
S7057
Programmiersprachen

Prof. O. Nierstrasz

Sommersemester 2001

PS — S2001 i.

s
amming 32

33
34
35
37
38
39

tic operators 40
41

perators 42
43
44

t operators 45
riables 46

47
 coordinate operators 48

49
s 50

51
52

nd string operators 53
54

 ... 55
ry operators 56

 Arrowheads 57
s 59
Script 60
now! 61
ese questions? 62
ent
ed Progr

 variants

s
pes
nd stack
 arithme
 Box
truction o
tes
ld
r and fon
s and Va

cedure
state and
ci Graph

and String

...
control a
ormatter
ormatter
 dictiona
ionaries —
ng Arrow
ted Post

 should k
answer th
Table of Cont
1. Programming Languages 1

Sources 2
Schedule 3
Themes Addressed in this Course 4
Themes Addressed in this Course ... 5
What is a Programming Language? 6
Generations of Programming Languages 7
How do Programming Languages Differ? 8
Programming Paradigms 9
Compilers and Interpreters 10
A Brief Chronology 11
Fortran 13
Fortran ... 14
ALGOL 60 15
ALGOL 60 ... 16
COBOL 17
4GLs 18
PL/I 19
Interactive Languages 20
Interactive Languages ... 21
Special-Purpose Languages 22
Special-Purpose Languages ... 23
Functional Languages 24
Prolog 25
Object-Oriented Languages 26
Object-Oriented Languages ... 27
Scripting Languages 28
Scripting Languages ... 29
What you should know! 30
Can you answer these questions? 31

2. Stack-bas
PostScript
Postscript
Syntax
Semantic
Object ty
The opera
Stack and
Drawing a
Path cons
Coordina
Hello Wor
Characte
Procedure
A Box pro
Graphics
A Fibonac
Numbers
Factorial
Factorial
Boolean,
A simple f
A simple f
Array and
Using Dict
Instantiati
Encapsula
What you
Can you

PS — S2001 ii.

95
 Types 96
 Typing 97

98
99

100
101
102
103
104

rphic types 105
ference 106

107
ism 108

ding 109
110

aded operators 111
112
113
114

es 115
 types 116

pes 117
ns 118
ow! 119
se questions? 120

nctional Programming 121
122
123
124

g 125
l trees 126
3. Functional Programming 63
References 64
A Bit of History 65
A Bit of History 66
Programming without State 67
Pure Functional Programming Languages 68
Key features of pure functional languages 69
Haskell 70
Referential Transparency 71
Evaluation of Expressions 72
Tail Recursion 73
Tail Recursion ... 74
Equational Reasoning 75
Equational Reasoning ... 76
Pattern Matching 77
Lists 78
Using Lists 79
Higher Order Functions 80
Anonymous functions 81
Curried functions 82
Understanding Curried functions 83
Currying 84
Multiple Recursion 85
Lazy Evaluation 86
Lazy Lists 87
Programming lazy lists 88
Declarative Programming Style 89
What you should know! 90
Can you answer these questions? 91

4. Type Systems 92
References 93
What is a Type? 94

What is a Type?
Static and Dynamic
Static and Dynamic
Kinds of Types
Type Completeness
Function Types
List Types
Tuple Types
Monomorphism
Polymorphism
Composing polymo
Polymorphic Type In
Type Specialization
Kinds of Polymorph
Coercion vs overloa
Overloading
Instantiating overlo
User Data Types
Enumeration types
Union types
Recursive Data Typ
Using recursive data
Equality for Data Ty
Equality for Functio
What you should kn
Can you answer the

5. An application of Fu
Reference
Encoding ASCII
Huffmann encoding
Huffmann decodin
Generating optima

PS — S2001 iii.

ambda Calculus 159
160

e? 161
162
163

 (I) 164
 (II) 165
lus — syntax 166
 semantics 167

168
s in Haskell 169
riables 170
ion is wrong 171

172
173
174
175
176

roperty 177
178
179

ans 180
s 181

182
ers 183

ers 184
ow! 185
se questions? 186

er Calculi 187
188

 as fixed points 189
190
Architecture 127

A Simple testing framework 128

Testing 129

Frequency Counting 130

How to use recursion correctly! 131

Freqcount tests 132

Trees 133

Testing Trees 134

Merging trees 135

Tree merging ... 137

Extracting the Huffmann tree 138

Generating the tree 139

Extracting the encoding map 140

Applying the encoding map 141

foldr 142

Decoding by walking the tree 143

Testing 144

Representing trees as text 145

Representing trees as text ... 146

Using a stack to parse stored trees 147

Parsing stored trees 148

Parsing stored trees ... 149

Reading and Writing Files 150

Using the program (I) 151

Using the program (II) 152

Tracing our program 153

Frequency Counting Revisited 154

Tracing eager evaluation 155

Final version 156

What you should know! 157

Can you answer these questions? 158

6. Introduction to the L
References
What is Computabl
Church’s Thesis
Uncomputability
What is a Function?
What is a Function?
The Lambda Calcu
Lambda Calculus —
Beta Reduction
Lambda expression
Free and Bound Va
Why macro expans
Substitution
Alpha Conversion
Eta Reduction
Normal Forms
Evaluation Order
The Church-Rosser P
Non-termination
Currying
Representing Boole
Representing Tuple
Tuples as functions
Representing Numb
Working with numb
What you should kn
Can you answer the

7. Fixed Points and oth
Recursion
Recursive functions
Fixed Points

PS — S2001 iv.

eter 223
224
225

ow! 226
se questions? 227

228
229

 Languages 230
les 231

232
233

ication 234
235
236

les 237
238
239
240

ption 241
242
243
244
245
246
247
248
249
250
251

base 252
base ... 253
metic 254
Fixed Point Theorem 191
Using the Y Combinator 192
Recursive Functions are Fixed Points 193
Unfolding Recursive Lambda Expressions 194
The Typed Lambda Calculus 195
The Polymorphic Lambda Calculus 196
Hindley-Milner Polymorphism 197
Polymorphism and self application 198
Other Calculi 199
What you should know! 200
Can you answer these questions? 201

8. Introduction to Denotational Semantics 202
Defining Programming Languages 203
Uses of Semantic Specifications 204
Methods for Specifying Semantics 205
Methods for Specifying Semantics ... 206
Concrete and Abstract Syntax 207
A Calculator Language 208
Calculator Semantics 209
Calculator Semantics... 210
Semantic Domains 211
Data Structures for Abstract Syntax 212
Representing Syntax 213
Implementing the Calculator 214
Implementing the Calculator ... 215
A Language with Assignment 216
Representing abstract syntax trees 217
An abstract syntax tree 218
Modelling Environments 219
Functional updates 220
Semantics of assignments 221
Semantics of assignments ... 222

Running the interpr
Practical Issues
Theoretical Issues
What you should kn
Can you answer the

9. Logic Programming
References
Logic Programming
Prolog Facts and Ru
Prolog Questions
Horn Clauses
Resolution and Unif
Prolog Databases
Simple queries
Queries with variab
Unification
Unification ...
Evaluation Order
Closed World Assum
Backtracking
Comparison
Comparison ...
Sharing Subgoals
Disjunctions
Recursion
Recursion ...
Evaluation Order
Failure
Negation as failure
Changing the Data
Changing the Data
Functions and Arith

PS — S2001 v.

287
te keys 288

289
F test 290
n 291
n — top level 292
n — recursion 293

294
composition 295
se questions? 296

ation 297
of 298

ams as Trees 299
rators 300
rators ... 301
ce 302

s 303
terpreter 304
terpreter ... 305
eter 306
terpreter 307

308
309
310
311

ture 312
313
314

tion 315
tion ... 316
te States 317
te States ... 318
Defining Functions 255
Lists 256
Pattern Matching with Lists 257
Pattern Matching with Lists ... 258
Inverse relations 259
Exhaustive Searching 260
Limits of declarative programming 261
What you should know! 262
Can you answer these questions? 263

10. Applications of Logic Programming 264
I. Solving a puzzle 265
A non-solution: 266
A non-solution ... 267
A first solution 268
A first solution ... 269
A second (non-)solution 270
A second (non-)solution ... 271
A third solution 272
A third solution ... 273
A third solution ... 274
A fourth solution 275
A fourth solution ... 276
A fourth solution ... 277
II. Reasoning about functional dependencies 278
Operator overloading 279
Computing closures 280
Computing closures ... 281
A closure predicate 282
Manipulating sets 283
Evaluating closures 284
Testing 285
Finding keys 286

Finding keys ...
Evaluating candida
Testing for BCNF
Evaluating the BCN
BCNF decompositio
BCNF decompositio
BCNF decompositio
Finding “bad” FDs
Evaluating BCNF de
Can you answer the

11. Symbolic Interpret
Interpretation as Pro
Representing Progr
Prefix and Infix Ope
Prefix and Infix Ope
Operator preceden
Standard Operator
Building a Simple In
Building a Simple In
Running the Interpr
Lambda Calculus In
Semantics
Free Variables
Free Variables ...
Substitution
Avoiding name cap
Renaming
Renaming ...
Normal Form Reduc
Normal Form Reduc
Viewing Intermedia
Viewing Intermedia

PS — S2001 vi.
© O. Nierstrasz — U. Berne

Lazy Evaluation 319
Lazy Evaluation ... 320
Booleans 321
Tuples 322
Natural Numbers 323
Natural Numbers ... 324
Fixed Points 325
Recursive Functions as Fixed Points 326
Recursive Functions as Fixed Points ... 327
What you should know! 328
Can you answer these questions? 329

PS — S2001 1.

Programming Languages

guages

e.ch
el Schaerli
ching/
© O. Nierstrasz — U. Berne

1. Programming Lan

Lecturer: Prof. Oscar Nierstrasz
Schützenmattstr. 14/103

Tel: 631.4618
Email: Oscar.Nierstrasz@iam.unib

Assistants: Franz Achermann, Nathana
WWW: www.iam.unibe.ch/~scg/Tea

http://www.iam.unibe.ch/~scg/Teaching/

PS — S2001 2.

Programming Languages

nguages: Principles
on), 1993.

Cookbook, Adobe
esley, 1985
and Application of
” ACM Computing

n Prolog, Springer
© O. Nierstrasz — U. Berne

Sources
Text:

❑ Kenneth C. Louden, Programming La
and Practice, PWS Publishing (Bost

Other Sources:
❑ PostScript Language Tutorial and

Systems Incorporated, Addison-W
❑ Paul Hudak, “Conception, Evolution,

Functional Programming Languages,
Surveys 21/3, pp 359-411.

❑ Clocksin and Mellish, Programming i
Verlag, 1981.

PS — S2001 3.

Programming Languages

ing

ional Programming

lculi
semantics

rogramming
n

© O. Nierstrasz — U. Berne

Schedule
1. 03 - 27 Introduction
2. 04 - 03 Stack-based Programm
3. 04 - 10 Functional Programming
4. 04 - 17 Type systems
5. 04 - 24 An application of Funct
6. 05 - 01 Lambda Calculus
7. 05 - 08 Fixed Points; Other Ca
8. 05 - 15 Programming language
9. 05 - 22 Logic Programming
10. 05 - 29 Applications of Logic P
11. 06 - 05 Symbolic Interpretatio
12. 06 - 12 TBA
13. 06 - 19 TBA

06 - 26 Final exam

PS — S2001 4.

Programming Languages

s Course

supported by
guages?
 classes of

t away from the low-
ware

 the specification of
 specific task?
© O. Nierstrasz — U. Berne

Themes Addressed in thi
Paradigms

❑ What computational paradigms are
modern, high-level programming lan

❑ How well do these paradigms match
programming problems?

Abstraction
❑ How do different languages abstrac

level details of the underlying hard
implementation?

❑ How do different languages support
software abstractions needed for a

...

PS — S2001 5.

Programming Languages

Course ...

nstruction of

 of a programming

entation of a
© O. Nierstrasz — U. Berne

Themes Addressed in this
Types

❑ How do type systems help in the co
flexible, reliable software?

Semantics
❑ How can one formalize the meaning

language?
❑ How can semantics aid in the implem

programming language?

PS — S2001 6.

Programming Languages

anguage?
g computation
r
putational power

rent expressive

slator

al system for
eadable and

— Louden
© O. Nierstrasz — U. Berne

What is a Programming L
☞ A formal language for describin
☞ A “user interface” to a compute
☞ “Turing tar pit” — equivalent com
☞ Programming paradigms — diffe

power
☞ Syntax + semantics
☞ Compiler, or interpreter, or tran

“A programming language is a notation
describing computation in a machine-r
human-readable form.”

PS — S2001 7.

Programming Languages

 Languages

languages

tors

traction
© O. Nierstrasz — U. Berne

Generations of Programming

1GL: machine codes
2GL: symbolic assemblers
3GL: (machine independent) imperative

(FORTRAN, Pascal ...)
4GL: domain specific application genera

Each generation is at a higher level of abs

PS — S2001 8.

Programming Languages

ges Differ?

; variables;
rds; control
ts; errors ...

 (strings, arrays,
on; concurrency
bjects; general
tate; ...
© O. Nierstrasz — U. Berne

How do Programming Langua
Common Constructs:

☞ basic data types (numbers, etc.)
expressions; statements; keywo
constructs; procedures; commen

Uncommon Constructs:
☞ type declarations; special types

matrices, ...); sequential executi
constructs; packages/modules; o
functions; generics; modifiable s

PS — S2001 9.

Programming Languages

gms
ing tool.

ipes and filters,

orithms + data
mposition

nctions functions
oning

cts + rules
ching
jects + messages
psulation
© O. Nierstrasz — U. Berne

Programming Paradi
A programming language is a problem-solv

Other styles and paradigms: blackboard, p
constraints, lists, ...

Imperative style:
program = alg
good for deco

Functional style:
program = fu
good for reas

Logic programming style:
program = fa
good for sear

Object-oriented style:
program = ob
good for enca

PS — S2001 10.

Programming Languages

eters
ront-ends, but have

 remains the same ...

erator

or Assembler/linker

y code Machine code

ode Interpreter
© O. Nierstrasz — U. Berne

Compilers and Interpr
Compilers and interpreters have similar f
different back-ends:

Details will differ, but the general scheme

Code Gen

Parser Code Generat

Interpreter
Translator

Assembl

Byte c
Program

Program

...

Parse tree

Pre-processor

PS — S2001 11.

Programming Languages

y
mblers)

l programming
vented)
imperative language

(SIMULA)

tional language

 is born
amming language
ages
© O. Nierstrasz — U. Berne

A Brief Chronolog
Early 1950s “order codes” (primitive asse

1957 FORTRAN the first high-leve
language (3GL is in

1958 ALGOL the first modern,
1960 LISP, COBOL
1962 APL, SIMULA the birth of OOP
1964 BASIC, PL/I
1966 ISWIM first modern func

(a proposal)
1970 Prolog logic programming
1972 C the systems progr
1975 Pascal, Scheme two teaching langu

PS — S2001 12.

Programming Languages

ream (?)
 (again)

 for the internet
© O. Nierstrasz — U. Berne

1978 CSP
1978 FP
1980 dBASE II
1983 Smalltalk-80,

Ada
OOP is reinvented

1984 Standard ML FP becomes mainst
1986 C++, Eiffel OOP is reinvented
1988 CLOS, Oberon,

Mathematica
1990 Haskell FP is reinvented
1995 Java OOP is reinvented

PS — S2001 13.

Programming Languages

ams in conventional
 comparable to good

ion and optimization
orking by April 1958
7 and FORTRAN 90
© O. Nierstrasz — U. Berne

Fortran
History
John Backus (1953) sought to write progr
mathematical notation, and generate code
assembly programs.

❑ No language design effort
(made it up as they went along)

❑ Most effort spent on code generat
❑ FORTRAN I released April 1957; w
❑ Current standards are FORTRAN 7

...

PS — S2001 14.

Programming Languages

nd functions
x expressions

 user base
© O. Nierstrasz — U. Berne

Fortran ...
Innovations

❑ Symbolic notation for subroutines a
❑ Assignments to variables of comple
❑ DO loops
❑ Comments
❑ Input/output formats
❑ Machine-independence

Successes
❑ Easy to learn; high level
❑ Promoted by IBM; addressed large

(scientific computing)

PS — S2001 15.

Programming Languages

 1955 to design
orithmic language
lemented; criticisms
© O. Nierstrasz — U. Berne

ALGOL 60
History

❑ Committee of PL experts formed in
universal, machine-independent, alg

❑ First version (ALGOL 58) never imp
led to ALGOL 60

...

PS — S2001 16.

Programming Languages

d to define syntax

riables with local

Ls but never
© O. Nierstrasz — U. Berne

ALGOL 60 ...
Innovations

❑ BNF (Backus-Naur Form) introduce
(led to syntax-directed compilers)

❑ First block-structured language; va
scope

❑ Structured control statements
❑ Recursive procedures
❑ Variable size arrays

Successes
❑ Highly influenced design of other P

displaced FORTRAN

PS — S2001 17.

Programming Languages

uter manufacturers

rs (!)

nt, data, and

S DOD

siness applications (!)
© O. Nierstrasz — U. Berne

COBOL
History

❑ Designed by committee of US comp
❑ Targeted business applications
❑ Intended to be readable by manage

Innovations
❑ Separate descriptions of environme

processes
Successes

❑ Adopted as de facto standard by U
❑ Stable standard for 25 years
❑ Still the most widely used PL for bu

PS — S2001 18.

Programming Languages

r specific problem
© O. Nierstrasz — U. Berne

4GLs
“Problem-oriented” languages

❑ PLs for “non-programmers”
❑ Very High Level (VHL) languages fo

domains
Classes of 4GLs (no clear boundaries)

❑ Report Program Generator (RPG)
❑ Application generators
❑ Query languages
❑ Decision-support languages

Successes
❑ Highly popular, but generally ad hoc

PS — S2001 19.

Programming Languages

 users (early 1960s)
 language for broad

ynchronization)

and flexibility (at

nguage
© O. Nierstrasz — U. Berne

PL/I
History

❑ Designed by committee of IBM and
❑ Intended as (large) general-purpose

classes of applications
Innovations

❑ Support for concurrency (but not s
❑ Exception-handling by on conditions

Successes
❑ Achieved both run-time efficiency

expense of complexity)
❑ First “complete” general purpose la

PS — S2001 20.

Programming Languages

ges
ystems (early 1960s

mid 1960s

 (NEW, LIST,
© O. Nierstrasz — U. Berne

Interactive Langua
Made possible by advent of time-sharing s
through mid 1970s).

BASIC
❑ Developed at Dartmouth College in
❑ Minimal; easy to learn
❑ Incorporated basic O/S commands

DELETE, RUN, SAVE)

...

PS — S2001 21.

Programming Languages

s ...

ise description of

aracters in addition

tables or matrices)
 composing array

ts parsed right to
© O. Nierstrasz — U. Berne

Interactive Language
APL

❑ Developed by Ken Iverson for conc
numerical algorithms

❑ Large, non-standard alphabet (52 ch
to alphanumerics)

❑ Primitive objects are arrays (lists,
❑ Operator-driven (power comes from

operators)
❑ No operator precedence (statemen

left)

PS — S2001 22.

Programming Languages

uages

 language
ore than other PLs

g and substitution
es)
© O. Nierstrasz — U. Berne

Special-Purpose Lang
SNOBOL

❑ First successful string manipulation
❑ Influenced design of text editors m
❑ String operations: pattern-matchin
❑ Arrays and associative arrays (tabl
❑ Variable-length strings

...

PS — S2001 23.

Programming Languages

ges ...

 expressions
ted as lists
perations to create

trol
ograms
gement by garbage
© O. Nierstrasz — U. Berne

Special-Purpose Langua
Lisp

❑ Performs computations on symbolic
❑ Symbolic expressions are represen
❑ Small set of constructor/selector o

and manipulate lists
❑ Recursive rather than iterative con
❑ No distinction between data and pr
❑ First PL to implement storage mana

collection
❑ Affinity with lambda calculus

PS — S2001 24.

Programming Languages

es

al

 lecture

for theorem proving

 assignments/side

zy evaluation”
© O. Nierstrasz — U. Berne

Functional Languag
ISWIM (If you See What I Mean)

❑ Peter Landin (1966) — paper propos
FP

❑ John Backus (1978) — Turing award
ML

❑ Edinburgh
❑ initially designed as meta-language
❑ Hindley-Milner type inference
❑ “non-pure” functional language (with

effects)
Miranda, Haskell

❑ “pure” functional languages with “la

PS — S2001 25.

Programming Languages

970s), and compilers
rgh (mid to late

 rules and questions

uage
 Initiative
© O. Nierstrasz — U. Berne

Prolog
History

❑ Originated at U. Marseilles (early 1
developed at Marseilles and Edinbu
1970s)

Innovations
❑ Theorem proving paradigm
❑ Programs as sets of clauses: facts,
❑ Computation by “unification”

Successes
❑ Prototypical logic programming lang
❑ Used in Japanese Fifth Generation

PS — S2001 26.

Programming Languages

uages

d Dahl (early 1960s)
 programming, by
LGOL 60
ARC (early 1970s) to
© O. Nierstrasz — U. Berne

Object-Oriented Lang
History

❑ Simula was developed by Nygaard an
in Oslo as a language for simulation
adding classes and inheritance to A

❑ Smalltalk was developed by Xerox P
drive graphic workstations

...

PS — S2001 27.

Programming Languages

ges ...

s (contrast ADTs)
 interfaces

r interfaces
1980s
ctive C, Eiffel, Beta,
Ada 95 ...
© O. Nierstrasz — U. Berne

Object-Oriented Langua
Innovations

❑ Encapsulation of data and operation
❑ Inheritance to share behaviour and

Successes
❑ Smalltalk project pioneered OO use
❑ Large commercial impact since mid
❑ Countless new languages: C++, Obje

Oberon, Self, Perl 5, Python, Java,

PS — S2001 28.

Programming Languages

s

mand languages” for
 applications
ser shell and

 Apple to script

 language and
plications (via Tk)

scripting language
© O. Nierstrasz — U. Berne

Scripting Language
History

❑ Countless “shell languages” and “com
operating systems and configurable

❑ Unix shell (ca. 1971) developed as u
scripting tool

❑ HyperTalk (1987) was developed at
HyperCard stacks

❑ TCL (1990) developed as embedding
scripting language for X windows ap

❑ Perl (~1990) became de facto web

...

PS — S2001 29.

