A, B, C).

A second (non-)solution ...

Maybe it works. We'll never know ...

sol n2.
[0 [Execution aborted]

after 8 minutes still running ...

[1 What went wrong?

A third solution

Let's try to exercise more control by instantiating variables
bottom-up:

sun([], 0).
sum([N L], TOTAL) :- sum{L, SUBTOTAL),
TOTAL is N + SUBTOTAL.

%Find Dand C, where JL is D+ 10*C, digit(D)
carrysumL, D, Q) -
sumL,S), Cis S/10, Dis S - 10*C

?- carrysun([5,6,7],D, Q.
0D=28
C=1

A third solution ...

We instantiate the final digits first, and use the carrysum to
constrain the search space:

soln3 :- digits([D E]), carrysunm([D, E|,Y, Cl),
digits([N,R), carrysun([Cl, N R], E, C2),
digit(O, carrysun([C2,E J, N C3),
digits([S, M), not(S==0), not(M=0),
carrysum [C3,SSM, 0O M,
A1s 1000*S + 100*E + 10*N + D,
Bis 1000*rM + 100*O + 10*R + E
Ci1s A+B,
showAnswer (A, B, C).

PS — 52001

274.

A third solution ...

This is also correct, but uninteresting:

sol n3.
(1 9000 + 1000 = 10000
yes

@ O. Nierstrasz — U. Berne

Applications of Logic Programming

A fourth solution

Let's try to make the variables unigue:

%There are no duplicate el enents in the argunment |1 st
unique([XIL]) :- not(in(X L)), unique(l).
uni que([]).

|_1).
IL]) :- in(X L).

?- unique([a,b,c]).
[l yes

?- unique([a,b,a]).
L1 no

A fourth solution ...

soln4d :- L1 =[D,E], digits(Ll), unique(Ll),
carrysun([D, E],Y, Cl),
L2 = [N,R Y| L1], digits([N Rl), unique(L2),
carrysum([C1, N, R], E, C2),
L3 = [L2], digit(O, unique(lL3),
carrysum([C2, E, O, N, C3),
L4 =[S, ML3], digits([S, M),

not (S==0), not(M==0), unique(L4),

carrysum([C3, S, M, O M,
Ais 1000*S + 100*E + 10*N + D,
Bis 1000*rM + 100*O + 10*R + E
Cis AtB,
showAnswer (A, B,).

PS — 52001

277.

A fourth solution ...

This works (at last), in about 1 second on a 63 Powerbook.

sol n4.
(1 9567 + 1085 = 10652
yes

@ O. Nierstrasz — U. Berne

Applications of Logic Programming

IT. Reasoning about functional dependencies

We would like to represent functional dependencies for
relational databases as Prolog terms, and write predicates that
compute:

(i) closures of attribute sets,
(ii) candidate keys, and
(iii) BCNF decompositions.

Operator overloading

First, we would like to overload Prolog syntax as follows:
FOS = [[a]->[b,c], [c,g]->[h,1], [b,c]->[h]].
[0 Syntax Error - unable to parse » ->[b, c]

but the built-in arrow operator has precedence higher than
that of *," and "=":

op(1050, xfy, [->1).

op(1000, xfy, [',]).

op(700, xfx, [=1]).
so let's change it:

.- op(600, xtx, [->1]).

Now we can get started ...

Computing closures

We would like to define a predicate:

cl osure(FDS, AS, CS)

which computes the closure CS of an attribute set AS using

the dependencies in FDS.

?- closure([[a]->[b], [b]->[c]], [a],

[0 Cosure = [Db,a,c]

Cl osure).

Computing closures ...

We should use Armstrong's axioms:

1. BOA O A-B (reflexivity)
2. A-B] AC-BC (augmentation)
3. A—)B, B-C L] A-C (Tr'anSI'“VFrY)

Intuitively, we add attributes to a set AS', using the axioms
and the FDs, until no more dependencies can be applied:

0 start with AS - AS', where AS' = AS (1)
0 findsome B-C,AS'=BD 0O AS-AS' -CD (2,3)
0 repeat till no more FD applies

NB: each FD can be applied at most once!

