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Sources

Text:
d Kenneth C. Louden, Programming Languages: Principles
and Practice, PWS Publishing (Boston), 1993.
Other Sources:

4 Bjarne Stroustrup, The C++ Programming Language
(Special Edition), Addison Wesley, 2000.

Q PostScript” Language Tutorial and Cookbook, Adobe
Systems Incorporated, Addison-Wesley, 1985

A Paul Hudak, “Conception, Evolution, and Application of
Functional Programming Languafes, “ACM Computing
Surveys 21/3, 1989, pp 359-411.

A Clocksin and Mellish, Programming in Prolog, Springer
Verlag, 1981.
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What is a Programming Language?

A formal language for describing computation?
A "user interface” to a computer?

Syntax + semantics?

Compiler, or interpreter, or translator?

A tool to support a programming paradigm?

000U

"A pr'ogramming language is a notational system for
describing computation in a machine-readable and
human-readable form.”

— Louden
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What is a Programming Language? (IT)

The thesis of this course:

A programming language is a tool for developing
executable models for a class of problem domains.

® O. Nierstrasz — U. Berne Programming Languages




Themes Addressed in this Course

Paradigms

d What computational paradigms are supported by
modern, high-level programming languages?

Q2 How well do these paradigms match classes of
programming problems?

Abstraction

QA How do different languages abstract away from the low-
level details of the underlying hardware
implementation?

Q How do different languages support the specification of
software abstractions needed for a specific task?




Themes Addressed in this Course ...

Types

Q How do type systems help in the construction of
flexible, reliable software?

Semantics
A How can one formalize the meaning of a programming
language?

A How can semantics aid in the implementation of a
programming language?
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Generations of Programming Languages

16L: machine codes
26L: symbolic assemblers

36L: (machine independent) imperative languages
(FORTRAN, Pascal, C ..)

4GL: domain specific application generators

Each generation is at a higher level of abstraction

® O. Nierstrasz — U. Berne Programming Languages




How do Programming Languages Differ?

Common Constructs:

= basic data types (numbers, etc.); variables;
expressions; statements; keywords; control
constructs; procedures; comments; errors ...

Uncommon Constructs:

= type declarations; special types (strings, arrays,
matrices, ...); sequential execution; concurrency
constructs; packages/modules; objects; general
functions; generics; modifiable state; ...
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Programming Paradigms

A programming language is a problem-solving tool.

program = algorithms + data
good for decomposition
program = functions o functions
good for reasoning

program = facts + rules

good for searching

program = objects + messages
good for encapsulation

Other styles and paradigms: blackboard, pipes and filters,
constraints, lists, ...

Imperative style:

Functional style:

Logic programming style:

Object-oriented style:

© O. Nierstrasz — U. Berne Programming Languages
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Compilers and Interpreters

Compilers and interpreters have similar front-ends, but have
different back-ends:

Pre-processor Parser Code Generator) (Assembler/linker
Program Parse tree Assembly code Machine code

@ Interpreter Code Generator
Byte code Interpreter
Program e

Details will differ, but the general scheme remains the same ...

® O. Nierstrasz — U. Berne Programming Languages



A Brief Chronology

Early 1950s "order codes” (primitive assemblers)

1957 |FORTRAN the first high-level programming
language (36GL is invented)

1958 | ALGOL the first modern, imperative language

1960 |LISP, COBOL

1962 |APL, SIMULA |the birth of OOP (SIMULA)

1964 BASIC, PL/I

1966 ISWIM first modern functional language
(a proposal)

1970 |Prolog logic programming is born

1972 |C the systems programming language

1975 |Pascal, Scheme | two teaching languages




1978 | CSP Concurrency matures
1978 | FP Backus' proposal
1983 | Smalltalk-80, |OOP is reinvented

Ada
1984 | Standard ML |FP becomes mainstream (?)
1986 |C++, Eiffel OORP is reinvented (again)
1988 |CLOS, Oberon,

Mathematica

1990

Haskell

FP is reinvented

1995

Java

QOOP is reinvented for the internet




Fortran

History

John Backus (1953) sought to write programs in conventional
mathematical notation, and generate code comparable to good
assembly programs.

A No language design effort
(made it up as they went along)

Q Most effort spent on code generation and optimization
d FORTRAN I released April 1957; working by April 1958
A Current standards are FORTRAN 77 and FORTRAN 90




Fortran ...

Innovations

Symbolic notation for subroutines and functions
Assignments to variables of complex expressions
DO loops

Comments

Input/output formats

Machine-independence

Successes
A Easy to learn; high level

d Promoted by IBM; addressed large user base
(scientific computing)

U000 0DU
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16.

"Hello World” in FORTRAN

PROGRAM HELLO

DO 10, I=1,10

PRINT *, 'Hello World'
10 CONTINUE

STOP

END

All examples from the ACM "Hello World" project:

www?2.latech.edu/~acm/HelloWorld.shtml

® O. Nierstrasz — U. Berne
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ALGOL 60

History

Q Committee of PL experts formed in 1955 to design
universal, machine-independent, algorithmic language

A First version (ALGOL 58) never implemented; criticisms
led to ALGOL 60




ALGOL 60 ...

Innovations

4

J

d
d
d

BNF (Backus-Naur Form) introduced to define syntax
(led to syntax-directed compilers)

First block-structured language; variables with local
scope

Structured control statements
Recursive procedures
Variable size arrays

Successes

4

Highly influenced design of other PLs but never
displaced FORTRAN
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"Hello World” in BEALGOL

BEGIN
FILE F (KIND=REMOTE) ;
EBCDIC ARRAY E [0:11];
REPLACE E BY "HELLO WORLD!";
WHILE TRUE DO

BEGIN

WRITE (F, *, E);

END;
END.

® O. Nierstrasz — U. Berne Programming Languages



COBOL

History
4 Designed by committee of US computer manufacturers
d Targeted business applications
A Intended to be readable by managers (1)

Innovations

d Separate descriptions of environment, data, and
processes

Successes
d Adopted as de facto standard by US DOD
ad Stable standard for 25 years
A Still the most widely used PL for business applications (1)




“"Hello World”

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. HELLOWORLD.
000300 DATE-WRITTEN. 02/05/96
000400* AUTHOR BRIAN COLLINS
000500 ENVIRONMENT DIVISION.
000600 CONFIGURATION SECTION.
000700 SOURCE-COMPUTER. RM-COBOL.
000800 OBJECT-COMPUTER. RM-COBOL.
001000 DATA DIVISION.

001100 FILE SECTION.

100000 PROCEDURE DIVISION.

100200 MAIN-LOGIC SECTION.

100300 BEGIN.

in COBOL

21:04.

100400 DISPLAY " " LINE 1 POSITION 1 ERASE EOS.
100500 DISPLAY "HELLO, WORLD." LINE 15 POSITION 10.

100600 STOP RUN.
100700 MAIN-LOGIC-EXIT.
100800 EXIT.




4GLs

"Problem-oriented” languages
A PLs for "non-programmers”

A Very High Level (VHL) languages for specific problem
domains

Classes of 46GLs (no clear boundaries)

A Report Program Generator (RPG)

A Application generators

ad Query languages

A Decision-support languages
Successes

A Highly popular, but generally ad hoc
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"Hello World” in RPG

H
FSCREEN O F 80 80 CRT
C EXCPT

OSCREEN E 1
O 12 "HELLO WORLD!'

© O. Nierstrasz — U. Berne Programming Languages
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24.

"Hello World” in SQL

CREATE TABLE HELLO (HELLO CHAR(12))
UPDATE HELLO

SET HELLO = 'HELLO WORLD!'
SELECT * FROM HELLO

® O. Nierstrasz — U. Berne
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PL/1

History
1 Designed by committee of IBM and users (early 1960s)

A Intended as (large) general-purpose language for broad
classes of applications

Innovations
A Support for concurrency (but not synchronization)
A Exception-handling by on conditions

Successes

Q Achieved both run-time efficiency and flexibility (at
expense of complexity)

A First "complete” general purpose language




PS — 52003 26.

“"Hello World” in PL/1

HELLO: PROCEDURE OPTIONS (MAIN);

/* A PROGRAM TO OUTPUT HELLO WORLD */
FLAG = 0;

LOOP: DO WHILE (FLAG = 0);
PUT SKIP DATA('HELLO WORLD!');
END LOOP:

END HELLO;

® O. Nierstrasz — U. Berne Programming Languages



Interactive Languages

Made possible by advent of fime-sharing systems (early 1960s
through mid 1970s).

BASIC
d Developed at Dartmouth College in mid 1960s

A Minimal; easy to learn

A Incorporated basic O/S commands (NEW, LIST,
DELETE, RUN, SAVE)

10 print "Hello World!"
20 goto 10




Interactive Languages ...

APL

A Developed by Ken Iverson for concise description of
numerical algorithms

A Large, non-standard alphabet (52 characters in addition
to alphanumerics)

A Primitive objects are arrays (lists, tables or matrices)

Q Operator-driven (power comes from composing array
operators)

Q {\l]c‘):Tc;per'a’ror' precedence (statements parsed right to
e

'"HELLO WORLD'
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Special-Purpose Languages

SNOBOL

First successful string manipulation language
Influenced design of text editors more than other PLs
String operations: pattern-matching and substitution
Arrays and associative arrays (tables)

Variable-length strings

U000 U

OUTPUT = 'Hello World!'
END

© O. Nierstrasz — U. Berne Programming Languages
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Special-Purpose Languages ...

Lisp
Performs computations on symbolic expressions
Symbolic expressions are represented as /ists

Small set of constructor/selector operations to create
and manipulate lists

Recursive rather than iterative control
No distinction between data and programs

First PL o implement storage management by garbage
collection

Affinity with lambda calculus

U O0uU OO0

(DEFUN HELLO-WORLD ()
(PRINT (LIST 'HELLO 'WORLD)))

© O. Nierstrasz — U. Berne Programming Languages




Functional Languages

ISWIM (If you See What I Mean)
 Peter Landin (1966) — paper proposal
FP
A John Backus (1978) — Turing award lecture
ML
4 Edinburgh
Q initially designed as meta-language for theorem proving
A Hindley-Milner type inference

A "non-pure” functional language (with assignments/side
effects)

Miranda, Haskell
A “pure” functional languages with "/azy evaluation”




PS — 52003 32.

"Hello World” in Functional Languages
SML

print("hello world!\n");

Haskell

hello() = print "Hello World"

© O. Nierstrasz — U. Berne Programming Languages




Prolog

History

A Originated at U. Marseilles (early 1970s), and compilers
develo)ped at Marseilles and Edinburgh (mid to late
1970s

Innovations
A Theorem proving paradigm
A Programs as sets of clauses: facts, rules and questions
Q Computation by “unification"
Successes
A Prototypical logic programming language
4 Used in Japanese Fifth Generation Initiative
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"Hello World” in Prolog

% HELLO WORLD. Works with Sbp (prolog)

hello :-
printstring("HELLO WORLD!!!!").

printstring([]).
printstring([H|T]) :- put(H), printstring(T).

® O. Nierstrasz — U. Berne Programming Languages



Object-Oriented Languages

History

d Simula was developed by Nygaard and Dahl (early 1960s)
in Oslo as a language for simulation programming, by
adding classes and inheritance to ALGOL 60

Begin
while 1 = 1 do begin
outtext ("Hello World!");
outimage;
end;
End;

A Smalltalk was developed by Xerox PARC (early 1970s) to
drive graphic workstations

Transcript show: 'Hello World';cr




Object-Oriented Languages ...

Innovations
Q Encapsulation of data and operations (contrast ADTs)
A Inheritance to share behaviour and interfaces

Successes
A Smalltalk project pioneered OO user interfaces
d Large commercial impact since mid 1980s

Q Countless new languages: C++, Objective C, Eiffel, Betaq,
Oberon, Self, Perl 5, Python, Java, Ada 95 ...




Scripting Languages

History

A Countless "shell languages” and "command languages” for
operating systems and configurable applications

A Unix shell (ca. 1971) developed as user shell and
scripting tool
echo "Hello, World!"
d HyperTalk (1987) was developed at Apple to script
HyperCard stacks
on OpenStack
show message box
put "Hello World!" into message box
end OpenStack
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38.

Scripting Languages ...

A TCL (1990) developed as embedding language and
scripting language for X windows applications (via Tk)

puts "Hello World "

A Perl (~1990) became de facto web scripting language

print "Hello, World!\n";

@ O. Nierstrasz — U. Berne

Programming Languages
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Scripting Languages ...

Innovations
Q Pipes and filters (Unix shell)

A Generalized embedding/command languages (TCL)

Successes

A Unix Shell, awk, emacs, HyperTalk, AppleTalk, TCL,

Python, Perl, VisualBasic ...

@ O. Nierstrasz — U. Berne

Programming Languages
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What you should know!

What, exactly, is a programming language?

How do compilers and interpreters differ?

Why was FORTRAN developed?

What were the main achievements of ALGOL 60?
Why do we call C a "Third Generation Language”?
What is a "Fourth Generation Language”?

o v O 0 0 9
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Can you answer these questions?

& Why are there so many programming languages?

&~ Whyare FORTRAN and COBOL still important programming
languages?

& Which language should you use to implement a spelling
checker?
A filter to translate upper-to-lower case?
A theorem prover?
An address database?
An expert system?
A game server for initiating chess games on the internet?
A user interface for a network chess client?
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2. Systems Programming

Overview
d C Features
d Memory layout
3 Declarations and definitions
A Working with Pointers

Reference:

A Brian Kernighan and Dennis Ritchie, The € Programming
Language, Prentice Hall, 1978.

Q Kernighan and Plau?er, The Elements of Programming
Style, McGraw-Hill, 1978.

® O. Nierstrasz — U. Berne Systems Programming
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What is C?

C was designed as a general-purpose language with a very direct
mapping from data types and operators to machine
instructions.

A cpp (C pre-processor) used for expanding macros and
inclusion of declaration "header files"

A explicit memory allocation (no garbage collection)

d memory manipulation through pointers, pointer
arithmetic and typecasting

A used as portable, high-level assembler

© O. Nierstrasz — U. Berne Systems Programming




C Features

Developed in 1972 by Dennis Ritchie and Brian Kernighan as a
systems language for Unix on the PDP-11. A successor to B
[Thompson, 1970], in turn derived from BCPL.

C preprocessor: file inclusion, conditional compilation, macros

Data types: char, short, int, long, double, float

Type constructors: pointer, array, struct, union

Basic operators: arithmetic, pointer manipulation, bit manipulation ...
Control abstractions: |if/else, while/for loops, switch, goto ...

Functions: call-by-value, side-effects through pointers

Type operations: typedef, sizeof, explicit type-casting and coercion




“"Hello World” in C

Pre-processor directive: include
declarations for standard i/o library

#include <stdio.h>

— /* My first C program! */
int main(void)
{

Functiondefinifion: printf("hello world!\n");

there is always a return 0;
“main” function }

A comment

A string constant: an array
of 14 (not 13!) chars
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Symbols

C programs are built up from symbols:

{ alphabetic or underscore } followed by
Names: { alphanumerics or underscores }
main, IOStack, store, x10
Keywords: const, int, 1if,
, "hello world", 'a', 10, 077, Ox1F,
Constants: 1. 2310
Operators: T, >>, %, &
Punctuation: {. }. .

© O. Nierstrasz — U. Berne Systems Programming




Keywords

C has a large number of reserved words:

break, case, continue, default,

Control flow:| do, else, for, goto, if, return,
switch, while

auto, char, const, double, extern,

. float, int, long, register, short

Declarations: ' ' dr TE9 ' '

signed, static, struct, typedef,
union, unsigned, void

Expressions:

sizeof
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Operators (same as Java)

int a, b, ¢;

double d;

float f£f;

a=b=c=17; assignment: a==17; b==17; c ==
a=(b=17); equality test: a==1 (7==17)

b = la; negation: b==20 (!1)

a = (b>=0)&&(c<10); logical AND: a==1 ((0>=0)&&(7<10))
a *= (b += ct++); increment: a==17; b==17;c==28
a=11 / 4; integer division: a == 2

b =11 % 4; remainder: b == 3

d =11/ 4; d == 2.0 (not 2.75!)

f =11.0 / 4.0; f ==2.75

a = bc; bitwise OR: a == 11 (03/010)

b = a’c; bitwise XOR: b ==3 (0137010)

c = a&b; bitwise AND: c == 3 (013&03)

b = a<<c; left shift: b == 88 (11<<3)

a = (b+t+,c--); comma operator: a == 3; b ==289; c ==
b = (a>c)?a:c; conditional operator: b ==3 ((3>2)?3:2)
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C Storage Classes

You must explicitly manage storage space for data

A static objects exist for the entire life-time
of the process

Q only live during function invocation on the
"run-time stack”

A dynamic objects live between calls to
malloc and free

A their lifetimes typically extend beyond
their scope

Static

Automatic

Dynamic
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Memory Layout

" g()| £()
O . 4—»0@

Z &

main()

"Text" Static Heap Stac

The address space consists of (at least):

K

Text:

executable program text (not writable)

Static:

static data

Heap:

dynamically allocated global memory (grows upward)

Stack:

local memory for function calls (grows downward)




Where is memory?