Programming Languages

 ...

nguages (TCL)

 AppleTalk, TCL,
© O. Nierstrasz — U. Berne

Scripting Languages
Innovations

❑ Pipes and filters (Unix shell)
❑ Generalized embedding/command la

Successes
❑ Unix Shell, awk, emacs, HyperTalk,

Python, Perl, VisualBasic ...

PS — S2001 30.

Programming Languages

ow!
ge?

fer?

LGOL 60?
tion Language”?
e”?
© O. Nierstrasz — U. Berne

What you should kn
✎ What, exactly, is a programming langua
✎ How do compilers and interpreters dif
✎ Why was FORTRAN developed?
✎ What were the main achievements of A
✎ Why do we call Pascal a “Third Genera
✎ What is a “Fourth Generation Languag

PS — S2001 31.

Programming Languages

estions?
nguages?
ortant programming

ement a spelling

se?

es on the internet?
lient?
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ Why are there so many programming la
✎ Why are FORTRAN and COBOL still imp

languages?
✎ Which language should you use to impl

checker?
A filter to translate upper-to-lower ca
A theorem prover?
An address database?
An expert system?
A game server for initiating chess gam
A user interface for a network chess c

PS — S2001 32.

Stack-based Programming

amming

s

Cookbook, Adobe
esley, 1985
anual, Adobe
on, Addison-Wesley,
© O. Nierstrasz — U. Berne

2. Stack-based Progr

Overview
❑ PostScript objects, types and stack
❑ Arithmetic operators
❑ Graphics operators
❑ Procedures and variables
❑ Arrays and dictionaries

References:
❑ PostScript Language Tutorial and

Systems Incorporated, Addison-W
❑ PostScript Language Reference M

Systems Incorporated, second editi
1990

PS — S2001 33.

Stack-based Programming

mming language ... to
l shapes, and
ges.”

all major printer

nguage

nerated from
d

© O. Nierstrasz — U. Berne

PostScript
PostScript “is a simple interpretive progra
describe the appearance of text, graphica
sampled images on printed or displayed pa

❑ introduced in 1985 by Adobe
❑ display standard now supported by

vendors
❑ simple, stack-based programming la
❑ minimal syntax
❑ large set of built-in operators
❑ PostScript programs are usually ge

applications, rather than hand-code

PS — S2001 34.

Stack-based Programming

s

memory management

low” support
© O. Nierstrasz — U. Berne

Postscript variant
Level 1:

❑ the original 1985 PostScript
Level 2:

❑ additional support for dictionaries,
...

Display PostScript:
❑ special support for screen display

Level 3:
❑ the current incarnation with “workf

PS — S2001 35.

Stack-based Programming

 formfeed

dix numbers
.5
16#FFE 2#1000

decimal in angle
s are escaped: \n

r characters” but

56 a.b
© O. Nierstrasz — U. Berne

Syntax

Comments: from “%” to next newline or
% This is a comment

Numbers:
signed integers, reals and ra
123 -98 0 +17 -.002 34
123.6e10 1E-5 8#1777

Strings:
text in parentheses or hexa
brackets (Special character
\t \(\) \\ ...)

Names:

tokens consisting of “regula
which aren’t numbers
abc Offset $$ 23A 13-4
$MyDict @pattern

PS — S2001 36.

Stack-based Programming

ms and divide by 2
© O. Nierstrasz — U. Berne

Literal
names:

start with slash
/buffer /proc

Arrays: enclosed in square brackets
[123 /abc (hello)]

Procedures:
enclosed in curly brackets
{ add 2 div }
% add top two stack ite

PS — S2001 37.

Stack-based Programming

ens, representing
ipulate the display
tion state of a

rands and results of

s where keys and

ects (e.g.
s of execution
nt coordinates etc.
© O. Nierstrasz — U. Berne

Semantics
A PostScript program is a sequence of tok
typed objects, that is interpreted to man
and four stacks that represent the execu
PostScript program:

Operand stack: holds (arbitrary) ope
PostScript operators

Dictionary stack: holds only dictionarie
values may be stored

Execution stack: holds executable obj
procedures) in stage

Graphics state
stack:

keeps track of curre

PS — S2001 38.

Stack-based Programming

le:
 stack:
eral names, arrays,

current dictionary

, operator, real ...
ference
© O. Nierstrasz — U. Berne

Object types
Every object is either literal or executab
Literal objects are pushed on the operand

❑ integers, reals, string constants, lit
procedures

Executable objects are interpreted:
❑ built-in operators
❑ names bound to procedures (in the

context)

Simple Object Types are copied by value
❑ boolean, fontID, integer, name, null

Composite Object Types are copied by re
❑ array, dictionary, string ...

PS — S2001 39.

Stack-based Programming

k

f the operand stack.

2
00 50
© O. Nierstrasz — U. Berne

The operand stac
Compute the average of 40 and 60:
40 60 add 2 div

At the end, the result is left on the top o

60
40 40 100 1

PS — S2001 40.

Stack-based Programming

erators
Function

1 + num2

1 - num2

1 * num2

1 / num2
ger divide
 mod int2
angent of num/den
ard top element
hange top two elements
licate top element
licate top n elements
licate n+1th element
© O. Nierstrasz — U. Berne

Stack and arithmetic op
Stack Op New Stack
num1 num2 add sum num
num1 num2 sub difference num
num1 num2 mul product num
num1 num2 div quotient num

int1 int2 idiv quotient inte
int1 int2 mod remainder int1
num den atan angle arct

any pop - disc
any1 any2 exch any2 any1 exc

any dup any any dup
any1 ... anyn n copy any1 ... anyn any1 ... anyn dup
anyn ... any0 n index anyn ... any0 anyn dup
and many others ...

PS — S2001 41.

Stack-based Programming

 that define a region
rawn on the current

t drawing path
)
100,200)

awing
nt path
ent page
© O. Nierstrasz — U. Berne

Drawing a Box
“A path is a set of straight lines and curves
to be filled or a trajectory that is to be d
page.”
newpath % clear the curren
100 100 moveto % move to (100,100
100 200 lineto % draw a line to (
200 200 lineto
200 100 lineto
100 100 lineto
10 setlinewidth % set width for dr
stroke % draw along curre
showpage % and display curr

PS — S2001 42.

Stack-based Programming

ators

ttenpath, ...

nt path to be empty
t coordinates
int to (x, y)
o
t line to (x, y)

rclockwise arc
th back to start
th with current colour
 current path
et current page
© O. Nierstrasz — U. Berne

Path construction oper

Others: arcn, arcto, curveto, rcurveto, fla

- newpath - initialize curre
- currentpoint x y return curren

x y moveto - set current po
dx dy rmoveto - relative movet

x y lineto - append straigh
dx dy rlineto - relative lineto

x y r ang1 ang2 arc - append counte
- closepath - connect subpa
- fill - fill current pa
- stroke - draw line along
- showpage - output and res

PS — S2001 43.

Stack-based Programming

ts

29.7 cm = 840 points

(595, 840)
© O. Nierstrasz — U. Berne

Coordinates

Coordinates are
measured in points:

72 points = 1 inch
= 2.54 cm.

21 cm = 595 poin

A4 paper

(0,0)

PS — S2001 44.

Stack-based Programming

ok up the desired
 (3) set it to be the

mes Roman font
18 points
e the current font
nate (100, 500)
ing “Hello world”
urrent page
© O. Nierstrasz — U. Berne

Hello World
Before you can print text, you must (1) lo
font, (2) scale it to the required size, and
current font.
/Times-Roman findfont % look up Ti
18 scalefont % scale it to
setfont % set this to b

100 500 moveto % go to coordi
(Hello world) show % draw the str
showpage % render the c

Hello world

PS — S2001 45.

Stack-based Programming

rators

tory,

t identified by key
ale to produce font’
ary
font

 in current font
© O. Nierstrasz — U. Berne

Character and font ope

Others: definefont, makefont, FontDirec
StandardEncoding

key findfont font return font dic
font scale scalefont font’ scale font by sc

font setfont - set font diction
- currentfont font return current

string show - print string
string stringwidth wx wy width of string

PS — S2001 46.

Stack-based Programming

bles
binding names to

erages:

d 2 div }”

urrent dictionary

2
100 100 50
© O. Nierstrasz — U. Berne

Procedures and Varia
Variables and procedures are defined by
literal or executable objects.

Define a general procedure to compute av
/average { add 2 div } def
% bind the name “average” to “{ ad
40 60 average

key value def - associate key and value in c

{ add 2 div } 60
/average /average 40 40

PS — S2001 47.

Stack-based Programming

ologue and a script.
© O. Nierstrasz — U. Berne

A Box procedure
Most PostScript programs consist of a pr
% Prologue -- application specific procedures
/box { % grey x y -> __

newpath
moveto % x y -> __
0 150 rlineto % relative lineto
150 0 rlineto
0 -150 rlineto
closepath % cleanly close path!
setgray % grey -> __
fill % colour in region

} def
% Script -- usually generated
0 100 100 box
0.4 200 200 box
0.6 300 300 box
0 setgray
showpage

PS — S2001 48.

Stack-based Programming

te operators

line width and user

ay value
hite)
 by sx and sy
ce by angle degrees
space by (tx, ty)
 matrix
 CTM
 matrix
tate
s state
© O. Nierstrasz — U. Berne

Graphics state and coordina

gsave saves the current path, gray value,
coordinate system

num setlinewidth - set line width
num setgray - set colour to gr

(0 = black; 1 = w
sx sy scale - scale use space
angle rotate - rotate user spa
tx ty translate - translate user

- matrix matrix create identity
matrix currentmatrix matrix fill matrix with
matrix setmatrix - replace CTM by

- gsave - save graphics s
- grestore - restore graphic

PS — S2001 49.

Stack-based Programming

h

e origin
(100, 100)

t fib value
© O. Nierstrasz — U. Berne

A Fibonacci Grap
/fibInc { % m n -> n (m+n)

exch % m n -> n m
1 index % n m -> n m n
add

} def
/x 0 def /y 0 def /dx 10 def
newpath
100 100 translate % make (100, 100) th
x y moveto % i.e., relative to
0 1 25 {

/x x dx add def % increment x
dup /y exch 100 idiv def % set y to 1/100 las
x y lineto % draw segment
fibInc

} repeat
2 setlinewidth
stroke
showpage

PS — S2001 50.

Stack-based Programming

gs
erted to strings

 of capacity int
ring
© O. Nierstrasz — U. Berne

Numbers and Strin
Numbers and other objects must be conv
before they can be printed:

int string string create string
any string cvs substring convert to st

PS — S2001 51.

Stack-based Programming

20

ve lookup

string and show it
© O. Nierstrasz — U. Berne

Factorial
/LM 100 def % left margin
/FS 18 def % font size
/sBuf 20 string def % string buffer of length
/fact { % n -> n!

dup 1 lt % -> n bool
{ pop 1 } % 0 -> 1
{

dup % n -> n n
1 % -> n n 1
sub % -> n (n-1)
fact % -> n (n-1)! NB: recursi
mul % n!

}
ifelse

} def
/showInt { % n -> __

sBuf cvs show % convert an integer to a
} def

PS — S2001 52.

Stack-based Programming

t
y

0

0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 6.22702e+09
14! = 8.71783e+10
15! = 1.30767e+12
16! = 2.09228e+13
17! = 3.55687e+14
18! = 6.40237e+15
19! = 1.21645e+17
20! = 2.4329e+18
© O. Nierstrasz — U. Berne

Factorial ...
/showFact { % n -> __

dup showInt % show n
(! =) show % ! =
fact showInt % show n!

} def
/newline { % __ -> __

currentpoint exch pop % get current y
FS 2 add sub % subtract offse
LM exch moveto % move to new x

} def

/Times-Roman findfont FS scalefont setfont
LM 600 moveto
0 1 20 { showFact newline } for % do from 0 to 2
showpage

PS — S2001 53.

Stack-based Programming

 operators

ual
 true

ool is true
ool is true else proc2
 values init to limit by

imes
ts in string
sition index
 at position index
each element of string
© O. Nierstrasz — U. Berne

Boolean, control and string
any1 any2 eq bool test equal
any1 any2 ne bool test not equal
any1 any2 ge bool test greater or eq

- true true push boolean value
- false bool test equal

bool proc if - execute proc if b
bool proc1 proc2 ifelse - execute proc1 if b

init incr limit proc for - execute proc with
steps of incr

int proc repeat - execute proc int t
string length int number of elemen

string index get int get element at po
string index int put - put int into string

string proc forall - execute proc for

PS — S2001 54.

Stack-based Programming

r

 width

d bring us
ld overflow RM

 array -> __
© O. Nierstrasz — U. Berne

A simple formatte
/LM 100 def % left margin
/RM 250 def % right margin
/FS 18 def % font size
/showStr { % string -> __

dup stringwidth pop % get (just) string’s
currentpoint pop % current x position
add % where printing woul
RM gt { newline } if % newline if this wou
show

} def
/newline { % __ -> __

currentpoint exch pop % get current y
FS 2 add sub % subtract offset
LM exch moveto % move to new x y

} def
/format { { showStr () show } forall } def %
/Times-Roman findfont FS scalefont setfont
LM 600 moveto

PS — S2001 55.

Stack-based Programming

 ...
n) (to)
rmat
© O. Nierstrasz — U. Berne

A simple formatter
[(Now) (is) (the) (time) (for) (all) (good) (me
(come) (to) (the) (aid) (of) (the) (party.)] fo
showpage

Now is the time for
all good men to
come to the aid of
the party.

PS — S2001 56.

Stack-based Programming

erators
onstruction
struction

 of length n
ements in array
at index position
at index position
 for each array element
nary of capacity int
y-value pairs

dict stack
k

© O. Nierstrasz — U. Berne

Array and dictionary op
- [mark start array c

mark obj0 ... objn-1] array end array con
int array array create array

array length int number of el
array index get any get element

array index any put - put element
array proc forall - execute proc

int dict dict create dictio
dict length int number of ke
dict maxlength int capacity
dict begin - push dict on

- end - pop dict stac

PS — S2001 57.

Stack-based Programming

owheads
dictionary

ace for a matrix

ef

headlength

headthickness

thickness

x, tipy)

lx, taily)
© O. Nierstrasz — U. Berne

Using Dictionaries — Arr
/arrowdict 14 dict def % make a new
arrowdict begin

/mtrx matrix def % allocate sp
end
/arrow {

arrowdict begin % open the dictionary

/dx tipx tailx sub def
/dy tipy taily sub def
/arrowlength dx dx mul dy dy mul add sqrt d
/angle dy dx atan def
/base arrowlength headlength sub def

(tip

(tai

/headlength exch def % grab args
/halfheadthickness exch 2 div def
/halfthickness exch 2 div def
/tipy exch def
/tipx exch def
/taily exch def
/tailx exch def

PS — S2001 58.

Stack-based Programming

he coordinate system
ate to start of arrow
 coordinates
s if starting from (0,0)

e coordinate system
© O. Nierstrasz — U. Berne

/savematrix mtrx currentmatrix def % save t
tailx taily translate % transl
angle rotate % rotate
0 halfthickness neg moveto % draw a
base halfthickness neg lineto
base halfheadthickness neg lineto
arrowlength 0 lineto
base halfheadthickness lineto
base halfthickness lineto
0 halfthickness lineto
closepath
savematrix setmatrix % restor

end
} def

PS — S2001 59.

Stack-based Programming

ws

row
© O. Nierstrasz — U. Berne

Instantiating Arro

newpath
318 340 72 340 10 30 72 arrow

fill
newpath

382 400 542 560 72 232 116 arrow
3 setlinewidth stroke
newpath

400 300 400 90 90 200 200 3 sqrt mul 2 div ar
.65 setgray fill
showpage

PS — S2001 60.

Stack-based Programming

ript
nd exporting

Hello world

 490)

(200, 520)
© O. Nierstrasz — U. Berne

Encapsulated PostSc
EPSF is a standard format for importing a
PostScript files between applications.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 90 490 200 520
/Times-Roman findfont
 18 scalefont
 setfont
100 500 moveto
(Hello world) show
showpage

(90,

PS — S2001 61.

Stack-based Programming

ow!
manage?
he operand stack?
ayed?
system?
aries?
r your PostScript
© O. Nierstrasz — U. Berne

What you should kn
✎ What kinds of stacks does PostScript
✎ When does PostScript push values on t
✎ What is a path, and how can it be displ
✎ How do you manipulate the coordinate
✎ Why would you define your own diction
✎ How do you compute a bounding box fo

graphic?

PS — S2001 62.

Stack-based Programming

estions?

 of moveto?
late object-oriented

apapapapapapapzapzapzapzapzapzapzapzapzapzapzapzapzapzap
© O. Nierstrasz — U. Berne

Can you answer these qu

✎ How would you program this graphic?
✎ When should you use translate instead
✎ How could you use dictionaries to simu

programming?

zzzzzzz

PS — S2001 63.

Functional Programming

mming

ing
© O. Nierstrasz — U. Berne

3. Functional Progra

Overview
❑ Functional vs. Imperative Programm
❑ Referential Transparency
❑ Recursion
❑ Pattern Matching
❑ Higher Order Functions
❑ Lazy Lists

PS — S2001 64.

Functional Programming

and Application of
” ACM Computing

Gentle Introduction
, vol. 27, no. 5, May

es [editors], Report
ell 98 A Non-strict,
ry 1999
© O. Nierstrasz — U. Berne

References
❑ Paul Hudak, “Conception, Evolution,

Functional Programming Languages,
Surveys 21/3, pp 359-411.

❑ Paul Hudak and Joseph H. Fasel, “A
to Haskell,” ACM SIGPLAN Notices
1992, pp. T1-T53.

❑ Simon Peyton Jones and John Hugh
on the Programming Language Hask
Purely Functional Language, Februa
☞ www.haskell.org

http://www.haskell.org

PS — S2001 65.

Functional Programming

mputation

ions with lists

ing with arrays

es
g; birth of “pure”
ming ...
© O. Nierstrasz — U. Berne

A Bit of History
Lambda Calculus

(Church, 1932-33)
formal model of co

Lisp
(McCarthy, 1960)

symbolic computat

APL
(Iverson, 1962)

algebraic programm

ISWIM
(Landin, 1966)

let and where claus
equational reasonin
functional program

PS — S2001 66.

Functional Programming

uage for theorem

” of functional
© O. Nierstrasz — U. Berne

A Bit of History
ML

(Edinburgh, 1979)
originally meta lang
proving

SASL, KRC,
Miranda

(Turner, 1976-85)

lazy evaluation

Haskell
(Hudak, Wadler, et

al., 1988)

“Grand Unification
languages ...

PS — S2001 67.

Functional Programming

State

e no explicit state.
posing expressions.

ve (functional)

f n == 0
hen 1
lse n * fac (n-1)
© O. Nierstrasz — U. Berne

Programming without

Programs in pure functional languages hav
Programs are constructed entirely by com

Imperative style:

n := x;
a := 1;
while n>0 do
begin a:= a*n;
n := n-1;

end;

Declarati
style:

fac n =
i
t
e

PS — S2001 68.

Functional Programming

 Languages

ion from input data
© O. Nierstrasz — U. Berne

Pure Functional Programming

Imperative Programming:
☞ Program = Algorithms + Data

Functional Programming:
☞ Program = Functions Functions

What is a Program?
A program (computation) is a transformat
to output data.

PS — S2001 69.

Functional Programming

nal languages

ctions
ts — only input

functions
 on the values of its
© O. Nierstrasz — U. Berne

Key features of pure functio

1. All programs and procedures are fun
2. There are no variables or assignmen

parameters
3. There are no loops — only recursive
4. The value of a function depends only

parameters
5. Functions are first-class values

PS — S2001 70.

Functional Programming

nctional
any recent
esign. Haskell
strict
 user-defined
g, list
onadic I/O

atypes, including
ision integers,
 both the
 years of
.
askell 98 report
© O. Nierstrasz — U. Berne

Haskell
Haskell is a general purpose, purely fu
programming language incorporating m
innovations in programming language d
provides higher-order functions, non-
semantics, static polymorphic typing,
algebraic datatypes, pattern-matchin
comprehensions, a module system, a m
system, and a rich set of primitive dat
lists, arrays, arbitrary and fixed prec
and floating-point numbers. Haskell is
culmination and solidification of many
research on lazy functional languages

— The H

PS — S2001 71.

Functional Programming

ency
l transparency if its
ameters.

In Haskell?

als can be replaced

s are referentially
he same result no
© O. Nierstrasz — U. Berne

Referential Transpar
A function has the property of referentia
value depends only on the values of its par

✎ Does f(x)+f(x) equal 2*f(x)? In C?

Referential transparency means that “equ
by equals”.

In a pure functional language, all function
transparent, and therefore always yield t
matter how often they are called.

PS — S2001 72.

Functional Programming

sions
y substituting
ion bodies:

 fac (4-1-1))
 (4-1-1))

lse (4-1-1) * ...))

)))

ot implemented by
© O. Nierstrasz — U. Berne

Evaluation of Expres
Expressions can be (formally) evaluated b
arguments for formal parameters in funct

fac 4 ➪ if 4 == 0 then 1 else 4 * fac (4-1)
➪ 4 * fac (4-1)
➪ 4 * (if (4-1) == 0 then 1 else (4-1) *
➪ 4 * (if 3 == 0 then 1 else (4-1) * fac
➪ 4 * ((4-1) * fac (4-1-1))
➪ 4 * ((4-1) * (if (4-1-1) == 0 then 1 e
➪ ...
➪ 4 * ((4-1) * ((4-1-1) * ((4-1-1-1) * 1
➪ ...
➪ 24

Of course, real functional languages are n
syntactic substitution ...

PS — S2001 73.

Functional Programming

han loops because of
ardware.

s its last operation,
y by a modern

ime stack frame:

ct 5 fact 4 fact 3

ac 3
© O. Nierstrasz — U. Berne

Tail Recursion
Recursive functions can be less efficient t
the high cost of procedure calls on most h

A tail recursive function calls itself only a
so the recursive call can be optimized awa
compiler since it needs only a single run-t

...

fact 5 → fact 5 fact 4 → fa

sfac 5 → sfac 4 → sf

PS — S2001 74.

Functional Programming

.
a tail-recursive one
xplicit function
© O. Nierstrasz — U. Berne

Tail Recursion ..
A recursive function can be converted to
by representing partial computations as e
parameters:
sfac s n = if n == 0

then s
else sfac (s*n) (n-1)

sfac 1 4 ➪ sfac (1*4) (4-1)
➪ sfac 4 3
➪ sfac (4*3) (3-1)
➪ sfac 12 2
➪ sfac (12*2) (2-1)
➪ sfac 24 1
➪ ... ➪ 24

PS — S2001 75.

