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1. Programming Lan

Lecturer: Prof. Oscar Nierstrasz
Schützenmattstr. 14/103

Tel: 631.4618
Email: Oscar.Nierstrasz@iam.unib

Assistants: Franz Achermann, Nathana
WWW: www.iam.unibe.ch/~scg/Tea

http://www.iam.unibe.ch/~scg/Teaching/
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nguages: Principles 
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Cookbook, Adobe 
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and Application of 
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n Prolog, Springer 
© O. Nierstrasz — U. Berne

Sources
Text:

❑ Kenneth C. Louden, Programming La
and Practice, PWS Publishing (Bost

Other Sources:
❑ PostScript  Language Tutorial and 

Systems Incorporated, Addison-W
❑ Paul Hudak, “Conception, Evolution, 

Functional Programming Languages,
Surveys 21/3, pp 359-411.

❑ Clocksin and Mellish, Programming i
Verlag, 1981.
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Schedule
1. 03 - 27 Introduction
2. 04 - 03 Stack-based Programm
3. 04 - 10 Functional Programming
4. 04 - 17 Type systems
5. 04 - 24 An application of Funct
6. 05 - 01 Lambda Calculus
7. 05 - 08 Fixed Points; Other Ca
8. 05 - 15 Programming language 
9. 05 - 22 Logic Programming
10. 05 - 29 Applications of Logic P
11. 06 - 05 Symbolic Interpretatio
12. 06 - 12 TBA
13. 06 - 19 TBA

06 - 26 Final exam
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Themes Addressed in thi
Paradigms

❑ What computational paradigms are 
modern, high-level programming lan

❑ How well do these paradigms match
programming problems?

Abstraction
❑ How do different languages abstrac

level details of the underlying hard
implementation?

❑ How do different languages support
software abstractions needed for a

...
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Course ...
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entation of a 
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Themes Addressed in this 
Types

❑ How do type systems help in the co
flexible, reliable software?

Semantics
❑ How can one formalize the meaning

language?
❑ How can semantics aid in the implem

programming language?
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What is a Programming L
☞ A formal language for describin
☞ A “user interface” to a compute
☞ “Turing tar pit” — equivalent com
☞ Programming paradigms — diffe

power
☞ Syntax + semantics
☞ Compiler, or interpreter, or tran

“A programming language is a notation
describing computation in a machine-r
human-readable form.”
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languages 
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traction
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Generations of Programming

1GL: machine codes
2GL:  symbolic assemblers
3GL:  (machine independent) imperative 

(FORTRAN, Pascal ...)
4GL:  domain specific application genera

Each generation is at a higher level of abs
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; variables; 
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bjects; general 
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How do Programming Langua
Common Constructs:

☞ basic data types (numbers, etc.)
expressions; statements; keywo
constructs; procedures; commen

Uncommon Constructs:
☞ type declarations; special types

matrices, ...); sequential executi
constructs; packages/modules; o
functions; generics; modifiable s
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Programming Paradi
A programming language is a problem-solv

Other styles and paradigms: blackboard, p
constraints, lists, ...

Imperative style:
program = alg
good for deco

Functional style:
program = fu
good for reas

Logic programming style:
program = fa
good for sear

Object-oriented style:
program = ob
good for enca



PS — S2001 10.

Programming Languages

eters
ront-ends, but have 
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erator
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y code Machine code

ode Interpreter
© O. Nierstrasz — U. Berne

Compilers and Interpr
Compilers and interpreters have similar f
different back-ends:

Details will differ, but the general scheme

Code Gen

Parser Code Generat

Interpreter
Translator

Assembl

Byte c
Program

Program

...

Parse tree

Pre-processor
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A Brief Chronolog
Early 1950s “order codes” (primitive asse

1957 FORTRAN the first high-leve
language (3GL is in

1958 ALGOL the first modern, 
1960 LISP, COBOL
1962 APL, SIMULA the birth of OOP 
1964 BASIC, PL/I
1966 ISWIM first modern func

(a proposal)
1970 Prolog logic programming
1972 C the systems progr
1975 Pascal, Scheme two teaching langu
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1978 CSP
1978 FP
1980 dBASE II
1983 Smalltalk-80, 

Ada
OOP is reinvented

1984 Standard ML FP becomes mainst
1986 C++, Eiffel OOP is reinvented
1988 CLOS, Oberon, 

Mathematica
1990 Haskell FP is reinvented
1995 Java OOP is reinvented
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Fortran
History
John Backus (1953) sought to write progr
mathematical notation, and generate code
assembly programs.

❑ No language design effort 
(made it up as they went along)

❑ Most effort spent on code generat
❑ FORTRAN I released April 1957; w
❑ Current standards are FORTRAN 7

...
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nd functions
x expressions

 user base
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Fortran ...
Innovations

❑ Symbolic notation for subroutines a
❑ Assignments to variables of comple
❑ DO loops
❑ Comments
❑ Input/output formats
❑ Machine-independence

Successes
❑ Easy to learn; high level
❑ Promoted by IBM; addressed large

(scientific computing)
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 1955 to design 
orithmic language
lemented; criticisms 
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ALGOL 60
History

❑ Committee of PL experts formed in
universal, machine-independent, alg

❑ First version (ALGOL 58) never imp
led to ALGOL 60

...
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d to define syntax 

riables with local 

Ls but never 
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ALGOL 60 ...
Innovations

❑ BNF (Backus-Naur Form) introduce
(led to syntax-directed compilers)

❑ First block-structured language; va
scope

❑ Structured control statements
❑ Recursive procedures
❑ Variable size arrays 

Successes
❑ Highly influenced design of other P

displaced FORTRAN



PS — S2001 17.

Programming Languages

uter manufacturers

rs (!)

nt, data, and 

S DOD

siness applications (!)
© O. Nierstrasz — U. Berne

COBOL
History

❑ Designed by committee of US comp
❑ Targeted business applications
❑ Intended to be readable by manage

Innovations
❑ Separate descriptions of environme

processes
Successes

❑ Adopted as de facto standard by U
❑ Stable standard for 25 years
❑ Still the most widely used PL for bu
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r specific problem 
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4GLs
“Problem-oriented” languages

❑ PLs for “non-programmers” 
❑ Very High Level (VHL) languages fo

domains
Classes of 4GLs (no clear boundaries)

❑ Report Program Generator (RPG) 
❑ Application generators 
❑ Query languages 
❑ Decision-support languages 

Successes
❑ Highly popular, but generally ad hoc
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 users (early 1960s)
 language for broad 

ynchronization)

and flexibility (at 

nguage
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PL/I
History

❑ Designed by committee of IBM and
❑ Intended as (large) general-purpose

classes of applications
Innovations

❑ Support for concurrency (but not s
❑ Exception-handling by on conditions

Successes
❑ Achieved both run-time efficiency 

expense of complexity)
❑ First “complete” general purpose la
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ystems (early 1960s 

mid 1960s

 (NEW, LIST, 
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Interactive Langua
Made possible by advent of time-sharing s
through mid 1970s).

BASIC
❑ Developed at Dartmouth College in 
❑ Minimal; easy to learn
❑ Incorporated basic O/S commands

DELETE, RUN, SAVE)

...
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s ...

ise description of 

aracters in addition 

tables or matrices)
 composing array 

ts parsed right to 
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Interactive Language
APL

❑ Developed by Ken Iverson for conc
numerical algorithms

❑ Large, non-standard alphabet (52 ch
to alphanumerics)

❑ Primitive objects are arrays (lists, 
❑ Operator-driven (power comes from

operators)
❑ No operator precedence (statemen

left)
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 language
ore than other PLs

g and substitution
es)
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Special-Purpose Lang
SNOBOL

❑ First successful string manipulation
❑ Influenced design of text editors m
❑ String operations: pattern-matchin
❑ Arrays and associative arrays (tabl
❑ Variable-length strings 

...
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gement by garbage 
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Special-Purpose Langua
Lisp

❑ Performs computations on symbolic
❑ Symbolic expressions are represen
❑ Small set of constructor/selector o

and manipulate lists
❑ Recursive rather than iterative con
❑ No distinction between data and pr
❑ First PL to implement storage mana

collection
❑ Affinity with lambda calculus
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Functional Languag
ISWIM (If you See What I Mean)

❑ Peter Landin (1966) — paper propos
FP

❑ John Backus (1978) — Turing award
ML

❑ Edinburgh
❑ initially designed as meta-language 
❑ Hindley-Milner type inference
❑ “non-pure” functional language (with

effects)
Miranda, Haskell

❑ “pure” functional languages with “la
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Prolog
History

❑ Originated at U. Marseilles (early 1
developed at Marseilles and Edinbu
1970s)

Innovations
❑ Theorem proving paradigm
❑ Programs as sets of clauses: facts,
❑ Computation by “unification”

Successes
❑ Prototypical logic programming lang
❑ Used in Japanese Fifth Generation
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uages

d Dahl (early 1960s) 
 programming, by 
LGOL 60
ARC (early 1970s) to 
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Object-Oriented Lang
History

❑ Simula was developed by Nygaard an
in Oslo as a language for simulation
adding classes and inheritance to A

❑ Smalltalk was developed by Xerox P
drive graphic workstations

...
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s (contrast ADTs)
 interfaces

r interfaces
1980s
ctive C, Eiffel, Beta, 
Ada 95 ...
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Object-Oriented Langua
Innovations

❑ Encapsulation of data and operation
❑ Inheritance to share behaviour and

Successes
❑ Smalltalk project pioneered OO use
❑ Large commercial impact since mid 
❑ Countless new languages: C++, Obje

Oberon, Self, Perl 5, Python, Java, 
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s
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 applications
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 Apple to script 

 language and 
plications (via Tk)

scripting language
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Scripting Language
History

❑ Countless “shell languages” and “com
operating systems and configurable

❑ Unix shell (ca. 1971) developed as u
scripting tool

❑ HyperTalk (1987) was developed at
HyperCard stacks

❑ TCL (1990) developed as embedding
scripting language for X windows ap

❑ Perl (~1990) became de facto web 

...
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nguages (TCL)

 AppleTalk, TCL, 
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Scripting Languages
Innovations

❑ Pipes and filters (Unix shell)
❑ Generalized embedding/command la

Successes
❑ Unix Shell, awk, emacs, HyperTalk,

Python, Perl, VisualBasic ...
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What you should kn
✎ What, exactly, is a programming langua
✎ How do compilers and interpreters dif
✎ Why was FORTRAN developed?
✎ What were the main achievements of A
✎ Why do we call Pascal a “Third Genera
✎ What is a “Fourth Generation Languag
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ement a spelling 
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Can you answer these qu
✎ Why are there so many programming la
✎ Why are FORTRAN and COBOL still imp

languages?
✎ Which language should you use to impl

checker?
A filter to translate upper-to-lower ca
A theorem prover? 
An address database?
An expert system? 
A game server for initiating chess gam
A user interface for a network chess c
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Cookbook, Adobe 
esley, 1985
anual, Adobe 
on, Addison-Wesley, 
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2. Stack-based Progr

Overview 
❑ PostScript objects, types and stack
❑ Arithmetic operators
❑ Graphics operators
❑ Procedures and variables
❑ Arrays and dictionaries

References:
❑ PostScript  Language Tutorial and 

Systems Incorporated, Addison-W
❑ PostScript  Language Reference M

Systems Incorporated, second editi
1990
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mming language ... to 
l shapes, and 
ges.”

all major printer 

nguage

nerated from 
d
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PostScript
PostScript “is a simple interpretive progra
describe the appearance of text, graphica
sampled images on printed or displayed pa

❑ introduced in 1985 by Adobe
❑ display standard now supported by 

vendors
❑ simple, stack-based programming la
❑ minimal syntax
❑ large set of built-in operators
❑ PostScript programs are usually ge

applications, rather than hand-code
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s

memory management 

low” support
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Postscript variant
Level 1:

❑ the original 1985 PostScript
Level 2: 

❑ additional support for dictionaries, 
...

Display PostScript:
❑ special support for screen display

Level 3: 
❑ the current incarnation with “workf
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Stack-based Programming

 formfeed

dix numbers
.5
16#FFE 2#1000

decimal in angle 
s are escaped: \n 

r characters” but 

56 a.b 
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Syntax

Comments: from “%” to next newline or
% This is a comment

Numbers:
signed integers, reals and ra
123 -98 0 +17 -.002 34
123.6e10 1E-5 8#1777 

Strings:
text in parentheses or hexa
brackets (Special character
\t \( \) \\ ...)

Names:

tokens consisting of “regula
which aren’t numbers
abc Offset $$ 23A 13-4
$MyDict @pattern
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ms and divide by 2
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Literal 
names:

start with slash
/buffer /proc

Arrays: enclosed in square brackets
[ 123 /abc (hello) ]

Procedures:
enclosed in curly brackets
{ add 2 div } 
% add top two stack ite
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ipulate the display 
tion state of a 
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s of execution
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Semantics
A PostScript program is a sequence of tok
typed objects, that is interpreted to man
and four stacks that represent the execu
PostScript program:

Operand stack: holds (arbitrary) ope
PostScript operators

Dictionary stack: holds only dictionarie
values may be stored

Execution stack: holds executable obj
procedures) in stage

Graphics state 
stack:

keeps track of curre
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le:
 stack:
eral names, arrays, 

current dictionary 

, operator, real ...
ference
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Object types
Every object is either literal or executab
Literal objects are pushed on the operand

❑ integers, reals, string constants, lit
procedures

Executable objects are interpreted:
❑ built-in operators
❑ names bound to procedures (in the 

context)

Simple Object Types are copied by value
❑ boolean, fontID, integer, name, null

Composite Object Types are copied by re
❑ array, dictionary, string ...
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k

f the operand stack.

2
00 50
© O. Nierstrasz — U. Berne

The operand stac
Compute the average of 40 and 60:
40 60 add 2 div

At the end, the result is left on the top o

60
40 40 100 1
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erators
Function

1 + num2

1 - num2

1 * num2

1 / num2
ger divide
 mod int2
angent of num/den
ard top element
hange top two elements
licate top element
licate top n elements
licate n+1th element
© O. Nierstrasz — U. Berne

Stack and arithmetic op
Stack Op New Stack
num1 num2 add sum num
num1 num2 sub difference num
num1 num2 mul product num
num1 num2 div quotient num

int1 int2 idiv quotient inte
int1 int2 mod remainder int1
num den atan angle arct

any pop - disc
any1 any2 exch any2 any1 exc

any dup any any dup
any1 ... anyn n copy any1 ... anyn any1 ... anyn dup
anyn ... any0 n index anyn ... any0 anyn dup
and many others ...
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 that define a region 
rawn on the current 

t drawing path
)
100,200)

awing
nt path
ent page
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Drawing a Box
“A path is a set of straight lines and curves
to be filled or a trajectory that is to be d
page.”
newpath % clear the curren
100 100 moveto % move to (100,100
100 200 lineto % draw a line to (
200 200 lineto
200 100 lineto
100 100 lineto
10 setlinewidth % set width for dr
stroke % draw along curre
showpage % and display curr
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ators

ttenpath, ...

nt path to be empty
t coordinates
int to (x, y)
o
t line to (x, y)

rclockwise arc
th back to start
th with current colour
 current path
et current page
© O. Nierstrasz — U. Berne

Path construction oper

Others: arcn, arcto, curveto, rcurveto, fla

- newpath - initialize curre
- currentpoint x y return curren

x y moveto - set current po
dx dy rmoveto - relative movet

x y lineto - append straigh
dx dy rlineto - relative lineto

x y r ang1 ang2 arc - append counte
- closepath - connect subpa
- fill - fill current pa
- stroke - draw line along
- showpage - output and res
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ts

29.7 cm = 840 points

(595, 840)
© O. Nierstrasz — U. Berne

Coordinates

Coordinates are 
measured in points:

72 points = 1 inch
= 2.54 cm.

21 cm = 595 poin

A4 paper

(0,0)
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ok up the desired 
 (3) set it to be the 

mes Roman font
18 points
e the current font
nate (100, 500)
ing “Hello world”
urrent page
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Hello World
Before you can print text, you must (1) lo
font, (2) scale it to the required size, and
current font.
/Times-Roman findfont % look up Ti
18 scalefont % scale it to 
setfont % set this to b

100 500 moveto % go to coordi
(Hello world) show % draw the str
showpage % render the c

Hello world
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rators

tory, 

t identified by key
ale to produce font’
ary
font

 in current font
© O. Nierstrasz — U. Berne

Character and font ope

Others: definefont, makefont, FontDirec
StandardEncoding ....

key findfont font return font dic
font scale scalefont font’ scale font by sc

font setfont - set font diction
- currentfont font return current 

string show - print string
string stringwidth wx wy width of string
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binding names to 

erages:

d 2 div }”

urrent dictionary

2
100 100 50
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Procedures and Varia
Variables and procedures are defined by 
literal or executable objects.

