
PS — Table of Contents i.

I

 29
ate 30

 31
 32

amming Style 33
34
 35

mic Typing 36
 37
 38

pes 39
 40

e Inference 41
ion 42
mbda Calculus 43

da Calculus 44
phism 45

 46
 47

r Data Types 48
ypes: 49
 Types and Functions 50
otational Semantics 51
ming Languages 52
 Specifications 53
cifying Semantics 54
bstract Syntax 55
ins 56
AM, Universität Bern

Programming Languages 1
Overview 2
What is a Programming Language? 3
What Distinguishes Programming Languages? 4
Programming Paradigms 5
A Brief Chronology 6
Fortran 7
ALGOL 60 8
COBOL 9
4GLs 10
PL/I 11
Interactive Languages 12
Special-Purpose Languages 13
Functional Languages 14
Prolog 15
Object-Oriented Languages 16

Functional Programming 17
What is a Function? 18
Computation as Functional Composition 19
A Bit of History 20
Stateless Programming 21
Referential Transparency 22
The Church-Rosser property 23
Modelling State 24
Equational Reasoning 25
Pattern Matching 26
Lists 27
Higher Order Functions 28

Currying
Remembering St
Lazy Evaluation
Lazy Lists
Functional Progr

Type Systems
What is a Type?
Static and Dyna
Kinds of Types
Function Types
List and Tuple Ty
Polymorphism
Polymorphic Typ
Type Specializat
The (Untyped) La
The Typed Lamb
Kinds of Polymor
Overloading
User Data Types
Examples of Use
Recursive Data T
Equality for Data

Introduction to Den
Defining Program
Uses of Semantic
Methods for Spe
Concrete and A
Semantic Doma

PS — Table of Contents ii.

I

g 84
 85

s 86
 and Backtracking 87
d Disjunctions 88

 89
ure 90
atabase 91
rithmetic 92

 93
g with Lists 94
hing 95

 96
 Interpreter 97
mming 98
d Parallelism 99

 100
es 101

tarvation 102
 103
 104

 and Synchronization 105
Techniques 106

 107
 108
 109

onitors 110
 111
AM, Universität Bern

A Calculator Language 57
Calculator Semantics 58
Implementing the Calculator 59
A Language with Assignment 60
Abstract Syntax Trees 61
Modelling Environments 62
Semantics of Assignments 63
Practical Issues 64
Theoretical Issues 65

Object-Oriented Programming 66
What is Object-Oriented Programming? 67
Objects 68
Message-Passing Paradigm 69
Classes and Instances 70
Inheritance 71
Deferred Features and Classes 72
Multiple Inheritance 73
The Principle of Substitutability 74
Polymorphism & Dynamic Binding 75
Subtyping 76
Covariance and Contravariance 77
Inheritance is not Subtyping 78
The Inheritance Interface 79
Run Time Support 80
Dimensions of Object-Oriented Languages 81
A Brief History of OO Languages 82
Current Trends in Research and Practice 83

Logic Programmin
Facts and Rules
Prolog Database
Rules, Searching
Conjunctions an
Recursion
Negation as Fail
Changing the D
Functions and A
Lists
Pattern Matchin
Exhaustive Searc
Operators
Building a Simple

Concurrent Progra
Concurrency an
Atomicity
Concurrency Issu
Deadlock and S
Fairness
Process Creation
Communication
Synchronization
Busy-Waiting
Semaphores
Monitors
Problems with M
Message Passing

PS — Table of Contents iii.

I

ncurrent Clients 140
ans 141
age Constructs 142

s 143
 144
 145

tion 146
esses 147
esses 148

 149
eue 150

e Concurrent Queue 151
currency 152
? 153
Ls 154

r OBCLs 155
ncurrency 156
cesses 157
odels 158
odels 159
odels 160
ncurrency 161

cts 162
t Objects 163
cts 164

 165
bjects 166
vocation 167
AM, Universität Bern

Unix Pipes 112
Send and Receive 113
Remote Procedure Calls and Rendezvous 114
Other Issues 115

Process Calculi 116
Limitations of Denotational Semantics 117
Structural Operational Semantics 118
Transition Semantics 119
Process Calculi 120
Pure Synchronization 121
Modeling Non-determinism 122
Implementing the Transition Semantics 123
Searching for Executions Paths 124
Running the Example 125
Finding Alternative Execution Paths 126
An Asynchronous Value-Passing Calculus 127
Implementing Value Passing 128
Implementing Substitution 129
A Value-Passing Example 130
Process Replication 131
Resources as Replicated Processes 132
Running the Example 133
Other Issues 134

PICT 135
Abstract Syntax of (Untyped) Core PICT 136
Binding Channels 137
Typed Channels 138
Synchrony and Asynchrony 139

Synchronizing Co
Modelling Boole
Modelling Langu
Natural Number
Counting
Arithmetic
Functional Nota
Functions as Proc
Functions as Proc
Sequencing
A Concurrent Qu
Implementing th

Object-Based Con
What is an OBCL
Overview of OBC
Requirements fo
Expression of Co
Objects and Pro
Passive Object M
Active/Passive M
Active Object M
Granularity of Co
Sequential Obje
Quasi-Concurren
Concurrent Obje
Process Creation
Asynchronous O
Asynchronous In

PS — Table of Contents iv.

I

ges ... 197
n Languages (4GLs) 198

nguages 199
 200
 201
 202

ssing 203
titution 204

 205
ipting Languages 206
AM, Universität Bern

Futures 168
Communication and Synchronization 169
Local Delays 170
Local Delays 171
Transactions 172
Classifying OBCLs 173
Evaluation 174

Text Processing Languages 175
What are Text Processing Languages? 176
Some Text Processing Languages 177
Regular Expressions (Perl) 179
SED 180
AWK 181
Perl 182
Regular Expressions 183
Arrays 184
Subroutines 185
File I/O 186
Dynamic Compilation 187
Packages 188
Standard System Calls 189
Perl: Pros and Cons 190

Scripting Languages 191
Scripting Languages and Their Kin 192
Shell Languages 193
Command Languages 194
Command Languages ... 195
Scripting Languages 196

Scripting Langua
Fourth Generatio
Coordination La
The Bourne Shell
Pipes and Filters
Example
Argument proce
Command Subs
Exec
The Future of Scr

PS 1.

U Programming Languages

ages, Addison Wesley, 1988

s/pl.html
niversität Bern

Programming Languages

Lecturer: Prof. O. Nierstrasz
Neubrückstr. 10/101

Tel.: 631.4618
Secr.: 631.4692
Assistants: P. Varone, S. Schweizer

Text:
❑ Wilson & Clark, Comparative Programming Langu

Additional material:
❑ On-line, see: http://iamwww.unibe.ch/~scg/Lecture

PS 2.

U Programming Languages
niversität Bern

Overview

1. Introduction
2. Functional programming — Gofer
3. Type systems
4. Programming language semantics
5. Object-oriented programming
6. Logic Programming — Prolog
7. Structured operational semantics
8. Concurrent programming
9. Programming in the π calculus — PICT
10. Objects as processes
11. Text manipulation languages — Perl
12. Scripting languages
13. Final exam

PS 3.

U Programming Languages

ge?

wer
ive power
niversität Bern

What is a Programming Langua

☞ A formal language for describing computation
☞ A “user interface” to a computer
☞ “Turing tar pit” — equivalent computational po
☞ Programming paradigms — different express
☞ Syntax + semantics
☞ Compiler, or interpreter, or translator

PS 4.

U Programming Languages

g

larative):

TRAN, COBOL, Pascal)
rators, database interfaces)

xpressions; statements;
ments; errors ...

s, matrices, ...); sequential
/modules; objects; general
niversität Bern

What Distinguishes Programmin
Languages?

Generations (increasing abstraction; imperative → dec
1. machine codes
2. symbolic assemblers
3. (machine independent) imperative languages (FOR
4. domain specific application generators (report gene

Common Constructs:
☞ basic data types (numbers, etc.); variables; e

keywords; control constructs; procedures; com
Uncommon Constructs:

☞ type declarations; special types (strings, array
execution; concurrency constructs; packages
functions; generics; modifiable state; ...

PS 5.

U Programming Languages

onstraints, lists, ...
niversität Bern

Programming Paradigms

A programming language is a problem-solving tool.

Imperative style:
☞ program = algorithms + data

Functional style:
☞ program = functions functions

Logic programming style:
☞ program = facts + rules

Object-oriented style:
☞ program = objects + messages

Other styles and paradigms: blackboard, pipes and filters, c

PS 6.

U Programming Languages
niversität Bern

A Brief Chronology

Early 1950s “order codes” (primitives assemblers)
1957 FORTRAN
1958 ALGOL
1960 LISP, COBOL
1962 APL, SIMULA
1964 BASIC, PL/I
1966 ISWIM
1970 Prolog
1972 C
1975 Pascal, Scheme
1978 CSP
1978 FP
1980 dBASE II
1983 Smalltalk-80, Ada
1984 Standard ML
1986 C++, Eiffel
1988 CLOS, Mathematica, Oberon
1990 Haskell

PS 7.

U Programming Languages

onventional mathematical
assembly programs
 went along)

imization
April 1958
RTRAN 90

entific computing)
niversität Bern

Fortran
History:

❑ John Backus (1953) sought to write programs in c
notation, and generate code comparable to good
☞ No language design effort (made it up as they
☞ Most effort spent on code generation and opt
☞ FORTRAN I released April 1957; working by
☞ Current standards are FORTRAN 77 and FO

Innovations:
❑ comments
❑ assignments to variables of complex expressions
❑ DO loops
❑ Symbolic notation for subroutines and functions
❑ Input/output formats
❑ machine-independence

Successes:
❑ Easy to learn; high level
❑ Promoted by IBM; addressed large user base (sci

PS 8.

U Programming Languages

 universal, machine-

cisms led to ALGOL 60

tax (led to syntax-directed

al scope

 design of other PLs
niversität Bern

ALGOL 60

History:
❑ Committee of PL experts formed in 1955 to design

independent, algorithmic language
❑ First version (ALGOL 58) never implemented; criti

Innovations:
❑ BNF (Backus-Naur Form) introduced to define syn

compilers)
❑ First block-structured language; variables with loc
❑ Variable size arrays
❑ Structured control statements
❑ Recursive procedures

Successes:
❑ Never displaced FORTRAN, but highly influenced

PS 9.

U Programming Languages

urers

rocesses

tions
niversität Bern

COBOL

History:
❑ designed by committee of US computer manufact
❑ targeted business applications
❑ intended to be readable by managers

Innovations:
❑ separate descriptions of environment, data, and p

Successes:
❑ Adopted as de facto standard by US DOD
❑ Stable standard for 25 years
❑ Still the most widely used PL for business applica

PS 10.

U Programming Languages

lem domains
niversität Bern

4GLs

“Problem-oriented” languages
❑ PLs for “non-programmers”
❑ Very High Level (VHL) languages for specific prob

Classes of 4GLs (no clear boundaries):
❑ Report Program Generator (RPG)
❑ Application generators
❑ Query languages
❑ Decision-support languages

Successes:
❑ highly popular, but generally ad hoc

PS 11.

U Programming Languages

60s)
broad classes of applications

ption etc.

 expense of complexity)
niversität Bern

PL/I

History:
❑ designed by committee of IBM and users (early 19
❑ intended as (large) general-purpose language for

Innovations:
❑ default interpretations for every variable, feature, o
❑ exception-handling by on conditions

Successes:
❑ achieved both run-time efficiency and flexibility (at
❑ first “complete” general purpose language

PS 12.

U Programming Languages

60s through mid 1970s).

ELETE, RUN, SAVE)

of numerical algorithms
dition to alphanumerics)
s)

ray operators)
to left)
niversität Bern

Interactive Languages

Made possible by advent of time-sharing systems (early 19

BASIC:
❑ developed at Dartmouth College in mid 1960s
❑ minimal; easy to learn
❑ incorporated basic O/S commands (NEW, LIST, D

APL:
❑ developed by Ken Iverson for concise description
❑ large, non-standard alphabet (52 characters in ad
❑ primitive objects are arrays (lists, tables or matrice
❑ operator-driven (power comes from composing ar
❑ no operator precedence (statements parsed right

PS 13.