A closure predicate

We try to express the algorithm declaratively:

closure(FDS, AS, CS) -
applies(FDS, B->C, AS, FDRest), !, % NB cut
uni on(AS, C, ASl),
cl osure(FDRest, ASl, CS).

cl osure(FDS, AS, AS). % no nore FD applies

applies(FDS, B->C, AS, FDRest) :-

in(B->C, FDS), rem B->C, FDS, FDRest),
subset (B, AS).

Now we must worry about the details ...

Manipulating sets

We need some predicates to manipulate attribute sets and
sets of FDs:

In(X, [X _]). %in(X S -- Xis in the argunent |I st
in(X, [_|S]) :- in(X 9.

subset ([],). %subset(S1,S2) -- S1is a subset of S2
subset ([X] S1],S2) :- in(X S2), subset(S1, S2).

rem(,[],[]). %rem X SR -- S\{X} yields R
rem X, [X|[S],R) :- rem(X SR, !.
rem X, [Y|S],[YIR) :- rem(X SR .

[J How would you express set union and intersection?

Evaluating closures

?2- FDS = [[a]->[b, c],
(c,9]->[h,1],
b, c]->[h]

]
cl osure(FDS, [a], Ca),

cl osure(FDS, [a,c], Cac),
closure(FDS, [a,g], Cag).

UFDS = [[a]->[b,c],[c,g]->[h,i],[b,c]->[h]]
Ca =[c,b,a,n]
Cac = [Db,a,c,h]
Cag = [1,h,q,a,b,c]
yes

Testing

We cast all our examples as test cases:

test G osures : -
FDS = [[a]->[b,c], [c,g9]->[h 1], [b,c]->[h] |,
closure(FDS, [a], Ca),
check('closure[a]', equal (Ca, [a,b,c,h])),

check(Name, CGoal) : -
CGoal , !.

check(Nane, Goal) : -
witeln([Nanme, ' FAILED]).

Finding keys

Now we would like a predicate candkey/ 2 that suggests a
candidate key for the attributes in a set of FDs:

candkey(FDS, Key) : -
attset (FDS, AS), % get the conplete attribute set
m nkey(FDS, AS, AS, Key).

Given Key -> AS, search for the smallest MinKey -> AS
m nkey(FDS, AS, Key, M nKey) : -
smal | erkey(FDS, AS, Key, SnallerKey), !,
m nkey(FDS, AS, SnallerKey, M nKey).
m nkey(FDS, AS, M nKey, M nKey).

[J How would you implement attset/2?

Finding keys ...

A smaller key is smaller, and is still a key!
smal | erkey(FDS, AS, Key, Smaller) :-
I n(X, Key),
rem(X, Key, Smaller),
| skey(Smal | er, AS, FDS).

Key -> AS if AS UK’
| skey(Key, AS, FDS) : -
cl osure(FDS, Key, O osure),
subset (AS, C osure).

Evaluating candidate keys

?- FDS = [[a]->[b,c],[c,9]->[h,1],[b,c]->[h]],
candkey(FDS, Key).

[l Key = [a,d]

?- FDS = [[nane] ->[addr],[nane, article]->[price]],
candkey(FDS, Key).

[l Key = [nane, articl e]

Testing for BCNF

A relation scheme is in BCNF if all non-trivial FDs define keys:
| sbenf (FDS, RS) :- fdsok(FDS, FDS, RS).

f dsok([A->B| ToCheck], FDS, RS) : -
subset (B, A, %A->Bis trivial
f dsok(ToCheck, FDS, RS) .
f dsok([A->B| ToCheck], FDS, RS) : -
subset (A, RS), !, % A applies to RS
| skey(A, RS, FDS), %A is a key for RS
f dsok(ToCheck, FDS, RS) .
f dsok([A->B| ToCheck], FDS, RS) : -
f dsok(ToCheck, FDS, RS) . % A doesn’t apply
fdsok([], _, RS). % Done checki ng

Evaluating the BCNF test

?- FDS = [[nane]->[addr], [nane, article]->[price]],
| sbenf (FDS, [nane, addr]),
not (1 sbenf (FDS, [nanme, article, price])),
not (1 sbcenf (FDS, [nanme, addr, article, price])).
[l yes

?- FDS = [[city, street] ->[zip], [zIip] -> [city]],
attset (FDS, As),
| sbenf (FDS, As).

LI no

[1 How can we find out exactly which FD is problematic?

