Programmiersprachen

Prof. O. Nierstrasz

Sommersemester 2003

PS — 52003

1. Programming Languages

Sources

Schedule

What is a Programming Language?
What is a Programming Language? (ll)
Themes Addressed in this Course
Themes Addressed in this Course ...
Generations of Programming Languages
How do Programming Languages Differ?
Programming Paradigms

Compilers and Interpreters

A Brief Chronology

Fortran

Fortran ...

“Hello World” in FORTRAN

ALGOL 60

ALGOL 60 ...

“Hello World” in BEALGOL

COBOL

“Hello World” in COBOL

4GLs

"Hello World” in RPG

“Hello World” in SQL

PL/1

“Hello World” in PL/1

Interactive Languages

Interactive Languages ...
Special-Purpose Languages
Special-Purpose Languages ...
Functional Languages

1
2
3
4
5
6
7
8

9
10
11
12
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Table of Contents

"Hello World” in Functional Languages

Prolog
“Hello World” in Prolog
Object-Oriented Languages

Object-Oriented Languages ...

Scripting Languages

Scripting Languages ...
Scripting Languages ...
What you should know!

Can you answer these questions?

2. Systems Programming

Whatis C?

C Features

“Hello World” in C
Symbols

Keywords

Operators (same as Java)
C Storage Classes
Memory Layout

Where is memory?
Declarations and Definitions
Header files

Including header files
Makefiles

C Arrays

Pointers

Strings

Pointer manipulation
Function Pointers

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60

PS — 52003

i,

Working with pointers
Argument processing

Using pointers for side effects
Memory allocation

Pointer manipulation

Pointer manipulation ...
Built-In Data Types

Built-In Data Types ...

User Data Types

Typedefs

Observations

Obfuscated C

A C Puzzle

What you should know!

Can you answer these questions?

. Multiparadigm Programming
Essential C++ Texts

Whatis C++?

C++vsC

“Hello World” in C++

C++ Design Goals

C++ Features

Java and C++ — Similarities and Extensions
Java Simplifications

New Keywords

Comments

References

References vs Pointers

C++ Classes

Constructors and destructors
Automatic and dynamic destruction
Orthodox Canonical Form

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91

92

Why OCF?

Example: A String Class

A Simple String.h

Default Constructors
Destructors

Copy Constructors

A few remarks ...

Other Constructors
Assignment Operators

A few more remarks ...
Implicit Conversion
Operator Overloading
Overloadable Operators
Friends

Friends ...

What are Templates?
Function Templates

Class Templates

Using Class Templates
Standard Template Library
An STL Line Reverser

What we didn’t have time for ...
What you should know!
Can you answer these questions?

4. Stack-based Programming

What is PostScript?

Postscript variants

Syntax

Semantics

Object types

The operand stack

Stack and arithmetic operators

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117
118
119
120
122
123
124
125

PS — 52003

Il

Drawing a Box

Path construction operators
Coordinates

“Hello World” in Postscript
Character and font operators
Procedures and Variables

A Box procedure

Graphics state and coordinate operators
A Fibonacci Graph

Numbers and Strings

Factorial

Factorial ...

Boolean, control and string operators
A simple formatter

A simple formatter ...

Array and dictionary operators
Using Dictionaries — Arrowheads
Instantiating Arrows
Encapsulated PostScript

What you should know!

Can you answer these questions?

5. Functional Programming

References

A Bit of History

A Bit of History

Programming without State

Pure Functional Programming Languages
Key features of pure functional languages
What is Haskell?

“Hello World” in Hugs

Referential Transparency

Evaluation of Expressions

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
144
145
146
147

148
149
150
151

162
1563
154
155
156
157
158

Tail Recursion

Tail Recursion ...

Equational Reasoning
Equational Reasoning ...

Pattern Matching

Lists

Using Lists

Higher Order Functions
Anonymous functions

Curried functions

Understanding Curried functions
Using Curried functions

Currying

Multiple Recursion

Lazy Evaluation

Lazy Lists

Programming lazy lists
Declarative Programming Style
What you should know!

Can you answer these questions?

. Type Systems

References

Whatis a Type?

What is a Type?

Static and Dynamic Types
Static and Dynamic Typing
Kinds of Types

Type Completeness
Function Types

List Types

Tuple Types

User Data Types

169
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

179
180
181

182
183
184
185
186
187
188
189
190

PS — 52003 iv.
Enumeration types 191 Free and Bound Variables 223
Union types 192 “Hello World” in the Lambda Calculus 224
Recursive Data Types 193 Why macro expansion is wrong 225
Using recursive data types 194 Substitution 226
Monomorphism 195 Alpha Conversion 227
Polymorphism 196 Eta Reduction 228
Type Inference 197 Normal Forms 229
Composing polymorphic types 198 Evaluation Order 230
Polymorphic Type Inference 199 The Church-Rosser Property 231
Type Specialization 200 Non-termination 232
Kinds of Polymorphism 201 Currying 233
Coercion vs overloading 202 Representing Booleans 234
Overloading 203 Representing Tuples 235
Instantiating overloaded operators 204 Tuples as functions 236
Equality for Data Types 205 Representing Numbers 237
Equality for Functions 206 Working with numbers 238
What you should know! 207 What you should know! 239
Can you answer these questions? 208 Can you answer these questions? 240

7. Infroduction fo the Lambda Calculus 209 8. Fixed Points 241
References 210 Recursion 242
What is Computable? 211 Recursive functions as fixed points 243
Church’s Thesis 212 Fixed Points 244
Uncomputability 213 Fixed Point Theorem 245
What is a Function? (1) 214 How does Y work? 246
What is a Function? (ll) 215 Using the Y Combinator 247
What is the Lambda Calculus? 216 Recursive Functions are Fixed Points 248
Parsing Lambda Expressions 217 Unfolding Recursive Lambda Expressions 249
What is the Lambda Calculus? ... 218 The Typed Lambda Calculus 250
Beta Reduction 219 The Polymorphic Lambda Calculus 251
Lambda expressions in Haskell 220 Hindley-Milner Polymorphism 252
Lambdas are anonymous functions 221 Polymorphism and self application 253
A Few Examples 222 Other Calculi 254

PS — 52003

What you should know!
Can you answer these questions?

9. Introduction to Denotational Semantics

Defining Programming Languages
Uses of Semantic Specifications
Methods for Specifying Semantics

Methods for Specifying Semantics ...

Concrete and Abstract Syntax

A Calculator Language
Calculator Semantics

Calculator Semantics...

Semantic Domains

Data Structures for Abstract Syntax
Representing Syntax
Implementing the Calculator
Implementing the Calculator ...

A Language with Assignment
Representing abstract syntax trees
An abstract syntax tree
Modelling Environments
Functional updates

Semantics of assignments
Semantics of assignments ...
Running the interpreter

Practical Issues

Theoretical Issues

What you should know!

Can you answer these questions?

10. Logic Programming

References
Logic Programming Languages
What is Prolog?

255
256

257
258
259
260
261

262
263
264
265
266
267
268
269
270
271

272
273
274
275
276
277
278
279
280
281

282

283
284
285
286

Prolog Questions

Horn Clauses

Resolution and Unification
Prolog Databases

Simple queries

Queries with variables
Unification

Unification ...

Evaluation Order

Closed World Assumption
Backtracking

Comparison

Comparison ...

Sharing Subgoals
Disjunctions

Recursion

Recursion ...

Evaluation Order

Failure

Cuts

Negation as failure
Changing the Database
Changing the Database ...
Functions and Arithmetic
Defining Functions

Lists

Pattern Matching with Lists
Patftern Matching with Lists ...
Inverse relations
Exhaustive Searching
Limits of declarative programming
What you should know!

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

PS — 52003 vi.

Can you answer these questions? 319 Testing the interpreter 351

11. Applications of Logic Programming 320 A top-level script 352
l. Solving a puzzle 321 What you should know! 353
A non-solution: 399 Can you answer these questions? 354
A non-solution ... 323 12. TBA 355
A first solution 324 13. Summary, Trends, Research ... 356
A first solution ... 325 C and C++ 357
A second (non-)solution 326 Functional Languages 358
A second (non-)solution ... 327 Lambda Calculus 359
A third solution 328 Type Systems 360
A third solution ... 329 Polymorphism 361
A third solution ... 330 Denotational Semantics 362
A fourth solution 331 Logic Programming 363
A fourth solution ... 332 Object-Oriented Languages 364
A fourth solution ... 333 Scripting Languages 365
Il. Symbolic Interpretation 334
Goal-directed interpretation 335
Definite Clause Grammars 336
Definite Clause Grammars ... 337
Example 338
How to use this? 339
How does it work? 340
Lexical analysis 341
Recognizing Tokens 342
Recognizing Numbers 343
Concrete Grammar 344
Parsing with DCGs 345
Representing Programs as Parse Trees 346
Testing 347
Interpretation as Proof 348
Building a Simple Interpreter 349
Running the Interpreter 350

PS — 52003 1,

1. Programming Languages

Prof. Oscar Nierstrasz
Schiitzenmattstr. 14/103

Tel: 0316314618
Email: Oscar.Nierstrasz@iam.unibe.ch

Lecturer:

Assistants: |Gabriela Arévalo, Marc-Philippe Horvath
WwWW: |www.iam.unibe.ch/~scg/Teaching/

© O. Nierstrasz — U. Berne Programming Languages

http://www.iam.unibe.ch/~scg/Teaching/

PS — 52003 2.

Sources

Text:
d Kenneth C. Louden, Programming Languages: Principles
and Practice, PWS Publishing (Boston), 1993.
Other Sources:

4 Bjarne Stroustrup, The C++ Programming Language
(Special Edition), Addison Wesley, 2000.

Q PostScript” Language Tutorial and Cookbook, Adobe
Systems Incorporated, Addison-Wesley, 1985

A Paul Hudak, “Conception, Evolution, and Application of
Functional Programming Languafes, “ACM Computing
Surveys 21/3, 1989, pp 359-411.

A Clocksin and Mellish, Programming in Prolog, Springer
Verlag, 1981.

® O. Nierstrasz — U. Berne Programming Languages

—_ = e —
SREBOVENO O AW

03-25
04 -01
04 -08
04 -15
04 -22
04 -29
05-06
05-13
05-20
05-27
06 -03
06-10
06-17
06 -24

Schedule

Introduction

Systems programming
Multi-paradigm programming
Stack-based programming
Functional programming

Type systems

Lambda calculus

Fixed points

Programming language semantics
Logic programming

Applications of logic programming
Piccola — A Small Composition Language
Summary, Trends, Research
Final exam

What is a Programming Language?

A formal language for describing computation?
A "user interface” to a computer?

Syntax + semantics?

Compiler, or interpreter, or translator?

A tool to support a programming paradigm?

000U

"A pr'ogramming language is a notational system for
describing computation in a machine-readable and
human-readable form.”

— Louden

PS — 52003 5.

What is a Programming Language? (IT)

The thesis of this course:

A programming language is a tool for developing
executable models for a class of problem domains.

® O. Nierstrasz — U. Berne Programming Languages

Themes Addressed in this Course

Paradigms

d What computational paradigms are supported by
modern, high-level programming languages?

Q2 How well do these paradigms match classes of
programming problems?

Abstraction

QA How do different languages abstract away from the low-
level details of the underlying hardware
implementation?

Q How do different languages support the specification of
software abstractions needed for a specific task?

Themes Addressed in this Course ...

Types

Q How do type systems help in the construction of
flexible, reliable software?

Semantics
A How can one formalize the meaning of a programming
language?

A How can semantics aid in the implementation of a
programming language?

PS — 52003

Generations of Programming Languages

16L: machine codes
26L: symbolic assemblers

36L: (machine independent) imperative languages
(FORTRAN, Pascal, C ..)

4GL: domain specific application generators

Each generation is at a higher level of abstraction

® O. Nierstrasz — U. Berne Programming Languages

How do Programming Languages Differ?

Common Constructs:

= basic data types (numbers, etc.); variables;
expressions; statements; keywords; control
constructs; procedures; comments; errors ...

Uncommon Constructs:

= type declarations; special types (strings, arrays,
matrices, ...); sequential execution; concurrency
constructs; packages/modules; objects; general
functions; generics; modifiable state; ...

PS — 52003 10.

Programming Paradigms

A programming language is a problem-solving tool.

program = algorithms + data
good for decomposition
program = functions o functions
good for reasoning

program = facts + rules

good for searching

program = objects + messages
good for encapsulation

Other styles and paradigms: blackboard, pipes and filters,
constraints, lists, ...

Imperative style:

Functional style:

Logic programming style:

Object-oriented style:

© O. Nierstrasz — U. Berne Programming Languages

PS — 52003

Compilers and Interpreters

Compilers and interpreters have similar front-ends, but have
different back-ends:

Pre-processor Parser Code Generator) (Assembler/linker
Program Parse tree Assembly code Machine code

@ Interpreter Code Generator
Byte code Interpreter
Program e

Details will differ, but the general scheme remains the same ...

® O. Nierstrasz — U. Berne Programming Languages

A Brief Chronology

Early 1950s "order codes” (primitive assemblers)

1957 |FORTRAN the first high-level programming
language (36GL is invented)

1958 | ALGOL the first modern, imperative language

1960 |LISP, COBOL

1962 |APL, SIMULA |the birth of OOP (SIMULA)

1964 BASIC, PL/I

1966 ISWIM first modern functional language
(a proposal)

1970 |Prolog logic programming is born

1972 |C the systems programming language

1975 |Pascal, Scheme | two teaching languages

1978 | CSP Concurrency matures
1978 | FP Backus' proposal
1983 | Smalltalk-80, |OOP is reinvented

Ada
1984 | Standard ML |FP becomes mainstream (?)
1986 |C++, Eiffel OORP is reinvented (again)
1988 |CLOS, Oberon,

Mathematica

1990

Haskell

FP is reinvented

1995

Java

QOOP is reinvented for the internet

Fortran

History

John Backus (1953) sought to write programs in conventional
mathematical notation, and generate code comparable to good
assembly programs.

A No language design effort
(made it up as they went along)

Q Most effort spent on code generation and optimization
d FORTRAN I released April 1957; working by April 1958
A Current standards are FORTRAN 77 and FORTRAN 90

Fortran ...

Innovations

Symbolic notation for subroutines and functions
Assignments to variables of complex expressions
DO loops

Comments

Input/output formats

Machine-independence

Successes
A Easy to learn; high level

d Promoted by IBM; addressed large user base
(scientific computing)

U000 0DU

PS — 52003

16.

"Hello World” in FORTRAN

PROGRAM HELLO

DO 10, I=1,10

PRINT *, 'Hello World'
10 CONTINUE

STOP

END

All examples from the ACM "Hello World" project:

www?2.latech.edu/~acm/HelloWorld.shtml

® O. Nierstrasz — U. Berne

Programming Languages

ALGOL 60

History

Q Committee of PL experts formed in 1955 to design
universal, machine-independent, algorithmic language

A First version (ALGOL 58) never implemented; criticisms
led to ALGOL 60

ALGOL 60 ...

Innovations

4

J

d
d
d

BNF (Backus-Naur Form) introduced to define syntax
(led to syntax-directed compilers)

First block-structured language; variables with local
scope

Structured control statements
Recursive procedures
Variable size arrays

Successes

4

Highly influenced design of other PLs but never
displaced FORTRAN

PS — 52003 19.

"Hello World” in BEALGOL

BEGIN
FILE F (KIND=REMOTE) ;
EBCDIC ARRAY E [0:11];
REPLACE E BY "HELLO WORLD!";
WHILE TRUE DO

BEGIN

WRITE (F, *, E);

END;
END.

® O. Nierstrasz — U. Berne Programming Languages

COBOL

History
4 Designed by committee of US computer manufacturers
d Targeted business applications
A Intended to be readable by managers (1)

Innovations

d Separate descriptions of environment, data, and
processes

Successes
d Adopted as de facto standard by US DOD
ad Stable standard for 25 years
A Still the most widely used PL for business applications (1)

“"Hello World”

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. HELLOWORLD.
000300 DATE-WRITTEN. 02/05/96
000400* AUTHOR BRIAN COLLINS
000500 ENVIRONMENT DIVISION.
000600 CONFIGURATION SECTION.
000700 SOURCE-COMPUTER. RM-COBOL.
000800 OBJECT-COMPUTER. RM-COBOL.
001000 DATA DIVISION.

001100 FILE SECTION.

100000 PROCEDURE DIVISION.

100200 MAIN-LOGIC SECTION.

100300 BEGIN.

in COBOL

21:04.

100400 DISPLAY " " LINE 1 POSITION 1 ERASE EOS.
100500 DISPLAY "HELLO, WORLD." LINE 15 POSITION 10.

100600 STOP RUN.
100700 MAIN-LOGIC-EXIT.
100800 EXIT.

4GLs

"Problem-oriented” languages
A PLs for "non-programmers”

A Very High Level (VHL) languages for specific problem
domains

Classes of 46GLs (no clear boundaries)

A Report Program Generator (RPG)

A Application generators

ad Query languages

A Decision-support languages
Successes

A Highly popular, but generally ad hoc

PS — 52003 23.

"Hello World” in RPG

H
FSCREEN O F 80 80 CRT
C EXCPT

OSCREEN E 1
O 12 "HELLO WORLD!'

© O. Nierstrasz — U. Berne Programming Languages

PS — 52003

24.

"Hello World” in SQL

CREATE TABLE HELLO (HELLO CHAR(12))
UPDATE HELLO

SET HELLO = 'HELLO WORLD!'
SELECT * FROM HELLO

® O. Nierstrasz — U. Berne

Programming Languages

PL/1

History
1 Designed by committee of IBM and users (early 1960s)

A Intended as (large) general-purpose language for broad
classes of applications

Innovations
A Support for concurrency (but not synchronization)
A Exception-handling by on conditions

Successes

Q Achieved both run-time efficiency and flexibility (at
expense of complexity)

A First "complete” general purpose language

PS — 52003 26.

“"Hello World” in PL/1

HELLO: PROCEDURE OPTIONS (MAIN);

/* A PROGRAM TO OUTPUT HELLO WORLD */
FLAG = 0;

LOOP: DO WHILE (FLAG = 0);
PUT SKIP DATA('HELLO WORLD!');
END LOOP:

END HELLO;

® O. Nierstrasz — U. Berne Programming Languages

Interactive Languages

Made possible by advent of fime-sharing systems (early 1960s
through mid 1970s).

BASIC
d Developed at Dartmouth College in mid 1960s

A Minimal; easy to learn

A Incorporated basic O/S commands (NEW, LIST,
DELETE, RUN, SAVE)

10 print "Hello World!"
20 goto 10

Interactive Languages ...

APL

A Developed by Ken Iverson for concise description of
numerical algorithms

A Large, non-standard alphabet (52 characters in addition
to alphanumerics)

A Primitive objects are arrays (lists, tables or matrices)

Q Operator-driven (power comes from composing array
operators)

Q {\l]c‘):Tc;per'a’ror' precedence (statements parsed right to
e

'"HELLO WORLD'

PS — 52003 29.

Special-Purpose Languages

SNOBOL

First successful string manipulation language
Influenced design of text editors more than other PLs
String operations: pattern-matching and substitution
Arrays and associative arrays (tables)

Variable-length strings

U000 U

OUTPUT = 'Hello World!'
END

© O. Nierstrasz — U. Berne Programming Languages

PS — 52003 30.

Special-Purpose Languages ...

Lisp
Performs computations on symbolic expressions
Symbolic expressions are represented as /ists

Small set of constructor/selector operations to create
and manipulate lists

Recursive rather than iterative control
No distinction between data and programs

First PL o implement storage management by garbage
collection

Affinity with lambda calculus

U O0uU OO0

(DEFUN HELLO-WORLD ()
(PRINT (LIST 'HELLO 'WORLD)))

© O. Nierstrasz — U. Berne Programming Languages

Functional Languages

ISWIM (If you See What I Mean)
 Peter Landin (1966) — paper proposal
FP
A John Backus (1978) — Turing award lecture
ML
4 Edinburgh
Q initially designed as meta-language for theorem proving
A Hindley-Milner type inference

A "non-pure” functional language (with assignments/side
effects)

Miranda, Haskell
A “pure” functional languages with "/azy evaluation”

PS — 52003 32.