#include <stdio.h>

Text is here: 7604

static int stat=0; Statlc.: 1s here: 8216

void dummy() { } Heap 1s here: 279216
Stack 1is here: 3221223448

int main(void)

{

int local=1;
int *dynamic = (int*) malloc(sizeof(int),1);

printf("Text is here: %u\n", (unsigned) dummy); /* function pointer */
printf("Static is here: %u\n", (unsigned) &stat);
printf("Heap is here: %u\n", (unsigned) dynamic);
printf("Stack is here: %u\n", (unsigned) &local);




Declarations and Definitions

Variables and functions must be either declared or defined
before they are used:

QA declaration of avariable extern char *greeting;
(or function)announces that _ .+ 10116
the variable (function)
exists and is defined somewhere else.

(void);

char *greeting =

Q A definitionof avariable (or "hello world!\n";
function) causes storage to void hello(void)
be allocated {

printf(greeting);
}
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Header files

C does not provide modules — instead one should break a
program into header files containing declarations, and source
files containing definitions that may be separately compiled.

hello.h

hello.c

extern char *greeting;
void hello(void);

#include <stdio.h>

void hello(void)

{
printf(greeting);

}

char *greeting = "hello world!\n";

@ O. Nierstrasz — U. Berne
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Including header files

. . helloMain.c
Our main program may how include

declarations of the separately compiled #include "hello.h"
definitions:

int main(void)
{
hello();
return 0;

}

cc -¢ helloMain.c
cc -¢c hello.c

cc helloMain.o hello.o -0 helloMain

compile to object code
compile to object code
link to executable
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Makefiles

You could also compile everything together:
cc helloMain.c hello.c -0 helloMain

Or you could use a makefile o manage dependencies:

helloMain : helloMain.c hello.h hello.o
cc helloMain.c hello.o -0 S@

S "Read the manual”

© O. Nierstrasz — U. Berne Systems Programming
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C Arrays

Arrays are fixed sequences of homogeneous elements.

4

U000

L

Type a[n]; defines a one-dimensional array a ina
contiguous block of (n*sizeof(Type)) bytes

n must be a compile-time constant
Arrays bounds run from 0 fo n-1
Size cannot vary at run-time
They can be initialized at compile time:
int eightPrimes[8] =
{2, 3, 5, 7, 11, 13, 17, 19 };
But no range-checking is performed at run-time:
eightPrimes[8] = 0; /* disaster! */
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Pointers

A pointer holds the address of another variable:
int 1 = 10;
int *ip = &i; /* assign the address of i1 to ip */

Use them to access and update variables: *ip = *ip + 1;

Array variables behave like pointers to their |int *ep = eightPrimes;
first element

Pointers can be treated like arrays: ep[7] = 23;
But have different sizes: sizeof (eightPrimes) == 32)
sizeof(ep) == 4)

You may increment and decrement pointers: |ep = ep+l;

Declare a pointer to an unknown data type as |void *vp = ep;
void*

But typecast it properly before using it! ((int*)vp)[6] = 29;
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Strings

A stringis a pointer to a NULL-terminated (i.e., '\O') character

array:
char *cp; uninitialized string (pointer to a char)
char *hi = "hello"; initialized string pointer

char hello[6] = "hello";

initialized char array

cp = hello; cp now points to hello[]
cp[l] = 'u’; cp and hello now point to “hullo”
cp[4] = NULL; cp and hello now point to "hull”

> What is sizeof(hi)? sizeof(hello)?

@ O. Nierstrasz — U. Berne
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Pointer manipulation

Copy string sl to buffer s2:

void strCopy(char sl[], char s2[])

{
int 1 = 0;
while (sl[i] !'= '\0’") { /* Assume sl is NULL-terminated! */
s2[1i] = sl[i]; /* assume s2 is big enough! */
i++;
}
s2[i] = '\0’;
}

More idiomatically (!):
void strCopy2(char *sl, char *s2)

{

while (*s2++ = *sl++); /* fails only when NULL is reached */

}
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Function Pointers

int ascii(char c¢) { return((int) c); } /* cast */

void applyEach(char *s, int (*fptr)(char)) {
char *cp;
for (cp = s; *cp; cpt+)
printf("%c -> %d\n", *cp, fptr(*cp));

}
int main(int argc, char *argv[]) { /fptrs abcde
int i: a->97
for (i=1l;i<argc;i++) ?:j;g
applyEach(argv[i], ascii); d -> 100
return 0; e -> 101

}
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Working with pointers

Problem: read an arbitrary file, and print out the lines in
reverse order.

Approach:

Check the file size

Allocate enough memory

Read in the file

Starting from the end of the buffer

— Convert each newline ('\n') to a NULL ('\0Q')
—printing out lines as you go
d Free the memory.

U000
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Argument processing

int main(int argc, char* argv[])
{
int 1i;
if (argec<l) {
fprintf(stderr, "Usage: lrev <file> ...\n");
exit(-1);
}
for (1i=1;i1<argc;it+) {
lrev(argv([i]);
}

return 0;
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Using pointers for side effects

Return pointer to file contents or NULL (error code)
Set bytes to file size

char* loadFile(char *path, int *bytes)

{

FILE *input;

struct stat fileStat:; /* see below ... */

char *buf;

*bytes = 0; /* default return val */

if (stat(path, &fileStat) < 0) { /* POSIX std */
return NULL; /* error-checking vs exceptions */

}
*bytes = (int) fileStat.st size;

@ O. Nierstrasz — U. Berne
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Memory allocation

NB: Error-checking code left out here for readability ...

buf = (char*) malloc(sizeof(char)*((*bytes)+1l));

I_l

3 e
o -
(

t

I

fopen(path, "r");

int n = fread(buf, sizeof(char), *bytes, input);
buf[*bytes] = '\0'; /* terminate buffer */

fclose(input);
return buf;
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Pointer manipulation

vold lrev(char *path)

{

char *buf, *end;

int bytes;
buf = loadFile(path, &bytes);

end = buf + bytes - 1; /* last byte of buffer */
if ((*end == '\n') && (end >= buf)) {

*end = '\0';
}

&~ What if bytes = 0?
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Pointer manipulation ...

/* walk backwards, converting lines to strings */

while (end >= buf) {
while ((*end != '\n') && (end >= buf))
end--;
if ((*end == '\n') && (end >= buf))
*end = '\0';
puts(end+l);

}
free(buf);

}

& Is this algorithm correct? How would you prove it?
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Built-In Data Types

The precision of built-in data types may depend on the machine

architecturel

Data type |No. of bits| Minimal value | Maximal value
signed char 8 -128 127
signed short |16 -32768 32767
signed int 16 / 32 -32768 / -2147483648 | 32767 / 214748647
signed long 32 -2147483648 214748647
unsigned char |8 0, 2b5
unsigned short| 16 0, 65535
unsigned int |16 /32 0 65535 / 4294967295
unsigned long |32 0 4294967295
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Built-In Data Types ...

Data | No.of | Min. Max. Decimal
type bytes | exponent | exponent | accuracy
float 4 -38 +38 6
double 8 -308 +308 15
long double |8 /10  |-308/-4932|+308 /4932|15/ 19
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User Data Types

Data structures are defined as C “structs”.

In /usr/include/sys/stat.h:

struct stat {

dev_t st dev;
ino t st 1ino;
mode t st mode;
nlink t st nlink;
uid t st uid;
gid t st gid;
off t st _size;

int64 t st blocks;

}i

/*
/*
/*
/*
/*
/*

/*
/*

inode's device */

inode's number */

inode protection mode */
number of hard links */

user ID of the file's owner */
group ID of the file's group */

file size, in bytes */
blocks allocated for file */

@ O. Nierstrasz — U. Berne
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Typedefs

Type names can be assigned with the typdef command:

typedef long long 1inté64 t;
typedef 1int64 t quad t;

typedef quad t off t; /* file offset */

@ O. Nierstrasz — U. Berne
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Observations

A C can be used as either a high-level or low-level language
= generally used as a "portable assembler”

Q C gives you complete freedom
= requires great discipline to use correctly

A Pointers are the greatest source of errors
= off-by-one errors
= invalid assumptions
= failure to check return values
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Obfuscated C
A fine tradition since 1984 ...

#define iv 4

#define v ; (void

#define XI(xi)int xi[iv*'V'];

#define L(c,l,i)c(){d(1l);m(i);}

#include <stdio.h>
int*cc,c,i,ix="\t',exit(),X="\n"*'\d"';XI(VI)XI(xi)extern(*vi[]) (), (*
signal())();char*v,cm,D['x"'],M="\n',I,*gets();L(MV,V,(ct="d',ix))m(x){v)
signal(X/'I',vi[x]);}d(x)char*x;{v)write(i,x,1);}L(MC,V,M+I)xv(){c>=1i?m(
c/M/M+M): (d(&M),m(cm)); }L(mi,V+cm,M)L(md,V,M)MM( ) {c=c*M%X;V-=cm;m(ix);}
LXX(){gets(D)||(vi[iv])();c=atoi(D);while(c>=X){c-=X;d("m");}V="1ivxlcdm"
+iv;m(ix); }LV(){c-=c;while((i=cc[*D=getchar()])>-I)i?(c?(c<i&&l(-c-c,
"gd"),1(i,"+%d")):1(1i,"(%d")):(c&&l(M,")"),1(*D,"%c")),c=i;c&&l(X,")"),1
(-1i,"%c");m(iv-!(i&I));}L(ml,V, '\f')1li(){m(cm+!isatty(i=I));}ii(){m(c=cm
= ++I)v)pipe(VI);cc=xitcm+t+;for(V="JWYmDEnX"; *V;V++)xi[*V""' ']=c,xi[*V++]
=c,c*=M,xi[*V"' ']=xi[*V]=c>>I;cc[-I]-=ix v)close(*VI);cc[M]-=M;}}main(){
(*vi)();for(;v)write(VI[I],V,M));}1(x]l,1x)char*1lx;{v)printf(1lx,xl)v)
fflush(stdout);}L(xx,V+I, (c-=X/cm,ix))int(*vi[])()={ii,1li,LXX,LV,exit,1,
d,1,d,xv,MM,md,MC,ml, MV, XX, XX, XX,XX,MV,mi};
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A C Puzzle

& What does this program do?

char f[] = "char f[] = %c%s%c;%cmain() {printf(f, 34,
f, 34, 10, 10);}%c";
main() {printf(f, 34, £, 34, 10, 10);}
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What you should know!

What is a header file for?

What are declarations and definitions?

What is the difference between a char™ and a char[]?
How do you allocate objects on the heap?

Why should every C project have a makefile?

What is sizeof("abcd”)?

How do you handle errors in C?

How can you write functions with side-effects?

What happens when you increment a pointer?

A A A A VA
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Can you answer these questions?

Where can you find the system header files?
What's the difference between c++ and ++c?
How do malloc and free manage memory?

How does malloc get more memory?

What happens if you run: free("hello”)?

How do you write portable makefiles?

What is sizeof(&main)?

What trouble can you get into with typecasts?
What trouble can you get into with pointers?

A A A A
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3. Multiparadigm Programming

Overview

C++vs C

C++ vs Java

References vs pointers

C++ classes: Orthodox Canonical Form
Templates and STL

U000 U

References:

4 Bjarne Stroustrup, The C++ Programming Language
(Special Edition), Addison Wesley, 2000.
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Essential C++ Texts

Stanley B. Lippman and Josee LaJoie, C++ Primer, Third
Edition, Addison-Wesley, 1998.

Scott Meyers, Effective C++, 2d ed., Addison-Wesley,
1998.

James O. Coplien, Advanced C++: Programming Styles
and Idioms, Addison-Wesley, 1992.

David R. Musser, Gilmer J. Derge and Atul Saini, STL
Tutorial and Reference Guide, 2d ed., Addison-Wesley,
2000.

Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides, Design Patterns, Addison Wesley, Reading,
MA, 1995,
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L
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What is C++?

A "better C"that supports:

000U

Object-oriented programming (classes & inheritance)
Generic programming (templates)
Programming-in-the-large (namespaces, exceptions)
Systems programming (thin abstractions)

Reuse (large standard class library)
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C++ vs C

Most C programs are also C++ programs.

Nevertheless, good C++ programs usually do not resemble C:
avoid macros (use inline)

avoid pointers (use references)

avoid malloc and free (use new and delete)

avoid arrays and char* (use vectors and strings) ...
avoid structs (use classes)

Ry iy Wiy Ny

C++ encourages a different style of programming:
d avoid procedural programming
= model your domain with classes and templates
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"Hello World"” in C++

Include standard iostream classes

++
AC Commem\#include <iostream>

// My first C++ program!
int main(void)

{

cout << "hello world!" << endl;
/////"return 0;

cout is an instance !
of ostream

operator overloading
(two different argument types!)




C++ Design Goals

'Cwith Classes"” designed by Bjarne Stroustrup in early 1980s:

A Originally a translator to C
w= Tnitially difficult o debug and inefficient

QA Mostly upward compatible extension of C
= "As close to C as possible, but no closer”
== Stronger type-checking
= Support for object-oriented programming

Q Run-time efficiency
== Language primitives close to machine instructions
ww Minimal cost for new features




C++ Features

C with Classes

Classes as structs
Inheritance: virtual functions
Inline functions

Strong typing; function prototypes

¢++ 1.0 (1985) new and delete operators
Local classes; protected members
C++2.0 Multiple inheritance
Templates
C++ 3.0 Exception handling
ANSI Ci+ (1998) Namespaces

RTTI




Java and C++ — Similarities and Extensions

Similarities:

d
4
d
d
d

primitive data types (in Java, platform independent)
syntax: control structures, exceptions ...

classes, visibility declarations (public, private)
multiple constructors, this, new

types, type casting (safe in Java, not in C++)

Java Extensions:

U000 DU

garbage collection

standard abstract machine
standard classes (came later to C++)
packages (now C++ has namespaces)
final classes
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Java Simplifications

no pointers — just references

no functions — can declare static methods

no global variables — use public static variables

no destructors — garbage collection and finalize

no linking — dynamic class loading

no header files — can define interface

no operator overloading — only method overloading

no member initialization lists — call super constructor

no preprocessor — static final constants and
automatic inlining

no multiple inheritance — implement multiple interfaces
no structs, unions, enums — typically not needed
no femplates — but generics will likely be added ...




In addition the

New Keywords

keywords inherited from C, C++ adds:

Exceptions

catch, throw, try

Declarations:

bool, class, enum, explicit, export,

friend, inline, mutable, namespace,

operator, private, protected, public,

template, typename, using, virtual,
volatile, wchar t

Expressions:

and, and eq, bitand, bitor, compl,

const cast, delete, dynamic cast,

false, new, not, not eq, or, or edq,
reinterpret cast, static cast, this,

true, typeid, xor, xor eq
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Comments

Two styles:
/*
* C-style comment pairs are generally used
* for longer comments that span several lines.

*/

// C++ comments are useful for short comments

Use // comments exclusively within functions so that any part
can be commented out using comment pairs.

© O. Nierstrasz — U. Berne Multiparadigm Programming




References

A reference is an alias for another variable:
int 1 = 10;
int &ir = 1i;
ir = ir + 1; // increment 1

Once initialized, references cannot be changed.

References are especially useful in procedure calls to avoid the
overhead of passing arguments by value, without the clutter of
explicit pointer dereferencing

void refInc(int &n)

{

n = n+l; // increment the variable n refers to

}
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References vs Pointers

References should be preferred to pointers except when:

d manipulating dynamically allocated objects
= new returns an object pointer

Q a variable must range over a set of objects
= yse a pointer to walk through the set
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C++ Classes

C++ classes may be instantiated either automatically (on the
stack):

MyClass oVal; // constructor called
// destroyed when scope ends

or dynamically (in the heap)
MyClass *OPtr; // uninitialized pointer

oPtr = new MyClass; // constructor called
// must be explicitly deleted
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Constructors and destructors

Constructors can make use of member initialization lists:
class MyClass {

private:
string name;
public:
MyClass(string name) : name(name) { // constructor
cout << "create " << name << endl;
}
~MyClass() { // destructor
cout << "destroy " << name << endl;
}
}i

C++ classes can specify cleanup actions in destructors
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Automatic and dynamic destruction

MyClass& start() { // returns a reference

MyClass a("a"); // automatic

MyClass *b = new MyClass("b"); // dynamic

return *b; // returns a reference (!) to b
} // a goes out of scope

void finish(MyClassé& b) {

delete &b; // need pointer to b
}
create a
create b
finish(start()); destroy a
destroy b
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Orthodox Canonical Form

Most of your classes should look like this:

class myClass {

public:
myClass(void); // default constructor
myClass(const myClass& copy); // copy constructor

// other constructors
~myClass(void); // destructor
myClass& operator=(const myClassé&); // assignment
// other public member functions

private:

}i
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Why OCF?