Functional Programming

ng

) — by def
n-1)

— by lemma
— by def
© O. Nierstrasz — U. Berne

Equational Reasoni
Theorem:

For all n ≥ 0,
Proof of theorem:

n = 0: fac 0 = 1 = sfac 1 0
n > 0: Suppose

fac (n-1) = sfac 1 (n-1)
fac n = n * fac (n-1

= n * sfac 1 (
= sfac n (n-1)
= sfac 1 n

...

fac n = sfac 1 n

PS — S2001 76.

Functional Programming

 ...

1 n

 (n-1)
n-1)
 1 (n-1)
n-1)
© O. Nierstrasz — U. Berne

Equational Reasoning
Lemma:

For all n ≥ 0, sfac s n = s * sfac
Proof of lemma:

n = 0: sfac s 0 = s = s * sfac 1 0
n > 0: Suppose:

sfac s (n-1) = s * sfac 1
sfac s n = sfac (s*n) (

= s * n * sfac
= s * sfac n (
= s * sfac 1 n

PS — S2001 77.

Functional Programming

ying case-based
© O. Nierstrasz — U. Berne

Pattern Matching
Haskell support multiple styles for specif
function definitions:

Patterns:
fac' 0 = 1
fac' n = n * fac' (n-1)

-- or: fac’ (n+1) = (n+1) * fac’ n

Guards:
fac'' n | n == 0 = 1

| n >= 1 = n * fac'' (n-1)

PS — S2001 78.

Functional Programming

ments:

 the head and xs as

2:3:[]

n]
© O. Nierstrasz — U. Berne

Lists
Lists are pairs of elements and lists of ele

❑ [] — stands for the empty list

❑ x:xs — stands for the list with x as
the rest of the list

❑ [1,2,3] — is syntactic sugar for 1:

❑ [1..n] — stands for [1,2,3, ...

PS — S2001 79.

Functional Programming

:

© O. Nierstrasz — U. Berne

Using Lists
Lists can be deconstructed using patterns

head (x:_) = x

len [] = 0
len (x:xs) = 1 + len xs

prod [] = 1
prod (x:xs) = x * prod xs

fac''' n = prod [1..n]

PS — S2001 80.

Functional Programming

ions
ions as first-class
ew functions.

 applied to lists:
© O. Nierstrasz — U. Berne

Higher Order Funct
Higher-order functions treat other funct
values that can be composed to produce n

map f [] = []
map f (x:xs) = f x : map f xs

map fac [1..5]
➪ [1, 2, 6, 24, 120]

NB: map fac is a new function that can be
mfac = map fac
mfac [1..3]

➪ [1, 2, 6]

PS — S2001 81.

Functional Programming

ns
mbda abstractions”.
ctly like sqr:

s:

4, 81, 100]
© O. Nierstrasz — U. Berne

Anonymous functio
Anonymous functions can be written as “la
The function (\x -> x * x) behaves exa
sqr x = x * x

sqr 10 ➪ 100
(\x -> x * x) 10 ➪ 100

Anonymous functions are first-class value
map (\x -> x * x) [1..10]

➪ [1, 4, 9, 16, 25, 36, 49, 6

PS — S2001 82.

Functional Programming

ian H.B. Curry] takes
 be treated as a

 addition

rst argument to 1

irst argument of
ed factorial

-1)
© O. Nierstrasz — U. Berne

Curried functions
A Curried function [named after the logic
its arguments one at a time, allowing it to
higher-order function.
plus x y = x + y -- curried
plus 1 2 ➪ 3

inc = plus 1 -- bind fi
inc 2 ➪ 3

fac = sfac 1 -- binds f
where sfac s n -- a curri

| n == 0 = s
| n >= 1= sfac (s*n) (n

PS — S2001 83.

Functional Programming

unctions

gument that returns

ing a function,

ng 11.
© O. Nierstrasz — U. Berne

Understanding Curried f
plus x y = x + y

is the same as:
plus x = \y -> x+y

In other words, plus is a function of one ar
a function as its result.

plus 5 6

is the same as:
(plus 5) 6

In other words, we invoke (plus 5), obtain
\y -> 5 + y

which we then pass the argument 6, yieldi

PS — S2001 84.

Functional Programming

 a binary function as
nction:

t curried!

t curried

nd first argument
© O. Nierstrasz — U. Berne

Currying
The following (pre-defined) function takes
an argument and turns it into a curried fu

curry f a b = f (a, b)

plus(x,y) = x + y -- no
inc = (curry plus) 1

sfac(s, n) = if n == 0 -- no
then s
else sfac (s*n, n-1)

fac = (curry sfac) 1 -- bi

PS — S2001 85.

Functional Programming

n
 recalculations:

assing calculated

bPair n

ibonacci function?
© O. Nierstrasz — U. Berne

Multiple Recursio
Naive recursion may result in unnecessary
fib 1 = 1
fib 2 = 1
fib (n+2) = fib n + fib (n+1)

Efficiency can be regained by explicitly p
values:
fib' 1 = 1
fib' n = a where (a,_) = fi
fibPair 1 = (1,0)
fibPair (n+2) = (a+b,a)

where (a,b) = fibPair (n+1)

✎ How would you write a tail-recursive F

PS — S2001 86.

Functional Programming

valuates expressions
lementation
ated expressions to
ulations.

 ➪ 49

e evaluated even if
ting arguments:
© O. Nierstrasz — U. Berne

Lazy Evaluation
“Lazy”, or “normal-order” evaluation only e
when they are actually needed. Clever imp
techniques (Wadsworth, 1971) allow replic
be shared, and thus avoid needless recalc
So:
sqr n = n * n
sqr (2+5) ➪ (2+5) * (2+5) ➪ 7 * 7

Lazy evaluation allows some functions to b
they are passed incorrect or non-termina
ifTrue True x y = x
ifTrue False x y = y
ifTrue True 1 (5/0) ➪ 1

PS — S2001 87.

Functional Programming

ose values are

,....

, 14]

syntax: [n..]
© O. Nierstrasz — U. Berne

Lazy Lists
Lazy lists are infinite data structures wh
generated by need:
from n = n : from (n+1)

from 10 ➪ [10,11,12,13,14,15,16,17

take 0 _ = []
take _ [] = []
take (n+1) (x:xs) = x : take n xs

take 5 (from 10) ➪ [10, 11, 12, 13

NB: The lazy list (from n) has the special

PS — S2001 88.

Functional Programming

sts
d as lazy lists.

 34, 55]

+b) only appears
© O. Nierstrasz — U. Berne

Programming lazy li
Many sequences are naturally implemente
Note the top-down, declarative style:

fibs = 1 : 1 :
where fibsFollowing a b =
(a+b) : fibsFollowing b (a+b)

take 10 fibs
➪ [1, 1, 2, 3, 5, 8, 13, 21,

✎ How would you re-write fibs so that (a
once?

fibsFollowing 1 1

PS — S2001 89.

Functional Programming

g Style

)
ime n

es n

s n

13, ... 523, 541]
© O. Nierstrasz — U. Berne

Declarative Programmin
primes = primesFrom 2
primesFrom n = p : primesFrom (p+1

where p = nextPr
nextPrime n
| isPrime n = n
| otherwise = nextPrime (n+1)

isPrime 2 = True
isPrime n = notDivisible prim
notDivisible (k:ps) n
| (k*k) > n = True
| (mod n k) == 0 = False
| otherwise = notDivisible p

take 100 primes ➪ [2, 3, 5, 7, 11,

PS — S2001 90.

Functional Programming

ow!
y is it important?
 is this useful?

nonymous function?
they useful?
 in a multiply
© O. Nierstrasz — U. Berne

What you should kn
✎ What is referential transparency? Wh
✎ When is a function tail recursive? Why
✎ What is a higher-order function? An a
✎ What are curried functions? Why are
✎ How can you avoid recalculating values

recursive function?
✎ What is lazy evaluation?
✎ What are lazy lists?

PS — S2001 91.

Functional Programming

estions?
ovide loop

an guards to specify

numbers and

+b) is only called

ited to functional
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ Why don’t pure functional languages pr

constructs?
✎ When would you use patterns rather th

functions?
✎ Can you build a list that contains both

functions?
✎ How would you simplify fibs so that (a

once?
✎ What kinds of applications are well-su

programming?

PS — S2001 92.

Type Systems

s

© O. Nierstrasz — U. Berne

4. Type System

Overview
❑ What is a Type?
❑ Static vs. Dynamic Typing
❑ Kinds of Types
❑ Polymorphic Types
❑ Overloading
❑ User Data Types

PS — S2001 93.

Type Systems

and Application of
” ACM Computing
11.
rstanding Types,
,’“ACM Computing

22.
ncepts and
© O. Nierstrasz — U. Berne

References
❑ Paul Hudak, “Conception, Evolution,

Functional Programming Languages,
Surveys 21/3, Sept. 1989, pp 359-4

❑ L. Cardelli and P. Wegner, “On Unde
Data Abstraction, and Polymorphism
Surveys, 17/4, Dec. 1985, pp. 471-5

❑ D. Watt, Programming Language Co
Paradigms, Prentice Hall, 1990

PS — S2001 94.

Type Systems

=0,y=1] ... }
© O. Nierstrasz — U. Berne

What is a Type?
Type errors:
? 5 + []
ERROR: Type error in application
*** expression : 5 + []
*** term : 5
*** type : Int
*** does not match : [a]

A type is a set of values?
❑ int = { ... -2, -1, 0, 1, 2, 3, ... }
❑ bool = { True, False }
❑ Point = { [x=0,y=0], [x=1,y=0], [x

PS — S2001 95.

Type Systems

viour?
is an error

hello world” is an

ing? Useful?
© O. Nierstrasz — U. Berne

What is a Type?
A type is a partial specification of beha

❑ n,m:int ⇒ n+m is valid, but not(n)

❑ n:int ⇒ n := 1is valid, but n := “
error

What kinds of specifications are interest

PS — S2001 96.

Type Systems

ypes
ogramming language.

ypes determined by

pplet();

mic type is GameApplet

e of value is GameApplet
© O. Nierstrasz — U. Berne

Static and Dynamic T
Values have static types defined by the pr

Variables and expressions have dynamic t
the values they assume at run-time.

Applet myApplet = new GameA

actual dyna

declared, static type is Applet
static typ

PS — S2001 97.

Type Systems

yping
s possible to
ion based on the

le to ensure that
 on the program text

ues have fixed type.
ferent types at run-
fore they are used.

mpile-time type-
ic type-checking.
© O. Nierstrasz — U. Berne

Static and Dynamic T
A language is statically typed if it is alway
determine the (static) type of an express
program text alone.

A language is strongly typed if it is possib
every expression is type consistent based
alone.

A language is dynamically typed if only val
Variables and parameters may take on dif
time, and must be checked immediately be

Type consistency may be assured by (i) co
checking, (ii) type inference, or (iii) dynam

PS — S2001 98.

Type Systems

 set of built-in

 floats, chars ...
ples ...

ovide for additional

recursive types,
© O. Nierstrasz — U. Berne

Kinds of Types
All programming languages provide some
types.

❑ Primitive types: booleans, integers,
❑ Composite types: functions, lists, tu

Most strongly-typed modern languages pr
user-defined types.

❑ User-defined types: enumerations,
generic types, objects ...

PS — S2001 99.

Type Systems

s

stricted in the
— Watt

d as arguments and

lass distinctions,
eat functions (at
© O. Nierstrasz — U. Berne

Type Completenes
The Type Completeness Principle:

No operation should be arbitrarily re
types of values involved.

First-class values can be evaluated, passe
used as components of composite values.

Functional languages attempt to make no c
whereas imperative languages typically tr
best) as second-class values.

PS — S2001 100.

Type Systems

pes of expressions

:: Int

Int -> Int)

) 6).

Int->Int
© O. Nierstrasz — U. Berne

Function Types
Function types allow one to deduce the ty
without the need to evaluate them:
fact :: Int -> Int
42 :: Int ⇒ fact 42

Curried types:
Int -> Int -> Int ≡ Int -> (

and
plus 5 6 ≡ ((plus 5

so:
plus::Int->Int->Int ⇒ plus 5::

PS — S2001 101.

Type Systems

:

f the same type!
 can’t be typed!
© O. Nierstrasz — U. Berne

List Types
List Types
A list of values of type a has the type [a]
[1] :: [Int]

NB: All of the elements in a list must be o
['a', 2, False]-- this is illegal!

PS — S2001 102.

Type Systems

s t1, t2, ..., tn
, xn)has the type

, Int))

le element which is
© O. Nierstrasz — U. Berne

Tuple Types
Tuple Types
If the expressions x1, x2, ..., xn have type
respectively, then the tuple (x1, x2, ...
(t1, t2, ..., tn):

(1, [2], 3) :: (Int, [Int], Int)
('a', False) :: (Char, Bool)
((1,2),(3,4)) :: ((Int, Int), (Int

The unit type is written () and has a sing
also written as ().

PS — S2001 103.

Type Systems

ype systems: every
n result has a unique

 a generic sort
© O. Nierstrasz — U. Berne

Monomorphism
Languages like Pascal have monomorphic t
constant, variable, parameter and functio
type.

❑ good for type-checking
❑ bad for writing generic code

☞ it is impossible in Pascal to write
procedure

PS — S2001 104.

Type Systems

s of different types:

-> [b]

> b) -> (a -> c)
© O. Nierstrasz — U. Berne

Polymorphism
A polymorphic function accepts argument
length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs

map :: (a -> b) -> [a]
map f [] = []
map f (x:xs) = f x : map f xs

(.) :: (b -> c) -> (a -
(f . g) x = f (g x)

PS — S2001 105.

Type Systems

 types
using polymorphic
 to concrete types.

b]

: [[a]] -> [Int]
: [[Char]]
: [Int]
© O. Nierstrasz — U. Berne

Composing polymorphic
We can deduce the types of expressions
functions by simply binding type variables

Consider:
length :: [a] -> Int
map :: (a -> b) -> [a] -> [

Then:
map length :
[“Hello”, “World”] :
map length [“Hello”, “World”] :

PS — S2001 106.

Type Systems

rence
n effective
he types of

 many modern
skell.

[]
f x : map f xs

Z

[d]

[b]
© O. Nierstrasz — U. Berne

Polymorphic Type Infe
Hindley-Milner Type Inference provides a
algorithm for automatically determining t
polymorphic functions.

The corresponding type system is used in
functional languages, including ML and Ha

map f [] =
map f (x:xs) =

map :: X -> Y ->

map :: (a -> b) -> [c] ->

map :: (a -> b) -> [a] ->

PS — S2001 107.

Type Systems

n
ssigned a more

find the type of a
Haskell:
© O. Nierstrasz — U. Berne

Type Specializatio
A polymorphic function may be explicitly a
specific type:
idInt :: Int -> Int
idInt x = x

Note that the :t command can be used to
particular expression that is inferred by
? :t \x -> [x]
➪ \x -> [x] :: a -> [a]

? :t (\x -> [x]) :: Char -> String
➪ \x -> [x] :: Char -> String

PS — S2001 108.

Type Systems

ism

tion in Haskell; nil

jects

egers and reals
ed where reals are
© O. Nierstrasz — U. Berne

Kinds of Polymorph
Polymorphism:

❑ Universal:
—Parametric: polymorphic map func

pointer type in Pascal
—Inclusion: subtyping — graphic ob

❑ Ad Hoc:
—Overloading: + applies to both int
—Coercion: integer values can be us

expected and v.v.

PS — S2001 109.

Type Systems

ing
istinguish?

ns, or just one, with
© O. Nierstrasz — U. Berne

Coercion vs overload
Coercion or overloading — how does one d
3 + 4
3.0 + 4
3 + 4.0
3.0 + 4.0

✎ Are there several overloaded + functio
values automatically coerced?

PS — S2001 110.

Type Systems

eans of type classes:

sed:

e

© O. Nierstrasz — U. Berne

Overloading
Overloaded operators are introduced by m
class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)

A type class must be instantiated to be u
instance Eq Bool where
True == True = True
False == False = True
_ == _ = Fals

PS — S2001 111.

Type Systems

operators
efinition must be

EqInt
rd c == ord d
where
 && y==v

e
e
 && xs==ys
© O. Nierstrasz — U. Berne

Instantiating overloaded
For each overloaded instance a separate d
given ...
instance Eq Int where (==) = prim
instance Eq Char where c == d = o
instance (Eq a, Eq b) => Eq (a,b)
(x,y) == (u,v) = x==u

instance Eq a => Eq [a] where
[] == [] = True
[] == (y:ys) = Fals
(x:xs) == [] = Fals
(x:xs) == (y:ys) = x==y

PS — S2001 112.

Type Systems

ifying (i) a datatype
ii) a set of

r1 | ... | constrm

th “:”):
© O. Nierstrasz — U. Berne

User Data Types
New data types can be introduced by spec
name, (ii) a set of parameter types, and (i
constructors for elements of the type:

data DatatypeName a1 ... an = const

where the constructors may be either:
1. Named constructors:

Name type1 ... typek

2. Binary constructors (i.e., starting wi
type1 CONOP type2

PS — S2001 113.

Type Systems

s
 can model

 Thu | Fri | Sat

nstruct the
uctor:

ve to go to work”
© O. Nierstrasz — U. Berne

Enumeration type
User data types that do not hold any data
enumerations:

data Day = Sun | Mon | Tue | Wed |

Functions over user data types must deco
arguments, with one case for each constr

whatShallIDo Sun = “relax”
whatShallIDo Sat = “go shopping”
whatShallIDo _ = “guess I'll ha

PS — S2001 114.

Type Systems

renheit Float

= 0.0
= 32.0
© O. Nierstrasz — U. Berne

Union types

data Temp = Centigrade Float | Fah

freezing :: Temp -> Bool
freezing (Centigrade temp)= temp <
freezing (Fahrenheit temp)= temp <

PS — S2001 115.

Type Systems

es
rs over the type

ee a

13)) :^: Lf 10

3

Lf 10
© O. Nierstrasz — U. Berne

Recursive Data Typ
A recursive data type provides constructo
itself:

data Tree a = Lf a | Tree a :^: Tr

mytree = (Lf 12 :^: (Lf 23 :^: Lf

? :t mytree ➪ mytree :: Tree Int

Lf 12
Lf 23 Lf 1

:^:
:^:

:^:

mytree =

PS — S2001 116.

Type Systems

types

aves r

cc l . leavesAcc r

nt? Why?
© O. Nierstrasz — U. Berne

Using recursive data
leaves, leaves' :: Tree a -> [a]
leaves (Lf l) = [l]
leaves (l :^: r) = leaves l ++ le

leaves' t = leavesAcc t []
where leavesAcc (Lf l) = (l:)

leavesAcc (l :^: r) = leavesA

✎ What do these functions do?
✎ Which function should be more efficie
✎ What is (l:) and what does it do?

PS — S2001 117.

Type Systems

pes
r all types of values?

 && ys `subset` xs
em` ys) xs

nt of ys
© O. Nierstrasz — U. Berne

Equality for Data Ty
Why not automatically provide equality fo

User data types:
data Set a = Set [a]
instance Eq a => Eq (Set a) where
Set xs == Set ys = xs `subset` ys
where xs `subset` ys = all (`el

NB: all (‘elem’ ys) xs tests that every x in xs is an eleme

PS — S2001 118.

Type Systems

ons

xpression
==) {dict} 1) (\x-

 Bool)

idable in general!
© O. Nierstrasz — U. Berne

Equality for Functi

Functions:
? (1==) == (\x->1==x)
ERROR: Cannot derive instance in e
*** Expression : (==) d148 ((
>(==) {dict} 1 x)
*** Required instance : Eq (Int ->

Determining equality of functions is undec

PS — S2001 119.

Type Systems

ow!
nd tuples specified?
inferred without

ction be inferred?
metric

length 3?
s?
© O. Nierstrasz — U. Berne

What you should kn
✎ How are the types of functions, lists a
✎ How can the type of an expression be

evaluating it?
✎ What is a polymorphic function?
✎ How can the type of a polymorphic fun
✎ How does overloading differ from para

polymorphism?
✎ How would you define == for tuples of
✎ How can you define your own data type
✎ Why isn’t == pre-defined for all types?

PS — S2001 120.

Type Systems

estions?
ype?

fer the type of an

nction all? How
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ Can any set of values be considered a t
✎ Why does Haskell sometimes fail to in

expression?
✎ What is the type of the predefined fu

would you implement it?

PS — S2001 121.

application of Functional Programming

unctional

n character

ann encoder
nsuring termination
s
red trees

 forcing eager
© O. Nierstrasz — U. Berne An

5. An application of F
Programming

Overview
❑ Huffmann encoding

☞ variable length encoding based o
frequency

❑ Architecture of a functional Huffm
❑ How to use recursion correctly ☞ e
❑ Representing and manipulating tree
❑ Encoding trees as text; parsing sto
❑ Continuation-style IO
❑ “It doesn’t always pay to be lazy!” —

evaluation

PS — S2001 122.

application of Functional Programming

an, Structure and
ms, MIT electrical
eries., McGraw-Hill,
© O. Nierstrasz — U. Berne An

Reference
❑ H. Abelson, G. Sussman and J.Sussm

Interpretation of Computer Progra
engineering and computer science s
1991.

PS — S2001 123.

application of Functional Programming

s
1
1

" 0000
I 0001

(blank) 0010
a 0011
m 0100
w 0101
h 0110
t 0111
. 1000
© O. Nierstrasz — U. Berne An

Encoding ASCII
"I am what I am."

Naive encoding requires at least 4 bits to
encode 9 different characters:

16 characters x 4 bits/character = 64 bit
0000 0001 0010 0011 0100 0010 010
0110 0011 0111 0010 0001 0010 001
0100 0000

PS — S2001 124.

application of Functional Programming

g

frequency encoding
4 00
3 010
2 011
2 100
2 101
1 1100
1 1101
1 1110
1 1111
© O. Nierstrasz — U. Berne An

Huffmann encodin

Huffmann encoding assigns fewer
bits to more frequently used
characters.

4×2 + 9×3 + 4×4 = 51 bits
011 100 00 010 101 00 1100
1101 010 1110 00 100 00 010
101 011

char
(blank)

a
"
I
m
w
h
t
.

PS — S2001 125.

application of Functional Programming

g
 by using the bits to
g the characters at

0 1110 00

h t .