BCNF decomposition

Recall that BCNF decomposition works as follows:

while some R is not in BCNF
select non-trivial a - B holding on R where

a-RisnotinF and anB =0
replace R by a3 and (R-p)

N
Replace s

-
by SRS
and s

The trick is that a - 3 may not be explicitly in the list F of FDs,
and it is too expensive to compute the closure F*

BCNF decomposition — top level
We start decomposing with the full attribute set:

benf (FDS, Deconp) -
attset (FDS, AS),
benf Deconp(FDS, [AS], Deconp).

BCNF decomposition — recursion
We must iterate through both the FDS and the schema.

RS not in BCNF, so decompose:
benf Decomp(FDS, [RS| Schema], Deconp) : -
findBad(A->B, FDS, FDS, RS),
uni on(A, B, AB),
diff(RS,B,Dff),
benf Decomp(FDS, [AB, Diff| Schema], Deconp).

RS is OK, so accept it and recurse:

benf Deconp(FDS, [RS| Schema], [RS| Deconp]) : -
benf Deconp(FDS, Schema, Deconp).

Nothing left to do:
benf Deconp(FDS, [, []).

Finding "bad” FDs

The "bad" FDs may be in the closure the given FDs.
findBad(A->B, [FD FDS], AIIFDS, RS) :- %A->Bis bad

FD = A->B0, %Try to derive a bad FD
subset (A, RS), % A nmust apply to RS

di ff (B0, A Bl), % A nB should be enpty
| nter(Bl, RS, B), %restrict to RS

not (subset (B, A)), % FD nmust not be trivial

not (i skey(A, RS, AIIFDS)).%“bad” if Ais not a key

findBad(FD, [OK|FDS], AllFDS, RS) :-
findBad(FD, FDS, AllFDS, RS).

[] Can you justify this derivation using Armstrong's axioms?

Evaluating BCNF decomposition

?- FDS = [[nane] ->[addr],[nane, article]->[price]],
benf (FDS, BCNF) .

[0 BCNF = [[nane, addr], [nane, price,article]]

?- FDS = [[city,street]->[zip],[zip]->[city]],
benf (FDS, BONF)

0BCNF = [[zip,city],[zip,street]]

[J What would you have to change in order to find all BCNF
decompositions?

COoohbOOo OO Om%

Can you answer these questions?

What happens when we askdi gits([A B, A]) ?

How many times will sol n2 backtrack before finding a
solution?

How would you check if the solution to the puzzle is unique?

How would you generalize the puzzle solution to solve
arbitrary additions?

Can you use subset/2 to find all subsets of a set?
Will all the recursive predicates terminate?
What would happen if we didn’t cut inm nkey/ 42
How could we generate the set of all min keys?

Would it be just as easy to implement these solutions with
a functional language?

11. Symbolic Interpretation

Overview
[Interpretation as Proof

[0 Operator precedence: representing programs as syntax
trees

0 Aninterpreter for the calculator language
0 Implementing a Lambda Calculus interpreter
0 Examples of lambda programs ...

Interpretation as Proof

One can view the execution of a program as a step-by-step
"‘proof” that the program reaches some terminating state,
while producing output along the way.

0 The program and its intermediate states are
represented as structures (typically, as syntax trees)

[0 Inference rules express how one program state can be
transformed to the next

Representing Programs as Trees

Recall our Calculator example [Schmidt]:

P .= ‘on' S
S .= E'total' S | E'total' 'OFF
E = El1 '+ E2 | El '*' E2

| 'if'" E1l 'then' E2 'else' E3

| '| ast answer' | ‘(" E')'| N

Syntax trees can be modelled directly as Prolog terms.
For example, the program:
on 2+3 total |astanswer + 1 total off

can be modelled by the term:
on(total (2+3, total (lastanswer+1l, off)))

Prefix and Infix Operators

Operator type and precedence can be defined to achieve
convenient syntax:

.- 0op(900,fx,on). % prefix
.- op(800,xfy,total). %right assoc.
- op(600,fx,if).
- op(590, xfy, then).
op(580, xfy, el se).
@6op(500 yfx, +). % | eft assoc.
% op(400, yfx, *). % pre-defined ...

The higher the precedence, the higher in the syntax tree the
operator will appear.

Prefix and Infix Operators ...