If you don't define these four member functions, C++ will
generate them:

Q default constructor

== will call default constructor for each data member
3 destructor

= will call destructor of each data member
J copy constructor

w will shallow copy each data member

= pointers will be copied, not the objects pointed tol
d assignment

= will shallow copy each data member




Example: A String Class

We would like a String class that protects C-style strings:
Q strings are indistinguishable from char pointers
4 string updates may cause memory to be corrupted

Strings should support:

creation and destruction

initialization from char arrays

copying

safe indexing

safe concatenation and updating
output

length, and other common operations ...

(N I Iy Ay Iy Iy




A Simple String.h

class String

{
friend ostream& operator<<(ostream&, const Stringé&);

public:
String(void); // default constructor
~String(void); // destructor
String(const String& copy); // copy constructor
String(const char*s); // char* constructor
String& operator=(const Stringé&); // assignment

inline int length(void) const { return ::strlen(_s); }

char& operator[](const int n) throw(exception);

String& operator+=(const String&) throw(exception); // concatenation
private:

char * s; // invariant: s points to a null-terminated heap string

void become(const char*) throw(exception); // internal copy function

}i
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Default Constructors

Every constructor should establish the class invariant:

String::String(void)

{

s = new char[1]; // allocate a char array
~s[0] = '\0"; // NULL terminate 1it!
}

The default constructor for a class is called when a new
instance is declared without any initialization parameters:

String anEmptyString; // call String::String()
String stringVector([10]; // call it ten times!
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Destructors

The String destructor must explicitly free any memory
allocated by that object.

String::~String (void)

{
delete [] s; // delete the char array

}

Every new must be matched somewhere by a delete!
d use new and delete for objects
Q use new[ ] and delete[ ] for arrays!
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Copy Constructors

Our String copy constructor must create a deep copy:

String::String(const String& copy)

{
become (copy. s); // call helper

}
volid String::become(const char* s) throw (exception)

{

S = new char[ :strlen(s) + 1];
) throw(logic error("new failed"));

if
tGCY( _S, 8);
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A few remarks ...

If we do not define our own copy constructor, copies of
Strings will share the same representation!

= Modifying one will modify the other!
= Destroying one will invalidate the other!

If we do not declare copy as const, we will not be able
to construct a copy of a const Stringl

If we declare copy as String rather than Strings, a new
copy will be made before it is passed to the constructor!

= Functions arguments are always passed by value in
C++

== The "value” of a pointer is a pointer!

The abstraction boundary is a class, not an object.
Within a class, all private members are visible (as is

copy._s)




Other Constructors

Class constructors may have arbitrary arguments, as long as
their signatures are unique and unambiguous:

String::String(const char* s)

{

become(s);

}

Since the argument is not modified, we can declare it as const.
This will allow us to construct String instances from constant
char arrays.
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Assignment Operators

Assignment is different from the copy constructor because an
instance already exists:

String& String::operator=(const String& copy)

{

if (this != &copy) { // take care!
delete [] _s;
become (copy. s);

}

return *this; // NB: a reference, not a copy

}
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A few more remarks ...

A Return string& rather than void so the result can be
used in an expression

A Return string& rather than String so the result won't
be copied!

A this is a pseudo-variable whose value is a pointer to the
current object

= s0 *this is the value of the current object, which is
returned by reference
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Implicit Conversion

When an argument of the "wrong” type is passed to a function,
the C++ compiler looks for a constructor that will convert it to

the "right" type:
str = "hello world";
is implicitly converted to:

str = String("hello world");
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Operator Overloading

Not only assignment, but other useful operators can be
“overloaded” provided their signatures are unique:

char&
String::operator[] (const int n) throw(exception)

{

if ((n<0) || (length()<=n)) {

throw(loglc_error( array index out of bounds"));
}
return s[n];

NB: a non-const reference is returned, so can be used as an
Ivalue in an assignment.
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Overloadable Operators

The following operators may be overloaded:

Overloadable Operators

A

>

&
> %

delete

NB: arity and precendence are fixed by C++

@ O. Nierstrasz — U. Berne
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Friends

We would like to be able to write:
cout << String("TESTING ... ") << endl;

But:

= It can't be a member function of ostream, since we
can't extend the standard library.

= Tt can't be a member function of String since the
target is cout.

= But it must have access to string's private data

So ... we need a binary function << that takes a cout and a
String as arguments, and is a friend of String.
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Friends ...

We declare:
class String

{

friend ostreamé&
operator<<(ostream&, const String&);

}i
And define:
ostreamé&
operator<<(ostream& outStream, const Stringé& s)

{

return outStream << s. s;

}
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What are Templates?

A template is a generic specification of a function or a class,
parameterized by one or more types used within the function

or class:

A functions that only assume basic operations of their
arguments (comparison, assignment ...)

A “container classes” that do little else but hold instances
of other classes

Templates are essentially glorified macros

A like macros, they are compiled only when instantiated
(and so are defined exclusively in header files)

d unlike macros, templates are not expanded literally, but
may be intelligently processed by the C++ compiler




PS — 52003 109.

Function Templates

The following declares a generic min() function that will work
for arbitrary, comparable elements:

template <class Item>
inline const Item&
min (const Item& a, const Item& b)

{

return (a<b) ? a : b;

}

Templates are automatically instantiated by need:
cout << "min(3,5) = " << min(3,5) << endl;
// instantiates: inline const int& min(inté&, inté&);

© O. Nierstrasz — U. Berne Multiparadigm Programming
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Class Templates

Class templates are declared just like function templates:

template <class First, class Second>
class pair {
public:
First first;
Second second;
pair(const First& f, const Secondé& s)
first(f), second(s) {}

}i

© O. Nierstrasz — U. Berne Multiparadigm Programming
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Using Class Templates

Template classes are instantiated by binding the formal
parameter:

typedef pair<int, char*> MyPair;

MyPair myPair = MyPair(6, "I am not a number");

cout << myPair.first << sez
<< myPair.second << endl;

Typedefs are a convenient way to bind names to template
instances.
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Standard Template Library

STL is a general-purpose C++ library of generic algorithms and
data structures.

1. Containers store collections of objects

Iz vector, list, deque, set, multiset, map, multimap
2. Iterators traverse containers

== random access, bidirectional, forward/backward ...
3. Function Objects encapsulate functions as objects

= arithmetic, comparison, logical, and user-defined ...
4. Algorithms implement generic procedures

I search, count, copy, random shuffle, sort, ..
5. Adaptors provide an alternative interface to a component

iz stack, queue, reverse iterator, ...

© O. Nierstrasz — U. Berne Multiparadigm Programming




PS — 52003 113.

An STL Line Reverser

#include <iostream>
#include <stack> // STL stacks
#include <string> // Standard strings

void rev(void)

{
typedef stack<string> IOStack; // instantiate the template

I0Stack ioStack; // instantiate the template class
string buf;

while (getline(cin, buf)) {
ioStack.push(buf);

}

while (ioStack.size() != 0) {
cout << ioStack.top() << endl;
ioStack.pop();

}
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What we didn't have time for ...

virtual member functions, pure virtuals
public, private and multiple inheritance
default arguments, default initializers
method overloading

const declarations

enumerations

smart pointers

static and dynamic casts

template specialization

namespaces

RTTI
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A A A A A /A

What you should know!

What new features does C++ add to C?
What does Java remove from C++?
How should you use C and C++ commenting styles?
How does a reference differ from a pointer?
When should you use pointers in C++?
Where do C++ objects live in memory?
What is a member initialization list?
Why does C++ need destructors?
What is OCF and why is it important?
What's the difference between delete and delete[]?
What is operator overloading?
Why are templates like macros?

@ O. Nierstrasz — U. Berne
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Can you answer these questions?

Why doesn’t C++ support garbage collection?

Why doesnt Java support multiple inheritance?

What trouble can you get into with references?

Why doesn't C++ just make deep copies by default?

How can you declare a class without a default constructor?

Why can objects of the same class access each others
private members?

Why are templates only defined in header files?
How are templates compiled?
What is the type of a template?

A A

o o 0
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4. Stack-based Programming

Overview
A PostScript objects, types and stacks
ad Arithmetic operators
A Graphics operators
A Procedures and variables
d Arrays and dictionaries

References:

Q PostScript® Language Tutorial and Cookbook, Adobe
Systems Incorporated, Addison-Wesley, 1985

Q PostScript® Language Reference Manual, Adobe
Systems Incorporated, second edition, Addison-Wesley,
1990
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What is PostScript?

PostScript "is a simple interpretive programming language ... to
describe the appearance of text, graphical shapes, an
sampled images on printed or displayed pages.”

introduced in 1985 by Adobe

display standard now supported by all major printer
vendors

simple, stack-based programming language
minimal syntax
large set of built-in operators

PostScript programs are usually generated from
applications, rather than hand-coded

o000 U0




Postscript variants

Level 1:
A the original 1985 PostScript

Level 2:
A additional support for dictionaries, memory management

Display PostScript:
 special support for screen display

Level 3:
Q the current incarnation with "workflow" support




Syntax

Comments:

from "%" to next newline or formfeed

$ This 1s a comment

Numbers:

signed integers, reals and radix numbers

123 -98 0 +17 -.002 34.5
123.6el10 1E-5 8#1777 16#FFE 2#1000

Strings:

text in parentheses or hexadecimal in angle
brackets (Special characters are escaped: \n

\EACN) W L)

Names:

tokens consisting of "regular characters” but
which aren't numbers

abc Offset $$ 23A 13-456 a.b
SMyDict @pattern
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Literal |start with slash

hames: /buffer /proc

enclosed in square brackets
[ 123 /abc (hello) ]

enclosed in curly brackets

Procedures:| { add 2 div }
% add top two stack items and divide by 2

Arrays:

© O. Nierstrasz — U. Berne Stack-based Programming




Semantics

A PostScript program is a sequence of tokens, representing
typed objects, that is interpreted to manipulate the display
and four stacks that represent the execution state of a
PostScript program:

holds (arbitrary) operands and results of

holds only dictionaries where keys and

Dictionary stack: values may be stored

holds executable objects (e.qg.

Execution stack: procedures) in stages of execution

Graphics state |keeps track of current coordinates etc.
stack:
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Object types

Every object is either /iteral or executable:
Literal objects are pushed on the operand stack:

d integers, reals, string constants, literal names, arrays,
procedures

Executable objects are interpreted:
A built-in operators

d names bound to procedures (in the current dictionary
context)

Simple Object Types are copied by value

d boolean, fontID, integer, name, null, operator, real ...
Composite Object Types are copied by reference

d array, dictionary, string ...
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The operand stack

Compute the average of 40 and 60:

40 60 add 2 div

60

40

40

100

100

50

At the end, the result is left on the top of the operand stack.

@ O. Nierstrasz — U. Berne
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Stack and arithmetic operators

Stack | Op New Stack Function
num; num, | add | sum numy + numy
num; hum, | sub | difference numj - nump
num; num, lmul | product num; > nump
num; num, | div | quotient numy; / numy
int{int, | idiv |quotient integer divide
int{int, lmod | remainder int; mod int,
num den | atan |angle arctangent of num/den
any lpop |- discard top element
any; any, | exch | any, any; exchange top two elements
any | dup |any any duplicate top element
anyi ... any, h | copy |anyj ... any, anys ... any, | duplicate top nelements
anyy, ... anyg n | index | any, ... anyg any, duplicate n+1th element
and many others ...
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Drawing a Box

"A pathis aset of straight lines and curves that define a region
to be filled or a trajectory that is to be drawn on the current

page."
newpath
100 100 moveto
100 200 lineto
200 200 lineto
200 100 lineto
100 100 lineto
10 setlinewidth
stroke
showpage

clear the current drawing path
move to (100,100)
draw a line to (100,200)

OO0 OO o©

set width for drawing
draw along current path
and display current page

OO0 OO o
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Path construction operators

- | newpath - | initialize current path to be empty
- | currentpoint | X y | return current coordinates
X y | moveto - | set current point to (x, y)
dx dy | rmoveto - | relative moveto
X Y| lineto - | append straight line to (x, y)
dx dy | rlineto - | relative lineto
X Yy r angj ang, | arc - | append counterclockwise arc
- | closepath - | connect subpath back to start
- £i11 - | fill current path with current colour
- | stroke - | draw line along current path
- | showpage - |output and reset current page

Others: arcn, arcto, curveto, rcurveto, flattenpath, ...
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Coordinates
Coordinates are
measured in points:
72 points = 1 inch A4 paper
=2.54 cm.

(0,0)

~21 cm = 595 points

, (595, 840)

y

29.7 cm = 840 points

® O. Nierstrasz — U. Berne
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"Hello World” in Postscript

Before you can print text, you must (1) /ook up the desired
font, (2§ scale it to the required size, and (3) set it to be the
current font.

/Times-Roman findfont ¢ look up Times Roman font

18 scalefont scale it to 18 points

setfont set this to be the current font
100 500 moveto go to coordinate (100, 500)
(Hello world) show draw the string “Hello world”
showpage render the current page

OO0 OO0 OO0 OO0 o©

Hello world
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Character and font operators

key | findfont font |return font dict identified by key
font scale | scalefont |font' |scale font by scale to produce font’
font | setfont - set font dictionary
- | currentfont | font |return current font

string | show - print string

string | stringwidth | wy wy |width of string in current font

Others: definefont, makefont, FontDirectory,
StandardEncoding ....
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Procedures and Variables

Variables and procedures are defined by binding names to
literal or executable objects.

key value | def | - | associate key and value in current dictionary

Define a general procedure to compute averages:
/average { add 2 div } def
$ bind the name “average” to “{ add 2 div }”
40 60 average

{ add 2 div } 60 2
/average | | /average 40 | |40 | |100| |100 | |50
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A Box procedure

Most PostScript programs consist of a prologue and a script.

% Prologue -- application specific procedures
/box { & grey x y =>

newpath

moveto Xy =>

0 150 rlineto £ relative lineto
150 0 rlineto
0 =150 rlineto

closepath % cleanly close path!
setgray 3 grey ->
fill $ colour in region

} def

% Script -- usually generated
0 100 100 box

0.4 200 200 box

0.6 300 300 box

0 setgray

showpage
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Graphics state and coordinate operators

hum | setlinewidth |- set line width
num | setgray - set colour to gray value
(0 = black; 1 = white)
Sx Sy | scale - scale use space by s, and s,
angle | rotate - rotate user space by angle degrees
tx ty| translate - translate user space by (7, t,)
- |matrix matrix | create identity matrix
matrix | currentmatrix | matrix | fill matrix with CTM
matrix | setmatrix - replace CTM by matrix
- | gsave - save graphics state
- | grestore - restore graphics state

gsave saves the current path, gray value, line width and user
coordinate system
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A Fibonacci Graph

/fibInc { ¢ mn ->n (mtn)
exch gmn->nm
1 index g nm->nmn
add
} def
/x 0 def /y 0 def /dx 10 def
newpath
100 100 translate $ make (100, 100) the origin
X y moveto $ i.e., relative to (100, 100)
0 1 25 {

/x x dx add def
dup /y exch 100 idiv def
X y lineto
fibInc
} repeat
2 setlinewidth
stroke
showpage

increment X
set y to 1/100 last fib value
draw segment

o0 oo op
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Numbers and Strings

Numbers and other objects must be converted to strings
before they can be printed:

int

string

string

create string of capacity int

any string

CVs

substring

convert to string

@ O. Nierstrasz — U. Berne
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Factorial
/LM 100 def ¢ left margin
/FS 18 def ¢ font size
/sBuf 20 string def $ string buffer of length 20
/fact { ¢ n ->n!
dup 1 1t % -> n bool
{ pop 1 } g 0 ->1
{
dup ¢ n->nn
1 $ -=>nn 1
sub $ -> n (n-1)
fact $ -=> n (n-1)! NB: recursive lookup
mul 3 n!
}
ifelse
} def
/showInt { $n->
sBuf cvs show % convert an integer to a string and show it
} def
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Factorial ... o=1

1'=1
/showFact { g n-> 2l =2
dup showInt % show n 3t=6
L o | — 41 =24
(! = ) show 3 = 51 = 120
fact showlInt $ show n! 6! = 720
} def 7! = 5040
/newline { S 8! = 40320
currentpoint exch pop 3 get current y Ol = 362880
FS 2 add sub $ subtract offset 10! = 3628800
LM exch moveto $ move to new x y 11! = 39916800
} def 12! = 479001600

13! = 6.22702e+09
14! = 8.71783e+10
15! = 1.30767e+12

/Times-Roman findfont FS scalefont setfont

LM 600 moveto

| =
0 1 20 { showFact newline } for % do from 0 to 20 ig, =§gg§§§:ii
showpage 18! = 6.40237e+15
19! = 1.21645e+17
20! = 2.4329e+18
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Boolean, control and string operators

any; any, | eq bool | test equal
any; any, | ne bool | test not equal
any; any, | ge bool | test greater or equal

- | true | true |push boolean value true

- | false |bool |test equal

bool proc | if - execute proc if bool is true
bool procy proc, | ifelse |- execute proc; if bool is true else proc,
init incr limit proc | for - execute proc with values init to limit by
steps of incr
int proc | repeat | - execute proc int times
string | length |int | number of elements in string
string index | get int | get element at position index
string index int | put - put int into string at position index
string proc | forall |- execute proc for each element of string
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A simple formatter

/LM 100 def

/RM 250 def

/FS 18 def

/showStr {
dup stringwidth pop
currentpoint pop
add
RM gt { newline } if
show

} def

/newline {
currentpoint exch pop
FS 2 add sub
LM exch moveto

} def

/format { { showStr ( ) show

OO0 OO0 OO0 OO0 OO0 OO oo oo

o0 OO0 oo oo

left margin

right margin

font size

string ->

get (just) string’s width

current x position

where printing would bring us
newline if this would overflow RM

->
get current y
subtract offset

move to new X'y

} forall } def % array ->

/Times-Roman findfont FS scalefont setfont

LM 600 moveto

@ O. Nierstrasz — U. Berne
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A simple formatter ...