0

0

1

1

11
© O. Nierstrasz — U. Berne An

Huffmann decodin
A Huffmann encoded text can be decoded
walk down the encoding tree and outputtin
the leaves:

011 100 00 010 101 00 1100 1101 01
➪ “I am what ...

(blank)

a "

w

mI

0

0

0 0

0

1

1 1

1 0

PS — S2001 126.

application of Functional Programming

rees
al encoding/

two “smallest” (by

8
15
nd decode text files.
© O. Nierstrasz — U. Berne An

Generating optimal t
Huffmann’s algorithm generates the optim
decoding tree by recursively merging the
weight) subtrees:

➪ blank4 a3 I2 m2 w1 h1 t1 .1
➪ blank4 a3 I2 m2 w1 h1 (t .)2
➪ blank4 a3 I2 m2 (w h)2 (t .)2
➪ blank4 a3 I2 m2 ((w h) (t .))4
➪ blank4 a3 (I m)4 ((w h) (t .))4
➪ (blank a)7 (I m)4 ((w h) (t .))4
➪ (blank a)7 ((I m) ((w h) (t .)))
➪ ((blank a) ((I m) ((w h) (t .))))

✎ Write a program to Huffmann encode a

PS — S2001 127.

application of Functional Programming

e components to

aracter frequency

Huffmann tree

Encoding map
© O. Nierstrasz — U. Berne An

Architecture
At the coarsest granularity, we need thre
encode and decode files:

Plain text file

Cipher text file

Huffmann tree file

Ch

PS — S2001 128.

application of Functional Programming

ework
e, or a suite of tests:

est

ail:
© O. Nierstrasz — U. Berne An

A Simple testing fram
A test consists of a single named test cas
data Test name test =

Test name test
| Test name test :+: Test name t
deriving Show

We return only the names of tests that f
dotest (Test name test) =
if (test ())
then ""
else name ++ " FAILED\n"

dotest (t1 :+: t2) =
(dotest t1) ++ (dotest t2)

PS — S2001 129.

application of Functional Programming
© O. Nierstrasz — U. Berne An

Testing
assert test =
let result = dotest test
in
if length(result) > 0
then putStr result
else putStr "PASSED all tests"

tests =
Test "test1" (\x -> 1 == 1)

:+: Test "test2" (\x -> 2 == 2)

assert allTests
➪ PASSED all tests

PS — S2001 130.

application of Functional Programming

g
s of Chars and Ints:

Count s)

ar
 [CharCount]

 c ccList)
© O. Nierstrasz — U. Berne An

Frequency Countin
We represent frequencies as lists of pair
type CharCount = (Char,Int)

Compute a [CharCount] for a given String
freqCount :: String -> [CharCount]
freqCount "" = []
freqCount (c:s) = incCount c (freq

Increment the [CharCount] for a given Ch
incCount :: Char -> [CharCount] ->
incCount c [] = [(c,1)]
incCount c ((c1,n):ccList)
| c == c1 = (c1,n+1):ccList
| otherwise = (c1,n):(incCount

PS — S2001 131.

application of Functional Programming

rrectly!
ion will terminate:

on reduces some
ventually reach a

 (freqCount s)

 argument string ⇒
© O. Nierstrasz — U. Berne An

How to use recursion co
In order to ensure that a recursive funct

1. Carefully establish the base cases:
freqCount "" = []

☞ base case is an empty string

2. Ensure that every recursive invocati
measure of size, and therefore will e
base case:

freqCount (c:s) = incCount c

☞ recursive call reduces length of
will reach base case

PS — S2001 132.

application of Functional Programming

',3), (' ',4),
,1)]

ount iam in

 9)

ult) == 17)

fy?
© O. Nierstrasz — U. Berne An

Freqcount tests
iam = "\"I am what I am.\""
freqCount iam

➪ [('"',2), ('.',1), ('m',2), ('a
('I',2), ('t',1), ('h',1), ('w'

testFreqCount = let result = freqC
Test "freqCount length"

(\x -> length result ==
:+: Test "freqCount sum"

(\x -> sum (map snd res

✎ What other tests make sense to speci
✎ How are sum and snd defined?

PS — S2001 133.

application of Functional Programming

ser data type:

t tree1)
t tree2)
© O. Nierstrasz — U. Berne An

Trees
We can represent a Huffmann tree as a u

data Tree a = Leaf a
| Tree a :^: Tree a

Weigh a Tree
weight :: Tree CharCount -> Int
weight (Leaf (ch,n)) = n
weight (tree1 :^: tree2) = (weigh

+ (weigh

PS — S2001 134.

application of Functional Programming

eaf ('m',2),
f ('I',2),
f ('w',1)]

m))
 2, 1, 1, 1]

 (freqCount iam)))
© O. Nierstrasz — U. Berne An

Testing Trees
Constructors are functions too:
map Leaf (freqCount iam)

➪ [Leaf ('"',2), Leaf ('.',1), L
Leaf ('a',3), Leaf (' ',4), Lea
Leaf ('t',1), Leaf ('h',1), Lea

map weight (map Leaf (freqCount ia
➪ [2, 1, 2, 3, 4,

testWeight = Test "weight"
(\x -> sum (map weight (map Leaf

== 17)

PS — S2001 135.

application of Functional Programming

r till a single tree

Tree CharCount
-- base case
-- otherwise
ee1 tree2 []
ee2 tree1 []
;
 }

 of a helper function
© O. Nierstrasz — U. Berne An

Merging trees
Recursively merge smallest trees togethe
results
mergeTrees :: [Tree CharCount] ->
mergeTrees [tree] = tree
mergeTrees (tree1:tree2:treeList)
| w1 < w2 = mt treeList tr
| otherwise = mt treeList tr

where { w1 = (weight tree1)
w2 = (weight tree2)

We can decompose tree merging by means
...

PS — S2001 136.

application of Functional Programming

 weight(tr1) <
ith weights bigger

2

 :^: tr2):tested)

tr1 (tr2:tested)
tr3 (tr2:tested)
tr2 (tr3:tested)
w2 = (weight tr2);

e trees?
© O. Nierstrasz — U. Berne An

Usage: mt untested tr1 tr2 tested, where
weight(tr2) and tested is a list of trees w
than either tr1 or tr2
mt [] tr1 tr2 [] = tr1 :^: tr
mt [] tr1 tr2 tested =

mergeTrees ((tr1
mt (tr3:untested) tr1 tr2 tested
| w3 < w1 = mt untested tr3
| w3 < w2 = mt untested tr1
| otherwise = mt untested tr1

where { w1 = (weight tr1);
w3 = (weight tr3) }

✎ How do we know this terminates?
✎ Is there a more efficient way to merg

PS — S2001 137.

application of Functional Programming
© O. Nierstrasz — U. Berne An

Tree merging ...
mergeTrees (map Leaf (freqCount iam))

➪ ((Leaf ('m',2)
:^:
(Leaf ('w',1) :^: Leaf ('h',1))

)
:^:
((Leaf ('.',1) :^: Leaf ('t',1))

:^:
Leaf ('"',2)

)
)
:^:
(Leaf (' ',4)

:^:
(Leaf ('I',2) :^: Leaf ('a',3))

)

PS — S2001 138.

application of Functional Programming

nn tree
 the Huffmann tree:
ee of CharCounts
 Char

e tr1)
rTree tr2)

ree for a given text

reqCount text)))
© O. Nierstrasz — U. Berne An

Extracting the Huffma
We remove the character counts to leave
Strip out the character counts from a Tr
charTree :: Tree CharCount -> Tree
charTree (Leaf (ch,n)) = Leaf ch
charTree (tr1 :^: tr2) = (charTre

:^: (cha

Generate an optimal Huffmann encoding t
huf :: String -> Tree Char
huf text = charTree (mergeTrees

(map Leaf (f

PS — S2001 139.

application of Functional Programming

e

 'h'))
't')

unique.
© O. Nierstrasz — U. Berne An

Generating the tre
huf iam

➪ ((Leaf 'm'
:^: (Leaf 'w' :^: Leaf

:^: ((Leaf '.' :^: Leaf
:^: Leaf '"'))

:^: (Leaf ' '
:^:
(Leaf 'I' :^: Leaf 'a'))

NB: The resulting tree is not necessarily

PS — S2001 140.

application of Functional Programming

g map
 to each Char in the

> [(Char, String)]
h, prefix)]

 tr1)
1") tr2)

',"0011"),
',"011"),
111")]
© O. Nierstrasz — U. Berne An

Extracting the encodin
To encode text, we need to store the path
tree:

mkEncode :: String -> (Tree Char) -
mkEncode prefix (Leaf ch) = [(c
mkEncode prefix (tr1 :^: tr2) =

(mkEncode (prefix ++ "0")
++ (mkEncode (prefix ++ "

mkEncode "" (huf iam)
➪ [('m',"000"), ('w',"0010"), ('h
('.',"0100"), ('t',"0101"), ('"
(' ',"10"), ('I',"110"), ('a',"

PS — S2001 141.

application of Functional Programming

 map
 in the encoding map:
r -> String
ouldn’t happen!

tring

" tree)) text)

10101110000100011
© O. Nierstrasz — U. Berne An

Applying the encoding
To encode text, we just look up characters
encChar :: [(Char, String)] -> Cha
encChar [] _ = undefined -- sh
encChar ((ch,str):table) c
| c == ch = str
| otherwise = encChar table c

encode :: Tree Char -> String -> S
encode tree text = foldr (++) ""

(map (encChar (mkEncode "

encode (huf iam) iam ➪

0111101011100010001000111110101101

PS — S2001 142.

application of Functional Programming

ude:
 -> b

s)
© O. Nierstrasz — U. Berne An

foldr
NB: foldr is defined in the standard prel
foldr :: (a -> b -> b) -> b -> [a]
foldr f z []= z
foldr f z (x:xs)= f x (foldr f z x

foldr (*) 1 [1..10]
➪ 3628800

PS — S2001 143.

application of Functional Programming

e tree
eping a copy of the
e root each time we

tring
NB: higher order
String -> String
walk tree tr1 rest
walk tree tr2 rest
alk tree tree rest

 iam)
© O. Nierstrasz — U. Berne An

Decoding by walking th
To decode text, we just walk the tree, ke
original tree so we can start over from th
reach a leaf:
decode :: Tree Char -> String -> S
decode tree = walk tree tree --
walk :: Tree Char -> Tree Char ->
walk tree (tr1:^:tr2) ('0':rest) =
walk tree (tr1:^:tr2) ('1':rest) =
walk tree (Leaf ch) rest = [ch] ++ w
walk tree nav [] = []

decode (huf iam) (encode (huf iam)
➪ "\"I am what I am.\""

PS — S2001 144.

application of Functional Programming

ds the original:
code"
 (huf text) text)
© O. Nierstrasz — U. Berne An

Testing
Test that decoding the encoded text yiel
testHuf text = Test "huf encode/de
(\x -> decode (huf text) (encode

== text)

assert (testHuf iam)
➪ PASSED all tests

assert (testHuf "")
➪ Program error: {mergeTrees []}

Is this a reasonable thing to happen?

PS — S2001 145.

application of Functional Programming

 text
s plain text.
alues, and
essions, taking care

owTree tr1)
Tree tr2) ++ ")"
© O. Nierstrasz — U. Berne An

Representing trees as
We need a way to store Huffmann trees a
We represent leaves by their character v
intermediate nodes as parenthesized expr
to encode parentheses:
showTree :: Tree Char -> String
showTree (Leaf ch)
| ch == '(' = "\\("
| ch == ')' = "\\)"
| ch == '\\' = "\\\\"
| ch == '\n' = "\\n"
| otherwise = [ch]

showTree (tr1 :^: tr2)= "(" ++ (sh
++ (show

...

PS — S2001 146.

application of Functional Programming

ext ...
© O. Nierstrasz — U. Berne An

Representing trees as t
showTree (huf iam)
➪ "(((m(wh))((.t)\"))((Ia)))"

showTree (huf "()\\\n")
➪ "((\\\\\\n)(\\(\\)))"

putStr (showTree (huf "()\\\n"))
➪ ((\\\n)(\(\)))

PS — S2001 147.

application of Functional Programming

red trees
onstruct the stored

on a stack of trees,
 right parenthesis is

 tree will be left on

(a^b)^(c^d)
© O. Nierstrasz — U. Berne An

Using a stack to parse sto
Naturally, we need a way to parse and rec
trees.
A standard solution is to push the leaves
joining the top two elements every time a
encountered:
Example: ((ab)(cd))

If the parentheses are balanced, a single
the stack.

d

b c c c^d

a a a^b a^b a^b a^b

PS — S2001 148.

application of Functional Programming

es
nerating a Tree Char

stack is empty

e Char

tr

ead str)):stack)

) str
© O. Nierstrasz — U. Berne An

Parsing stored tre
Parse a Lisp-style parenthesized string, ge
parseTree :: String -> Tree Char
parseTree = pt [] -- initial

pt :: [Tree Char] -> String -> Tre
pt [tree] [] = tree
pt stack (ch:str)
| ch == '(' = pt stack str
| ch == ')' = pt (join stack) s
| ch == '\\' = pt

 (Leaf (unescape (h
(tail str)

| otherwise = pt (Leaf ch:stack

PS — S2001 149.

application of Functional Programming

 ...
ne

stack

lash

)
 '(' :^: Leaf ')')
© O. Nierstrasz — U. Berne An

Parsing stored trees
Join the top two trees of the stack into o
join :: [Tree a] -> [Tree a]
join (tr1:tr2:stack)= (tr2:^:tr1):

Unescape the character following a backs
unescape :: Char -> Char
unescape '(' = '('
unescape ')' = ')'
unescape '\\' = '\\'
unescape 'n' = '\n'

parseTree (showTree (huf "()\\\n")
➪ (Leaf '\' :^: Leaf '\n') :^: (Leaf

PS — S2001 150.

application of Functional Programming

Files
 the input file and

cipher and tree files

erates the plain text

ith user and file I/O.
ely functional world

to Haskell” for the
© O. Nierstrasz — U. Berne An

Reading and Writing
Now we just need some functions to read
write the result files:

Reads a plain text file and generates the
enc :: FilePath -> IO ()

Reads the cipher and tree files and regen
dec :: FilePath -> IO()

There are standard libraries for dealing w
✎ How can you make sense of I/O in a pur

with no state changes?
See chapter 7 of “A Gentle Introduction
complete story on IO!

PS — S2001 151.

application of Functional Programming

(I)

11010111110000011

ncoding tree?
© O. Nierstrasz — U. Berne An

Using the program
From shell:
echo '"I am what I am."' > iam

From Haskell:
enc "iam"

From shell:
% cat iam.huf
➪ ((((\n.)(wh)))((mI)((t")a)))
% cat iam.enc
➪ 110110101111100010010001111111000
1010000

✎ Why do we get a different Hufmann e

PS — S2001 152.

application of Functional Programming

(II)
am itself.

er stack overflow.
© O. Nierstrasz — U. Berne An

Using the program
Let’s encode the source code of the progr

From Haskell:
enc "huf"
➪ (8598 reductions, 12940 cells)
INTERNAL ERROR: Application paramet

✎ What went wrong?

PS — S2001 153.

application of Functional Programming

m

qCount "")))

n until the entire
ack space for larger
© O. Nierstrasz — U. Berne An

Tracing our progra
freqCount "abc"
➪ incCount 'a' (freqCount "bc")
➪ incCount 'a' (incCount 'b' (freqCount "c"))
➪ incCount 'a' (incCount 'b' (incCount 'c' (fre
➪ incCount 'a' (incCount 'b' (incCount 'c' []))
➪ incCount 'a' (incCount 'b' (('c',1) : []))
➪ incCount 'a' (('c',1) : incCount 'b' [])
➪ ('c',1) : incCount 'a' (incCount 'b' [])
➪ ('c',1) : incCount 'a' (('b',1) : [])
➪ ('c',1) : ('b',1) : incCount 'a' []
➪ ('c',1) : ('b',1) : ('a',1) : []

Because Haskell is lazy, nothing will happe
input has been read, thereby exhausting st
input files!

PS — S2001 154.

application of Functional Programming

visited
ed eagerly!

es to be produced
contain c, back to be

> [CharCount]

[] ((c,1):front)

++ ((c,n+1):back))
,n):front) back
© O. Nierstrasz — U. Berne An

Frequency Counting Re
We need frequency counting to be evaluat
We can force evaluation by requiring valu
fcEager (c:s) front back -- front does not
checked
fcEager :: String -> [CharCount] -

-> [CharCount]
fcEager "" [] ccl = ccl

fcEager (c:s) front []= fcEager s

fcEager (c:s) front ((c1,n):back)
| (c == c1) = fcEager s [] (front
| otherwise = fcEager (c:s) ((c1

PS — S2001 155.

application of Functional Programming

tion

-- new char
-- ‘b’ != ‘a’
-- new char
-- ‘c’ != ‘b’
-- ‘c’ != ‘a’
-- base case
-- ‘c’ != ‘a’
© O. Nierstrasz — U. Berne An

Tracing eager evalua
fcEager "abc" [] []
➪ fcEager “bc” [] (‘a’,1):[]
➪ fcEager “bc” (‘a’,1):[] []
➪ fcEager “c” [] (‘b’,1):(‘a’,1):[]
➪ fcEager “c” (‘b’,1):[] (‘a’,1):[]
➪ fcEager “c” (‘a’,1):(‘b’,1):[] []
➪ fcEager “” [] (‘c’,1):(‘a’,1):(‘b’,1):[] []
➪ (‘c’,1):(‘a’,1):(‘b’,1):[] []

PS — S2001 156.

application of Functional Programming

er fc

lls,
© O. Nierstrasz — U. Berne An

Final version

fc2 s = fcEager s [] [] -- eag
enc2 = ...

enc2 "huf"
➪ (2117457 reductions, 6145824 ce
100 garbage collections)

PS — S2001 157.

application of Functional Programming

ow!
ion will terminate?

d in Huffmann

string
© O. Nierstrasz — U. Berne An

What you should kn
✎ How can you be sure a recursive funct

How do we know that walk terminates?
✎ How do you know where characters en

encoded bit strings?
✎ How can you generate a tree from its

representation?
✎ How can you force eager evaluation?

PS — S2001 158.

application of Functional Programming

estions?
m really generates

dl instead of foldr?
 the run-time stack
t?
s one byte for each

gram to produce bits

 in the architecture
© O. Nierstrasz — U. Berne An

Can you answer these qu
✎ Can you prove that Huffmann’s algorith

the optimal map?
✎ What would happen if encode used fol
✎ Can parseTree be re-written so it uses

instead of representing a stack as a lis
✎ Our Huffmann encoder actually output

“0” or “1”! How would you adapt the pro
instead of bytes?

✎ Which functions implement the arrows
diagram?

PS — S2001 159.

Introduction to the Lambda Calculus

 Lambda

 Thesis
antics

ucts
© O. Nierstrasz — U. Berne

6. Introduction to the
Calculus

Overview
❑ What is Computability? — Church’s
❑ Lambda Calculus — operational sem
❑ The Church-Rosser Property
❑ Modelling basic programming constr

PS — S2001 160.

Introduction to the Lambda Calculus

and Application of
” ACM Computing
11.
nguages: Principles
on), 1993.
us — Its Syntax and
vised edition.
© O. Nierstrasz — U. Berne

References
❑ Paul Hudak, “Conception, Evolution,

Functional Programming Languages,
Surveys 21/3, Sept. 1989, pp 359-4

❑ Kenneth C. Louden, Programming La
and Practice, PWS Publishing (Bost

❑ H.P. Barendregt, The Lambda Calcul
Semantics, North-Holland, 1984, Re

PS — S2001 161.

Introduction to the Lambda Calculus

e?
ing from inputs to
,” or program, which
.

e that can be
 finite resources.

yes

no

utput
© O. Nierstrasz — U. Berne

What is Computabl
Computation is usually modelled as a mapp
outputs, carried out by a formal “machine
processes its input in a sequence of steps

An “effectively computable” function is on
computed in a finite amount of time using

“Effectively
computable”

function

Problem

input oprogram/machine

PS — S2001 162.

Introduction to the Lambda Calculus

m positive
 those definable

hat is more

 “effectively
athematical one. It
ample — a machine
y a Turing machine.

le functions have
 (or the lambda
© O. Nierstrasz — U. Berne

Church’s Thesis
Effectively computable functions [fro
integers to positive integers] are just
in the lambda calculus.

Or, equivalently:
It is not possible to build a machine t
powerful than a Turing machine.

Church’s thesis cannot be proven because
computable” is an intuitive notion, not a m
can only be refuted by giving a counter-ex
that can solve a problem not computable b

So far, all models of effectively computab
shown to be equivalent to Turing machines
calculus).

PS — S2001 163.

Introduction to the Lambda Calculus

ing machine in finite
d uncomputable.

putable problem

 its input tape,

able — which means
© O. Nierstrasz — U. Berne

Uncomputability
A problem that cannot be solved by any Tur
time (or any equivalent formalism) is calle

Assuming Church’s thesis is true, an uncom
cannot be solved by any real computer.

The Halting Problem:
Given an arbitrary Turing machine and
will the machine eventually halt?

The Halting Problem is provably uncomput
that it cannot be solved in practice.

PS — S2001 164.

Introduction to the Lambda Calculus

 (I)

 × B (i.e., a relation)

) ∈ f

 b2
© O. Nierstrasz — U. Berne

What is a Function?

Extensional view:

A (total) function f: A → B is a subset of A
such that:

1. for each a∈ A, there exists some (a,b
(i.e., f(a) is defined), and

2. if (a,b1) ∈ f and (a, b2) ∈ f, then b1 =
(i.e., f(a) is unique)

PS — S2001 165.

Introduction to the Lambda Calculus

 (II)

. e, where x is a
h that when a value
pression (i.e., f(a))
© O. Nierstrasz — U. Berne

What is a Function?

Intensional view:

A function f: A → B is an abstraction λ x
variable name, and e is an expression, suc
a∈ A is substituted for x in e, then this ex
evaluates to some (unique) value b∈ B.

PS — S2001 166.

Introduction to the Lambda Calculus

 syntax
zo Church [1932] as
computation by

 x, and returning x

 (function)
plication
© O. Nierstrasz — U. Berne

The Lambda Calculus —
The Lambda Calculus was invented by Alon
a mathematical formalism for expressing
functions.

Syntax:

λ x . x — is a function taking an argument

e ::= x a variable
| λ x . e an abstraction
| e1 e2 a (function) ap

PS — S2001 167.