Define a general procedure to compute av
/average { add 2 div } def
% bind the name “average” to “{ ad
40 60 average

key value def - associate key and value in c

{ add 2 div } 60
/average /average 40 40
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ologue and a script.
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A Box procedure
Most PostScript programs consist of a pr
% Prologue -- application specific procedures
/box {  % grey x y -> __

newpath
moveto % x y -> __
0 150 rlineto % relative lineto
150 0 rlineto
0 -150 rlineto
closepath % cleanly close path!
setgray % grey -> __
fill % colour in region

} def
% Script -- usually generated
0 100 100 box
0.4 200 200 box
0.6 300 300 box
0 setgray
showpage
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te operators

line width and user 

ay value 
hite)
 by sx and sy
ce by angle degrees
space by (tx, ty)
 matrix
 CTM
 matrix
tate
s state
© O. Nierstrasz — U. Berne

Graphics state and coordina

gsave saves the current path, gray value, 
coordinate system

num setlinewidth - set line width
num setgray - set colour to gr

(0 = black; 1 = w
sx sy scale - scale use space
angle rotate - rotate user spa
tx ty translate - translate user 

- matrix matrix create identity
matrix currentmatrix matrix fill matrix with
matrix setmatrix - replace CTM by

- gsave - save graphics s
- grestore - restore graphic
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h

e origin
(100, 100)

t fib value
© O. Nierstrasz — U. Berne

A Fibonacci Grap
/fibInc { % m n -> n (m+n)

exch % m n -> n m
1 index % n m -> n m n
add

} def
/x 0 def /y 0 def /dx 10 def
newpath
100 100 translate % make (100, 100) th
x y moveto % i.e., relative to 
0 1 25 {

/x x dx add def % increment x
dup /y exch 100 idiv def % set y to 1/100 las
x y lineto % draw segment
fibInc

} repeat
2 setlinewidth
stroke
showpage
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 of capacity int
ring
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Numbers and Strin
Numbers and other objects must be conv
before they can be printed:

int string string create string
any string cvs substring convert to st
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20

ve lookup

string and show it
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Factorial
/LM 100 def % left margin
/FS 18 def % font size
/sBuf 20 string def % string buffer of length 
/fact { % n -> n!

dup 1 lt % -> n bool
{ pop 1 } % 0 -> 1
{

dup % n -> n n
1 % -> n n 1
sub % -> n (n-1)
fact % -> n (n-1)! NB: recursi
mul % n!

}
ifelse

} def
/showInt { % n -> __

sBuf cvs show % convert an integer to a 
} def
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t
y

0

0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 6.22702e+09
14! = 8.71783e+10
15! = 1.30767e+12
16! = 2.09228e+13
17! = 3.55687e+14
18! = 6.40237e+15
19! = 1.21645e+17
20! = 2.4329e+18
© O. Nierstrasz — U. Berne

Factorial ...
/showFact { % n -> __

dup showInt % show n
(! = ) show % ! =
fact showInt % show n!

} def
/newline { % __ -> __

currentpoint exch pop % get current y
FS 2 add sub % subtract offse
LM exch moveto % move to new x 

} def

/Times-Roman findfont FS scalefont setfont
LM 600 moveto
0 1 20 { showFact newline } for % do from 0 to 2
showpage
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ual
 true

ool is true
ool is true else proc2
 values init to limit by 

imes
ts in string
sition index
 at position index
each element of string
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Boolean, control and string
any1 any2 eq bool test equal
any1 any2 ne bool test not equal
any1 any2 ge bool test greater or eq

- true true push boolean value
- false bool test equal

bool proc if - execute proc if b
bool proc1 proc2 ifelse - execute proc1 if b

init incr limit proc for - execute proc with
steps of incr

int proc repeat - execute proc int t
string length int number of elemen

string index get int get element at po
string index int put - put int into string

string proc forall - execute proc for 
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d bring us
ld overflow RM

 array -> __
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A simple formatte
/LM 100 def % left margin
/RM 250 def % right margin
/FS 18 def % font size
/showStr { % string -> __

dup stringwidth pop % get (just) string’s
currentpoint pop % current x position
add % where printing woul
RM gt { newline } if % newline if this wou
show

} def
/newline { % __ -> __

currentpoint exch pop % get current y
FS 2 add sub % subtract offset
LM exch moveto % move to new x y

} def
/format { { showStr ( ) show } forall } def %
/Times-Roman findfont FS scalefont setfont
LM 600 moveto
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n) (to)
rmat
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A simple formatter
[ (Now) (is) (the) (time) (for) (all) (good) (me
(come) (to) (the) (aid) (of) (the) (party.) ] fo
showpage

Now is the time for 
all good men to 
come to the aid of 
the party. 
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erators
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struction

 of length n
ements in array
at index position
at index position
 for each array element
nary of capacity int
y-value pairs

dict stack
k
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Array and dictionary op
- [ mark start array c

mark obj0 ... objn-1 ] array end array con
int array array create array

array length int number of el
array index get any get element 

array index any put - put element 
array proc forall - execute proc

int dict dict create dictio
dict length int number of ke
dict maxlength int capacity
dict begin - push dict on 

- end - pop dict stac
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owheads
dictionary

ace for a matrix

ef

headlength
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thickness

x, tipy)

lx, taily)
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Using Dictionaries — Arr
/arrowdict 14 dict def % make a new 
arrowdict begin

/mtrx matrix def % allocate sp
end
/arrow {

arrowdict begin % open the dictionary

/dx tipx tailx sub def
/dy tipy taily sub def
/arrowlength dx dx mul dy dy mul add sqrt d
/angle dy dx atan def
/base arrowlength headlength sub def

(tip

(tai

/headlength exch def % grab args
/halfheadthickness exch 2 div def
/halfthickness exch 2 div def
/tipy exch def
/tipx exch def
/taily exch def
/tailx exch def
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ate to start of arrow
 coordinates
s if starting from (0,0)

e coordinate system
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/savematrix mtrx currentmatrix def % save t
tailx taily translate % transl
angle rotate % rotate
0 halfthickness neg moveto % draw a
base halfthickness neg lineto
base halfheadthickness neg lineto
arrowlength 0 lineto
base halfheadthickness lineto
base halfthickness lineto
0 halfthickness lineto
closepath
savematrix setmatrix % restor

end
} def
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row
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Instantiating Arro

newpath
318 340 72 340 10 30 72 arrow

fill
newpath

382 400 542 560 72 232 116 arrow
3 setlinewidth stroke
newpath

400 300 400 90 90 200 200 3 sqrt mul 2 div ar
.65 setgray fill
showpage



PS — S2001 60.

Stack-based Programming

ript
nd exporting 

Hello world

 490)

(200, 520)
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Encapsulated PostSc
EPSF is a standard format for importing a
PostScript files between applications.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 90 490 200 520
/Times-Roman findfont
        18 scalefont
        setfont
100 500 moveto
(Hello world) show
showpage

(90,
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manage?
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system?
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r your PostScript 
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What you should kn
✎ What kinds of stacks does PostScript 
✎ When does PostScript push values on t
✎ What is a path, and how can it be displ
✎ How do you manipulate the coordinate 
✎ Why would you define your own diction
✎ How do you compute a bounding box fo

graphic?
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late object-oriented 
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Can you answer these qu

✎ How would you program this graphic? 
✎ When should you use translate instead
✎ How could you use dictionaries to simu

programming?

zzzzzzz
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3. Functional Progra

Overview
❑ Functional vs. Imperative Programm
❑ Referential Transparency
❑ Recursion
❑ Pattern Matching
❑ Higher Order Functions
❑ Lazy Lists
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ell 98 A Non-strict, 
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A Bit of History
Lambda Calculus

(Church, 1932-33)
formal model of co

Lisp 
(McCarthy, 1960)

symbolic computat

APL 
(Iverson, 1962)

algebraic programm

ISWIM 
(Landin, 1966)

let and where claus
equational reasonin
functional program
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uage for theorem 

” of functional 
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A Bit of History
ML 

(Edinburgh, 1979)
originally meta lang
proving

SASL, KRC, 
Miranda

(Turner, 1976-85)

lazy evaluation

Haskell
(Hudak, Wadler, et 

al., 1988)

“Grand Unification
languages ...
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State

e no explicit state. 
posing expressions.

ve (functional) 

f n == 0
hen 1
lse n * fac (n-1)
© O. Nierstrasz — U. Berne

Programming without 

Programs in pure functional languages hav
Programs are constructed entirely by com

Imperative style:

n := x;
a := 1;
while n>0 do
begin a:= a*n;
n := n-1;

end;

Declarati
style:

fac n =
i
t
e



PS — S2001 68.

Functional Programming
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ion from input data 
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Pure Functional Programming

Imperative Programming:
☞ Program = Algorithms + Data

Functional Programming:
☞ Program = Functions  Functions

What is a Program?
A program (computation) is a transformat
to output data.
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ts — only input 

functions
 on the values of its 
© O. Nierstrasz — U. Berne

Key features of pure functio

1. All programs and procedures are fun
2. There are no variables or assignmen

parameters
3. There are no loops — only recursive 
4. The value of a function depends only

parameters
5. Functions are first-class values
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Haskell
Haskell is a general purpose, purely fu
programming language incorporating m
innovations in programming language d
provides higher-order functions, non-
semantics, static polymorphic typing,
algebraic datatypes, pattern-matchin
comprehensions, a module system, a m
system, and a rich set of primitive dat
lists, arrays, arbitrary and fixed prec
and floating-point numbers. Haskell is
culmination and solidification of many
research on lazy functional languages

— The H
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Referential Transpar
A function has the property of referentia
value depends only on the values of its par

✎ Does f(x)+f(x) equal 2*f(x)? In C? 

Referential transparency means that “equ
by equals”.

In a pure functional language, all function
transparent, and therefore always yield t
matter how often they are called.
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sions
y substituting 
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 fac (4-1-1))
 (4-1-1))

lse (4-1-1) * ...))

)))

ot implemented by 
© O. Nierstrasz — U. Berne

Evaluation of Expres
Expressions can be (formally) evaluated b
arguments for formal parameters in funct

fac 4 ➪  if 4 == 0 then 1 else 4 * fac (4-1)
➪ 4 * fac (4-1) 
➪ 4 * (if (4-1) == 0 then 1 else (4-1) *
➪ 4 * (if 3 == 0 then 1 else (4-1) * fac
➪ 4 * ((4-1) * fac (4-1-1))
➪ 4 * ((4-1) * (if (4-1-1) == 0 then 1 e
➪ ...
➪ 4 * ((4-1) * ((4-1-1) * ((4-1-1-1) * 1
➪ ...
➪ 24

Of course, real functional languages are n
syntactic substitution ...
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ime stack frame:

ct 5 fact 4 fact 3

ac 3
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Tail Recursion
Recursive functions can be less efficient t
the high cost of procedure calls on most h

A tail recursive function calls itself only a
so the recursive call can be optimized awa
compiler since it needs only a single run-t

...

fact 5 → fact 5 fact 4 → fa

sfac 5 → sfac 4 → sf
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.
a tail-recursive one 
xplicit function 
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Tail Recursion ..
A recursive function can be converted to 
by representing partial computations as e
parameters:
sfac s n = if n == 0

then s
else sfac (s*n) (n-1)

sfac 1 4 ➪  sfac (1*4) (4-1)
➪  sfac 4 3 
➪ sfac (4*3) (3-1) 
➪ sfac 12 2 
➪  sfac (12*2) (2-1) 
➪ sfac 24 1
➪  ... ➪  24
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) — by def
n-1)

— by lemma
— by def
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Equational Reasoni
Theorem:

For all n ≥ 0, 
Proof of theorem:

n = 0: fac 0 = 1 = sfac 1 0
n > 0: Suppose

fac (n-1) = sfac 1 (n-1)
fac n = n * fac (n-1

= n * sfac 1 (
= sfac n (n-1)
= sfac 1 n

...

fac n = sfac 1 n
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 ...

1 n

 (n-1)
n-1)
 1 (n-1)
n-1)
© O. Nierstrasz — U. Berne

Equational Reasoning
Lemma:

For all n ≥ 0, sfac s n = s * sfac 
Proof of lemma:

n = 0: sfac s 0 = s = s * sfac 1 0
n > 0: Suppose:

sfac s (n-1) = s * sfac 1
sfac s n = sfac (s*n) (

= s * n * sfac
= s * sfac n (
= s * sfac 1 n
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Pattern Matching
Haskell support multiple styles for specif
function definitions:

Patterns:
fac' 0 = 1
fac' n = n * fac' (n-1)

-- or: fac’ (n+1) = (n+1) * fac’ n

Guards:
fac'' n | n == 0 = 1

| n >= 1 = n * fac'' (n-1)
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n]
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Lists
Lists are pairs of elements and lists of ele

❑ [ ] — stands for the empty list

❑ x:xs — stands for the list with x as
the rest of the list

❑ [1,2,3] — is syntactic sugar for 1:

❑ [1..n] — stands for [1,2,3, ... 
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:
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Using Lists
Lists can be deconstructed using patterns

head (x:_) = x

len [ ] = 0
len (x:xs) = 1 + len xs

prod [ ] = 1
prod (x:xs) = x * prod xs

fac''' n = prod [1..n]
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 applied to lists:
© O. Nierstrasz — U. Berne

Higher Order Funct
Higher-order functions treat other funct
values that can be composed to produce n

map f [ ] = [ ]
map f (x:xs) = f x : map f xs

map fac [1..5]
➪ [1, 2, 6, 24, 120]

NB: map fac is a new function that can be
mfac = map fac
mfac [1..3]

➪ [1, 2, 6]
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Anonymous functio
Anonymous functions can be written as “la
The function (\x -> x * x) behaves exa
sqr x = x * x

sqr 10 ➪ 100
(\x -> x * x) 10 ➪ 100

Anonymous functions are first-class value
map (\x -> x * x) [1..10]

➪ [1, 4, 9, 16, 25, 36, 49, 6



PS — S2001 82.

Functional Programming

ian H.B. Curry] takes 
 be treated as a 

 addition

rst argument to 1

irst argument of
ed factorial

-1)
© O. Nierstrasz — U. Berne

Curried functions
A Curried function [named after the logic
its arguments one at a time, allowing it to
higher-order function.
plus x y = x + y -- curried
plus 1 2 ➪ 3

inc = plus 1 -- bind fi
inc 2 ➪ 3

fac = sfac 1 -- binds f
where sfac s n -- a curri

| n == 0 = s
| n >= 1= sfac (s*n) (n
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Understanding Curried f
plus x y = x + y

is the same as:
plus x = \y -> x+y

In other words, plus is a function of one ar
a function as its result.

plus 5 6

is the same as:
(plus 5) 6

In other words, we invoke (plus 5), obtain
\y -> 5 + y

which we then pass the argument 6, yieldi
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Currying
The following (pre-defined) function takes
an argument and turns it into a curried fu

curry f a b = f (a, b)

plus(x,y) = x + y -- no
inc = (curry plus) 1

sfac(s, n) = if n == 0 -- no
then s
else sfac (s*n, n-1)

fac = (curry sfac) 1 -- bi
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ibonacci function?
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Multiple Recursio
Naive recursion may result in unnecessary
fib 1 = 1
fib 2 = 1
fib (n+2) = fib n + fib (n+1)

Efficiency can be regained by explicitly p
values:
fib' 1 = 1
fib' n = a where (a,_) = fi
fibPair 1 = (1,0)
fibPair (n+2) = (a+b,a)

where (a,b) = fibPair (n+1)

✎ How would you write a tail-recursive F
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 ➪  49

e evaluated even if 
ting arguments:
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Lazy Evaluation
“Lazy”, or “normal-order” evaluation only e
when they are actually needed. Clever imp
techniques (Wadsworth, 1971) allow replic
be shared, and thus avoid needless recalc
So:
sqr n = n * n
sqr (2+5) ➪  (2+5) * (2+5) ➪  7 * 7

Lazy evaluation allows some functions to b
they are passed incorrect or non-termina
ifTrue True x y = x
ifTrue False x y = y
ifTrue True 1 (5/0) ➪ 1
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syntax: [n..]
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Lazy Lists
Lazy lists are infinite data structures wh
generated by need:
from n = n : from (n+1)

from 10 ➪ [10,11,12,13,14,15,16,17

take 0 _ = [ ]
take _ [ ] = [ ]
take (n+1) (x:xs) = x : take n xs

take 5 (from 10) ➪ [10, 11, 12, 13

NB: The lazy list (from n) has the special 
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sts
d as lazy lists.