Operators can be declared:
(i) xfy for right-associative, (e.q., ;)
(i) yfxfor left-associative, (eg., +)
(iiil) xfx for non-associating, (e.g. =)
(vi) fxand fy for prefix, (e.g.,not not P)
(v) xfand yf for postfix

?- 1+2+43*4 = +(+(1, 2),*(3,4)).
[l yes

?- (on 2+3 total |astanswer+1l total off)
== on(total (2+3, total (| astanswer+l, off))).
[l yes

Operator precedence

on 2+3 total |astanswer+1l total off

== on(total (2+3, total (lastanswer+1, off))).

900 fx > on
|
800 xfy = total
/ \
500 yfx -+ total =
/SN T T
2 3 + of f
/N
lastanswer 1

800

Standard Operators

The following operator precedences are predefined for

SICSTUS Pr'olog

op(1200, xf x,
op(1200, f x,
op(1150, f x,
op(1100, xfy,
op(1050, xfy,
op(1000, xfy,

;- 1)

;7 1)

nDde , public , dynamc , multifile ,
1)

>]).

1)

[r— — [— [— [— — [— —

op(900, fy, \+ , spy , nospy]).
op(700, xfx, [= is, =.., == \==, & @, @< @-=
=<, >=1]).
op(500, yfx, [+ -, I\ , \/]).
op(500, fx, [+, -1]).
op(400, yftx, [* , [, Il , <<, >>1]).
op(300, xtx, [nmod]).
[

op(200, xfy, N

parallel , wait]).

Building a Simple Interpreter

We define semantic predicates over the syntactic elements of
our calculator language.

Top level:

on S .- peval (S, L), wite(L).
Programs:

peval (S, L) .- seval (S, 0, L).
Statements:

seval (E total off, Prev, [Val])
xeval (E, Prev, Val).

seval (E total S, Prev, [Val|Ll])
xeval (E, Prev, Val),
seval (S, Vval, L).

Building a Simple Interpreter ...

Expressions:
xeval (N, _, N :- nunber(N).
xeval (| astanswer, Prev, Prev).

xeval (if E1 then E2 else , Prev, Val) :-
xeval (E1, Prev, 0),
xeval (E2, Prev, Val).

xeval (if E1 then _else E3, Prev, Val) :-

xeval (E1, Prev, V1), V1 =\= 0,
xeval (E3, Prev, Val).

[Can you fill in the missing cases?

PS — 52001

306.

Running the Interpreter

?- on 243 total |astanswer+l1l total off.

[[5,6] yes

@ O. Nierstrasz — U. Berne

Symbolic Interpretation

Lambda Calculus Interpreter

Now a more ambitious example ..
First we must choose a syntax for lambda expressions:

.- op(650, xfy, :). % body of abstraction
.- op(600, fx, \). % abstraction
.- op(500, yfx, @. % appl i cation

Unfortunately, we cannot write el e2 in Prolog, so we must
introduce an operator for application.

For example, we will represent the lambda expression:

(AX.Ay.Xxy)y
by the Prolog term:

(\x2 \yr x@) @y == @:(\(x),:(\(y),@x,y))), y).

Semantics

Alpha, beta and eta conversion are expressed as predicates
over the "before" and "after” forms of lambda expressions:

al pha(\ X E, \Y.EY) :-

fv(E, FE),

not (in(Y, FE)),

subst (Y, X, E, EY).
beta((\ X E1l) @2, E3) :-

subst (E2, X, El1, E3).
eta(\ X E@QX, E) :-

fv(E, F),

not(in(X F)).

Free Variables

To implement conversion and reduction, we need to know the
free variables in an expression:

fv(X, [X) :- | shanme(X) .
fv(El@2, F12) .- fv(El, F1),

fv(E2, F2),

union(F1l, F2, F12).
fv(\XE, F) - | sname(X),

fv(E, FE),

diff(FE, [X], F).

| sname(N) : - aton{N); nunber(N).

PS — 52001

310.

Free Variables ...

For example:

?- fv(\x: \yix@@ , F).
OF =1z] ?
yes

@ O. Nierstrasz — U. Berne

Symbolic Interpretation

Substitution
subst(E, X, EX, EE) substitutes E for X in EX, yielding EE:

subst (E, X, X, E) :- i snane(X), !.
subst (E, X, Y, Y) :- | sname(X), i1snane(Y),
X\==Y.

subst (E, X, E1@E2, EE1@EE2) : -
subst (E, X, E1, EE1),
subst (E, X, E2, EE2).
subst (E, X, \ X E1, \ X El1).
subst (E, X, \Y:E1l, \Y.EEl) :-
X\==Y,
fv(E, FE),
not(in(Y, FE)), !,
subst (E, X, E1, EE1).