Introduction to the Lambda Calculus

antics

simplest possible

x] e where y is not
free in e

1 avoiding name
capture
if x is not free
in e
© O. Nierstrasz — U. Berne

Lambda Calculus — sem
(Operational) Semantics:

The lambda calculus can be viewed as the
pure functional programming language.

α conversion
(renaming):

λ x . e ↔ λ y . [y/

β reduction
(application):

(λ x . e1) e2 → [e2/x] e

η reduction: λ x . (e x) → e

PS — S2001 168.

Introduction to the Lambda Calculus

e of the lambda

x] x β reduction
substitution
© O. Nierstrasz — U. Berne

Beta Reduction
Beta reduction is the computational engin
calculus:

Define: I ≡ λ x . x

Now consider:

I I = (λ x . x) (λ x . x) → [(λ x . x) /
= (λ x . x)
= I

PS — S2001 169.

Introduction to the Lambda Calculus

Haskell
s directly in Haskell:
© O. Nierstrasz — U. Berne

Lambda expressions in
We can implement most lambda expression
i = \x -> x
? i 5
5
(2 reductions, 6 cells)
? i i 5
5
(3 reductions, 7 cells)

PS — S2001 170.

Introduction to the Lambda Calculus

bles
sion: λ x.e

osed.

e (open) expression:

e2)
© O. Nierstrasz — U. Berne

Free and Bound Varia
The variable x is bound by λ in the expres
A variable that is not bound, is free :

An expression with no free variables is cl
(AKA a combinator.) Otherwise it is open.

For example, y is bound and x is free in th
λ y . x y

fv(x) = { x }
fv(e1 e2) = fv(e1) ∪ fv(

fv(λ x . e) = fv(e) − { x }

PS — S2001 171.

Introduction to the Lambda Calculus

s wrong

annot directly

reduction
orrect substitution!
© O. Nierstrasz — U. Berne

Why macro expansion i
Syntactic substitution will not work:

Since y is already bound in (λ y . x y), we c
substitute y for x.

(λ x . λ y . x y) y → [y / x] (λ y . x y) β
≠ (λ y . y y) inc

PS — S2001 172.

Introduction to the Lambda Calculus

avoid name capture:

 x ≠ y

 x ≠ y and y ∉ fv(e)
 x ≠ y and
∉ fv(e) ∪ fv(e1)

(λ y .) (λ x . x))
y) (λ x . x)) y

x x
© O. Nierstrasz — U. Berne

Substitution
We must define substitution carefully to

Consider:

[e/x] x = e
[e/x] y = y if

[e/x] (e1 e2) = ([e/x] e1) ([e/x] e2)
[e/x] (λ x . e1) = (λ x . e1)
[e/x] (λ y . e1) = (λ y . [e/x] e1) if
[e/x] (λ y . e1) = (λ . [e/x] [z/y] e1) if

z

(λ . ((λ y .) (λ x . x))) y → [y / x] (
= ((λ .

z

x x x
z

PS — S2001 173.

Introduction to the Lambda Calculus

nd variables.

 (λ x.e) may be
s there are no free

 α conversion
) β reduction

 η reduction
© O. Nierstrasz — U. Berne

Alpha Conversion
Alpha conversions allows us to rename bou

A bound name x in the lambda abstraction
substituted by any other name y, as long a
occurrences of y in e:

Consider:

(λ x . λ y . x y) y → (λ x . λ z . x z) y
→ [y / x] (λ z . x z
→ (λ z . y z)
= y

PS — S2001 174.

Introduction to the Lambda Calculus

ndant lambdas”.

cur free in f, we can

eduction
© O. Nierstrasz — U. Berne

Eta Reduction
Eta reductions allows one to remove “redu

Suppose that f is a closed expression
(i.e., there are no free variables in f).

Then:

So, (λ x . f x) behaves the same as f !

Eta reduction says, whenever x does not oc
rewrite (λ x . f x) as f.

(λ x . f x) y → f y β r

PS — S2001 175.

Introduction to the Lambda Calculus

t can no longer be

rms!

al form is analogous
erminating.

x] (x x)
 . x x) β reduction
 . x x) β reduction
 . x x) β reduction
© O. Nierstrasz — U. Berne

Normal Forms
A lambda expression is in normal form if i
reduced by beta or eta reduction rules.

Not all lambda expressions have normal fo

Reduction of a lambda expression to a norm
to a Turing machine halting or a program t

Ω = (λ x . x x) (λ x . x x) → [(λ x . x x) /
= (λ x . x x) (λ x
→ (λ x . x x) (λ x
→ (λ x . x x) (λ x
→ ...

PS — S2001 176.

Introduction to the Lambda Calculus

at is, all expressions
ore control is passed

other hand, use lazy
valuated when they

2+5) ➪ 7 * 7 ➪ 49
© O. Nierstrasz — U. Berne

Evaluation Order
Most programming languages are strict, th
passed to a function call are evaluated bef
to the function.
Most modern functional languages, on the
evaluation, that is, expressions are only e
are needed.
Consider:
sqr n = n * n

Applicative-order reduction:
sqr (2+5) ➪ sqr 7 ➪ 7*7 ➪ 49

Normal-order reduction:
sqr (2+5) ➪ (2+5) * (2+5) ➪ 7 * (

PS — S2001 177.

Introduction to the Lambda Calculus

operty

 all, it can be
l-order
aluated in
al-order and

of these
lt.”

the lambda calculus.
© O. Nierstrasz — U. Berne

The Church-Rosser Pr

“If an expression can be evaluated at
evaluated by consistently using norma
evaluation. If an expression can be ev
several different orders (mixing norm
applicative order reduction), then all
evaluation orders yield the same resu

So, evaluation order “does not matter” in

PS — S2001 178.

Introduction to the Lambda Calculus

 not terminate, even

 x x))

al order reduction
→ y
© O. Nierstrasz — U. Berne

Non-termination
However, applicative order reduction may
if a normal form exists!

Compare to the Haskell expression:
(\x -> \y -> x) 1 (5/0) ➪ 1

(λ x . y) ((λ x . x x) (λ x .

Applicative order reduction Norm
→ (λ x . y) ((λ x . x x) (λ x . x x))
→ (λ x . y) ((λ x . x x) (λ x . x x))
→ ...

PS — S2001 179.

Introduction to the Lambda Calculus

ngle variable,
e modelled as

an be suppressed, so:

 b x) y
© O. Nierstrasz — U. Berne

Currying
Since a lambda abstraction only binds a si
functions with multiple parameters must b
Curried higher-order functions.

To improve readability, multiple lambdas c

λ x y . x = λ x . λ y . x
λ b x y . b x y = λ b . λ x . λ y . (

PS — S2001 180.

Introduction to the Lambda Calculus

ans
ly expressed in the

ue

rue) (λ x y . x)
se True

) (λ x y . x) x y
© O. Nierstrasz — U. Berne

Representing Boole
Many programming concepts can be direct
lambda calculus. Let us define:

True ≡ λ x y . x
False ≡ λ x y . y

not ≡ λ b . b False Tr
if b then x else y ≡ λ b x y . b x y

then:
not True = (λ b . b False T

→ (λ x y . x) Fal
→ False

if True then x else y = (λ b x y . b x y
→ (λ x y . x) x y
→ x

PS — S2001 181.

Introduction to the Lambda Calculus

es
ambda calculus, they
nctions that “wrap”

irs ...

x y)
e)
e)

ue
© O. Nierstrasz — U. Berne

Representing Tupl
Although tuples are not supported by the l
can easily be modelled as higher-order fu
pairs of values.
n-tuples can be modelled by composing pa

Define: pair ≡ (λ x y z . z
first ≡ (λ p . p Tru

second ≡ (λ p . p Fals

then: (1, 2) = pair 1 2
→ (λ z . z 1 2)

first (pair 1 2) → (pair 1 2) Tr
→ True 1 2
→ 1

PS — S2001 182.

Introduction to the Lambda Calculus

s

© O. Nierstrasz — U. Berne

Tuples as function
In Haskell:
t = \x -> \y -> x
f = \x -> \y -> y
pair = \x -> \y -> \z -> z x y
first = \p -> p t
second = \p -> p f
? first (pair 1 2)
1
? first (second (pair 1 (pair 2 3)))
2

PS — S2001 183.

Introduction to the Lambda Calculus

ers
 numbers into the

→ (False, 0)
→ (False, 1)
→ (False, 2)
→ (False, 3)
© O. Nierstrasz — U. Berne

Representing Numb
There is a “standard encoding” of natural
lambda calculus:

...

Define:
0 ≡ (λ x . x)

succ ≡ (λ n . (False, n))
then:

1 ≡ succ 0
2 ≡ succ 1
3 ≡ succ 2
4 ≡ succ 3

PS — S2001 184.

Introduction to the Lambda Calculus

ers
ith our numbers.

hat does this mean?

→ False
→ True
→ 0
© O. Nierstrasz — U. Berne

Working with numb
We can define simple functions to work w

✎ What happens when we apply pred 0? W

Consider:
iszero ≡ first

pred ≡ second
then:

iszero 1 = first (False, 0)
iszero 0 = (λ p . p True) (λ x . x)

pred 1 = second (False, 0)

PS — S2001 185.

Introduction to the Lambda Calculus

ow!
r that will generate
?
ersion rules?
ambda calculus avoid

reach it?
 evaluation?
lazy?
 be represented in
© O. Nierstrasz — U. Berne

What you should kn
✎ Is it possible to write a Pascal compile

code just for programs that terminate
✎ What are the alpha, beta and eta conv
✎ What is name capture? How does the l

it?
✎ What is a normal form? How does one
✎ What are normal and applicative order
✎ Why is normal order evaluation called
✎ How can Booleans, tuples and numbers

the lambda calculus?

PS — S2001 186.

Introduction to the Lambda Calculus

estions?
amming language?
 in Haskell? Why?
ate (pred 0)? What

 in the lambda

hy, or why not?
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ How can name capture occur in a progr
✎ What happens if you try to program Ω
✎ What do you get when you try to evalu

does this mean?
✎ How would you model negative integers

calculus? Fractions?
✎ Is it possible to model real numbers? W

PS — S2001 187.

Fixed Points and other Calculi

er Calculi

inator

and Application of
” ACM Computing
11.
© O. Nierstrasz — U. Berne

7. Fixed Points and oth

Overview
❑ Recursion and the Fixed-Point Comb
❑ The typed lambda calculus
❑ The polymorphic lambda calculus
❑ A quick look at process calculi

References:
❑ Paul Hudak, “Conception, Evolution,

Functional Programming Languages,
Surveys 21/3, Sept. 1989, pp 359-4

PS — S2001 188.

Fixed Points and other Calculi

rations on our

d n) (succ m))

 we are trying to use
in the “definition”!
© O. Nierstrasz — U. Berne

Recursion
Suppose we want to define arithmetic ope
lambda-encoded numbers.

In Haskell we can program:
plus n m
| n == 0 = m
| otherwise = plus (n-1) (m+1)

so we might try to “define”:
plus ≡ λ n m . iszero n m (plus (pre

Unfortunately this is not a definition, since
plus before it is defined. I.e, plus is free

PS — S2001 189.

Fixed Points and other Calculi

ed points
tracting over plus:

m))

 function to use and
unction in terms of
tion we want, then:

 rplus ...
© O. Nierstrasz — U. Berne

Recursive functions as fix
We can obtain a closed expression by abs

rplus ≡ λ plus n m . iszero n
m
(plus (pred n) (succ

rplus takes as its argument the actual plus
returns as its result a definition of that f
itself. In other words, if is the func

rplus fplus ↔ fplus

I.e., we are searching for a fixed point of

fplus

PS — S2001 190.

Fixed Points and other Calculi

uch that f p = p.

”:
© O. Nierstrasz — U. Berne

Fixed Points
A fixed point of a function f is a value p s

Examples:
fact 1 = 1
fact 2 = 2
fib 0 = 0
fib 1 = 1

Fixed points are not always “well-behaved
succ n = n + 1

✎ What is a fixed point of succ?

PS — S2001 191.

Fixed Points and other Calculi

m

int p such that

 be used to find a
sion.

x x))

 x)))
)

© O. Nierstrasz — U. Berne

Fixed Point Theore
Theorem:
Every lambda expression e has a fixed po
(e p) ↔ p.

So, the “magical Y combinator” can always
fixed point of an arbitrary lambda expres

Proof: Let:
Y ≡ λ f . (λ x . f (x x)) (λ x . f (

Now consider:
p ≡ Y e → (λ . e (x x))

→ e ((λ x . e (x x)) (λ x . e (x
= e p

x (λ x . e (x x)

PS — S2001 192.

Fixed Points and other Calculi

tor

cc))? What does this

by FP theorem

by FP theorem
© O. Nierstrasz — U. Berne

Using the Y Combina

✎ What are succ and pred of (False, (Y su
represent?

Consider:
f ≡ λ x. True

then:
Y f → f (Y f)

= (λ x. True) (Y f)
→ True

Consider:
Y succ → succ (Y succ)

→ (False, (Y succ))

PS — S2001 193.

Fixed Points and other Calculi

xed Points

red n) (succ m))

ke:
© O. Nierstrasz — U. Berne

Recursive Functions are Fi
We seek a fixed point of:

rplus ≡ λ plus n m . iszero n m (plus (p

By the Fixed Point Theorem, we simply ta

plus ≡ Y rplus

Since this guarantees that:

rplus plus ↔ plus
as desired!

PS — S2001 194.

Fixed Points and other Calculi

Expressions

ucc 1))

cc (succ 1)))

 1))
© O. Nierstrasz — U. Berne

Unfolding Recursive Lambda
plus 1 1 = () 1 1

→
→ 1 (plus (pred 1) (s
→
→ (pred 1) (succ 1)
→
→ iszero () (succ 1)

 (plus (pred (pred 1)) (su
→ (succ 1) (...)
→
→
→ 2

Y rplus
rplus plus 1 1
iszero 1
False 1 (plus (pred 1) (succ
plus
rplus plus (pred 1) (succ 1)

pred 1

iszero 0
True (succ 1) (...)
succ 1

PS — S2001 195.

Fixed Points and other Calculi

lculus
lculus.
 terms with type

)τ2→τ1

→A)

1 yτ2 not free in eτ1

 xt2 not free in eτ1
© O. Nierstrasz — U. Berne

The Typed Lambda Ca
There are many variants of the lambda ca
The typed lambda calculus just decorates
annotations:
Syntax: e ::= xτ | e1

τ2→τ1 e2
τ2 | (λ xτ2.eτ1

Operational Semantics:

Example:
True ≡ (λ xA . (λ yB . xA)B→A)A→(B

λ xt2 . eτ1 ⇔ λ yτ2 . [yτ2/xτ2] eτ

(λ xτ2 . e1
τ1) e2

τ2 ⇒ [e2
τ2/xτ2] e1

τ1

λ xτ2. (eτ1 xτ2) ⇒ eτ1

PS — S2001 196.

Fixed Points and other Calculi

 Calculus
e typed in the typed

ism:
] [e2

τ2/xν] e1
τ1

α)β→α)α→(β→α)

bB
© O. Nierstrasz — U. Berne

The Polymorphic Lambda
Polymorphic functions like “map” cannot b
lambda calculus!
Need type variables to capture polymorph
β reduction (ii): (λ xν . e1

τ1) e2
τ2 ⇒ [τ2 / ν

Example:
True ≡ (λ xα . (λ yβ . x

Trueα→(β→α) aA bB → (λ yβ . aA)β→A
→ aA

PS — S2001 197.

Fixed Points and other Calculi

rphism
opted by ML and
ations for a slightly
ions.

,3]

nnot be assigned a

) + (len' ys)

(len ys)
© O. Nierstrasz — U. Berne

Hindley-Milner Polymo
Hindley-Milner polymorphism (i.e., that ad
Haskell) works by inferring the type annot
restricted subcalculus: polymorphic funct
If:
doubleLen len len' xs ys =

then
doubleLen length length “aaa” [1,2

is ok, but if
doubleLen' len xs ys =

then
doubleLen' length “aaa” [1,2,3]

is a type error since the argument len ca
unique type!

(len xs

(len xs) +

PS — S2001 198.

Fixed Points and other Calculi

plication
t powerful enough to

ake use of “self

 to (λ x . x x)?
© O. Nierstrasz — U. Berne

Polymorphism and self ap
Even the polymorphic lambda calculus is no
express certain lambda terms.

Recall that both Ω and the Y combinator m
application”:

Ω = (λ x .) (λ x . x x)

✎ What type annotation would you assign

x x

PS — S2001 199.

Fixed Points and other Calculi

 the semantics of

subtyping ..

 communication
e calculus

 failure
© O. Nierstrasz — U. Berne

Other Calculi
Many calculi have been developed to study
programming languages.

Object calculi: model inheritance and
☞ lambda calculi with records

Process calculi: model concurrency and
☞ CSP, CCS, π calculus, CHAM, blu

Distributed calculi: model location and
☞ ambients, join calculus

PS — S2001 200.

Fixed Points and other Calculi

ow!
ion directly in the

tant?
p track of the types

r from an ordinary
© O. Nierstrasz — U. Berne

What you should kn
✎ Why isn’t it possible to express recurs

lambda calculus?
✎ What is a fixed point? Why is it impor
✎ How does the typed lambda calculus kee

of terms?
✎ How does a polymorphic function diffe

one?

PS — S2001 201.

Fixed Points and other Calculi

estions?
 other than Y?
ecursive expression

sser?
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ Are there more fixed-point operators
✎ How can you be sure that unfolding a r

will terminate?
✎ Would a process calculus be Church-Ro

PS — S2001 202.

troduction to Denotational Semantics

otational

s

tics, Wm. C. Brown

ncepts and
© O. Nierstrasz — U. Berne In

8. Introduction to Den
Semantics

Overview:
❑ Syntax and Semantics
❑ Approaches to Specifying Semantic
❑ Semantics of Expressions
❑ Semantics of Assignment
❑ Other Issues

References:
❑ D. A. Schmidt, Denotational Seman

Publ., 1986
❑ D. Watt, Programming Language Co

Paradigms, Prentice Hall, 1990

PS — S2001 203.

troduction to Denotational Semantics

nguages
ing languages:
 structure of its

programs?
syntactically valid)
 which are type
tells us how to
ams.

 the language?
inds of applications
© O. Nierstrasz — U. Berne In

Defining Programming La
Three main characteristics of programm

1. Syntax: What is the appearance and
programs?

2. Semantics: What is the meaning of
The static semantics tells us which (
programs are semantically valid (i.e.,
correct) and the dynamic semantics
interpret the meaning of valid progr

3. Pragmatics: What is the usability of
How easy is it to implement? What k
does it suit?

PS — S2001 204.

troduction to Denotational Semantics

ications
guage designers to
 with programmers.
mplementation:
ented on

ing of a
tion of language

can the language
e implemented

can a reference
e specification?
© O. Nierstrasz — U. Berne In

Uses of Semantic Specif
Semantic specifications are useful for lan
communicate with implementors as well as
A precise standard for a computer i

How should the language be implem
different machines?

User documentation: What is the mean
program, given a particular combina
features?

A tool for design and analysis: How
definition be tuned so that it can b
efficiently?

Input to a compiler generator: How
implementation be obtained from th

PS — S2001 205.

troduction to Denotational Semantics

emantics

 program

notation

semantic domains
© O. Nierstrasz — U. Berne In

Methods for Specifying S
Operational Semantics:

☞ [[program]] = abstract machine
☞ can be simple to implement
☞ hard to reason about

Denotational Semantics:
☞ [[program]] = mathematical de

(typically, a function)
☞ facilitates reasoning
☞ not always easy to find suitable

...

PS — S2001 206.

troduction to Denotational Semantics

mantics ...

t programs
ntation

eterminism
e

© O. Nierstrasz — U. Berne In

Methods for Specifying Se
Axiomatic Semantics:

☞ [[program]] = set of properties
☞ good for proving theorems abou
☞ somewhat distant from impleme

Structured Operational Semantics:
☞ [[program]] = transition system

(defined using inference rules)
☞ good for concurrency and non-d
☞ hard to reason about equivalenc

PS — S2001 207.

troduction to Denotational Semantics

Syntax

s:
pr

ose:
 Term
r | Factor

stract syntax
© O. Nierstrasz — U. Berne In

Concrete and Abstract
How to parse “4 * 2 + 1”?
Abstract Syntax is compact but ambiguou

Expr ::= Num | Expr Op Ex
Op ::= + | - | * | /

Concrete Syntax is unambiguous but verb
Expr ::= Expr LowOp Term |
Term ::= Term HighOp Facto
Factor ::= Num | (Expr)
LowOp ::= + | -
HighOp ::= * | /

Concrete syntax is needed for parsing; ab
suffices for semantic specifications.

PS — S2001 208.

troduction to Denotational Semantics

ge

' Expr3

FF” should print out
© O. Nierstrasz — U. Berne In

A Calculator Langua
Abstract Syntax:

Prog ::= 'ON' Stmt
Stmt ::= Expr 'TOTAL' Stmt

| Expr 'TOTAL' 'OFF'
Expr ::= Expr1 '+' Expr2

| Expr1 '*' Expr2
| 'IF' Expr1 ',' Expr2 ',
| 'LASTANSWER'
| '(' Expr ')'
| Num

The program “ON 4 * (3 + 2) TOTAL O
20 and stop.

PS — S2001 209.

troduction to Denotational Semantics

ics
r programs, one for
e for expressions.

tegers printed:

0)
SWER:

 Int *
[[E]] (n)
, S [[S]] (n'))
(n)]
© O. Nierstrasz — U. Berne In

Calculator Semant
We need three semantic functions: one fo
statements (expression sequences) and on

The meaning of a program is the list of in
Programs:

 P : Program → Int *
P [[ON S]] = S [[S]] (

A statement may use and update LASTAN
Statements:

S :: ExprSequence → Int →
S [[E TOTAL S]] (n) = let n' = E

in cons(n'
S [[E TOTAL OFF]] (n) = [E [[E]]

PS — S2001 210.

troduction to Denotational Semantics

s...