 34, 55 ]

+b) only appears 
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Programming lazy li
Many sequences are naturally implemente
Note the top-down, declarative style:

fibs = 1 : 1 :  
where fibsFollowing a b = 
(a+b) : fibsFollowing b (a+b)

take 10 fibs
➪ [ 1, 1, 2, 3, 5, 8, 13, 21,

✎ How would you re-write fibs so that (a
once?

fibsFollowing 1 1
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g Style

)
ime n

es n

s n

13, ... 523, 541 ]
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Declarative Programmin
primes = primesFrom 2
primesFrom n = p : primesFrom (p+1

where p = nextPr
nextPrime n
| isPrime n = n
| otherwise = nextPrime (n+1)

isPrime 2 = True
isPrime n = notDivisible prim
notDivisible (k:ps) n
| (k*k) > n = True
| (mod n k) == 0 = False
| otherwise = notDivisible p

take 100 primes ➪ [ 2, 3, 5, 7, 11, 
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ow!
y is it important?
 is this useful?

nonymous function?
they useful?
 in a multiply 
© O. Nierstrasz — U. Berne

What you should kn
✎ What is referential transparency? Wh
✎ When is a function tail recursive? Why
✎ What is a higher-order function? An a
✎ What are curried functions? Why are 
✎ How can you avoid recalculating values

recursive function?
✎ What is lazy evaluation?
✎ What are lazy lists?
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estions?
ovide loop 

an guards to specify 

numbers and 

+b) is only called 

ited to functional 
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Can you answer these qu
✎ Why don’t pure functional languages pr

constructs?
✎ When would you use patterns rather th

functions?
✎ Can you build a list that contains both 

functions?
✎ How would you simplify fibs so that (a

once?
✎ What kinds of applications are well-su

programming?
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4. Type System

Overview
❑ What is a Type?
❑ Static vs. Dynamic Typing
❑ Kinds of Types
❑ Polymorphic Types
❑ Overloading
❑ User Data Types
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and Application of 
” ACM Computing 
11.
rstanding Types, 
,’“ACM Computing 

22. 
ncepts and 
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What is a Type?
Type errors:
? 5 + [ ]
ERROR: Type error in application
*** expression : 5 + [ ]
*** term : 5
*** type : Int
*** does not match : [a]

A type is a set of values?
❑ int = { ... -2, -1, 0, 1, 2, 3, ... }
❑ bool = { True, False }
❑ Point = { [x=0,y=0], [x=1,y=0], [x
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viour?
is an error

hello world” is an 

ing? Useful?
© O. Nierstrasz — U. Berne

What is a Type?
A type is a partial specification of beha

❑ n,m:int ⇒  n+m is valid, but not(n) 

❑ n:int ⇒  n := 1is valid, but n := “
error

What kinds of specifications are interest
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ypes
ogramming language.

ypes determined by 

pplet();

mic type is GameApplet

e of value is GameApplet
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Static and Dynamic T
Values have static types defined by the pr

Variables and expressions have dynamic t
the values they assume at run-time.

Applet myApplet = new GameA

actual dyna

declared, static type is Applet
static typ
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yping
s possible to 
ion based on the 

le to ensure that 
 on the program text 

ues have fixed type. 
ferent types at run-
fore they are used.

mpile-time type-
ic type-checking.
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Static and Dynamic T
A language is statically typed if it is alway
determine the (static) type of an express
program text alone.

A language is strongly typed if it is possib
every expression is type consistent based
alone.

A language is dynamically typed if only val
Variables and parameters may take on dif
time, and must be checked immediately be

Type consistency may be assured by (i) co
checking, (ii) type inference, or (iii) dynam
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 set of built-in 

 floats, chars ...
ples ...

ovide for additional 

recursive types, 
© O. Nierstrasz — U. Berne

Kinds of Types
All programming languages provide some
types.

❑ Primitive types: booleans, integers,
❑ Composite types: functions, lists, tu

Most strongly-typed modern languages pr
user-defined types.

❑ User-defined types: enumerations, 
generic types, objects ...
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s

stricted in the 
— Watt

d as arguments and 

lass distinctions, 
eat functions (at 
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Type Completenes
The Type Completeness Principle:

No operation should be arbitrarily re
types of values involved.

First-class values can be evaluated, passe
used as components of composite values. 

Functional languages attempt to make no c
whereas imperative languages typically tr
best) as second-class values.
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:: Int

Int -> Int)

) 6).

Int->Int
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Function Types
Function types allow one to deduce the ty
without the need to evaluate them:
fact :: Int -> Int
42 :: Int ⇒ fact 42 

Curried types:
Int -> Int -> Int ≡ Int -> (

and
plus 5 6 ≡ ((plus 5

so:
plus::Int->Int->Int ⇒ plus 5::
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:

f the same type!
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List Types
List Types
A list of values of type a has the type [a]
[ 1 ] :: [ Int ]

NB: All of the elements in a list must be o
['a', 2, False]-- this is illegal!
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s t1, t2, ..., tn 
, xn)has the type 

, Int))

le element which is 
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Tuple Types
Tuple Types
If the expressions x1, x2, ..., xn have type
respectively, then the tuple (x1, x2, ...
(t1, t2, ..., tn):

(1, [2], 3) :: (Int, [Int], Int)
('a', False) :: (Char, Bool)
((1,2),(3,4)) :: ((Int, Int), (Int

The unit type is written () and has a sing
also written as ().
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n result has a unique 

 a generic sort 
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Monomorphism
Languages like Pascal have monomorphic t
constant, variable, parameter and functio
type.

❑ good for type-checking
❑ bad for writing generic code

☞ it is impossible in Pascal to write
procedure
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s of different types:

-> [b]

> b) -> (a -> c)
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Polymorphism
A polymorphic function accepts argument
length :: [a] -> Int
length [ ] = 0
length (x:xs) = 1 + length xs

map :: (a -> b) -> [a] 
map f [ ] = [ ]
map f (x:xs) = f x : map f xs

(.) :: (b -> c) -> (a -
(f . g) x = f (g x)
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 types
using polymorphic 
 to concrete types.

b]

: [[a]] -> [Int]
: [[Char]]
: [Int]
© O. Nierstrasz — U. Berne

Composing polymorphic
We can deduce the types of expressions 
functions by simply binding type variables

Consider:
length :: [a] -> Int
map :: (a -> b) -> [a] -> [

Then:
map length :
[ “Hello”, “World” ] :
map length [ “Hello”, “World” ] :
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rence
n effective 
he types of 

 many modern 
skell.

[ ]
f x : map f xs

Z

[ d ]

[ b ]
© O. Nierstrasz — U. Berne

Polymorphic Type Infe
Hindley-Milner Type Inference provides a
algorithm for automatically determining t
polymorphic functions.

The corresponding type system is used in
functional languages, including ML and Ha

map f [ ] =
map f (x:xs) =

map :: X -> Y ->

map :: (a -> b) -> [ c ] ->

map :: (a -> b) -> [ a ] ->
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n
ssigned a more 

find the type of a 
Haskell:
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Type Specializatio
A polymorphic function may be explicitly a
specific type:
idInt :: Int -> Int
idInt x = x

Note that the :t command can be used to 
particular expression that is inferred by 
? :t \x -> [x]
➪ \x -> [x] :: a -> [a]

? :t (\x -> [x]) :: Char -> String
➪ \x -> [x] :: Char -> String
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tion in Haskell; nil 

jects

egers and reals
ed where reals are 
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Kinds of Polymorph
Polymorphism:

❑ Universal:
—Parametric: polymorphic map func

pointer type in Pascal
—Inclusion: subtyping — graphic ob

❑ Ad Hoc:
—Overloading: + applies to both int
—Coercion: integer values can be us

expected and v.v.
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ing
istinguish?

ns, or just one, with 
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Coercion vs overload
Coercion or overloading — how does one d
3 + 4
3.0 + 4
3 + 4.0
3.0 + 4.0

✎ Are there several overloaded + functio
values automatically coerced?
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sed:

e
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Overloading
Overloaded operators are introduced by m
class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)

A type class must be instantiated to be u
instance Eq Bool where
True == True = True
False == False = True
_ == _ = Fals
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operators
efinition must be 

EqInt
rd c == ord d
where
 && y==v

e
e
 && xs==ys
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Instantiating overloaded 
For each overloaded instance a separate d
given ...
instance Eq Int where (==) = prim
instance Eq Char where c == d = o
instance (Eq a, Eq b) => Eq (a,b) 
(x,y) == (u,v) = x==u

instance Eq a => Eq [a] where
[ ] == [ ] = True
[ ] == (y:ys) = Fals
(x:xs) == [ ] = Fals
(x:xs) == (y:ys) = x==y
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ifying (i) a datatype 
ii) a set of 

r1 | ... | constrm

th “:”):
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User Data Types
New data types can be introduced by spec
name, (ii) a set of parameter types, and (i
constructors for elements of the type:

data DatatypeName a1 ... an = const

where the constructors may be either:
1. Named constructors:

Name type1 ... typek

2. Binary constructors (i.e., starting wi
type1 CONOP type2
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s
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 Thu | Fri | Sat

nstruct the 
uctor:

ve to go to work”
© O. Nierstrasz — U. Berne

Enumeration type
User data types that do not hold any data
enumerations:

data Day = Sun | Mon | Tue | Wed |

Functions over user data types must deco
arguments, with one case for each constr

whatShallIDo Sun = “relax”
whatShallIDo Sat = “go shopping”
whatShallIDo _ = “guess I'll ha
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= 0.0
= 32.0
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Union types

data Temp = Centigrade Float | Fah

freezing :: Temp -> Bool
freezing (Centigrade temp)= temp <
freezing (Fahrenheit temp)= temp <
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13)) :^: Lf 10

3

Lf 10
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Recursive Data Typ
A recursive data type provides constructo
itself:

data Tree a = Lf a | Tree a :^: Tr

mytree = (Lf 12 :^: (Lf 23 :^: Lf 

? :t mytree ➪ mytree :: Tree Int

Lf 12
Lf 23 Lf 1

:^:
:^:

:^:

mytree = 
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aves r

cc l . leavesAcc r

nt? Why?
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Using recursive data 
leaves, leaves' :: Tree a -> [a]
leaves (Lf l) = [l]
leaves (l :^: r) = leaves l ++ le

leaves' t = leavesAcc t [ ]
where leavesAcc (Lf l) = (l:)

leavesAcc (l :^: r) = leavesA

✎ What do these functions do? 
✎ Which function should be more efficie
✎ What is (l:) and what does it do?
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 && ys `subset` xs
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nt of ys
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Equality for Data Ty
Why not automatically provide equality fo

User data types:
data Set a = Set [a]
instance Eq a => Eq (Set a) where
Set xs == Set ys = xs `subset` ys
where xs `subset` ys = all (`el

NB: all (‘elem’ ys) xs tests that every x in xs is an eleme
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xpression
==) {dict} 1) (\x-

 Bool)

idable in general!
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Equality for Functi

Functions:
? (1==) == (\x->1==x)
ERROR: Cannot derive instance in e
*** Expression        : (==) d148 ((
>(==) {dict} 1 x)
*** Required instance : Eq (Int ->

Determining equality of functions is undec
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ction be inferred?
metric 

length 3?
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What you should kn
✎ How are the types of functions, lists a
✎ How can the type of an expression be 

evaluating it?
✎ What is a polymorphic function?
✎ How can the type of a polymorphic fun
✎ How does overloading differ from para

polymorphism?
✎ How would you define == for tuples of 
✎ How can you define your own data type
✎ Why isn’t == pre-defined for all types?
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fer the type of an 
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Can you answer these qu
✎ Can any set of values be considered a t
✎ Why does Haskell sometimes fail to in

expression?
✎ What is the type of the predefined fu

would you implement it?
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s
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5. An application of F
Programming

Overview 
❑ Huffmann encoding

☞ variable length encoding based o
frequency

❑ Architecture of a functional Huffm
❑ How to use recursion correctly ☞  e
❑ Representing and manipulating tree
❑ Encoding trees as text; parsing sto
❑ Continuation-style IO
❑ “It doesn’t always pay to be lazy!” —

evaluation
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an, Structure and 
ms, MIT electrical 
eries., McGraw-Hill, 
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Reference
❑ H. Abelson, G. Sussman and J.Sussm

Interpretation of Computer Progra
engineering and computer science s
1991.
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s
1
1

" 0000
I 0001

(blank) 0010
a 0011
m 0100
w 0101
h 0110
t 0111
. 1000
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Encoding ASCII
"I am what I am."

Naive encoding requires at least 4 bits to
encode 9 different characters:

16 characters x 4 bits/character = 64 bit
0000 0001 0010 0011 0100 0010 010
0110 0011 0111 0010 0001 0010 001
0100 0000
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g

frequency encoding
4 00
3 010
2 011
2 100
2 101
1 1100
1 1101
1 1110
1 1111
© O. Nierstrasz — U. Berne An 

Huffmann encodin

Huffmann encoding assigns fewer 
bits to more frequently used 
characters.

4×2 + 9×3 + 4×4 = 51 bits
011 100 00 010 101 00 1100
1101 010 1110 00 100 00 010
101 011

char
(blank)

a
"
I
m
w
h
t
.
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g
 by using the bits to 
g the characters at 

0 1110 00

h t .

0

0

1

1

11
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Huffmann decodin
A Huffmann encoded text can be decoded
walk down the encoding tree and outputtin
the leaves: 

011 100 00 010 101 00 1100 1101 01
➪ “I am what ...

(blank)

a "

w

mI

0

0

0 0

0

1

1 1

1 0
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al encoding/

two “smallest” (by 

 
 

8 
15 
nd decode text files.
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Generating optimal t
Huffmann’s algorithm generates the optim
decoding tree by recursively merging the 
weight) subtrees: 

➪ blank4 a3 I2 m2 w1 h1 t1 .1 
➪ blank4 a3 I2 m2 w1 h1 (t .)2 
➪ blank4 a3 I2 m2 (w h)2 (t .)2 
➪ blank4 a3 I2 m2 ((w h) (t .))4 
➪ blank4 a3 (I m)4 ((w h) (t .))4
➪ (blank a)7 (I m)4 ((w h) (t .))4
➪ (blank a)7 ((I m) ((w h) (t .)))
➪ ((blank a) ((I m) ((w h) (t .))))