Avoiding name capture

We avoid name capture by substituting Y by a new name Z:

subst(E, X \Y:El, \Z:EEZ) :-X \==

fv(E, FE),
% in(Y, FE),
fv(El, F1),

uni on(FE, F1, FU),
newnanme(Y, Z, FU),
subst(Z, Y, El, EZ),
subst(E, X, EZ, EEZ).

Renaming

newname(Y, Z, F) is true if Z is a new name for Y, not in F

newname(Y, Y, F) :- not(in(Y, F)), !.
newnanme(Y, Z, F) :- tick(Y, T), newname(T, Z, F).

The built-in predicate name(X, L) is true if the name X is
represented by the ASCIT list L

tick(Y, Z) is true if Zis Y with a “tick” (" = ASCII 39) appended
tick(Y, Z2) :- name(Y, LY),

append(LY, [39], LZ),
name(Z, L2).

PS — 52001 314.

Renaming ...

For example:

?2- tick(x, Y).
Y = x' ?
yes

?- subst(x@, z, \x:x@, E).
OE = \x'":x'@x@)

yes

© O. Nierstrasz — U. Berne Symbolic Interpretation

Normal Form Reduction

E => NF is true if E reduces to normal form NF;

lazy(E, EE) is true if E reduces to EE by one normal-order
reduction:

.- 0op(900, xfx, =>).

E=>NF .- | azy(E, EE), !, EE => NF.

X => X % no nore reductions possible, so stop
lazy(El, E2) :- beta(El, E2), !.

lazy(El, E2) :- eta(El, E2), !.

| azy(EO@2, E1@2) : - | azy(EO, E1), !.

[J What happens if you leave out the third lazy/2 rule?
[1 How would you change this to be strict evaluation?

PS — 52001

316.

Normal Form Reduction ...

For example:

?2- (\x : (\y:x)@\x:x)@&) @y = E

OE=y@ ?
yes

@ O. Nierstrasz — U. Berne

Symbolic Interpretation

Viewing Intermediate States

The => predicate tells us what normal form a lambda expression
reduces to, but does not tell us which reductions take us there.

To see intermediate reductions, we can print out each step:

.- op(800, fx, eval).

eval E :- | azy(E, EE), !,
wite(E), nl, wite('->"),
eval EE.
eval E :- wite(E), nl, wite('STOP), nl.

[J Can you think of other ways to solve this problem?

PS — 52001

318.

Viewing Intermediate States ...

The same example yields:

?- eval (\x: \y: x@) @Y.
O(\x: \y:x@) &
->\y' i y@
_> y
STOP

@ O. Nierstrasz — U. Berne

Symbolic Interpretation

Lazy Evaluation

Recall that the lambda expression Q = (A x . x x) (A x . X x) has
no normal form:

?- W= ((\xix@) @(\x:x@)),
eval W
O (VX x@) @\ x: x@)
-> (W Xix@) @\ x: x@)
-> (W Xox@) @\ x: x@)
<Interrupt>
[Execut i on abort ed]

Lazy Evaluation ...

But lazy evaluation allows it to be passed as a parameter if
unused!

- W= ((\xix@) @(\x:x@)),
eval (\xiy) @W
O(\x:y)@(\x: x@) @\ x: x@))
-> y
STOP

Booleans

Recall the standard encoding of Booleans as lambda
expressions that return their first (or second) argument:

?- True = \x: \y:x,
Fal se = \x: \y:y,
Not = \Db: b@al sedrue,
eval Not @ ue.
O(\b:b@\x: \y:y)@\x: \y:x))@\x: \y:x)
-> (\x: \y:x)@\x: \y:y)@\x: \y:x)
-> (\y: \x: \yry)@\x: \y:x)
-> \x: \y:y
STOP

Tuples

Recall that tuples can be modelled as higher-order functions
that pass the values they hold to ano’rher' (client) function:

?- True = \x: \y:x, False = \x: \y:y,
Pair = (\x: \y: \z: z@&x@),
First = (\p:p @True),
eval First @(Pair @1 @2).
O\ p:p@\x: \y:x))@(\x: \y: \z:z@x@) Q@)
-> (\x: \y: \z:z@) @@\ x: \y:x)
-> (\y: \z:zAl@) @@\ x: \y:Xx)
-> (\z:z@ @) @\ x: \y:Xx)
-> (\x: \yix)@@
-> (\y:)@
-> 1
STOP

Natural Numbers

And natural numbers can be modelled using the standard
encoding:
?- True = \x: \y:x, False = \x: \y:y,
Pair = (\x: \y: \z: z@&x@),
First = (\p:p @True),
Second = (\p:p @Fal se),
Zero = \X: X,
Succ = \n:Pair@al se@,
Succ@ero => (ne,
| sZero = First,
Pred = Second,
eval |sZero@ Pred@ne).

Natural Numbers ...

Though you probably won't like what you see!
J(\p:p@\x: \y:x))@(\p:p@\x: \y:y))
@\z:z@\x: \y:y)@\x:x)))
-> (\p:p@\x: \y:y))
@\z:z@\x: \y:y)@\x:x))@\x: \y:Xx)
-> (\z:z@\x: \y:y)@\x:x))@\x: \y:y)@\x: \y:x)
-> (\x: \yry)@\x: \y:y)@\x:x)@\x: \y:x)
-> (\y:y)@\x: x) @\ x: \y:Xx)
-> (\xix)@\x: \y:x)
-> \x: \y:x
TOP
yes

Fixed Points

Recall that we could not model the fixed point combinator Y in
Haskell because self-application cannot be typed.

In our untyped interpreter, we can implement Y:

- Y = \f:(\x: f@x@&)) @\ x: f @x@&)),
FP = Y@,
eval FP.
O(\f:(\x:f@x@))@\x: f@x@))) @
-> (\x:e@x@)) @\ x: e@x@))

> e@(\x e@x@&)) @\ x: e@x@&)))
STOP

Note that this sequence validates that e@FP <-> FP.

Recursive Functions as Fixed Points

?- True = \x: \y:x, False = \x: \y:y,
Pair = (\x: \y: \z: z@&x@),
First = (\p:p @True), Second = (\p:p @Fal se),
Zero = \x:X, Succ = \n: Pair@al se@,
Succ@ero => (One,
|sZero = First, Pred = Second,
Y =\f:(\x:f@x@&)) @\ x: f@x@x)),
RPlus = \plus: \n: \m:

| sZero@ @n @plus @ (Pred@n) @ Succ@n)

Y@RPl us => FPlus, FPlus@ne@ne => Two,
eval IsZero@Pred@ Pred@wo)).

Recursive Functions as Fixed Points ...

O (Vp:p@\x: \y:x))@(\p:p@\x: \y:y))@(\p: p@\x: \y:y))

@\z:z@\x: \y:y)@\z:z@\x: \y:y)@\x:x)))))

-> (\p:p@\x: \y:y))@(\p:p@\x: \y:y))@\z:z@\x: \y:y)
@\z:z@\x: \y:y)@(\x:x))))@(\x: \y:x)

-> (\p:p@\x: \yiy)) @(\z:z@\x: \y:y)@\z:z@\x: \y:y)@\x:x)))
@(\x: \y:y)@\x: \y:x)

-> (\z:z@\x: \y:y)@\z:z@\x: \y:y)@\x:x)))@\x: \y:y)
@\x: \y:y)@\x: \y:x)

-> (\x: \y:y)@\x: \y:y)@\z:z@\x: \y:y)@\x:x))@\x: \y:y)
@\x: \y:x)

-> (\yry)@\z:z@\x: \y:y)@\x:x))@\x: \y:y)@\x: \y:x)

-> (\z:z@\x: \y:y)@\x:x))@\x: \y:y)@\x: \y:x)

-> (\x: \y:y)@\x: \y:y)@\x:x)@\x: \y:x)

-> (\yry)@\x:x) @\ x: \y:x)

-> (\x:x)@\x: \y:x)

-> \x: \y:x

TOP

O 0O OO0On

What you should know!

How can you represent programs as syntax trees?
How can you represent syntax trees as Prolog terms?

How can you define the syntax of your own language in
Prolog?