Int
(n) + E [[E2]] (n)
(n) × E [[E2]] (n)
]] (n) = 0
2]] (n)
3]] (n)

)

© O. Nierstrasz — U. Berne In

Calculator Semantic
Expressions:

E : Expression → Int →
E [[E1 + E2]] (n) = E [[E1]]
E [[E1 * E2]] (n) = E [[E1]]

E [[IF E1 , E2 , E3]] (n) = if E [[E1
then E [[E
else E [[E

E [[LASTANSWER]] (n) = n
E [[(E)]] (n) = E [[E]] (n

E [[N]] (n) = N

PS — S2001 211.

troduction to Denotational Semantics

s
rograms and their

ns, the semantic
© O. Nierstrasz — U. Berne In

Semantic Domain
In order to define semantic mappings of p
features to their mathematical denotatio
domains must be precisely defined:

data Bool = True | False
(&&), (||) :: Bool -> Bool -> Bool
False && x = False
True && x = x
False || x = x
True || x = True

not :: Bool -> Bool
not True = False
not False = True

PS — S2001 212.

troduction to Denotational Semantics

act Syntax
tor language as

on ExprSequence

Expression
ession
ion Expression
© O. Nierstrasz — U. Berne In

Data Structures for Abstr
We can represent programs in our calcula
syntax trees:

data Program = On ExprSequence
data ExprSequence = Total Expressi

| TotalOff Expression
data Expression = Plus Expression

| Times Expression Expr
| If Expression Express
| LastAnswer
| Braced Expression
| N Int

PS — S2001 213.

troduction to Denotational Semantics

ax
 OFF ” can be parsed

(N 3)
(N 2)))))

+
3

2

© O. Nierstrasz — U. Berne In

Representing Synt
The test program “ ON 4 * (3 + 2) TOTAL
as:

And represented as:
test = On (TotalOff (Times (N 4)

(Braced (Plus

ON TOTAL OFF

*

4

()
StmtProg

PS — S2001 214.

troduction to Denotational Semantics

ulator
tics directly in a

 n)
s n')
© O. Nierstrasz — U. Berne In

Implementing the Calc
We can implement our denotational seman
functional language like Haskell:
Programs:
pp :: Program -> [Int]
pp (On s) = ss s 0

Statements:
ss :: ExprSequence -> Int -> [Int]
ss (Total e s) n = let n' = (ee e

in n' : (ss
ss (TotalOff e) n = (ee e n) : []

...

PS — S2001 215.

troduction to Denotational Semantics

ator ...

(ee e2 n)
(ee e2 n)
© O. Nierstrasz — U. Berne In

Implementing the Calcul
Expressions:
ee :: Expression -> Int -> Int
ee (Plus e1 e2) n = (ee e1 n) +
ee (Times e1 e2) n = (ee e1 n) *
ee (If e1 e2 e3) n
| (ee e1 n) == 0 = (ee e2 n)
| otherwise = (ee e3 n)

ee (LastAnswer) n = n
ee (Braced e) n = (ee e n)
ee (N num) n = num

PS — S2001 216.

troduction to Denotational Semantics

nment

'else' Cmd2

e z := z + a .”

value of z.
© O. Nierstrasz — U. Berne In

A Language with Assig
Prog ::= Cmd '.'
Cmd ::= Cmd1 ';' Cmd2

| 'if' Bool 'then' Cmd1
|

Exp ::= Exp1 '+' Exp2
| Id
| Num

Bool ::= Exp1 '=' Exp2
| 'not' Bool

Example:
“z := 1 ; if a = 0 then z := 3 els

Input number initializes a; output is final

Id ':=' Exp

PS — S2001 217.

troduction to Denotational Semantics

tax trees

 Command
ifier Expression
pr Command Command
ion Expression
r

sion Expression
xpr
© O. Nierstrasz — U. Berne In

Representing abstract syn
Data Structures:
data Program = Dot Command
data Command = CSeq Command

| Assign Ident
| If BooleanEx

data Expression = Plus Express
| Id Identifie
| Num Int

data BooleanExpr = Equal Expres
| Not BooleanE

type Identifier = Char

PS — S2001 218.

troduction to Denotational Semantics

tree

e z := z + a .”

m 0))
)
Id 'z') (Id 'a')))
© O. Nierstrasz — U. Berne In

An abstract syntax
Example:
“z := 1 ; if a = 0 then z := 3 els

Is represented as:

Dot (CSeq (Assign 'z' (Num 1))
(If (Equal (Id 'a') (Nu

(Assign 'z' (Num 3)
(Assign 'z' (Plus (

)
)

PS — S2001 219.

troduction to Denotational Semantics

nts
alues:

re -> Store

store' id'
== id = val
rwise = store id'
© O. Nierstrasz — U. Berne In

Modelling Environme
A store is a mapping from identifiers to v
type Store = Identifier -> Int
newstore :: Store
newstore id = 0

update :: Identifier -> Int -> Sto
update id val store = store'

where
| id'
| othe

PS — S2001 220.

troduction to Denotational Semantics

s

ewstore))
© O. Nierstrasz — U. Berne In

Functional update
Example:
env1 = update 'a' 1 (update 'b' 2 (n
env2 = update 'b' 3 env1

env1 ‘b’
➪ 2
env2 ‘b’
➪ 3
env2 ‘z’
➪ 0

PS — S2001 221.

troduction to Denotational Semantics

ents

 newstore)) ‘z’

 s)
e e s) s
 s)
c c2 s)
© O. Nierstrasz — U. Berne In

Semantics of assignm
pp :: Program -> Int -> Int
pp (Dot c) n = (cc c (update 'a' n

cc :: Command -> Store -> Store
cc (CSeq c1 c2) s = cc c2 (cc c1
cc (Assign id e) s = update id (e
cc (If b c1 c2) s = ifelse (bb b

(cc c1 s) (c

...

PS — S2001 222.

troduction to Denotational Semantics

nts ...

e e1 s)

ee e2 s)
© O. Nierstrasz — U. Berne In

Semantics of assignme
ee :: Expression -> Store -> Int
ee (Plus e1 e2) s = (ee e2 s) + (e
ee (Id id) s = s id
ee (Num n) s = n

bb :: BooleanExpr -> Store -> Bool
bb (Equal e1 e2) s = (ee e1 s) == (
bb (Not b) s = not (bb b s)

ifelse :: Bool -> a -> a -> a
ifelse True x y = x
ifelse False x y = y

PS — S2001 223.

troduction to Denotational Semantics

ter
 else z := z + a ."

0))

z') (Id 'a')))))
© O. Nierstrasz — U. Berne In

Running the interpre
src1 = "z := 1 ; if a = 0 then z := 3
ast1 = Dot (CSeq

(Assign 'z' (Num 1))
(If (Equal (Id 'a') (Num
(Assign 'z' (Num 3))
(Assign 'z' (Plus (Id '

pp ast1 10
➪ 11

PS — S2001 224.

troduction to Denotational Semantics

mantic domains

nuations” model “the
y to transfer control
© O. Nierstrasz — U. Berne In

Practical Issues
Modelling:

❑ Errors and non-termination:
☞ need a special “error” value in se

❑ Branching:
☞ semantic domains in which “conti

rest of the program” make it eas
❑ Interactive input
❑ Dynamic typing
❑ ...

PS — S2001 225.

troduction to Denotational Semantics

s
ractions?
mains

ions?

inism?

odels ...
© O. Nierstrasz — U. Berne In

Theoretical Issue
What are the denotations of lambda abst

❑ need Scott’s theory of semantic do

What is the semantics of recursive funct
❑ need least fixed point theory

How to model concurrency and non-determ
❑ abandon standard semantic domains
❑ use “interleaving semantics”
❑ “true concurrency” requires other m

PS — S2001 226.

troduction to Denotational Semantics

ow!
x and semantics?
act and concrete

ings from syntax to

odelled with (pure)
© O. Nierstrasz — U. Berne In

What you should kn
✎ What is the difference between synta
✎ What is the difference between abstr

syntax?
✎ What is a semantic domain?
✎ How can you specify semantics as mapp

behaviour?
✎ How can assignments and updates be m

functions?

PS — S2001 227.

troduction to Denotational Semantics

estions?
igher-order?
strict or lazy

tor semantics use

e different semantic
© O. Nierstrasz — U. Berne In

Can you answer these qu
✎ Why are semantic functions typically h
✎ Does the calculator semantics specify

evaluation?
✎ Does the implementation of the calcula

strict or lazy evaluation?
✎ Why do commands and expressions hav

domains?

PS — S2001 228.

Logic Programming

ing

c

© O. Nierstrasz — U. Berne

9. Logic Programm

Overview
❑ Facts and Rules
❑ Resolution and Unification
❑ Searching and Backtracking
❑ Recursion, Functions and Arithmeti
❑ Lists and other Structures

PS — S2001 229.

Logic Programming

nguages: Principles
on), 1993.
olog, MIT Press,

n Prolog, Springer
© O. Nierstrasz — U. Berne

References
❑ Kenneth C. Louden, Programming La

and Practice, PWS Publishing (Bost
❑ Sterling and Shapiro, The Art of Pr

1986
❑ Clocksin and Mellish, Programming i

Verlag, 1981

PS — S2001 230.

Logic Programming

guages

 together with a set
rom the axioms.
© O. Nierstrasz — U. Berne

Logic Programming Lan
What is a Program?
A program is a database of facts (axioms)
of inference rules for proving theorems f

Imperative Programming:
☞ Program = Algorithms + Data

Logic Programming:
☞ Program = Facts + Rules

or
☞ Algorithms = Logic + Control

PS — S2001 231.

Logic Programming

les
 and questions:

s:

erred from other

emale

e(M).
© O. Nierstrasz — U. Berne

Prolog Facts and Ru
A Prolog program consists of facts, rules,

Facts are named relations between object

% elizabeth is a parent of charles
female(elizabeth).
% elizabeth is female

Rules are relations (goals) that can be inf
relations (subgoals):

% M is a mother of X
% if M is a parent of X and M is f

parent(charles, elizabeth).

mother(X, M) :- parent(X,M), femal

PS — S2001 232.

Logic Programming

wered using facts
© O. Nierstrasz — U. Berne

Prolog Questions
Questions are statements that can be ans
and rules:

?- parent(charles, elizabeth).
➪ yes

?- mother(charles, M).
➪ M = elizabeth
yes

PS — S2001 233.

Logic Programming

n clauses, of the

 and A2 and ... An” is

y:
True
True

parent(X,M)
female(M)
© O. Nierstrasz — U. Berne

Horn Clauses
Both rules and facts are instances of Hor
form:

A0 is the head of the Horn clause and “A1
the body

Facts are just Horn clauses without a bod
parent(charles, elizabeth) if
female(elizabeth) if

mother(X, M) if
and

A0 if A1 and A2 and ... An

PS — S2001 234.

Logic Programming

ation
ching goals against
s, and backtracking

 head of another
 that subgoal by the

ponding values in the

 and female(M)
 M)
M)
(elizabeth)
© O. Nierstrasz — U. Berne

Resolution and Unific
Questions (or goals) are answered by mat
facts or rules, unifying variables with term
when subgoals fail.

If a subgoal of a Horn clause matches the
Horn clause, resolution allows us to replace
body of the matching Horn clause.
Unification lets us bind variables to corres
matching Horn clause:

➪

➪ { M = elizabeth } True and
➪ { M = elizabeth } True and True

mother(charles,
parent(charles,

female

PS — S2001 235.

Logic Programming

les to be “consulted”

 elizabeth).
 philip).
lizabeth).
hilip).
, elizabeth).
, philip).
 elizabeth).
 philip).
charles).
diana).
, charles).
, diana).
© O. Nierstrasz — U. Berne

Prolog Databases
A Prolog database is a file of facts and ru
before asking questions:
female(anne). parent(andrew,
female(diana). parent(andrew,
female(elizabeth). parent(anne, e

parent(anne, p
male(andrew). parent(charles
male(charles). parent(charles
male(edward). parent(edward,
male(harry). parent(edward,
male(philip). parent(harry,
male(william). parent(harry,

parent(william
parent(william

PS — S2001 236.

Logic Programming

nother query
succeeds
© O. Nierstrasz — U. Berne

Simple queries
?- consult('royal'). Just a
➪ yes which

?- male(charles).
➪ yes

?- male(anne).
➪ no

?- male(mickey).
➪ no

...

PS — S2001 237.

Logic Programming

les
s:

hers:

:

© O. Nierstrasz — U. Berne

Queries with variab
You may accept or reject unified variable
?- parent(charles, P).
➪ P = elizabeth <carriage return>
yes

You may reject a binding to search for ot
?- male(X).
➪ X = andrew ;
X = charles <carriage return>
yes

Use anonymous variables if you don’t care
?- parent(william, _).
➪ yes

PS — S2001 238.

Logic Programming

 variables by pattern

th anything:
 = Y.
h) ?
© O. Nierstrasz — U. Berne

Unification
Unification is the process of instantiating
matching.

1. A constant unifies only with itself:
?- charles = charles.
➪ yes
?- charles = andrew.
➪ no

2. An uninstantiated variable unifies wi
?- parent(charles, elizabeth)
➪ Y = parent(charles,elizabet
yes

...

PS — S2001 239.

Logic Programming

er term only if it has
 of arguments, and
ively:
t(X, elizabeth).
© O. Nierstrasz — U. Berne

Unification ...
3. A structured term unifies with anoth

the same function name and number
the arguments can be unified recurs

?- parent(charles, P) = paren
➪ P = elizabeth,
X = charles ?
yes

PS — S2001 240.

Logic Programming

ery may be
© O. Nierstrasz — U. Berne

Evaluation Order
In principle, any of the parameters in a qu
instantiated or not
?- mother(X, elizabeth).
➪ X = andrew ? ;
X = anne ? ;
X = charles ? ;
X = edward ? ;
no

?- mother(X, M).
➪ M = elizabeth,
X = andrew ?
yes

PS — S2001 241.

Logic Programming

tion
 whatever cannot be
© O. Nierstrasz — U. Berne

Closed World Assump
Prolog adopts a closed world assumption —
proved to be true, is assumed to be false.

?- mother(elizabeth,M).
➪ no

?- male(mickey).
➪ no

PS — S2001 242.

Logic Programming

 replacing goals left
 top-to-bottom.
M).

?
?
beth) ?

beth) ?
p) ?

p) ? ...
© O. Nierstrasz — U. Berne

Backtracking
Prolog applies resolution in linear fashion,
to right, and considering database clauses
father(X, M) :- parent(X,M), male(
?- trace(father(charles,F)).
➪ + 1 1 Call: father(charles,_67)
+ 2 2 Call: parent(charles,_67)
+ 2 2 Exit: parent(charles,eliza
+ 3 2 Call: male(elizabeth) ?
+ 3 2 Fail: male(elizabeth) ?
+ 2 2 Redo: parent(charles,eliza
+ 2 2 Exit: parent(charles,phili
+ 3 2 Call: male(philip) ?
+ 3 2 Exit: male(philip) ?
+ 1 1 Exit: father(charles,phili

PS — S2001 243.

Logic Programming

 arguments:

tiating its arguments

ale(X).
© O. Nierstrasz — U. Berne

Comparison
The predicate = attempts to unify its two
?- X = charles.
➪ X = charles ?
yes

The predicate == tests if the terms instan
are literally identical:
?- charles == charles.
➪ yes
?- X == charles.
➪ no
?- X = charles, male(charles) == m
➪ X = charles ?
yes

PS — S2001 244.

Logic Programming

are not literally

 X \== male(Y).
© O. Nierstrasz — U. Berne

Comparison ...
The predicate \== tests if its arguments
identical:
?- X = male(charles), Y = charles,
➪ no

PS — S2001 245.

Logic Programming

ut as relations:

(B).
her(P, U).

le(S).
er(P, A).

her(Y, M),
her(Y, F),
© O. Nierstrasz — U. Berne

Sharing Subgoals
Common subgoals can easily be factored o

brother(X, B) :- sibling(X,B), male
uncle(X, U) :- parent(X, P), brot

sister(X, S) :- sibling(X,S), fema
aunt(X, A) :- parent(X, P), sist

sibling(X, Y) :- mother(X, M), mot
father(X, F), fat
X \== Y.

PS — S2001 246.

Logic Programming

e predicate, just as

.

.

he “;” operator:
; father(C, P).

ented in different
s mother/2 and
. Ask:
nd maintain facts?
ate queries?
© O. Nierstrasz — U. Berne

Disjunctions
One may define multiple rules for the sam
with facts:
isparent(C, P) :- mother(C, P)
isparent(C, P) :- father(C, P)

Disjunctions can also be expressed using t
isparent(C, P) :- mother(C, P)

Note that same information can be repres
forms — we could have decided to expres
father/2 as facts, and parent/2 as a rule

❑ Which way is it easier to express a
❑ Which way makes it faster to evalu

PS — S2001 247.

Logic Programming

ious way:

cestor(P, A).

 ?

) ?
ip) ?
© O. Nierstrasz — U. Berne

Recursion
Recursive relations are defined in the obv
ancestor(X, A) :- parent(X, A).
ancestor(X, A) :- parent(X, P), an

?- trace(ancestor(X, philip)).
➪ + 1 1 Call: ancestor(_61,philip)
+ 2 2 Call: parent(_61,philip) ?
+ 2 2 Exit: parent(andrew,philip
+ 1 1 Exit: ancestor(andrew,phil

X = andrew ?
yes

✎ Will ancestor/2 always terminate?

PS — S2001 248.

Logic Programming

p) ?
 ?
 ?

) ?
lip) ?
p) ?
p) ?
lip) ?
p) ?

arry, harry)?
© O. Nierstrasz — U. Berne

Recursion ...
?- trace(ancestor(harry, philip)).
➪ + 1 1 Call: ancestor(harry,phili
+ 2 2 Call: parent(harry,philip)
+ 2 2 Fail: parent(harry,philip)
+ 2 2 Call: parent(harry,_316) ?
+ 2 2 Exit: parent(harry,charles
+ 3 2 Call: ancestor(charles,phi
+ 4 3 Call: parent(charles,phili
+ 4 3 Exit: parent(charles,phili
+ 3 2 Exit: ancestor(charles,phi
+ 1 1 Exit: ancestor(harry,phili

yes

✎ What happens if you query ancestor(h

PS — S2001 249.

Logic Programming

 to the order of the
sive call is made:
, P).

ort
© O. Nierstrasz — U. Berne

Evaluation Order
Evaluation of recursive queries is sensitive
rules in the database, and when the recur
anc2(X, A) :- anc2(P, A), parent(X
anc2(X, A) :- parent(X, A).

?- trace(anc2(harry, X)).
➪ + 1 1 Call: anc2(harry,_67) ?
+ 2 2 Call: anc2(_325,_67) ?
+ 3 3 Call: anc2(_525,_67) ?
+ 4 4 Call: anc2(_725,_67) ?
+ 5 5 Call: anc2(_925,_67) ?
+ 6 6 Call: anc2(_1125,_67) ?
+ 7 7 Call: anc2(_1325,_67) ? ab

{Execution aborted}

PS — S2001 250.

Logic Programming

ilure:
.il
© O. Nierstrasz — U. Berne

Failure
Searching can be controlled by explicit fa
printall(X) :- X, print(X), nl,
printall(_).

?- printall(brother(_,_)).
➪ brother(andrew,charles)
brother(andrew,edward)
brother(anne,andrew)
brother(anne,charles)
brother(anne,edward)
brother(charles,andrew)

...

fa

PS — S2001 251.

Logic Programming

e
rticular search path:

ation of cut and fail:
ceeds, we fail
ls, we succeed
© O. Nierstrasz — U. Berne

Negation as failur
The cut operator (!) commits Prolog to a pa
parent(C,P) :- mother(C,P), .
parent(C,P) :- father(C,P).

Negation can be implemented by a combin
not(X) :- X, , fail. % if X suc
not(_). % if X fai

!

!

PS — S2001 252.

Logic Programming

ase
mically by means of

name(X,Y).

rename(X,Y).
),
, rename(X,Y).
),
, rename(X,Y).
© O. Nierstrasz — U. Berne

Changing the Datab
The Prolog database can be modified dyna
assert and retract:
rename(X,Y) :- retract(male(X)),

assert(male(Y)), re
rename(X,Y) :- retract(female(X)),

assert(female(Y)),
rename(X,Y) :- retract(parent(X,P)

assert(parent(Y,P))
rename(X,Y) :- retract(parent(C,X)

assert(parent(C,Y))
rename(_,_).

PS — S2001 253.

Logic Programming

e ...
_).

_).

es must be declared

t/2.
© O. Nierstrasz — U. Berne

Changing the Databas
?- male(charles); parent(charles,
➪ yes
?- rename(charles, mickey).
➪ yes
?- male(charles); parent(charles,
➪ no

NB: With SICSTUS Prolog, such predicat
dynamic:
:- dynamic male/1, female/1, paren

PS — S2001 254.

Logic Programming

etic
ns and values:
© O. Nierstrasz — U. Berne

Functions and Arithm
Functions are relations between expressio
?-
➪ X = 11 ?

Is syntactic sugar for:
is(X, +(5,6))

X is 5 + 6.

PS — S2001 255.

Logic Programming

s
elational style:
© O. Nierstrasz — U. Berne

Defining Function
User-defined functions are written in a r

fact(0,1).
fact(N,F) :- N > 0,

N1 is N - 1,
fact(N1,F1),
F is N * F1.

?- fact(10,F).
➪ F = 3628800 ?

PS — S2001 256.

Logic Programming

r syntax:

Element syntax
[a]

[a , b]
[a , b, c]
[a | b]

[a , b | c]
© O. Nierstrasz — U. Berne

Lists
Lists are pairs of elements and lists:

Lists can be deconstructed using cons pai
?- [a,b,c] = [a|X].
➪ X = [b,c]?

Formal object Cons pair syntax
.(a , []) [a | []]

.(a , .(b, [])) [a | [b | []]]
.(a , .(b, .(c , []))) [a | [b | [c | []]]]

.(a , b) [a | b]
.(a , .(b , c)) [a | [b | c]]

PS — S2001 257.

Logic Programming

 Lists
© O. Nierstrasz — U. Berne

Pattern Matching with
in(X, [X | _]).
in(X, [_ | L]) :-in(X, L).

?- in(b, [a,b,c]).
➪ yes

?- in(X, [a,b,c]).
➪ X = a ? ;
X = b ? ;
X = c ? ;
no

PS — S2001 258.

Logic Programming

ists ...
riables to represent
© O. Nierstrasz — U. Berne

Pattern Matching with L
Prolog will automatically introduce new va
unknown terms:

?- in(a, L).
➪ L = [a | _A] ? ;
L = [_A , a | _B] ? ;
L = [_A , _B , a | _C] ? ;
L = [_A , _B , _C , a | _D] ?
yes

PS — S2001 259.