[ (Now) (is) (the) (time) (for) (all) (good) (men) (to)
(come) (to) (the) (aid) (of) (the) (party.) ] format

showpage

Now isthetime for
all good men to
come to the aid of
the party.
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Array and dictionary operators

-0 mark | start array construction
mark objg ... obj,_1 | ] array | end array construction
int | array array | create array of length n
array | length int number of elements in array
array index | get any |get element at index position
array index any | put - put element at index position
array proc | forall - execute proc for each array element
int | dict dict |create dictionary of capacity int
dict | length int | number of key-value pairs
dict |maxlength |int | capacity
dict | begin - push dict on dict stack
- |end - pop dict stack
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Using Dictionaries — Arrowheads

/arrowdict 14 dict def ¢ make a new dictionary
arrowdict begin
/mtrx matrix def $ allocate space for a matrix
end headthickness
/arrow { - >
arrowdict begin $ open the dictionary /////////"
/headlength exch def % grab args (tipx, tipy) headlength

/halfheadthickness exch 2 div def
/halfthickness exch 2 div def
/tipy exch def

/tipx exch def

/taily exch def

/tailx exch def A V
/dx tipx tailx sub def “;ﬁ&;aggg
/dy tipy taily sub def

/arrowlength dx dx mul dy dy mul add sqrt def

/angle dy dx atan def

/base arrowlength headlength sub def

(tailx, taily)
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/savematrix mtrx currentmatrix def
tailx taily translate

angle rotate

0 halfthickness neg moveto

base halfthickness neg lineto

base halfheadthickness neg lineto
arrowlength 0 lineto

base halfheadthickness lineto

base halfthickness lineto

0 halfthickness lineto

save the coordinate system
translate to start of arrow
rotate coordinates

draw as if starting from (0,0)

o0 o0 oP o©

closepath
savematrix setmatrix $ restore coordinate system
end
} def
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Instantiating Arrows

newpath

318 340 72 340 10 30 72 arrow
fill
newpath

382 400 542 560 72 232 116 arrow ——
3 setlinewidth stroke
newpath

400 300 400 90 90 200 200 3 sgrt mul 2 div arrow
.65 setgray fill
showpage
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Encapsulated PostScript

EPSF is a standard format for importing and exporting
PostScript files between applications.

!|PS-Adobe-3.0 EPSF-3.0
$%BoundingBox: 90 490 200 520
/Times-Roman findfont (200, 520)

__________

18 scalefont . Heloworld |
setfont (90, 490)

100 500 moveto

(Hello world) show

showpage
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What you should know!

What kinds of stacks does PostScript manage?

When does PostScript push values on the operand stack?
What is a path, and how can it be displayed?

How do you manipulate the coordinate system?

Why would you define your own dictionaries?

How do you compute a bounding box for your PostScript
graphic?

o o O 0 0 9
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Can you answer these questions?

& How would you program this graphic? ZZ-'.‘]!

& When should you use translate instead of moveto?

& How could you use dictionaries to simulate object-oriented
programming?
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5. Functional Programming

Overview
A Functional vs. Imperative Programming
A Referential Transparency
d Recursion
d Pattern Matching
A Higher Order Functions
d Lazy Lists

© O. Nierstrasz — U. Berne Functional Programming
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A Bit of History

Lambda Calculus
(Church, 1932-33)

formal model of computation

Lisp symbolic computations with lists
(McCarthy, 1960)
APL algebraic programming with arrays

(Iverson, 1962)

ISWIM
(Landin, 1966)

let and where clauses

equational reasoning; birth of “pure”
functional programming ...




A Bit of History

ML originally meta language for theorem
(Edinburgh, 1979) |proving

SASL, KRC, lazy evaluation
Miranda
(Turner, 1976-85)

Haskell "Grand Unification" of functional
(Hudak, Wadler, et |languages ...
al., 1988)
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Programming without State

Imperative style: Declarative (functional)
style:
n = Xy
a := 1; fac n =
while n>0 do if n == (
begin a:= a*n; then 1
n := n-1; else n * fac (n-1)
end;

Programs in pure functional languages have no explicit state.
Programs are constructed entirely by composing expressions.
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Pure Functional Programming Languages

Imperative Programming:
== Program = Algorithms + Data

Functional Programming:
== Program = Functions - Functions

What is a Program?

A program (computation) is a transformation from input data
to output data.
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Key features of pure functional languages

—

All programs and procedures are functions

2. There are no variables or assignments — only input
parameters

There are no loops — only recursive functions

4. The value of a function depends only on the values of its
parameters

5. Functions are first-class values

w
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What is Haskell?

Haskell is a general purpose, purely functional
programming language incorporating many recent
innovations in programming language design. Haskell
provides higher-order functions, non-strict
semantics, static polymorphic typing, user-defined
algebraic datatypes, pattern-matching, list
comprehensions, a module system, a monadic I/0
system, and a rich set of primitive datatypes, including
lists, arrays, arbitrary and fixed precision integers,
and floating-point numbers. Haskell is both the
culmination and solidification of many years of
research on lazy functional languages.

— The Haskell 98 report
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"Hello World” in Hugs

hello() = print "Hello World"

® O. Nierstrasz — U. Berne
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Referential Transparency

A function has the property of referential transparency if its
value depends only on the values of its parameters.

& Does f(x)+f(x) equal 2xf(x)? In C? In Haskell?

Referential transparency means that “equals can be replaced
by equals”.

In a pure functional language, all functions are referentially
transparent, and therefore always yield the same result no

matter how often they are called.




PS — 52003

158.

Evaluation of Expressions

Expressions can be (formally) evaluated by substituting
arguments for formal parameters in function bodies:

fac 4 ™ if 4 == 0 then 1 else 4 * fac (4-1)

0 4
0 4
0 4
0 4
0 4
>

4

5

*
*
*
*
*

*

24
Of course, real functional languages are not implemented by
syntactic substitution ...

fac (4-1)

(1f (4-1) == 0 then 1 else (4-1) * fac (4-1-1))

(if 3 == 0 then 1 else (4-1) * fac (4-1-1))

((4-1) * fac (4-1-1))

((4-1) * (if (4-1-1) == 0 then 1 else (4-1-1) * ...))

((4-1) * ((4-1-1) * ((4-1-1-1) * 1)))
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Tail Recursion

Recursive functions can be less efficient than loops because of
the high cost of procedure calls on most hardware.

A tail recursive function calls itself only as its last operation,

so the recursive call can be optimized away by a modern
compiler since it needs only a single run-time stack frame:

fact 5

fact 5

fact 4

fact 5

fact 4

fact 3

sfac 5

sfac 4

sfac 3
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Tail Recursion ...

A recursive function can be converted to a tail-recursive one
by representing partial computations as explicit function

parameters:
sfac s n = if n == 0
then s
else sfac (s*n) (n-1)
sfac 1 4 sfac (1*4) (4-1)

>
b sfac 4 3
o sfac (4*3) (3-1)
» sfac 12 2
>  sfac (12*2) (2-1)
b sfac 24 1
0y . o 24

© O. Nierstrasz — U. Berne Functional Programming




PS — 52003 161.

Equational Reasoning

Theorem:
Foralln=0, fac n = sfac 1 n
Proof of theorem:
n=0: fac 0 =1 = sfac 1 0
n>0: Suppose
fac (n-1) =sfac 1 (n-1)

fac n =n * fac (n-1) — bydef
=n * sfac 1 (n-1)
= sfac n (n-1) — by lemma
=sfac 1 n — by def
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Equational Reasoning ...

Lemma:
Foralln=0,sfac s n=s * sfac 1 n

Proof of lemma:
n=0: sfac s 0=s=s * sfac 1 0
n>0: Suppose:
sfac s (n-1) =s * sfac 1 (n-1)
sfac s n = sfac (s*n) (n-1)

=s *n * sfac 1 (n-1)

=s * sfac n (n-1)
=s * sfac 1 n

@ O. Nierstrasz — U. Berne
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Pattern Matching

Haskell support multiple styles for specifying case-based

function definitions:

Patterns:
fac' 0 =1

fac' n = n * fac' (n-1)

-- or: fac’ (n+l) = (n+l) * fac’ n

Guards:

fac n

AV |
i
_ O

Il

n
n n * fac'' (n-1)

@ O. Nierstrasz — U. Berne
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Lists

Lists are pairs of elements and /ists of elements:
A [ ] — stands for the empty list

A x:xs — stands for the list with x as the head and xs as
the rest of the list

ad [1,2,3] —is syntactic sugar for 1:2:3:[ ]

Q [1..n] —stands for [1,2,3, ... n]

© O. Nierstrasz — U. Berne Functional Programming
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Using Lists

Lists can be deconstructed using patterns:

head (x: ) = x

0
1l + len Xxs

len [ ]
len (X:xs)

prod [ ] =1
prod (X:Xs) = X * prod Xs
fac''' n = prod [l..n]

© O. Nierstrasz — U. Berne Functional Programming
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Higher Order Functions

Hi?her-order functions treat other functions as first-class
values that can be composed to produce new functions.

]

map f [
p £ (x:x8)

[ ]
ma f x : map £ xs

map fac [1l..5]
v [1, 2, 6, 24, 120]

NB: map fac is a new function that can be applied to lists:

mfac = map fac

mfac [1..3]
v [1, 2, 6]

@ O. Nierstrasz — U. Berne
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Anonymous functions

Anonymous functions can be written as "lambda abstractions®”.
The function (\x -> x * x) behaves exactly like sqr:
sgqr X = X * X

sqr 10 2 100
(\x => x * x) 10 =100

Anonymous functions are first-class values:
map (\x -> x * x) [1..10]
(1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
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Curried functions

A Curried function [named after the logician H.B. Curry] takes
its arguments one at a time, allowing it to be treated as a
higher-order function.

plus x vy =x +y -- curried addition
plus 1 2 3

plus’ (x,y) = X + vy -- normal addition
plus’(1,2) =3

© O. Nierstrasz — U. Berne Functional Programming
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Understanding Curried functions

plus x y = x +y
is the same as:
plus x = \y -> x+ty

Inother words, plus is a function of one argument that returns
a function as its result.

plus 5 6

is the same as:
(plus 5) 6

In other words, we invoke (plus 5), obtaining a function,
\y -=> 5 + vy
which we then pass the argument 6, yielding 11.

© O. Nierstrasz — U. Berne Functional Programming
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Using Curried functions

Curried functions are useful because we can bind their
argument incrementally

inc = plus 1 —- bind first argument to 1

inc 2 ©3

fac = sfac 1 -- binds first argument of
where sfac s n -- a curried factorial

| n >= 1= sfac (s*n) (n-1)

© O. Nierstrasz — U. Berne Functional Programming




Currying

The following (pre-defined) function takes a binary function as
an argument and turns it into a curried function:

curry f ab =f£f (a, b)

plus(x,y) =x +y -- not curried!
inc = (curry plus) 1
sfac(s, n) = if n == 0 -- not curried

then s
else sfac (s*n, n-1)

fac = (curry sfac) 1 -- bind first argument
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Multiple Recursion

Naive recursion may result in unnecessary recalculations:
fib 1 =1
fib 2 =1
fib (n+2) = fib n + fib (n+l)

Eflficiency can be regained by explicitly passing calculated
values:

fib' 1 =1

fib' n = a where (a, ) = fibPair n
fibPair 1 = (1,0)

fibPair (n+2) = (atb,a)

where (a,b) = fibPair (n+l)

& How would you write a tail-recursive Fibonacci function?
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Lazy Evaluation

“Lazy”, or "normal-order” evaluation only evaluates expressions
when they are actually needed. Clever implementation
techniques (Wadsworth, 1971) allow replicated expressions to
be shared, and thus avoid needless recalculations.
So:

sqr n = n * n

sqr (2+45) ™ (2+5) * (245) ™ 7 * 7 © 49

Lazy evaluation allows some functions to be evaluated even if
they are passed incorrect or non-terminating arguments:
1fTrue True X y = X
1fTrue False x y =y
ifTrue True 1 (5/0) =1
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Lazy Lists

Lazy lists are infinite data structures whose values are
generated by need:

fromn =n : from (n+l)

from 10 »~» [10,11,12,13,14,15,16,17,....

take 0
take

[ ]
take (nt+tl) (xX:xs) =

[ ]
[ ]
X ¢ take n xs

take 5 (from 10) = [10, 11, 12, 13, 14]

NB: The lazy list (from n) has the special syntax: [n..]

© O. Nierstrasz — U. Berne Functional Programming
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Programming lazy lists

Many sequences are naturally implemented as lazy lists.
Note the top-down, declarative style:

fibs = 1 : 1 : fibsFollowing 1 1
where fibsFollowing a b =
(atb) : fibsFollowing b (a+b)

take 10 fibs
©>[r1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ]

& How would you re-write fibs so that (a+b) only appears
once?

© O. Nierstrasz — U. Berne Functional Programming




Declarative Programming Style

primes = primesFrom 2

primesFrom n = p : primesFrom (p+1)
where p = nextPrime n

nextPrime n

| isPrime n = n
| otherwise = nextPrime (n+l)
1sPrime 2 = True
1sPrime n = notDivisible primes n
notDivisible (k:ps) n
(k*k) > n = True
(mod n k) == 0 = False
otherwise = notDivisible ps n

take 100 primes »> [ 2, 3, 5, 7, 11, 13, ... 523, 541 ]
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What you should know!

What is referential transparency? Why is it important?
When is a function tail recursive? Why is this useful?
What is a higher-order function? An anonymous function?
What are curried functions? Why are they useful?

How can you avoid recalculating values in a multiply

recursive function?

g @

What is lazy evaluation?
What are lazy lists?

@ O. Nierstrasz — U. Berne
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Can you answer these questions?

& Why don't pure functional languages provide loop
constructs?

> When would you use patterns rather than guards to specify
functions?

& Can you build a list that contains both numbers and
functions?

& How would you simplify £ibs so that (a+b) is only called
once?

& What kinds of applications are well-suited to functional
programming?

© O. Nierstrasz — U. Berne Functional Programming
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6. Type Systems

Overview

What is a Type?

Static vs. Dynamic Typing
Kinds of Types
Overloading

User Data Types
Polymorphic Types

I Iy IOy WA Ay

® O. Nierstrasz — U. Berne Type Systems
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What is a Type?

Type errors:
25+ [ ]
ERROR: Type error 1in application
*** expression : 5 + [ ]
**% term : 5
***% type : Int
*** does not match : [a]

A type is a set of values?
Q int={..-2,-1,0,1,2,3, ..}
Q bool = { True, False }
Q Point ={ [x=0,y=0], [x=1,y=01, [x=0,y=1] ... }

© O. Nierstrasz — U. Berne Type Systems
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What is a Type?