✎ Write a program to Huffmann encode a
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e components to 

aracter frequency

Huffmann tree

Encoding map
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Architecture
At the coarsest granularity, we need thre
encode and decode files:

Plain text file

Cipher text file

Huffmann tree file

Ch
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ework
e, or a suite of tests:

est

ail:
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A Simple testing fram
A test consists of a single named test cas
data Test name test =

Test name test
| Test name test :+: Test name t
deriving Show

We return only the names of tests that f
dotest (Test name test) =
if (test ())
then ""
else name ++ " FAILED\n"

dotest (t1 :+: t2) =
(dotest t1) ++ (dotest t2)
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Testing
assert test =
let result = dotest test
in
if length(result) > 0
then putStr result
else putStr "PASSED all tests"

tests =
Test "test1" (\x -> 1 == 1)

:+: Test "test2" (\x -> 2 == 2)

assert allTests
➪ PASSED all tests
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g
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Count s)

ar
 [CharCount]

 c ccList)
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Frequency Countin
We represent frequencies as lists of pair
type CharCount = (Char,Int)

Compute a [CharCount] for a given String
freqCount :: String -> [CharCount]
freqCount "" = []
freqCount (c:s) = incCount c (freq

Increment the [CharCount] for a given Ch
incCount :: Char -> [CharCount] ->
incCount c [] = [(c,1)]
incCount c ((c1,n):ccList)
| c == c1 = (c1,n+1):ccList
| otherwise = (c1,n):(incCount
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rrectly!
ion will terminate:

on reduces some 
ventually reach a 

 (freqCount s)

 argument string ⇒ 
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How to use recursion co
In order to ensure that a recursive funct

1. Carefully establish the base cases:
freqCount "" = []

☞ base case is an empty string

2. Ensure that every recursive invocati
measure of size, and therefore will e
base case:

freqCount (c:s) = incCount c

☞ recursive call reduces length of
will reach base case
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Freqcount tests
iam = "\"I am what I am.\""
freqCount iam

➪ [('"',2), ('.',1), ('m',2), ('a
('I',2), ('t',1), ('h',1), ('w'

testFreqCount = let result = freqC
Test "freqCount length"

(\x -> length result ==
:+: Test "freqCount sum"

(\x -> sum (map snd res

✎ What other tests make sense to speci
✎ How are sum and snd defined?
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Trees
We can represent a Huffmann tree as a u

data Tree a = Leaf a
| Tree a :^: Tree a

Weigh a Tree
weight :: Tree CharCount -> Int
weight (Leaf (ch,n)) = n
weight (tree1 :^: tree2) = (weigh

+ (weigh
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eaf ('m',2),
f ('I',2),
f ('w',1) ]

m))
 2, 1, 1, 1 ]

 (freqCount iam)))
© O. Nierstrasz — U. Berne An 

Testing Trees
Constructors are functions too:
map Leaf (freqCount iam)

➪ [ Leaf ('"',2), Leaf ('.',1), L
Leaf ('a',3), Leaf (' ',4), Lea
Leaf ('t',1), Leaf ('h',1), Lea

map weight (map Leaf (freqCount ia
➪ [ 2, 1, 2, 3, 4,

testWeight = Test "weight"
(\x -> sum (map weight (map Leaf

== 17)
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r till a single tree 

Tree CharCount
-- base case 
-- otherwise 
ee1 tree2 []
ee2 tree1 []
;
 }

 of a helper function 
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Merging trees
Recursively merge smallest trees togethe
results
mergeTrees :: [Tree CharCount] -> 
mergeTrees [tree] = tree
mergeTrees (tree1:tree2:treeList)
| w1 < w2 = mt treeList tr
| otherwise = mt treeList tr

where { w1 = (weight tree1)
w2 = (weight tree2)

We can decompose tree merging by means
...
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 weight(tr1) < 
ith weights bigger 

2

 :^: tr2):tested)

tr1 (tr2:tested)
tr3 (tr2:tested)
tr2 (tr3:tested)
w2 = (weight tr2);

e trees?
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Usage: mt untested tr1 tr2 tested, where
weight(tr2) and tested is a list of trees w
than either tr1 or tr2
mt [] tr1 tr2 [] = tr1 :^: tr
mt [] tr1 tr2 tested = 

mergeTrees ((tr1
mt (tr3:untested) tr1 tr2 tested
| w3 < w1 = mt untested tr3 
| w3 < w2 = mt untested tr1 
| otherwise = mt untested tr1 

where { w1 = (weight tr1); 
w3 = (weight tr3) }

✎ How do we know this terminates?
✎ Is there a more efficient way to merg
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Tree merging ...
mergeTrees (map Leaf (freqCount iam))

➪ ( ( Leaf ('m',2)
:^:
( Leaf ('w',1) :^: Leaf ('h',1) )

)
:^: 
( ( Leaf ('.',1) :^: Leaf ('t',1) ) 

:^:
Leaf ('"',2)

)
)
:^:
( Leaf (' ',4)

:^:
( Leaf ('I',2) :^: Leaf ('a',3) )

)
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nn tree
 the Huffmann tree:
ee of CharCounts
 Char

e tr1)
rTree tr2)

ree for a given text

reqCount text)))
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Extracting the Huffma
We remove the character counts to leave
Strip out the character counts from a Tr
charTree :: Tree CharCount -> Tree
charTree (Leaf (ch,n)) = Leaf ch
charTree (tr1 :^: tr2) = (charTre

:^: (cha

Generate an optimal Huffmann encoding t
huf :: String -> Tree Char
huf text = charTree (mergeTrees 

(map Leaf (f
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e

 'h'))
't')

unique.
© O. Nierstrasz — U. Berne An 

Generating the tre
huf iam

➪ ( ( Leaf 'm'
:^: ( Leaf 'w' :^: Leaf

:^: (( Leaf '.' :^: Leaf 
:^: Leaf '"' ) )

:^: ( Leaf ' '
:^:
( Leaf 'I' :^: Leaf 'a'))

NB: The resulting tree is not necessarily 



PS — S2001 140.

application of Functional Programming

g map
 to each Char in the 

> [(Char, String)]
h, prefix)]

 tr1)
1") tr2)

',"0011"),
',"011"),
111")]
© O. Nierstrasz — U. Berne An 

Extracting the encodin
To encode text, we need to store the path
tree:

mkEncode :: String -> (Tree Char) -
mkEncode prefix (Leaf ch) = [(c
mkEncode prefix (tr1 :^: tr2) = 

(mkEncode (prefix ++ "0")
++ (mkEncode (prefix ++ "

mkEncode "" (huf iam)
➪ [('m',"000"), ('w',"0010"), ('h
('.',"0100"), ('t',"0101"), ('"
(' ',"10"), ('I',"110"), ('a',"



PS — S2001 141.

application of Functional Programming

 map
 in the encoding map:
r -> String
ouldn’t happen!

tring

" tree)) text)

10101110000100011
© O. Nierstrasz — U. Berne An 

Applying the encoding
To encode text, we just look up characters
encChar :: [(Char, String)] -> Cha
encChar [] _ = undefined -- sh
encChar ((ch,str):table) c
| c == ch = str
| otherwise = encChar table c

encode :: Tree Char -> String -> S
encode tree text = foldr (++) "" 

(map (encChar (mkEncode "

encode (huf iam) iam ➪

0111101011100010001000111110101101
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ude:
 -> b

s)
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foldr
NB: foldr is defined in the standard prel
foldr :: (a -> b -> b) -> b -> [a]
foldr f z []= z
foldr f z (x:xs)= f x (foldr f z x

foldr (*) 1 [1..10]
➪ 3628800
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e tree
eping a copy of the 
e root each time we 

tring
NB: higher order
String -> String
walk tree tr1 rest
walk tree tr2 rest
alk tree tree rest

 iam)
© O. Nierstrasz — U. Berne An 

Decoding by walking th
To decode text, we just walk the tree, ke
original tree so we can start over from th
reach a leaf:
decode :: Tree Char -> String -> S
decode tree = walk tree tree -- 
walk :: Tree Char -> Tree Char -> 
walk tree (tr1:^:tr2) ('0':rest) = 
walk tree (tr1:^:tr2) ('1':rest) = 
walk tree (Leaf ch) rest = [ch] ++ w
walk tree nav [] = []

decode (huf iam) (encode (huf iam)
➪ "\"I am what I am.\""
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ds the original:
code"
 (huf text) text)
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Testing
Test that decoding the encoded text yiel
testHuf text = Test "huf encode/de
(\x -> decode (huf text) (encode

== text)

assert (testHuf iam)
➪ PASSED all tests

assert (testHuf "")
➪ Program error: {mergeTrees []}

Is this a reasonable thing to happen?
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 text
s plain text.
alues, and 
essions, taking care 

owTree tr1)
Tree tr2) ++ ")"
© O. Nierstrasz — U. Berne An 

Representing trees as
We need a way to store Huffmann trees a
We represent leaves by their character v
intermediate nodes as parenthesized expr
to encode parentheses:
showTree :: Tree Char -> String
showTree (Leaf ch)
| ch == '(' = "\\("
| ch == ')' = "\\)"
| ch == '\\' = "\\\\"
| ch == '\n' = "\\n"
| otherwise = [ch]

showTree (tr1 :^: tr2)= "(" ++ (sh
++ (show

...
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ext ...
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Representing trees as t
showTree (huf iam)
➪ "(((m(wh))((.t)\"))( (Ia)))"

showTree (huf "()\\\n")
➪  "((\\\\\\n)(\\(\\)))"

putStr (showTree (huf "()\\\n"))
➪ ((\\\n)(\(\)))
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red trees
onstruct the stored 

on a stack of trees, 
 right parenthesis is 

 tree will be left on 

(a^b)^(c^d)
© O. Nierstrasz — U. Berne An 

Using a stack to parse sto
Naturally, we need a way to parse and rec
trees.
A standard solution is to push the leaves 
joining the top two elements every time a
encountered:
Example: ((ab)(cd))

If the parentheses are balanced, a single
the stack.

d

b c c c^d

a a a^b a^b a^b a^b
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es
nerating a Tree Char

stack is empty

e Char

tr

ead str)):stack)

) str
© O. Nierstrasz — U. Berne An 

Parsing stored tre
Parse a Lisp-style parenthesized string, ge
parseTree :: String -> Tree Char
parseTree = pt [] -- initial 

pt :: [Tree Char] -> String -> Tre
pt [tree] [] = tree
pt stack (ch:str)
| ch == '(' = pt stack str
| ch == ')' = pt (join stack) s
| ch == '\\' = pt

 (Leaf (unescape (h
(tail str)

| otherwise = pt (Leaf ch:stack
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 ...
ne

stack

lash

)
 '(' :^: Leaf ')')
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Parsing stored trees
Join the top two trees of the stack into o
join :: [Tree a] -> [Tree a]
join (tr1:tr2:stack)= (tr2:^:tr1):

Unescape the character following a backs
unescape :: Char -> Char
unescape '(' = '('
unescape ')' = ')'
unescape '\\' = '\\'
unescape 'n' = '\n'

parseTree (showTree (huf "()\\\n")
➪ (Leaf '\' :^: Leaf '\n') :^: (Leaf
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Files
 the input file and 

cipher and tree files

erates the plain text

ith user and file I/O.
ely functional world 

to Haskell” for the 
© O. Nierstrasz — U. Berne An 

Reading and Writing 
Now we just need some functions to read
write the result files:

Reads a plain text file and generates the 
enc :: FilePath -> IO ()

Reads the cipher and tree files and regen
dec :: FilePath -> IO()

There are standard libraries for dealing w
✎ How can you make sense of I/O in a pur

with no state changes?
See chapter 7 of “A Gentle Introduction 
complete story on IO!
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(I)

11010111110000011

ncoding tree?
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Using the program 
From shell:
echo '"I am what I am."' > iam

From Haskell:
enc "iam"

From shell:
% cat iam.huf
➪ ((((\n.)(wh)) )((mI)((t")a)))
% cat iam.enc
➪ 110110101111100010010001111111000
1010000

✎ Why do we get a different Hufmann e
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(II)
am itself.

er stack overflow.
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Using the program 
Let’s encode the source code of the progr

From Haskell:
enc "huf"
➪  (8598 reductions, 12940 cells)
INTERNAL ERROR: Application paramet

✎ What went wrong?
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m

qCount "")))

n until the entire 
ack space for larger 
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Tracing our progra
freqCount "abc"
➪  incCount 'a' (freqCount "bc")
➪  incCount 'a' (incCount 'b' (freqCount "c"))
➪  incCount 'a' (incCount 'b' (incCount 'c' (fre
➪  incCount 'a' (incCount 'b' (incCount 'c' []))
➪  incCount 'a' (incCount 'b' (('c',1) : []))
➪  incCount 'a' (('c',1) : incCount 'b' [])
➪  ('c',1) : incCount 'a' (incCount 'b' [])
➪  ('c',1) : incCount 'a' (('b',1) : [])
➪  ('c',1) : ('b',1) : incCount 'a' []
➪  ('c',1) : ('b',1) : ('a',1) : []

Because Haskell is lazy, nothing will happe
input has been read, thereby exhausting st
input files!
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visited
ed eagerly!

es to be produced
contain c, back to be 

> [CharCount]

[] ((c,1):front)

++ ((c,n+1):back))
,n):front) back
© O. Nierstrasz — U. Berne An 

Frequency Counting Re
We need frequency counting to be evaluat
We can force evaluation by requiring valu
fcEager (c:s) front back -- front does not 
checked
fcEager :: String -> [CharCount] -

-> [CharCount]
fcEager "" [] ccl = ccl

fcEager (c:s) front []= fcEager s 

fcEager (c:s) front ((c1,n):back)
| (c == c1) = fcEager s [] (front 
| otherwise = fcEager (c:s) ((c1
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tion

-- new char
-- ‘b’ != ‘a’
-- new char
-- ‘c’ != ‘b’
-- ‘c’ != ‘a’
-- base case
-- ‘c’ != ‘a’
© O. Nierstrasz — U. Berne An 

Tracing eager evalua
fcEager "abc" [] []
➪  fcEager “bc” [] (‘a’,1):[]
➪  fcEager “bc” (‘a’,1):[] []
➪  fcEager “c” [] (‘b’,1):(‘a’,1):[] 
➪  fcEager “c” (‘b’,1):[] (‘a’,1):[] 
➪  fcEager “c” (‘a’,1):(‘b’,1):[] [] 
➪  fcEager “” [] (‘c’,1):(‘a’,1):(‘b’,1):[] [] 
➪  (‘c’,1):(‘a’,1):(‘b’,1):[] [] 
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er fc

lls, 
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Final version

fc2 s = fcEager s [] [] -- eag
enc2 = ...

enc2 "huf"
➪ (2117457 reductions, 6145824 ce
100 garbage collections)
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ow!
ion will terminate? 

d in Huffmann 

string 
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What you should kn
✎ How can you be sure a recursive funct

How do we know that walk terminates?
✎ How do you know where characters en

encoded bit strings?
✎ How can you generate a tree from its 

representation?
✎ How can you force eager evaluation?
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estions?
m really generates 

dl instead of foldr?
 the run-time stack 
t?
s one byte for each 

gram to produce bits 

 in the architecture 
© O. Nierstrasz — U. Berne An 

Can you answer these qu
✎ Can you prove that Huffmann’s algorith

the optimal map?
✎ What would happen if encode used fol
✎ Can parseTree be re-written so it uses

instead of representing a stack as a lis
✎ Our Huffmann encoder actually output

“0” or “1”! How would you adapt the pro
instead of bytes?

✎ Which functions implement the arrows
diagram?
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 Lambda 

 Thesis
antics

ucts
© O. Nierstrasz — U. Berne

6. Introduction to the
Calculus

Overview
❑ What is Computability? — Church’s
❑ Lambda Calculus — operational sem
❑ The Church-Rosser Property
❑ Modelling basic programming constr
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and Application of 
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11.
nguages: Principles 
on), 1993.
us — Its Syntax and 
vised edition.
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e?
ing from inputs to 
,” or program, which 
.

e that can be 
 finite resources.

yes

no

utput
© O. Nierstrasz — U. Berne

What is Computabl
Computation is usually modelled as a mapp
outputs, carried out by a formal “machine
processes its input in a sequence of steps

An “effectively computable” function is on
computed in a finite amount of time using

“Effectively 
computable” 

function

Problem

input oprogram/machine
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m positive 
 those definable 

hat is more 

 “effectively 
athematical one. It 
ample — a machine 
y a Turing machine.

le functions have 
 (or the lambda 
© O. Nierstrasz — U. Berne

Church’s Thesis
Effectively computable functions [fro
integers to positive integers] are just
in the lambda calculus.

Or, equivalently:
It is not possible to build a machine t
powerful than a Turing machine.

Church’s thesis cannot be proven because
computable” is an intuitive notion, not a m
can only be refuted by giving a counter-ex
that can solve a problem not computable b

So far, all models of effectively computab
shown to be equivalent to Turing machines
calculus).
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ing machine in finite 
d uncomputable.

putable problem 

 its input tape, 

able — which means 
© O. Nierstrasz — U. Berne

Uncomputability
A problem that cannot be solved by any Tur
time (or any equivalent formalism) is calle

Assuming Church’s thesis is true, an uncom
cannot be solved by any real computer.

The Halting Problem:
Given an arbitrary Turing machine and
will the machine eventually halt?

The Halting Problem is provably uncomput
that it cannot be solved in practice.
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 (I)

 × B (i.e., a relation) 

) ∈ f

 b2
© O. Nierstrasz — U. Berne

What is a Function?

Extensional view:

A (total) function f: A → B is a subset of A
such that:

1. for each a∈ A, there exists some (a,b
(i.e., f(a) is defined), and

2. if (a,b1) ∈ f and (a, b2) ∈ f, then b1 =
(i.e., f(a) is unique)
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 (II)

. e, where x is a 
h that when a value 
pression (i.e., f(a)) 
© O. Nierstrasz — U. Berne

What is a Function?

Intensional view:

A function f: A → B is an abstraction λ x 
variable name, and e is an expression, suc
a∈ A is substituted for x in e, then this ex
evaluates to some (unique) value b∈ B.
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 syntax
zo Church [1932] as 
computation by 

 x, and returning x

 (function)
plication
© O. Nierstrasz — U. Berne

The Lambda Calculus —
The Lambda Calculus was invented by Alon
a mathematical formalism for expressing 
functions.