"Hello World” in Functional Languages
SML

print("hello world!\n");

Haskell

hello() = print "Hello World"

© O. Nierstrasz — U. Berne Programming Languages

Prolog

History

A Originated at U. Marseilles (early 1970s), and compilers
develo)ped at Marseilles and Edinburgh (mid to late
1970s

Innovations
A Theorem proving paradigm
A Programs as sets of clauses: facts, rules and questions
Q Computation by “unification"
Successes
A Prototypical logic programming language
4 Used in Japanese Fifth Generation Initiative

PS — 52003 34.

"Hello World” in Prolog

% HELLO WORLD. Works with Sbp (prolog)

hello :-
printstring("HELLO WORLD!!!!").

printstring([]).
printstring([H|T]) :- put(H), printstring(T).

® O. Nierstrasz — U. Berne Programming Languages

Object-Oriented Languages

History

d Simula was developed by Nygaard and Dahl (early 1960s)
in Oslo as a language for simulation programming, by
adding classes and inheritance to ALGOL 60

Begin
while 1 = 1 do begin
outtext ("Hello World!");
outimage;
end;
End;

A Smalltalk was developed by Xerox PARC (early 1970s) to
drive graphic workstations

Transcript show: 'Hello World';cr

Object-Oriented Languages ...

Innovations
Q Encapsulation of data and operations (contrast ADTs)
A Inheritance to share behaviour and interfaces

Successes
A Smalltalk project pioneered OO user interfaces
d Large commercial impact since mid 1980s

Q Countless new languages: C++, Objective C, Eiffel, Betaq,
Oberon, Self, Perl 5, Python, Java, Ada 95 ...

Scripting Languages

History

A Countless "shell languages” and "command languages” for
operating systems and configurable applications

A Unix shell (ca. 1971) developed as user shell and
scripting tool
echo "Hello, World!"
d HyperTalk (1987) was developed at Apple to script
HyperCard stacks
on OpenStack
show message box
put "Hello World!" into message box
end OpenStack

PS — 52003

38.

Scripting Languages ...

A TCL (1990) developed as embedding language and
scripting language for X windows applications (via Tk)

puts "Hello World "

A Perl (~1990) became de facto web scripting language

print "Hello, World!\n";

@ O. Nierstrasz — U. Berne

Programming Languages

PS — 52003

39.

Scripting Languages ...

Innovations
Q Pipes and filters (Unix shell)

A Generalized embedding/command languages (TCL)

Successes

A Unix Shell, awk, emacs, HyperTalk, AppleTalk, TCL,

Python, Perl, VisualBasic ...

@ O. Nierstrasz — U. Berne

Programming Languages

PS — 52003 40.

What you should know!

What, exactly, is a programming language?

How do compilers and interpreters differ?

Why was FORTRAN developed?

What were the main achievements of ALGOL 60?
Why do we call C a "Third Generation Language”?
What is a "Fourth Generation Language”?

o v O 0 0 9

® O. Nierstrasz — U. Berne Programming Languages

Can you answer these questions?

& Why are there so many programming languages?

&~ Whyare FORTRAN and COBOL still important programming
languages?

& Which language should you use to implement a spelling
checker?
A filter to translate upper-to-lower case?
A theorem prover?
An address database?
An expert system?
A game server for initiating chess games on the internet?
A user interface for a network chess client?

PS — 52003 42.

2. Systems Programming

Overview
d C Features
d Memory layout
3 Declarations and definitions
A Working with Pointers

Reference:

A Brian Kernighan and Dennis Ritchie, The € Programming
Language, Prentice Hall, 1978.

Q Kernighan and Plau?er, The Elements of Programming
Style, McGraw-Hill, 1978.

® O. Nierstrasz — U. Berne Systems Programming

PS — 52003 43.

What is C?

C was designed as a general-purpose language with a very direct
mapping from data types and operators to machine
instructions.

A cpp (C pre-processor) used for expanding macros and
inclusion of declaration "header files"

A explicit memory allocation (no garbage collection)

d memory manipulation through pointers, pointer
arithmetic and typecasting

A used as portable, high-level assembler

© O. Nierstrasz — U. Berne Systems Programming

C Features

Developed in 1972 by Dennis Ritchie and Brian Kernighan as a
systems language for Unix on the PDP-11. A successor to B
[Thompson, 1970], in turn derived from BCPL.

C preprocessor: file inclusion, conditional compilation, macros

Data types: char, short, int, long, double, float

Type constructors: pointer, array, struct, union

Basic operators: arithmetic, pointer manipulation, bit manipulation ...
Control abstractions: |if/else, while/for loops, switch, goto ...

Functions: call-by-value, side-effects through pointers

Type operations: typedef, sizeof, explicit type-casting and coercion

“"Hello World” in C

Pre-processor directive: include
declarations for standard i/o library

#include <stdio.h>

— /* My first C program! */
int main(void)
{

Functiondefinifion: printf("hello world!\n");

there is always a return 0;
“main” function }

A comment

A string constant: an array
of 14 (not 13!) chars

PS — 52003 46.

Symbols

C programs are built up from symbols:

{ alphabetic or underscore } followed by
Names: { alphanumerics or underscores }
main, IOStack, store, x10
Keywords: const, int, 1if,
, "hello world", 'a', 10, 077, Ox1F,
Constants: 1. 2310
Operators: T, >>, %, &
Punctuation: {. }. .

© O. Nierstrasz — U. Berne Systems Programming

Keywords

C has a large number of reserved words:

break, case, continue, default,

Control flow:| do, else, for, goto, if, return,
switch, while

auto, char, const, double, extern,

. float, int, long, register, short

Declarations: ' ' dr TE9 ' '

signed, static, struct, typedef,
union, unsigned, void

Expressions:

sizeof

PS — 52003 48.

Operators (same as Java)

int a, b, ¢;

double d;

float f£f;

a=b=c=17; assignment: a==17; b==17; c ==
a=(b=17); equality test: a==1 (7==17)

b = la; negation: b==20 (!1)

a = (b>=0)&&(c<10); logical AND: a==1 ((0>=0)&&(7<10))
a *= (b += ct++); increment: a==17; b==17;c==28
a=11 / 4; integer division: a == 2

b =11 % 4; remainder: b == 3

d =11/ 4; d == 2.0 (not 2.75!)

f =11.0 / 4.0; f ==2.75

a = bc; bitwise OR: a == 11 (03/010)

b = a’c; bitwise XOR: b ==3 (0137010)

c = a&b; bitwise AND: c == 3 (013&03)

b = a<<c; left shift: b == 88 (11<<3)

a = (b+t+,c--); comma operator: a == 3; b ==289; c ==
b = (a>c)?a:c; conditional operator: b ==3 ((3>2)?3:2)

© O. Nierstrasz — U. Berne Systems Programming

PS — 52003 49.

C Storage Classes

You must explicitly manage storage space for data

A static objects exist for the entire life-time
of the process

Q only live during function invocation on the
"run-time stack”

A dynamic objects live between calls to
malloc and free

A their lifetimes typically extend beyond
their scope

Static

Automatic

Dynamic

© O. Nierstrasz — U. Berne Systems Programming

Memory Layout

" g()| £()
O . 4—»0@

Z &

main()

"Text" Static Heap Stac

The address space consists of (at least):

K

Text:

executable program text (not writable)

Static:

static data

Heap:

dynamically allocated global memory (grows upward)

Stack:

local memory for function calls (grows downward)

Where is memory?

#include <stdio.h>

Text is here: 7604

static int stat=0; Statlc.: 1s here: 8216

void dummy() { } Heap 1s here: 279216
Stack 1is here: 3221223448

int main(void)

{

int local=1;
int *dynamic = (int*) malloc(sizeof(int),1);

printf("Text is here: %u\n", (unsigned) dummy); /* function pointer */
printf("Static is here: %u\n", (unsigned) &stat);
printf("Heap is here: %u\n", (unsigned) dynamic);
printf("Stack is here: %u\n", (unsigned) &local);

Declarations and Definitions

Variables and functions must be either declared or defined
before they are used:

QA declaration of avariable extern char *greeting;
(or function)announces that _ .+ 10116
the variable (function)
exists and is defined somewhere else.

(void);

char *greeting =

Q A definitionof avariable (or "hello world!\n";
function) causes storage to void hello(void)
be allocated {

printf(greeting);
}

PS — 52003

53.

Header files

C does not provide modules — instead one should break a
program into header files containing declarations, and source
files containing definitions that may be separately compiled.

hello.h

hello.c

extern char *greeting;
void hello(void);

#include <stdio.h>

void hello(void)

{
printf(greeting);

}

char *greeting = "hello world!\n";

@ O. Nierstrasz — U. Berne

Systems Programming

Including header files

. . helloMain.c
Our main program may how include

declarations of the separately compiled #include "hello.h"
definitions:

int main(void)
{
hello();
return 0;

}

cc -¢ helloMain.c
cc -¢c hello.c

cc helloMain.o hello.o -0 helloMain

compile to object code
compile to object code
link to executable

PS — 52003 55.

Makefiles

You could also compile everything together:
cc helloMain.c hello.c -0 helloMain

Or you could use a makefile o manage dependencies:

helloMain : helloMain.c hello.h hello.o
cc helloMain.c hello.o -0 S@

S "Read the manual”

© O. Nierstrasz — U. Berne Systems Programming

PS — 52003

56.

C Arrays

Arrays are fixed sequences of homogeneous elements.

4

U000

L

Type a[n]; defines a one-dimensional array a ina
contiguous block of (n*sizeof(Type)) bytes

n must be a compile-time constant
Arrays bounds run from 0 fo n-1
Size cannot vary at run-time
They can be initialized at compile time:
int eightPrimes[8] =
{2, 3, 5, 7, 11, 13, 17, 19 };
But no range-checking is performed at run-time:
eightPrimes[8] = 0; /* disaster! */

© O. Nierstrasz — U. Berne Systems Programming

PS — 52003 57.

Pointers

A pointer holds the address of another variable:
int 1 = 10;
int *ip = &i; /* assign the address of i1 to ip */

Use them to access and update variables: *ip = *ip + 1;

Array variables behave like pointers to their |int *ep = eightPrimes;
first element

Pointers can be treated like arrays: ep[7] = 23;
But have different sizes: sizeof (eightPrimes) == 32)
sizeof(ep) == 4)

You may increment and decrement pointers: |ep = ep+l;

Declare a pointer to an unknown data type as |void *vp = ep;
void*

But typecast it properly before using it! ((int*)vp)[6] = 29;

© O. Nierstrasz — U. Berne Systems Programming

PS — 52003

58.

Strings

A stringis a pointer to a NULL-terminated (i.e., '\O') character

array:
char *cp; uninitialized string (pointer to a char)
char *hi = "hello"; initialized string pointer

char hello[6] = "hello";

initialized char array

cp = hello; cp now points to hello[]
cp[l] = 'u’; cp and hello now point to “hullo”
cp[4] = NULL; cp and hello now point to "hull”

> What is sizeof(hi)? sizeof(hello)?

@ O. Nierstrasz — U. Berne

Systems Programming

PS — 52003 59.

Pointer manipulation

Copy string sl to buffer s2:

void strCopy(char sl[], char s2[])

{
int 1 = 0;
while (sl[i] !'= '\0’") { /* Assume sl is NULL-terminated! */
s2[1i] = sl[i]; /* assume s2 is big enough! */
i++;
}
s2[i] = '\0’;
}

More idiomatically (!):
void strCopy2(char *sl, char *s2)

{

while (*s2++ = *sl++); /* fails only when NULL is reached */

}

® O. Nierstrasz — U. Berne Systems Programming

Function Pointers

int ascii(char c¢) { return((int) c); } /* cast */

void applyEach(char *s, int (*fptr)(char)) {
char *cp;
for (cp = s; *cp; cpt+)
printf("%c -> %d\n", *cp, fptr(*cp));

}
int main(int argc, char *argv[]) { /fptrs abcde
int i: a->97
for (i=1l;i<argc;i++) ?:j;g
applyEach(argv[i], ascii); d -> 100
return 0; e -> 101

}

PS — 52003 61.

Working with pointers

Problem: read an arbitrary file, and print out the lines in
reverse order.

Approach:

Check the file size

Allocate enough memory

Read in the file

Starting from the end of the buffer

— Convert each newline ('\n') to a NULL ('\0Q')
—printing out lines as you go
d Free the memory.

U000

® O. Nierstrasz — U. Berne Systems Programming

PS — 52003 62.

Argument processing

int main(int argc, char* argv[])
{
int 1i;
if (argec<l) {
fprintf(stderr, "Usage: lrev <file> ...\n");
exit(-1);
}
for (1i=1;i1<argc;it+) {
lrev(argv([i]);
}

return 0;

© O. Nierstrasz — U. Berne Systems Programming

PS — 52003 63.

Using pointers for side effects

Return pointer to file contents or NULL (error code)
Set bytes to file size

char* loadFile(char *path, int *bytes)

{

FILE *input;

struct stat fileStat:; /* see below ... */

char *buf;

bytes = 0; / default return val */

if (stat(path, &fileStat) < 0) { /* POSIX std */
return NULL; /* error-checking vs exceptions */

}
*bytes = (int) fileStat.st size;

@ O. Nierstrasz — U. Berne

Systems Programming

PS — 52003 64.

Memory allocation

NB: Error-checking code left out here for readability ...

buf = (char*) malloc(sizeof(char)*((*bytes)+1l));

I_l

3 e
o -
(

t

I

fopen(path, "r");

int n = fread(buf, sizeof(char), *bytes, input);
buf[*bytes] = '\0'; /* terminate buffer */

fclose(input);
return buf;

© O. Nierstrasz — U. Berne Systems Programming

PS — 52003 65.

Pointer manipulation

vold lrev(char *path)

{

char *buf, *end;

int bytes;
buf = loadFile(path, &bytes);

end = buf + bytes - 1; /* last byte of buffer */
if ((*end == '\n') && (end >= buf)) {

*end = '\0';
}

&~ What if bytes = 0?

® O. Nierstrasz — U. Berne Systems Programming

PS — 52003 66.

Pointer manipulation ...

/* walk backwards, converting lines to strings */

while (end >= buf) {
while ((*end != '\n') && (end >= buf))
end--;
if ((*end == '\n') && (end >= buf))
*end = '\0';
puts(end+l);

}
free(buf);

}

& Is this algorithm correct? How would you prove it?

© O. Nierstrasz — U. Berne Systems Programming

Built-In Data Types

The precision of built-in data types may depend on the machine

architecturel

Data type |No. of bits| Minimal value | Maximal value
signed char 8 -128 127
signed short |16 -32768 32767
signed int 16 / 32 -32768 / -2147483648 | 32767 / 214748647
signed long 32 -2147483648 214748647
unsigned char |8 0, 2b5
unsigned short| 16 0, 65535
unsigned int |16 /32 0 65535 / 4294967295
unsigned long |32 0 4294967295

PS — 52003 68.

Built-In Data Types ...

Data | No.of | Min. Max. Decimal
type bytes | exponent | exponent | accuracy
float 4 -38 +38 6
double 8 -308 +308 15
long double |8 /10 |-308/-4932|+308 /4932|15/ 19

® O. Nierstrasz — U. Berne Systems Programming

PS — 52003

69.

User Data Types

Data structures are defined as C “structs”.

In /usr/include/sys/stat.h:

struct stat {

dev_t st dev;
ino t st 1ino;
mode t st mode;
nlink t st nlink;
uid t st uid;
gid t st gid;
off t st _size;

int64 t st blocks;

}i

/*
/*
/*
/*
/*
/*

/*
/*

inode's device */

inode's number */

inode protection mode */
number of hard links */

user ID of the file's owner */
group ID of the file's group */

file size, in bytes */
blocks allocated for file */

@ O. Nierstrasz — U. Berne

Systems Programming

PS — 52003

70,

Typedefs

Type names can be assigned with the typdef command:

typedef long long 1inté64 t;
typedef 1int64 t quad t;

typedef quad t off t; /* file offset */

@ O. Nierstrasz — U. Berne

Systems Programming

PS — 52003 /1.

Observations

A C can be used as either a high-level or low-level language
= generally used as a "portable assembler”

Q C gives you complete freedom
= requires great discipline to use correctly

A Pointers are the greatest source of errors
= off-by-one errors
= invalid assumptions
= failure to check return values

© O. Nierstrasz — U. Berne Systems Programming

Obfuscated C
A fine tradition since 1984 ...

#define iv 4

#define v ; (void

#define XI(xi)int xi[iv*'V'];

#define L(c,l,i)c(){d(1l);m(i);}

#include <stdio.h>
int*cc,c,i,ix="\t',exit(),X="\n"*'\d"';XI(VI)XI(xi)extern(*vi[]) (), (*
signal())();char*v,cm,D['x"'],M="\n',I,*gets();L(MV,V,(ct="d',ix))m(x){v)
signal(X/'I',vi[x]);}d(x)char*x;{v)write(i,x,1);}L(MC,V,M+I)xv(){c>=1i?m(
c/M/M+M): (d(&M),m(cm)); }L(mi,V+cm,M)L(md,V,M)MM() {c=c*M%X;V-=cm;m(ix);}
LXX(){gets(D)||(vi[iv])();c=atoi(D);while(c>=X){c-=X;d("m");}V="1ivxlcdm"
+iv;m(ix); }LV(){c-=c;while((i=cc[*D=getchar()])>-I)i?(c?(c<i&&l(-c-c,
"gd"),1(i,"+%d")):1(1i,"(%d")):(c&&l(M,")"),1(*D,"%c")),c=i;c&&l(X,")"),1
(-1i,"%c");m(iv-!(i&I));}L(ml,V, '\f')1li(){m(cm+!isatty(i=I));}ii(){m(c=cm
= ++I)v)pipe(VI);cc=xitcm+t+;for(V="JWYmDEnX"; *V;V++)xi[*V""' ']=c,xi[*V++]
=c,c*=M,xi[*V"' ']=xi[*V]=c>>I;cc[-I]-=ix v)close(*VI);cc[M]-=M;}}main(){
(*vi)();for(;v)write(VI[I],V,M));}1(x]l,1x)char*1lx;{v)printf(1lx,xl)v)
fflush(stdout);}L(xx,V+I, (c-=X/cm,ix))int(*vi[])()={ii,1li,LXX,LV,exit,1,
d,1,d,xv,MM,md,MC,ml, MV, XX, XX, XX,XX,MV,mi};

PS — 52003 73.

A C Puzzle

& What does this program do?

char f[] = "char f[] = %c%s%c;%cmain() {printf(f, 34,
f, 34, 10, 10);}%c";
main() {printf(f, 34, £, 34, 10, 10);}

© O. Nierstrasz — U. Berne Systems Programming

PS — 52003 74,

What you should know!

What is a header file for?

What are declarations and definitions?

What is the difference between a char™ and a char[]?
How do you allocate objects on the heap?

Why should every C project have a makefile?

What is sizeof("abcd”)?

How do you handle errors in C?

How can you write functions with side-effects?

What happens when you increment a pointer?

A A A A VA

® O. Nierstrasz — U. Berne Systems Programming

PS — 52003 75.

Can you answer these questions?

Where can you find the system header files?
What's the difference between c++ and ++c?
How do malloc and free manage memory?

How does malloc get more memory?

What happens if you run: free("hello”)?

How do you write portable makefiles?

What is sizeof(&main)?

What trouble can you get into with typecasts?
What trouble can you get into with pointers?

A A A A

© O. Nierstrasz — U. Berne Systems Programming

PS — 52003 76.

3. Multiparadigm Programming

Overview

C++vs C

C++ vs Java

References vs pointers

C++ classes: Orthodox Canonical Form
Templates and STL

U000 U

References:

4 Bjarne Stroustrup, The C++ Programming Language
(Special Edition), Addison Wesley, 2000.

© O. Nierstrasz — U. Berne Multiparadigm Programming

PS — 52003 /7.

Essential C++ Texts

Stanley B. Lippman and Josee LaJoie, C++ Primer, Third
Edition, Addison-Wesley, 1998.

Scott Meyers, Effective C++, 2d ed., Addison-Wesley,
1998.

James O. Coplien, Advanced C++: Programming Styles
and Idioms, Addison-Wesley, 1992.

David R. Musser, Gilmer J. Derge and Atul Saini, STL
Tutorial and Reference Guide, 2d ed., Addison-Wesley,
2000.

Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides, Design Patterns, Addison Wesley, Reading,
MA, 1995,

U O U 0

L

© O. Nierstrasz — U. Berne Multiparadigm Programming

What is C++?