U Programming Languages

Ls
n

te and manipulate lists

bage collection
niversität Bern

Special-Purpose Languages

SNOBOL:
❑ first successful string manipulation language
❑ influenced design of text editors more than other P
❑ string operations: pattern-matching and substitutio
❑ arrays and associative arrays (tables)
❑ variable-length strings

Lisp:
❑ performs computations on symbolic expressions
❑ symbolic expressions are represented as lists
❑ small set of constructor/selector operations to crea
❑ recursive rather than iterative control
❑ no distinction between data and programs
❑ first PL to implement storage management by gar
❑ affinity with lambda calculus

PS 14.

U Programming Languages

roving

/side effects)
niversität Bern

Functional Languages

ISWIM (If you See What I Mean):
❑ Peter Landin (1968) — paper proposal

FP:
❑ John Backus (1978) — Turing award lecture

ML:
❑ Edinburgh
❑ initially designed as meta-language for theorem p
❑ Hindley-Milner type inference
❑ “non-pure” functional language (with assignments

Miranda, Haskell:
❑ “pure” functional languages with “lazy evaluation”

PS 15.

U Programming Languages

ilers developed at Marseilles

tions
niversität Bern

Prolog

History:
❑ originated at U. Marseilles (early 1970s), and comp

and Edinburgh (mid to late 1970s)

Innovations:
❑ theorem proving paradigm
❑ programs as sets of clauses: facts, rules and ques
❑ computation by “unification”

Successes:
❑ prototypical logic programming language
❑ used in Japanese Fifth Generation Initiative

PS 16.

U Programming Languages

y 1960s) in Oslo as a
lasses and inheritance to

970s) to drive graphic

Ts)

.

niversität Bern

Object-Oriented Languages

History:
❑ Simula was developed by Nygaard and Dahl (earl

language for simulation programming, by adding c
ALGOL 60

❑ Smalltalk was developed by Xerox PARC (early 1
workstations

Innovations:
❑ encapsulation of data and operations (contrast AD
❑ inheritance to share behaviour and interfaces

Successes:
❑ Smalltalk project pioneered OO user interfaces ..
❑ Large commercial impact since mid 1980s
❑ Countless new languages ...

PS 17.

U Functional Programming

ion of Functional
ys 21/3, pp 359-411.

l, 1991.
niversität Bern

Functional Programming

Overview
❑ Functional vs. Imperative Programming
❑ Referential Transparency
❑ Pattern Matching
❑ Higher Order Programming
❑ Lazy Evaluation

References:
❑ Paul Hudak, “Conception, Evolution, and Applicat

Programming Languages,” ACM Computing Surve
❑ Mark P. Jones, “An Introduction to Gofer,” manua

PS 18.

U Functional Programming

n) such that:
 f(a) is defined), and
 f(a) is unique)

riable name, and e is an
 e, then this expression (i.e.,
niversität Bern

What is a Function?

Extensional view:

A (total) function f: A → B is a subset of A × B (i.e., a relatio
1. for each a∈A, there exists some (a,b) ∈ f (i.e.,
2. if (a,b1) ∈ f and (a,b2) ∈ f, then b1 = b2 (i.e.,

Intensional view:

A function f: A → B is an abstraction λ x . e, where x is a va
expression, such that when a value a∈A is substituted for x in
f(a)) evaluates to some (unique) value b∈B.

PS 19.

U Functional Programming

mposition

a to output data.

rs to positive integers
niversität Bern

Computation as Functional Co

What is a Program?
A program (computation) is a transformation from input dat

❑ Program = Algorithms + Data
❑ Program = Functions Functions

Church’s Thesis:

Effectively computable functions from positive intege
are just those definable in the lambda calculus.

PS 20.

U Functional Programming

el of computation
th lists
 arrays
ational reasoning ...
r theorem proving
luation
niversität Bern

A Bit of History

❑ Lambda Calculus (Church, 1932-33): formal mod
❑ Lisp (McCarthy, 1960): symbolic computations wi
❑ APL (Iverson, 1962): algebraic programming with
❑ ISWIM (Landin, 1966): let and where clauses; equ
❑ ML (Edinburgh, 1979): originally meta language fo
❑ SASL, KRC, Miranda (Turner, 1976-85): lazy eva
❑ Haskell (Hudak, Wadler, et al., 1988):

PS 21.

U Functional Programming

es, have no implicit state.
ns.
on is functional composition.
niversität Bern

Stateless Programming

Imperative style:
n := x;
a := 1;
while n>0 do
begin a:= a*n;

n := n-1;
end;

Declarative (functional) style:
fac n =

if n == 0 then 1
else n * fac (n-1)

Declarative languages, and in particular, functional languag
Programs are constructed entirely by composing expressio
In functional languages, the underlying model of computati

PS 22.

U Functional Programming

ed by equals”.

s:

24 * 1 ➪ 24
niversität Bern

Referential Transparency

Referential transparency means that “equals can be replac

Evaluation proceeds by replacing expression by their value

fac 4 ➪ if 4 == 0 then 1 else 4 * fac (4-1)
➪ 4 * fac (4-1)
➪ 4 * fac 3
➪ 4 * (if 3 == 0 then 1 else 3 * fac (3-1))
➪ 4 * 3 * fac (3-1)
➪ 12 * fac (3-1)
➪ 12 * fac 2
➪ 12 * (if 2 == 0 then 1 else 2 * fac (2-1))
➪ 12 * 2 * fac (2-1) ➪ 24 * fac (2-1) ➪ ... ➪

PS 23.

U Functional Programming

luated by consistently
e evaluated in several
order evaluation), then
niversität Bern

The Church-Rosser property

“If an expression can be evaluated at all, it can be eva
using normal-order evaluation. If an expression can b
different orders (mixing normal-order and applicative
all of these evaluation orders yield the same result”.

Consider:
sqr n = n * n

Applicative-order evaluation:
sqr (2+5) ➪ sqr 7 ➪ 7*7 ➪ 49

Normal-order evaluation:
sqr (2+5) ➪ (2+5) * (2+5) ➪ 7 * (2+5) ➪ 7 * 7 ➪ 49

PS 24.

U Functional Programming
niversität Bern

Modelling State

State can be modelled explicitly as a function parameter:

sfac s n =
if n == 0 then s
else sfac (s*n) (n-1)

sfac 1 4
➪ sfac (1*4) (4-1)
➪ sfac 4 3
➪ sfac (4*3) (3-1)
➪ sfac 12 2
➪ sfac (12*2) (2-1)
➪ sfac 24 1
➪ ... ➪ 24

PS 25.

U Functional Programming

 lemma
niversität Bern

Equational Reasoning
Theorem:

For all n >= 0, fac n = sfac 1 n
Proof of theorem:

n = 0: fac 0 = sfac 1 0 = 1
n > 0: Suppose fac (n-1) = sfac 1 (n-1)

fac n = n * fac (n-1)
= n * sfac 1 (n-1)
= sfac n (n-1) -- by
= sfac 1 n

Lemma:
For all n >= 0, sfac s n = s * sfac 1 n

Proof of lemma:
n = 0: sfac s 0 = s = s * sfac 1 0
n > 0: Suppose sfac s (n-1) = s * sfac 1 (n-1)

sfac s n = sfac (s*n) (n-1)
= s * n * sfac 1 (n-1)
= s * sfac n (n-1)
= s * sfac 1 n

PS 26.

U Functional Programming
niversität Bern

Pattern Matching

Patterns:

fac' 0 = 1
fac' n = n * fac' (n-1)

Guards:
fac'' n | n == 0 = 1

| n >= 1 = n * fac'' (n-1)

PS 27.

U Functional Programming

 xs as the rest of the list
niversität Bern

Lists

Lists are pairs of elements and lists of elements:
❑ [] stands for the empty list
❑ x : xs stands for the list with x as the head and
❑ [1,2,3] is syntactic sugar for 1:2:3:[]
❑ [1..n] stands for [1,2,3, ... n]

Lists can be deconstructed using patterns:
head (x:_) = x
len [] = 0
len (x:xs) = 1 + len xs

prod [] = 1
prod (x:xs) = x * prod xs

fac''' n = prod [1..n]

PS 28.

U Functional Programming

 composed to produce

s:
niversität Bern

Higher Order Functions

Higher-order functions are first-class values that can be
new functions.

map f [] = []
map f (x:xs)= f x : map f xs

map fac [1..5]
➪ [1, 2, 6, 24, 120]

Anonymous functions can be written as lambda abstraction
map (\x->x * x) [1..10]

➪ [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

PS 29.

U Functional Programming

ing it to be treated as a

c (s*n) (n-1)

as an argument and
niversität Bern

Currying

A curried function takes its arguments one at a time, allow
higher-order function.

fac = sfac 1
where sfac s n

| n == 0 = s
| n >= 1 = sfa

The following higher-order function takes a binary function
turns it into a curried function:

curry f a b = f (a,b)

sfac (s, n) = if n == 0 then s
else sfac (s*n, n-1)

fac = (curry sfac) 1

PS 30.

U Functional Programming

values:

)

niversität Bern

Remembering State

Naive recursion may result in unnecessary recalculations:
fib 0 = 0
fib 1 = 1
fib (n+2) = fib n + fib (n+1)

Efficiency can be regained by explicitly passing calculated
fib' 0 = 0
fib' n = a where (a,_) = fib'' n

fib'' 1 = (1,0)
fib'' (n+2) = (a+b,a) where (a,b) = fib'' (n+1

PS 31.

U Functional Programming

ns when they are actually
71) allow replicated
lations.

 if they are passed incorrect
niversität Bern

Lazy Evaluation

“Lazy”, or normal-order evaluation only evaluates expressio
needed. Clever implementation techniques (Wadsworth, 19
expressions to be shared, and thus avoid needless recalcu
So:

sqr (2+5) ➪ (2+5) * (2+5) ➪ 7 * 7 ➪ 49

Lazy evaluation allows some functions to be evaluated even
or non-terminating arguments:

ifTrue True x y = x
ifTrue False x y = y

ifTrue True 1 (5/0)
➪ 1

PS 32.

U Functional Programming

erated by need:
niversität Bern

Lazy Lists
Lazy lists are infinite data structures whose values are gen

from n = n : from (n+1)

take 0 _ = []
take _ [] = []
take (n+1) (x:xs)= x : take n xs

take 5 (from 10)
➪ [10, 11, 12, 13, 14]

NB: The lazy list (from n) has the special syntax: [n..]

fibs = fibgen 0 1
where fibgen a b = a : fibgen b (a+b)

take 10 fibs
➪ [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

PS 33.

U Functional Programming

es = primesFrom 2

n+1)

]
niversität Bern

Functional Programming Style
primes = 2 : primesFrom 3 -- or just: prim

primesFrom n = p : primesFrom (p+1)
where p = nextPrime n

nextPrime n
| isPrime n = n
| otherwise = nextPrime (

isPrime 2 = True
isPrime n = notdiv primes n

notdiv (k:ps) n
| (k*k) > n = True
| (mod n k) == 0 = False
| otherwise = notdiv ps n

take 100 primes ➪ [2, 3, 5, 7, 11, 13, ... 523, 541

PS 34.

U Type Systems

l, 1991.
ion of Functional
ys 21/3, pp 359-411.

pes, Data Abstraction, and
, no. 4, Dec. 1985, pp. 471-

radigms, Prentice Hall, 1990
niversität Bern

Type Systems

Overview
❑ What is a Type?
❑ Static vs. Dynamic Typing
❑ Kinds of Types
❑ Polymorphic Types
❑ Overloading
❑ User Data Types

Sources:
❑ Mark P. Jones, “An Introduction to Gofer,” manua
❑ Paul Hudak, “Conception, Evolution, and Applicat

Programming Languages,” ACM Computing Surve
❑ L. Cardelli and P. Wegner, “On Understanding Ty

Polymorphism,’“ACM Computing Surveys, vol. 17
522.