Syntax:

λ x . x — is a function taking an argument

e ::= x a variable
| λ x . e an abstraction
| e1 e2 a (function) ap
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antics

simplest possible 

x ] e where y is not 
free in e

1 avoiding name 
capture
if x is not free 
in e
© O. Nierstrasz — U. Berne

Lambda Calculus — sem
(Operational) Semantics:

The lambda calculus can be viewed as the 
pure functional programming language.

α conversion 
(renaming):

λ x . e ↔ λ  y . [ y/

β reduction 
(application):

(λ x . e1) e2 → [ e2/x ] e

η reduction: λ x . (e x) → e
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e of the lambda 

x] x  β reduction
substitution
© O. Nierstrasz — U. Berne

Beta Reduction
Beta reduction is the computational engin
calculus:

Define: I ≡ λ x . x

Now consider:

I I = (λ x . x) (λ x . x ) → [ (λ x . x ) / 
= (λ x . x)
= I
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Haskell
s directly in Haskell:
© O. Nierstrasz — U. Berne

Lambda expressions in 
We can implement most lambda expression
i = \x -> x
? i 5
5
(2 reductions, 6 cells)
? i i 5
5
(3 reductions, 7 cells)
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bles
sion: λ x.e

osed.

e (open) expression:

e2)
© O. Nierstrasz — U. Berne

Free and Bound Varia
The variable x is bound by λ in the expres
A variable that is not bound, is free :

An expression with no free variables is cl
(AKA a combinator.) Otherwise it is open.

For example, y is bound and x is free in th
λ y . x y

fv(x) = { x }
fv(e1 e2) = fv(e1) ∪  fv(

fv(λ x . e) = fv(e) − { x }
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s wrong

annot directly 

reduction
orrect substitution!
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Why macro expansion i
Syntactic substitution will not work:

Since y is already bound in (λ y . x y), we c
substitute y for x.

( λ x . λ y . x y ) y → [ y / x] (λ y . x y)  β 
≠ (λ y . y y ) inc
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avoid name capture:

 x ≠ y

 x ≠ y and y ∉  fv(e)
 x ≠ y and 
∉  fv(e) ∪  fv(e1)

( λ y .  ) (λ x . x)) 
y ) (λ x . x)) y

x x
© O. Nierstrasz — U. Berne

Substitution
We must define substitution carefully to 

Consider:

[e/x] x = e
[e/x] y = y if

[e/x] (e1 e2) = ([e/x] e1) ([e/x] e2)
[e/x] (λ x . e1) = (λ x . e1)
[e/x] (λ y . e1) = (λ y . [e/x] e1) if
[e/x] (λ y . e1) = (λ  . [e/x] [z/y] e1) if

z 

( λ  . (( λ y . ) (λ x . x))  ) y → [y / x] (
= (( λ  . 

z

x x x
z
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nd variables.

 (λ x.e) may be 
s there are no free 

 α conversion
)  β reduction

 η reduction
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Alpha Conversion
Alpha conversions allows us to rename bou

A bound name x in the lambda abstraction
substituted by any other name y, as long a
occurrences of y in e:

Consider:

( λ x . λ y . x y ) y → ( λ x . λ z . x z) y
→ [ y / x] (λ z . x z
→ (λ z . y z)
= y
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ndant lambdas”.

cur free in f, we can 

eduction
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Eta Reduction
Eta reductions allows one to remove “redu

Suppose that f is a closed expression 
(i.e., there are no free variables in f).

Then:

So, ( λ x . f x ) behaves the same as f !

Eta reduction says, whenever x does not oc
rewrite ( λ x . f x ) as f.

( λ x . f x ) y → f y β r
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t can no longer be 

rms!

al form is analogous 
erminating.

x ] ( x x )
 . x x)  β reduction
 . x x)  β reduction
 . x x)  β reduction
© O. Nierstrasz — U. Berne

Normal Forms
A lambda expression is in normal form if i
reduced by beta or eta reduction rules.

Not all lambda expressions have normal fo

Reduction of a lambda expression to a norm
to a Turing machine halting or a program t

Ω = ( λ x . x x) ( λ x . x x) → [ ( λ x . x x) / 
= ( λ x . x x) ( λ x
→ ( λ x . x x) ( λ x
→ ( λ x . x x) ( λ x
→ ...
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at is, all expressions 
ore control is passed 

other hand, use lazy 
valuated when they 

2+5) ➪  7 * 7 ➪  49
© O. Nierstrasz — U. Berne

Evaluation Order
Most programming languages are strict, th
passed to a function call are evaluated bef
to the function.
Most modern functional languages, on the 
evaluation, that is, expressions are only e
are needed.
Consider:
sqr n = n * n

Applicative-order reduction:
sqr (2+5) ➪  sqr 7 ➪  7*7 ➪  49

Normal-order reduction:
sqr (2+5) ➪  (2+5) * (2+5) ➪  7 * (
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operty

 all, it can be 
l-order 
aluated in 
al-order and 

of these 
lt.”

the lambda calculus.
© O. Nierstrasz — U. Berne

The Church-Rosser Pr

“If an expression can be evaluated at
evaluated by consistently using norma
evaluation. If an expression can be ev
several different orders (mixing norm
applicative order reduction), then all 
evaluation orders yield the same resu

So, evaluation order “does not matter” in 
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 not terminate, even 

 x x) )

al order reduction
→ y
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Non-termination
However, applicative order reduction may
if a normal form exists!

Compare to the Haskell expression:
(\x -> \y -> x) 1 (5/0) ➪ 1

( λ x . y) ( ( λ x . x x) ( λ x .

Applicative order reduction Norm
→ ( λ x . y) ( ( λ x . x x) ( λ x . x x) )
→ ( λ x . y) ( ( λ x . x x) ( λ x . x x) )
→ ...
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ngle variable, 
e modelled as 

an be suppressed, so:

 b x ) y
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Currying
Since a lambda abstraction only binds a si
functions with multiple parameters must b
Curried higher-order functions.

To improve readability, multiple lambdas c

λ x y . x = λ x . λ y . x
λ b x y . b x y = λ b . λ x . λ y . (
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ans
ly expressed in the 

ue

rue ) ( λ x y . x )
se True

 ) (λ x y . x) x y
© O. Nierstrasz — U. Berne

Representing Boole
Many programming concepts can be direct
lambda calculus. Let us define:

True ≡ λ x y . x
False ≡ λ x y . y

not ≡ λ b . b False Tr
if b then x else y ≡ λ b x y . b x y

then:
not True = ( λ b . b False T

→ ( λ x y . x ) Fal
→ False 

if True then x else y = ( λ b x y . b x y
→ (λ x y . x) x y
→ x
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es
ambda calculus, they 
nctions that “wrap” 

irs ...

x y)
e )
e )

ue
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Representing Tupl
Although tuples are not supported by the l
can easily be modelled as higher-order fu
pairs of values.
n-tuples can be modelled by composing pa

Define: pair ≡ ( λ x y z . z 
first ≡ ( λ p . p Tru

second ≡ ( λ p . p Fals

then: (1, 2) = pair 1 2
→ ( λ z . z 1 2)

first (pair 1 2) → (pair 1 2) Tr
→ True 1 2
→ 1
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s
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Tuples as function
In Haskell:
t = \x -> \y -> x
f = \x -> \y -> y
pair = \x -> \y -> \z -> z x y
first = \p -> p t
second = \p -> p f
? first (pair 1 2)
1
? first (second (pair 1 (pair 2 3)))
2
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ers
 numbers into the 

→ (False, 0)
→ (False, 1)
→ (False, 2)
→ (False, 3)
© O. Nierstrasz — U. Berne

Representing Numb
There is a “standard encoding” of natural
lambda calculus:

...

Define:
0 ≡ ( λ x . x )

succ ≡ ( λ n . (False, n) )
then:

1 ≡ succ 0
2 ≡ succ 1
3 ≡ succ 2
4 ≡ succ 3
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ers
ith our numbers.

hat does this mean?

→ False
→ True
→ 0
© O. Nierstrasz — U. Berne

Working with numb
We can define simple functions to work w

✎ What happens when we apply pred 0? W

Consider:
iszero ≡ first

pred ≡ second
then:

iszero 1 = first (False, 0)
iszero 0 = ( λ p . p True ) ( λ x . x )

pred 1 = second (False, 0)
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ow!
r that will generate 
?
ersion rules?
ambda calculus avoid 

reach it?
 evaluation? 
lazy?
 be represented in 
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What you should kn
✎ Is it possible to write a Pascal compile

code just for programs that terminate
✎ What are the alpha, beta and eta conv
✎ What is name capture? How does the l

it?
✎ What is a normal form? How does one 
✎ What are normal and applicative order
✎ Why is normal order evaluation called 
✎ How can Booleans, tuples and numbers

the lambda calculus?
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estions?
amming language?
 in Haskell? Why?
ate (pred 0)? What 

 in the lambda 

hy, or why not?
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Can you answer these qu
✎ How can name capture occur in a progr
✎ What happens if you try to program Ω
✎ What do you get when you try to evalu

does this mean?
✎ How would you model negative integers

calculus? Fractions? 
✎ Is it possible to model real numbers? W
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and Application of 
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7. Fixed Points and oth

Overview
❑ Recursion and the Fixed-Point Comb
❑ The typed lambda calculus
❑ The polymorphic lambda calculus
❑ A quick look at process calculi

References:
❑ Paul Hudak, “Conception, Evolution, 

Functional Programming Languages,
Surveys 21/3, Sept. 1989, pp 359-4
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Recursion
Suppose we want to define arithmetic ope
lambda-encoded numbers.

In Haskell we can program:
plus n m
| n == 0 = m
| otherwise = plus (n-1) (m+1)

so we might try to “define”:
plus ≡ λ n m . iszero n m ( plus ( pre

Unfortunately this is not a definition, since
plus before it is defined. I.e, plus is free 
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ed points
tracting over plus:

m ) )

 function to use and 
unction in terms of 
tion we want, then:

 rplus ...
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Recursive functions as fix
We can obtain a closed expression by abs

rplus ≡ λ plus n m . iszero n
m
( plus ( pred n ) ( succ 

rplus takes as its argument the actual plus
returns as its result a definition of that f
itself. In other words, if  is the func

rplus fplus ↔ fplus

I.e., we are searching for a fixed point of

fplus
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Fixed Points
A fixed point of a function f is a value p s

Examples:
fact 1 = 1
fact 2 = 2
fib 0 = 0
fib 1 = 1

Fixed points are not always “well-behaved
succ n = n + 1

✎ What is a fixed point of succ?
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int p such that 

 be used to find a 
sion.

x x))

 x)))
)
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Fixed Point Theore
Theorem:
Every lambda expression e has a fixed po
(e p) ↔ p.

So, the “magical Y combinator” can always
fixed point of an arbitrary lambda expres

Proof: Let:
Y ≡ λ f . (λ x . f (x x)) (λ x . f (

Now consider:
p ≡ Y e → (λ  . e (x x)) 

→ e ((λ x . e (x x)) (λ x . e (x
= e p

x (λ x . e (x x)
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by FP theorem
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Using the Y Combina

✎ What are succ and pred of (False, (Y su
represent?

Consider:
f ≡ λ x. True

then:
Y f → f (Y f)

= (λ x. True) (Y f)
→ True

Consider:
Y succ → succ (Y succ)

→ (False, (Y succ))
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Recursive Functions are Fi
We seek a fixed point of:

rplus ≡ λ plus n m . iszero n m ( plus ( p

By the Fixed Point Theorem, we simply ta

plus ≡ Y rplus

Since this guarantees that:

rplus plus ↔ plus
as desired!
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ucc 1) )

cc (succ 1) ) )

 1) )
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Unfolding Recursive Lambda 
plus 1 1 = ( ) 1 1

→
→  1 (plus (pred 1) (s
→
→  (pred 1) (succ 1)
→
→ iszero ( ) (succ 1)

   (plus (pred (pred 1) ) (su
→  (succ 1) (...)
→  
→
→ 2

Y rplus
rplus plus 1 1
iszero 1
False 1 (plus (pred 1) (succ
plus
rplus plus (pred 1) (succ 1)

pred 1

iszero 0
True (succ 1) (...)
succ 1
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 xt2 not free in eτ1
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The Typed Lambda Ca
There are many variants of the lambda ca
The typed lambda calculus just decorates
annotations:
Syntax: e ::= xτ | e1

τ2→τ1 e2
τ2 | (λ xτ2.eτ1

Operational Semantics:

Example:
True ≡ ( λ xA . ( λ yB . xA )B→A)A→(B

λ xt2 . eτ1 ⇔ λ  yτ2 . [ yτ2/xτ2 ] eτ

(λ xτ2 . e1
τ1) e2

τ2 ⇒ [ e2
τ2/xτ2 ] e1

τ1

λ xτ2. (eτ1 xτ2) ⇒ eτ1
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e typed in the typed 

ism:
 ] [ e2

τ2/xν ] e1
τ1

α )β→α)α→(β→α)

bB
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The Polymorphic Lambda
Polymorphic functions like “map” cannot b
lambda calculus!
Need type variables to capture polymorph
β reduction (ii): (λ xν . e1

τ1) e2
τ2 ⇒  [ τ2 / ν

Example:
True ≡ ( λ xα . ( λ yβ . x

Trueα→(β→α) aA bB → ( λ yβ . aA )β→A 
→  aA 
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nnot be assigned a 

) + (len' ys)

(len ys)
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Hindley-Milner Polymo
Hindley-Milner polymorphism (i.e., that ad
Haskell) works by inferring the type annot
restricted subcalculus: polymorphic funct
If: 
doubleLen len len' xs ys = 

then
doubleLen length length “aaa” [1,2

is ok, but if
doubleLen' len xs ys = 

then
doubleLen' length “aaa” [1,2,3] 

is a type error since the argument len ca
unique type! 

(len xs

(len xs) + 
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Polymorphism and self ap
Even the polymorphic lambda calculus is no
express certain lambda terms.

Recall that both Ω and the Y combinator m
application”:

Ω = ( λ x .  ) ( λ x . x x )

✎ What type annotation would you assign

x x
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e calculus

 failure
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Other Calculi
Many calculi have been developed to study
programming languages.

Object calculi:  model inheritance and 
☞ lambda calculi with records

Process calculi: model concurrency and
☞ CSP, CCS, π calculus, CHAM, blu

Distributed calculi: model location and
☞ ambients, join calculus
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What you should kn
✎ Why isn’t it possible to express recurs

lambda calculus?
✎ What is a fixed point? Why is it impor
✎ How does the typed lambda calculus kee

of terms?
✎ How does a polymorphic function diffe

one?
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Can you answer these qu
✎ Are there more fixed-point operators
✎ How can you be sure that unfolding a r

will terminate?
✎ Would a process calculus be Church-Ro
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8. Introduction to Den
Semantics

Overview: 
❑ Syntax and Semantics
❑ Approaches to Specifying Semantic
❑ Semantics of Expressions
❑ Semantics of Assignment
❑ Other Issues

References:
❑ D. A. Schmidt, Denotational Seman

Publ., 1986
❑ D. Watt, Programming Language Co

Paradigms, Prentice Hall, 1990
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Defining Programming La
Three main characteristics of programm

1. Syntax: What is the appearance and
programs?

2. Semantics: What is the meaning of 
The static semantics tells us which (
programs are semantically valid (i.e.,
correct) and the dynamic semantics 
interpret the meaning of valid progr

3. Pragmatics: What is the usability of
How easy is it to implement? What k
does it suit?
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guage designers to 
 with programmers.
mplementation: 
ented on 

ing of a 
tion of language 

can the language 
e implemented 

can a reference 
e specification?
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Uses of Semantic Specif
Semantic specifications are useful for lan
communicate with implementors as well as
A precise standard for a computer i

How should the language be implem
different machines?

User documentation: What is the mean
program, given a particular combina
features?

A tool for design and analysis: How 
definition be tuned so that it can b
efficiently? 