A "better C"that supports:

000U

Object-oriented programming (classes & inheritance)
Generic programming (templates)
Programming-in-the-large (namespaces, exceptions)
Systems programming (thin abstractions)

Reuse (large standard class library)

PS — 52003 79.

C++ vs C

Most C programs are also C++ programs.

Nevertheless, good C++ programs usually do not resemble C:
avoid macros (use inline)

avoid pointers (use references)

avoid malloc and free (use new and delete)

avoid arrays and char* (use vectors and strings) ...
avoid structs (use classes)

Ry iy Wiy Ny

C++ encourages a different style of programming:
d avoid procedural programming
= model your domain with classes and templates

© O. Nierstrasz — U. Berne Multiparadigm Programming

"Hello World"” in C++

Include standard iostream classes

++
AC Commem\#include <iostream>

// My first C++ program!
int main(void)

{

cout << "hello world!" << endl;
/////"return 0;

cout is an instance !
of ostream

operator overloading
(two different argument types!)

C++ Design Goals

'Cwith Classes"” designed by Bjarne Stroustrup in early 1980s:

A Originally a translator to C
w= Tnitially difficult o debug and inefficient

QA Mostly upward compatible extension of C
= "As close to C as possible, but no closer”
== Stronger type-checking
= Support for object-oriented programming

Q Run-time efficiency
== Language primitives close to machine instructions
ww Minimal cost for new features

C++ Features

C with Classes

Classes as structs
Inheritance: virtual functions
Inline functions

Strong typing; function prototypes

¢++ 1.0 (1985) new and delete operators
Local classes; protected members
C++2.0 Multiple inheritance
Templates
C++ 3.0 Exception handling
ANSI Ci+ (1998) Namespaces

RTTI

Java and C++ — Similarities and Extensions

Similarities:

d
4
d
d
d

primitive data types (in Java, platform independent)
syntax: control structures, exceptions ...

classes, visibility declarations (public, private)
multiple constructors, this, new

types, type casting (safe in Java, not in C++)

Java Extensions:

U000 DU

garbage collection

standard abstract machine
standard classes (came later to C++)
packages (now C++ has namespaces)
final classes

NNy Iy T Ny Ny Ny Iy Ny Ny By Iy I

Java Simplifications

no pointers — just references

no functions — can declare static methods

no global variables — use public static variables

no destructors — garbage collection and finalize

no linking — dynamic class loading

no header files — can define interface

no operator overloading — only method overloading

no member initialization lists — call super constructor

no preprocessor — static final constants and
automatic inlining

no multiple inheritance — implement multiple interfaces
no structs, unions, enums — typically not needed
no femplates — but generics will likely be added ...

In addition the

New Keywords

keywords inherited from C, C++ adds:

Exceptions

catch, throw, try

Declarations:

bool, class, enum, explicit, export,

friend, inline, mutable, namespace,

operator, private, protected, public,

template, typename, using, virtual,
volatile, wchar t

Expressions:

and, and eq, bitand, bitor, compl,

const cast, delete, dynamic cast,

false, new, not, not eq, or, or edq,
reinterpret cast, static cast, this,

true, typeid, xor, xor eq

PS — 52003 86.

Comments

Two styles:
/*
* C-style comment pairs are generally used
* for longer comments that span several lines.

*/

// C++ comments are useful for short comments

Use // comments exclusively within functions so that any part
can be commented out using comment pairs.

© O. Nierstrasz — U. Berne Multiparadigm Programming

References

A reference is an alias for another variable:
int 1 = 10;
int &ir = 1i;
ir = ir + 1; // increment 1

Once initialized, references cannot be changed.

References are especially useful in procedure calls to avoid the
overhead of passing arguments by value, without the clutter of
explicit pointer dereferencing

void refInc(int &n)

{

n = n+l; // increment the variable n refers to

}

PS — 52003 88.

References vs Pointers

References should be preferred to pointers except when:

d manipulating dynamically allocated objects
= new returns an object pointer

Q a variable must range over a set of objects
= yse a pointer to walk through the set

© O. Nierstrasz — U. Berne Multiparadigm Programming

PS — 52003 89.

C++ Classes

C++ classes may be instantiated either automatically (on the
stack):

MyClass oVal; // constructor called
// destroyed when scope ends

or dynamically (in the heap)
MyClass *OPtr; // uninitialized pointer

oPtr = new MyClass; // constructor called
// must be explicitly deleted

© O. Nierstrasz — U. Berne Multiparadigm Programming

PS — 52003 90.

Constructors and destructors

Constructors can make use of member initialization lists:
class MyClass {

private:
string name;
public:
MyClass(string name) : name(name) { // constructor
cout << "create " << name << endl;
}
~MyClass() { // destructor
cout << "destroy " << name << endl;
}
}i

C++ classes can specify cleanup actions in destructors

© O. Nierstrasz — U. Berne Multiparadigm Programming

PS — 52003 91

Automatic and dynamic destruction

MyClass& start() { // returns a reference

MyClass a("a"); // automatic

MyClass *b = new MyClass("b"); // dynamic

return *b; // returns a reference (!) to b
} // a goes out of scope

void finish(MyClassé& b) {

delete &b; // need pointer to b
}
create a
create b
finish(start()); destroy a
destroy b

© O. Nierstrasz — U. Berne Multiparadigm Programming

PS — 52003 92.

Orthodox Canonical Form

Most of your classes should look like this:

class myClass {

public:
myClass(void); // default constructor
myClass(const myClass& copy); // copy constructor

// other constructors
~myClass(void); // destructor
myClass& operator=(const myClassé&); // assignment
// other public member functions

private:

}i

© O. Nierstrasz — U. Berne Multiparadigm Programming

Why OCF?

If you don't define these four member functions, C++ will
generate them:

Q default constructor

== will call default constructor for each data member
3 destructor

= will call destructor of each data member
J copy constructor

w will shallow copy each data member

= pointers will be copied, not the objects pointed tol
d assignment

= will shallow copy each data member

Example: A String Class

We would like a String class that protects C-style strings:
Q strings are indistinguishable from char pointers
4 string updates may cause memory to be corrupted

Strings should support:

creation and destruction

initialization from char arrays

copying

safe indexing

safe concatenation and updating
output

length, and other common operations ...

(N I Iy Ay Iy Iy

A Simple String.h

class String

{
friend ostream& operator<<(ostream&, const Stringé&);

public:
String(void); // default constructor
~String(void); // destructor
String(const String& copy); // copy constructor
String(const char*s); // char* constructor
String& operator=(const Stringé&); // assignment

inline int length(void) const { return ::strlen(_s); }

char& operator[](const int n) throw(exception);

String& operator+=(const String&) throw(exception); // concatenation
private:

char * s; // invariant: s points to a null-terminated heap string

void become(const char*) throw(exception); // internal copy function

}i

PS — 52003 96.

Default Constructors

Every constructor should establish the class invariant:

String::String(void)

{

s = new char[1]; // allocate a char array
~s[0] = '\0"; // NULL terminate 1it!
}

The default constructor for a class is called when a new
instance is declared without any initialization parameters:

String anEmptyString; // call String::String()
String stringVector([10]; // call it ten times!

© O. Nierstrasz — U. Berne Multiparadigm Programming

PS — 52003 97.

Destructors

The String destructor must explicitly free any memory
allocated by that object.

String::~String (void)

{
delete [] s; // delete the char array

}

Every new must be matched somewhere by a delete!
d use new and delete for objects
Q use new[] and delete[] for arrays!

© O. Nierstrasz — U. Berne Multiparadigm Programming

PS — 52003 98.

Copy Constructors

Our String copy constructor must create a deep copy:

String::String(const String& copy)

{
become (copy. s); // call helper

}
volid String::become(const char* s) throw (exception)

{

S = new char[:strlen(s) + 1];
) throw(logic error("new failed"));

if
tGCY(_S, 8);

© O. Nierstrasz — U. Berne Multiparadigm Programming

A few remarks ...

If we do not define our own copy constructor, copies of
Strings will share the same representation!

= Modifying one will modify the other!
= Destroying one will invalidate the other!

If we do not declare copy as const, we will not be able
to construct a copy of a const Stringl

If we declare copy as String rather than Strings, a new
copy will be made before it is passed to the constructor!

= Functions arguments are always passed by value in
C++

== The "value” of a pointer is a pointer!

The abstraction boundary is a class, not an object.
Within a class, all private members are visible (as is

copy._s)

Other Constructors

Class constructors may have arbitrary arguments, as long as
their signatures are unique and unambiguous:

String::String(const char* s)

{

become(s);

}

Since the argument is not modified, we can declare it as const.
This will allow us to construct String instances from constant
char arrays.

PS — 52003 101.

Assignment Operators

Assignment is different from the copy constructor because an
instance already exists:

String& String::operator=(const String& copy)

{

if (this != ©) { // take care!
delete [] _s;
become (copy. s);

}

return *this; // NB: a reference, not a copy

}

© O. Nierstrasz — U. Berne Multiparadigm Programming

PS — 52003 102,

A few more remarks ...

A Return string& rather than void so the result can be
used in an expression

A Return string& rather than String so the result won't
be copied!

A this is a pseudo-variable whose value is a pointer to the
current object

= s0 *this is the value of the current object, which is
returned by reference

© O. Nierstrasz — U. Berne Multiparadigm Programming

PS — 52003 103.

Implicit Conversion

When an argument of the "wrong” type is passed to a function,
the C++ compiler looks for a constructor that will convert it to

the "right" type:
str = "hello world";
is implicitly converted to:

str = String("hello world");

© O. Nierstrasz — U. Berne Multiparadigm Programming

PS — 52003 104.

Operator Overloading

Not only assignment, but other useful operators can be
“overloaded” provided their signatures are unique:

char&
String::operator[] (const int n) throw(exception)

{

if ((n<0) || (length()<=n)) {

throw(loglc_error(array index out of bounds"));
}
return s[n];

NB: a non-const reference is returned, so can be used as an
Ivalue in an assignment.

© O. Nierstrasz — U. Berne Multiparadigm Programming

PS — 52003

105.

Overloadable Operators

The following operators may be overloaded:

Overloadable Operators

A

>

&
> %

delete

NB: arity and precendence are fixed by C++

@ O. Nierstrasz — U. Berne

Multiparadigm Programming

Friends

We would like to be able to write:
cout << String("TESTING ... ") << endl;

But:

= It can't be a member function of ostream, since we
can't extend the standard library.

= Tt can't be a member function of String since the
target is cout.

= But it must have access to string's private data

So ... we need a binary function << that takes a cout and a
String as arguments, and is a friend of String.

PS — 52003 107.

Friends ...

We declare:
class String

{

friend ostreamé&
operator<<(ostream&, const String&);

}i
And define:
ostreamé&
operator<<(ostream& outStream, const Stringé& s)

{

return outStream << s. s;

}

© O. Nierstrasz — U. Berne Multiparadigm Programming

What are Templates?

A template is a generic specification of a function or a class,
parameterized by one or more types used within the function

or class:

A functions that only assume basic operations of their
arguments (comparison, assignment ...)

A “container classes” that do little else but hold instances
of other classes

Templates are essentially glorified macros

A like macros, they are compiled only when instantiated
(and so are defined exclusively in header files)

d unlike macros, templates are not expanded literally, but
may be intelligently processed by the C++ compiler

PS — 52003 109.

Function Templates

The following declares a generic min() function that will work
for arbitrary, comparable elements:

template <class Item>
inline const Item&
min (const Item& a, const Item& b)

{

return (a<b) ? a : b;

}

Templates are automatically instantiated by need:
cout << "min(3,5) = " << min(3,5) << endl;
// instantiates: inline const int& min(inté&, inté&);

© O. Nierstrasz — U. Berne Multiparadigm Programming

PS — 52003 110.

Class Templates

Class templates are declared just like function templates:

template <class First, class Second>
class pair {
public:
First first;
Second second;
pair(const First& f, const Secondé& s)
first(f), second(s) {}

}i

© O. Nierstrasz — U. Berne Multiparadigm Programming

PS — 52003 111.

Using Class Templates

Template classes are instantiated by binding the formal
parameter:

typedef pair<int, char*> MyPair;

MyPair myPair = MyPair(6, "I am not a number");

cout << myPair.first << sez
<< myPair.second << endl;

Typedefs are a convenient way to bind names to template
instances.

© O. Nierstrasz — U. Berne Multiparadigm Programming

PS — 52003 112,

Standard Template Library

STL is a general-purpose C++ library of generic algorithms and
data structures.

1. Containers store collections of objects

Iz vector, list, deque, set, multiset, map, multimap
2. Iterators traverse containers

== random access, bidirectional, forward/backward ...
3. Function Objects encapsulate functions as objects

= arithmetic, comparison, logical, and user-defined ...
4. Algorithms implement generic procedures

I search, count, copy, random shuffle, sort, ..
5. Adaptors provide an alternative interface to a component

iz stack, queue, reverse iterator, ...

© O. Nierstrasz — U. Berne Multiparadigm Programming

PS — 52003 113.

An STL Line Reverser

#include <iostream>
#include <stack> // STL stacks
#include <string> // Standard strings

void rev(void)

{
typedef stack<string> IOStack; // instantiate the template

I0Stack ioStack; // instantiate the template class
string buf;

while (getline(cin, buf)) {
ioStack.push(buf);

}

while (ioStack.size() != 0) {
cout << ioStack.top() << endl;
ioStack.pop();

}

© O. Nierstrasz — U. Berne Multiparadigm Programming

iy I Iy Iy Ny Ny Iy Iy N WO

What we didn't have time for ...

virtual member functions, pure virtuals
public, private and multiple inheritance
default arguments, default initializers
method overloading

const declarations

enumerations

smart pointers

static and dynamic casts

template specialization

namespaces

RTTI

PS — 52003

115,

A A A A A /A

What you should know!

What new features does C++ add to C?
What does Java remove from C++?
How should you use C and C++ commenting styles?
How does a reference differ from a pointer?
When should you use pointers in C++?
Where do C++ objects live in memory?
What is a member initialization list?
Why does C++ need destructors?
What is OCF and why is it important?
What's the difference between delete and delete[]?
What is operator overloading?
Why are templates like macros?

@ O. Nierstrasz — U. Berne

Multiparadigm Programming

PS — 52003 116.

Can you answer these questions?

Why doesn’t C++ support garbage collection?

Why doesnt Java support multiple inheritance?

What trouble can you get into with references?

Why doesn't C++ just make deep copies by default?

How can you declare a class without a default constructor?

Why can objects of the same class access each others
private members?

Why are templates only defined in header files?
How are templates compiled?
What is the type of a template?

A A

o o 0

© O. Nierstrasz — U. Berne Multiparadigm Programming

PS — 52003 117.

4. Stack-based Programming

Overview
A PostScript objects, types and stacks
ad Arithmetic operators
A Graphics operators
A Procedures and variables
d Arrays and dictionaries

References:

Q PostScript® Language Tutorial and Cookbook, Adobe
Systems Incorporated, Addison-Wesley, 1985

Q PostScript® Language Reference Manual, Adobe
Systems Incorporated, second edition, Addison-Wesley,
1990

© O. Nierstrasz — U. Berne Stack-based Programming

What is PostScript?

PostScript "is a simple interpretive programming language ... to
describe the appearance of text, graphical shapes, an
sampled images on printed or displayed pages.”

introduced in 1985 by Adobe

display standard now supported by all major printer
vendors

simple, stack-based programming language
minimal syntax
large set of built-in operators

PostScript programs are usually generated from
applications, rather than hand-coded

o000 U0

Postscript variants

Level 1:
A the original 1985 PostScript

Level 2:
A additional support for dictionaries, memory management

Display PostScript:
 special support for screen display

Level 3:
Q the current incarnation with "workflow" support

Syntax

Comments:

from "%" to next newline or formfeed

$ This 1s a comment

Numbers:

signed integers, reals and radix numbers

123 -98 0 +17 -.002 34.5
123.6el10 1E-5 8#1777 16#FFE 2#1000

Strings:

text in parentheses or hexadecimal in angle
brackets (Special characters are escaped: \n

\EACN) W L)

Names:

tokens consisting of "regular characters” but
which aren't numbers

abc Offset $$ 23A 13-456 a.b
SMyDict @pattern

PS — 52003 121,

Literal |start with slash

hames: /buffer /proc

enclosed in square brackets
[123 /abc (hello)]

enclosed in curly brackets

Procedures:| { add 2 div }
% add top two stack items and divide by 2

Arrays:

© O. Nierstrasz — U. Berne Stack-based Programming

Semantics

A PostScript program is a sequence of tokens, representing
typed objects, that is interpreted to manipulate the display
and four stacks that represent the execution state of a
PostScript program:

holds (arbitrary) operands and results of

holds only dictionaries where keys and

Dictionary stack: values may be stored

holds executable objects (e.qg.

Execution stack: procedures) in stages of execution

Graphics state |keeps track of current coordinates etc.
stack:

PS — 52003 123.

Object types

Every object is either /iteral or executable:
Literal objects are pushed on the operand stack:

d integers, reals, string constants, literal names, arrays,
procedures

Executable objects are interpreted:
A built-in operators

d names bound to procedures (in the current dictionary
context)

Simple Object Types are copied by value

d boolean, fontID, integer, name, null, operator, real ...
Composite Object Types are copied by reference

d array, dictionary, string ...

© O. Nierstrasz — U. Berne Stack-based Programming

PS — 52003

124,

The operand stack

Compute the average of 40 and 60:

40 60 add 2 div

60

40

40

100

100

50

At the end, the result is left on the top of the operand stack.

@ O. Nierstrasz — U. Berne

Stack-based Programming

PS — 52003 125,

Stack and arithmetic operators

Stack | Op New Stack Function
num; num, | add | sum numy + numy
num; hum, | sub | difference numj - nump
num; num, lmul | product num; > nump
num; num, | div | quotient numy; / numy
int{int, | idiv |quotient integer divide
int{int, lmod | remainder int; mod int,
num den | atan |angle arctangent of num/den
any lpop |- discard top element
any; any, | exch | any, any; exchange top two elements
any | dup |any any duplicate top element
anyi ... any, h | copy |anyj ... any, anys ... any, | duplicate top nelements
anyy, ... anyg n | index | any, ... anyg any, duplicate n+1th element
and many others ...

© O. Nierstrasz — U. Berne Stack-based Programming

Drawing a Box

"A pathis aset of straight lines and curves that define a region
to be filled or a trajectory that is to be drawn on the current

page."
newpath
100 100 moveto
100 200 lineto
200 200 lineto
200 100 lineto
100 100 lineto
10 setlinewidth
stroke
showpage

clear the current drawing path
move to (100,100)
draw a line to (100,200)

OO0 OO o©

set width for drawing
draw along current path
and display current page

OO0 OO o

PS — 52003 127.

Path construction operators

- | newpath - | initialize current path to be empty
- | currentpoint | X y | return current coordinates
X y | moveto - | set current point to (x, y)
dx dy | rmoveto - | relative moveto
X Y| lineto - | append straight line to (x, y)
dx dy | rlineto - | relative lineto
X Yy r angj ang, | arc - | append counterclockwise arc
- | closepath - | connect subpath back to start
- £i11 - | fill current path with current colour
- | stroke - | draw line along current path
- | showpage - |output and reset current page

Others: arcn, arcto, curveto, rcurveto, flattenpath, ...

© O. Nierstrasz — U. Berne Stack-based Programming

PS — 52003

128.

Coordinates
Coordinates are
measured in points:
72 points = 1 inch A4 paper
=2.54 cm.

(0,0)

~21 cm = 595 points

, (595, 840)

y

29.7 cm = 840 points

® O. Nierstrasz — U. Berne

Stack-based Programming

"Hello World” in Postscript

Before you can print text, you must (1) /ook up the desired
font, (2§ scale it to the required size, and (3) set it to be the
current font.

/Times-Roman findfont ¢ look up Times Roman font

18 scalefont scale it to 18 points

setfont set this to be the current font
100 500 moveto go to coordinate (100, 500)
(Hello world) show draw the string “Hello world”
showpage render the current page

OO0 OO0 OO0 OO0 o©

Hello world

PS — 52003 130.