❑ D. Watt, Programming Language Concepts and Pa

PS 35.

U Type Systems

an error
niversität Bern

What is a Type?
Type errors:

5 + []
ERROR: Type error in application
*** expression : 5 + []
*** term : 5
*** type : Int
*** does not match : [a]

A type is a set of values:
❑ int = { ... -2, -1, 0, 1, 2, 3, ... }
❑ bool = { True, False }
❑ Point = { [x=0, y=0], [x=1, y=0], [x=0, y=1] ... }

Are all sets of values types?

A type is a partial specification of behaviour:
❑ n, m : int ⇒ n + m is valid, but not(n) is an error
❑ n : int ⇒ n := 1 is valid, but n := “hello world” is

What kinds of specifications are interesting? Useful?

PS 36.

U Type Systems

age.
 by the values they assume

rmine the type of an

very expression is type

e. Variables and parameters
ed immediately before they

checking, (ii) type inference,
niversität Bern

Static and Dynamic Typing

Values have static types defined by the programming langu
Variables and expressions have dynamic types determined
at run-time.

A language is statically typed if it is always possible to dete
expression based on the program text alone.

A language is strongly typed if it is possible to ensure that e
consistent based on the program text alone.

A language is dynamically typed if only values have fixed typ
may take on different types at run-time, and must be check
are used.

Type consistency may be assured by (i) compile-time type-
or (iii) dynamic type-checking.

PS 37.

U Type Systems

es.

al user-defined types.

 ...

es, generic types ...

es of values involved.

and used as components of
o class distinctions, whereas
econd-class values.
niversität Bern

Kinds of Types

All programming languages provide some set of built-in typ

Most strongly-typed modern languages provide for addition

❑ Primitive types: booleans, integers, floats, chars
❑ Composite types: functions, lists, tuples ...
❑ User-defined types: enumerations, recursive typ

The Type Completeness Principle:

No operation should be arbitrarily restricted in the typ

First-class values can be evaluated, passed as arguments
composite values. Functional languages attempt to make n
imperative languages typically treat functions (at best) as s

PS 38.

U Type Systems

s without the need to

 (t2 -> (... -> tn) ...)

(f x1) x2) ... xn).

 :: Int -> Int
niversität Bern

Function Types

Function types allow one to deduce the types of expression
evaluate them:

fact :: Int -> Int
42 :: Int
⇒ fact 42 :: Int

Curried types:
t1 -> t2 -> ... -> tn stands for: t1 ->

so
f x1 x2 ... xn stands for: (... (

(+) :: Int -> Int -> Int ⇒ (+) 5

PS 39.

U Type Systems

f values of type a.

, so that an expression such

tuples written (t1, t2, ..., tn)
here the expressions x1, x2,

 also written as ().
niversität Bern

List and Tuple Types

List Types
If a is a type then [a] is the type whose elements are lists o

[1] :: [Int]
Note that all of the elements in a list must be of the same type
as ['a', 2, False] is not permitted.

Tuple Types
If t1, t2, ..., tn are types and n>=2, then there is a type of n-
whose elements are also written in the form (x1, x2, ..., xn) w
..., xn have types t1, t2, ..., tn respectively.

(1, [2], 3) :: (Int, [Int], Int)
('a', False) :: (Char, Bool)
((1,2),(3,4)) :: ((Int, Int), (Int, Int))

The unit type is written () and has a single element which is

PS 40.

U Type Systems

 every constant, variable,

s:
niversität Bern

Polymorphism

Languages like Pascal have monomorphic type systems:
parameter and function result has a unique type.

☞ good for type-checking
☞ bad for writing generic code

A polymorphic function accepts arguments of different type
length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

PS 41.

U Type Systems

m for automatically
ponding type system is used
skell.

 : map f xs

]

]

niversität Bern

Polymorphic Type Inference

Hindley-Milner Type Inference provides an effective algorith
determining the types of polymorphic functions. The corres
in many modern functional languages, including ML and Ha

map f [] = []
map f (x:xs) = f x

map :: X -> Y -> Z

map :: (a -> b) -> [c] -> [d

map :: (a -> b) -> [a] -> [b

PS 42.

U Type Systems

pecific type:

particular expression that is
niversität Bern

Type Specialization

A polymorphic function may be explicitly assigned a more s

idInt :: Int -> Int
idInt x = x

Note that the :t command can be used to find the type of a
inferred by Gofer:

? :t \x -> [x]
\x -> [x] :: a -> [a]

? :t (\x -> [x]) :: Char -> String
\x -> [x] :: Char -> String

PS 43.

U Type Systems

s

where y is not free in e

1

if x is not free in e

) (λ x . λ y . x) x y
niversität Bern

The (Untyped) Lambda Calculu

Syntax:
e ::= x | e1 e2 | λ x.e

(Operational) Semantics:
α conversion (renaming): λ x . e ⇔ λ y . [y/x] e
β reduction: (λ x . e1) e2 ⇒ [e2/x] e

η reduction: λ x . (e x) ⇒ e

Example:
True ≡ λ x . λ y . x
False ≡ λ x . λ y . y
if b then x else y ≡ λ b . λ x . λ y . b x y

if True then x else y = (λ b . λ x . λ y . b x y
⇒* (λ x . λ y . x) x y
⇒* x

PS 44.

U Type Systems

where yτ2 is not free in eτ1

1
τ1

 is not free in eτ1

lculus!

2/xν] e1
τ1
niversität Bern

The Typed Lambda Calculus

Syntax:

e ::= xτ | e1
τ2→τ1 e2

τ2 | (λ xτ2.eτ1)τ2→τ1

(Operational) Semantics:

α conversion (renaming): λ xτ2 . eτ1 ⇔ λ yτ2 . [yτ2/xτ2] eτ1

β reduction: (λ xτ2 . e1
τ1) e2

τ2 ⇒ [e2
τ2/xτ2] e

η reduction: λ xτ2. (eτ1 xτ2) ⇒ eτ1 if xτ2

Polymorphic functions like “map” cannot be typed in this ca
Need type variables to capture polymorphism:

β reduction (ii): (λ xν . e1
τ1) e2

τ2 ⇒ [τ2 / ν] [e2
τ

PS 45.

U Type Systems

; nil pointer type in Pascal

ls

als are expected and v.v.
niversität Bern

Kinds of Polymorphism

Polymorphism:
❑ Universal:

– Parametric: polymorphic map function in Gofer

– Inclusion: subtyping — graphic objects

❑ Ad Hoc:

– Overloading: + applies to both integers and rea

– Coercion: integer values can be used where re

Coercion or overloading — how does one distinguish?
3 + 4
3.0 + 4
3 + 4.0
3.0 + 4.0

PS 46.

U Type Systems

 classes:

 given:

 d

=v

==ys
niversität Bern

Overloading
Overloaded operators are introduced by means of type

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)

For each overloaded instance a separate definition must be
instance Eq Int where (==) = primEqInt
instance Eq Bool where

True == True = True
False == False = True
_ == _ = False

instance Eq Char where c == d = ord c == ord
instance (Eq a, Eq b) => Eq (a,b) where

(x,y) == (u,v) = x==u && y=
instance Eq a => Eq [a] where

[] == [] = True
[] == (y:ys) = False
(x:xs) == [] = False
(x:xs) == (y:ys) = x==y && xs

PS 47.

U Type Systems

 name, a set of param-
e:

rm

e:

 type:
niversität Bern

User Data Types

New data types can be introduced by specifying a datatype
eter types, and a set of constructors for elements of the typ

data DatatypeName a1 ... an = constr1 | ... | const

The constructors may be of the form:

1. Name type1 ... typek
which introduces Name as a new constructor of typ
type1 -> ...-> typek -> DatatypeName a1 ... an

2. type1 CONOP type2
which introduces (CONOP) as a new constructor of
type1 -> type2 -> DatatypeName a1 ... an

PS 48.

U Type Systems

ork”
niversität Bern

Examples of User Data Types

Enumeration types:
data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
what_shall_I_do Sun = “relax”
what_shall_I_do Sat = “go shopping”
what_shall_I_do _ = “looks like I'll have to go to w

Union types:
data Temp = Centigrade Float | Fahrenheit Float
freezing :: Temp -> Bool
freezing (Centigrade temp) = temp <= 0.0
freezing (Fahrenheit temp) = temp <= 32.0

PS 49.

U Type Systems

vesAcc r

Lf 12

Lf 23 Lf 13

Lf 10

:^:

:^:

:^:
niversität Bern

Recursive Data Types:

data Tree a = Lf a | Tree a :^: Tree a

(Lf 12 :^: (Lf 23 :^: Lf 13)) :^: Lf 10 :: Tree Int

leaves, leaves' :: Tree a -> [a]

leaves (Lf l) = [l]
leaves (l :^: r) = leaves l ++ leaves r

leaves' t = leavesAcc t []
where leavesAcc (Lf l) = (l:)

leavesAcc (l :^: r) = leavesAcc l . lea

PS 50.

U Type Systems

ctions

s?
ality!

subset` xs
` ys) xs

(==) {dict} 1 x)
niversität Bern

Equality for Data Types and Fun

Why not automatically provide equality for all types of value
Syntactic equality does not necessarily entail semantic equ

User data types:
data Set a = Set [a]

instance Eq a => Eq (Set a) where
Set xs == Set ys = xs `subset` ys && ys `

where xs `subset` ys = all (`elem

Functions:
? (1==) == (\x->1==x)
ERROR: Cannot derive instance in expression
*** Expression : (==) d148 ((==) {dict} 1) (\x->
*** Required instance : Eq (Int -> Bool)

PS 51.

U Introduction to Denotational Semantics

mantics

rown Publ., 1986
radigms, Prentice Hall, 1990
niversität Bern

Introduction to Denotational Se

Overview:
❑ Syntax and Semantics
❑ Approaches to Specifying Semantics
❑ Semantics of Expressions
❑ Semantics of Assignment
❑ Other Issues

Texts:
❑ D. A. Schmidt, Denotational Semantics, Wm. C. B
❑ D. Watt, Programming Language Concepts and Pa

PS 52.

U Introduction to Denotational Semantics

es

 programs?

alid) programs are
 the dynamic semantics tells
.

ations does it suit?
niversität Bern

Defining Programming Languag

Three main characteristics of programming languages:

1. Syntax: What is the appearance and structure of its
2. Semantics: What is the meaning of programs?

The static semantics tells us which (syntactically v
semantically valid (i.e., which are type correct) and
us how to interpret the meaning of valid programs

3. Pragmatics: What is the usability of the language?
How easy is it to implement? What kinds of applic

PS 53.

U Introduction to Denotational Semantics

s

o communicate to the

How should the language be

ram, given a particular

e definition be tuned so that

 implementation be obtained
niversität Bern

Uses of Semantic Specification

Semantic specifications are useful for language designers t
implementors as well as to programmers:

1. A precise standard for a computer implementation:
implemented on different machines?

2. User documentation: What is the meaning of a prog
combination of language features?

3. A tool for design and analysis: How can the languag
it can be implemented efficiently?

4. Input to a compiler generator: How can a reference
from the specification?

PS 54.

U Introduction to Denotational Semantics

ics

(typically, a function)

ains

ned using inference rules)
niversität Bern

Methods for Specifying Semant

Operational Semantics:
☞ [[program]] = abstract machine program
☞ can be simple to implement
☞ hard to reason about

Denotational Semantics:
☞ [[program]] = mathematical denotation
☞ facilitates reasoning
☞ not always easy to find suitable semantic dom

Axiomatic Semantics:
☞ [[program]] = set of properties
☞ good for proving theorems about programs
☞ somewhat distant from implementation

Structural Operational Semantics:
☞ [[program]] = transition system (defi
☞ good for concurrency and non-determinism
☞ hard to reason about equivalence

PS 55.