Input to a compiler generator: How 
implementation be obtained from th
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 program

notation 

semantic domains
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Methods for Specifying S
Operational Semantics:

☞ [[ program ]] = abstract machine
☞ can be simple to implement
☞ hard to reason about

Denotational Semantics:
☞ [[ program ]] = mathematical de

(typically, a function)
☞ facilitates reasoning
☞ not always easy to find suitable 

...
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Methods for Specifying Se
Axiomatic Semantics:

☞ [[ program ]] = set of properties
☞ good for proving theorems abou
☞ somewhat distant from impleme

Structured Operational Semantics:
☞ [[ program ]] = transition system

(defined using inference rules)
☞ good for concurrency and non-d
☞ hard to reason about equivalenc
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 Term
r | Factor

stract syntax 
© O. Nierstrasz — U. Berne In

Concrete and Abstract 
How to parse “4 * 2 + 1”?
Abstract Syntax is compact but ambiguou

Expr  ::= Num | Expr Op Ex
Op ::= + | - | * | /

Concrete Syntax is unambiguous but verb
Expr ::= Expr LowOp Term |
Term ::= Term HighOp Facto
Factor ::= Num | ( Expr )
LowOp ::= + | -
HighOp ::= * | /

Concrete syntax is needed for parsing; ab
suffices for semantic specifications.
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FF” should print out 
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A Calculator Langua
Abstract Syntax:

Prog ::= 'ON' Stmt
Stmt ::= Expr 'TOTAL' Stmt

| Expr 'TOTAL' 'OFF'
Expr ::= Expr1 '+' Expr2

| Expr1 '*' Expr2
| 'IF' Expr1 ',' Expr2 ',
| 'LASTANSWER'
| '(' Expr ')'
| Num

The program “ON 4 * ( 3 + 2 ) TOTAL O
20 and stop.
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0)
SWER:

 Int *
[[ E ]] (n) 
, S [[ S ]] (n'))
(n) ]
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Calculator Semant
We need three semantic functions: one fo
statements (expression sequences) and on

The meaning of a program is the list of in
Programs:

   P : Program → Int *
P [[ ON S ]] = S [[ S ]] (

A statement may use and update LASTAN
Statements:

S :: ExprSequence → Int →
S [[ E TOTAL S ]] (n) = let n' = E 

in cons(n'
S [[ E TOTAL OFF ]] (n) = [ E [[ E ]] 
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s...

Int
(n) + E [[ E2 ]] (n)
(n) × E [[ E2 ]] (n)
]] (n) = 0
2 ]] (n)
3 ]] (n)

)

© O. Nierstrasz — U. Berne In

Calculator Semantic
Expressions:

E : Expression → Int → 
E [[ E1 + E2 ]] (n) = E [[ E1 ]] 
E [[ E1 * E2 ]] (n) = E [[ E1 ]] 

E [[ IF E1 , E2 , E3 ]] (n) = if E [[ E1 
then E [[ E
else E [[ E

E [[ LASTANSWER ]] (n) = n
E [[ ( E ) ]] (n) = E [[ E ]] (n

E [[ N ]] (n) = N
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Semantic Domain
In order to define semantic mappings of p
features to their mathematical denotatio
domains must be precisely defined:

data Bool = True | False
(&&), (||) :: Bool -> Bool -> Bool
False && x = False
True && x = x
False || x = x
True || x = True

not :: Bool -> Bool
not True = False
not False = True
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Data Structures for Abstr
We can represent programs in our calcula
syntax trees:

data Program = On ExprSequence
data ExprSequence = Total Expressi

| TotalOff Expression
data Expression = Plus Expression 

| Times Expression Expr
| If Expression Express
| LastAnswer
| Braced Expression
| N Int
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 OFF ” can be parsed 

(N 3)
(N 2)))))

+
3

2
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Representing Synt
The test program “ ON 4 * ( 3 + 2 ) TOTAL
as:

And represented as:
test = On (TotalOff (Times (N 4)

(Braced (Plus

ON TOTAL OFF

*

4

()
StmtProg
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Implementing the Calc
We can implement our denotational seman
functional language like Haskell:
Programs:
pp :: Program -> [Int]
pp (On s) = ss s 0

Statements:
ss :: ExprSequence -> Int -> [Int]
ss (Total e s) n = let n' = (ee e

in n' : (ss 
ss (TotalOff e) n = (ee e n) : [ ]

...
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(ee e2 n)
(ee e2 n)
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Implementing the Calcul
Expressions:
ee :: Expression -> Int -> Int
ee (Plus e1 e2) n = (ee e1 n) + 
ee (Times e1 e2) n = (ee e1 n) * 
ee (If e1 e2 e3) n
| (ee e1 n) == 0 = (ee e2 n)
| otherwise = (ee e3 n)

ee (LastAnswer) n = n
ee (Braced e) n = (ee e n)
ee (N num) n = num
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e z := z + a .”

value of z.
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A Language with Assig
Prog ::= Cmd '.'
Cmd ::= Cmd1 ';' Cmd2

| 'if' Bool 'then' Cmd1 
|

Exp ::= Exp1 '+' Exp2
| Id
| Num

Bool ::= Exp1 '=' Exp2
| 'not' Bool

Example:
“z := 1 ; if a = 0 then z := 3 els

Input number initializes a; output is final 

Id ':=' Exp
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pr Command Command
ion Expression
r

sion Expression
xpr
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Representing abstract syn
Data Structures:
data Program = Dot Command
data Command = CSeq Command

| Assign Ident
| If BooleanEx

data Expression = Plus Express
| Id Identifie
| Num Int

data BooleanExpr = Equal Expres
| Not BooleanE

type Identifier = Char
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e z := z + a .”

m 0))
)
Id 'z') (Id 'a')))
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An abstract syntax 
Example:
“z := 1 ; if a = 0 then z := 3 els

Is represented as:

Dot (CSeq (Assign 'z' (Num 1))
(If (Equal (Id 'a') (Nu

(Assign 'z' (Num 3)
(Assign 'z' (Plus (

)
)
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Modelling Environme
A store is a mapping from identifiers to v
type Store = Identifier -> Int
newstore :: Store
newstore id = 0

update :: Identifier -> Int -> Sto
update id val store = store'

where 
| id' 
| othe



PS — S2001 220.

troduction to Denotational Semantics

s

ewstore))
© O. Nierstrasz — U. Berne In

Functional update
Example:
env1 = update 'a' 1 (update 'b' 2 (n
env2 = update 'b' 3 env1

env1 ‘b’
➪  2
env2 ‘b’
➪  3
env2 ‘z’
➪  0
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e e s) s
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Semantics of assignm
pp :: Program -> Int -> Int
pp (Dot c) n = (cc c (update 'a' n

cc :: Command -> Store -> Store
cc (CSeq c1 c2) s = cc c2 (cc c1
cc (Assign id e) s = update id (e
cc (If b c1 c2) s = ifelse (bb b

(cc c1 s) (c

...
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ee e2 s)
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Semantics of assignme
ee :: Expression -> Store -> Int
ee (Plus e1 e2) s = (ee e2 s) + (e
ee (Id id) s = s id
ee (Num n) s = n

bb :: BooleanExpr -> Store -> Bool
bb (Equal e1 e2) s = (ee e1 s) == (
bb (Not b) s = not (bb b s)

ifelse :: Bool -> a -> a -> a
ifelse True x y = x
ifelse False x y = y
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 else z := z + a ."

0))

z') (Id 'a')))))
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Running the interpre
src1 = "z := 1 ; if a = 0 then z := 3
ast1 = Dot (CSeq

(Assign 'z' (Num 1))
(If (Equal (Id 'a') (Num 
(Assign 'z' (Num 3))
(Assign 'z' (Plus (Id '

pp ast1 10
➪  11
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Practical Issues
Modelling:

❑ Errors and non-termination: 
☞ need a special “error” value in se

❑ Branching:
☞ semantic domains in which “conti

rest of the program” make it eas
❑ Interactive input
❑ Dynamic typing
❑ ...
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Theoretical Issue
What are the denotations of lambda abst

❑ need Scott’s theory of semantic do

What is the semantics of recursive funct
❑ need least fixed point theory

How to model concurrency and non-determ
❑ abandon standard semantic domains
❑ use “interleaving semantics”
❑ “true concurrency” requires other m
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What you should kn
✎ What is the difference between synta
✎ What is the difference between abstr

syntax?
✎ What is a semantic domain?
✎ How can you specify semantics as mapp

behaviour?
✎ How can assignments and updates be m

functions?
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Can you answer these qu
✎ Why are semantic functions typically h
✎ Does the calculator semantics specify 

evaluation?
✎ Does the implementation of the calcula

strict or lazy evaluation?
✎ Why do commands and expressions hav

domains?



PS — S2001 228.

Logic Programming

ing

c

© O. Nierstrasz — U. Berne

9. Logic Programm

Overview
❑ Facts and Rules
❑ Resolution and Unification
❑ Searching and Backtracking
❑ Recursion, Functions and Arithmeti
❑ Lists and other Structures
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References
❑ Kenneth C. Louden, Programming La

and Practice, PWS Publishing (Bost
❑ Sterling and Shapiro, The Art of Pr

1986
❑ Clocksin and Mellish, Programming i

Verlag, 1981
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Logic Programming Lan
What is a Program?
A program is a database of facts (axioms)
of inference rules for proving theorems f

Imperative Programming:
☞ Program = Algorithms + Data

Logic Programming:
☞ Program = Facts + Rules

or
☞ Algorithms = Logic + Control
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Prolog Facts and Ru
A Prolog program consists of facts, rules,

Facts are named relations between object

% elizabeth is a parent of charles
female(elizabeth).
% elizabeth is female

Rules are relations (goals) that can be inf
relations (subgoals):

% M is a mother of X 
% if M is a parent of X and M is f

parent(charles, elizabeth).

mother(X, M) :- parent(X,M), femal
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Prolog Questions
Questions are statements that can be ans
and rules:

?- parent(charles, elizabeth).
➪ yes

?- mother(charles, M).
➪ M = elizabeth
yes
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True
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parent(X,M)
female(M)
© O. Nierstrasz — U. Berne

Horn Clauses
Both rules and facts are instances of Hor
form:

A0 is the head of the Horn clause and “A1
the body

Facts are just Horn clauses without a bod
parent(charles, elizabeth) if
female(elizabeth) if

mother(X, M) if
and

A0 if A1 and A2 and ... An
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 and female(M)
 M)
M)
(elizabeth)
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Resolution and Unific
Questions (or goals) are answered by mat
facts or rules, unifying variables with term
when subgoals fail.

If a subgoal of a Horn clause matches the
Horn clause, resolution allows us to replace
body of the matching Horn clause.
Unification lets us bind variables to corres
matching Horn clause:

➪

➪ { M = elizabeth } True and 
➪ { M = elizabeth } True and True

mother(charles,
parent(charles, 

female
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 elizabeth).
 philip).
lizabeth).
hilip).
, elizabeth).
, philip).
 elizabeth).
 philip).
charles).
diana).
, charles).
, diana).
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Prolog Databases
A Prolog database is a file of facts and ru
before asking questions:
female(anne). parent(andrew,
female(diana). parent(andrew,
female(elizabeth). parent(anne, e

parent(anne, p
male(andrew). parent(charles
male(charles). parent(charles
male(edward). parent(edward,
male(harry). parent(edward,
male(philip). parent(harry, 
male(william). parent(harry, 

parent(william
parent(william
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Simple queries
?- consult('royal'). Just a
➪ yes which 

?- male(charles).
➪ yes

?- male(anne).
➪ no

?- male(mickey).
➪ no

...
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Queries with variab
You may accept or reject unified variable
?- parent(charles, P).
➪ P = elizabeth <carriage return>
yes

You may reject a binding to search for ot
?- male(X).
➪ X = andrew ;
X = charles <carriage return>
yes

Use anonymous variables if you don’t care
?- parent(william, _).
➪ yes
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Unification
Unification is the process of instantiating
matching.

1. A constant unifies only with itself:
?- charles = charles.
➪ yes
?- charles = andrew.
➪ no

2. An uninstantiated variable unifies wi
?- parent(charles, elizabeth)
➪ Y = parent(charles,elizabet
yes

...
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Unification ...
3. A structured term unifies with anoth

the same function name and number
the arguments can be unified recurs

?- parent(charles, P) = paren
➪ P = elizabeth,
X = charles ?
yes
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Evaluation Order
In principle, any of the parameters in a qu
instantiated or not
?- mother(X, elizabeth).
➪ X = andrew ? ;
X = anne ? ;
X = charles ? ;
X = edward ? ;
no

?- mother(X, M).
➪ M = elizabeth,
X = andrew ?
yes
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Closed World Assump
Prolog adopts a closed world assumption —
proved to be true, is assumed to be false.

?- mother(elizabeth,M).
➪ no

?- male(mickey).
➪ no
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?
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p) ?

p) ? ...
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Backtracking
Prolog applies resolution in linear fashion,
to right, and considering database clauses
father(X, M) :- parent(X,M), male(
?- trace(father(charles,F)).
➪ + 1 1 Call: father(charles,_67) 
+ 2 2 Call: parent(charles,_67) 
+ 2 2 Exit: parent(charles,eliza
+ 3 2 Call: male(elizabeth) ?
+ 3 2 Fail: male(elizabeth) ?
+ 2 2 Redo: parent(charles,eliza
+ 2 2 Exit: parent(charles,phili
+ 3 2 Call: male(philip) ?
+ 3 2 Exit: male(philip) ?
+ 1 1 Exit: father(charles,phili
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Comparison
The predicate = attempts to unify its two
?- X = charles.
➪ X = charles ?
yes

The predicate == tests if the terms instan
are literally identical:
?- charles == charles.
➪ yes
?- X == charles.
➪ no
?- X = charles, male(charles) == m
➪ X = charles ?
yes
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 X \== male(Y).
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Comparison ...
The predicate \== tests if its arguments 
identical:
?- X = male(charles), Y = charles,
➪ no
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(B).
her(P, U).

le(S).
er(P, A).

her(Y, M),
her(Y, F),
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Sharing Subgoals
Common subgoals can easily be factored o

brother(X, B) :- sibling(X,B), male
uncle(X, U) :- parent(X, P), brot

sister(X, S) :- sibling(X,S), fema
aunt(X, A) :- parent(X, P), sist

sibling(X, Y) :- mother(X, M), mot
father(X, F), fat
X \== Y.
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he “;” operator:
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Disjunctions
One may define multiple rules for the sam
with facts:
isparent(C, P) :- mother(C, P)
isparent(C, P) :- father(C, P)

Disjunctions can also be expressed using t
isparent(C, P) :- mother(C, P)

Note that same information can be repres
forms — we could have decided to expres
father/2 as facts, and parent/2 as a rule

❑ Which way is it easier to express a
❑ Which way makes it faster to evalu
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Recursion
Recursive relations are defined in the obv
ancestor(X, A) :- parent(X, A).
ancestor(X, A) :- parent(X, P), an

?- trace(ancestor(X, philip)).
➪ + 1 1 Call: ancestor(_61,philip)
+ 2 2 Call: parent(_61,philip) ?
+ 2 2 Exit: parent(andrew,philip
+ 1 1 Exit: ancestor(andrew,phil

X = andrew ? 
yes

✎ Will ancestor/2 always terminate?
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 ? 
 ? 
 
) ? 
lip) ? 
p) ? 
p) ? 
lip) ? 
p) ? 

arry, harry)?
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Recursion ...
?- trace(ancestor(harry, philip)).
➪ + 1 1 Call: ancestor(harry,phili
+ 2 2 Call: parent(harry,philip)
+ 2 2 Fail: parent(harry,philip)
+ 2 2 Call: parent(harry,_316) ?
+ 2 2 Exit: parent(harry,charles
+ 3 2 Call: ancestor(charles,phi
+ 4 3 Call: parent(charles,phili
+ 4 3 Exit: parent(charles,phili
+ 3 2 Exit: ancestor(charles,phi
+ 1 1 Exit: ancestor(harry,phili

yes

✎ What happens if you query ancestor(h
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Evaluation Order
Evaluation of recursive queries is sensitive
rules in the database, and when the recur
anc2(X, A) :- anc2(P, A), parent(X
anc2(X, A) :- parent(X, A).

?- trace(anc2(harry, X)).
➪ + 1 1 Call: anc2(harry,_67) ? 
+ 2 2 Call: anc2(_325,_67) ? 
+ 3 3 Call: anc2(_525,_67) ? 
+ 4 4 Call: anc2(_725,_67) ? 
+ 5 5 Call: anc2(_925,_67) ? 
+ 6 6 Call: anc2(_1125,_67) ? 
+ 7 7 Call: anc2(_1325,_67) ? ab

{Execution aborted}
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Failure
Searching can be controlled by explicit fa
printall(X) :- X, print(X), nl, 
printall(_).

?- printall(brother(_,_)).
➪  brother(andrew,charles)
brother(andrew,edward)
brother(anne,andrew)
brother(anne,charles)
brother(anne,edward)
brother(charles,andrew)

...

fa
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ceeds, we fail
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Negation as failur
The cut operator (!) commits Prolog to a pa
parent(C,P) :- mother(C,P), .
parent(C,P) :- father(C,P).