Character and font operators

key | findfont font |return font dict identified by key
font scale | scalefont |font' |scale font by scale to produce font’
font | setfont - set font dictionary
- | currentfont | font |return current font

string | show - print string

string | stringwidth | wy wy |width of string in current font

Others: definefont, makefont, FontDirectory,
StandardEncoding

© O. Nierstrasz — U. Berne Stack-based Programming

PS — 52003 131,

Procedures and Variables

Variables and procedures are defined by binding names to
literal or executable objects.

key value | def | - | associate key and value in current dictionary

Define a general procedure to compute averages:
/average { add 2 div } def
$ bind the name “average” to “{ add 2 div }”
40 60 average

{ add 2 div } 60 2
/average | | /average 40 | |40 | |100| |100 | |50

® O. Nierstrasz — U. Berne Stack-based Programming

PS — 52003 132.

A Box procedure

Most PostScript programs consist of a prologue and a script.

% Prologue -- application specific procedures
/box { & grey x y =>

newpath

moveto Xy =>

0 150 rlineto £ relative lineto
150 0 rlineto
0 =150 rlineto

closepath % cleanly close path!
setgray 3 grey ->
fill $ colour in region

} def

% Script -- usually generated
0 100 100 box

0.4 200 200 box

0.6 300 300 box

0 setgray

showpage

© O. Nierstrasz — U. Berne Stack-based Programming

PS — 52003 133.

Graphics state and coordinate operators

hum | setlinewidth |- set line width
num | setgray - set colour to gray value
(0 = black; 1 = white)
Sx Sy | scale - scale use space by s, and s,
angle | rotate - rotate user space by angle degrees
tx ty| translate - translate user space by (7, t,)
- |matrix matrix | create identity matrix
matrix | currentmatrix | matrix | fill matrix with CTM
matrix | setmatrix - replace CTM by matrix
- | gsave - save graphics state
- | grestore - restore graphics state

gsave saves the current path, gray value, line width and user
coordinate system

® O. Nierstrasz — U. Berne Stack-based Programming

PS — 52003 134,

A Fibonacci Graph

/fibInc { ¢ mn ->n (mtn)
exch gmn->nm
1 index g nm->nmn
add
} def
/x 0 def /y 0 def /dx 10 def
newpath
100 100 translate $ make (100, 100) the origin
X y moveto $ i.e., relative to (100, 100)
0 1 25 {

/x x dx add def
dup /y exch 100 idiv def
X y lineto
fibInc
} repeat
2 setlinewidth
stroke
showpage

increment X
set y to 1/100 last fib value
draw segment

o0 oo op

® O. Nierstrasz — U. Berne Stack-based Programming

PS — 52003

135.

Numbers and Strings

Numbers and other objects must be converted to strings
before they can be printed:

int

string

string

create string of capacity int

any string

CVs

substring

convert to string

@ O. Nierstrasz — U. Berne

Stack-based Programming

PS — 52003 136.

Factorial
/LM 100 def ¢ left margin
/FS 18 def ¢ font size
/sBuf 20 string def $ string buffer of length 20
/fact { ¢ n ->n!
dup 1 1t % -> n bool
{ pop 1 } g 0 ->1
{
dup ¢ n->nn
1 $ -=>nn 1
sub $ -> n (n-1)
fact $ -=> n (n-1)! NB: recursive lookup
mul 3 n!
}
ifelse
} def
/showInt { $n->
sBuf cvs show % convert an integer to a string and show it
} def

© O. Nierstrasz — U. Berne Stack-based Programming

Factorial ... o=1

1'=1
/showFact { g n-> 2l =2
dup showInt % show n 3t=6
L o | — 41 =24
(! =) show 3 = 51 = 120
fact showlInt $ show n! 6! = 720
} def 7! = 5040
/newline { S 8! = 40320
currentpoint exch pop 3 get current y Ol = 362880
FS 2 add sub $ subtract offset 10! = 3628800
LM exch moveto $ move to new x y 11! = 39916800
} def 12! = 479001600

13! = 6.22702e+09
14! = 8.71783e+10
15! = 1.30767e+12

/Times-Roman findfont FS scalefont setfont

LM 600 moveto

| =
0 1 20 { showFact newline } for % do from 0 to 20 ig, =§gg§§§:ii
showpage 18! = 6.40237e+15
19! = 1.21645e+17
20! = 2.4329e+18

PS — 52003 138.

Boolean, control and string operators

any; any, | eq bool | test equal
any; any, | ne bool | test not equal
any; any, | ge bool | test greater or equal

- | true | true |push boolean value true

- | false |bool |test equal

bool proc | if - execute proc if bool is true
bool procy proc, | ifelse |- execute proc; if bool is true else proc,
init incr limit proc | for - execute proc with values init to limit by
steps of incr
int proc | repeat | - execute proc int times
string | length |int | number of elements in string
string index | get int | get element at position index
string index int | put - put int into string at position index
string proc | forall |- execute proc for each element of string

© O. Nierstrasz — U. Berne Stack-based Programming

PS — 52003

139.

A simple formatter

/LM 100 def

/RM 250 def

/FS 18 def

/showStr {
dup stringwidth pop
currentpoint pop
add
RM gt { newline } if
show

} def

/newline {
currentpoint exch pop
FS 2 add sub
LM exch moveto

} def

/format { { showStr () show

OO0 OO0 OO0 OO0 OO0 OO oo oo

o0 OO0 oo oo

left margin

right margin

font size

string ->

get (just) string’s width

current x position

where printing would bring us
newline if this would overflow RM

->
get current y
subtract offset

move to new X'y

} forall } def % array ->

/Times-Roman findfont FS scalefont setfont

LM 600 moveto

@ O. Nierstrasz — U. Berne

Stack-based Programming

PS — 52003 140.

A simple formatter ...

[(Now) (is) (the) (time) (for) (all) (good) (men) (to)
(come) (to) (the) (aid) (of) (the) (party.)] format

showpage

Now isthetime for
all good men to
come to the aid of
the party.

© O. Nierstrasz — U. Berne Stack-based Programming

PS — 52003 141,

Array and dictionary operators

-0 mark | start array construction
mark objg ... obj,_1 |] array | end array construction
int | array array | create array of length n
array | length int number of elements in array
array index | get any |get element at index position
array index any | put - put element at index position
array proc | forall - execute proc for each array element
int | dict dict |create dictionary of capacity int
dict | length int | number of key-value pairs
dict |maxlength |int | capacity
dict | begin - push dict on dict stack
- |end - pop dict stack

© O. Nierstrasz — U. Berne Stack-based Programming

Using Dictionaries — Arrowheads

/arrowdict 14 dict def ¢ make a new dictionary
arrowdict begin
/mtrx matrix def $ allocate space for a matrix
end headthickness
/arrow { - >
arrowdict begin $ open the dictionary /////////"
/headlength exch def % grab args (tipx, tipy) headlength

/halfheadthickness exch 2 div def
/halfthickness exch 2 div def
/tipy exch def

/tipx exch def

/taily exch def

/tailx exch def A V
/dx tipx tailx sub def “;ﬁ&;aggg
/dy tipy taily sub def

/arrowlength dx dx mul dy dy mul add sqrt def

/angle dy dx atan def

/base arrowlength headlength sub def

(tailx, taily)

PS — 52003 143

/savematrix mtrx currentmatrix def
tailx taily translate

angle rotate

0 halfthickness neg moveto

base halfthickness neg lineto

base halfheadthickness neg lineto
arrowlength 0 lineto

base halfheadthickness lineto

base halfthickness lineto

0 halfthickness lineto

save the coordinate system
translate to start of arrow
rotate coordinates

draw as if starting from (0,0)

o0 o0 oP o©

closepath
savematrix setmatrix $ restore coordinate system
end
} def

© O. Nierstrasz — U. Berne Stack-based Programming

PS — 52003 144.

Instantiating Arrows

newpath

318 340 72 340 10 30 72 arrow
fill
newpath

382 400 542 560 72 232 116 arrow ——
3 setlinewidth stroke
newpath

400 300 400 90 90 200 200 3 sgrt mul 2 div arrow
.65 setgray fill
showpage

© O. Nierstrasz — U. Berne Stack-based Programming

PS — 52003 145,

Encapsulated PostScript

EPSF is a standard format for importing and exporting
PostScript files between applications.

!|PS-Adobe-3.0 EPSF-3.0
$%BoundingBox: 90 490 200 520
/Times-Roman findfont (200, 520)

18 scalefont . Heloworld |
setfont (90, 490)

100 500 moveto

(Hello world) show

showpage

© O. Nierstrasz — U. Berne Stack-based Programming

PS — 52003 146.

What you should know!

What kinds of stacks does PostScript manage?

When does PostScript push values on the operand stack?
What is a path, and how can it be displayed?

How do you manipulate the coordinate system?

Why would you define your own dictionaries?

How do you compute a bounding box for your PostScript
graphic?

o o O 0 0 9

® O. Nierstrasz — U. Berne Stack-based Programming

PS — 52003 147.

Can you answer these questions?

& How would you program this graphic? ZZ-'.‘]!

& When should you use translate instead of moveto?

& How could you use dictionaries to simulate object-oriented
programming?

© O. Nierstrasz — U. Berne Stack-based Programming

PS — 52003 148.

5. Functional Programming

Overview
A Functional vs. Imperative Programming
A Referential Transparency
d Recursion
d Pattern Matching
A Higher Order Functions
d Lazy Lists

© O. Nierstrasz — U. Berne Functional Programming

PS — 52003 149.

References

A Paul Hudak, "Conception, Evolution, and Application of
Functional Programming Langua¥e5, “ACM Computing
Surveys 21/3, 1989, pp 359-411.

A Paul Hudak and Joseph H. Fasel, "A Gentle Introduction
to Haskell,” ACM SIGPLAN Notices, vol. 27, no. 5, May
1992, pp. T1-TH3.

d Simon Peyton Jones and John Hughes [editors], Report
on the Programming Language Haskell 98 A Non-strict,
Purely Functional Language, February 1999

= www.haskell.org

© O. Nierstrasz — U. Berne Functional Programming

http://www.haskell.org

A Bit of History

Lambda Calculus
(Church, 1932-33)

formal model of computation

Lisp symbolic computations with lists
(McCarthy, 1960)
APL algebraic programming with arrays

(Iverson, 1962)

ISWIM
(Landin, 1966)

let and where clauses

equational reasoning; birth of “pure”
functional programming ...

A Bit of History

ML originally meta language for theorem
(Edinburgh, 1979) |proving

SASL, KRC, lazy evaluation
Miranda
(Turner, 1976-85)

Haskell "Grand Unification" of functional
(Hudak, Wadler, et |languages ...
al., 1988)

PS — 52003 152.

Programming without State

Imperative style: Declarative (functional)
style:
n = Xy
a := 1; fac n =
while n>0 do if n == (
begin a:= a*n; then 1
n := n-1; else n * fac (n-1)
end;

Programs in pure functional languages have no explicit state.
Programs are constructed entirely by composing expressions.

© O. Nierstrasz — U. Berne Functional Programming

Pure Functional Programming Languages

Imperative Programming:
== Program = Algorithms + Data

Functional Programming:
== Program = Functions - Functions

What is a Program?

A program (computation) is a transformation from input data
to output data.

PS — 52003 154,

Key features of pure functional languages

—

All programs and procedures are functions

2. There are no variables or assignments — only input
parameters

There are no loops — only recursive functions

4. The value of a function depends only on the values of its
parameters

5. Functions are first-class values

w

© O. Nierstrasz — U. Berne Functional Programming

What is Haskell?

Haskell is a general purpose, purely functional
programming language incorporating many recent
innovations in programming language design. Haskell
provides higher-order functions, non-strict
semantics, static polymorphic typing, user-defined
algebraic datatypes, pattern-matching, list
comprehensions, a module system, a monadic I/0
system, and a rich set of primitive datatypes, including
lists, arrays, arbitrary and fixed precision integers,
and floating-point numbers. Haskell is both the
culmination and solidification of many years of
research on lazy functional languages.

— The Haskell 98 report

PS — 52003

156.

"Hello World” in Hugs

hello() = print "Hello World"

® O. Nierstrasz — U. Berne

Functional Programming

Referential Transparency

A function has the property of referential transparency if its
value depends only on the values of its parameters.

& Does f(x)+f(x) equal 2xf(x)? In C? In Haskell?

Referential transparency means that “equals can be replaced
by equals”.

In a pure functional language, all functions are referentially
transparent, and therefore always yield the same result no

matter how often they are called.

PS — 52003

158.

Evaluation of Expressions

Expressions can be (formally) evaluated by substituting
arguments for formal parameters in function bodies:

fac 4 ™ if 4 == 0 then 1 else 4 * fac (4-1)

0 4
0 4
0 4
0 4
0 4
>

4

5

*
*
*
*
*

*

24
Of course, real functional languages are not implemented by
syntactic substitution ...

fac (4-1)

(1f (4-1) == 0 then 1 else (4-1) * fac (4-1-1))

(if 3 == 0 then 1 else (4-1) * fac (4-1-1))

((4-1) * fac (4-1-1))

((4-1) * (if (4-1-1) == 0 then 1 else (4-1-1) * ...))

((4-1) * ((4-1-1) * ((4-1-1-1) * 1)))

© O. Nierstrasz — U. Berne Functional Programming

Tail Recursion

Recursive functions can be less efficient than loops because of
the high cost of procedure calls on most hardware.

A tail recursive function calls itself only as its last operation,

so the recursive call can be optimized away by a modern
compiler since it needs only a single run-time stack frame:

fact 5

fact 5

fact 4

fact 5

fact 4

fact 3

sfac 5

sfac 4

sfac 3

PS — 52003 160.

Tail Recursion ...

A recursive function can be converted to a tail-recursive one
by representing partial computations as explicit function

parameters:
sfac s n = if n == 0
then s
else sfac (s*n) (n-1)
sfac 1 4 sfac (1*4) (4-1)

>
b sfac 4 3
o sfac (4*3) (3-1)
» sfac 12 2
> sfac (12*2) (2-1)
b sfac 24 1
0y . o 24

© O. Nierstrasz — U. Berne Functional Programming

PS — 52003 161.

Equational Reasoning

Theorem:
Foralln=0, fac n = sfac 1 n
Proof of theorem:
n=0: fac 0 =1 = sfac 1 0
n>0: Suppose
fac (n-1) =sfac 1 (n-1)

fac n =n * fac (n-1) — bydef
=n * sfac 1 (n-1)
= sfac n (n-1) — by lemma
=sfac 1 n — by def

© O. Nierstrasz — U. Berne Functional Programming

PS — 52003

162.

Equational Reasoning ...

Lemma:
Foralln=0,sfac s n=s * sfac 1 n

Proof of lemma:
n=0: sfac s 0=s=s * sfac 1 0
n>0: Suppose:
sfac s (n-1) =s * sfac 1 (n-1)
sfac s n = sfac (s*n) (n-1)

=s *n * sfac 1 (n-1)

=s * sfac n (n-1)
=s * sfac 1 n

@ O. Nierstrasz — U. Berne

Functional Programming

PS — 52003

163.

Pattern Matching

Haskell support multiple styles for specifying case-based

function definitions:

Patterns:
fac' 0 =1

fac' n = n * fac' (n-1)

-- or: fac’ (n+l) = (n+l) * fac’ n

Guards:

fac n

AV |
i
_ O

Il

n
n n * fac'' (n-1)

@ O. Nierstrasz — U. Berne

Functional Programming

PS — 52003 164.

Lists

Lists are pairs of elements and /ists of elements:
A [] — stands for the empty list

A x:xs — stands for the list with x as the head and xs as
the rest of the list

ad [1,2,3] —is syntactic sugar for 1:2:3:[]

Q [1..n] —stands for [1,2,3, ... n]

© O. Nierstrasz — U. Berne Functional Programming

PS — 52003 165.

Using Lists

Lists can be deconstructed using patterns:

head (x:) = x

0
1l + len Xxs

len []
len (X:xs)

prod [] =1
prod (X:Xs) = X * prod Xs
fac''' n = prod [l..n]

© O. Nierstrasz — U. Berne Functional Programming

PS — 52003

166.

Higher Order Functions

Hi?her-order functions treat other functions as first-class
values that can be composed to produce new functions.

]

map f [
p £ (x:x8)

[]
ma f x : map £ xs

map fac [1l..5]
v [1, 2, 6, 24, 120]

NB: map fac is a new function that can be applied to lists:

mfac = map fac

mfac [1..3]
v [1, 2, 6]

@ O. Nierstrasz — U. Berne

Functional Programming

Anonymous functions

Anonymous functions can be written as "lambda abstractions®”.
The function (\x -> x * x) behaves exactly like sqr:
sgqr X = X * X

sqr 10 2 100
(\x => x * x) 10 =100

Anonymous functions are first-class values:
map (\x -> x * x) [1..10]
(1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

PS — 52003 168.

Curried functions

A Curried function [named after the logician H.B. Curry] takes
its arguments one at a time, allowing it to be treated as a
higher-order function.

plus x vy =x +y -- curried addition
plus 1 2 3

plus’ (x,y) = X + vy -- normal addition
plus’(1,2) =3

© O. Nierstrasz — U. Berne Functional Programming

PS — 52003 169.

Understanding Curried functions

plus x y = x +y
is the same as:
plus x = \y -> x+ty

Inother words, plus is a function of one argument that returns
a function as its result.

plus 5 6

is the same as:
(plus 5) 6

In other words, we invoke (plus 5), obtaining a function,
\y -=> 5 + vy
which we then pass the argument 6, yielding 11.

© O. Nierstrasz — U. Berne Functional Programming

PS — 52003 170.

Using Curried functions

Curried functions are useful because we can bind their
argument incrementally

inc = plus 1 —- bind first argument to 1

inc 2 ©3

fac = sfac 1 -- binds first argument of
where sfac s n -- a curried factorial

| n >= 1= sfac (s*n) (n-1)

© O. Nierstrasz — U. Berne Functional Programming

Currying

The following (pre-defined) function takes a binary function as
an argument and turns it into a curried function:

curry f ab =f£f (a, b)

plus(x,y) =x +y -- not curried!
inc = (curry plus) 1
sfac(s, n) = if n == 0 -- not curried

then s
else sfac (s*n, n-1)

fac = (curry sfac) 1 -- bind first argument

PS — 52003 172.

Multiple Recursion

Naive recursion may result in unnecessary recalculations:
fib 1 =1
fib 2 =1
fib (n+2) = fib n + fib (n+l)

Eflficiency can be regained by explicitly passing calculated
values:

fib' 1 =1

fib' n = a where (a,) = fibPair n
fibPair 1 = (1,0)

fibPair (n+2) = (atb,a)

where (a,b) = fibPair (n+l)

& How would you write a tail-recursive Fibonacci function?

© O. Nierstrasz — U. Berne Functional Programming

Lazy Evaluation

“Lazy”, or "normal-order” evaluation only evaluates expressions
when they are actually needed. Clever implementation
techniques (Wadsworth, 1971) allow replicated expressions to
be shared, and thus avoid needless recalculations.
So:

sqr n = n * n

sqr (2+45) ™ (2+5) * (245) ™ 7 * 7 © 49

Lazy evaluation allows some functions to be evaluated even if
they are passed incorrect or non-terminating arguments:
1fTrue True X y = X
1fTrue False x y =y
ifTrue True 1 (5/0) =1

PS — 52003 174.

Lazy Lists

Lazy lists are infinite data structures whose values are
generated by need:

fromn =n : from (n+l)

from 10 »~» [10,11,12,13,14,15,16,17,....

take 0
take

[]
take (nt+tl) (xX:xs) =

[]
[]
X ¢ take n xs

take 5 (from 10) = [10, 11, 12, 13, 14]

NB: The lazy list (from n) has the special syntax: [n..]

© O. Nierstrasz — U. Berne Functional Programming

PS — 52003 175.

Programming lazy lists

Many sequences are naturally implemented as lazy lists.
Note the top-down, declarative style:

fibs = 1 : 1 : fibsFollowing 1 1
where fibsFollowing a b =
(atb) : fibsFollowing b (a+b)

take 10 fibs
©>[r1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

& How would you re-write fibs so that (a+b) only appears
once?

© O. Nierstrasz — U. Berne Functional Programming

Declarative Programming Style

primes = primesFrom 2

primesFrom n = p : primesFrom (p+1)
where p = nextPrime n

nextPrime n

| isPrime n = n
| otherwise = nextPrime (n+l)
1sPrime 2 = True
1sPrime n = notDivisible primes n
notDivisible (k:ps) n
(k*k) > n = True
(mod n k) == 0 = False
otherwise = notDivisible ps n

take 100 primes »> [2, 3, 5, 7, 11, 13, ... 523, 541]

PS — 52003

177.

o o 0 0 @

What you should know!