U Introduction to Denotational Semantics
niversität Bern

Concrete and Abstract Syntax
How to parse “4 * 2 + 1”?

Abstract Syntax is compact but ambiguous:
Expr ::= Num

| Expr Op Expr
Op ::= +| - | * | /

Concrete Syntax is unambiguous but verbose:
Expr ::= Expr LowOp Term

| Term
Term ::= Term HighOp Factor

| Factor
Factor ::= Num

| (Expr)
LowOp ::= + | -
HighOp ::= * | /

PS 56.

U Introduction to Denotational Semantics

 features to their math-
ely defined:
niversität Bern

Semantic Domains

In order to define semantic mappings of programs and their
ematical denotations, the semantic domains must be precis

data Bool = True | False

(&&), (||) :: Bool -> Bool -> Bool
False && x = False
True && x = x
False || x = x
True || x = True

not :: Bool -> Bool
not True = False
not False = True

PS 57.

U Introduction to Denotational Semantics

 ',' E3
niversität Bern

A Calculator Language
Abstract Syntax:

P ::= 'ON' S
S ::= E 'TOTAL' S | E 'TOTAL' 'OFF'
E ::= E1 '+' E2 | E1 '*' E2 | 'IF' E1 ',' E2

| 'LASTANSWER' | '(' E ')' | N

Test Program = “ ON 4 * (3 + 2) TOTAL OFF ”

Data Structures for Syntax Tree:
data Program = On ExprSequence
data ExprSequence = Total Expression ExprSequence

| Off Expression
data Expression = Plus Expression Expression

| Times Expression Expression
| If Expression Expression Expression
| LastAnswer
| Braced Expression
| N Int

test = On (Off (Times (N 4)
(Braced (Plus (N 3)

(N 2)))))

PS 58.

U Introduction to Denotational Semantics

 n' cons S [[S]] (n')

]] (n)
]] (n)

E [[E2]] (n) # E [[E3]] (n)
niversität Bern

Calculator Semantics
Programs:

P : Program → Int *
P [[ON S]] = S [[S]] (0)

Sequences:
S :: ExprSequence → Int → Int *
S [[E TOTAL S]] (n) = let n' = E [[E]] (n) in
S [[E TOTAL OFF]] (n) = E [[E]] (n) cons nil

Expressions:
E : Expression → Int → Int
E [[E1 + E2]] (n) = E [[E1]] (n) + E [[E2
E [[E1 * E2]] (n) = E [[E1]] (n) * E [[E2
E [[IF E1 , E2 , E3]] (n) = E [[E1]] (n) == 0 →
E [[LASTANSWER]] (n) = n
E [[(E)]] (n) = E [[E]] (n)
E [[N]] (n) = N

PS 59.

U Introduction to Denotational Semantics

) in n' : (ss s n')

1 n) + (ee e2 n)
1 n) * (ee e2 n)

2 n)
3 n)

 n)
niversität Bern

Implementing the Calculator

Programs:
pp :: Program -> [Int]
pp (On s) = ss s 0

Sequences:
ss :: ExprSequence -> Int -> [Int]
ss (Total e s) n = let n' = (ee e n
ss (Off e) n = (ee e n) : []

Expressions:
ee :: Expression -> Int -> Int
ee (Plus e1 e2) n = (ee e
ee (Times e1 e2) n = (ee e
ee (If e1 e2 e3) n

| (ee e1 n) == 0 = (ee e
| otherwise = (ee e

ee (LastAnswer) n = n
ee (Braced e) n = (ee e
ee (N num) n = num

PS 60.

U Introduction to Denotational Semantics
niversität Bern

A Language with Assignment

Abstract Syntax:
P ::= C '.'
C ::= C1 ';' C2

| 'if' B 'then' C1 'else' C2
| I ':=' E

E ::= E1 '+' E2
| I
| N

B ::= E1 '=' E2
| 'not' B

Example:
“ z := 1 ; if a = 0 then z := 3 else z := z + a . ”

PS 61.

U Introduction to Denotational Semantics

d
nd Command
ier Expression
r Command Command

ion Expression

sion Expression
xpr

 (Id 'a')))
niversität Bern

Abstract Syntax Trees
Data Structures:

data Program = Dot Comman
data Command = CSeq Comma

| Assign Identif
| If BooleanExp

data Expression = Plus Express
| Id Identifier
| Num Int

data BooleanExpr = Equal Expres
| Not BooleanE

type Identifier = Char
Example:

Dot (CSeq (Assign 'z' (Num 1))
(If (Equal (Id 'a') (Num 0))

(Assign 'z' (Num 3))
(Assign 'z' (Plus (Id 'z')

)
)

PS 62.

U Introduction to Denotational Semantics

d'
= val
= store id'
niversität Bern

Modelling Environments

A store is a mapping from identifiers to values:

type Store = Identifier -> Int

newstore :: Store
newstore id = 0

access :: Identifier -> Store -> Int
access id store = store id

update :: Identifier -> Int -> Store -> Store
update id val store = store'

where store' i
| id' == id
| otherwise

PS 63.

U Introduction to Denotational Semantics

te 'a' n newstore))

s) (cc c2 s)

)

niversität Bern

Semantics of Assignments
pp :: Program -> Int -> Int
pp (Dot c) n = access 'z' (cc c (upda

cc :: Command -> Store -> Store
cc (CSeq c1 c2) s = cc c2 (cc c1 s)
cc (Assign id e) s = update id (ee e s) s
cc (If b c1 c2) s = ifelse (bb b s) (cc c1

ee :: Expression -> Store -> Int
ee (Plus e1 e2) s = (ee e2 s) + (ee e1 s)
ee (Id id) s = access id s
ee (Num n) s = n

bb :: BooleanExpr -> Store -> Bool
bb (Equal e1 e2) s = (ee e1 s) == (ee e2 s
bb (Not b) s = not (bb b s)
ifelse :: Bool -> a -> a -> a
ifelse True x y = x
ifelse False x y = y

PS 64.

U Introduction to Denotational Semantics

ins

del “the rest of the program”
niversität Bern

Practical Issues

Modelling:
❑ Errors and non-termination:

☞ need a special “error” value in semantic doma
❑ Branching:

☞ semantic domains in which “continuations” mo
make it easy to transfer control

❑ Interactive input
❑ Dynamic typing
❑ ...

PS 65.

U Introduction to Denotational Semantics
niversität Bern

Theoretical Issues

What are the denotations of lambda abstractions?
❑ need Scott’s theory of semantic domains

What is the semantics of recursive functions?
❑ need least fixed point theory

How to model concurrency and non-determinism?
❑ abandon standard semantic domains
❑ use “interleaving semantics”
❑ “true concurrency” requires other models ...

PS 66.

U Object-Oriented Programming

 Prentice Hall, 1988.
g Object-Oriented Software,

riented Programming,” ACM
niversität Bern

Object-Oriented Programming

Overview
❑ What is Object-Oriented Programming?
❑ Objects, Classes and Inheritance
❑ The Principle of Substitutability
❑ Inheritance and Subtyping
❑ Dimensions of Object-Oriented Languages

Suggested texts:
❑ B. Meyer, Object-Oriented Software Construction,
❑ R. Wirfs-Brock, B. Wilkerson, L. Wiener, Designin

Prentice Hall, 1990
❑ P. Wegner, “Concepts and Paradigms of Object-O

OOPS Messenger, Vol. 1, No. 1, Aug. 1990

PS 67.

U Object-Oriented Programming

mming?

 of communicating

ending it a message
 the same set of messages

and extend or modify them
presentation and behaviour,
fined by concrete subclasses
 as hierarchies of related
niversität Bern

What is Object-Oriented Progra

Object-oriented programs model applications as collections
objects:

❑ Objects encapsulate data and operations
❑ Objects implement a client/server contract
❑ Clients may only access an object’s services by s
❑ Objects may have different methods to respond to
❑ Classes define templates for instantiating objects
❑ Classes may inherit features from parent classes
❑ Abstract classes may specify generic interfaces, re

while deferring implementation of features to be de
❑ Frameworks define generic software architectures

abstract classes

PS 68.

U Object-Oriented Programming

ace (CIRCLE)

 understood:
ove, surface ...

ivate
sentation

e variables
ethods:

 radius, ...
niversität Bern

Objects

Public Interf

Messages
perimeter, m

Pr
Repre

Instanc
and m

centre,

Objects both encapsulate data and
the operations that may be
performed with them, and they
hide their internal representation,
thus promoting understandability,
maintainability and consistency.

PS 69.

U Object-Oriented Programming

.
sage” consisting of a service

essage. Two objects may
 to respond to them.

ceiver
bject)
niversität Bern

Message-Passing Paradigm

Objects can only be accessed through their public interface
A client requests a service of an object by sending it a “mes
name and some arguments.
The object selects the appropriate method to handle the m
understand the same messages, but use different methods
An object implements a client/server contract.

Sender
(client)

Re
(o

message

a_circle.move(5,10)

PS 70.

U Object-Oriented Programming

ce, structure and
class, but with its own private

) ^ 2)

Interface

Instance Variables

Method

Operation
niversität Bern

Classes and Instances
A class describes the implementation of a set of objects.

An object is an instance of a class, sharing the same interfa
implementations of methods as other instances of the same
state (i.e., its instance variables).

class POINT
export

x, y, distance, translate,
feature

x: REAL;
y: REAl;
Create (a, b: REAL) is

do
x := a; y := b;

end ;
translate(a, b: REAL) is

do
x := x + a; y := y + b;

end ;
distance (other: POINT): REAL is

do
Result := sqrt((x - other.x) ^ 2 + (y - other.y

end ;
end -- class POINT

PS 71.

U Object-Oriented Programming

ivate Features
U′

X, Y

ublic Features
B′

D, E

Heir Class T
niversität Bern

Inheritance

Private Features
U, V, W

Public Features
A, B, C

Pr

P

Parent Class S

T inherits both public and private
features from its parent class S.
It may both extend the inherited
features (D, E, X, Y) or redefine
them (B′, U′)

PS 72.

U Object-Oriented Programming

 for a set of implementations

p, wipe_out
niversität Bern

Deferred Features and Classes

Deferred classes define common interfaces and behaviour
deferred class STACK [T]

export
nb_elements, empty, full, top, push, pop, change_to

feature
nb_elements: INTEGER is deferred end ;
empty: BOOLEAN is

do
Result := (nb_elements = 0)

end ;
full: BOOLEAN is deferred end ;
top: T is deferred end ;
push (v: T) is deferred end ;
pop is deferred end;
change_top (v: T) is

do
pop; push(v)

end ;
wipe_out is deferred end ;

end -- class STACK

PS 73.

U Object-Oriented Programming

nd implementation:

change_top, wipe_out

ax_size;
niversität Bern

Multiple Inheritance
Multiple inheritance can be used to combine functionality a

class FIXED_STACK [T]
export

max_size, nb_elements, empty, full, top, push, pop,
inherit

ARRAY [T]
rename Create as array_Create, size as m

STACK [T]
redefine change_top

feature
...;

end

ARRAYSTACK

FIXED_STACK

PS 74.

U Object-Oriented Programming

context in which an

r & Zdonik, ECOOP 88

ration of class BIT_MAP_SCREEN

r from screen

lay on screen

h subtypes of GRAPHIC_OBJECT
niversität Bern

The Principle of Substitutability

An instance of a subtype can always be used in any
instance of a supertype was expected.

— Wegne

...
move (obj: GRAPHIC_OBJECT, x, y: REAL) is -- ope

do
obj.display_off; -- clea
obj.translate(x, y);
obj.display_on -- disp

end;
...

s: SQUARE; r: RECTANGLE; -- bot
screen: BIT_MAP_SCREEN;

screen.move(s, 1.5, 1.5); screen.move(r, 1.5, 1.5);

PS 75.