A type is a partial specification of behaviour?
d n,m:int = n+mis valid, but not(n) is an error

d n:int=n := lisvalid, butn := “hello world” is an
error

What kinds of specifications are interesting? Useful?

® O. Nierstrasz — U. Berne Type Systems
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Static and Dynamic Types

Values have static types defined by the programming language.

Variables and expressions have dynamic types determined by
the values they assume at run-time.

declared, static type is Applet
\ static type of value is GameApplet

Applet myApplet = new GameApplet();

actual dynamic type is GameApplet

© O. Nierstrasz — U. Berne Type Systems




Static and Dynamic Typing

A language is statically typed if it is always possible to
determine the (static) type of an expression based on the
program text alone.

A language is strongly typed if it is possible to ensure that
e;/er'y expression is type consistent based on the program text
alone.

A language is dynamically typed if only values have fixed type.
Variables and parameters may take on different types at run-
time, and must be checked immediately before they are used.

sze consistency may be assured by (i) compile-time Tyfe_
checking, (ii) type inference, or (iii) dynamic type-checking.




Kinds of Types

All programming languages provide some set of built-in
types.

A Primitive types: booleans, integers, floats, chars ...
Q Composite types: functions, lists, tuples ...

Most strongly-typed modern languages provide for additional
user-defined types.

Q User-defined types: enumerations, recursive types,
generic types, objects ...




Type Completeness

The Type Completeness Principle:

No operation should be arbitrarily restricted in the
types of values involved. — Watt

First-class values can be evaluated, passed as arguments and
used as components of composite values.

Functional languages attempt to make no class distinctions,
whereas imperative languages typically treat functions (at
best) as second-class values.
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PS — 52003
Function Types
Function types allow one to deduce the types of expressions
without the need to evaluate them:
fact :: Int -> Int
42 :: Int = fact 42 :: Int

Int -> (Int -> Int)

Curried types:
-> Int

Int -> Int
and
plus 5 6 = ((plus 5) 6).
= plus 5::Int->Int

SO.
plus::Int->Int->Int

Type Systems

@ O. Nierstrasz — U. Berne
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List Types

List Types
A list of values of type a has the type [a]:

[ 1 ] ¢:: [ Int ]

NB: All of the elements in a list must be of the same type!
['a', 2, False]-- this is illegal! can’t be typed!

® O. Nierstrasz — U. Berne
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Tuple Types

Tuple Types

If the expressions x1, x2, ..., xn have types t1, t2, ..., tn
respectively, then the tuple (x1, x2, ..., xn)has the type
(tl, t2, ..., tn):

(1, [2], 3) :: (Int, [Int], Int)
('a', False) :: (Char, Bool)
((1,2),(3,4)) :: ((Int, Int), (Int, Int))

The unit type is written () and has a single element which is
also written as ().
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User Data Types

New data types can be introduced by specifying (i) a datatype
name, (ii) a set of parameter types, and (iii) a set of
constructors for elements of the type:

data DatatypeName al ... an = constrl | ... | constrm

where the constructors may be either:
1. Named constructors:
Name typel ... typek

2. Binary constructors (i.e., starting with ™:"):
typel CONOP type2
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Enumeration types

User data types that do not hold any data can model
enumerations:

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

Functions over user data types must deconstruct the
arguments, with one case for each constructor:

whatShallIDo Sun “relax”
whatShallIDo Sat = “go shopping”
whatShallIDo “guess I'll have to go to work”
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Union types

data Temp = Centigrade Float | Fahrenheit Float

freezing :: Temp -> Bool
freezing (Centigrade temp)= temp <=
freezing (Fahrenheit temp)= temp <=

0.0
32.0

@ O. Nierstrasz — U. Berne
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Recursive Data Types

A recursive data type provides constructors over the type
itself:

A

data Tree a = Lf a | Tree a :": Tree a

mytree = (Lf 12 :": (Lf 23 :": Lf 13)) :": Lf 10

A
° °
°

e \Lf 10
PRl
LEf 12 it

Lf 23 L 13

mytree

? :t mytree & mytree :: Tree Int
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Using recursive data types

leaves, leaves' :: Tree a -> [a]
leaves (Lf 1) = [1]
leaves (1 :": r) = leaves 1 ++ leaves r

leaves' t = leavesAcc t [ ]
where leavesAcc (Lf 1) = (1:)
leavesAcc (1 :": r) = leavesAcc 1 . leavesAcc r

® What do these functions do?
S Which function should be more efficient? Why?
& What is (I:) and what does it do?
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Monomorphism

Languages like Pascal and € have monomorphic type systems:

every constant, variable, parameter and function result has a

unique type.
d good for type-checking
A bad for writing generic code

== it is impossible in Pascal to write a generic sort

procedure

@ O. Nierstrasz — U. Berne
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Polymorphism

A polymorphic function accepts arguments of different types:
length :: [a] -> Int
length [ ] 0
length (x:xs) 1 + length xs

map :: (a -> b) -> [a] -> [b]
map £ [ ] [ ]
map f (x:xs) f x : map £ xs

(.) 2 (b ->c) -> (a -> b) -> (a -> ¢c)
(£ . g) x £ (g x)
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Type Inference

We can infer the type of many expressions by simply examining
their structure. Consider:

length [ ] =0
length (x:xs) = 1 + length xs

Clearly:
length :: a -> b

Furthermore, b is obvious int, and ais a list, so:
length :: [c] -> int

We cannot further refine the type, so we are done.
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Composing polymorphic types

We can deduce the types of expressions using polymorphic
functions by simply binding type variables to concrete types.

Consider:
length :: [a] -> Int
map :: (a -=> b) -> [a] -> [b]
Then:
map length :: [[a]] -> [Int]
[ “Hello”, “World” ] :: [[Char]]

map length [ “Hello”, “World” ] :: [Int]
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Polymorphic Type Inference

Hindley-Milner Type Inference provides an effective
algorithm for automatically determining the types of

polymorphic functions.
o e

map :: X -> Y -> Z

map f
map f

map :: (a -> b) -> -> [ b ]

The corresponding type system is used in many modern
functional languages, including ML and Haskell.




Type Specialization

A polymorphic function may be explicitly assigned a more
specific type:

idInt :: Int -> Int

1dInt x = X

Note that the :t command can be used to find the type of a
particular expression that is inferred by Haskell:

? it \x -> [x]
D \x => [x] :: a => [a]

? :t (\x -> [x]) :: Char -> String
> \x => [x] :: Char -> String
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Kinds of Polymorphism

Polymorphism:
3 Universal:

— Parametric: polymorphic map function in Haskell,
nil/void pointer type in Pascal/C

— Inclusion: subtyping — graphic objects
4 Ad Hoc:
— Overloading: + applies to both integers and reals

— Coercion: integer values can be used where reals are
expected and v.v.

© O. Nierstrasz — U. Berne Type Systems
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Coercion vs overloading

Coercion or overloading — how does one distinguish?
3+ 4

w W w
o + o
+ & +
.|>234>

% Are there several overloaded + functions, or just one, with
values automatically coerced?

© O. Nierstrasz — U. Berne Type Systems
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Overloading

Overloaded operators are introduced by means of type classes:
class Eq a where
==), (/=) :: a -> a -> Bool
X /=y = not (x ==1y)

A type class must be instantiated to be used:
instance Eqg Bool where

True == True = True
False == False = True
== = False

© O. Nierstrasz — U. Berne Type Systems




Instantiating overloaded operators

For each overloaded instance a separate definition must be
given ...

instance Eq Int where (==) = primEqgInt
instance Eq Char where ¢ == d = ord ¢ == ord d
instance (Eq a, Eq b) => Eq (a,b) where

(x,y) == (u,v) X==u && y==V

instance Eq a => Eq [a] where

[ 1 == [ 1] = True

[ 1] == (y:ys) = False

(X:xs) == [ ] = False

(X:xs) == (y:ys) = X==y && XS==YyS
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Equality for Data Types
Why not automatically provide equality for all types of values?

User data types:
data Set a = Set [a]
instance Eq a => Eq (Set a) where
Set xs == Set ys = xs subset ys && ys subset xs
where xs “subset™ ys = all ("elem ys) xs

& How would you define equality for the Tree data type?

NB: all (‘elem’ ys) xs tests that every x in xs is an element of ys

© O. Nierstrasz — U. Berne Type Systems
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Equality for Functions

Functions:
? (1==) == (\x->1==Xx)
ERROR: Cannot derive instance 1n expression
**% Expression : (==) d148 ((==) {dict} 1) (\x-

>(==) {dict} 1 x)
*** Required instance : Eq (Int -> Bool)

Determining equality of functions is undecidable in generall

© O. Nierstrasz — U. Berne Type Systems
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What you should know!

How are the types of functions, lists and tuples specified?

How can the type of an expression be inferred without
evaluating it?

What is a polymorphic function?

How can the type of a polymorphic function be inferred?
How does overloading differ from parametric
polymorphism?

How would you define == for tuples of length 3?

How can you define your own data types?

Why isn't == pre-defined for all types?

© O. Nierstrasz — U. Berne Type Systems
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Can you answer these questions?

& Can any set of values be considered a type?

& Why does Haskell sometimes fail to infer the type of an
expression?

& What is the type of the predefined function all? How
would you implement it?

& How would you define equality for the Tree data type?

® O. Nierstrasz — U. Berne Type Systems
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/. Introduction to the Lambda
Calculus

Overview
A What is Computability? — Church's Thesis
A Lambda Calculus — operational semantics
A The Church-Rosser Property
d Modelling basic programming constructs

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus
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What is Computable?

Computation is usually modelled as a mapping from inputs to
outputs, carried out by a formal "machine,”" or program, which
processes its input in a sequence of steps.

Problem
" : yes
— Effectively
™ computable”
B function ™\
no
input program/machine output

An "effectively computable” function is one that can be
computed in a finite amount of time using finite resources.

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus




Church’'s Thesis

Effectively computable functions [from positive
integers to positive integers]are just those definable
in the lambda calculus.

Or, equivalently:

It is not possible to build a machine that is more
powerful than a Turing machine.

Church'’s thesis cannot be proven because “"effectively

computable” is an infuitive notion, not a mathematical one. Tt
can only be refuted by giving a counter-example — a machine
that can solve a problem not computable by a Turing machine.

So far, all models of effectively computable functions have
shown to be equivalent to Turing machines (or the lambda
calculus).
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Uncomputability

A problem that cannot be solved by any Turing machine in finite
time (or any equivalent formalism) is called uncomputable.

Assuming Church’s thesis is true, an uncomputable problem
cannot be solved by any real computer.

The Halting Problem:

Given an arbitrary Turing machine and its input tape,
will the machine eventually halt?

The Halting Problem is provably uncomputable — which means
that it cannot be solved in practice.

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus
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What is a Function? (I)

Extensional view:

A (total) functionf: A — B isa subset of A x B (i.e., a relation)
such that:

1. for each a€A, there exists some (a,b) € f
(i.e., f(a) is defined), and

2. if (Cl,bl) € f and (a, bz) e f, then b1 = by
(i.e., f(a) is unigue)

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus
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What is a Function? (II)

Intensional view:

A function f: A — B is an abstraction h X . e, where x is a
variable name, and e is an expression, such that when a value
aEA is substituted for x in e, then this expression (i.e., f(a))
evaluates to some (unique) value b&B.

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus
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What is the Lambda Calculus?

The Lambda Calculus was invented by Alonzo Church [1932] as
a mathematical formalism for expressing computation by
functions.

Syntax:
e = X a variable
| Ax.e  anabstraction (function)
| eje; a (function) application

A X . x — is a function taking an argument x, and returning x

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus
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Parsing Lambda Expressions

Lambda extends as far as possible to the right

Afxy = A f.(xy)
Application is left-associative
XYy Z = (xy)z

Multiple lambdas may be suppressed

A f g.x AMf.Ahg.x

® O. Nierstrasz — U. Berne Introduction to the Lambda Calculus
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What is the Lambda Calculus? ...

(Operational) Semantics:

a conversion AX.e<> Ay.[Yy/x]e wherey is not
(renaming): freein e
B reduction (AXx.e))er— [eyx/x]ey  avoiding name
(application): capture
AX.ex— e if x is not free

ion:
n reduction ine

The lambda calculus can be viewed as the simplest possible
pure functional programming language.

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus
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Beta Reduction

Beta reduction is the computational engine of the lambda
calculus:

Define: T=\Xx.X

Now consider:

IT=(Ax.x)(Ax.x) — [Ax.x/x]x B reduction
= AX.X substitution
- I

® O. Nierstrasz — U. Berne Introduction to the Lambda Calculus
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Lambda expressions in Haskell

We can implement most lambda expressions directly in Haskell:
i=\x ->x
2?15
5
(2 reductions, 6 cells)
2115
5
(3 reductions, 7 cells)

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus
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Lambdas are anonymous functions

A lambda abstraction is just an anonymous function.
Consider the Haskell function:
compose f g x = f£(g(x))
The value of compose is the anonymous lambda abstraction:
Afgx.f(gx)

NB: This is the same as:
M .hg.Ax.f(gXx)

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus
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1.
1.
2.

A Few Examples

(Ax.x)y
(Ax.f x)

XY

3. (Ax.x) (Ax.x)
4. (Ax.xvy)z

5. (Axy.x)tf
6.
-
8
9.

(Axy z.zxy)ab (Axy.x)

. (M g.f g) (\x.x) (\x.x) z
. (Axyxy)y

(Ax y.xy) (Ax.x) (Ax.x)

10. (Ax y.x y) ((Ax.x) (Ax.Xx))

@ O. Nierstrasz — U. Berne
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Free and Bound Variables

The variable x is bound by A in the expression: A x.e
A variable that is not bound, is free:

fv(x) = { x}

fv(e; e,) = fv(eq) U fv(e,)
fv(h x .e) = fv(e) -{ x }

An expression with no free variables is closed.
(AKA a combinator.) Otherwise it is open.

For example, y is bound and x is free in the (open) expression:
AY . XY
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“"Hello World” in the Lambda Calculus

hello world

& Is this expression open? Closed?

® O. Nierstrasz — U. Berne Introduction to the Lambda Calculus
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Why macro expansion is wrong

Syntactic substitution will not work:

(Axy.xy)y —=[y/x]J(\Ny.xy) preduction
= (Ay.yYy) incorrect substitution!

Since y is already boundin (Ay . X y), we cannot directly
substitute y for x.

® O. Nierstrasz — U. Berne Introduction to the Lambda Calculus
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Substitution
We must define substitution carefully to avoid name capture:
[e/x]x=e
[e/x]y=y if X=y

[e/x] (e1 e2) = ([e/x] eq) ([e/x] &)

[e/x](Ax.e))=(AX.eq)
[e/x](Ly.e))=(y.[e/x]eq) if x=yandy & fv(e)
[e/xX](Ly.e))=(\z.[e/x][z/y]e1) if x=yand
z & fv(e) U fv(e;)
Consider:
r v T

(AX. ((ry.X)(Ax.x))x)y —=[y/x]J((Ary.x)(Ax.x)) X
=((rz.y)(Ax.x))y

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus
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Alpha Conversion

Alpha conversions allow us to rename bound variables.

A bound name x in the lambda abstraction (A x.e) may be
substituted by any other name y, as long as there are no free
occurrences of y in e:

Consider:

(AXYy.Xy)y — (AXxz.Xx2)Yy a conversion
— [y/x](hz.x2) B reduction
— (Mz.y z)
=y n reduction
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Eta Reduction

Eta reductions allow one to remove "redundant lambdas”.

Suppose that f is a closed expression
(i.e., there are no free variables in f).

Then:
(Ax.fx)y —=fy B reduction

So, (A x.f x)behaves the same as f |

Eta reduction says, whenever x does not occur free in f, we can
rewrite (A x.f x)as f.
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Normal Forms

A lambda expression is in normal form if it can no longer be
reduced by beta or eta reduction rules.

Not all lambda expressions have normal forms!

Q=(AX.xXX)(Ax.XxXxX)=[(Ax.xx)/x](xx)
=(Ax.xxX)(Ax.xXx) preduction
—(AX.xxX)(AX.xX) preduction
—(AX.xxX)(AX.xX) preduction

LN ]

Reduction of a lambda expression to a normal form is analogous
to a Turing machine halting or a program terminating.
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Evaluation Order

Most programming languages are strict, that is, all expressions
passed to a function call are evaluated before control is passed
to the function.

Most modern functional languages, on the other hand, use lazy
evaluation, that is, expressions are only evaluated when they
are needed.