What is referential transparency? Why is it important?
When is a function tail recursive? Why is this useful?
What is a higher-order function? An anonymous function?
What are curried functions? Why are they useful?

How can you avoid recalculating values in a multiply

recursive function?

g @

What is lazy evaluation?
What are lazy lists?

@ O. Nierstrasz — U. Berne

Functional Programming

PS — 52003 178.

Can you answer these questions?

& Why don't pure functional languages provide loop
constructs?

> When would you use patterns rather than guards to specify
functions?

& Can you build a list that contains both numbers and
functions?

& How would you simplify £ibs so that (a+b) is only called
once?

& What kinds of applications are well-suited to functional
programming?

© O. Nierstrasz — U. Berne Functional Programming

PS — 52003 179.

6. Type Systems

Overview

What is a Type?

Static vs. Dynamic Typing
Kinds of Types
Overloading

User Data Types
Polymorphic Types

I Iy IOy WA Ay

® O. Nierstrasz — U. Berne Type Systems

PS — 52003 180.

References

A Paul Hudak, "Conception, Evolution, and Application of
Functional Programming Languages,” ACM Computing
Surveys 21/3, Sept. 1989, pp 359-411.

A L. Cardelli and P. Wegner, "On Understanding Types,
Data Abstraction, and Polymorphism,” ACM Computing
Surveys, 17/4, Dec. 1985, pp. 471-522.

A D. Watt, Programming Language Concepts and
Paradigms, Prentice Hall, 1990

© O. Nierstrasz — U. Berne Type Systems

PS — 52003 181.

What is a Type?

Type errors:
25+ []
ERROR: Type error 1in application
*** expression : 5 + []
**% term : 5
***% type : Int
*** does not match : [a]

A type is a set of values?
Q int={..-2,-1,0,1,2,3, ..}
Q bool = { True, False }
Q Point ={ [x=0,y=0], [x=1,y=01, [x=0,y=1] ... }

© O. Nierstrasz — U. Berne Type Systems

PS — 52003 182.

What is a Type?

A type is a partial specification of behaviour?
d n,m:int = n+mis valid, but not(n) is an error

d n:int=n := lisvalid, butn := “hello world” is an
error

What kinds of specifications are interesting? Useful?

® O. Nierstrasz — U. Berne Type Systems

PS — 52003 183.

Static and Dynamic Types

Values have static types defined by the programming language.

Variables and expressions have dynamic types determined by
the values they assume at run-time.

declared, static type is Applet
\ static type of value is GameApplet

Applet myApplet = new GameApplet();

actual dynamic type is GameApplet

© O. Nierstrasz — U. Berne Type Systems

Static and Dynamic Typing

A language is statically typed if it is always possible to
determine the (static) type of an expression based on the
program text alone.

A language is strongly typed if it is possible to ensure that
e;/er'y expression is type consistent based on the program text
alone.

A language is dynamically typed if only values have fixed type.
Variables and parameters may take on different types at run-
time, and must be checked immediately before they are used.

sze consistency may be assured by (i) compile-time Tyfe_
checking, (ii) type inference, or (iii) dynamic type-checking.

Kinds of Types

All programming languages provide some set of built-in
types.

A Primitive types: booleans, integers, floats, chars ...
Q Composite types: functions, lists, tuples ...

Most strongly-typed modern languages provide for additional
user-defined types.

Q User-defined types: enumerations, recursive types,
generic types, objects ...

Type Completeness

The Type Completeness Principle:

No operation should be arbitrarily restricted in the
types of values involved. — Watt

First-class values can be evaluated, passed as arguments and
used as components of composite values.

Functional languages attempt to make no class distinctions,
whereas imperative languages typically treat functions (at
best) as second-class values.

187.

PS — 52003
Function Types
Function types allow one to deduce the types of expressions
without the need to evaluate them:
fact :: Int -> Int
42 :: Int = fact 42 :: Int

Int -> (Int -> Int)

Curried types:
-> Int

Int -> Int
and
plus 5 6 = ((plus 5) 6).
= plus 5::Int->Int

SO.
plus::Int->Int->Int

Type Systems

@ O. Nierstrasz — U. Berne

PS — 52003

188.

List Types

List Types
A list of values of type a has the type [a]:

[1] ¢:: [Int]

NB: All of the elements in a list must be of the same type!
['a', 2, False]-- this is illegal! can’t be typed!

® O. Nierstrasz — U. Berne

Type Systems

Tuple Types

Tuple Types

If the expressions x1, x2, ..., xn have types t1, t2, ..., tn
respectively, then the tuple (x1, x2, ..., xn)has the type
(tl, t2, ..., tn):

(1, [2], 3) :: (Int, [Int], Int)
('a', False) :: (Char, Bool)
((1,2),(3,4)) :: ((Int, Int), (Int, Int))

The unit type is written () and has a single element which is
also written as ().

PS — 52003 190.

User Data Types

New data types can be introduced by specifying (i) a datatype
name, (ii) a set of parameter types, and (iii) a set of
constructors for elements of the type:

data DatatypeName al ... an = constrl | ... | constrm

where the constructors may be either:
1. Named constructors:
Name typel ... typek

2. Binary constructors (i.e., starting with ™:"):
typel CONOP type2

© O. Nierstrasz — U. Berne Type Systems

Enumeration types

User data types that do not hold any data can model
enumerations:

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

Functions over user data types must deconstruct the
arguments, with one case for each constructor:

whatShallIDo Sun “relax”
whatShallIDo Sat = “go shopping”
whatShallIDo “guess I'll have to go to work”

PS — 52003

192.

Union types

data Temp = Centigrade Float | Fahrenheit Float

freezing :: Temp -> Bool
freezing (Centigrade temp)= temp <=
freezing (Fahrenheit temp)= temp <=

0.0
32.0

@ O. Nierstrasz — U. Berne

Type Systems

PS — 52003 193.

Recursive Data Types

A recursive data type provides constructors over the type
itself:

A

data Tree a = Lf a | Tree a :": Tree a

mytree = (Lf 12 :": (Lf 23 :": Lf 13)) :": Lf 10

A
° °
°

e \Lf 10
PRl
LEf 12 it

Lf 23 L 13

mytree

? :t mytree & mytree :: Tree Int

© O. Nierstrasz — U. Berne Type Systems

Using recursive data types

leaves, leaves' :: Tree a -> [a]
leaves (Lf 1) = [1]
leaves (1 :": r) = leaves 1 ++ leaves r

leaves' t = leavesAcc t []
where leavesAcc (Lf 1) = (1:)
leavesAcc (1 :": r) = leavesAcc 1 . leavesAcc r

® What do these functions do?
S Which function should be more efficient? Why?
& What is (I:) and what does it do?

PS — 52003

195

Monomorphism

Languages like Pascal and € have monomorphic type systems:

every constant, variable, parameter and function result has a

unique type.
d good for type-checking
A bad for writing generic code

== it is impossible in Pascal to write a generic sort

procedure

@ O. Nierstrasz — U. Berne

Type Systems

PS — 52003 196.

Polymorphism

A polymorphic function accepts arguments of different types:
length :: [a] -> Int
length [] 0
length (x:xs) 1 + length xs

map :: (a -> b) -> [a] -> [b]
map £ [] []
map f (x:xs) f x : map £ xs

(.) 2 (b ->c) -> (a -> b) -> (a -> ¢c)
(£ . g) x £ (g x)

® O. Nierstrasz — U. Berne Type Systems

Type Inference

We can infer the type of many expressions by simply examining
their structure. Consider:

length [] =0
length (x:xs) = 1 + length xs

Clearly:
length :: a -> b

Furthermore, b is obvious int, and ais a list, so:
length :: [c] -> int

We cannot further refine the type, so we are done.

PS — 52003 198.

Composing polymorphic types

We can deduce the types of expressions using polymorphic
functions by simply binding type variables to concrete types.

Consider:
length :: [a] -> Int
map :: (a -=> b) -> [a] -> [b]
Then:
map length :: [[a]] -> [Int]
[“Hello”, “World”] :: [[Char]]

map length [“Hello”, “World”] :: [Int]

® O. Nierstrasz — U. Berne Type Systems

Polymorphic Type Inference

Hindley-Milner Type Inference provides an effective
algorithm for automatically determining the types of

polymorphic functions.
o e

map :: X -> Y -> Z

map f
map f

map :: (a -> b) -> -> [b]

The corresponding type system is used in many modern
functional languages, including ML and Haskell.

Type Specialization

A polymorphic function may be explicitly assigned a more
specific type:

idInt :: Int -> Int

1dInt x = X

Note that the :t command can be used to find the type of a
particular expression that is inferred by Haskell:

? it \x -> [x]
D \x => [x] :: a => [a]

? :t (\x -> [x]) :: Char -> String
> \x => [x] :: Char -> String

PS — 52003 201.

Kinds of Polymorphism

Polymorphism:
3 Universal:

— Parametric: polymorphic map function in Haskell,
nil/void pointer type in Pascal/C

— Inclusion: subtyping — graphic objects
4 Ad Hoc:
— Overloading: + applies to both integers and reals

— Coercion: integer values can be used where reals are
expected and v.v.

© O. Nierstrasz — U. Berne Type Systems

PS — 52003 202.

Coercion vs overloading

Coercion or overloading — how does one distinguish?
3+ 4

w W w
o + o
+ & +
.|>234>

% Are there several overloaded + functions, or just one, with
values automatically coerced?

© O. Nierstrasz — U. Berne Type Systems

PS — 52003 203.

Overloading

Overloaded operators are introduced by means of type classes:
class Eq a where
==), (/=) :: a -> a -> Bool
X /=y = not (x ==1y)

A type class must be instantiated to be used:
instance Eqg Bool where

True == True = True
False == False = True
== = False

© O. Nierstrasz — U. Berne Type Systems

Instantiating overloaded operators

For each overloaded instance a separate definition must be
given ...

instance Eq Int where (==) = primEqgInt
instance Eq Char where ¢ == d = ord ¢ == ord d
instance (Eq a, Eq b) => Eq (a,b) where

(x,y) == (u,v) X==u && y==V

instance Eq a => Eq [a] where

[1 == [1] = True

[1] == (y:ys) = False

(X:xs) == [] = False

(X:xs) == (y:ys) = X==y && XS==YyS

PS — 52003 205.

Equality for Data Types
Why not automatically provide equality for all types of values?

User data types:
data Set a = Set [a]
instance Eq a => Eq (Set a) where
Set xs == Set ys = xs subset ys && ys subset xs
where xs “subset™ ys = all ("elem ys) xs

& How would you define equality for the Tree data type?

NB: all (‘elem’ ys) xs tests that every x in xs is an element of ys

© O. Nierstrasz — U. Berne Type Systems

PS — 52003 206.

Equality for Functions

Functions:
? (1==) == (\x->1==Xx)
ERROR: Cannot derive instance 1n expression
**% Expression : (==) d148 ((==) {dict} 1) (\x-

>(==) {dict} 1 x)
*** Required instance : Eq (Int -> Bool)

Determining equality of functions is undecidable in generall

© O. Nierstrasz — U. Berne Type Systems

PS — 52003 207.

o v 0 O @

o & 0

What you should know!

How are the types of functions, lists and tuples specified?

How can the type of an expression be inferred without
evaluating it?

What is a polymorphic function?

How can the type of a polymorphic function be inferred?
How does overloading differ from parametric
polymorphism?

How would you define == for tuples of length 3?

How can you define your own data types?

Why isn't == pre-defined for all types?

© O. Nierstrasz — U. Berne Type Systems

PS — 52003 208.

Can you answer these questions?

& Can any set of values be considered a type?

& Why does Haskell sometimes fail to infer the type of an
expression?

& What is the type of the predefined function all? How
would you implement it?

& How would you define equality for the Tree data type?

® O. Nierstrasz — U. Berne Type Systems

PS — 52003 209.

/. Introduction to the Lambda
Calculus

Overview
A What is Computability? — Church's Thesis
A Lambda Calculus — operational semantics
A The Church-Rosser Property
d Modelling basic programming constructs

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 210.

References

A Paul Hudak, "Conception, Evolution, and Application of
Functional Programming Languages,” ACM Computing
Surveys 21/3, Sept. 1989, pp 359-411.

A Kenneth C. Louden, Prolgramming Languages: Principles
and Practice, PWS Publishing (Boston), 1993.

Q H.P. Barendregt, The Lambda Calculus — I'ts Syntax and
Semantics, North-Holland, 1984, Revised edition.

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 211,

What is Computable?

Computation is usually modelled as a mapping from inputs to
outputs, carried out by a formal "machine,”" or program, which
processes its input in a sequence of steps.

Problem
" : yes
— Effectively
™ computable”
B function ™\
no
input program/machine output

An "effectively computable” function is one that can be
computed in a finite amount of time using finite resources.

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

Church’'s Thesis

Effectively computable functions [from positive
integers to positive integers]are just those definable
in the lambda calculus.

Or, equivalently:

It is not possible to build a machine that is more
powerful than a Turing machine.

Church'’s thesis cannot be proven because “"effectively

computable” is an infuitive notion, not a mathematical one. Tt
can only be refuted by giving a counter-example — a machine
that can solve a problem not computable by a Turing machine.

So far, all models of effectively computable functions have
shown to be equivalent to Turing machines (or the lambda
calculus).

PS — 52003 213.

Uncomputability

A problem that cannot be solved by any Turing machine in finite
time (or any equivalent formalism) is called uncomputable.

Assuming Church’s thesis is true, an uncomputable problem
cannot be solved by any real computer.

The Halting Problem:

Given an arbitrary Turing machine and its input tape,
will the machine eventually halt?

The Halting Problem is provably uncomputable — which means
that it cannot be solved in practice.

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 214.

What is a Function? (I)

Extensional view:

A (total) functionf: A — B isa subset of A x B (i.e., a relation)
such that:

1. for each a€A, there exists some (a,b) € f
(i.e., f(a) is defined), and

2. if (Cl,bl) € f and (a, bz) e f, then b1 = by
(i.e., f(a) is unigue)

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 215.

What is a Function? (II)

Intensional view:

A function f: A — B is an abstraction h X . e, where x is a
variable name, and e is an expression, such that when a value
aEA is substituted for x in e, then this expression (i.e., f(a))
evaluates to some (unique) value b&B.

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 216.

What is the Lambda Calculus?

The Lambda Calculus was invented by Alonzo Church [1932] as
a mathematical formalism for expressing computation by
functions.

Syntax:
e = X a variable
| Ax.e anabstraction (function)
| eje; a (function) application

A X . x — is a function taking an argument x, and returning x

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 217.

Parsing Lambda Expressions

Lambda extends as far as possible to the right

Afxy = A f.(xy)
Application is left-associative
XYy Z = (xy)z

Multiple lambdas may be suppressed

A f g.x AMf.Ahg.x

® O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 218.

What is the Lambda Calculus? ...

(Operational) Semantics:

a conversion AX.e<> Ay.[Yy/x]e wherey is not
(renaming): freein e
B reduction (AXx.e))er— [eyx/x]ey avoiding name
(application): capture
AX.ex— e if x is not free

ion:
n reduction ine

The lambda calculus can be viewed as the simplest possible
pure functional programming language.

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 219.

Beta Reduction

Beta reduction is the computational engine of the lambda
calculus:

Define: T=\Xx.X

Now consider:

IT=(Ax.x)(Ax.x) — [Ax.x/x]x B reduction
= AX.X substitution
- I

® O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 220.

Lambda expressions in Haskell

We can implement most lambda expressions directly in Haskell:
i=\x ->x
2?15
5
(2 reductions, 6 cells)
2115
5
(3 reductions, 7 cells)

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 221.

Lambdas are anonymous functions

A lambda abstraction is just an anonymous function.
Consider the Haskell function:
compose f g x = f£(g(x))
The value of compose is the anonymous lambda abstraction:
Afgx.f(gx)

NB: This is the same as:
M .hg.Ax.f(gXx)

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003

222

1.
1.
2.

A Few Examples

(Ax.x)y
(Ax.f x)

XY

3. (Ax.x) (Ax.x)
4. (Ax.xvy)z

5. (Axy.x)tf
6.
-
8
9.

(Axy z.zxy)ab (Axy.x)

. (M g.f g) (\x.x) (\x.x) z
. (Axyxy)y

(Ax y.xy) (Ax.x) (Ax.x)

10. (Ax y.x y) ((Ax.x) (Ax.Xx))

@ O. Nierstrasz — U. Berne

Introduction to the Lambda Calculus

Free and Bound Variables

The variable x is bound by A in the expression: A x.e
A variable that is not bound, is free:

fv(x) = { x}

fv(e; e,) = fv(eq) U fv(e,)
fv(h x .e) = fv(e) -{ x }

An expression with no free variables is closed.
(AKA a combinator.) Otherwise it is open.

For example, y is bound and x is free in the (open) expression:
AY . XY

PS — 52003 224.

“"Hello World” in the Lambda Calculus

hello world

& Is this expression open? Closed?

® O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 225.

Why macro expansion is wrong

Syntactic substitution will not work:

(Axy.xy)y —=[y/x]J(\Ny.xy) preduction
= (Ay.yYy) incorrect substitution!

Since y is already boundin (Ay . X y), we cannot directly
substitute y for x.

® O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 226.

Substitution
We must define substitution carefully to avoid name capture:
[e/x]x=e
[e/x]y=y if X=y

[e/x] (e1 e2) = ([e/x] eq) ([e/x] &)

[e/x](Ax.e))=(AX.eq)
[e/x](Ly.e))=(y.[e/x]eq) if x=yandy & fv(e)
[e/xX](Ly.e))=(\z.[e/x][z/y]e1) if x=yand
z & fv(e) U fv(e;)
Consider:
r v T

(AX. ((ry.X)(Ax.x))x)y —=[y/x]J((Ary.x)(Ax.x)) X
=((rz.y)(Ax.x))y

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 227.

Alpha Conversion

Alpha conversions allow us to rename bound variables.

A bound name x in the lambda abstraction (A x.e) may be
substituted by any other name y, as long as there are no free
occurrences of y in e:

Consider:

(AXYy.Xy)y — (AXxz.Xx2)Yy a conversion
— [y/x](hz.x2) B reduction
— (Mz.y z)
=y n reduction

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 228.

Eta Reduction

Eta reductions allow one to remove "redundant lambdas”.

Suppose that f is a closed expression
(i.e., there are no free variables in f).

Then:
(Ax.fx)y —=fy B reduction

So, (A x.f x)behaves the same as f |

Eta reduction says, whenever x does not occur free in f, we can
rewrite (A x.f x)as f.

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 229.

Normal Forms

A lambda expression is in normal form if it can no longer be
reduced by beta or eta reduction rules.

Not all lambda expressions have normal forms!

Q=(AX.xXX)(Ax.XxXxX)=[(Ax.xx)/x](xx)
=(Ax.xxX)(Ax.xXx) preduction
—(AX.xxX)(AX.xX) preduction
—(AX.xxX)(AX.xX) preduction

LN]

Reduction of a lambda expression to a normal form is analogous
to a Turing machine halting or a program terminating.

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 230.

Evaluation Order

Most programming languages are strict, that is, all expressions
passed to a function call are evaluated before control is passed
to the function.

Most modern functional languages, on the other hand, use lazy
evaluation, that is, expressions are only evaluated when they
are needed.

Consider:
sgr n = n * n
Applicative-order reduction:
sqr (2+5) @ sqr 7 w 7*7 = 49
Normal-order reduction:
SQr (245) ™ (245) * (245) © 7 * (245) © 7 * 7 © 49

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 231.

The Church-Rosser Property

"If an expression can be evaluated at all, it can be
evaluated by consistently using normal-order
evaluation. If an expression can be evaluated in
several different orders (mixing normal-order and
applicative order reduction), then all of these
evaluation orders yield the same result.”

So, evaluation order “"does not matter” in the lambda calculus.

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 232.

Non-termination

However, applicative order reduction may not terminate, even
if a normal form exists!

(Ax.y)((Ax.xx)(Ax.xXx))

Applicative order reduction Normal order reduction
—(AXx.y)((Ax.xx)(Ax.xXx)) —y
—(AXx.y)((Ax.xx)(Ax.xXx))

LN]

Compare to the Haskell expression:
(\x ->\y ->x)1 (5/0) =1

® O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 233.

Currying

Since a lambda abstraction only binds a single variable,
functions with multiple parameters must be modelled as
Curried higher-order functions.