U Object-Oriented Programming

ing

ently bound.
niversität Bern

Polymorphism & Dynamic Bind

The static type of a variable is its declared type.
Its dynamic type is the type of the object to which it is curr

p: POLYGON;
r: RECTANGLE;

x := p.perimeter; -- OK
x := r. perimeter; -- OK

x := r.diagonal; -- OK
x := p.diagonal; -- ERROR

p := r; -- OK
x := p.perimeter; -- OK
x := p.diagonal; -- ERROR

r := p; -- ERROR

PS 76.

U Object-Oriented Programming

n object (i.e., the
t and return types).

erstood by instances of type

e of X to a variable of type X

pes to the interface
variance)
niversität Bern

Subtyping

Consider a type to be the specification of the interface to a
messages that are understood, together with their argumen

Message send:
❑ It is always safe to send a message m(a1,...an) und

X to an instance of a subtype of X

Assignment:
❑ It is always safe to assign an instance of a subtyp

Subtyping:
❑ A subtype Y of a type X may add new message ty
❑ Y may specialize the return type of a message (co

PS 77.

U Object-Oriented Programming

e

essage?

OR ... -- add colours too

ed
 a COLOUREDVECTOR!

) if substitutability is to be
ms!
niversität Bern

Covariance and Contravarianc

Can a subtype also specialize the argument types of a m
class VECTOR

export move, add, ...
feature

move (x, y : REAL) : VECTOR ...
add (v : VECTOR) : VECTOR ...

end
class COLOUREDVECTOR

export move, add, ...
feature

move (x, y : REAL) : COLOUREDVECTOR ...
add (v : COLOUREDVECTOR) : COLOUREDVECT

end
v, v1, v2 : VECTOR;
c : COLOUREDVECTOR; -- initialized elsewhere ...
v := c;
v1 := v.move (1,3); -- OK; return type is specializ
v1 := v.add (v2); -- not OK; can’t by sure v2 is

Argument types may only be more general (contravariance
guaranteed; but this is seldom useful for solving real proble

PS 78.

U Object-Oriented Programming

ffel and C++) attempt to unify
heritance in order to achieve
ts:
lling problems, it is often
 types of methods in
not be substitutable for

ce is used to combine an
implementation reuse). This
rited from the representation
le tied to inheritance.
sses may actually have
mmon superclass.
niversität Bern

Inheritance is not Subtyping

Various object-oriented programming languages (notably Ei
the notions of types and classes, and therefore constrain in
reasonably subtyping rules. This can lead to various conflic

❑ Covariance vs. contravariance: for complex mode
convenient to specialize both argument and return
subclasses, but instances of such subclasses will
superclass instances.

❑ Multiple inheritance: sometimes multiple inheritan
abstract interface with a particular representation (
may necessitate renaming (hiding) of features inhe
class, which violates any reasonable subtyping ru

❑ Post-hoc type equivalence: separately defined cla
compatible types, though they do not share any co

PS 79.

U Object-Oriented Programming

f their instances, and

ts declaration in the class.
mming language:
rents
nts
eritance interface
niversität Bern

The Inheritance Interface

A class has two different kinds of clients: run-time clients o
inheriting classes.

The interface to run-time clients is defined by the expor
The interface to heirs (subclasses) is defined by the progra

❑ Heirs have full access to the implementation of pa
❑ Heirs may only access the public features of pare
❑ Heirs may only access features exported in an inh

PS 80.

U Object-Oriented Programming

 that are no longer

itted to persistent storage
ibuted environment
d (self-) modified at run-time
tly active; individual objects
niversität Bern

Run Time Support

❑ Garbage collection: memory occupied by objects
referenced may be automatically reclaimed

❑ Persistence: objects may be automatically comm
❑ Distribution: objects may be shared within a distr
❑ Reflection: class definitions may be accessed an
❑ Concurrency: multiple objects may be concurren

may manage multiple concurrent threads

PS 81.

U Object-Oriented Programming

 Languages

f behaviour and state

bjects from object classes
etween classes
ypes as objects; classes are

ntee that all expressions are

ple objects to serve requests
synchronize concurrent

cts whose lifetime may span

 Messenger, Vol. 1, #1
niversität Bern

Dimensions of Object-Oriented

❑ Object-Based languages support encapsulation o
(objects)

❑ Class-Based languages support instantiation of o
❑ Object-Oriented languages support inheritance b
❑ Fully Object-Oriented languages model all data t

also objects
❑ Strongly-Typed object-oriented languages guara

type-consistent
❑ Concurrent object-oriented languages allow multi

concurrently; individual objects can schedule and
requests

❑ Persistent object-oriented languages support obje
multiple user sessions

— Wegner, OOPS

PS 82.

U Object-Oriented Programming

s

heritance; designed for

rox PARC to drive graphic

 and information hiding
omoted formal specification

d many others
niversität Bern

A Brief History of OO Language

❑ Simula (1962): extended Algol with classes and in
writing simulation applications

❑ Smalltalk (1970s): “pure” OOPL; developed by Xe
workstations

❑ Modules (1972): Parnas promoted encapsulation
❑ Abstract Data Types (1974): Liskov and Zilles pr
❑ Ada (1983)
❑ Objective C, Beta, etc. (1980s)
❑ C++, Eiffel (1986)
❑ Emerald, ABCL, ConcurrentSmalltalk, Oz ... an

PS 83.

U Object-Oriented Programming

 Practice

on-functional)

)

niversität Bern

Current Trends in Research and

❑ Objects + X where X is ...
❑ Object-based concurrency
❑ Type theories for objects (mostly functional)
❑ Semantic models of objects (both functional and n
❑ Components
❑ Distribution and Interoperability (CORBA and ODP
❑ Frameworks
❑ Design Patterns
❑ Role Modelling

PS 84.

U Logic Programming

, 1986
inger Verlag, 1981
niversität Bern

Logic Programming

Overview
❑ Facts and Rules
❑ Searching and Backtracking
❑ Recursion, Functions and Arithmetic
❑ Lists and other Structures
❑ Implementing a Simple Interpreter

Texts:
❑ Sterling and Shapiro, The Art of Prolog, MIT Press
❑ Clocksin and Mellish, Programming in Prolog, Spr

PS 85.

U Logic Programming

s :

m other relations (subgoals):

, of the form:

sing facts and rules:

st facts or rules, unifying
oals fail
 given some binding of

ever cannot be proved to be
niversität Bern

Facts and Rules

A Prolog program consists of facts , rules , and question
❑ Facts are named relations between objects:

☞ parents(charles, elizabeth, philip).
❑ Rules are relations (goals) that can be inferred fro

☞ uncle(U,C) :- brother(U,P), parent(P,C).
❑ Both rules and facts are instances of Horn clauses

☞ A0 if A1 and A2 and ... An

❑ Questions are statements that can be answered u
☞ ? brother(charles, X)

❑ Questions are answered by matching goals again
variables with terms, and backtracking when subg

❑ A question is always answered with true or false ,
variables to terms

❑ Prolog adopts a closed world assumption — what
true, is assumed to be false

PS 86.

U Logic Programming
niversität Bern

Prolog Databases
male(philip).
female(elizabeth).
male(charles).
female(anne).
male(andrew).
male(edward).
female(diana).
male(william).
male(harry).
parents(charles, elizabeth, philip).
parents(anne, elizabeth, philip).
parents(andrew, elizabeth, philip).
parents(edward, elizabeth, philip).
parents(william, diana, charles).
parents(harry, diana, charles).
?- male(charles).
?- male(anne).
?- male(mickey)
?- male(X).
?- parents(X,elizabeth,_).

PS 87.

U Logic Programming

king
niversität Bern

Rules, Searching and Backtrac

A Rule defines a relation as a conjunction of subgoals:

brother(X, Y) :- male(X),
parents(X, M, F),
parents(Y, M, F),
X \== Y.

?- brother(charles, edward).
?- brother(charles, X).
?- brother(X, charles).

PS 88.

U Logic Programming

:

other/2 and father/2:

ed:
niversität Bern

Conjunctions and Disjunctions

The same information can be represented in various forms

mother(M,C) :- parents(C,M,_).
father(F,C) :- parents(C,_,F).

We could have chosen to represent parents/3 in terms of m
parents(C,M,F) :- mother(M,C), father(F,C).

Both conjunctions and disjunctions can be easily represent

uncle(U,C) :- brother(U,P),
parent(P,C).

parent(P,C) :- mother(P,C).
parent(P,C) :- father(P,C).

PS 89.

U Logic Programming
niversität Bern

Recursion

Recursive relations are defined in the obvious way:

ancestor(A,P) :- parent(A,P).
ancestor(A,P) :- parent(A,C),

ancestor(C,P).

?- ancestor(philip, harry).
?- ancestor(philip, X).
?- ancestor(X, harry).

PS 90.

U Logic Programming

path:

fail:
niversität Bern

Negation as Failure

Searching can be controlled by explicit failure:

printall(X) :- X, print(X), nl, fail .
printall(_).

?- printall(brother(_,_)).

The cut operator (!) commits Prolog to a particular search

parent(P,C) :- mother(P,C), !.
parent(P,C) :- father(P,C).

Negation can be implemented by a combination of cut and

not(X) :- X, !, fail.
not(_).

PS 91.

U Logic Programming

s of assert and retract:

),
.

niversität Bern

Changing the Database

The Prolog database can be modified dynamically by mean

changename(X,Y) :- rename(X,Y),
retract(parents(X,M,F)
assert(parents(Y,M,F))

rename(X,Y) :- retract(male(X)),
assert(male(Y)).

rename(X,Y) :- retract(female(X)),
assert(female(Y)).

?- changename(charles, mickey).

PS 92.

U Logic Programming
niversität Bern

Functions and Arithmetic

Functions are relations between expressions and values:

X is 5 + 6 .
Yields:

X = 11 ?

And is syntactic sugar for:
is(X, +(5,6))

User-defined functions are written in a relational style:

fact(0,1).
fact(N,F) :- N > 0,

N1 is N - 1,
fact(N1,F1),
F is N * F1.

PS 93.

U Logic Programming

Element syntax
[a]

[a , b]

[a , [b] , c]

[a | X]

[a , b | X]
niversität Bern

Lists

Lists are pairs of elements and lists:

Formal object Cons pair syntax
.(a , []) [a | []]

.(a , .(b, [])) [a | [b | []]]

.(a , .(.(b , []) , .(c , []))) [a | [[b | []] | [c | []]]]

.(a , X) [a | X]

.(a , .(b , X)) [a | [b | X]]

PS 94.

U Logic Programming
niversität Bern

Pattern Matching with Lists

member(X, [X | _]).
member(X, [_ | L]) :- member(X, L).

?- member(a, [a,b,c]).

?- member(X, [a,b,c]).

?- member(a, L).
L = [a | _A] ? ;
L = [_A , a | _B] ? ;
L = [_A , _B , a | _C] ? ;
L = [_A , _B , _C , a | _D] ? ;

PS 95.

U Logic Programming
niversität Bern

Exhaustive Searching

Searching for permutations:
perm([],[]).
perm([C|S1],S2) :- perm(S1,P1),

append(X,Y,P1),
append(X,[C|Y],S2).

append([],L,L).
append([X|L1],L2,[X|L3]) :- append(L1,L2,L3) .

?- printall(perm([a,b,c,d],_)).

A declarative, but hopelessly inefficient sort program:
ndsort(L,S) :- perm(L,S),

issorted(S).
issorted([]).
issorted([_]).
issorted([N,M|S]) :- N =< M,

issorted([M|S]).

PS 96.

U Logic Programming

 E2 'else' E3

onvenient syntax:

tal(lastanswer+1, off)))

lastanswer, else(3*4, 3+4))), off))
niversität Bern

Operators
Calculator example [Schmidt]:

P ::= 'on' S
S ::= E 'total' S | E 'total' 'OFF'
E ::= E1 '+' E2 | E1 '*' E2 | 'if' E1 'then'

| 'lastanswer' | '(' E ')' | N

Syntax trees can be modelled directly as Prolog terms.
Operator type and precedence can be defined to achieve c

:- op(900, fx, on).
:- op(800, xfy, total).
:- op(600, fx, if).
:- op(590, xfy, then).
:- op(580, xfy, else).
% op(500, yfx, +).
% op(400, yfx, *).

on 2+3 total lastanswer + 1 total off = on(total(2+3, to

on if lastanswer then 3*4 else 3+4 total off = on(total(if(then(

PS 97.