Logic Programming

 in many directions:

(L1,L2,L3).
© O. Nierstrasz — U. Berne

Inverse relations
A carefully designed relation can be used
append([],L,L).
append([X|L1],L2,[X|L3]) :- append

?- append().
➪ X = [a,b]

?- append().
➪ X = [] Y = [a,b] ;
X = [a] Y = [b] ;
X = [a,b] Y = []

yes

[a],[b],X

X,Y,[a,b]

PS — S2001 260.

Logic Programming

ing

, % split P1
,S2).
© O. Nierstrasz — U. Berne

Exhaustive Search
Searching for permutations:
perm([],[]).
perm([C|S1],S2) :- perm(S1,P1),

append(X,Y,P1)
append(X,[C|Y]

?- printall(perm([a,b,c,d],_)).
➪ perm([a,b,c,d],[a,b,c,d])
perm([a,b,c,d],[b,a,c,d])
perm([a,b,c,d],[b,c,a,d])
perm([a,b,c,d],[b,c,d,a])
perm([a,b,c,d],[a,c,b,d])

...

PS — S2001 261.

Logic Programming

gramming
ort program:

S]).

 exist!
© O. Nierstrasz — U. Berne

Limits of declarative pro
A declarative, but hopelessly inefficient s

ndsort(L,S) :- perm(L,S),
issorted(S).

issorted([]).
issorted([_]).
issorted([N,M|S]) :- N =< M,

issorted([M|

Of course, efficient solutions in Prolog do

PS — S2001 262.

Logic Programming

ow!

uery using facts and

wer to a query is

s backtracking work?
presented?
?
tabase?
© O. Nierstrasz — U. Berne

What you should kn
✎ What are Horn clauses?
✎ What are resolution and unification?
✎ How does Prolog attempt to answer a q

rules?
✎ When does Prolog assume that the ans

false?
✎ When does Prolog backtrack? How doe
✎ How are conjunction and disjunction re
✎ What is meant by “negation as failure”
✎ How can you dynamically change the da

PS — S2001 263.

Logic Programming

estions?
?
thout either cut or

th the wrong number

ot(male(X)). ?
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ How can we view functions as relations
✎ Is it possible to implement negation wi

fail?
✎ What happens if you use a predicate wi

of arguments?
✎ What does Prolog reply when you ask n

What does this mean?

PS — S2001 264.

Applications of Logic Programming

 Logic

ndencies:
 and BCNF

udarshan, Database
aw Hill, 1997.
© O. Nierstrasz — U. Berne

10. Applications of
Programming

Overview
❑ I. Solving a puzzle:

☞ SEND + MORE = MONEY

❑ II. Reasoning about functional depe
☞ finding closures, candidate keys

decompositions
References:

❑ A. Silberschatz, H.F. Korth and S. S
System Concepts, 3d edition, McGr

PS — S2001 265.

Applications of Logic Programming

e

wing equation holds:
© O. Nierstrasz — U. Berne

I. Solving a puzzl

✎ Find values for the letters so the follo

 SEND
+MORE

MONEY

PS — S2001 266.

Applications of Logic Programming

0*N + D,
0*R + E,
 100*N + 10*E + Y,

+ ‘, B, ‘ = ‘, C]).

ln(L).
© O. Nierstrasz — U. Berne

A non-solution:
We would like to write:

soln0 :- A is 1000*S + 100*E + 1
B is 1000*M + 100*O + 1
C is 10000*M + 1000*O +
C is A+B,
showAnswer(A,B,C).

showAnswer(A,B,C) :- writeln([A, ‘
writeln([]) :- nl.
writeln([X|L]) :- write(X), write

PS — S2001 267.

Applications of Logic Programming

.

is 1000 * _1008 +
),

y evaluate
© O. Nierstrasz — U. Berne

A non-solution ..
?- soln0.
➪ » evaluation_error: [goal(_1007
100 * _1009 + 10 * _1010 + _1011
argument_index(2)]
[Execution aborted]

But this doesn’t work because “is” can onl
expressions over instantiated variables.

?- 5 is 1 + X.
➪ » evaluation_error: [goal(5 is
1+_64),argument_index(2)]
[Execution aborted]

PS — S2001 268.

Applications of Logic Programming

t(3). digit(4).
t(8). digit(9).

).

,
N + D,
R + E,
00*N + 10*E + Y,
olution is found

,O,N,E,Y])
© O. Nierstrasz — U. Berne

A first solution
So let’s instantiate them first:
digit(0). digit(1). digit(2). digi
digit(5). digit(6). digit(7). digi
digits([]).
digits([D|L]):- digit(D), digits(L

% pick arbitrary digits:
soln1 :-

A is 1000*S + 100*E + 10*
B is 1000*M + 100*O + 10*
C is 10000*M + 1000*O + 1
C is A+B, % check if s
showAnswer(A,B,C).

digits([S,E,N,D,M,O,R,E,M

PS — S2001 269.

Applications of Logic Programming

.
lution!
© O. Nierstrasz — U. Berne

A first solution ..
This is now correct, but yields a trivial so

soln1.
➪ 0 + 0 = 0
yes

PS — S2001 270.

Applications of Logic Programming

tion

acktrack if 0
,E,Y]),
N + D,
R + E,
00*N + 10*E + Y,
© O. Nierstrasz — U. Berne

A second (non-)solu
So let’s constrain S and M:

soln2 :- digits([S,M]),
 % b

digits([N,D,M,O,R,E,M,O,N
A is 1000*S + 100*E + 10*
B is 1000*M + 100*O + 10*
C is 10000*M + 1000*O + 1
C is A+B,
showAnswer(A,B,C).

not(S==0), not(M==0),

PS — S2001 271.

Applications of Logic Programming

n ...
© O. Nierstrasz — U. Berne

A second (non-)solutio

Maybe it works. We’ll never know ...

soln2.
➪ [Execution aborted]

after 8 minutes still running ...

✎ What went wrong?

PS — S2001 272.

Applications of Logic Programming

antiating variables

L),
 SUBTOTAL.

*C, digit(D)

 - 10*C.
© O. Nierstrasz — U. Berne

A third solution
Let’s try to exercise more control by inst
bottom-up:
sum([],0).
sum([N|L], TOTAL) :- sum(L,SUBTOTA

TOTAL is N +

% Find D and C, where ∑L is D + 10
carrysum(L,D,C) :-

sum(L,S),

?- carrysum([5,6,7],D,C).
➪ D = 8
C = 1

C is S/10, D is S

PS — S2001 273.

Applications of Logic Programming

..
use the carrysum to

,
C1,N,R],E,C2),
O],N,C3),
 not(M==0),

N + D,
R + E,

D,E],Y,C1)
© O. Nierstrasz — U. Berne

A third solution .
We instantiate the final digits first, and
constrain the search space:

soln3 :- digits([D,E]),
digits([N,R]), carrysum([
digit(O), carrysum([C2,E,
digits([S,M]), not(S==0),

,
A is 1000*S + 100*E + 10*
B is 1000*M + 100*O + 10*
C is A+B,
showAnswer(A,B,C).

carrysum([

carrysum([C3,S,M],O,M)

PS — S2001 274.

Applications of Logic Programming

..
© O. Nierstrasz — U. Berne

A third solution .
This is also correct, but uninteresting:

soln3.
➪ 9000 + 1000 = 10000

yes

PS — S2001 275.

Applications of Logic Programming

 the argument list
que(L).
© O. Nierstrasz — U. Berne

A fourth solution
Let’s try to make the variables unique:

% There are no duplicate elements in
unique([X|L]) :- not(in(X,L)), uni
unique([]).

in(X, [X|_]).
in(X, [_|L]) :- in(X, L).

?- unique([a,b,c]).
➪ yes
?- unique([a,b,a]).
➪ no

PS — S2001 276.

Applications of Logic Programming

..
,

N,R]), ,

,

M]),
,

N + D,
R + E,

nique(L1)

unique(L2)

ique(L3)

nique(L4)
© O. Nierstrasz — U. Berne

A fourth solution .
soln4 :- L1 = [D,E], digits(L1),

carrysum([D,E],Y,C1),
L2 = [N,R,Y|L1], digits([
carrysum([C1,N,R],E,C2),
L3 = [O|L2], digit(O),
carrysum([C2,E,O],N,C3),
L4 = [S,M|L3], digits([S,
not(S==0), not(M==0),

carrysum([C3,S,M],O,M),
A is 1000*S + 100*E + 10*
B is 1000*M + 100*O + 10*
C is A+B,
showAnswer(A,B,C).

u

un

u

PS — S2001 277.

Applications of Logic Programming

..
a G3 Powerbook.
© O. Nierstrasz — U. Berne

A fourth solution .
This works (at last), in about 1 second on

soln4.
➪ 9567 + 1085 = 10652

yes

PS — S2001 278.

Applications of Logic Programming

l dependencies
endencies for
rite predicates that
© O. Nierstrasz — U. Berne

II. Reasoning about functiona
We would like to represent functional dep
relational databases as Prolog terms, and w
compute:

(i) closures of attribute sets,
(ii) candidate keys, and
(iii) BCNF decompositions.

PS — S2001 279.

Applications of Logic Programming

ng
tax as follows:
[b,c]->[h]].
 ->[b,c] ...

dence higher than
© O. Nierstrasz — U. Berne

Operator overloadi
First, we would like to overload Prolog syn
FDS = [[a]->[b,c], [c,g]->[h,i],
➪ Syntax Error - unable to parse »

but the built-in arrow operator has prece
that of “,” and “=”:
op(1050, xfy, [->]).
op(1000, xfy, [’,’]).
op(700, xfx, [=]).

so let’s change it:
:- op(600, xfx, [->]).

Now we can get started ...

PS — S2001 280.

Applications of Logic Programming

s

ibute set AS using

a], Closure).
© O. Nierstrasz — U. Berne

Computing closure
We would like to define a predicate:

closure(FDS, AS, CS)

which computes the closure CS of an attr
the dependencies in FDS.

?- closure([[a]->[b], [b]->[c]], [
➪ Closure = [b,a,c]

PS — S2001 281.

Applications of Logic Programming

...

(reflexivity)
(augmentation)
(transitivity)

’, using the axioms
an be applied:

S (1)
S’→CD (2,3)
© O. Nierstrasz — U. Berne

Computing closures
We should use Armstrong’s axioms:

1. B ⊆ A ⇒ A→B
2. A→B ⇒ AC→BC
3. A→B, B→C ⇒ A→C

Intuitively, we add attributes to a set AS
and the FDs, until no more dependencies c

❑ start with AS→AS’, where AS’ = A
❑ find some B→C, AS’ = BD ⇒ AS→A
❑ repeat till no more FD applies

NB: each FD can be applied at most once!

PS — S2001 282.

Applications of Logic Programming

e
ively:

 % NB cut

ore FD applies

Rest),

!,
© O. Nierstrasz — U. Berne

A closure predicat
We try to express the algorithm declarat

closure(FDS, AS, CS) :-

closure(FDS, AS, AS). % no m

applies(FDS, B->C, AS, FDRest) :-
in(B->C, FDS), rem(B->C, FDS, FD
subset(B,AS).

Now we must worry about the details ...

applies(FDS, B->C, AS, FDRest),
union(AS, C, AS1),
closure(FDRest, AS1, CS).

PS — S2001 283.

Applications of Logic Programming

ttribute sets and

 the argument list

 is a subset of S2
set(S1,S2).

} yields R

tersection?
© O. Nierstrasz — U. Berne

Manipulating sets
We need some predicates to manipulate a
sets of FDs:
in(X, [X|_]). % in(X,S) -- X is in
in(X, [_|S]) :- in(X, S).

subset([],_). % subset(S1,S2) -- S1
subset([X|S1],S2) :- in(X,S2), sub

rem(_,[],[]). % rem(X,S,R) -- S\{X
rem(X,[X|S],R) :- rem(X,S,R), .
rem(X,[Y|S],[Y|R]) :- rem(X,S,R) .

...
✎ How would you express set union and in

!

PS — S2001 284.

Applications of Logic Programming

s

b,c]->[h]]
© O. Nierstrasz — U. Berne

Evaluating closure
?- FDS = [[a]->[b,c],

[c,g]->[h,i],
[b,c]->[h]

],
closure(FDS, [a], Ca),
closure(FDS, [a,c], Cac),
closure(FDS, [a,g], Cag).

➪ FDS = [[a]->[b,c],[c,g]->[h,i],[
Ca = [c,b,a,h]
Cac = [b,a,c,h]
Cag = [i,h,g,a,b,c]
yes

PS — S2001 285.

Applications of Logic Programming

 [b,c]->[h]],

,,b,c,h]))
© O. Nierstrasz — U. Berne

Testing
We cast all our examples as test cases:

testClosures :-
FDS = [[a]->[b,c], [c,g]->[h,i],
closure(FDS, [a], Ca),

...

check(Name, Goal) :-
Goal, .

check(Name, Goal) :-
writeln([Name, ' FAILED']).

check('closure[a]', equal(Ca, [a

!

PS — S2001 286.

Applications of Logic Programming

that suggests a
of FDs:

ete attribute set

inKey -> AS

Key), ,
ey).

!

© O. Nierstrasz — U. Berne

Finding keys
Now we would like a predicate candkey/2
candidate key for the attributes in a set
candkey(FDS, Key) :-
attset(FDS, AS), % get the compl
minkey(FDS, AS, AS, Key).

Given Key -> AS, search for the smallest M
minkey(FDS, AS, Key, MinKey) :-
smallerkey(FDS, AS, Key, Smaller
minkey(FDS, AS, SmallerKey, MinK

minkey(FDS, AS, MinKey, MinKey).

✎ How would you implement attset/2?

PS — S2001 287.

Applications of Logic Programming

:-
© O. Nierstrasz — U. Berne

Finding keys ...
A smaller key is smaller, and is still a key!
smallerkey(FDS, AS, Key, Smaller)
in(X, Key),
rem(X, Key, Smaller),
iskey(Smaller, AS, FDS).

Key -> AS if AS ⊆ K+

iskey(Key, AS, FDS) :-
closure(FDS, Key, Closure),
subset(AS, Closure).

PS — S2001 288.

Applications of Logic Programming

keys

[b,c]->[h]],

icle]->[price]],
© O. Nierstrasz — U. Berne

Evaluating candidate

?- FDS = [[a]->[b,c],[c,g]->[h,i],
candkey(FDS, Key).

➪ Key = [a,g]

?- FDS = [[name]->[addr],[name,art
candkey(FDS, Key).

➪ Key = [name,article]

PS — S2001 289.

Applications of Logic Programming

vial FDs define keys:
 RS).

->B is trivial

 applies to RS
 is a key for RS

 doesn’t apply
one checking
© O. Nierstrasz — U. Berne

Testing for BCNF
A relation scheme is in BCNF if all non-tri
isbcnf(FDS, RS) :- fdsok(FDS, FDS,

fdsok([A->B|ToCheck], FDS, RS) :-
subset(B,A), % A
fdsok(ToCheck,FDS,RS).

fdsok([A->B|ToCheck], FDS, RS) :-
subset(A, RS), , % A
iskey(A, RS, FDS), % A
fdsok(ToCheck,FDS,RS).

fdsok([A->B|ToCheck], FDS, RS) :-
fdsok(ToCheck,FDS,RS). % A

fdsok([], _, RS). % D

!

PS — S2001 290.

Applications of Logic Programming

 test
rticle]->[price]],

price])),
icle, price])).

 [zip] -> [city]],

is problematic?
© O. Nierstrasz — U. Berne

Evaluating the BCNF
?- FDS = [[name]->[addr], [name, a
isbcnf(FDS, [name, addr]),
not(isbcnf(FDS, [name, article,
not(isbcnf(FDS, [name, addr, art

➪ yes

?- FDS = [[city, street] -> [zip],
attset(FDS, As),
isbcnf(FDS, As).

➪ no

✎ How can we find out exactly which FD

PS — S2001 291.

Applications of Logic Programming

on
 follows:

g on R where
∩β = ∅

 in the list F of FDs,
sure F+
© O. Nierstrasz — U. Berne

BCNF decompositi
Recall that BCNF decomposition works as

while some R is not in BCNF
select non-trivial α→β holdin

α→R is not in F+ and α
replace R by α∪β and (R-β)

The trick is that α→β may not be explicitly
and it is too expensive to compute the clo

Replace

by

and

PS — S2001 292.

Applications of Logic Programming

op level
ute set:
© O. Nierstrasz — U. Berne

BCNF decomposition — t
We start decomposing with the full attrib

bcnf(FDS, Decomp) :-
attset(FDS, AS),
bcnfDecomp(FDS, [AS], Decomp).

PS — S2001 293.

Applications of Logic Programming

ecursion
nd the schema.

p) :-

, Decomp).

ecomp]) :-
© O. Nierstrasz — U. Berne

BCNF decomposition — r
We must iterate through both the FDS a

RS not in BCNF, so decompose:
bcnfDecomp(FDS, [RS|Schema], Decom
findBad(A->B, FDS, FDS, RS),
union(A,B,AB),
diff(RS,B,Diff),
bcnfDecomp(FDS, [AB,Diff|Schema]

RS is OK, so accept it and recurse:
bcnfDecomp(FDS, [RS|Schema], [RS|D
bcnfDecomp(FDS, Schema, Decomp).

Nothing left to do:
bcnfDecomp(FDS, [], []).

PS — S2001 294.

Applications of Logic Programming

s
iven FDs.
) :- % A->B is bad
o derive a bad FD
st apply to RS
 should be empty
rict to RS
ust not be trivial
” if A is not a key

:-

rmstrong’s axioms?
© O. Nierstrasz — U. Berne

Finding “bad” FD
The “bad” FDs may be in the closure the g
findBad(A->B, [FD|FDS], AllFDS, RS
FD = A->B0, % Try t
subset(A,RS), % A mu
diff(B0,A,B1), % A ∩ B
inter(B1,RS,B), % rest
not(subset(B,A)), % FD m
not(iskey(A, RS, AllFDS)).% “bad

findBad(FD, [OK|FDS], AllFDS, RS)
findBad(FD, FDS, AllFDS, RS).

✎ Can you justify this derivation using A

PS — S2001 295.

Applications of Logic Programming

position
icle]->[price]],

article]]

p]->[city]],

r to find all BCNF
© O. Nierstrasz — U. Berne

Evaluating BCNF decom
?- FDS = [[name]->[addr],[name,art
bcnf(FDS, BCNF).

➪ BCNF = [[name,addr],[name,price,

?- FDS = [[city,street]->[zip],[zi
bcnf(FDS, BCNF).

➪ BCNF = [[zip,city],[zip,street]]

✎ What would you have to change in orde
decompositions?

PS — S2001 296.

Applications of Logic Programming

estions?
,B,A])?
efore finding a

the puzzle is unique?
olution to solve

s of a set?
nate?
minkey/4?
in keys?
these solutions with
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ What happens when we ask digits([A
✎ How many times will soln2 backtrack b

solution?
✎ How would you check if the solution to
✎ How would you generalize the puzzle s

arbitrary additions?
✎ Can you use subset/2 to find all subset
✎ Will all the recursive predicates termi
✎ What would happen if we didn’t cut in
✎ How could we generate the set of all m
✎ Would it be just as easy to implement

a functional language?

PS — S2001 297.

Symbolic Interpretation

etation

 programs as syntax

nguage
erpreter
© O. Nierstrasz — U. Berne

11. Symbolic Interpr

Overview
❑ Interpretation as Proof
❑ Operator precedence: representing

trees
❑ An interpreter for the calculator la
❑ Implementing a Lambda Calculus int
❑ Examples of lambda programs ...

PS — S2001 298.

Symbolic Interpretation

oof
as a step-by-step
rminating state,

tates are
y, as syntax trees)

ogram state can be
© O. Nierstrasz — U. Berne

Interpretation as Pr
One can view the execution of a program
“proof” that the program reaches some te
while producing output along the way.

❑ The program and its intermediate s
represented as structures (typicall

❑ Inference rules express how one pr
transformed to the next

PS — S2001 299.

Symbolic Interpretation

s Trees

tal' 'OFF'
' E2
' E3
 ')'| N

Prolog terms.

off

off)))
© O. Nierstrasz — U. Berne

Representing Programs a
Recall our Calculator example [Schmidt]:
P ::= 'on' S
S ::= E 'total' S | E 'to
E ::= E1 '+' E2 | E1 '*

| 'if' E1 'then' E2 'else
| 'lastanswer' | '(' E

Syntax trees can be modelled directly as
For example, the program:
on 2+3 total lastanswer + 1 total

can be modelled by the term:
on(total(2+3, total(lastanswer+1,

PS — S2001 300.

Symbolic Interpretation

ators
ined to achieve

c.

.
d ...

the syntax tree the
© O. Nierstrasz — U. Berne

Prefix and Infix Oper
Operator type and precedence can be def
convenient syntax:

:- op(900,fx,on). % prefix
:- op(800,xfy,total). % right asso
:- op(600,fx,if).
:- op(590,xfy,then).
:- op(580,xfy,else).
% op(500,yfx,+). % left assoc
% op(400,yfx,*). % pre-define

The higher the precedence, the higher in
operator will appear.

PS — S2001 301.

Symbolic Interpretation

tors ...

g., ;)
., +)
. =)
., not not P)

l off)
r+1, off))).
© O. Nierstrasz — U. Berne

Prefix and Infix Opera
Operators can be declared:

(i) xfy for right-associative, (e.
(ii) yfx for left-associative, (e.g
(iii) xfx for non-associating, (e.g
(vi) fx and fy for prefix, (e.g
(v) xf and yf for postfix

?- 1+2+3*4 = +(+(1,2),*(3,4)).
➪ yes

?- (on 2+3 total lastanswer+1 tota
== on(total(2+3, total(lastanswe

➪ yes

PS — S2001 302.

Symbolic Interpretation

ce
f
r+1, off))).

off

800
© O. Nierstrasz — U. Berne

Operator preceden
on 2+3 total lastanswer+1 total of
== on(total(2+3, total(lastanswe

on

total

+ total

+

lastanswer 1

2 3

900 fx

800 xfy

500 yfx

PS — S2001 303.

Symbolic Interpretation

rs
redefined for

e , parallel , wait]).

@>=, =:=, =\=, <, >,
© O. Nierstrasz — U. Berne

Standard Operato
The following operator precedences are p
SICSTUS Prolog:
op(1200,xfx, [:- , --]).
op(1200,fx, [:- , ?-]).
op(1150,fx, [mode , public , dynamic , multifil
op(1100,xfy, [;]).
op(1050,xfy, [->]).
op(1000,xfy, [’,’]).
op(900, fy, [\+ , spy , nospy]).
op(700, xfx, [=, is, =.., ==, \==, @<, @>, @=<,

=<, >=]).
op(500, yfx, [+, - , /\ , \/]).
op(500, fx, [+ , -]).
op(400, yfx, [* , / , // , << , >>]).
op(300, xfx, [mod]).
op(200, xfy, [^]).