As we have seen, to improve readability, multiple lambdas are
suppressed, so:

AXY . X=AX.AY.X
Abxy.bxy=Ab.Ax.Ay.(bx)y

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

Representing Booleans

Many programming concepts can be directly expressed in the
lambda calculus. Let us define:

True = AXy. X
False = Axy.y
not = Ab.b False True
if bthenxelsey =Abxy.bxy
then:
not True = (Ab .b False True) (Axy.x)
— (A Xxy.x)False True
— False
if True thenxelsey = (Abxy . bxy)(Axy.x)xy

— (AXy.xX)XYy
— X

Representing Tuples

Although tuples are not supported by the lambda calculus, they
can easily be modelled as higher-order functions that "wrap"
pairs of values.

n-tuples can be modelled by composing pairs ...

Define: pair = (AXyz.zXxY)
first = (Ap.p True)
second = (A p.p False)

then: (1,2) = pair12
—-(Az.212)
first (pair 1 2) — (pair 1 2) True
— True 12

—1

PS — 52003 236.

Tuples as functions

In Haskell:

t = \x -> \y > X

f =\x => \y -=>y

pair =\x > \y > \z >z xy
first =\p ->p t

second = \p -> p f£
? first (pair 1 2)

first (second (pair 1 (pair 2 3)))

N eV

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 237.

Representing Numbers

There is a "standard encoding” of natural numbers into the
lambda calculus:

Define:

O=(Ax.x)
succ = (An. (False, n))

then:
1 =5succO — (False, 0)
2 = succ 1 — (False, 1)
3 = succ 2 — (False, 2)
4 = succ 3 — (False, 3)

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

Working with numbers

We can define simple functions to work with our numbers.

Consider:
iszero = first
pred = second

then:
iszero 1 = first (False, O) — False
iszeroO0=(Ap.pTrue)(Ax.x) — True
pred 1 = second (False, 0) — 0

& What happens when we apply pred 0? What does this mean?

PS — 52003 239.

What you should know!

& Is it possible to write a Pascal compiler that will generate
code just for programs that terminate?

What are the alpha, beta and eta conversion rules?

What is name capture? How does the lambda calculus avoid
it?

What is a normal form? How does one reach it?

What are normal and applicative order evaluation?

Why is normal order evaluation called lazy?

How can Booleans, tuples and numbers be represented in
the lambda calculus?

g @

o o O 0

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 240.

Can you answer these questions?

How can name capture occur in a programming language?
What happens if you try to program Q in Haskell? Why?

What do you get when you try to evaluate (pred 0)? What
does this mean?

& How would you model negative integers in the lambda
calculus? Fractions?

& Is it possible to model real numbers? Why, or why not?

g 0 ¢

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus

PS — 52003 241.

8. Fixed Points

Overview
4 Recursion and the Fixed-Point Combinator
d The typed lambda calculus
A The polymorphic lambda calculus
A quick look at process calculi

References:

A Paul Hudak, "Conception, Evolution, and Application of
Functional Programming Languages,” ACM Computing
Surveys 21/3, Sept. 1989, pp 359-411.

@ O. Nierstrasz — U. Berne Fixed Points

PS — 52003

242.

Recursion

Suppose we want to define arithmetic operations on our
lambda-encoded numbers.

In Haskell we can program:
plus n m
| n -

| otherwise

m
plus (n-1) (m+1l)

so we might try to "define":

plus=Anm.iszeronm (plus (predn) (succm))

Unfortunately this is not a definition, since we are trying to use

plus before it is defined. I.e, plus is free in the "definition

lII

@ O. Nierstrasz — U. Berne

Fixed Points

Recursive functions as fixed points

We can obtain a closed expression by abstracting over plus:
rplus = A plus nm . iszero n
m
(plus (predn) (succm))

rplus takes as its argument the actual plus function to use and
returns as its result a definition of that function in terms of

itself. In other words, if fplus is the function we want, then:
rplus fplus <= fplus

I.e., we are searching for a fixed point of rplus ...

PS — 52003 244,

Fixed Points

A fixed point of a function £ is a value p such that £ p = p.

Examples:
fact 1 =1
fact 2 = 2
fib 0 =0
fib1 =1

Fixed points are not always "well-behaved":
succ n = n + 1

S What is a fixed point of succ?

@ O. Nierstrasz — U. Berne Fixed Points

Fixed Point Theorem

Theorem:

Every lambda expression e has a fixed point p such that
(e p) < p.
Proof: Let:

Y =AM . (Ax.f(xx)(x.f(xx))
Now consider:
p=Ye - (Ax.e(xx))(Ax.e(xx))
—e((Ax.e(xx)(\x.e(xx)))
= ep

So, the "magical Y combinator” can always be used to find a
fixed point of an arbitrary lambda expression.

PS — 52003 246.

How does Y work?

Recall the non-terminating expression
Q=(AX.XX)(AX.XX)

Q loops endlessly without doing any productive work.
Note that (x x) represents the body of the "loop”.

We simpI)/ define Y to take an extra parameter f, and put it
into the loop, passing it the body as an argument:

YerAf . (Ax.f(xx)(x.f(xx))

So Y just inserts some productive work into the body of @

@ O. Nierstrasz — U. Berne Fixed Points

PS — 52003

247.

Using the Y Combinator

Consider:
f = Ax. True
then:
YT —=Tf(YT) by FP theorem
= (A x. True) (Y f)
— True
Consider:
Y succ — succ (Y succ) by FP theorem

— (False, (Y succ))

& What are succ and pred of (False, (Y succ))? What does this

represent?

@ O. Nierstrasz — U. Berne

Fixed Points

PS — 52003

248.

Recursive Functions are Fixed Points

We seek a fixed point of:

rplus = A plus nm . iszero nm (plus (pred n) (succm))

By the Fixed Point Theorem, we simply take:
plus = Y rplus
Since this guarantees that:

rplus plus <= plus
as desired!

@ O. Nierstrasz — U. Berne

Fixed Points

Unfolding Recursive Lambda Expressions

plus11 = (Y rplus)11
— rplus plus 11 (NB: fp theorem)

iszero 11 (plus (pred 1) (succ 1))
False 1 (plus (pred 1) (succ 1))
plus (pred 1) (succ 1)
rplus plus (pred 1) (succ 1)
iszero (pred 1) (succ 1)

(plus (pred (pred 1)) (succ (succ 1)))
iszero O (succ 1) (...)
True (succ 1) (...)
succ 1
2

|

bbb

bbb

PS — 52003 250.

The Typed Lambda Calculus

There are many variants of the lambda calculus.

The typed lambda calculus just decorates terms with fype
annotations:

Syn'rax: e = X' | 61132%11 621:2 | (7\ xt2’er1)1:2%rl
Operational Semantics:
A XTZ . erl = A y'cZ . [y‘EZ/x’UZ] erl yfz not free in eﬂ
(7\' th . eltl) 62172 = [QZTZ/XTZ] elrl
A X, (e x™) = e x"2 not free in e

Example:
Tr'ue = (A XA . (A yB . XA)B%A)A%(B%A)

@ O. Nierstrasz — U. Berne Fixed Points

PS — 52003 251.

The Polymorphic Lambda Calculus

Polymorphic functions like "map” cannot be typed in the typed
lambda calculus!

Need type variables to capture polymorphism:
B reduction (ii): (A x¥ . e ey, =[12/ v][e,"/x¥]e™

Example:

True = (A
True®~F=0) gA pB (a

90

(A Y X)Bea)ae(ﬁeoc)
B qA)[3 bB

@ O. Nierstrasz — U. Berne Fixed Points

Hindley-Milner Polymorphism

Hindley-Milner polymorphism (i.e., that adopted by ML and
Haskell) works by inferr'in? the type annotations for a slightly
restricted subcalculus: polymorphic functions.

If.

doubleLen len len' xs ys = (len xs) + (len' ys)
then

doubleLen length length "“aaa” [1,2,3]
is ok, but if

doubleLen' len xs ys = (len xs) + (len ys)

then
doubleLen' length *“aaa” [1,2,3]

is a type error since the argument len cannot be assigned a
unique typel

PS — 52003 253.

Polymorphism and self application

Even the polymorphic lambda calculus is not powerful enough to
express certain lambda terms.

Recall that both Q and the Y combinator make use of “self
application”:

Q=(AXx.XX)(AX.XxX)

& What type annotation would you assign to (A x . X x)?

@ O. Nierstrasz — U. Berne Fixed Points

Other Calculi

Many calculi have been developed to study the semantics of
programming languages.

Object calculi: model inheritance and subtyping ..
= |ambda calculi with records

Process calculi: model concurrency and communication
= CSP, CCS, = calculus, CHAM, blue calculus

Distributed calculi: model /ocation and failure
= ambients, join calculus

PS — 52003 255,

What you should know!

& Why isn't it possible to express recursion directly in the
lambda calculus?

& What is a fixed point? Why is it important?

& How does the typed lambda calculus keep track of the types
of terms?

& How does a polymorphic function differ from an ordinary
one?

@ O. Nierstrasz — U. Berne Fixed Points

PS — 52003 256.

Can you answer these questions?

® Are there more fixed-point operators other than ¥?

S How can you be sure that unfolding a recursive expression
will terminate?

& Would a process calculus be Church-Rosser?

® O. Nierstrasz — U. Berne Fixed Points

PS — 52003 257.

9. Introduction to Denotational
Semantics

Overview:
d Syntax and Semantics
Q Approaches to Specifying Semantics
d Semantics of Expressions
d Semantics of Assignment
4 Other Issues

References:

QA D. A. Schmidt, Denotational Semantics, Wm. C. Brown
Publ., 1986

A D. Watt, Programming Language Concepts and
Paradigms, Prentice Hall, 199

@ O. Nierstrasz — U. Berne Introduction to Denotational Semantics

Defining Programming Languages

Three main characteristics of programming languages:

1. Syntax: What is the appearance and structure of its
programs?

2. Semantics: What is the meaning of programs?

The static semantics tells us which (syntactically valid)
programs are semantically valid (i.e., which are type
correct) and the dynamic semantics tells us how to
interpret the meaning of valid programs.

3. Pragmatics: What is the usability of the language?

How easy is it to implement? What kinds of applications
does it suit?

Uses of Semantic Specifications

Semantic specifications are useful for language designers to
communicate with implementors as well as with programmers.

A precise standard for a computer implementation:

How should the language be implemented on
different machines?

User documentation: What is the meaning of a
program, given a particular combination of language
features?

A tool for design and analysis: How can the language
definition be funed so that it can be implemente
efficiently?

Input to a compiler generator: How can a reference
implementation be obtained from the specification?

PS — 52003 260.

Methods for Specifying Semantics

Operational Semantics:
w [program]| = abstract machine program
= can be simple to implement
== hard to reason about

Denotational Semantics:

= [[program] = mathematical denotation
(typically, a function)

= facilitates reasoning
= not always easy to find suitable semantic domains

@ O. Nierstrasz — U. Berne Introduction to Denotational Semantics

Methods for Specifying Semantics ...

Axiomatic Semantics:
ww [program]| = set of properties
== good for proving theorems about programs
= somewhat distant from implementation

Structured Operational Semantics:

w [program]| = fransition system
(defined using inference rules)

= good for concurrency and non-determinism
= hard to reason about equivalence

PS — 52003 262.

Concrete and Abstract Syntax

How to parse "4 * 2 + 1"?
Abstract Syntax is compact but ambiguous:

Expr ::= Num | Expr Op Expr
Op =+ =] x|
Concrete Syntax is unambiguous but verbose:
Expr ::= Expr LowOp Term | Term
Term ::= Term HighOp Factor | Factor
Factor ::= Num | (Expr)
LowOp nz 4| -
HighOp nz ok |/

Concrete syntax is needed for parsing, abstract syntax
suffices for semantic specifications.

@ O. Nierstrasz — U. Berne Introduction to Denotational Semantics

A Calculator Language

Abstract Syntax:

Prog = 'ON' Stmt

Stmt = Expr 'TOTAL' Stmt
| Expr 'TOTAL' 'OFF'

Expr = Expr; '+ Expr;

Expry '*' Expr;

'IF' Expry ', Expr, ', Exprs
'LASTANSWER'

(" Expr)’

Num

The program "ON 4 * (3 + 2) TOTAL OFF" should print out
20 and stop.

PS — 52003 264.

Calculator Semantics

We need three semantic functions: one for programs, one for
statements (expression sequences) and one for expressions.

The meaning of a program is the list of integers printed:
Programs:
P : Program — Int *
PIonST =S[IST()
A statement may use and update LASTANSWER:
Statements:
S ! ExprSequence — Int — Int *
STETOTALS JJ(n) = letn'=E [E T (n)
incons(n', SIS T (n))
S[TEToTALOFF JJ(n) = [ETE T (n)]

@ O. Nierstrasz — U. Berne Introduction to Denotational Semantics

Calculator Semantics...

Expressions:
E : Expression — Int — Int

E[E1I+E2T(n)=ETE1IT(M+E[E2
E[E1*E2](n)=ETE1T(n)xET[E2

EJirkl,E2,E3](n) =ifFEJEIT(n)=0
then€E [[E2 T (n)
e/seE [E3 I (n)

E [[LASTANSWER]]() =
EL (()=E[[E]](n)
E[[N]]()=

I (n)
I (n)

Semantic Domains
In order to define semantic mappings of programs and their

features to their mathematical denotations, the semantic
domains must be precisely defined:

data Bool = True | False

(&&), (|]) :: Bool -> Bool -> Bool
False && x = False

True && X = X

False X =X

True X = True

not :: Bool -> Bool

not True = False

not False = True

Data Structures for Abstract Syntax

We can represent programs in our calculator language as
syntax trees:

data Program = On ExprSequence

data ExprSequence = Total Expression ExprSequence
TotalOff Expression

data Expression = Plus Expression Expression
Times Expression Expression

If Expression Expression Expression
LastAnswer

Braced Expression

N Int

PS — 52003 268.

Representing Syntax

The test program " ON 4 * (3 + 2) TOTAL OFF " can be parsed
as.

Prog —— Stmt 3

4
*/
\()_+/
ON TOTAL OFF ~,

And represented as:
test = 0On (TotalOff (Times (N 4)
(Braced (Plus (N 3)

(N 2)))))

@ O. Nierstrasz — U. Berne Introduction to Denotational Semantics

PS — 52003 269.

Implementing the Calculator

We can implement our denotational semantics directly in a
functional language like Haskell:

Programs:

pp :: Program -> [Int]

pp (On s) = ss s 0
Statements:

Ss :: ExXprSequence -> Int -> [Int]

ss (Total e s) n = let n' = (ee e n)

inn' : (ss s n')
ss (TotalOff e) n = (ee en) : []

© O. Nierstrasz — U. Berne Introduction to Denotational Semantics

PS — 52003 270.

Implementing the Calculator ...

Expressions:

ee :: Expression -> Int -> Int

ee (Plus el e2) n = (ee el n) + (ee e2 n)

ee (Times el e2) n = (ee el n) * (ee e2 n)
ee (If el e2 e3) n
=0

| (ee el n) = = (ee e2 n)
| otherwise = (ee e3 n)
ee (LastAnswer) n = n
ee (Braced e) n = (ee e n)
ee (N num) n = num

@ O. Nierstrasz — U. Berne Introduction to Denotational Semantics

PS — 52003 271.

A Language with Assignment

Prog = Cmd'.’

Cmd = Cmd; ;' Cmd,
| 'if' Bool 'then’ Cmd; 'else’ Cmd,
| Id ":=" Exp

Exp = Exp; '+ Exp;
| Id
| Num

Bool := Expy; '=" Exp,
| 'not' Bool

Example:

“z ¢= 1 ; 1f a = 0 then z := 3 else z (= 2z + a .”
Input number initializes a; output is final value of z.

@ O. Nierstrasz — U. Berne Introduction to Denotational Semantics

Representing abstract syntax trees

Data Structures:

data Program
data Command

data Expression

data BooleanExpr

type Identifier

Dot Command

CSeq Command Command

Assign Identifier Expression
If BooleanExpr Command Command
Plus Expression Expression

Id Identifier

Num Int

Equal Expression Expression
Not BooleanExpr

Char

PS — 52003 273.

An abstract syntax tree

Example:
“z ¢= 1 ; 1f a = 0 then z := 3 else z (= z + a .”

Is represented as:

Dot (CSeq (Assign 'z' (Num 1))
(If (Equal (Id 'a') (Num 0))
(Assign 'z' (Num 3))
(Assign 'z' (Plus (Id 'z') (Id 'a')))

@ O. Nierstrasz — U. Berne Introduction to Denotational Semantics

PS — 52003

274.

Modelling Environments

A store is a mapping from identifiers to values:

type Store
newstore ::
newstore id

update ::
update 1id va

Identifier -> Int
Store

store'
where store'
| id' id
| otherwise

1 store

Identifier -> Int -> Store -> Store

id’
= val
store id'

@ O. Nierstrasz — U. Berne

Introduction to Denotational Semantics

PS — 52003 275.

Functional updates

Example:
envl = update 'a' 1 (update 'b' 2 (newstore))
env2 = update 'b' 3 envl

envl ‘b’
o 2
env2 ‘b’
o 3
env2 ‘z’
o 0

® O. Nierstrasz — U. Berne Introduction to Denotational Semantics

PS — 52003

276.

Semantics of assignments

pp :: Program -> Int -> Int
pp (Dot c¢) n = (cc ¢ (update 'a’ n newstore)) ‘z’

cc :: Command -> Store -> Store

cc (CSeq cl c2) s
cc (Assign id e) s
cc (If bcl c2) s

cc ¢c2 (cc cl s)
update id (ee e s) s
ifelse (bb b s)

(cc ¢l s) (cc c2 s)

@ O. Nierstrasz — U. Berne

Introduction to Denotational Semantics

PS — 52003 277.

Semantics of assignments ...

ee :: Expression -> Store -> Int

ee (Plus el e2) s = (ee e2 s) + (ee el s)
ee (Id id) s = s 1id
ee (Num n) s = n

bb :: BooleanExpr -> Store -> Bool
bb (Equal el e2) s= (ee el s) == (ee e2 s)
bb (Not b) s = not (bb b s)

i1felse :: Bool -> a -> a -> a
ifelse True x y = X
ifelse False x y y

@ O. Nierstrasz — U. Berne Introduction to Denotational Semantics

PS — 52003 278.

Running the interpreter

srcl ="z =1 ; 1fa=0+thenz :=3 elsez :=2z+ a.
astl = Dot (CSeq
(Assign 'z' (Num 1))
(If (Equal (Id 'a') (Num 0))

(Assign 'z' (Num 3))
(Assign 'z' (Plus (Id 'z') (Id 'a')))))

pp astl 10
o 11

@ O. Nierstrasz — U. Berne Introduction to Denotational Semantics

Practical Issues

Modelling:
A Errors and non-termination:
= need a special "error” value in semantic domains
d Branching:

= semantic domains in which "continuations” model "the
rest of the program” make it easy to transfer control

Interactive input
Dynamic typing

U DO

PS — 52003 280.

Theoretical Issues

What are the denotations of lambda abstractions?
Q need Scott's theory of semantic domains

What is the semantics of recursive functions?
Q need least fixed point theory

How to model concurrency and non-determinism?
A abandon standard semantic domains
a use “interleaving semantics”
A “true concurrency” requires other models ...

@ O. Nierstrasz — U. Berne Introduction to Denotational Semantics

PS — 52003

281.

What you should know!

& What is the difference between syntax and semantics?
& What is the difference between abstract and concrete

syntax?

& What is a semantic domain?
& How can you specify semantics as mappings from syntax to

behaviour?

& How can assignments and updates be modelled with (pure)

functions?

@ O. Nierstrasz — U. Berne

Introduction to Denotational Semantics

PS — 52003 282.

Can you answer these questions?

& Why are semantic functions typically higher-order?

% Does the calculator semantics specify strict or lazy
evaluation?

& Does the implementation of the calculator semantics use
strict or lazy evaluation?

& Why do commands and expressions have dif ferent semantic
domains?

@ O. Nierstrasz — U. Berne Introduction to Denotational Semantics

PS — 52003

283.

Overview

10. Logic Programming

Q Facts and Rules

3 Resolution and Unification

d Searching and Backtracking

d Recursion, Functions and Arithmetic
Q Lists and other Structures

@ O. Nierstrasz — U. Berne

Logic Programming

PS — 52003 284.