U Logic Programming

!,
niversität Bern

Building a Simple Interpreter
Top level programs:

on S :- seval(S, 0).

Statements:
seval(E total off, Prev) :- xeval(E, Prev, Val),

print(Val), nl.

seval(E total S, Prev) :- xeval(E, Prev, Val),
print(Val), nl,
seval(S, Val).

Expressions:
xeval(N, _, N) :- number(N).
xeval(E1+E2, Prev, V) :- xeval(E1, Prev, V1),

xeval(E2, Prev, V2),
V is V1+V2.

xeval(E1*E2, Prev, V) :- xeval(E1, Prev, V1),
xeval(E2, Prev, V2),
V is V1*V2.

xeval(lastanswer, Prev, Prev).
xeval(if E1 then E2 else _, Prev, Val) :- xeval(E1, Prev, 0),

xeval(E2, Prev, Val).
xeval(if _ then _ else E3, Prev, Val) :- xeval(E3, Prev, Val).

PS 98.

U Concurrent Programming

d Notations for Concurrent
no. 1, Mar. 1983, pp. 3-43.
ed Programming, Prentice

anguages, Addison-Wesley,
niversität Bern

Concurrent Programming

Overview
❑ Concurrency issues
❑ Process creation
❑ Synchronizing access to shared variables
❑ Message Passing Approaches

Texts:
❑ G. R. Andrews and F. B. Schneider, “Concepts an

programming,’“ACM Computing Surveys, vol. 15,
❑ M. Ben-Ari, Principles of Concurrent and Distribut

Hall, 1990.
❑ L. Wilson & R. Clark, Comparative Programming L

1988.

PS 99.

U Concurrent Programming

t of statements; its execution
ore sequential programs that

r more processors
its own processor
ry
its own processor
k to others

s.
niversität Bern

Concurrency and Parallelism

“A sequential program specifies sequential execution of a lis
is called a process. A concurrent program specifies two or m
may be executed concurrently as parallel processes.”

A concurrent program can be executed by:
1. Multiprogramming: processes share one o
2. Multiprocessing: each process runs on

but with shared memo
3. Distributed processing: each process runs on

connected by a networ

Assume only that all processes make positive finite progres

PS 100.

U Concurrent Programming

sible interleavings of

ection are treated atomically.
niversität Bern

Atomicity

Programs P1 and P2 execute concurrently:

{ x = 0 }
P1: x := x+1
P2: x := x+2

{ x = ? }

What are possible values of x after P1 and P2 complete?
What is the intended final value of x?

Synchronization mechanisms are needed to restrict the pos
processes so that sets of actions can be seen as atomic.
Mutual exclusion ensures that statements within a critical s

PS 101.

U Concurrent Programming

nt programs:

e updated atomically
need to be delayed if shared
., read from empty buffer)

s a shared resource
cess shared resources

ress:

cified?
?

niversität Bern

Concurrency Issues

There are two principal difficulties in implementing concurre

❑ Ensuring consistency:
☞ Mutual exclusion — shared resources must b
☞ Condition synchronization — operations may

resources are not in an appropriate state (e.g
❑ Ensuring progress:

☞ Deadlock — some process can always acces
☞ Starvation — all processes can eventually ac

Notations for expressing concurrent computation must add

1. Process Creation: how is concurrent execution spe
2. Communication: how do processes communicate
3. Synchronization: how is consistency maintained?

PS 102.

U Concurrent Programming
niversität Bern

Deadlock and Starvation

Dining Philosophers
Philosophers alternate between thinking and eating.
A philosopher needs two forks to eat.
No two philosophers may hold the same fork simultaneously.
No deadlock and no starvation.
Efficient behaviour under absence of contention.

PS 103.

U Concurrent Programming

:

 request, eventually it will be

initely often, eventually it will

l be granted before any other

est, it will be granted before
niversität Bern

Fairness

There are subtle differences between definitions of fairness

❑ Weak fairness: If a process continuously makes a
granted.

❑ Strong fairness: If a process makes a request inf
be granted.

❑ Linear waiting: If a process makes a request, it wil
process is granted the request more than once.

❑ FIFO (first-in first out): If a process makes a requ
that of any process making a later request.

PS 104.

U Concurrent Programming

coroutine B;
...
resume A;
...
return
niversität Bern

Process Creation

Co-routines:

Fork and Join:

Cobegin:
cobegin S1 || S2 || ... || Sn coend

program P;
...
call A;
...
end

coroutine A;
...
resume B;
...
resume B

program P1
...
fork P2;
...
join P2;
...

program P2
...
...
end

PS 105.

U Concurrent Programming

ization

P3

2

niversität Bern

Communication and Synchron

Shared Variables:

Message-Passing:

x y z ...

P1 P2

xP1 P

P3

y

PS 106.

U Concurrent Programming

ower and can

g.

age Passing

Message Oriented
niversität Bern

Synchronization Techniques

Different approaches are roughly equivalent in expressive p
generally be implemented in terms of each other.

Each approach emphasizes a different style of programmin

Busy-Waiting

Semaphores

Monitors Mess

Remote Procedure Call

Path Expressions

Procedure Oriented

Operation Oriented

PS 107.

U Concurrent Programming

 processes set and test
ement, but mutual exclusion

 variables

ests the variable

try and exit protocols to

2;

enter2 := true;
turn := “P1”;
while enter1 and turn = “P1”

do skip ;
Critical Section;
enter2 := false;
Non-critical Section;
niversität Bern

Busy-Waiting
A simple approach to implement synchronization is to have
shared variables. Condition synchronization is easy to impl
is more difficult to realize correctly and efficiently.
Condition synchronization:

☞ to signal a condition, a process sets a shared
(bufferEmpty = FALSE)

☞ to wait for a condition, a process repeatedly t
Mutual exclusion:

☞ condition variables are used to implement en
access and release shared resources

process P1;
loop

enter1 := true; { wants to enter }
turn := “P2”; { but yields priority }
while enter2 and turn = “P2”

do skip ;
Critical Section;
enter1 := false; { exits }
Non-critical Section;

end ;
end ;

process P
loop

end ;
end ;

PS 108.

U Concurrent Programming

r-level primitive for process

ith two operations:
ecutes s := s-1

hich take on values 0 or 1.

2;

P(mutex);
Critical Section;
V(mutex);
Non-critical Section;
niversität Bern

Semaphores

Semaphores were introduced by Dijkstra (1968) as a highe
synchronization.

A semaphore is a non-negative integer-valued variable s w
❑ P(s): delays until s>0; when s>0, atomically ex
❑ V(s): atomically executes s:= s+1

Many problems can be solved using binary semaphores, w

process P1;
loop

P(mutex); { wants to enter }
Critical Section;
V(mutex); { exits }
Non-critical Section;

end ;
end ;

process P
loop

end ;
end ;

PS 109.

U Concurrent Programming

ipulate them:
emantics

ally exclusive
and wait primitives
 ...

ar it : T);

= 0 then notempty.wait
ts[head];
 size - 1;
= (head+1) mod N;
signal

ad := 0; tail := 0;
niversität Bern

Monitors

A monitor encapsulates resources and operations that man
❑ operations are invoked with usual procedure call s
❑ procedure invocations are guaranteed to be mutu
❑ condition synchronization is realized using signal

☞ there exist many variations of wait and signal

procedure fetch(v
begin

if size
it := slo
size :=
head :
notfull.

end

begin
size := 0; he

end

type buffer(T) = monitor
var
slots : array [0..N-1] of T;
head, tail : 0..N-1;
size : 0..N;
notfull, notempty : condition;

procedure deposit(p : T);
begin

if size = N then notfull.wait
slots[tail] := p;
size := size + 1;
tail := (tail+1) mod N;
notempty.signal

end

PS 110.

U Concurrent Programming

rocess synchronization than

ing processes to enter!
umption of signaller

to condition variables
 prevent deadlock
niversität Bern

Problems with Monitors

Although monitors provide a more structured approach to p
semaphores, they suffer from various shortcomings.

A signalling process is temporarily suspended to allow wait
❑ Monitor state may change between signal and res
❑ Simultaneous signal and return is not supported
❑ Unlike semaphores, multiple signals are not saved
❑ Boolean expressions are not explicitly associated
❑ Nested monitor calls must be specially handled to

PS 111.

U Concurrent Programming

hronization:

 a destination
et of processes, ...
iables and a source
ified
 or dynamically computed

ronous
perations never block
es pass through a bounded
ll

 sender and receiver must be
niversität Bern

Message Passing

Message Passing combines both communication and sync

❑ A message is sent by specifying the message and
☞ The destination may be a process, a port, a s

❑ A message is received by specifying message var
☞ The source may or may not be explicitly ident
☞ Source and destination may be statically fixed

❑ Message transfer may be synchronous or asynch
☞ With asynchronous message passing, send o
☞ With buffered message passing, sent messag

buffer ; the sender may block if the buffer is fu
☞ With synchronous message passing, both the

ready for a message to be exchanged

PS 112.

U Concurrent Programming

consumer processes

ndard output streams.
d synchronization is handled
niversität Bern

Unix Pipes

Unix pipes are bounded buffers that connect producer and
(sources, sinks and filters):

cat file
| tr -c ‘a-zA-Z’ ‘\012’
| sort
| uniq -c
| sort -rn
| more

Processes should read from standard input and write to sta
Process creation and scheduling are handled by the O/S, an
implicitly by the I/O system.

PS 113.

U Concurrent Programming

ed:

e

niversität Bern

Send and Receive

In CSP or Occam, source and destination are explicitly nam

PROC buffer(CHAN OF INT give, take, signal)
VAL INT size IS 10:
INT inindex, outindex, numitems:
[size]INT thebuffer:
SEQ

numitems := 0
inindex := 0
outindex := 0
WHILE TRUE
ALT

numitems ≤ size & give ? thebuffer[inindex]
SEQ

numitems := numitems + 1
inindex := (inindex + 1) REM size

numitems > 0 & signal ? any
SEQ

take ! thebuffer[outindex]
numitems := numitems - 1
outindex := (outindex + 1) REM siz

PS 114.

U Concurrent Programming

endezvous
niversität Bern

Remote Procedure Calls and R
In Ada, the caller identity need not be known in advance:

task body buffer is
size : constant integer := 10;
the_buffer : array (1 .. size) of item;
no_of_items : integer range 0 .. size := 0;
in_index, out_index : integer range 1 .. size := 1;

begin
loop

select
when no_of_items < size =>

accept give(x : in item) do
the_buffer(in_index) := x;

end give;
no_of_items := no_of_items + 1;
in_index := in_index mod size + 1;

or when no_of_items > 0 =>
accept take(x : out item) do

x := the_buffer(out_index);
end take;
no_of_items := no_of_items - 1;
out_index := out_index mod size + 1;

end select ;
end loop ;

end buffer ;

PS 115.

U Concurrent Programming

s

niversität Bern

Other Issues

Atomic Transactions:
☞ RPC with possible failures
☞ failure atomicity
☞ synchronization atomicity

Real-Time Programming:
☞ embedded systems
☞ responding to interrupts within strict time limit

PS 116.

U Process Calculi

tice Hall, 1989
l Notes for PICT Version

01, Feb. 1987
niversität Bern

Process Calculi

Overview
❑ SOS Style
❑ Process calculi and transition semantics
❑ A tiny language with pure synchronization
❑ Implementing the transition semantics
❑ Value passing across channels
❑ Replicated processes

Texts:
❑ R. Milner, Communication and Concurrency, Pren
❑ B. Pierce, Programming in the Pi-Calculus, Tutoria

3.6a, 1995
❑ G. Kahn, “Natural Semantics,” INRIA Report No. 6

PS 117.