Consider:
sgr n = n * n
Applicative-order reduction:
sqr (2+5) @ sqr 7 w 7*7 = 49
Normal-order reduction:
SQr (245) ™ (245) * (245) © 7 * (245) © 7 * 7 © 49
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The Church-Rosser Property

"If an expression can be evaluated at all, it can be
evaluated by consistently using normal-order
evaluation. If an expression can be evaluated in
several different orders (mixing normal-order and
applicative order reduction), then all of these
evaluation orders yield the same result.”

So, evaluation order “"does not matter” in the lambda calculus.

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus
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Non-termination

However, applicative order reduction may not terminate, even
if a normal form exists!

(Ax.y)((Ax.xx)(Ax.xXx))

Applicative order reduction Normal order reduction
—(AXx.y)((Ax.xx)(Ax.xXx)) —y
—(AXx.y)((Ax.xx)(Ax.xXx))

LN ]

Compare to the Haskell expression:
(\x ->\y ->x)1 (5/0) =1

® O. Nierstrasz — U. Berne Introduction to the Lambda Calculus
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Currying

Since a lambda abstraction only binds a single variable,
functions with multiple parameters must be modelled as
Curried higher-order functions.

As we have seen, to improve readability, multiple lambdas are
suppressed, so:

AXY . X=AX.AY.X
Abxy.bxy=Ab.Ax.Ay.(bx)y

@ O. Nierstrasz — U. Berne Introduction to the Lambda Calculus




Representing Booleans

Many programming concepts can be directly expressed in the
lambda calculus. Let us define:

True = AXy. X
False = Axy.y
not = Ab.b False True
if bthenxelsey =Abxy.bxy
then:
not True = (Ab .b False True ) (Axy.x)
— (A Xxy.x)False True
— False
if True thenxelsey = (Abxy . bxy)(Axy.x)xy

— (AXy.xX)XYy
— X




Representing Tuples

Although tuples are not supported by the lambda calculus, they
can easily be modelled as higher-order functions that "wrap"
pairs of values.

n-tuples can be modelled by composing pairs ...

Define: pair = (AXyz.zXxY)
first = (Ap.p True)
second = (A p.p False)

then: (1,2) = pair12
—-(Az.212)
first (pair 1 2) — (pair 1 2) True
— True 12

—1
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Tuples as functions

In Haskell:

t = \x -> \y > X

f =\x => \y -=>y

pair =\x > \y > \z >z xy
first =\p ->p t

second = \p -> p f£
? first (pair 1 2)

first (second (pair 1 (pair 2 3)))

N eV
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Representing Numbers

There is a "standard encoding” of natural numbers into the
lambda calculus:

Define:

O=(Ax.x)
succ = (An. (False, n))

then:
1 =5succO — (False, 0)
2 = succ 1 — (False, 1)
3 = succ 2 — (False, 2)
4 = succ 3 — (False, 3)
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Working with numbers

We can define simple functions to work with our numbers.

Consider:
iszero = first
pred = second

then:
iszero 1 = first (False, O) — False
iszeroO0=(Ap.pTrue)(Ax.x) — True
pred 1 = second (False, 0) — 0

& What happens when we apply pred 0? What does this mean?
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What you should know!

& Is it possible to write a Pascal compiler that will generate
code just for programs that terminate?

What are the alpha, beta and eta conversion rules?

What is name capture? How does the lambda calculus avoid
it?

What is a normal form? How does one reach it?

What are normal and applicative order evaluation?

Why is normal order evaluation called lazy?

How can Booleans, tuples and numbers be represented in
the lambda calculus?

g @

o o O 0
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Can you answer these questions?

How can name capture occur in a programming language?
What happens if you try to program Q in Haskell? Why?

What do you get when you try to evaluate (pred 0)? What
does this mean?

& How would you model negative integers in the lambda
calculus? Fractions?

& Is it possible to model real numbers? Why, or why not?

g 0 ¢
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8. Fixed Points

Overview
4 Recursion and the Fixed-Point Combinator
d The typed lambda calculus
A The polymorphic lambda calculus
A quick look at process calculi

References:

A Paul Hudak, "Conception, Evolution, and Application of
Functional Programming Languages,” ACM Computing
Surveys 21/3, Sept. 1989, pp 359-411.
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Recursion

Suppose we want to define arithmetic operations on our
lambda-encoded numbers.

In Haskell we can program:
plus n m
| n -

| otherwise

m
plus (n-1) (m+1l)

so we might try to "define":

plus=Anm.iszeronm ( plus (predn) (succm))

Unfortunately this is not a definition, since we are trying to use

plus before it is defined. I.e, plus is free in the "definition

lII

@ O. Nierstrasz — U. Berne
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Recursive functions as fixed points

We can obtain a closed expression by abstracting over plus:
rplus = A plus nm . iszero n
m
(plus (predn) (succm))

rplus takes as its argument the actual plus function to use and
returns as its result a definition of that function in terms of

itself. In other words, if fplus is the function we want, then:
rplus fplus <= fplus

I.e., we are searching for a fixed point of rplus ...
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Fixed Points

A fixed point of a function £ is a value p such that £ p = p.

Examples:
fact 1 =1
fact 2 = 2
fib 0 =0
fib1 =1

Fixed points are not always "well-behaved":
succ n = n + 1

S What is a fixed point of succ?
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Fixed Point Theorem

Theorem:

Every lambda expression e has a fixed point p such that
(e p) < p.
Proof: Let:

Y =AM . (Ax.f(xx)(x.f(xx))
Now consider:
p=Ye - (Ax.e(xx))(Ax.e(xx))
—e((Ax.e(xx)(\x.e(xx)))
= ep

So, the "magical Y combinator” can always be used to find a
fixed point of an arbitrary lambda expression.
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How does Y work?

Recall the non-terminating expression
Q=(AX.XX)(AX.XX)

Q loops endlessly without doing any productive work.
Note that (x x) represents the body of the "loop”.

We simpI)/ define Y to take an extra parameter f, and put it
into the loop, passing it the body as an argument:

YerAf . (Ax.f(xx)(x.f(xx))

So Y just inserts some productive work into the body of @

@ O. Nierstrasz — U. Berne Fixed Points
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Using the Y Combinator

Consider:
f = Ax. True
then:
YT —=Tf(YT) by FP theorem
= (A x. True) (Y f)
— True
Consider:
Y succ — succ (Y succ) by FP theorem

— (False, (Y succ))

& What are succ and pred of (False, (Y succ))? What does this

represent?

@ O. Nierstrasz — U. Berne

Fixed Points




PS — 52003

248.

Recursive Functions are Fixed Points

We seek a fixed point of:

rplus = A plus nm . iszero nm ( plus (pred n) (succm))

By the Fixed Point Theorem, we simply take:
plus = Y rplus
Since this guarantees that:

rplus plus <= plus
as desired!

@ O. Nierstrasz — U. Berne
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Unfolding Recursive Lambda Expressions

plus11 = (Y rplus)11
— rplus plus 11 (NB: fp theorem)

iszero 11 (plus (pred 1) (succ 1))
False 1 (plus (pred 1) (succ 1))
plus (pred 1) (succ 1)
rplus plus (pred 1) (succ 1)
iszero (pred 1) (succ 1)

(plus (pred (pred 1) ) (succ (succ 1) ))
iszero O (succ 1) (...)
True (succ 1) (...)
succ 1
2

|

bbb

bbb
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The Typed Lambda Calculus

There are many variants of the lambda calculus.

The typed lambda calculus just decorates terms with fype
annotations:

Syn'rax: e = X' | 61132%11 621:2 | (7\ xt2’er1)1:2%rl
Operational Semantics:
A XTZ . erl = A y'cZ . [y‘EZ/x’UZ ] erl yfz not free in eﬂ
(7\' th . eltl) 62172 = [ QZTZ/XTZ ] elrl
A X, (e x™) = e x"2 not free in e

Example:
Tr'ue = ( A XA . ( A yB . XA )B%A)A%(B%A)
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The Polymorphic Lambda Calculus

Polymorphic functions like "map” cannot be typed in the typed
lambda calculus!

Need type variables to capture polymorphism:
B reduction (ii): (A x¥ . e ey, =[12/ v ][ e,"/x¥ ]e™

Example:

True = (A
True®~F=0) gA pB  (a

90

( A Y X )Bea)ae(ﬁeoc)
B qA )[3 bB

@ O. Nierstrasz — U. Berne Fixed Points




Hindley-Milner Polymorphism

Hindley-Milner polymorphism (i.e., that adopted by ML and
Haskell) works by inferr'in? the type annotations for a slightly
restricted subcalculus: polymorphic functions.

If.

doubleLen len len' xs ys = (len xs) + (len' ys)
then

doubleLen length length "“aaa” [1,2,3]
is ok, but if

doubleLen' len xs ys = (len xs) + (len ys)

then
doubleLen' length *“aaa” [1,2,3]

is a type error since the argument len cannot be assigned a
unique typel
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Polymorphism and self application

Even the polymorphic lambda calculus is not powerful enough to
express certain lambda terms.

Recall that both Q and the Y combinator make use of “self
application”:

Q=(AXx.XX)(AX.XxX)

& What type annotation would you assign to (A x . X x)?

@ O. Nierstrasz — U. Berne Fixed Points




Other Calculi

Many calculi have been developed to study the semantics of
programming languages.

Object calculi: model inheritance and subtyping ..
= |ambda calculi with records

Process calculi: model concurrency and communication
= CSP, CCS, = calculus, CHAM, blue calculus

Distributed calculi: model /ocation and failure
= ambients, join calculus
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What you should know!

& Why isn't it possible to express recursion directly in the
lambda calculus?

& What is a fixed point? Why is it important?

& How does the typed lambda calculus keep track of the types
of terms?

& How does a polymorphic function differ from an ordinary
one?
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Can you answer these questions?

® Are there more fixed-point operators other than ¥?

S How can you be sure that unfolding a recursive expression
will terminate?

& Would a process calculus be Church-Rosser?

® O. Nierstrasz — U. Berne Fixed Points
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9. Introduction to Denotational
Semantics

Overview:
d Syntax and Semantics
Q Approaches to Specifying Semantics
d Semantics of Expressions
d Semantics of Assignment
4 Other Issues

References:

QA D. A. Schmidt, Denotational Semantics, Wm. C. Brown
Publ., 1986

A D. Watt, Programming Language Concepts and
Paradigms, Prentice Hall, 199

@ O. Nierstrasz — U. Berne Introduction to Denotational Semantics




Defining Programming Languages

Three main characteristics of programming languages:

1. Syntax: What is the appearance and structure of its
programs?

2. Semantics: What is the meaning of programs?

The static semantics tells us which (syntactically valid)
programs are semantically valid (i.e., which are type
correct) and the dynamic semantics tells us how to
interpret the meaning of valid programs.

3. Pragmatics: What is the usability of the language?

How easy is it to implement? What kinds of applications
does it suit?




Uses of Semantic Specifications

Semantic specifications are useful for language designers to
communicate with implementors as well as with programmers.

A precise standard for a computer implementation:

How should the language be implemented on
different machines?

User documentation: What is the meaning of a
program, given a particular combination of language
features?

A tool for design and analysis: How can the language
definition be funed so that it can be implemente
efficiently?

Input to a compiler generator: How can a reference
implementation be obtained from the specification?
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Methods for Specifying Semantics

Operational Semantics:
w [ program ]| = abstract machine program
= can be simple to implement
== hard to reason about

Denotational Semantics:

= [[ program ] = mathematical denotation
(typically, a function)

= facilitates reasoning
= not always easy to find suitable semantic domains
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Methods for Specifying Semantics ...

Axiomatic Semantics:
ww [ program ]| = set of properties
== good for proving theorems about programs
= somewhat distant from implementation

Structured Operational Semantics:

w [ program ]| = fransition system
(defined using inference rules)

= good for concurrency and non-determinism
= hard to reason about equivalence
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Concrete and Abstract Syntax

How to parse "4 * 2 + 1"?
Abstract Syntax is compact but ambiguous:

Expr ::= Num | Expr Op Expr
Op =+ =] x|
Concrete Syntax is unambiguous but verbose:
Expr ::= Expr LowOp Term | Term
Term ::= Term HighOp Factor | Factor
Factor ::= Num | (Expr)
LowOp nz 4| -
HighOp nz ok |/

Concrete syntax is needed for parsing, abstract syntax
suffices for semantic specifications.
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A Calculator Language

Abstract Syntax:

Prog =  'ON' Stmt

Stmt = Expr 'TOTAL' Stmt
| Expr 'TOTAL' 'OFF'

Expr = Expr; '+ Expr;

Expry '*' Expr;

'IF' Expry ', Expr, ', Exprs
'LASTANSWER'

(" Expr )’

Num

The program "ON 4 * ( 3 + 2 ) TOTAL OFF" should print out
20 and stop.
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Calculator Semantics

We need three semantic functions: one for programs, one for
statements (expression sequences) and one for expressions.

The meaning of a program is the list of integers printed:
Programs:
P : Program — Int *
PIonST =S[IST()
A statement may use and update LASTANSWER:
Statements:
S ! ExprSequence — Int — Int *
STETOTALS JJ(n) = letn'=E [ E T (n)
incons(n', SIS T (n))
S[TEToTALOFF JJ(n) = [ETE T (n)]
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Calculator Semantics...

Expressions:
E : Expression — Int — Int

E[E1I+E2T(n)=ETE1IT(M+E[E2
E[E1*E2](n)=ETE1T(n)xET[E2

EJirkl,E2,E3](n) =ifFEJEIT(n)=0
then€E [[ E2 T (n)
e/seE [ E3 I (n)

E [[LASTANSWER]]( ) =
EL ( ()=E[[E]](n)
E[[N]]()=

I (n)
I (n)




Semantic Domains
In order to define semantic mappings of programs and their

features to their mathematical denotations, the semantic
domains must be precisely defined:

data Bool = True | False

(&&), (|]) :: Bool -> Bool -> Bool
False && x = False

True && X = X

False X =X

True X = True

not :: Bool -> Bool

not True = False

not False = True




Data Structures for Abstract Syntax

We can represent programs in our calculator language as
syntax trees:

data Program = On ExprSequence

data ExprSequence = Total Expression ExprSequence
TotalOff Expression

data Expression = Plus Expression Expression
Times Expression Expression

If Expression Expression Expression
LastAnswer

Braced Expression

N Int
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Representing Syntax

The test program " ON 4 * ( 3 + 2 ) TOTAL OFF " can be parsed
as.

Prog —— Stmt 3

4
*/
\()_+/
ON  TOTAL OFF ~,

And represented as:
test = 0On (TotalOff (Times (N 4)
(Braced (Plus (N 3)

(N 2)))))
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Implementing the Calculator

We can implement our denotational semantics directly in a
functional language like Haskell:

Programs:

pp :: Program -> [Int]

pp (On s) = ss s 0
Statements:

Ss :: ExXprSequence -> Int -> [Int]

ss (Total e s) n = let n' = (ee e n)

inn' : (ss s n')
ss (TotalOff e) n = (ee en) : [ ]

© O. Nierstrasz — U. Berne Introduction to Denotational Semantics




PS — 52003 270.

Implementing the Calculator ...

Expressions:

ee :: Expression -> Int -> Int

ee (Plus el e2) n = (ee el n) + (ee e2 n)

ee (Times el e2) n = (ee el n) * (ee e2 n)
ee (If el e2 e3) n
=0

| (ee el n) = = (ee e2 n)
| otherwise = (ee e3 n)
ee (LastAnswer) n = n
ee (Braced e) n = (ee e n)
ee (N num) n = num
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A Language with Assignment

Prog = Cmd'.’

Cmd = Cmd; ;' Cmd,
| 'if' Bool 'then’ Cmd; 'else’ Cmd,
| Id ":=" Exp

Exp = Exp; '+ Exp;
| Id
| Num

Bool :=  Expy; '=" Exp,
| 'not' Bool

Example:

“z ¢= 1 ; 1f a = 0 then z := 3 else z (= 2z + a .”
Input number initializes a; output is final value of z.
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Representing abstract syntax trees

Data Structures:

data Program
data Command

data Expression

data BooleanExpr

type Identifier

Dot Command

CSeq Command Command

Assign Identifier Expression
If BooleanExpr Command Command
Plus Expression Expression

Id Identifier

Num Int

Equal Expression Expression
Not BooleanExpr

Char
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An abstract syntax tree

Example:
“z ¢= 1 ; 1f a = 0 then z := 3 else z (= z + a .”