Why did we define ":" as right-associative but "@ as left-
associative?

What is the difference between Succ@er o=>0One and
One=Succ@ero?

oo O GO0 O

Can you answer these questions?

How would you implement an interpreter for the assignment
language we defined earlier?

Why didnt we use "." in our syntax for lambda expressions?

Does the order of the fvl 2 rules matter? What about
subst/ 4?2

Can you explain each usage of "cut” (1) in the lambda
interpreter?

Can you think of other ways to implement newnane/ 3?

How would you modify the lambda interpreter to use strict
evaluation?

	S7057 Programmiersprachen
	Table of Contents
	1. Programming Languages
	Sources
	Schedule
	Themes Addressed in this Course
	Themes Addressed in this Course ...
	What is a Programming Language?
	Generations of Programming Languages
	How do Programming Languages Differ?
	Programming Paradigms
	Compilers and Interpreters
	A Brief Chronology
	Fortran
	Fortran ...
	ALGOL 60
	ALGOL 60 ...
	COBOL
	4GLs
	PL/I
	Interactive Languages
	Interactive Languages ...
	Special-Purpose Languages
	Special-Purpose Languages ...
	Functional Languages
	Prolog
	Object-Oriented Languages
	Object-Oriented Languages ...
	Scripting Languages
	Scripting Languages ...
	What you should know!
	Can you answer these questions?

	2. Stack-based Programming
	PostScript
	Postscript variants
	Syntax
	Semantics
	Object types
	The operand stack
	Stack and arithmetic operators
	Drawing a Box
	Path construction operators
	Coordinates
	Hello World
	Character and font operators
	Procedures and Variables
	A Box procedure
	Graphics state and coordinate operators
	A Fibonacci Graph
	Numbers and Strings
	Factorial
	Factorial ...
	Boolean, control and string operators
	A simple formatter
	A simple formatter ...
	Array and dictionary operators
	Using Dictionaries — Arrowheads
	Instantiating Arrows
	Encapsulated PostScript
	What you should know!
	Can you answer these questions?

	3. Functional Programming
	References
	A Bit of History
	A Bit of History
	Programming without State
	Pure Functional Programming Languages
	Key features of pure functional languages
	Haskell
	Referential Transparency
	Evaluation of Expressions
	Tail Recursion
	Tail Recursion ...
	Equational Reasoning
	Equational Reasoning ...
	Pattern Matching
	Lists
	Using Lists
	Higher Order Functions
	Anonymous functions
	Curried functions
	Understanding Curried functions
	Currying
	Multiple Recursion
	Lazy Evaluation
	Lazy Lists
	Programming lazy lists
	Declarative Programming Style
	What you should know!
	Can you answer these questions?

	4. Type Systems
	References
	What is a Type?
	What is a Type?
	Static and Dynamic Types
	Static and Dynamic Typing
	Kinds of Types
	Type Completeness
	Function Types
	List Types
	Tuple Types
	Monomorphism
	Polymorphism
	Composing polymorphic types
	Polymorphic Type Inference
	Type Specialization
	Kinds of Polymorphism
	Coercion vs overloading
	Overloading
	Instantiating overloaded operators
	User Data Types
	Enumeration types
	Union types
	Recursive Data Types
	Using recursive data types
	Equality for Data Types
	Equality for Functions
	What you should know!
	Can you answer these questions?

	5. An application of Functional Programming
	Reference
	Encoding ASCII
	Huffmann encoding
	Huffmann decoding
	Generating optimal trees
	Architecture
	A Simple testing framework
	Testing
	Frequency Counting
	How to use recursion correctly!
	Freqcount tests
	Trees
	Testing Trees
	Merging trees
	Tree merging ...
	Extracting the Huffmann tree
	Generating the tree
	Extracting the encoding map
	Applying the encoding map
	foldr
	Decoding by walking the tree
	Testing
	Representing trees as text
	Representing trees as text ...
	Using a stack to parse stored trees
	Parsing stored trees
	Parsing stored trees ...
	Reading and Writing Files
	Using the program (I)
	Using the program (II)
	Tracing our program
	Frequency Counting Revisited
	Tracing eager evaluation
	Final version
	What you should know!
	Can you answer these questions?