PS — S2001 304.

Symbolic Interpretation

preter
yntactic elements of

(L).
© O. Nierstrasz — U. Berne

Building a Simple Inter
We define semantic predicates over the s
our calculator language.
Top level:

:- peval(S, L), write

Programs:
peval(S,L) :- seval(S, 0, L).

Statements:
seval(, Prev, [Val]) :-
xeval(E, Prev, Val).

seval(, Prev, [Val|L]) :-
xeval(E, Prev, Val),
seval(S, Val, L).

on S

E total off

E total S

PS — S2001 305.

Symbolic Interpretation

eter ...

Val) :-

Val) :-
© O. Nierstrasz — U. Berne

Building a Simple Interpr
Expressions:
xeval(, _, N) :- number(N).
xeval(, Prev, Prev).

xeval(, Prev,
xeval(E1, Prev, 0),
xeval(E2, Prev, Val).

xeval(, Prev,
xeval(E1, Prev, V1), V1 =\= 0,
xeval(E3, Prev, Val).

...

✎ Can you fill in the missing cases?

N
lastanswer

if E1 then E2 else _

if E1 then _ else E3

PS — S2001 306.

Symbolic Interpretation

eter
 off.
© O. Nierstrasz — U. Berne

Running the Interpr
?- on 2+3 total lastanswer+1 total
➪ [5,6] yes

PS — S2001 307.

Symbolic Interpretation

preter

 expressions:
straction
n
n

rolog, so we must

 expression:

y),@(x,y))), y).
© O. Nierstrasz — U. Berne

Lambda Calculus Inter
Now a more ambitious example ..
First we must choose a syntax for lambda
:- op(650, xfy, :). % body of ab
:- op(600, fx, \). % abstractio
:- op(500, yfx, @). % applicatio

Unfortunately, we cannot write e1 e2 in P
introduce an operator for application.

For example, we will represent the lambda
(λx . λy . x y) y

by the Prolog term:
(\x: \y: x@y) @ y == @(:(\(x),:(\(

PS — S2001 308.

Symbolic Interpretation

sed as predicates
mbda expressions:

.

.E3)
© O. Nierstrasz — U. Berne

Semantics
Alpha, beta and eta conversion are expres
over the “before” and “after” forms of la

alpha(\X:E, \Y:EY) :-
fv(E, FE),
not(in(Y, FE)),
subst(Y, X, E, EY)

beta(,) :-

eta(\X:E@X, E) :-
fv(E, F),
not(in(X, F)).

(\X:E1)@E2 E3
subst(E2, X, E1,

PS — S2001 309.

Symbolic Interpretation

e need to know the

.

.

N).

2)
© O. Nierstrasz — U. Berne

Free Variables
To implement conversion and reduction, w
free variables in an expression:

fv(X, [X]) :- isname(X).

fv(, F12) :- fv(E1, F1),
fv(E2, F2),

fv(\X:E, F) :- isname(X),
fv(E, FE),
diff(FE, [X], F)

isname(N) :- atom(N); number(

E1@E2

union(F1, F2, F1

PS — S2001 310.

Symbolic Interpretation

.

© O. Nierstrasz — U. Berne

Free Variables ..
For example:

?- fv(\x: \y:x@y@z , F).
➪ F = [z] ?
yes

PS — S2001 311.

Symbolic Interpretation

 EX, yielding EE:
 .
 isname(Y),

, E1, EE1),
, E2, EE2).

FE)), ,
, E1, EE1).

!

!

© O. Nierstrasz — U. Berne

Substitution
subst(E, X, EX, EE) substitutes E for X in
subst(E, X, X, E) :- isname(X),
subst(E, X, Y, Y) :- isname(X),

X \== Y.
subst(E, X, E1@E2, EE1@EE2) :-

subst(E, X
subst(E, X

subst(E, X, \X:E1, \X:E1).
subst(E, X, \Y:E1, \Y:EE1) :-

X \== Y,
fv(E, FE),
not(in(Y,
subst(E, X

PS — S2001 312.

Symbolic Interpretation

ure
by a new name Z:

 Y,

),
,
F1, FU),

,
, E1, EZ),
, EZ, EEZ).

 Z, FU)
© O. Nierstrasz — U. Berne

Avoiding name capt
We avoid name capture by substituting Y

subst(E, X, \Y:E1, \Z:EEZ) :-X \==
fv(E, FE),
% in(Y, FE
fv(E1, F1)
union(FE,

subst(Z, Y
subst(E, X

newname(Y,

PS — S2001 313.

Symbolic Interpretation

e for Y, not in F

 .
wname(T, Z, F).

f the name X is

ASCII 39) appended

!

,

© O. Nierstrasz — U. Berne

Renaming
newname(Y, Z, F) is true if Z is a new nam

newname(Y, Y, F) :- not(in(Y, F)),
newname(Y, Z, F) :- tick(Y, T), ne

The built-in predicate name(X, L) is true i
represented by the ASCII list L

tick(Y, Z) is true if Z is Y with a “tick” (' =

tick(Y, Z) :- name(Y, LY),
append(LY, [39], LZ)
name(Z, LZ).

PS — S2001 314.

Symbolic Interpretation
© O. Nierstrasz — U. Berne

Renaming ...
For example:

?- tick(x, Y).
➪ Y = x’ ?
yes

?- subst(x@y, z, \x:x@z, E).
➪ E = \x':x'@(x@y)
yes

PS — S2001 315.

Symbolic Interpretation

tion
m NF;
ne normal-order

=> NF.
 possible, so stop

2), .
), .
1), .

d lazy/2 rule?
 evaluation?

!
!
!

© O. Nierstrasz — U. Berne

Normal Form Reduc
E => NF is true if E reduces to normal for
lazy(E, EE) is true if E reduces to EE by o
reduction:
:- op(900, xfx, =>).
E => NF :- lazy(E, EE), , EE
X => X. % no more reductions

lazy(E1, E2) :- beta(E1, E
lazy(E1, E2) :- eta(E1, E2
lazy(E0@E2, E1@E2) :- lazy(E0, E

✎ What happens if you leave out the thir
✎ How would you change this to be strict

!

PS — S2001 316.

Symbolic Interpretation

n ...

E.
© O. Nierstrasz — U. Berne

Normal Form Reductio
For example:

?- (\x : (\y:x)@(\x:x)@x) @ y =>
➪ E = y@y ?
yes

PS — S2001 317.

Symbolic Interpretation

States
 a lambda expression
ctions take us there.

int out each step:

('-> '),

('STOP'), nl.

is problem?
© O. Nierstrasz — U. Berne

Viewing Intermediate
The => predicate tells us what normal form
reduces to, but does not tell us which redu

To see intermediate reductions, we can pr

:- op(800, fx, eval).
eval E :- lazy(E, EE), ,

write(E), nl, write
eval EE.

eval E :- write(E), nl, write

✎ Can you think of other ways to solve th

!

PS — S2001 318.

Symbolic Interpretation

ates ...
© O. Nierstrasz — U. Berne

Viewing Intermediate St
The same example yields:

?- eval (\x: \y: x@y) @ y.
➪ (\x: \y:x@y)@y

-> \y':y@y'
-> y
STOP

PS — S2001 319.

Symbolic Interpretation

 . x x) (λ x . x x) has
© O. Nierstrasz — U. Berne

Lazy Evaluation
Recall that the lambda expression Ω = (λ x
no normal form:

?- W = ((\x:x@x) @ (\x:x@x)),
eval W.

➪ (\x:x@x)@(\x:x@x)
-> (\x:x@x)@(\x:x@x)
-> (\x:x@x)@(\x:x@x)
<interrupt>

[Execution aborted]

PS — S2001 320.

Symbolic Interpretation

.
as a parameter if
© O. Nierstrasz — U. Berne

Lazy Evaluation ..
But lazy evaluation allows it to be passed
unused!

?- W = ((\x:x@x) @ (\x:x@x)),
eval (\x:y) @ W.

➪ (\x:y)@((\x:x@x)@(\x:x@x))
-> y
STOP

PS — S2001 321.

Symbolic Interpretation

as lambda
cond) argument:

: \y:x)
y:x)
© O. Nierstrasz — U. Berne

Booleans
Recall the standard encoding of Booleans
expressions that return their first (or se

?- True = \x: \y:x,
False = \x: \y:y,
Not = \b:b@False@True,
eval Not@True.

➪ (\b:b@(\x: \y:y)@(\x: \y:x))@(\x
-> (\x: \y:x)@(\x: \y:y)@(\x: \
-> (\y: \x: \y:y)@(\x: \y:x)
-> \x: \y:y
STOP

PS — S2001 322.

Symbolic Interpretation

er-order functions
 (client) function:
:y,

@x@y)@1@2)
\y:x)
© O. Nierstrasz — U. Berne

Tuples
Recall that tuples can be modelled as high
that pass the values they hold to another
?- True = \x: \y:x, False = \x: \y
Pair = (\x: \y: \z: z@x@y),
First = (\p:p @ True),
eval First @ (Pair @ 1 @ 2).

➪ (\p:p@(\x: \y:x))@((\x: \y: \z:z
-> (\x: \y: \z:z@x@y)@1@2@(\x:
-> (\y: \z:z@1@y)@2@(\x: \y:x)
-> (\z:z@1@2)@(\x: \y:x)
-> (\x: \y:x)@1@2
-> (\y:1)@2
-> 1
STOP

PS — S2001 323.

Symbolic Interpretation

g the standard

:y,
© O. Nierstrasz — U. Berne

Natural Numbers
And natural numbers can be modelled usin
encoding:
?- True = \x: \y:x, False = \x: \y
Pair = (\x: \y: \z: z@x@y),
First = (\p:p @ True),
Second = (\p:p @ False),
Zero = \x:x,
Succ = \n:Pair@False@n,
Succ@Zero => One,
IsZero = First,
Pred = Second,
eval IsZero@(Pred@One).

PS — S2001 324.

Symbolic Interpretation

..
ee!
:y))

\x: \y:x)
: \y:y)@(\x: \y:x)
@(\x: \y:x)
© O. Nierstrasz — U. Berne

Natural Numbers .
Though you probably won’t like what you s

➪ (\p:p@(\x: \y:x))@((\p:p@(\x: \y
@(\z:z@(\x: \y:y)@(\x:x)))

-> (\p:p@(\x: \y:y))
@(\z:z@(\x: \y:y)@(\x:x))@(

-> (\z:z@(\x: \y:y)@(\x:x))@(\x
-> (\x: \y:y)@(\x: \y:y)@(\x:x)
-> (\y:y)@(\x:x)@(\x: \y:x)
-> (\x:x)@(\x: \y:x)
-> \x: \y:x
STOP

yes

PS — S2001 325.

Symbolic Interpretation

oint combinator Y in
 typed.
ent Y:

),

)

FP <-> FP.
© O. Nierstrasz — U. Berne

Fixed Points
Recall that we could not model the fixed p
Haskell because self-application cannot be
In our untyped interpreter, we can implem

?- Y = \f:(\x:f@(x@x))@(\x:f@(x@x)
FP = Y@e,
eval FP.

➪ (\f:(\x:f@(x@x))@(\x:f@(x@x)))@e
-> (\x:e@(x@x))@(\x:e@(x@x))
-> e@((\x:e@(x@x))@(\x:e@(x@x))
STOP

Note that this sequence validates that e@

PS — S2001 326.

Symbolic Interpretation

ed Points
:y,

(\p:p @ False),
e@n,

,

,
(Succ@m))
=> Two
© O. Nierstrasz — U. Berne

Recursive Functions as Fix
?- True = \x: \y:x, False = \x: \y
Pair = (\x: \y: \z: z@x@y),
First = (\p:p @ True), Second =
Zero = \x:x, Succ = \n:Pair@Fals
Succ@Zero => One,
IsZero = First, Pred = Second,
Y = \f:(\x:f@(x@x))@(\x:f@(x@x))

,
eval IsZero@(Pred@(Pred@Two)).

RPlus = \plus: \n: \m :
IsZero@n @m @(plus @ (Pred@n)@

Y@RPlus => FPlus FPlus@One@One

PS — S2001 327.

Symbolic Interpretation

d Points ...
\x: \y:y))
))))
@(\x: \y:y)

@(\x: \y:y)@(\x:x)))

@(\x: \y:y)

:x))@(\x: \y:y)

@(\x: \y:x)
y:x)
© O. Nierstrasz — U. Berne

Recursive Functions as Fixe
➪ (\p:p@(\x: \y:x))@((\p:p@(\x: \y:y))@((\p:p@(

@(\z:z@(\x: \y:y)@(\z:z@(\x: \y:y)@(\x:x)
-> (\p:p@(\x: \y:y))@((\p:p@(\x: \y:y))@(\z:z

@(\z:z@(\x: \y:y)@ (\x:x))))@ (\x: \y:x)
-> (\p:p@(\x: \y:y)) @ (\z:z@(\x: \y:y)@(\z:z

@ (\x: \y:y)@(\x: \y:x)
-> (\z:z@(\x: \y:y)@(\z:z@(\x: \y:y)@(\x:x)))

@(\x: \y:y)@(\x: \y:x)
-> (\x: \y:y)@(\x: \y:y)@(\z:z@(\x: \y:y)@(\x

@(\x: \y:x)
-> (\y:y)@(\z:z@(\x: \y:y)@(\x:x))@(\x: \y:y)
-> (\z:z@(\x: \y:y)@(\x:x))@(\x: \y:y)@(\x: \
-> (\x: \y:y)@(\x: \y:y)@(\x:x)@(\x: \y:x)
-> (\y:y)@(\x:x)@(\x: \y:x)
-> (\x:x)@(\x: \y:x)
-> \x: \y:x
STOP

PS — S2001 328.

Symbolic Interpretation

ow!
ntax trees?
 Prolog terms?
 own language in

tive but “@” as left-

Zero=>One and
© O. Nierstrasz — U. Berne

What you should kn
✎ How can you represent programs as sy
✎ How can you represent syntax trees as
✎ How can you define the syntax of your

Prolog?
✎ Why did we define “:” as right-associa

associative?
✎ What is the difference between Succ@

One=Succ@Zero?

PS — S2001 329.

Symbolic Interpretation

estions?
r for the assignment

 lambda expressions?
er? What about

in the lambda

ent newname/3?
preter to use strict
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ How would you implement an interprete

language we defined earlier?
✎ Why didn’t we use “.” in our syntax for
✎ Does the order of the fv/2 rules matt

subst/4?
✎ Can you explain each usage of “cut” (!)

interpreter?
✎ Can you think of other ways to implem
✎ How would you modify the lambda inter

evaluation?

	S7057 Programmiersprachen
	Table of Contents
	1. Programming Languages
	Sources
	Schedule
	Themes Addressed in this Course
	Themes Addressed in this Course ...
	What is a Programming Language?
	Generations of Programming Languages
	How do Programming Languages Differ?
	Programming Paradigms
	Compilers and Interpreters
	A Brief Chronology
	Fortran
	Fortran ...
	ALGOL 60
	ALGOL 60 ...
	COBOL
	4GLs
	PL/I
	Interactive Languages
	Interactive Languages ...
	Special-Purpose Languages
	Special-Purpose Languages ...
	Functional Languages
	Prolog
	Object-Oriented Languages
	Object-Oriented Languages ...
	Scripting Languages
	Scripting Languages ...
	What you should know!
	Can you answer these questions?

	2. Stack-based Programming
	PostScript
	Postscript variants
	Syntax
	Semantics
	Object types
	The operand stack
	Stack and arithmetic operators
	Drawing a Box
	Path construction operators
	Coordinates
	Hello World
	Character and font operators
	Procedures and Variables
	A Box procedure
	Graphics state and coordinate operators
	A Fibonacci Graph
	Numbers and Strings
	Factorial
	Factorial ...
	Boolean, control and string operators
	A simple formatter
	A simple formatter ...
	Array and dictionary operators
	Using Dictionaries — Arrowheads
	Instantiating Arrows
	Encapsulated PostScript
	What you should know!
	Can you answer these questions?

	3. Functional Programming
	References
	A Bit of History
	A Bit of History
	Programming without State
	Pure Functional Programming Languages
	Key features of pure functional languages
	Haskell
	Referential Transparency
	Evaluation of Expressions
	Tail Recursion
	Tail Recursion ...
	Equational Reasoning
	Equational Reasoning ...
	Pattern Matching
	Lists
	Using Lists
	Higher Order Functions
	Anonymous functions
	Curried functions
	Understanding Curried functions
	Currying
	Multiple Recursion
	Lazy Evaluation
	Lazy Lists
	Programming lazy lists
	Declarative Programming Style
	What you should know!
	Can you answer these questions?

	4. Type Systems
	References
	What is a Type?
	What is a Type?
	Static and Dynamic Types
	Static and Dynamic Typing
	Kinds of Types
	Type Completeness
	Function Types
	List Types
	Tuple Types
	Monomorphism
	Polymorphism
	Composing polymorphic types
	Polymorphic Type Inference
	Type Specialization
	Kinds of Polymorphism
	Coercion vs overloading
	Overloading
	Instantiating overloaded operators
	User Data Types
	Enumeration types
	Union types
	Recursive Data Types
	Using recursive data types
	Equality for Data Types
	Equality for Functions
	What you should know!
	Can you answer these questions?

	5. An application of Functional Programming
	Reference
	Encoding ASCII
	Huffmann encoding
	Huffmann decoding
	Generating optimal trees
	Architecture
	A Simple testing framework
	Testing
	Frequency Counting
	How to use recursion correctly!
	Freqcount tests
	Trees
	Testing Trees
	Merging trees
	Tree merging ...
	Extracting the Huffmann tree
	Generating the tree
	Extracting the encoding map
	Applying the encoding map
	foldr
	Decoding by walking the tree
	Testing
	Representing trees as text
	Representing trees as text ...
	Using a stack to parse stored trees
	Parsing stored trees
	Parsing stored trees ...
	Reading and Writing Files
	Using the program (I)
	Using the program (II)
	Tracing our program
	Frequency Counting Revisited
	Tracing eager evaluation
	Final version
	What you should know!
	Can you answer these questions?

	6. Introduction to the Lambda Calculus
	References
	What is Computable?
	Church’s Thesis
	Uncomputability
	What is a Function? (I)
	What is a Function? (II)
	The Lambda Calculus — syntax
	Lambda Calculus — semantics
	Beta Reduction
	Lambda expressions in Haskell
	Free and Bound Variables
	Why macro expansion is wrong
	Substitution
	Alpha Conversion
	Eta Reduction
	Normal Forms
	Evaluation Order
	The Church-Rosser Property
	Non-termination
	Currying
	Representing Booleans
	Representing Tuples
	Tuples as functions
	Representing Numbers
	Working with numbers
	What you should know!
	Can you answer these questions?

	7. Fixed Points and other Calculi
	Recursion
	Recursive functions as fixed points
	Fixed Points
	Fixed Point Theorem
	Using the Y Combinator
	Recursive Functions are Fixed Points
	Unfolding Recursive Lambda Expressions
	The Typed Lambda Calculus
	The Polymorphic Lambda Calculus
	Hindley-Milner Polymorphism
	Polymorphism and self application
	Other Calculi
	What you should know!
	Can you answer these questions?

	8. Introduction to Denotational Semantics
	Defining Programming Languages
	Uses of Semantic Specifications
	Methods for Specifying Semantics
	Methods for Specifying Semantics ...
	Concrete and Abstract Syntax
	A Calculator Language
	Calculator Semantics
	Calculator Semantics...
	Semantic Domains
	Data Structures for Abstract Syntax
	Representing Syntax
	Implementing the Calculator
	Implementing the Calculator ...
	A Language with Assignment
	Representing abstract syntax trees
	An abstract syntax tree
	Modelling Environments
	Functional updates
	Semantics of assignments
	Semantics of assignments ...
	Running the interpreter
	Practical Issues
	Theoretical Issues
	What you should know!
	Can you answer these questions?

	9. Logic Programming
	References
	Logic Programming Languages
	Prolog Facts and Rules
	Prolog Questions
	Horn Clauses
	Resolution and Unification
	Prolog Databases
	Simple queries
	Queries with variables
	Unification
	Unification ...
	Evaluation Order
	Closed World Assumption
	Backtracking
	Comparison
	Comparison ...
	Sharing Subgoals
	Disjunctions
	Recursion
	Recursion ...
	Evaluation Order
	Failure
	Negation as failure
	Changing the Database
	Changing the Database ...
	Functions and Arithmetic
	Defining Functions
	Lists
	Pattern Matching with Lists
	Pattern Matching with Lists ...
	Inverse relations
	Exhaustive Searching
	Limits of declarative programming
	What you should know!
	Can you answer these questions?

	10. Applications of Logic Programming
	I. Solving a puzzle
	A non-solution:
	A non-solution ...
	A first solution
	A first solution ...
	A second (non-)solution
	A second (non-)solution ...
	A third solution
	A third solution ...
	A third solution ...
	A fourth solution
	A fourth solution ...
	A fourth solution ...
	II. Reasoning about functional dependencies
	Operator overloading
	Computing closures
	Computing closures ...
	A closure predicate
	Manipulating sets
	Evaluating closures
	Testing
	Finding keys
	Finding keys ...
	Evaluating candidate keys
	Testing for BCNF
	Evaluating the BCNF test
	BCNF decomposition
	BCNF decomposition — top level
	BCNF decomposition — recursion
	Finding “bad” FDs
	Evaluating BCNF decomposition
	Can you answer these questions?

	11. Symbolic Interpretation
	Interpretation as Proof
	Representing Programs as Trees
	Prefix and Infix Operators
	Prefix and Infix Operators ...
	Operator precedence
	Standard Operators
	Building a Simple Interpreter
	Building a Simple Interpreter ...
	Running the Interpreter
	Lambda Calculus Interpreter
	Semantics
	Free Variables
	Free Variables ...
	Substitution
	Avoiding name capture
	Renaming
	Renaming ...
	Normal Form Reduction
	Normal Form Reduction ...
	Viewing Intermediate States
	Viewing Intermediate States ...
	Lazy Evaluation
	Lazy Evaluation ...
	Booleans
	Tuples
	Natural Numbers
	Natural Numbers ...
	Fixed Points
	Recursive Functions as Fixed Points
	Recursive Functions as Fixed Points ...
	What you should know!
	Can you answer these questions?