Is represented as:

Dot (CSeq (Assign 'z' (Num 1))
(If (Equal (Id 'a') (Num 0))
(Assign 'z' (Num 3))
(Assign 'z' (Plus (Id 'z') (Id 'a')))
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Modelling Environments

A store is a mapping from identifiers to values:

type Store
newstore ::
newstore id

update ::
update 1id va

Identifier -> Int
Store

store'
where store'
| id' id
| otherwise

1 store

Identifier -> Int -> Store -> Store

id’
= val
store id'

@ O. Nierstrasz — U. Berne
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Functional updates

Example:
envl = update 'a' 1 (update 'b' 2 (newstore))
env2 = update 'b' 3 envl

envl ‘b’
o 2
env2 ‘b’
o 3
env2 ‘z’
o 0

® O. Nierstrasz — U. Berne Introduction to Denotational Semantics
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Semantics of assignments

pp :: Program -> Int -> Int
pp (Dot c¢) n = (cc ¢ (update 'a’ n newstore)) ‘z’

cc :: Command -> Store -> Store

cc (CSeq cl c2) s
cc (Assign id e) s
cc (If bcl c2) s

cc ¢c2 (cc cl s)
update id (ee e s) s
ifelse (bb b s)

(cc ¢l s) (cc c2 s)

@ O. Nierstrasz — U. Berne
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Semantics of assignments ...

ee :: Expression -> Store -> Int

ee (Plus el e2) s = (ee e2 s) + (ee el s)
ee (Id id) s = s 1id
ee (Num n) s = n

bb :: BooleanExpr -> Store -> Bool
bb (Equal el e2) s= (ee el s) == (ee e2 s)
bb (Not b) s = not (bb b s)

i1felse :: Bool -> a -> a -> a
ifelse True x y = X
ifelse False x y y
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Running the interpreter

srcl ="z =1 ; 1fa=0+thenz :=3 elsez :=2z+ a.
astl = Dot (CSeq
(Assign 'z' (Num 1))
(If (Equal (Id 'a') (Num 0))

(Assign 'z' (Num 3))
(Assign 'z' (Plus (Id 'z') (Id 'a')))))

pp astl 10
o 11
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Practical Issues

Modelling:
A Errors and non-termination:
= need a special "error” value in semantic domains
d Branching:

= semantic domains in which "continuations” model "the
rest of the program” make it easy to transfer control

Interactive input
Dynamic typing

U DO
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Theoretical Issues

What are the denotations of lambda abstractions?
Q need Scott's theory of semantic domains

What is the semantics of recursive functions?
Q need least fixed point theory

How to model concurrency and non-determinism?
A abandon standard semantic domains
a use “interleaving semantics”
A “true concurrency” requires other models ...

@ O. Nierstrasz — U. Berne Introduction to Denotational Semantics
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What you should know!

& What is the difference between syntax and semantics?
& What is the difference between abstract and concrete

syntax?

& What is a semantic domain?
& How can you specify semantics as mappings from syntax to

behaviour?

& How can assignments and updates be modelled with (pure)

functions?

@ O. Nierstrasz — U. Berne
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Can you answer these questions?

& Why are semantic functions typically higher-order?

% Does the calculator semantics specify strict or lazy
evaluation?

& Does the implementation of the calculator semantics use
strict or lazy evaluation?

& Why do commands and expressions have dif ferent semantic
domains?

@ O. Nierstrasz — U. Berne Introduction to Denotational Semantics
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Overview

10. Logic Programming

Q Facts and Rules

3 Resolution and Unification

d Searching and Backtracking

d Recursion, Functions and Arithmetic
Q Lists and other Structures

@ O. Nierstrasz — U. Berne
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References
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Logic Programming Languages

What is a Program?

A program is a database of facts (axioms) together with a set
of inference rules for proving theorems from the axioms.

Imperative Programming:
= Program = Algorithms + Data

Logic Programming:
= Program = Facts + Rules
or
= Algorithms = Logic + Control

© O. Nierstrasz — U. Berne Logic Programming




What is Prolog?

A Prolog program consists of facts, rules, and questions:

Facts are named relations between objects:
parent (charles, elizabeth).

2

$ elizabeth is a parent of charles
female(elizabeth).

(o)

2 elizabeth 1is female

Rules are relations (goals) that can be inferred from other
relations (subgoals):

mother (X, M) :- parent(X,M), female(M).
M is a mother of X
1f M is a parent of X and M is female

3
3
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Prolog Questions

Questions are statements that can be answered using facts

and rules:

?- parent(charles, elizabeth).
L yes

?- mother(charles, M).
> M = elizabeth
yes

@ O. Nierstrasz — U. Berne
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Horn Clauses

Both rules and facts are instances of Horn clauses, of the
form:

Ao if Aq and Ao and ... An
Ag is the head of the Horn clause and "A;and A, and ... A" is
the body

Facts are just Horn clauses without a body:

parent(charles, elizabeth) if True
female(elizabeth) if True
mother(X, M) if parent(X,M)

and female(M)




Resolution and Unification

Questions (or goals) are answered by matching 3oals against
facts or rules, unifying variables with terms, and backtracking
when subgoals fail.

If a subgoal of a Horn clause matches the head of another
Horn clause, resolution allows us to replace that subgoal by the
body of the matching Horn clause.

Unificationlets us bind variables to corresponding values in the
matching Horn clause:

mother(charles, M)
= parent(charles, M) and female(M)

{ M =elizabeth} True and female(elizabeth)

2
= { M =celizabeth} True and True




Prolog Databases

A Prolog database is a file of facts and rules to be "consulted”
before asking questions:

parent(william, charles).
parent(william, diana).

female(anne). parent (andrew, elizabeth).
female(diana). parent (andrew, philip).
female(elizabeth). parent (anne, elizabeth).
parent (anne, philip).

male(andrew). parent (charles, elizabeth).
male(charles). parent (charles, philip).
male(edward). parent (edward, elizabeth).
male(harry). parent (edward, philip).
male(philip). parent (harry, charles).
male(william). parent (harry, diana).

(

(




PS — 52003 291.

Simple queries

?- consult('royal'). Just another query
o yes which succeeds

?- male(charles).
L yes

?- male(anne).
L’ no

?- male(mickey).
& No

© O. Nierstrasz — U. Berne Logic Programming
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Queries with variables

You may accept or reject unified variables:
?- parent(charles, P).
> P = elizabeth <carriage return>
yes

You may reject a binding to search for others:

?- male(X).

b X = andrew ;
X = charles <carriage return>
yes

Use anonymous variables if you don't care:
?- parent(william, ).
L) yes

® O. Nierstrasz — U. Berne
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Unification

Unification is the process of instantiating variables by pattern
matching.
1. A constant unifies only with itself:
?- charles = charles.
L yes
?- charles = andrew.
> NO

2. An uninstantiated variable unifies with anything:
?- parent(charles, elizabeth) = Y.
Y = parent(charles,elizabeth) ?

yes

© O. Nierstrasz — U. Berne Logic Programming
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Unification ...

3. A structured term unifies with another termonly if it has
the same function name and number of arguments, and
the arguments can be unified recursively:

?- parent(charles, P) = parent(X, elizabeth).
P = elizabeth,

X = charles ?

yes

© O. Nierstrasz — U. Berne Logic Programming
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Evaluation Order

In principle, any of the parameters in a query may be

instantiated or not
?- mother (X, elizabeth).
rp; X = andrew ? ;
X = anne ? ;
X = charles ? ;
X = edward ? ;
no

?- mother (X, M).
M = elizabeth,
X = andrew ?

yes

@ O. Nierstrasz — U. Berne
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Closed World Assumption

Prolog adoE’rs a closed world assumption — whatever cannot be

proved to be true, is assumed to be false.

?- mother (elizabeth,M).
& No

?- male(mickey).
L’ no

@ O. Nierstrasz — U. Berne
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Backtracking

Prolog applies resolution in linear fashion, replacing goals left
to right, and considering database clauses top-to-bottom.

father (X, M)
?- trace(father(charles,F)).

=

+ + + + + + + + + +
R W W DN DD W WD DD

1

1

[ B N T AT NG T L I \ S I \ G T S

Call:
2 Call:
Exit:
Call:
Fail:
Redo:
Exit:
Call:
Exit:
Exit:

:— parent(X,M), male(M).

father(charles, 67) ?
parent (charles, 67) ?
parent (charles,elizabeth) ?
male(elizabeth) ?
male(elizabeth) ?

parent (charles,elizabeth) ?
parent (charles,philip) ?
male(philip) ?

male(philip) ?
father(charles,philip) ?




Comparison

The predicate = attempts to unify its two arguments:
?- X = charles.
© X = charles ?
yes

The predicate == tests if the terms instantiating its arguments
are /iterally identical:

?- charles == charles.

L) yes

?- X == charles.

> NO

?- X = charles, male(charles) == male(X).

> X = charles ?
yes
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Comparison ...

The predicate \== tests if its arguments are not literally
identical:
?- X = male(charles), Y = charles, X \== male(Y).
> NO

© O. Nierstrasz — U. Berne Logic Programming
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Sharing Subgoals

Common subgoals can easily be factored out as relations:
sibling(X, Y) :- mother(X, M), mother(Y, M),
father(X, F), father(Y, F),
X \==Y.

brother (X, B) :- sibling(X,B), male(B).
uncle(X, U) :- parent(X, P), brother(P, U).

sister(X, S) :- sibling(X,S), female(S).
aunt (X, A) :- parent (X, P), sister(P, A).

© O. Nierstrasz — U. Berne Logic Programming




Disjunctions

One may define multiple rules for the same predicate, just as
with facts:

isparent(C, P) :- mother(C, P).
isparent(C, P) :- father(C, P).

Disjunctions ("or") can also be expressed using the ";" operator:
isparent(C, P) :- mother(C, P); father(C, P).

Note that same information can be represented in different
forms — we could have decided to express mother/2 and
father/2 as facts, and parent/2 as a rule. Ask:

Q Which way is it easier to express and maintain facts?
A Which way makes it faster to evaluate queries?




Recursion

Recursive relations are defined in the obvious way:
ancestor (X, A) :- parent(X, A).
ancestor (X, A) :- parent(X, P), ancestor(P, A).

?- trace(ancestor (X, philip)).
&+ 1 1 Call: ancestor( 61,philip) ?
+ 2 2 Call: parent( 61,philip) ?
+ 2 2 Exit: parent(andrew,philip) ?
+ 1 1 Exit: ancestor(andrew,philip) ?
X = andrew ?
yes

& Will ancestor/2 always terminate?




Recursion ...

?- trace(ancestor (harry, philip)).
>+ 1 1 Call: ancestor(harry,philip) ?
+ 2 2 Call: parent(harry,philip) ?
+ 2 2 Fail: parent(harry,philip) ?
+ 2 2 Call: parent(harry, 316) ?
+ 2 2 Exit: parent(harry,charles) ?
+ 3 2 Call: ancestor(charles,philip) ?
+ 4 3 Call: parent(charles,philip) ?
+ 4 3 Exit: parent(charles,philip) ?
+ 3 2 Exit: ancestor(charles,philip) ?
+ 1 1 Exit: ancestor(harry,philip) ?
yes

& What happens if you query ancestor(harry, harry)?




Evaluation Order

Evaluation of recursive queries is sensitive to the order of the
rules in the database, and when the recursive call is made:

anc2(X, A) :- anc2(P, A), parent(X, P).
anc2(X, A) :- parent(X, A).
?- trace(anc2(harry, X)).
»+ 1 1 Call: anc2(harry, 67) ?

+ 2 2 Call: anc2( 325, 67) ?

+ 3 3 Call: anc2( 525, 67) ?

+ 4 4 Call: anc2( 725, 67) ?

+ 5 5 Call: anc2( 925, 67) ?

+ 6 6 Call: anc2( 1125, 67) ?

+ 7 7 Call: anc2( 1325, 67) ? abort
{Execution aborted}
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Failure
Searching can be controlled by explicit failure:
printall(X) :- X, print(X), nl, fail.
printall( ).

?- printall (brother( , )).
> brother (andrew,charles)
brother (andrew, edward)

brother (anne, andrew)
brother (anne,charles)
brother(anne, edward)
brother(charles,andrew)

@ O. Nierstrasz — U. Berne
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Cuts

The cut operator (1) commits Prolog to a particular search path:

parent(C,P) :- mother(C,P), !.
parent(C,P) :- father(C,P).

Cut says to Prolog:

"This is the right answer to this query. If later you are
forced to backtrack, please do not consider any
alternatives to this decision.”
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Negation as failure

Negation can be implemented by a combination of cut and fail:

not(X) :- X, !, fail. % 1f X succeeds, we fail
not( ). % 1f X fails, we succeed

® O. Nierstrasz — U. Berne
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Changing the Database

The Prolog database can be modified dynamically by means of
assert and retract:

rename(X,Y) :- retract(male(X)),
assert(male(Y)), rename(X,Y).
rename(X,Y) :- retract(female(X)),
assert(female(Y)), rename(X,Y).
rename(X,Y) :- retract(parent(X,P)),
assert(parent(Y¥,P)), rename(X,Y).
rename(X,Y) :- retract(parent(C,X)),
assert(parent(C,Y)), rename(X,Y).
rename( , ).

© O. Nierstrasz — U. Berne Logic Programming
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Changing the Database ...

?- male(charles); parent(charles, ).

L) yes

?- rename(charles, mickey).

L yes

?- male(charles); parent(charles, ).
& no

NB: With SICSTUS Prolog, such predicates must be declared
dynamic:
:— dynamic male/l1, female/l, parent/2.

© O. Nierstrasz — U. Berne Logic Programming
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Functions and Arithmetic

Functions are relations between expressions and values:

?- X 1is 5 + 6.
X =11 ?

Is syntactic sugar for:
is(X, *+(5,6))

® O. Nierstrasz — U. Berne
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Defining Functions

User-defined functions are written in a relational style:

fact(0,1).

fact(N,F) :-= N > 0,
Nl is N - 1,
fact(N1,F1l),
F is N * Fl1.

?- fact(10,F).
2w F = 3628800 ?

© O. Nierstrasz — U. Berne Logic Programming




Lists

Lists are pairs of elements and lists:

Formal object Cons pair syntax Element syntax
(a,[]) [al[]] [a]
(a,.(b,[]) [al[b|[]]] [a.b]
(a,.(b,.(c,[DN|[allbllcl[11]] [a.b,c]
(a, b) [al|b] [al|b]
(a, (b, 0)) [al[blc]] [a.b]c]

Lists can be deconstructed using cons pair syntax:

?- [a,b,c] = [a]X].
X = [b,c]?
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Pattern Matching with Lists

in(x, [X ]| _1).
in(X, [ _ | L]) :-in(X, L).

?- in(b, [a,b,c]).
L yes

?- in(X, [a,b,c]).

X =a ? ;
X =Db ? ;
X =c¢c ? ;
no

© O. Nierstrasz — U. Berne Logic Programming
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Pattern Matching with Lists ...

Prolog will automatically introduce new variables to represent

unknown terms:

al| A]?;
L=[ A,a| B1]?;
L=[ A, B,al| C17?;
L=[ A, B, C,al| D1°?
yes

@ O. Nierstrasz — U. Berne
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Inverse relations

A carefully designed relation can be used in many directions:
append([ ]1,L,L).
append([X|L1],L2,[X|L3]) :- append(Ll,L2,L3).

?- append([a]I[b]lX)'
> X = [a,b]

?- append(X,Y¥,[a,b]).
X =1[]Y=[aDb];
X =[a] Y = [b] ;
X = [a,b] ¥ =[]
yes

© O. Nierstrasz — U. Berne Logic Programming




Exhaustive Searching

Searching for permutations:
perm([ ],[ 1)-.
perm([C|S1],S2) :- perm(S1,Pl),
append(X,Y,P1),

% split PlI
append(X,[C|Y],S2).

- printall(perm([a,b,c,d], )).
d>perm( a,b,c,d],[a,b,c,d])
perm([a,b,c,d],[b,a,c,d])
perm([a,b,c,d],[b,c,a,d])
perm(:alblcld:l:blcldla:)
perm(:alblcld:l:alclbld:)
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Limits of declarative programming

A declarative, but hopelessly inefficient sort program:

ndsort(L,S) :- perm(L,S),
issorted(S).

issorted([ ]).

issorted([ _ 1]).

issorted([N,M|S]) :- N =< N,
issorted([M|S]).

Of course, efficient solutions in Prolog do exist!

© O. Nierstrasz — U. Berne Logic Programming
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What you should know!

What are Horn clauses?
What are resolution and unification?

How does Prolog attempt to answer a query using facts and
rules?

When does Prolog assume that the answer to a query is
false?

When does Prolog backtrack? How does backtracking work?
How are conjunction and disjunction represented?

What is meant by "negation as failure”?

How can you dynamically change the database?

o 9 0 0

o o O 0

© O. Nierstrasz — U. Berne Logic Programming
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Can you answer these questions?