	6. Introduction to the Lambda Calculus
	References
	What is Computable?
	Church’s Thesis
	Uncomputability
	What is a Function? (I)
	What is a Function? (II)
	The Lambda Calculus — syntax
	Lambda Calculus — semantics
	Beta Reduction
	Lambda expressions in Haskell
	Free and Bound Variables
	Why macro expansion is wrong
	Substitution
	Alpha Conversion
	Eta Reduction
	Normal Forms
	Evaluation Order
	The Church-Rosser Property
	Non-termination
	Currying
	Representing Booleans
	Representing Tuples
	Tuples as functions
	Representing Numbers
	Working with numbers
	What you should know!
	Can you answer these questions?

	7. Fixed Points and other Calculi
	Recursion
	Recursive functions as fixed points
	Fixed Points
	Fixed Point Theorem
	Using the Y Combinator
	Recursive Functions are Fixed Points
	Unfolding Recursive Lambda Expressions
	The Typed Lambda Calculus
	The Polymorphic Lambda Calculus
	Hindley-Milner Polymorphism
	Polymorphism and self application
	Other Calculi
	What you should know!
	Can you answer these questions?

	8. Introduction to Denotational Semantics
	Defining Programming Languages
	Uses of Semantic Specifications
	Methods for Specifying Semantics
	Methods for Specifying Semantics ...
	Concrete and Abstract Syntax
	A Calculator Language
	Calculator Semantics
	Calculator Semantics...
	Semantic Domains
	Data Structures for Abstract Syntax
	Representing Syntax
	Implementing the Calculator
	Implementing the Calculator ...
	A Language with Assignment
	Representing abstract syntax trees
	An abstract syntax tree
	Modelling Environments
	Functional updates
	Semantics of assignments
	Semantics of assignments ...
	Running the interpreter
	Practical Issues
	Theoretical Issues
	What you should know!
	Can you answer these questions?

	9. Logic Programming
	References
	Logic Programming Languages
	Prolog Facts and Rules
	Prolog Questions
	Horn Clauses
	Resolution and Unification
	Prolog Databases
	Simple queries
	Queries with variables
	Unification
	Unification ...
	Evaluation Order
	Closed World Assumption
	Backtracking
	Comparison
	Comparison ...
	Sharing Subgoals
	Disjunctions
	Recursion
	Recursion ...
	Evaluation Order
	Failure
	Negation as failure
	Changing the Database
	Changing the Database ...
	Functions and Arithmetic
	Defining Functions
	Lists
	Pattern Matching with Lists
	Pattern Matching with Lists ...
	Inverse relations
	Exhaustive Searching
	Limits of declarative programming
	What you should know!
	Can you answer these questions?

	10. Applications of Logic Programming
	I. Solving a puzzle
	A non-solution:
	A non-solution ...
	A first solution
	A first solution ...
	A second (non-)solution
	A second (non-)solution ...
	A third solution
	A third solution ...
	A third solution ...
	A fourth solution
	A fourth solution ...
	A fourth solution ...
	II. Reasoning about functional dependencies
	Operator overloading
	Computing closures
	Computing closures ...
	A closure predicate
	Manipulating sets
	Evaluating closures
	Testing
	Finding keys
	Finding keys ...
	Evaluating candidate keys
	Testing for BCNF
	Evaluating the BCNF test
	BCNF decomposition
	BCNF decomposition — top level
	BCNF decomposition — recursion
	Finding “bad” FDs
	Evaluating BCNF decomposition
	Can you answer these questions?

	11. Symbolic Interpretation
	Interpretation as Proof
	Representing Programs as Trees
	Prefix and Infix Operators
	Prefix and Infix Operators ...
	Operator precedence
	Standard Operators
	Building a Simple Interpreter
	Building a Simple Interpreter ...
	Running the Interpreter
	Lambda Calculus Interpreter
	Semantics
	Free Variables
	Free Variables ...
	Substitution
	Avoiding name capture
	Renaming
	Renaming ...
	Normal Form Reduction
	Normal Form Reduction ...
	Viewing Intermediate States
	Viewing Intermediate States ...
	Lazy Evaluation
	Lazy Evaluation ...
	Booleans
	Tuples
	Natural Numbers
	Natural Numbers ...
	Fixed Points
	Recursive Functions as Fixed Points
	Recursive Functions as Fixed Points ...
	What you should know!
	Can you answer these questions?