U Process Calculi

antics

 output

ifferent times
istic results

erleaving
niversität Bern

Limitations of Denotational Sem

Denotational Semantics:
☞ [[program]] = function from program input to

Concurrent programs are not functions
☞ Input and output are on-going
☞ Same input may produce different results at d
☞ Concurrent inputs may produce non-determin
☞ Correct programs may not terminate
☞ “True concurrency” cannot be captured by int

PS 118.

U Process Calculi

cs

ogram

ns from program states

onment and c is a statement
niversität Bern

Structural Operational Semanti

SOS Style:
☞ [[program]] = logical inferences about the pr

Transition Semantics:
☞ Facts are statements about possible transitio

(represented as expressions) to other states
Natural Semantics:

☞ Facts take the form: E |– c where E is an envir
about a program fragment

fact fact

fact

PS 119.

U Process Calculi

t evolve by named transitions
position of processes whose
niversität Bern

Transition Semantics

Concurrent processes can be viewed as state machines tha
to new states. A concurrent system can be viewed as a com
possible transitions are synchronized as actions.

P´P
out(m)

Q´Q
in(m)

P´&Q´P&Q
(silent action)⇒

PS 120.

U Process Calculi

urrent processes together

ns along named channels

sition, replication

annel called “λ”

ating Systems)
rocesses
niversität Bern

Process Calculi

A process calculus is a formal language for describing conc
with its transition semantics.

❑ processes evolve by synchronizing communicatio
❑ concurrency is reduced to:

☞ input, output, choice, hiding/renaming, compo
❑ close affinity with the lambda calculus:

☞ a function is a process with only one input ch
☞ minimal syntax and inference rules

❑ pioneered by Milner (CCS: Calculus of Communic
and by Hoare (CSP: Communicating Sequential P

PS 121.

U Process Calculi

ion.

?P
in(C)

P

Q
α

Q´

Q P & Q´
α

niversität Bern

Pure Synchronization

A tiny process calculus: P ::= C?P | C!P | P&P | nil

NB: out(C) = in(C), out(C) = in(C); τ stands for a “silent” act

P
α

P´

P & Q P´ & Q´

C!P
out(C)

P C

P
α

P´

P & Q P´ & Q
α

P &

Q
α

Q´

τ

PS 122.

U Process Calculi

 a and b

maphore
e a
e b

?b?b?b?nil

b

p!b!a!v!nil
niversität Bern

Modeling Non-determinism

p!a!b!v!nil — a client of resources
& p!b!a!v!nil — a competing client
& p?v?p?v?nil — a (non-reusable) se
& a?a?a?a?nil — a server for resourc
& b?b?b?b?nil — a server for resourc

p?v?p?v?nil

a?a?a?a?nil b

vp

a
b

a

v
p!a!b!v!nil p

PS 123.

U Process Calculi

mantics

m, R).
m, R).

, R).
, R).

m,P2),
,Q2).

,P2),
m,Q2).

, Comm, NewProcess) .
, Comm, NewProcess) .
niversität Bern

Implementing the Transition Se
:- op(700,xfy,&). % concurrent composition
:- op(600,xfy,?). % input
:- op(600,xfy,!). % output

out(Channel!Process, Channel, Process).

out(P & Q, Comm, P & R) :- out(Q, Com
out(P & Q, Comm, R & Q) :- out(P, Com

in(Channel?Process, Channel, Process).

in(P & Q, Comm, P & R) :- in(Q, Comm
in(P & Q, Comm, R & Q) :- in(P, Comm

act(P1&Q1, Comm, P2&Q2) :- out(P1,Com
in(Q1,Comm

act(P1&Q1, Comm, P2&Q2) :- in(P1,Comm
out(Q1,Com

act(P&Process, Comm, P&NewProcess) :- act(Process
act(Process&P, Comm, NewProcess&P) :- act(Process

PS 124.

U Process Calculi

l,
niversität Bern

Searching for Executions Paths

:- op(900,xfx,===>). % actions till stop

P ===> End :- act(P,Comm,R),
print(’’), print(Comm), n
print(’=> ’), print(R), nl,

R ===> End.

P ===> P :- dead(P).

dead(P) :- act(P,_,_), !, fail.
dead(_).

PS 125.

U Process Calculi

b?nil ===> X.

nil
niversität Bern

Running the Example

| ?- p!a!b!v!nil&p!b!a!v!nil & p?v?p?v?nil & a?a?a?a?nil & b?b?b?

p
=> a!b!v!nil & p!b!a!v!nil & v?p?v?nil & a?a?a?a?nil & b?b?b?b?

a
=> b!v!nil & p!b!a!v!nil & v?p?v?nil & a?a?a?nil & b?b?b?b?nil

b
=> v!nil & p!b!a!v!nil & v?p?v?nil & a?a?a?nil & b?b?b?nil

v
=> nil & p!b!a!v!nil & p?v?nil & a?a?a?nil & b?b?b?nil

p
=> nil & b!a!v!nil & v?nil & a?a?a?nil & b?b?b?nil

b
=> nil & a!v!nil & v?nil & a?a?a?nil & b?b?nil

a
=> nil & v!nil & v?nil & a?a?nil & b?b?nil

v
=> nil & nil & nil & a?a?nil & b?b?nil

PS 126.

U Process Calculi

aths

nil
niversität Bern

Finding Alternative Execution P

X = (nil & nil & nil & a?a?nil & b?b?nil) ? ;

p
=> p!a!b!v!nil & b!a!v!nil & v?p?v?nil & a?a?a?a?nil & b?b?b?b?

b
=> p!a!b!v!nil & a!v!nil & v?p?v?nil & a?a?a?a?nil & b?b?b?nil

a
=> p!a!b!v!nil & v!nil & v?p?v?nil & a?a?a?nil & b?b?b?nil

v
=> p!a!b!v!nil & nil & p?v?nil & a?a?a?nil & b?b?b?nil

p
=> a!b!v!nil & nil & v?nil & a?a?a?nil & b?b?b?nil

a
=> b!v!nil & nil & v?nil & a?a?nil & b?b?b?nil

b
=> v!nil & nil & v?nil & a?a?nil & b?b?nil

v
=> nil & nil & nil & a?a?nil & b?b?nil

X = (nil & nil & nil & a?a?nil & b?b?nil) ? ;

no

PS 127.

U Process Calculi

g Calculus

P
in(C!V)

P {V/X}

Q
α

Q´

 Q P & Q´
α

niversität Bern

An Asynchronous Value-Passin
P ::= C?X>P | C!V | P&P | nil
V ::= [] | [C]
X ::= [] | [C] | [_]

P
α

P´

P & Q P´ & Q´

C!V
out(C!V)

nil C?X>

P
α

P´

P & Q P´ & Q
α

P &

Q
α

Q´

τ

PS 128.

U Process Calculi

m, R).
m, R).

ss)
cess .

, R).
, R).

m,P2), in(Q1,Comm,Q2).
,P2), out(Q1,Comm,Q2).

, Comm, NewProcess) .
, Comm, NewProcess) .

t(P, Comm, R).
(P, Comm, R).
t(P, Comm, R).
niversität Bern

Implementing Value Passing
out(Channel!Message, Channel!Message, nil).

out(P & Q, Comm, P & R) :- out(Q, Com
out(P & Q, Comm, R & Q) :- out(P, Com

in(Channel?Pattern>AbsProcess, Channel!Message, NewProce
:- AbsProcess @ {Message/Pattern} –-> NewPro

in(P & Q, Comm, P & R) :- in(Q, Comm
in(P & Q, Comm, R & Q) :- in(P, Comm

act(P1&Q1, Comm, P2&Q2) :- out(P1,Com
act(P1&Q1, Comm, P2&Q2) :- in(P1,Comm

act(P&Process, Comm, P&NewProcess) :- act(Process
act(Process&P, Comm, NewProcess&P) :- act(Process

For convenience:
out(N, Comm, R) :- N := P, !, ou
in(N, Comm, R) :- N := P, !, in
act(N, Comm, R) :- N := P, !, ac

PS 129.

U Process Calculi

/NL} –-> E .

, !.

> C,
 –-> Proc.

> C,
 –-> Msg.

PR,
 QR.

> PatR,
-> AbsR.

t?
niversität Bern

Implementing Substitution

D @ {XL/NL} –-> E :- D := P, !, P @ {XL

M @ {[_]/[N]} –-> M :- atom(M), M \== N
Expr @ {[]/[]} –-> Expr .

N @ {[X]/[N]} –-> X :- !.
[N] @ {[X]/[N]} –-> [X] .

CE?AProc @ {XL/NL} –-> C?Proc :- CE @ {XL/NL} –-
AProc @ {XL/NL}

CE!AMsg @ {XL/NL} –-> C!Msg :- CE @ {XL/NL} –-
AMsg @ {XL/NL}

P&Q @ {XL/NL} –-> PR & QR :- P @ {XL/NL} –->
Q @ {XL/NL} –->

Pat>Abs @ {XL/NL} –-> PatR>AbsR :- Pat @ {XL/NL} –-
Abs @ {XL/NL} –

NB: The rule for input channels is not quite right — why no

PS 130.

U Process Calculi

al. Why not?

 (c?[]>nil) ===> X.
niversität Bern

A Value-Passing Example

NB: substituting bound names works here, but not in gener

| ?- (a?[r]>r![] & a?[r]>r![] & a?[r]>r![]) & a![b] & (b?[]>nil) & a![c] &

a![c]

=> (c![]&a?[c]>c![]&a?[c]>c![])&a![b]&(b?[]>nil)&nil&c?[]>nil

c![]

=> (nil&a?[c]>c![]&a?[c]>c![])&a![b]&(b?[]>nil)&nil&nil

a![b]

=> (nil&b![]&a?[b]>b![])&nil&(b?[]>nil)&nil&nil

b![]

=> (nil&nil&a?[b]>b![])&nil&nil&nil&nil

PS 131.

U Process Calculi

P | nil

cess .

> C,
 –-> Proc.

/X}
niversität Bern

Process Replication
P ::= C?*A | C?A | C!V | P&
A ::= X>P
V ::= [] | [C]
X ::= [] | [C] | [_]

in(Channel?*Pattern>AbsProcess, Channel!Message,
(Channel?*Pattern>AbsProcess) & NewProcess)

:- AbsProcess @ {Message/Pattern} –-> NewPro

CE?*AProc @ {XL/NL} –-> C?*Proc :- CE @ {XL/NL} –-
AProc @ {XL/NL}

C?*X>P
in(C!V)

C?*X>P & P {V

PS 132.

U Process Calculi

sses

rint![R] & R?[]>v![].

lient(r2).

]

client(r2)

r2![]
niversität Bern

Resources as Replicated Proce
A counting semaphore: sem := p![] & v?*[]>p![].

A printer: printer := print?*[r]>r![].

A template for client processes: client(R) := p?[]>print![R] & R?[]>p

A configuration with two distinct clients: eg := sem & printer & client(r1) & c

sem

printer

v![p![]

print![r2]

v![]client(r1) p![]

print![r1] r1![]

PS 133.

U Process Calculi

>print![r2] & r2?[]>v![])

nt![r2] & r2?[]>v![])

v![]

]

 r1?[]>v![])
[]>v![])
niversität Bern

Running the Example
sem & printer & client(r1) & client(r2)

p![] => (v?*[]>p![]) & (print?*[r]>r![]) & client(r1) & print![r2] & (r2?[]

print![r2] => (v?*[]>p![]) & (print?*[r]>r![]) & r2![] & client(r1) & (r2?[]>pri

r2![] => (v?*[]>p![]) & (print?*[r]>r![]) & client(r1) & print![r2] & r2?[]>

print![r2] => (v?*[]>p![]) & (print?*[r]>r![]) & r2![] & client(r1) & r2?[]>v![

r2![] => (v?*[]>p![]) & (print?*[r]>r![]) & client(r1) & v![]

v![] => (v?*[]>p![]) & p![] & (print?*[r]>r![]) & client(r1)

p![] => (v?*[]>p![]) & (print?*[r]>r![]) & print![r1] & (r1?[]>print![r1] &
print![r1] => (v?*[]>p![]) & (print?*[r]>r![]) & r1![] & (r1?[]>print![r1] & r1?
r1![] => (v?*[]>p![]) & (print?*[r]>r![]) & print![r1] & r1?[]>v![]
print![r1] => (v?*[]>p![]) & (print?*[r]>r![]) & r1![] & r1?[]>v![]
r1![] => (v?*[]>p![]) & (print?*[r]>r![]) & v![]
v![] => (v?*[]>p![]) & p![] & (print?*[r]>r![])

PS 134.