> How can we view functions as relations?

& Is it possible to implement negation without either cut or
fail?

& What happens if you use a predicate with the wrong number
of arguments?

&~ What does Prolog reply when you ask not (male(X)). ?
What does this mean?

© O. Nierstrasz — U. Berne Logic Programming
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11. Applications of Logic
Programming

Overview
A I. Search problems
i SEND + MORE = MONEY
Q IT. Symbolic Interpretation
= Definite Clause Grammars
= Interpretation as Proof
= An interpreter for the calculator language

Reference

A The Ciao Prolog System Reference Manual, Technical
Report CLIP 3/97.1, www.clip.dia.fi.upm.es

© O. Nierstrasz — U. Berne Applications of Logic Programming
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I. Solving a puzzle

& Find values for the letters so the following equation holds:

SEND
+MORE

® O. Nierstrasz — U. Berne
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A non-solution:

We would /ike to write:

soln0 :- is 1000*S + 100*E + 10*N + D,

is 1000*M + 100*0 + 10*R + E,

is 10000*M + 1000*O + 100*N + 10*E + Y,
1s A+B,

showAnswer (A,B,C).

Q Q W >

showAnswer (A,B,C) :- writeln([A, ' + ', B, ' ="', C]).
writeln([]) :- nl.
writeln([X|L]) :- write(X), writeln(L).

© O. Nierstrasz — U. Berne Applications of Logic Programming
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A non-solution ...

?- soln0.

& » evaluation error: [goal( 1007 is 1000 * 1008 +
100 * 1009 + 10 * 1010 + 1011),
argument index(2)]
[Execution aborted]

But this doesn't work because "is” can only evaluate
expressions over instantiated variables.

?- 5 is 1 + X,

©» evaluation error: [goal(5 1is
1+ 64),argument index(2)]
[Execution aborted]

© O. Nierstrasz — U. Berne Applications of Logic Programming




A first solution

So let’s instantiate them first:
digit(0). digit(1l). digit(2). digit(3). digit(4).
digit(5). digit(6). digit(7). digit(8). digit(9).
digits([]).
digits([D|L]):- digit(D), digits(L).

$ pick arbitrary digits:

solnl :- digits([S,E,N,D,M,0O,R,E,M,0,N,E,Y]),
A is 1000*S + 100*E + 10*N + D,
B is 1000*M + 100*0 + 10*R + E,
C is 10000*M + 1000*0 + 100*N + 10*E + Y,
C is A+B, % check if solution is found
showAnswer (A,B,C).
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A first solution ...

This is now correct, but yields a trivial solution!

solnl.
>0 +0=20
yes

© O. Nierstrasz — U. Berne Applications of Logic Programming
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A second (non-)solution

So let’s constrain S and M:

soln?2

:- digits([S,M]),

not(S==0), not(M==0), % backtrack if 0
digits([NIDIMIOIRIEIMIOINIEIY])I

A is 1000*s + 100*E + 10*N + D,

B is 1000*M + 100*0 + 10*R + E,

C is 10000*M + 1000*0 + 100*N + 10*E + Y,
C is A+B,

showAnswer (A,B,C).

® O. Nierstrasz — U. Berne Applications of Logic Programming
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A second (non-)solution ...

Maybe it works. We'll never know ...

soln2.
> [Execution aborted]

after 8 minutes still running ...

> What went wrong?

© O. Nierstrasz — U. Berne Applications of Logic Programming
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A third solution

Let's try to exercise more control by instantiating variables
bottom-up:
sum([],0).
sum([N|L], TOTAL) :- sum(L,SUBTOTAL),
TOTAL is N + SUBTOTAL.

¢ Find D and C, where )L is D + 10*C, digit(D)
carrysum(L,D,C) :-
sum(L,S), C is S/10, D is S - 10*C.

?- carrysum([5,6,7],D,C).
D = 8
C =1

® O. Nierstrasz — U. Berne Applications of Logic Programming




A third solution ...

We instantiate the final digits first, and use the carrysum to
constrain the search space:

soln3 :- digits([D,E]), carrysum([D,E],Y,Cl),
digits([N,R]), carrysum([Cl,N,R],E,C2),
digit(0), carrysum([C2,E,O0],N,C3),
digits([S,M]), not(S==0), not(M==0),
carrysum([C3,S,M],0,M),
A is 1000*S + 100*E + 10*N + D,
B is 1000*M + 100*0 + 10*R + E,
C is A+B,
showAnswer (A,B,C).
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A third solution ...

This is also correct, but uninteresting:

soln3.
o 9000 + 1000 = 10000
yes

® O. Nierstrasz — U. Berne
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A fourth solution

Let's try to make the variables unigue:

% There are no duplicate elements in the argument list
unique([X|L]) :- not(in(X,L)), unique(L).
unique([]).

in(X, [X|_])-
in(X, [ |L]) :- in(X, L).

?- unique([a,b,c]).
L yes
?- unique([a,b,a]).
L’ NO

© O. Nierstrasz — U. Berne Applications of Logic Programming




soln4

A fourth solution ...

:- L1 = [D,E], digits(Ll), unique(Ll),

carrysum([D,E],Y,Cl),

= [N,R,Y|L1], digits([N,R]), unique(L2),
carrysum([Cl,N,R],E,C2),

= [0|L2], digit(0), unique(L3),
carrysum([C2,E,O0],N,C3),
L4 = [S,M|L3], digits([S M]),

not(S==0), not(M==0), unique(L4),

carrysum([C3,S,M],0,M),
A is 1000*Ss + 100*E + 10*N + D,
B is 1000*M + 100*0 + 10*R + E,
C is A+B,
showAnswer (A,B,C).
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A fourth solution ...

This works (at last), in about 1 second on a 63 Powerbook.

soln4.
o 9567 + 1085 = 10652
yes

© O. Nierstrasz — U. Berne Applications of Logic Programming
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IT. Symbolic Interpretation

Prolog is an ideal language for implementing small languages:
Q Implement BNF using Definite Clause Grammars

A Implement semantic rules directly as Prolog rules

© O. Nierstrasz — U. Berne Applications of Logic Programming




PS — 52003

335.

Goal-directed interpretation

L “ON 0 TOTAL OFF” | Inputstring

"~ [on, 0, total, off] List of tokens

Parse tree

prog
|
Parser - s ﬂ‘m +
expr(0)
Interpreter
~i

[

0

] Output value

@ O. Nierstrasz — U. Berne
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Definite Clause Grammars

Definite clause grammars are an extension of context-free
grammars.

A DCG rule in Prolog takes the general form:
head --> body.
meaning “a possible form for head is body".

The head specifies a non-terminal symbol, and the body
specifies a sequence of terminals and non-terminals.

© O. Nierstrasz — U. Berne Applications of Logic Programming
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Definite Clause Grammars ...

A Non-terminals may be any Prolog term (other than a
variable or number).

d A sequence of zero or more terminal symbols is written
as a Prolog /ist. A sequence of ASCIT characters can be

written as a string.

d Side conditions containing Prolog goals may be written in
{ } brackets in the right-hand side of a grammar rule.

© O. Nierstrasz — U. Berne Applications of Logic Programming
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Example

This grammar parses an arithmetic expression (made up of
digits and operators) and computes its value.

expr(z) --> term(X), "+", expr(Y), {Z is X + Y}.
expr(z) --> term(X), "-", expr(Y¥), {Z is X - Y}.
expr(X) --> term(X).

term(Z) --> number(X), "*", term(Y), {Z is X * Y}.
term(Z) --> number(X), "/", term(Y), {Z is X / Y}.
term(Z) --> number(Z).

number (C) --> "+", number(C).
number (C) --> "-", number(X), {C is -X}.
number (X) --> [C], {0'0=<C, C=<0'9, X is C - 0'0}.

® O. Nierstrasz — U. Berne Applications of Logic Programming
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How to use this?

The query
| ?- expr(z, "-2+3*5+1", []).

will compute z=14.

© O. Nierstrasz — U. Berne Applications of Logic Programming
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How does it work?

DCG rules are just syntactic sugar for normal Prolog rules.
expr(z) --> term(X), "+", expr(Y), {Z is X + Y}.
translates to:

expr(Zz, S0, S) :-
term(X, S0, S1l),
‘C’(S1,43,S2),
expr(Y, S2, S),
Z is X + Y .

input and goal
pass along state
"uyrr — [43]

OO0 OO o©

'C' is a built-in predicate to recognize terminals.

© O. Nierstrasz — U. Berne Applications of Logic Programming
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Lexical analysis

We can use DCGs for both scanning and parsing.
Our lexer will convert an input atom into a list of tokens:

lex(Atom, Tokens) :-
name (Atom, String),
scan(Tokens, String, []), !.

scan([T|Tokens]) -->
whitespaceO, token(T), scan(Tokens).
scan([]) --> whitespace0.

© O. Nierstrasz — U. Berne Applications of Logic Programming
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Recognizing Tokens

We will represent simple tokens by Prolog atoms:

token(on) -=>
token(total) -->
token(off) -=>
token(1if) -=>
token(last) -->
token(',") —=>
token('+"') -—>
token('*") -=>
token(' (") -=>
token(') ") -—>

"ON".
"TOTAL".
"OFF".

"IF".
"LASTANSWER".

@ O. Nierstrasz — U. Berne
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Recognizing Numbers

and a number N by the term num(N):
token(num(N)) --> digits(DL), { asnum(DL, N, 0) }.

digits([D|L]) =--> digit(D), digits(L).
digits([D]) --> digit (D).

digit (D) --> [D], { "0" =< D, D =< "9" },

& How would you implement asnum/3?

© O. Nierstrasz — U. Berne Applications of Logic Programming
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Concrete Grammar

To parse a language, we need an unambiguous grammar!

p =
S =

e =

el

el

e3

‘ON’ s

e 'TOTAL’ S

e 'TOTAL’ ‘OFF’
‘IF' el *,7el ", el
el

el '+' el

el

e3 '*' el

e3
‘LASTANSWER'
num

r(t e )"

® O. Nierstrasz — U. Berne
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Parsing with DCGs

The concrete grammar is easily written as a DCG:

prog(s) -=>
stmt ([E|S]) ——>
stmt([E]) -—>
expr(E) -

e0(if(Bool, Then, Else)) -->

e0(E) -=>
el (plus(E1,E2)) -=>
el(E) -=>
e2(times(E1,E2)) -->
e2(E) -=>
e3(last) -—>
e3 (num(N)) -=>
e3(E) -—>

[on], stmt(S).

expr(E), [total], stmt(S).
expr(E), [total, off].

el (E).

[if], el(Bool), [',"],

el(Then), [',"'], el(Else).

el(E).

e2(El), ['+'], el(E2).
e2(E).

e3(El), ['*"], e2(E2).
e3(E).

[last].

[num(N) ].

['('1, e0(E), [')'].

@ O. Nierstrasz — U. Berne
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Representing Programs as Parse Trees

We have chosen to represent expressions as Prolog terms, and
programs and statements as /ists of terms:

parse(Atom, Tree) :-
lex(Atom, Tokens),
prog(Tree, Tokens, []).

parse(
'ON (1+2)*(3+4) TOTAL LASTANSWER + 10 TOTAL OFF',
[ times(plus(num(1l),num(2)),
plus(num(3),num(4))),
plus(last,num(10))

1)

© O. Nierstrasz — U. Berne Applications of Logic Programming
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Testing

We exercise our parser with various test cases:
check(Goal) :- Goal, !.
check(Goal) :-
write('TEST FAILED: '),
write(Goal), nl.

parseTests :-
check(parse('ON 0 TOTAL OFF', [num(0)])),

© O. Nierstrasz — U. Berne Applications of Logic Programming
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Interpretation as Proof

One can view the execution of a program as a step-by-step
‘proof” that the program reaches some terminating state,
while producing output along the way.

A The program and its intermediate states are
represented as structures (typically, as syntax trees)

A Inference rules express how one program state can be
transformed to the next
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Building a Simple Interpreter

We define semantic predicates over the syntactic elements of
our calculator language.

peval(S,L) :— seval(s, 0, L).

seval([E], Prev, [Val]) :— Xxeval(E, Prev, Val).
seval([E|S], Prev, [Val|L]) :- =xeval(E, Prev, Val),
seval(S, Vval, L).

xeval (num(N), , N).
xeval (plus(El1,E2), Prev, V) :- xeval(El, Prev, V1),
xeval(E2, Prev, V2),

V is V1+V2.

© O. Nierstrasz — U. Berne Applications of Logic Programming




PS — 52003 350.

Running the Interpreter

The interpreter puts the parts together

eval (Expr, Val) :-
parse(kExpr, Tree),
peval (Tree, Val).

eval (
'ON (1+2)*(3+4) TOTAL LASTANSWER + 10 TOTAL OFF',
X).

o X = [21, 31]
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Testing the interpreter

We similarly define tests for the interpreter.

evalTests :-
check(eval('ON 0 TOTAL OFF', [0])),
check(eval('ON 5 + 7 TOTAL OFF', [12])),
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A top-level script

Finally, we can package the interpreter as a ciao module, and
invoke it from a script:

#1/bin/sh
exec ciao-shell $0 "$@" # -*- mode: ciao; -*-
:— use module(calc, [eval/2, test/0]).
main([]) :- test.
main(Argv) :- doForEach(Argv).
doForEach([]).
doForEach([Arg|Args]) :-

write(Arg), nl,

eval (Arg, Val),

write(Val), nl,

doForEach(Args).
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What you should know!

What are definite clause grammars?

How are DCG specifications translated to Prolog?

Why are abstract grammars inappropriate for parsing?
Why are left-associative grammar rules problematic?
How can we represent syntax trees in Prolog?

o o 0 0 @
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Can you answer these questions?

What happens when we ask digits([A,B,A])?

How many times will soln2 backtrack before finding a
solution?

How would you check if the solution to the puzzle is unique?

How would you generalize the puzzle solution to solve
arbitrary additions?

Why must DCG side conditions be put in { curly brackets }?
What exactly does the C’ predicate do?
Why do we need a separate lexer?

How would you implement an interpreter for the assignment
language we defined earlier?
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12. Piccola — A Small Composition
Language

Handouts will be distributed before the lecture.
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13. Summary, Trends, Research ...

Q Summary: functional, logic and object-oriented
languages

Q Research: ...

i www.iam.unibe.ch/~scg
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C and C++

Good for:
d systems programming
A portability

Bad for:
A learning (very steep learning curve)
A rapid application development
d maintenance

Trends:
A increased standardization
1 generative programming




Functional Languages

Good for:
 equational reasoning
d declarative programming

Bad for:
aQ OOP
A explicit concurrency
Q run-time efficiency (although constantly improving)

Trends:
3 standardization: Haskell, "ML 2000"

d extensions (concurrency, objects): Facile, "ML 2000",
UFO ...




Lambda Calculus

Good for:

Q simple, operational foundation for sequential
programming languages

Bad for:
d programming

Trends:
d object calculi

A concurrent, distributed calculi (e.g., « calculus, " join”
calculus ...)




Type Systems

Good for:
A catching static errors
Q documenting interfaces

A formalizing and reasoning about domains of functions
and objects

Bad for:
d reflection; self-modifying programs

Trends:
Q automatic type inference
Q reasoning about concurrency and other side effects




Polymorphism

Good for:
d parametric good for generic containers
subtyping good for frameworks (generic clients)

4

Q overloading syntactic convenience (classes in gopher,
overloading in Java)

d

coercion convenient, but may obscure meaning

Bad for:
A local reasoning
d optimization
Trends:
A combining subtyping, polymorphism and overloading
A exploring alternatives to subtyping ("matching"”)




Denotational Semantics

Good for:
QA formally and unambiguously specifying languages
d sequential languages

Bad for:
A modelling concurrency and distribution

Trends:
A "Natural Semantics” (inference rules vs. equations)
3 concurrent, distributed calculi
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Logic Programming

Good for:
[ searching (expert systems, graph & ftree searching ...)
d symbolic interpretation

Bad for:
4 debugging
A modularity

Trends:
d constraints
d concurrency
d modules
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Object-Oriented Languages

Good for:
d domain modelling
Q developing reusable frameworks

Bad for:
d learning (steep learning curve)
A understanding (hard to keep systems well-structured)
d semantics (no agreement)

Trends:
d component-based software development
1 aspect-oriented programming




Scripting Languages

Good for:
A rapid prototyping
A high-level programming
A reflection; on-the-fly generation and evaluation of
programs
A gluing components from different environments

Bad for:
d type-checking; reasoning about program correctness
Q performance-critical applications

Trends:
A replacing programming as main development paradigm
A scriptable applications
Q graphical "builders” instead of languages
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