References

A Kenneth C. Louden, Programming Languages: Principles
and Practice, PWS Publishing (Boston), 1993.

Q Sterling and Shapiro, The Art of Prolog, MIT Press,
1986

A Clocksin and Mellish, Programming in Prolog, Springer
Verlag, 1981

© O. Nierstrasz — U. Berne Logic Programming

PS — 52003 285.

Logic Programming Languages

What is a Program?

A program is a database of facts (axioms) together with a set
of inference rules for proving theorems from the axioms.

Imperative Programming:
= Program = Algorithms + Data

Logic Programming:
= Program = Facts + Rules
or
= Algorithms = Logic + Control

© O. Nierstrasz — U. Berne Logic Programming

What is Prolog?

A Prolog program consists of facts, rules, and questions:

Facts are named relations between objects:
parent (charles, elizabeth).

2

$ elizabeth is a parent of charles
female(elizabeth).

(o)

2 elizabeth 1is female

Rules are relations (goals) that can be inferred from other
relations (subgoals):

mother (X, M) :- parent(X,M), female(M).
M is a mother of X
1f M is a parent of X and M is female

3
3

PS — 52003

287.

Prolog Questions

Questions are statements that can be answered using facts

and rules:

?- parent(charles, elizabeth).
L yes

?- mother(charles, M).
> M = elizabeth
yes

@ O. Nierstrasz — U. Berne

Logic Programming

Horn Clauses

Both rules and facts are instances of Horn clauses, of the
form:

Ao if Aq and Ao and ... An
Ag is the head of the Horn clause and "A;and A, and ... A" is
the body

Facts are just Horn clauses without a body:

parent(charles, elizabeth) if True
female(elizabeth) if True
mother(X, M) if parent(X,M)

and female(M)

Resolution and Unification

Questions (or goals) are answered by matching 3oals against
facts or rules, unifying variables with terms, and backtracking
when subgoals fail.

If a subgoal of a Horn clause matches the head of another
Horn clause, resolution allows us to replace that subgoal by the
body of the matching Horn clause.

Unificationlets us bind variables to corresponding values in the
matching Horn clause:

mother(charles, M)
= parent(charles, M) and female(M)

{ M =elizabeth} True and female(elizabeth)

2
= { M =celizabeth} True and True

Prolog Databases

A Prolog database is a file of facts and rules to be "consulted”
before asking questions:

parent(william, charles).
parent(william, diana).

female(anne). parent (andrew, elizabeth).
female(diana). parent (andrew, philip).
female(elizabeth). parent (anne, elizabeth).
parent (anne, philip).

male(andrew). parent (charles, elizabeth).
male(charles). parent (charles, philip).
male(edward). parent (edward, elizabeth).
male(harry). parent (edward, philip).
male(philip). parent (harry, charles).
male(william). parent (harry, diana).

(

(

PS — 52003 291.

Simple queries

?- consult('royal'). Just another query
o yes which succeeds

?- male(charles).
L yes

?- male(anne).
L’ no

?- male(mickey).
& No

© O. Nierstrasz — U. Berne Logic Programming

PS — 52003

292.

Queries with variables

You may accept or reject unified variables:
?- parent(charles, P).
> P = elizabeth <carriage return>
yes

You may reject a binding to search for others:

?- male(X).

b X = andrew ;
X = charles <carriage return>
yes

Use anonymous variables if you don't care:
?- parent(william,).
L) yes

® O. Nierstrasz — U. Berne

Logic Programming

PS — 52003 293.

Unification

Unification is the process of instantiating variables by pattern
matching.
1. A constant unifies only with itself:
?- charles = charles.
L yes
?- charles = andrew.
> NO

2. An uninstantiated variable unifies with anything:
?- parent(charles, elizabeth) = Y.
Y = parent(charles,elizabeth) ?

yes

© O. Nierstrasz — U. Berne Logic Programming

PS — 52003 294.

Unification ...

3. A structured term unifies with another termonly if it has
the same function name and number of arguments, and
the arguments can be unified recursively:

?- parent(charles, P) = parent(X, elizabeth).
P = elizabeth,

X = charles ?

yes

© O. Nierstrasz — U. Berne Logic Programming

PS — 52003

295,

Evaluation Order

In principle, any of the parameters in a query may be

instantiated or not
?- mother (X, elizabeth).
rp; X = andrew ? ;
X = anne ? ;
X = charles ? ;
X = edward ? ;
no

?- mother (X, M).
M = elizabeth,
X = andrew ?

yes

@ O. Nierstrasz — U. Berne

Logic Programming

PS — 52003

296.

Closed World Assumption

Prolog adoE’rs a closed world assumption — whatever cannot be

proved to be true, is assumed to be false.

?- mother (elizabeth,M).
& No

?- male(mickey).
L’ no

@ O. Nierstrasz — U. Berne

Logic Programming

Backtracking

Prolog applies resolution in linear fashion, replacing goals left
to right, and considering database clauses top-to-bottom.

father (X, M)
?- trace(father(charles,F)).

=

+ + + + + + + + + +
R W W DN DD W WD DD

1

1

[B N T AT NG T L I \ S I \ G T S

Call:
2 Call:
Exit:
Call:
Fail:
Redo:
Exit:
Call:
Exit:
Exit:

:— parent(X,M), male(M).

father(charles, 67) ?
parent (charles, 67) ?
parent (charles,elizabeth) ?
male(elizabeth) ?
male(elizabeth) ?

parent (charles,elizabeth) ?
parent (charles,philip) ?
male(philip) ?

male(philip) ?
father(charles,philip) ?

Comparison

The predicate = attempts to unify its two arguments:
?- X = charles.
© X = charles ?
yes

The predicate == tests if the terms instantiating its arguments
are /iterally identical:

?- charles == charles.

L) yes

?- X == charles.

> NO

?- X = charles, male(charles) == male(X).

> X = charles ?
yes

PS — 52003 299.

Comparison ...

The predicate \== tests if its arguments are not literally
identical:
?- X = male(charles), Y = charles, X \== male(Y).
> NO

© O. Nierstrasz — U. Berne Logic Programming

PS — 52003 300.

Sharing Subgoals

Common subgoals can easily be factored out as relations:
sibling(X, Y) :- mother(X, M), mother(Y, M),
father(X, F), father(Y, F),
X \==Y.

brother (X, B) :- sibling(X,B), male(B).
uncle(X, U) :- parent(X, P), brother(P, U).

sister(X, S) :- sibling(X,S), female(S).
aunt (X, A) :- parent (X, P), sister(P, A).

© O. Nierstrasz — U. Berne Logic Programming

Disjunctions

One may define multiple rules for the same predicate, just as
with facts:

isparent(C, P) :- mother(C, P).
isparent(C, P) :- father(C, P).

Disjunctions ("or") can also be expressed using the ";" operator:
isparent(C, P) :- mother(C, P); father(C, P).

Note that same information can be represented in different
forms — we could have decided to express mother/2 and
father/2 as facts, and parent/2 as a rule. Ask:

Q Which way is it easier to express and maintain facts?
A Which way makes it faster to evaluate queries?

Recursion

Recursive relations are defined in the obvious way:
ancestor (X, A) :- parent(X, A).
ancestor (X, A) :- parent(X, P), ancestor(P, A).

?- trace(ancestor (X, philip)).
&+ 1 1 Call: ancestor(61,philip) ?
+ 2 2 Call: parent(61,philip) ?
+ 2 2 Exit: parent(andrew,philip) ?
+ 1 1 Exit: ancestor(andrew,philip) ?
X = andrew ?
yes

& Will ancestor/2 always terminate?

Recursion ...

?- trace(ancestor (harry, philip)).
>+ 1 1 Call: ancestor(harry,philip) ?
+ 2 2 Call: parent(harry,philip) ?
+ 2 2 Fail: parent(harry,philip) ?
+ 2 2 Call: parent(harry, 316) ?
+ 2 2 Exit: parent(harry,charles) ?
+ 3 2 Call: ancestor(charles,philip) ?
+ 4 3 Call: parent(charles,philip) ?
+ 4 3 Exit: parent(charles,philip) ?
+ 3 2 Exit: ancestor(charles,philip) ?
+ 1 1 Exit: ancestor(harry,philip) ?
yes

& What happens if you query ancestor(harry, harry)?

Evaluation Order

Evaluation of recursive queries is sensitive to the order of the
rules in the database, and when the recursive call is made:

anc2(X, A) :- anc2(P, A), parent(X, P).
anc2(X, A) :- parent(X, A).
?- trace(anc2(harry, X)).
»+ 1 1 Call: anc2(harry, 67) ?

+ 2 2 Call: anc2(325, 67) ?

+ 3 3 Call: anc2(525, 67) ?

+ 4 4 Call: anc2(725, 67) ?

+ 5 5 Call: anc2(925, 67) ?

+ 6 6 Call: anc2(1125, 67) ?

+ 7 7 Call: anc2(1325, 67) ? abort
{Execution aborted}

PS — 52003

305.

Failure
Searching can be controlled by explicit failure:
printall(X) :- X, print(X), nl, fail.
printall().

?- printall (brother(,)).
> brother (andrew,charles)
brother (andrew, edward)

brother (anne, andrew)
brother (anne,charles)
brother(anne, edward)
brother(charles,andrew)

@ O. Nierstrasz — U. Berne

Logic Programming

Cuts

The cut operator (1) commits Prolog to a particular search path:

parent(C,P) :- mother(C,P), !.
parent(C,P) :- father(C,P).

Cut says to Prolog:

"This is the right answer to this query. If later you are
forced to backtrack, please do not consider any
alternatives to this decision.”

PS — 52003

307.

Negation as failure

Negation can be implemented by a combination of cut and fail:

not(X) :- X, !, fail. % 1f X succeeds, we fail
not(). % 1f X fails, we succeed

® O. Nierstrasz — U. Berne

Logic Programming

PS — 52003 308.

Changing the Database

The Prolog database can be modified dynamically by means of
assert and retract:

rename(X,Y) :- retract(male(X)),
assert(male(Y)), rename(X,Y).
rename(X,Y) :- retract(female(X)),
assert(female(Y)), rename(X,Y).
rename(X,Y) :- retract(parent(X,P)),
assert(parent(Y¥,P)), rename(X,Y).
rename(X,Y) :- retract(parent(C,X)),
assert(parent(C,Y)), rename(X,Y).
rename(,).

© O. Nierstrasz — U. Berne Logic Programming

PS — 52003 309.

Changing the Database ...

?- male(charles); parent(charles,).

L) yes

?- rename(charles, mickey).

L yes

?- male(charles); parent(charles,).
& no

NB: With SICSTUS Prolog, such predicates must be declared
dynamic:
:— dynamic male/l1, female/l, parent/2.

© O. Nierstrasz — U. Berne Logic Programming

PS — 52003

310.

Functions and Arithmetic

Functions are relations between expressions and values:

?- X 1is 5 + 6.
X =11 ?

Is syntactic sugar for:
is(X, *+(5,6))

® O. Nierstrasz — U. Berne

Logic Programming

PS — 52003 311,

Defining Functions

User-defined functions are written in a relational style:

fact(0,1).

fact(N,F) :-= N > 0,
Nl is N - 1,
fact(N1,F1l),
F is N * Fl1.

?- fact(10,F).
2w F = 3628800 ?

© O. Nierstrasz — U. Berne Logic Programming

Lists

Lists are pairs of elements and lists:

Formal object Cons pair syntax Element syntax
(a,[]) [al[]] [a]
(a,.(b,[]) [al[b|[]]] [a.b]
(a,.(b,.(c,[DN|[allbllcl[11]] [a.b,c]
(a, b) [al|b] [al|b]
(a, (b, 0)) [al[blc]] [a.b]c]

Lists can be deconstructed using cons pair syntax:

?- [a,b,c] = [a]X].
X = [b,c]?

PS — 52003 313.

Pattern Matching with Lists

in(x, [X]| _1).
in(X, [_ | L]) :-in(X, L).

?- in(b, [a,b,c]).
L yes

?- in(X, [a,b,c]).

X =a ? ;
X =Db ? ;
X =c¢c ? ;
no

© O. Nierstrasz — U. Berne Logic Programming

PS — 52003

314.

Pattern Matching with Lists ...

Prolog will automatically introduce new variables to represent

unknown terms:

al| A]?;
L=[A,a| B1]?;
L=[A, B,al| C17?;
L=[A, B, C,al| D1°?
yes

@ O. Nierstrasz — U. Berne

Logic Programming

PS — 52003 315.

Inverse relations

A carefully designed relation can be used in many directions:
append([]1,L,L).
append([X|L1],L2,[X|L3]) :- append(Ll,L2,L3).

?- append([a]I[b]lX)'
> X = [a,b]

?- append(X,Y¥,[a,b]).
X =1[]Y=[aDb];
X =[a] Y = [b] ;
X = [a,b] ¥ =[]
yes

© O. Nierstrasz — U. Berne Logic Programming

Exhaustive Searching

Searching for permutations:
perm([],[1)-.
perm([C|S1],S2) :- perm(S1,Pl),
append(X,Y,P1),

% split PlI
append(X,[C|Y],S2).

- printall(perm([a,b,c,d],)).
d>perm(a,b,c,d],[a,b,c,d])
perm([a,b,c,d],[b,a,c,d])
perm([a,b,c,d],[b,c,a,d])
perm(:alblcld:l:blcldla:)
perm(:alblcld:l:alclbld:)

PS — 52003 317.

Limits of declarative programming

A declarative, but hopelessly inefficient sort program:

ndsort(L,S) :- perm(L,S),
issorted(S).

issorted([]).

issorted([_ 1]).

issorted([N,M|S]) :- N =< N,
issorted([M|S]).

Of course, efficient solutions in Prolog do exist!

© O. Nierstrasz — U. Berne Logic Programming

PS — 52003 318.

What you should know!

What are Horn clauses?
What are resolution and unification?

How does Prolog attempt to answer a query using facts and
rules?

When does Prolog assume that the answer to a query is
false?

When does Prolog backtrack? How does backtracking work?
How are conjunction and disjunction represented?

What is meant by "negation as failure”?

How can you dynamically change the database?

o 9 0 0

o o O 0

© O. Nierstrasz — U. Berne Logic Programming

PS — 52003 319.

Can you answer these questions?

> How can we view functions as relations?

& Is it possible to implement negation without either cut or
fail?

& What happens if you use a predicate with the wrong number
of arguments?

&~ What does Prolog reply when you ask not (male(X)). ?
What does this mean?

© O. Nierstrasz — U. Berne Logic Programming

PS — 52003 320.

11. Applications of Logic
Programming

Overview
A I. Search problems
i SEND + MORE = MONEY
Q IT. Symbolic Interpretation
= Definite Clause Grammars
= Interpretation as Proof
= An interpreter for the calculator language

Reference

A The Ciao Prolog System Reference Manual, Technical
Report CLIP 3/97.1, www.clip.dia.fi.upm.es

© O. Nierstrasz — U. Berne Applications of Logic Programming

http://www.clip.dia.fi.upm.es/

PS — 52003

321.

I. Solving a puzzle

& Find values for the letters so the following equation holds:

SEND
+MORE

® O. Nierstrasz — U. Berne

Applications of Logic Programming

PS — 52003 322.

A non-solution:

We would /ike to write:

soln0 :- is 1000*S + 100*E + 10*N + D,

is 1000*M + 100*0 + 10*R + E,

is 10000*M + 1000*O + 100*N + 10*E + Y,
1s A+B,

showAnswer (A,B,C).

Q Q W >

showAnswer (A,B,C) :- writeln([A, ' + ', B, ' ="', C]).
writeln([]) :- nl.
writeln([X|L]) :- write(X), writeln(L).

© O. Nierstrasz — U. Berne Applications of Logic Programming

PS — 52003 323.

A non-solution ...

?- soln0.

& » evaluation error: [goal(1007 is 1000 * 1008 +
100 * 1009 + 10 * 1010 + 1011),
argument index(2)]
[Execution aborted]

But this doesn't work because "is” can only evaluate
expressions over instantiated variables.

?- 5 is 1 + X,

©» evaluation error: [goal(5 1is
1+ 64),argument index(2)]
[Execution aborted]

© O. Nierstrasz — U. Berne Applications of Logic Programming

A first solution

So let’s instantiate them first:
digit(0). digit(1l). digit(2). digit(3). digit(4).
digit(5). digit(6). digit(7). digit(8). digit(9).
digits([]).
digits([D|L]):- digit(D), digits(L).

$ pick arbitrary digits:

solnl :- digits([S,E,N,D,M,0O,R,E,M,0,N,E,Y]),
A is 1000*S + 100*E + 10*N + D,
B is 1000*M + 100*0 + 10*R + E,
C is 10000*M + 1000*0 + 100*N + 10*E + Y,
C is A+B, % check if solution is found
showAnswer (A,B,C).

PS — 52003 325.

A first solution ...

This is now correct, but yields a trivial solution!

solnl.
>0 +0=20
yes

© O. Nierstrasz — U. Berne Applications of Logic Programming

PS — 52003

326.

A second (non-)solution

So let’s constrain S and M:

soln?2

:- digits([S,M]),

not(S==0), not(M==0), % backtrack if 0
digits([NIDIMIOIRIEIMIOINIEIY])I

A is 1000*s + 100*E + 10*N + D,

B is 1000*M + 100*0 + 10*R + E,

C is 10000*M + 1000*0 + 100*N + 10*E + Y,
C is A+B,

showAnswer (A,B,C).

® O. Nierstrasz — U. Berne Applications of Logic Programming

PS — 52003 327.

A second (non-)solution ...

Maybe it works. We'll never know ...

soln2.
> [Execution aborted]

after 8 minutes still running ...

> What went wrong?

© O. Nierstrasz — U. Berne Applications of Logic Programming

PS — 52003 328.

A third solution

Let's try to exercise more control by instantiating variables
bottom-up:
sum([],0).
sum([N|L], TOTAL) :- sum(L,SUBTOTAL),
TOTAL is N + SUBTOTAL.

¢ Find D and C, where)L is D + 10*C, digit(D)
carrysum(L,D,C) :-
sum(L,S), C is S/10, D is S - 10*C.

?- carrysum([5,6,7],D,C).
D = 8
C =1

® O. Nierstrasz — U. Berne Applications of Logic Programming

A third solution ...

We instantiate the final digits first, and use the carrysum to
constrain the search space:

soln3 :- digits([D,E]), carrysum([D,E],Y,Cl),
digits([N,R]), carrysum([Cl,N,R],E,C2),
digit(0), carrysum([C2,E,O0],N,C3),
digits([S,M]), not(S==0), not(M==0),
carrysum([C3,S,M],0,M),
A is 1000*S + 100*E + 10*N + D,
B is 1000*M + 100*0 + 10*R + E,
C is A+B,
showAnswer (A,B,C).

PS — 52003

330.

A third solution ...

This is also correct, but uninteresting:

soln3.
o 9000 + 1000 = 10000
yes

® O. Nierstrasz — U. Berne

Applications of Logic Programming

PS — 52003 331.

A fourth solution

Let's try to make the variables unigue:

% There are no duplicate elements in the argument list
unique([X|L]) :- not(in(X,L)), unique(L).
unique([]).

in(X, [X|_])-
in(X, [|L]) :- in(X, L).

?- unique([a,b,c]).
L yes
?- unique([a,b,a]).
L’ NO

© O. Nierstrasz — U. Berne Applications of Logic Programming

soln4

A fourth solution ...

:- L1 = [D,E], digits(Ll), unique(Ll),

carrysum([D,E],Y,Cl),

= [N,R,Y|L1], digits([N,R]), unique(L2),
carrysum([Cl,N,R],E,C2),

= [0|L2], digit(0), unique(L3),
carrysum([C2,E,O0],N,C3),
L4 = [S,M|L3], digits([S M]),

not(S==0), not(M==0), unique(L4),

carrysum([C3,S,M],0,M),
A is 1000*Ss + 100*E + 10*N + D,
B is 1000*M + 100*0 + 10*R + E,
C is A+B,
showAnswer (A,B,C).

PS — 52003 333.

A fourth solution ...

This works (at last), in about 1 second on a 63 Powerbook.

soln4.
o 9567 + 1085 = 10652
yes

© O. Nierstrasz — U. Berne Applications of Logic Programming

PS — 52003 334.