Negation can be implemented by a combin
not(X) :- X, , fail. % if X suc
not(_). % if X fai

!

!
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mically by means of 

name(X,Y).
 
rename(X,Y).
), 
, rename(X,Y).
),
, rename(X,Y).
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Changing the Datab
The Prolog database can be modified dyna
assert and retract:
rename(X,Y) :- retract(male(X)),

assert(male(Y)), re
rename(X,Y) :- retract(female(X)),

assert(female(Y)), 
rename(X,Y) :- retract(parent(X,P)

assert(parent(Y,P))
rename(X,Y) :- retract(parent(C,X)

assert(parent(C,Y))
rename(_,_).
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Changing the Databas
?- male(charles); parent(charles, 
➪ yes
?- rename(charles, mickey).
➪ yes
?- male(charles); parent(charles, 
➪ no

NB: With SICSTUS Prolog, such predicat
dynamic:
:- dynamic male/1, female/1, paren
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Functions and Arithm
Functions are relations between expressio
?- 
➪ X = 11 ?

Is syntactic sugar for:
is(X, +(5,6))

X is 5 + 6.
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Defining Function
User-defined functions are written in a r

fact(0,1).
fact(N,F) :- N > 0,

N1 is N - 1,
fact(N1,F1),
F is N * F1.

?- fact(10,F).
➪ F = 3628800 ?
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r syntax:

Element syntax
[ a ]

[ a , b ]
[ a , b, c ]
[ a | b ]

[ a , b | c ]
© O. Nierstrasz — U. Berne

Lists
Lists are pairs of elements and lists:

Lists can be deconstructed using cons pai
?- [a,b,c] = [a|X].
➪ X = [b,c]?

Formal object Cons pair syntax
.(a , [ ]) [ a | [ ] ]

.(a , .(b, [ ])) [ a | [ b | [ ] ] ]
.(a , .(b, .(c , [ ]))) [ a | [ b | [ c | [ ] ] ] ]

.(a , b) [ a | b ]
.(a , .(b , c)) [ a | [ b | c ] ]
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Pattern Matching with
in(X, [X | _ ]).
in(X, [ _ | L]) :-in(X, L).

?- in(b, [a,b,c]).
➪ yes

?- in(X, [a,b,c]).
➪ X = a ? ;
X = b ? ;
X = c ? ;
no
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Pattern Matching with L
Prolog will automatically introduce new va
unknown terms:

?- in(a, L).
➪ L = [ a | _A ] ? ;
L = [ _A , a | _B ] ? ;
L = [ _A , _B , a | _C ] ? ;
L = [ _A , _B , _C , a | _D ] ?
yes
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(L1,L2,L3).
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Inverse relations
A carefully designed relation can be used
append([ ],L,L).
append([X|L1],L2,[X|L3]) :- append

?- append( ).
➪ X = [a,b]

?- append( ).
➪ X = [] Y = [a,b] ;
X = [a] Y = [b] ;
X = [a,b] Y = []

yes

[a],[b],X

X,Y,[a,b]



PS — S2001 260.

Logic Programming

ing

, % split P1
,S2).
© O. Nierstrasz — U. Berne

Exhaustive Search
Searching for permutations:
perm([ ],[ ]).
perm([C|S1],S2) :- perm(S1,P1),

append(X,Y,P1)
append(X,[C|Y]

?- printall(perm([a,b,c,d],_)).
➪ perm([a,b,c,d],[a,b,c,d])
perm([a,b,c,d],[b,a,c,d])
perm([a,b,c,d],[b,c,a,d])
perm([a,b,c,d],[b,c,d,a])
perm([a,b,c,d],[a,c,b,d])

...
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Limits of declarative pro
A declarative, but hopelessly inefficient s

ndsort(L,S) :- perm(L,S),
issorted(S).

issorted([ ]).
issorted([ _ ]).
issorted([N,M|S]) :- N =< M,

issorted([M|

Of course, efficient solutions in Prolog do
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uery using facts and 

wer to a query is 

s backtracking work?
presented?
?
tabase?
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What you should kn
✎ What are Horn clauses? 
✎ What are resolution and unification?
✎ How does Prolog attempt to answer a q

rules?
✎ When does Prolog assume that the ans

false?
✎ When does Prolog backtrack? How doe
✎ How are conjunction and disjunction re
✎ What is meant by “negation as failure”
✎ How can you dynamically change the da
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estions?
?
thout either cut or 

th the wrong number 

ot(male(X)). ? 
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Can you answer these qu
✎ How can we view functions as relations
✎ Is it possible to implement negation wi

fail?
✎ What happens if you use a predicate wi

of arguments?
✎ What does Prolog reply when you ask n

What does this mean?
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10. Applications of
Programming

Overview
❑ I. Solving a puzzle:

☞ SEND + MORE = MONEY

❑ II. Reasoning about functional depe
☞ finding closures, candidate keys

decompositions
References:

❑ A. Silberschatz, H.F. Korth and S. S
System Concepts, 3d edition, McGr
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I. Solving a puzzl

✎ Find values for the letters so the follo

 SEND
+MORE
-----
MONEY
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0*N + D,
0*R + E,
 100*N + 10*E + Y,

+ ‘, B, ‘ = ‘, C]).

ln(L).
© O. Nierstrasz — U. Berne

A non-solution:
We would like to write:

soln0 :- A is 1000*S + 100*E + 1
B is 1000*M + 100*O + 1
C is 10000*M + 1000*O +
C is A+B,
showAnswer(A,B,C).

showAnswer(A,B,C) :- writeln([A, ‘ 
writeln([]) :- nl.
writeln([X|L]) :- write(X), write
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y evaluate 
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A non-solution ..
?- soln0.
➪ » evaluation_error: [goal(_1007 
100 * _1009 + 10 * _1010 + _1011
argument_index(2)]
[Execution aborted]

But this doesn’t work because “is” can onl
expressions over instantiated variables.

?- 5 is 1 + X.
➪ » evaluation_error: [goal(5 is
1+_64),argument_index(2)]
[Execution aborted] 
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t(3). digit(4).
t(8). digit(9).

).

,
N + D,
R + E,
00*N + 10*E + Y,
olution is found

,O,N,E,Y])
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A first solution
So let’s instantiate them first:
digit(0). digit(1). digit(2). digi
digit(5). digit(6). digit(7). digi
digits([]).
digits([D|L]):- digit(D), digits(L

% pick arbitrary digits:
soln1 :-

A is 1000*S + 100*E + 10*
B is 1000*M + 100*O + 10*
C is 10000*M + 1000*O + 1
C is A+B, % check if s
showAnswer(A,B,C).

digits([S,E,N,D,M,O,R,E,M
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A first solution ..
This is now correct, but yields a trivial so

soln1.
➪ 0 + 0 = 0
yes
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,E,Y]),
N + D,
R + E,
00*N + 10*E + Y,
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A second (non-)solu
So let’s constrain S and M:

soln2 :- digits([S,M]),
 % b

digits([N,D,M,O,R,E,M,O,N
A is 1000*S + 100*E + 10*
B is 1000*M + 100*O + 10*
C is 10000*M + 1000*O + 1
C is A+B,
showAnswer(A,B,C).

not(S==0), not(M==0),
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A second (non-)solutio

Maybe it works. We’ll never know ...

soln2.
➪ [Execution aborted]

after 8 minutes still running ...

✎ What went wrong?
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L),
 SUBTOTAL.

*C, digit(D)

 - 10*C.
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A third solution
Let’s try to exercise more control by inst
bottom-up:
sum([],0).
sum([N|L], TOTAL) :- sum(L,SUBTOTA

TOTAL is N +

% Find D and C, where ∑L is D + 10
carrysum(L,D,C) :-

sum(L,S), 

?- carrysum([5,6,7],D,C).
➪ D = 8 
C = 1

C is S/10, D is S
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use the carrysum to 

,
C1,N,R],E,C2),
O],N,C3),
 not(M==0),

N + D,
R + E,

D,E],Y,C1)
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A third solution .
We instantiate the final digits first, and 
constrain the search space:

soln3 :- digits([D,E]), 
digits([N,R]), carrysum([
digit(O), carrysum([C2,E,
digits([S,M]), not(S==0),

,
A is 1000*S + 100*E + 10*
B is 1000*M + 100*O + 10*
C is A+B,
showAnswer(A,B,C).

carrysum([

carrysum([C3,S,M],O,M)
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A third solution .
This is also correct, but uninteresting:

soln3.
➪ 9000 + 1000 = 10000

yes
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A fourth solution
Let’s try to make the variables unique:

% There are no duplicate elements in
unique([X|L]) :- not(in(X,L)), uni
unique([]).

in(X, [X|_]).
in(X, [_|L]) :- in(X, L).

?- unique([a,b,c]).
➪ yes
?- unique([a,b,a]).
➪ no
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N,R]), ,
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M]),
,

N + D,
R + E,

nique(L1)

unique(L2)

ique(L3)

nique(L4)
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A fourth solution .
soln4 :- L1 = [D,E], digits(L1), 

carrysum([D,E],Y,C1),
L2 = [N,R,Y|L1], digits([
carrysum([C1,N,R],E,C2),
L3 = [O|L2], digit(O), 
carrysum([C2,E,O],N,C3),
L4 = [S,M|L3], digits([S,
not(S==0), not(M==0), 

carrysum([C3,S,M],O,M),
A is 1000*S + 100*E + 10*
B is 1000*M + 100*O + 10*
C is A+B,
showAnswer(A,B,C).

u

un

u
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A fourth solution .
This works (at last), in about 1 second on 

soln4.
➪ 9567 + 1085 = 10652

yes
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II. Reasoning about functiona
We would like to represent functional dep
relational databases as Prolog terms, and w
compute:

(i) closures of attribute sets,
(ii) candidate keys, and
(iii) BCNF decompositions.
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[b,c]->[h] ].
 ->[b,c] ...

dence higher than 
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Operator overloadi
First, we would like to overload Prolog syn
FDS = [ [a]->[b,c], [c,g]->[h,i], 
➪ Syntax Error - unable to parse »

but the built-in arrow operator has prece
that of “,” and “=”:
op(1050, xfy, [ -> ]). 
op(1000, xfy, [ ’,’ ]).
op(700, xfx, [ = ]).

so let’s change it:
:- op(600, xfx, [ -> ]).

Now we can get started ...
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Computing closure
We would like to define a predicate:

closure(FDS, AS, CS)

which computes the closure CS of an attr
the dependencies in FDS.

?- closure([[a]->[b], [b]->[c]], [
➪ Closure = [b,a,c]
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...

(reflexivity)
(augmentation)
(transitivity)

’, using the axioms 
an be applied:

S (1)
S’→CD (2,3)
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Computing closures 
We should use Armstrong’s axioms:

1. B ⊆ A ⇒ A→B
2. A→B ⇒ AC→BC
3. A→B, B→C ⇒ A→C

Intuitively, we add attributes to a set AS
and the FDs, until no more dependencies c

❑ start with AS→AS’, where AS’ = A
❑ find some B→C, AS’ = BD ⇒  AS→A
❑ repeat till no more FD applies

NB: each FD can be applied at most once!
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 % NB cut

ore FD applies

Rest),

!,
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A closure predicat
We try to express the algorithm declarat

closure(FDS, AS, CS) :-

closure(FDS, AS, AS). % no m

applies(FDS, B->C, AS, FDRest) :-
in(B->C, FDS), rem(B->C, FDS, FD
subset(B,AS).

Now we must worry about the details ...

applies(FDS, B->C, AS, FDRest), 
union(AS, C, AS1),
closure(FDRest, AS1, CS).
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 is a subset of S2
set(S1,S2).

} yields R

tersection?
© O. Nierstrasz — U. Berne

Manipulating sets
We need some predicates to manipulate a
sets of FDs:
in(X, [X|_]). % in(X,S) -- X is in
in(X, [_|S]) :- in(X, S).

subset([],_). % subset(S1,S2) -- S1
subset([X|S1],S2) :- in(X,S2), sub

rem(_,[],[]). % rem(X,S,R) -- S\{X
rem(X,[X|S],R) :- rem(X,S,R), .
rem(X,[Y|S],[Y|R]) :- rem(X,S,R) .

...
✎ How would you express set union and in

!
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Evaluating closure
?- FDS = [ [a]->[b,c],

[c,g]->[h,i],
[b,c]->[h]

],
closure(FDS, [a], Ca),
closure(FDS, [a,c], Cac),
closure(FDS, [a,g], Cag).

➪ FDS = [[a]->[b,c],[c,g]->[h,i],[
Ca = [c,b,a,h] 
Cac = [b,a,c,h] 
Cag = [i,h,g,a,b,c] 
yes
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 [b,c]->[h] ],

,,b,c,h]))
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Testing
We cast all our examples as test cases:

testClosures :-
FDS = [[a]->[b,c], [c,g]->[h,i],
closure(FDS, [a], Ca),

...

check(Name, Goal) :-
Goal, .

check(Name, Goal) :-
writeln([Name, ' FAILED']).

check('closure[a]', equal(Ca, [a

!
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Finding keys
Now we would like a predicate candkey/2 
candidate key for the attributes in a set 
candkey(FDS, Key) :-
attset(FDS, AS), % get the compl
minkey(FDS, AS, AS, Key).

Given Key -> AS, search for the smallest M
minkey(FDS, AS, Key, MinKey) :-
smallerkey(FDS, AS, Key, Smaller
minkey(FDS, AS, SmallerKey, MinK

minkey(FDS, AS, MinKey, MinKey).

✎ How would you implement attset/2?
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Finding keys ...
A smaller key is smaller, and is still a key!
smallerkey(FDS, AS, Key, Smaller) 
in(X, Key),
rem(X, Key, Smaller),
iskey(Smaller, AS, FDS).

Key -> AS if AS ⊆ K+

iskey(Key, AS, FDS) :-
closure(FDS, Key, Closure),
subset(AS, Closure).
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[b,c]->[h]],

icle]->[price]],
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Evaluating candidate 

?- FDS = [[a]->[b,c],[c,g]->[h,i],
candkey(FDS, Key).

➪ Key = [a,g] 

?- FDS = [[name]->[addr],[name,art
candkey(FDS, Key).

➪ Key = [name,article]
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vial FDs define keys:
 RS).

->B is trivial

 applies to RS
 is a key for RS

 doesn’t apply
one checking
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Testing for BCNF
A relation scheme is in BCNF if all non-tri
isbcnf(FDS, RS) :- fdsok(FDS, FDS,

fdsok([A->B|ToCheck], FDS, RS) :-
subset(B,A), % A
fdsok(ToCheck,FDS,RS).

fdsok([A->B|ToCheck], FDS, RS) :-
subset(A, RS), , % A
iskey(A, RS, FDS), % A
fdsok(ToCheck,FDS,RS).

fdsok([A->B|ToCheck], FDS, RS) :-
fdsok(ToCheck,FDS,RS). % A

fdsok([], _, RS). % D

!
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 test
rticle]->[price]],

price])),
icle, price])).

 [zip] -> [city]],

is problematic?
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Evaluating the BCNF
?- FDS = [[name]->[addr], [name, a
isbcnf(FDS, [name, addr]),
not(isbcnf(FDS, [name, article, 
not(isbcnf(FDS, [name, addr, art

➪ yes

?- FDS = [[city, street] -> [zip],
attset(FDS, As),
isbcnf(FDS, As).

➪ no

✎ How can we find out exactly which FD 
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on
 follows:

g on R where
∩β = ∅

 in the list F of FDs, 
sure F+
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BCNF decompositi
Recall that BCNF decomposition works as

while some R is not in BCNF
select non-trivial α→β holdin

α→R is not in F+ and α
replace R by α∪β  and (R-β)

The trick is that α→β may not be explicitly
and it is too expensive to compute the clo

Replace

by

and
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BCNF decomposition — t
We start decomposing with the full attrib

bcnf(FDS, Decomp) :-
attset(FDS, AS),
bcnfDecomp(FDS, [AS], Decomp).
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ecursion
nd the schema.

p) :-

, Decomp).

ecomp]) :-
© O. Nierstrasz — U. Berne

BCNF decomposition — r
We must iterate through both the FDS a

RS not in BCNF, so decompose:
bcnfDecomp(FDS, [RS|Schema], Decom
findBad(A->B, FDS, FDS, RS),
union(A,B,AB),
diff(RS,B,Diff),
bcnfDecomp(FDS, [AB,Diff|Schema]

RS is OK, so accept it and recurse:
bcnfDecomp(FDS, [RS|Schema], [RS|D
bcnfDecomp(FDS, Schema, Decomp).