IT. Symbolic Interpretation

Prolog is an ideal language for implementing small languages:
Q Implement BNF using Definite Clause Grammars

A Implement semantic rules directly as Prolog rules

© O. Nierstrasz — U. Berne Applications of Logic Programming

PS — 52003

335.

Goal-directed interpretation

L “ON 0 TOTAL OFF” | Inputstring

"~ [on, 0, total, off] List of tokens

Parse tree

prog
|
Parser - s ﬂ‘m +
expr(0)
Interpreter
~i

[

0

] Output value

@ O. Nierstrasz — U. Berne

Applications of Logic Programming

PS — 52003 336.

Definite Clause Grammars

Definite clause grammars are an extension of context-free
grammars.

A DCG rule in Prolog takes the general form:
head --> body.
meaning “a possible form for head is body".

The head specifies a non-terminal symbol, and the body
specifies a sequence of terminals and non-terminals.

© O. Nierstrasz — U. Berne Applications of Logic Programming

PS — 52003 337.

Definite Clause Grammars ...

A Non-terminals may be any Prolog term (other than a
variable or number).

d A sequence of zero or more terminal symbols is written
as a Prolog /ist. A sequence of ASCIT characters can be

written as a string.

d Side conditions containing Prolog goals may be written in
{ } brackets in the right-hand side of a grammar rule.

© O. Nierstrasz — U. Berne Applications of Logic Programming

PS — 52003 338.

Example

This grammar parses an arithmetic expression (made up of
digits and operators) and computes its value.

expr(z) --> term(X), "+", expr(Y), {Z is X + Y}.
expr(z) --> term(X), "-", expr(Y¥), {Z is X - Y}.
expr(X) --> term(X).

term(Z) --> number(X), "*", term(Y), {Z is X * Y}.
term(Z) --> number(X), "/", term(Y), {Z is X / Y}.
term(Z) --> number(Z).

number (C) --> "+", number(C).
number (C) --> "-", number(X), {C is -X}.
number (X) --> [C], {0'0=<C, C=<0'9, X is C - 0'0}.

® O. Nierstrasz — U. Berne Applications of Logic Programming

PS — 52003 339.

How to use this?

The query
| ?- expr(z, "-2+3*5+1", []).

will compute z=14.

© O. Nierstrasz — U. Berne Applications of Logic Programming

PS — 52003 340.

How does it work?

DCG rules are just syntactic sugar for normal Prolog rules.
expr(z) --> term(X), "+", expr(Y), {Z is X + Y}.
translates to:

expr(Zz, S0, S) :-
term(X, S0, S1l),
‘C’(S1,43,S2),
expr(Y, S2, S),
Z is X + Y .

input and goal
pass along state
"uyrr — [43]

OO0 OO o©

'C' is a built-in predicate to recognize terminals.

© O. Nierstrasz — U. Berne Applications of Logic Programming

PS — 52003 341.

Lexical analysis

We can use DCGs for both scanning and parsing.
Our lexer will convert an input atom into a list of tokens:

lex(Atom, Tokens) :-
name (Atom, String),
scan(Tokens, String, []), !.

scan([T|Tokens]) -->
whitespaceO, token(T), scan(Tokens).
scan([]) --> whitespace0.

© O. Nierstrasz — U. Berne Applications of Logic Programming

PS — 52003

342.

Recognizing Tokens

We will represent simple tokens by Prolog atoms:

token(on) -=>
token(total) -->
token(off) -=>
token(1if) -=>
token(last) -->
token(',") —=>
token('+"') -—>
token('*") -=>
token(' (") -=>
token(') ") -—>

"ON".
"TOTAL".
"OFF".

"IF".
"LASTANSWER".

@ O. Nierstrasz — U. Berne

Applications of Logic Programming

PS — 52003 343.

Recognizing Numbers

and a number N by the term num(N):
token(num(N)) --> digits(DL), { asnum(DL, N, 0) }.

digits([D|L]) =--> digit(D), digits(L).
digits([D]) --> digit (D).

digit (D) --> [D], { "0" =< D, D =< "9" },

& How would you implement asnum/3?

© O. Nierstrasz — U. Berne Applications of Logic Programming

PS — 52003

344.

Concrete Grammar

To parse a language, we need an unambiguous grammar!

p =
S =

e =

el

el

e3

‘ON’ s

e 'TOTAL’ S

e 'TOTAL’ ‘OFF’
‘IF' el *,7el ", el
el

el '+' el

el

e3 '*' el

e3
‘LASTANSWER'
num

r(t e)"

® O. Nierstrasz — U. Berne

Applications of Logic Programming

PS — 52003

345.

Parsing with DCGs

The concrete grammar is easily written as a DCG:

prog(s) -=>
stmt ([E|S]) ——>
stmt([E]) -—>
expr(E) -

e0(if(Bool, Then, Else)) -->

e0(E) -=>
el (plus(E1,E2)) -=>
el(E) -=>
e2(times(E1,E2)) -->
e2(E) -=>
e3(last) -—>
e3 (num(N)) -=>
e3(E) -—>

[on], stmt(S).

expr(E), [total], stmt(S).
expr(E), [total, off].

el (E).

[if], el(Bool), [',"],

el(Then), [',"'], el(Else).

el(E).

e2(El), ['+'], el(E2).
e2(E).

e3(El), ['*"], e2(E2).
e3(E).

[last].

[num(N)].

['('1, e0(E), [')'].

@ O. Nierstrasz — U. Berne

Applications of Logic Programming

PS — 52003 346.

Representing Programs as Parse Trees

We have chosen to represent expressions as Prolog terms, and
programs and statements as /ists of terms:

parse(Atom, Tree) :-
lex(Atom, Tokens),
prog(Tree, Tokens, []).

parse(
'ON (1+2)*(3+4) TOTAL LASTANSWER + 10 TOTAL OFF',
[times(plus(num(1l),num(2)),
plus(num(3),num(4))),
plus(last,num(10))

1)

© O. Nierstrasz — U. Berne Applications of Logic Programming

PS — 52003 347.

Testing

We exercise our parser with various test cases:
check(Goal) :- Goal, !.
check(Goal) :-
write('TEST FAILED: '),
write(Goal), nl.

parseTests :-
check(parse('ON 0 TOTAL OFF', [num(0)])),

© O. Nierstrasz — U. Berne Applications of Logic Programming

PS — 52003 348.

Interpretation as Proof

One can view the execution of a program as a step-by-step
‘proof” that the program reaches some terminating state,
while producing output along the way.

A The program and its intermediate states are
represented as structures (typically, as syntax trees)

A Inference rules express how one program state can be
transformed to the next

© O. Nierstrasz — U. Berne Applications of Logic Programming

PS — 52003 349.

Building a Simple Interpreter

We define semantic predicates over the syntactic elements of
our calculator language.

peval(S,L) :— seval(s, 0, L).

seval([E], Prev, [Val]) :— Xxeval(E, Prev, Val).
seval([E|S], Prev, [Val|L]) :- =xeval(E, Prev, Val),
seval(S, Vval, L).

xeval (num(N), , N).
xeval (plus(El1,E2), Prev, V) :- xeval(El, Prev, V1),
xeval(E2, Prev, V2),

V is V1+V2.

© O. Nierstrasz — U. Berne Applications of Logic Programming

PS — 52003 350.

Running the Interpreter

The interpreter puts the parts together

eval (Expr, Val) :-
parse(kExpr, Tree),
peval (Tree, Val).

eval (
'ON (1+2)*(3+4) TOTAL LASTANSWER + 10 TOTAL OFF',
X).

o X = [21, 31]

© O. Nierstrasz — U. Berne Applications of Logic Programming

PS — 52003 351.

Testing the interpreter

We similarly define tests for the interpreter.

evalTests :-
check(eval('ON 0 TOTAL OFF', [0])),
check(eval('ON 5 + 7 TOTAL OFF', [12])),

© O. Nierstrasz — U. Berne Applications of Logic Programming

PS — 52003 352.

A top-level script

Finally, we can package the interpreter as a ciao module, and
invoke it from a script:

#1/bin/sh
exec ciao-shell $0 "$@" # -*- mode: ciao; -*-
:— use module(calc, [eval/2, test/0]).
main([]) :- test.
main(Argv) :- doForEach(Argv).
doForEach([]).
doForEach([Arg|Args]) :-

write(Arg), nl,

eval (Arg, Val),

write(Val), nl,

doForEach(Args).

© O. Nierstrasz — U. Berne Applications of Logic Programming

PS — 52003 353.

What you should know!

What are definite clause grammars?

How are DCG specifications translated to Prolog?

Why are abstract grammars inappropriate for parsing?
Why are left-associative grammar rules problematic?
How can we represent syntax trees in Prolog?

o o 0 0 @

© O. Nierstrasz — U. Berne Applications of Logic Programming

o o O 0

o o O 0

Can you answer these questions?

What happens when we ask digits([A,B,A])?

How many times will soln2 backtrack before finding a
solution?

How would you check if the solution to the puzzle is unique?

How would you generalize the puzzle solution to solve
arbitrary additions?

Why must DCG side conditions be put in { curly brackets }?
What exactly does the C’ predicate do?
Why do we need a separate lexer?

How would you implement an interpreter for the assignment
language we defined earlier?

PS — 52003 355.

12. Piccola — A Small Composition
Language

Handouts will be distributed before the lecture.

© O. Nierstrasz — U. Berne Piccola — A Small Composition Language

PS — 52003 356.

13. Summary, Trends, Research ...

Q Summary: functional, logic and object-oriented
languages

Q Research: ...

i www.iam.unibe.ch/~scg

® O. Nierstrasz — U. Berne Summary, Trends, Research ...

http://www.iam.unibe.ch/~scg/

C and C++

Good for:
d systems programming
A portability

Bad for:
A learning (very steep learning curve)
A rapid application development
d maintenance

Trends:
A increased standardization
1 generative programming

Functional Languages

Good for:
 equational reasoning
d declarative programming

Bad for:
aQ OOP
A explicit concurrency
Q run-time efficiency (although constantly improving)

Trends:
3 standardization: Haskell, "ML 2000"

d extensions (concurrency, objects): Facile, "ML 2000",
UFO ...

Lambda Calculus

Good for:

Q simple, operational foundation for sequential
programming languages

Bad for:
d programming

Trends:
d object calculi

A concurrent, distributed calculi (e.g., « calculus, " join”
calculus ...)

Type Systems

Good for:
A catching static errors
Q documenting interfaces

A formalizing and reasoning about domains of functions
and objects

Bad for:
d reflection; self-modifying programs

Trends:
Q automatic type inference
Q reasoning about concurrency and other side effects

Polymorphism

Good for:
d parametric good for generic containers
subtyping good for frameworks (generic clients)

4

Q overloading syntactic convenience (classes in gopher,
overloading in Java)

d

coercion convenient, but may obscure meaning

Bad for:
A local reasoning
d optimization
Trends:
A combining subtyping, polymorphism and overloading
A exploring alternatives to subtyping ("matching"”)

Denotational Semantics

Good for:
QA formally and unambiguously specifying languages
d sequential languages

Bad for:
A modelling concurrency and distribution

Trends:
A "Natural Semantics” (inference rules vs. equations)
3 concurrent, distributed calculi

PS — 52003 363.

Logic Programming

Good for:
[searching (expert systems, graph & ftree searching ...)
d symbolic interpretation

Bad for:
4 debugging
A modularity

Trends:
d constraints
d concurrency
d modules

© O. Nierstrasz — U. Berne Summary, Trends, Research ...

Object-Oriented Languages

Good for:
d domain modelling
Q developing reusable frameworks

Bad for:
d learning (steep learning curve)
A understanding (hard to keep systems well-structured)
d semantics (no agreement)

Trends:
d component-based software development
1 aspect-oriented programming

Scripting Languages

Good for:
A rapid prototyping
A high-level programming
A reflection; on-the-fly generation and evaluation of
programs
A gluing components from different environments

Bad for:
d type-checking; reasoning about program correctness
Q performance-critical applications

Trends:
A replacing programming as main development paradigm
A scriptable applications
Q graphical "builders” instead of languages

	Programmiersprachen
	Table of Contents
	1. Programming Languages
	Sources
	Schedule
	What is a Programming Language?
	What is a Programming Language? (II)
	Themes Addressed in this Course
	Themes Addressed in this Course ...
	Generations of Programming Languages
	How do Programming Languages Differ?
	Programming Paradigms
	Compilers and Interpreters
	A Brief Chronology
	Fortran
	Fortran ...
	“Hello World” in FORTRAN
	ALGOL 60
	ALGOL 60 ...
	“Hello World” in BEALGOL
	COBOL
	“Hello World” in COBOL
	4GLs
	“Hello World” in RPG
	“Hello World” in SQL
	PL/1
	“Hello World” in PL/1
	Interactive Languages
	Interactive Languages ...
	Special-Purpose Languages
	Special-Purpose Languages ...
	Functional Languages
	“Hello World” in Functional Languages
	Prolog
	“Hello World” in Prolog
	Object-Oriented Languages
	Object-Oriented Languages ...
	Scripting Languages
	Scripting Languages ...
	Scripting Languages ...
	What you should know!
	Can you answer these questions?

	2. Systems Programming
	What is C?
	C Features
	“Hello World” in C
	Symbols
	Keywords
	Operators (same as Java)
	C Storage Classes
	Memory Layout
	Where is memory?
	Declarations and Definitions
	Header files
	Including header files
	Makefiles
	C Arrays
	Pointers
	Strings
	Pointer manipulation
	Function Pointers
	Working with pointers
	Argument processing
	Using pointers for side effects
	Memory allocation
	Pointer manipulation
	Pointer manipulation ...
	Built-In Data Types
	Built-In Data Types ...
	User Data Types
	Typedefs
	Observations
	Obfuscated C
	A C Puzzle
	What you should know!
	Can you answer these questions?

	3. Multiparadigm Programming
	Essential C++ Texts
	What is C++?
	C++ vs C
	“Hello World” in C++
	C++ Design Goals
	C++ Features
	Java and C++ — Similarities and Extensions
	Java Simplifications
	New Keywords
	Comments
	References
	References vs Pointers
	C++ Classes
	Constructors and destructors
	Automatic and dynamic destruction
	Orthodox Canonical Form
	Why OCF?
	Example: A String Class
	A Simple String.h
	Default Constructors
	Destructors
	Copy Constructors
	A few remarks ...
	Other Constructors
	Assignment Operators
	A few more remarks ...
	Implicit Conversion
	Operator Overloading
	Overloadable Operators
	Friends
	Friends ...
	What are Templates?
	Function Templates
	Class Templates
	Using Class Templates
	Standard Template Library
	An STL Line Reverser
	What we didn’t have time for ...
	What you should know!
	Can you answer these questions?

	4. Stack-based Programming
	What is PostScript?
	Postscript variants
	Syntax
	Semantics
	Object types
	The operand stack
	Stack and arithmetic operators
	Drawing a Box
	Path construction operators
	Coordinates
	“Hello World” in Postscript
	Character and font operators
	Procedures and Variables
	A Box procedure
	Graphics state and coordinate operators
	A Fibonacci Graph
	Numbers and Strings
	Factorial
	Factorial ...
	Boolean, control and string operators
	A simple formatter
	A simple formatter ...
	Array and dictionary operators
	Using Dictionaries — Arrowheads
	Instantiating Arrows
	Encapsulated PostScript
	What you should know!
	Can you answer these questions?

	5. Functional Programming
	References
	A Bit of History
	A Bit of History
	Programming without State
	Pure Functional Programming Languages
	Key features of pure functional languages
	What is Haskell?
	“Hello World” in Hugs
	Referential Transparency
	Evaluation of Expressions
	Tail Recursion
	Tail Recursion ...
	Equational Reasoning
	Equational Reasoning ...
	Pattern Matching
	Lists
	Using Lists
	Higher Order Functions
	Anonymous functions
	Curried functions
	Understanding Curried functions
	Using Curried functions
	Currying
	Multiple Recursion
	Lazy Evaluation
	Lazy Lists
	Programming lazy lists
	Declarative Programming Style
	What you should know!
	Can you answer these questions?

	6. Type Systems
	References
	What is a Type?
	What is a Type?
	Static and Dynamic Types
	Static and Dynamic Typing
	Kinds of Types
	Type Completeness
	Function Types
	List Types
	Tuple Types
	User Data Types
	Enumeration types
	Union types
	Recursive Data Types
	Using recursive data types
	Monomorphism
	Polymorphism
	Type Inference
	Composing polymorphic types
	Polymorphic Type Inference
	Type Specialization
	Kinds of Polymorphism
	Coercion vs overloading
	Overloading
	Instantiating overloaded operators
	Equality for Data Types
	Equality for Functions
	What you should know!
	Can you answer these questions?

	7. Introduction to the Lambda Calculus
	References
	What is Computable?
	Church’s Thesis
	Uncomputability
	What is a Function? (I)
	What is a Function? (II)
	What is the Lambda Calculus?
	Parsing Lambda Expressions
	What is the Lambda Calculus? ...
	Beta Reduction
	Lambda expressions in Haskell
	Lambdas are anonymous functions
	A Few Examples
	Free and Bound Variables
	“Hello World” in the Lambda Calculus
	Why macro expansion is wrong
	Substitution
	Alpha Conversion
	Eta Reduction
	Normal Forms
	Evaluation Order
	The Church-Rosser Property
	Non-termination
	Currying
	Representing Booleans
	Representing Tuples
	Tuples as functions
	Representing Numbers
	Working with numbers
	What you should know!
	Can you answer these questions?

	8. Fixed Points
	Recursion
	Recursive functions as fixed points
	Fixed Points
	Fixed Point Theorem
	How does Y work?
	Using the Y Combinator
	Recursive Functions are Fixed Points
	Unfolding Recursive Lambda Expressions
	The Typed Lambda Calculus
	The Polymorphic Lambda Calculus
	Hindley-Milner Polymorphism
	Polymorphism and self application
	Other Calculi
	What you should know!
	Can you answer these questions?

	9. Introduction to Denotational Semantics
	Defining Programming Languages
	Uses of Semantic Specifications
	Methods for Specifying Semantics
	Methods for Specifying Semantics ...
	Concrete and Abstract Syntax
	A Calculator Language
	Calculator Semantics
	Calculator Semantics...
	Semantic Domains
	Data Structures for Abstract Syntax
	Representing Syntax
	Implementing the Calculator
	Implementing the Calculator ...
	A Language with Assignment
	Representing abstract syntax trees
	An abstract syntax tree
	Modelling Environments
	Functional updates
	Semantics of assignments
	Semantics of assignments ...
	Running the interpreter
	Practical Issues
	Theoretical Issues
	What you should know!
	Can you answer these questions?

	10. Logic Programming
	References
	Logic Programming Languages
	What is Prolog?
	Prolog Questions
	Horn Clauses
	Resolution and Unification
	Prolog Databases
	Simple queries
	Queries with variables
	Unification
	Unification ...
	Evaluation Order
	Closed World Assumption
	Backtracking
	Comparison
	Comparison ...
	Sharing Subgoals
	Disjunctions
	Recursion
	Recursion ...
	Evaluation Order
	Failure
	Cuts
	Negation as failure
	Changing the Database
	Changing the Database ...
	Functions and Arithmetic
	Defining Functions
	Lists
	Pattern Matching with Lists
	Pattern Matching with Lists ...
	Inverse relations
	Exhaustive Searching
	Limits of declarative programming
	What you should know!
	Can you answer these questions?

	11. Applications of Logic Programming
	I. Solving a puzzle
	A non-solution:
	A non-solution ...
	A first solution
	A first solution ...
	A second (non-)solution
	A second (non-)solution ...
	A third solution
	A third solution ...
	A third solution ...
	A fourth solution
	A fourth solution ...
	A fourth solution ...
	II. Symbolic Interpretation
	Goal-directed interpretation
	Definite Clause Grammars
	Definite Clause Grammars ...
	Example
	How to use this?
	How does it work?
	Lexical analysis
	Recognizing Tokens
	Recognizing Numbers
	Concrete Grammar
	Parsing with DCGs
	Representing Programs as Parse Trees
	Testing
	Interpretation as Proof
	Building a Simple Interpreter
	Running the Interpreter
	Testing the interpreter
	A top-level script
	What you should know!
	Can you answer these questions?

	12. Piccola — A Small Composition Language
	13. Summary, Trends, Research ...
	C and C++
	Functional Languages
	Lambda Calculus
	Type Systems
	Polymorphism
	Denotational Semantics
	Logic Programming
	Object-Oriented Languages
	Scripting Languages