Nothing left to do:
bcnfDecomp(FDS, [], []).
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s
iven FDs.
) :- % A->B is bad
o derive a bad FD 
st apply to RS
 should be empty
rict to RS
ust not be trivial
” if A is not a key

:-

rmstrong’s axioms?
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Finding “bad” FD
The “bad” FDs may be in the closure the g
findBad(A->B, [FD|FDS], AllFDS, RS
FD = A->B0, % Try t
subset(A,RS), % A mu
diff(B0,A,B1), % A ∩ B
inter(B1,RS,B), % rest
not(subset(B,A)), % FD m
not(iskey(A, RS, AllFDS)).% “bad

findBad(FD, [OK|FDS], AllFDS, RS) 
findBad(FD, FDS, AllFDS, RS).

✎ Can you justify this derivation using A
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position
icle]->[price]],

article]] 

p]->[city]],

r to find all BCNF 
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Evaluating BCNF decom
?- FDS = [[name]->[addr],[name,art
bcnf(FDS, BCNF).

➪ BCNF = [[name,addr],[name,price,

?- FDS = [[city,street]->[zip],[zi
bcnf(FDS, BCNF).

➪ BCNF = [[zip,city],[zip,street]]

✎ What would you have to change in orde
decompositions?
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estions?
,B,A])?
efore finding a 

the puzzle is unique?
olution to solve 

s of a set?
nate?
minkey/4?
in keys?
these solutions with 
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ What happens when we ask digits([A
✎ How many times will soln2 backtrack b

solution?
✎ How would you check if the solution to 
✎ How would you generalize the puzzle s

arbitrary additions?
✎ Can you use subset/2 to find all subset
✎ Will all the recursive predicates termi
✎ What would happen if we didn’t cut in 
✎ How could we generate the set of all m
✎ Would it be just as easy to implement 

a functional language?
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11. Symbolic Interpr

Overview
❑ Interpretation as Proof
❑ Operator precedence: representing

trees
❑ An interpreter for the calculator la
❑ Implementing a Lambda Calculus int
❑ Examples of lambda programs ...
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oof
as a step-by-step 
rminating state, 

tates are 
y, as syntax trees)

ogram state can be 
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Interpretation as Pr
One can view the execution of a program 
“proof” that the program reaches some te
while producing output along the way.

❑ The program and its intermediate s
represented as structures (typicall

❑ Inference rules express how one pr
transformed to the next
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tal' 'OFF'
' E2
' E3
 ')'| N

Prolog terms. 

off

off)))
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Representing Programs a
Recall our Calculator example [Schmidt]:
P ::= 'on' S
S ::= E 'total' S | E 'to
E ::= E1 '+' E2 | E1 '*

| 'if' E1 'then' E2 'else
| 'lastanswer' | '(' E

Syntax trees can be modelled directly as 
For example, the program:
on 2+3 total lastanswer + 1 total 

can be modelled by the term:
on(total(2+3, total(lastanswer+1, 
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c. 
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d ...

the syntax tree the 
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Prefix and Infix Oper
Operator type and precedence can be def
convenient syntax:

:- op(900,fx,on). % prefix 
:- op(800,xfy,total). % right asso
:- op(600,fx,if).
:- op(590,xfy,then).
:- op(580,xfy,else).
% op(500,yfx,+). % left assoc
% op(400,yfx,*). % pre-define

The higher the precedence, the higher in 
operator will appear.
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tors ...

g., ;)
., +)
. =)
., not not P) 

l off) 
r+1, off))).
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Prefix and Infix Opera
Operators can be declared:

(i) xfy for right-associative, (e.
(ii) yfx for left-associative, (e.g
(iii) xfx for non-associating, (e.g
(vi) fx and fy for prefix, (e.g
(v) xf and yf for postfix

?- 1+2+3*4 = +(+(1,2),*(3,4)).
➪ yes

?- (on 2+3 total lastanswer+1 tota
== on(total(2+3, total(lastanswe

➪ yes
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f
r+1, off))).

off

800
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Operator preceden
on 2+3 total lastanswer+1 total of
== on(total(2+3, total(lastanswe

on

total

+ total

+

lastanswer 1

2 3

900 fx 

800 xfy

500 yfx



PS — S2001 303.

Symbolic Interpretation

rs
redefined for 

e , parallel , wait ]).

@>=, =:=, =\=, <, >,
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Standard Operato
The following operator precedences are p
SICSTUS Prolog:
op(1200,xfx, [ :- , -- ]).
op(1200,fx, [ :- , ?- ]).
op(1150,fx, [ mode , public , dynamic , multifil
op(1100,xfy, [ ; ]).
op(1050,xfy, [ -> ]). 
op(1000,xfy, [ ’,’ ]).
op(900, fy, [ \+ , spy , nospy ]).
op(700, xfx, [ =, is, =.., ==, \==, @<, @>, @=<, 

=<, >= ]).
op(500, yfx, [ +, - , /\ , \/ ]).
op(500, fx, [ + , - ]).
op(400, yfx, [ * , / , // , << , >> ]).
op(300, xfx, [ mod ]).
op(200, xfy, [ ^ ]).
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preter
yntactic elements of 

(L).
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Building a Simple Inter
We define semantic predicates over the s
our calculator language.
Top level:

:- peval(S, L), write

Programs:
peval(S,L) :- seval(S, 0, L).

Statements:
seval( , Prev, [Val]) :-
xeval(E, Prev, Val).

seval( , Prev, [Val|L]) :-
xeval(E, Prev, Val),
seval(S, Val, L).

on S

E total off

E total S
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Val) :-

Val) :-
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Building a Simple Interpr
Expressions:
xeval( , _, N) :- number(N).
xeval( , Prev, Prev).

xeval( , Prev, 
xeval(E1, Prev, 0),
xeval(E2, Prev, Val).

xeval( , Prev, 
xeval(E1, Prev, V1), V1 =\= 0,
xeval(E3, Prev, Val).

...

✎ Can you fill in the missing cases?

N
lastanswer

if E1 then E2 else _

if E1 then _ else E3
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 off.
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Running the Interpr
?- on 2+3 total lastanswer+1 total
➪ [5,6] yes
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n
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rolog, so we must 

 expression:

y),@(x,y))), y).
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Lambda Calculus Inter
Now a more ambitious example ..
First we must choose a syntax for lambda
:- op(650, xfy, :). % body of ab
:- op(600, fx, \). % abstractio
:- op(500, yfx, @). % applicatio

Unfortunately, we cannot write e1 e2 in P
introduce an operator for application.

For example, we will represent the lambda
(λx . λy . x y) y

by the Prolog term:
(\x: \y: x@y) @ y == @(:(\(x),:(\(
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.E3)
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Semantics
Alpha, beta and eta conversion are expres
over the “before” and “after” forms of la

alpha(\X:E, \Y:EY) :-
fv(E, FE),
not(in(Y, FE)),
subst(Y, X, E, EY)

beta( , ) :-

eta(\X:E@X, E) :-
fv(E, F),
not(in(X, F)).

(\X:E1)@E2 E3
subst(E2, X, E1, 
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Free Variables
To implement conversion and reduction, w
free variables in an expression:

fv(X, [X]) :- isname(X).

fv( , F12) :- fv(E1, F1),
fv(E2, F2),

fv(\X:E, F) :- isname(X),
fv(E, FE),
diff(FE, [X], F)

isname(N) :- atom(N); number(

E1@E2

union(F1, F2, F1
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Free Variables ..
For example:

?- fv(\x: \y:x@y@z , F).
➪ F = [z] ? 
yes
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 isname(Y),
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!

!
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Substitution
subst(E, X, EX, EE) substitutes E for X in
subst(E, X, X, E) :- isname(X),
subst(E, X, Y, Y) :- isname(X),

X \== Y.
subst(E, X, E1@E2, EE1@EE2) :-

subst(E, X
subst(E, X

subst(E, X, \X:E1, \X:E1).
subst(E, X, \Y:E1, \Y:EE1) :-

X \== Y,
fv(E, FE),
not(in(Y, 
subst(E, X
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Avoiding name capt
We avoid name capture by substituting Y 

subst(E, X, \Y:E1, \Z:EEZ) :-X \==
fv(E, FE),
% in(Y, FE
fv(E1, F1)
union(FE, 

subst(Z, Y
subst(E, X

newname(Y,
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e for Y, not in F

 .
wname(T, Z, F).

f the name X is 

ASCII 39) appended

!

,
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Renaming
newname(Y, Z, F) is true if Z is a new nam

newname(Y, Y, F) :- not(in(Y, F)),
newname(Y, Z, F) :- tick(Y, T), ne

The built-in predicate name(X, L) is true i
represented by the ASCII list L

tick(Y, Z) is true if Z is Y with a “tick” (' = 

tick(Y, Z) :- name(Y, LY), 
append(LY, [39], LZ)
name(Z, LZ).
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Renaming ...
For example:

?- tick(x, Y).
➪ Y = x’ ? 
yes

?- subst(x@y, z, \x:x@z, E).
➪ E = \x':x'@(x@y)
yes
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Normal Form Reduc
E => NF is true if E reduces to normal for
lazy(E, EE) is true if E reduces to EE by o
reduction:
:- op(900, xfx, =>).
E => NF :- lazy(E, EE), , EE 
X => X. % no more reductions

lazy(E1, E2) :- beta(E1, E
lazy(E1, E2) :- eta(E1, E2
lazy(E0@E2, E1@E2) :- lazy(E0, E

✎ What happens if you leave out the thir
✎ How would you change this to be strict

!
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E.
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Normal Form Reductio
For example:

?- (\x : (\y:x)@(\x:x)@x ) @ y => 
➪ E = y@y ? 
yes
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ctions take us there.

int out each step:

('-> '),

('STOP'), nl.

is problem?
© O. Nierstrasz — U. Berne

Viewing Intermediate 
The => predicate tells us what normal form
reduces to, but does not tell us which redu

To see intermediate reductions, we can pr

:- op(800, fx, eval).
eval E :- lazy(E, EE), ,

write(E), nl, write
eval EE.

eval E :- write(E), nl, write

✎ Can you think of other ways to solve th

!
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Viewing Intermediate St
The same example yields:

?- eval (\x: \y: x@y) @ y.
➪ (\x: \y:x@y)@y

-> \y':y@y'
-> y
STOP
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Lazy Evaluation
Recall that the lambda expression Ω = ( λ x
no normal form:

?- W = ((\x:x@x) @ (\x:x@x)),
eval W.

➪ (\x:x@x)@(\x:x@x)
-> (\x:x@x)@(\x:x@x)
-> (\x:x@x)@(\x:x@x)
<interrupt>

[Execution aborted]
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Lazy Evaluation ..
But lazy evaluation allows it to be passed 
unused!

?- W = ((\x:x@x) @ (\x:x@x)),
eval (\x:y) @ W.

➪ (\x:y)@((\x:x@x)@(\x:x@x))
-> y
STOP
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Booleans
Recall the standard encoding of Booleans 
expressions that return their first (or se

?- True = \x: \y:x,
False = \x: \y:y,
Not = \b:b@False@True,
eval Not@True.

➪ (\b:b@(\x: \y:y)@(\x: \y:x))@(\x
-> (\x: \y:x)@(\x: \y:y)@(\x: \
-> (\y: \x: \y:y)@(\x: \y:x)
-> \x: \y:y
STOP
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Tuples
Recall that tuples can be modelled as high
that pass the values they hold to another
?- True = \x: \y:x, False = \x: \y
Pair = (\x: \y: \z: z@x@y),
First = (\p:p @ True),
eval First @ (Pair @ 1 @ 2).

➪ (\p:p@(\x: \y:x))@((\x: \y: \z:z
-> (\x: \y: \z:z@x@y)@1@2@(\x: 
-> (\y: \z:z@1@y)@2@(\x: \y:x)
-> (\z:z@1@2)@(\x: \y:x)
-> (\x: \y:x)@1@2
-> (\y:1)@2
-> 1
STOP
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Natural Numbers
And natural numbers can be modelled usin
encoding:
?- True = \x: \y:x, False = \x: \y
Pair = (\x: \y: \z: z@x@y),
First = (\p:p @ True),
Second = (\p:p @ False),
Zero = \x:x,
Succ = \n:Pair@False@n,
Succ@Zero => One,
IsZero = First,
Pred = Second,
eval IsZero@(Pred@One).
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@(\x: \y:x)
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Natural Numbers .
Though you probably won’t like what you s

➪ (\p:p@(\x: \y:x))@((\p:p@(\x: \y
@(\z:z@(\x: \y:y)@(\x:x)))

-> (\p:p@(\x: \y:y))
@(\z:z@(\x: \y:y)@(\x:x))@(

-> (\z:z@(\x: \y:y)@(\x:x))@(\x
-> (\x: \y:y)@(\x: \y:y)@(\x:x)
-> (\y:y)@(\x:x)@(\x: \y:x)
-> (\x:x)@(\x: \y:x)
-> \x: \y:x
STOP

yes
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Fixed Points
Recall that we could not model the fixed p
Haskell because self-application cannot be
In our untyped interpreter, we can implem

?- Y = \f:(\x:f@(x@x))@(\x:f@(x@x)
FP = Y@e,
eval FP.

➪ (\f:(\x:f@(x@x))@(\x:f@(x@x)))@e
-> (\x:e@(x@x))@(\x:e@(x@x))
-> e@((\x:e@(x@x))@(\x:e@(x@x))
STOP

Note that this sequence validates that e@
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,
(Succ@m))
=> Two
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Recursive Functions as Fix
?- True = \x: \y:x, False = \x: \y
Pair = (\x: \y: \z: z@x@y), 
First = (\p:p @ True), Second = 
Zero = \x:x, Succ = \n:Pair@Fals
Succ@Zero => One,
IsZero = First, Pred = Second,
Y = \f:(\x:f@(x@x))@(\x:f@(x@x))

, 
eval IsZero@(Pred@(Pred@Two)).

RPlus = \plus: \n: \m : 
IsZero@n @m @(plus @ (Pred@n)@

Y@RPlus => FPlus FPlus@One@One 
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\x: \y:y))
))))
@(\x: \y:y)

@(\x: \y:y)@(\x:x)))

@(\x: \y:y)

:x))@(\x: \y:y)

@(\x: \y:x)
y:x)
© O. Nierstrasz — U. Berne

Recursive Functions as Fixe
➪ (\p:p@(\x: \y:x))@((\p:p@(\x: \y:y))@((\p:p@(

@(\z:z@(\x: \y:y)@(\z:z@(\x: \y:y)@(\x:x)
-> (\p:p@(\x: \y:y))@((\p:p@(\x: \y:y))@(\z:z

@(\z:z@(\x: \y:y)@ (\x:x))))@ (\x: \y:x)
-> (\p:p@(\x: \y:y)) @ (\z:z@(\x: \y:y)@(\z:z

@ (\x: \y:y)@(\x: \y:x)
-> (\z:z@(\x: \y:y)@(\z:z@(\x: \y:y)@(\x:x)))

@(\x: \y:y)@(\x: \y:x)
-> (\x: \y:y)@(\x: \y:y)@(\z:z@(\x: \y:y)@(\x

@(\x: \y:x)
-> (\y:y)@(\z:z@(\x: \y:y)@(\x:x))@(\x: \y:y)
-> (\z:z@(\x: \y:y)@(\x:x))@(\x: \y:y)@(\x: \
-> (\x: \y:y)@(\x: \y:y)@(\x:x)@(\x: \y:x)
-> (\y:y)@(\x:x)@(\x: \y:x)
-> (\x:x)@(\x: \y:x)
-> \x: \y:x
STOP
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What you should kn
✎ How can you represent programs as sy
✎ How can you represent syntax trees as
✎ How can you define the syntax of your

Prolog?
✎ Why did we define “:” as right-associa

associative?
✎ What is the difference between Succ@

One=Succ@Zero?



PS — S2001 329.

Symbolic Interpretation

estions?
r for the assignment 

 lambda expressions?
er? What about 

in the lambda 

ent newname/3?
preter to use strict 
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ How would you implement an interprete

language we defined earlier?
✎ Why didn’t we use “.” in our syntax for
✎ Does the order of the fv/2 rules matt

subst/4?
✎ Can you explain each usage of “cut” (!) 

interpreter?
✎ Can you think of other ways to implem
✎ How would you modify the lambda inter

evaluation?
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