U Process Calculi

 structural equivalence rules

 process?
niversität Bern

Other Issues

❑ Choice:
☞ How to express choice of inputs?

❑ Encapsulation:
☞ How to encapsulate subsystems?
☞ How to generate new channel names?

❑ Structural Equivalence:
☞ Simplifying the transition semantics by giving

— e.g., p&q == q&p
❑ Semantic Equivalence:

☞ When do two expressions represent the same

PS 135.

U PICT

. Edinburgh, 1991
l Notes for PICT Version
niversität Bern

PICT

Overview
❑ PICT core syntax
❑ Creating new channels
❑ Channel types
❑ Modelling language constructs
❑ A concurrent queue

Texts:
❑ R. Milner, “The Polyadic π-Calculus: A Tutorial,” U
❑ B. Pierce, Programming in the Pi-Calculus, Tutoria

3.6a, 1995

PS 136.

U PICT

ore PICT

ame
asicVal
Val , ...]
cord end
al with Id = Val end

String
niversität Bern

Abstract Syntax of (Untyped) C

Proc = Val ? Abs
Val ?* Abs
Val ! Val
Proc | Proc
let new Name in Proc end

Abs = Pat > Proc

Pat = Name
[Pat , ...]
record Id = Pat , ... end
Name @ Pat
_

Val = N
B
[
re
V

Name = Id

BasicVal =

PS 137.

U PICT

 an input pattern:
niversität Bern

Binding Channels

All channel names must be bound, either by “let new” or by

run
let new x in

x![]
| (x?[]>print!"Got it!")
end

NB: print is a built-in channel

PS 138.

U PICT

tching their type:

larations are unnecessary:
niversität Bern

Typed Channels

Channels in PICT are typed, and may only carry values ma

Type = ^ Type
! Type
? Type
[Type , ...]
Record end
Type with Id : Type end
Top

In most cases, types can be automatically inferred, and dec

run
let new x : ^[] in

x![]
| (x?[]>print!"Got it!")
end

PS 139.

U PICT

hrony can be recovered by

s

can be passed as values.
niversität Bern

Synchrony and Asynchrony

Although PICT uses asynchronous message-passing, sync
waiting for a response on a (fresh) channel:

def sem [p,v] >
(p?r > r![])

| (v?*r > r![] | (p?r > r![]))

A definition is syntactic sugar for a (new) replicated proces

let new sem
run (sem?*[p,v] >

(p?r > r![])
| (v?*r > r![] | (p?r > r![])))

Note that all channel names are bound, and that channels

PS 140.

U PICT

ts
niversität Bern

Synchronizing Concurrent Clien

def client [p,v] >
let new r, s1, s2 in

p!r
| (r?[] > pr!["FIRST\n",s1])
| (s1?[] > pr!["SECOND\n",s2])
| (s2?[] > v!r | (r?[] > skip))
end

run
let new p, v in

sem![p,v]
| client![p,v]
| client![p,v]
| client![p,v]
end

PS 141.

U PICT
niversität Bern

Modelling Booleans

def tt [b] > b?*[t,_] > t![]
def ff [b] > b?*[_,f] > f![]

def test [b] >
let new t, f in

b![t,f]
| (t?[] > print!"True")
| (f?[] > print!"False")
end

def notB [b,c] > c?*[t,f] > b![f,t]

run
let new b, c in

ff![b] | notB![b,c] | test![c]
end

PS 142.

U PICT

s
n to core PICT:
niversität Bern

Modelling Language Construct
Higher-level language constructs are modelled by translatio

run
let new x in

x!false
| (x?b >

if b
then print!"True"
else print!"False"
end)

end

is translated to:
run

let new x in
x!false

| (x?b >
let new t,f in

primif![b,t,f]
| (t?[] > print!"True")
| (f?[] > print!"False")
end)

end

PS 143.

U PICT

ads a pair [p,z] of channels,
] where k represents n-1.
niversität Bern

Natural Numbers
A natural number n can be modelled by a channel n that re
and either sends z![] if it is equal to zero, or else sends p![k

def zero [p,z] > z![]
def one [p,z] > p![zero]
def two [p,z] > p![one]
def three [p,z] > p![two]

def count [n] >
let new p,z in

n![p,z]
| (z?[] > print!"0")
| (p?[m] > print!"1+" | count![m])
end

run count![three]

PS 144.

U PICT

essor process:
niversität Bern

Counting

New numbers can be generated by constructing a succ

def succ [n, r] >
let new s in

r!s
| (s?*[p,z] > p![n])
end

run
let new r in

succ![three,r]
| (r?s > count![s])
end

PS 145.

U PICT
niversität Bern

Arithmetic

Arithmetic operators can be built up in the same way:

def add [m,n,r] >
let new p, z in

m![p,z]
| (z?[] > r!n)
| (p?[pm] >

let new rn in
succ![n,rn]

| (rn?sn>add![pm,sn,r])
end)

end

run let new r in
add![two,three,r]

| (r?s > count![s])
end

PS 146.

U PICT

 for communication:
niversität Bern

Functional Notation

Infix notation and functional application are syntactic sugar

run printi!(2+5)

translates to:
run printi!((+)[2,5])

which translates to:
run

let new r in
(+)![2,5,r] | (r?value > printi!value)

end

PS 147.

U PICT
niversität Bern

Functions as Processes

Functions can be defined as processes:

def double [n] = n+n

translates to:
def double [n,r] > r!(n+n)

which translates to:
def double [n,r] >

let new r1 in
(+)![n,n,r1]

| (r1?value > r!value)
end

run printi!(double[5])

PS 148.

U PICT

br in
=)![n,0,br]
r?b >
t new t, f in

primif![b,t,f]
(t?[] > r!1)
(f?[] >
let new nr in

(-)![n,1,nr]
| (nr?k >

let new kfr in
fact![k,kfr]

| (kfr?kf >
let new fr in

(*)![n,kf,fr]
| (fr?f > r!f)
end)

end)
end)

d)
niversität Bern

Functions as Processes

def fact [n,r] >
let new

(=
| (b

le

|
|

en
end

def fact [n] =
if n == 0
then 1
else n * fact[n-1]
end

run printi!(fact[5])

120

translates to:

PS 149.

U PICT
niversität Bern

Sequencing

run
pr["hello "];
pr["world\n"];
skip

translates to:
run

let new r in
pr!["hello ",r]

| (r?[] >
let new r in

pr!["world\n",r]
| (r?[] > skip)
end)

end

PS 150.

U PICT

tail
link!next’’’

alue,next’’,next’’’]

lue,r] r![]

link!next’’

ll
niversität Bern

A Concurrent Queue

head

r![value]

next![]

cell![v

put![va

get![r]

cell

The head accepts a get request to yield its
value and trigger the next cell.
A cell waits to be triggered by the head, and
then itself becomes the head of the queue.
The tail services put requests by
constructing a new cell that waits for the
next trigger from the cell in front of it.

ce

PS 151.

U PICT

ueue

her"]; skip)

 >
ew link, init in

 link!init
(put?*[value,r] >
link?ready >
let new next in

cell![value,ready,next]
| link!next
| r![]
end)
init![]
niversität Bern

Implementing the Concurrent Q
new get, put

def head[value, next] >
get?[r] > r!value | next![]

def cell[value, ready, next] >
ready?[] > head![value, next]

run
let new r in

tail![]
| (put["one"]; put["good"]; put["turn"]; put["deserves"]; put["anot
| get![r]
| get![r]
| get![r]
| get![r]
| get![r]
| (r ?* s > print!s)
end

def tail []
let n

|

|
end

PS 152.

U Object-Based Concurrency
niversität Bern

Object-Based Concurrency

Overview
❑ What is an OBCL?
❑ Dimensions of OO Languages
❑ Expression of Concurrency

☞ Objects and Processes
☞ Granularity of Concurrency
☞ Creating Processes

❑ Communication and Synchronization
☞ Intra-Object and Inter-Object Synchronization

❑ Evaluating OBCLs
❑ Research Topics

PS 153.

U Object-Based Concurrency

e
esses
niversität Bern

What is an OBCL?

An Object-Based Concurrent Language supports:
❑ Encapsulation

☞ objects encapsulate data and operations
❑ Concurrency

☞ multiple processes may be concurrently activ
☞ need to: specify, create and synchronize proc

Why do we need OBCLs?
❑ Inherent application (real-world) concurrency
❑ Distributed applications
❑ Application integration and interoperability
❑ Parallel applications

PS 154.

U Object-Based Concurrency
niversität Bern

Overview of OBCLs

❑ Traditional OBLs:
☞ Smalltalk-80, C++, Objective C, Ada
☞ libraries

❑ Extended OBLs:
☞ CLU: Argus
☞ Smalltalk-80: ConcurrentSmalltalk, Actalk, PO
☞ C++: ACT++, Arjuna, Avalon, Karos
☞ Eiffel//

❑ Concurrent OBLs:
☞ Actors, ABCL, POOL, Guide, Hybrid, Meld

PS 155.

U Object-Based Concurrency

t to the client

ent to the service provider

e with superclasses
niversität Bern

Requirements for OBCLs

❑ Object autonomy:
☞ protection from concurrent requests

❑ Internal concurrency:
☞ should be transparent to clients

❑ Local delay transparency:
☞ handling of local delays should be transparen

❑ Remote delay transparency:
☞ handling of remote delays should be transpar

❑ Composable synchronization policies:
☞ subclasses should share synchronization cod

REF: Papathomas, PhD thesis, 1992.

PS 156.

U Object-Based Concurrency

 an object?
niversität Bern

Expression of Concurrency

❑ Objects and Processes:
☞ How are processes and objects related?

❑ Granularity of Concurrency:
☞ How many processes can be associated with

❑ Process Creation:
☞ How are processes created?

PS 157.

U Object-Based Concurrency

 independent
jective-C, Emerald)

 objects

 are unified
L ...)
niversität Bern

Objects and Processes

How are processes related to objects?

Three Classes of OBCL:

❑ Passive Objects: objects & concurrency
(Smalltalk-80, C++, Ob

❑ Active/Passive: passive + “concurrent”
(PAL)

❑ Active Objects: objects and processes
(ABCL/1, Hybrid, POO

PS 158.

U Object-Based Concurrency

el:

s, etc.

operations

data

Process
niversität Bern

Passive Object Models

Concurrent processes access passive objects.
Processes synchronize according to a shared memory mod

☞ objects must be designed to be shared, or
☞ processes must explicitly synchronize via lock

Smalltalk-80, C++, Objective-C, Emerald

operations
data operations

data

Process Process

PS 159.

U Object-Based Concurrency

ing them
niversität Bern

Active/Passive Models

Active Objects are identified with processes
Passive objects are protected by the active objects contain

☞ lightweight/heavyweight distinction
☞ two class hierarchies are incompatible

PAL

Active Objects

Passive Objects

PS 160.

U Object-Based Concurrency

current thread

 its own threads

ts
niversität Bern

Active Object Models

Objects and processes are integrated:
☞ each operation invocation is a potentially con
☞ an object with a running operation is active
☞ every object is autonomous and synchronizes

ABCL, Hybrid, POOL, ...

Active Objec

PS 161.

U Object-Based Concurrency
niversität Bern

Granularity of Concurrency

Approaches to Concurrency:

Inter-Object Concurrency:
❑ Sequential Objects Ada, POOL

Intra-Object Concurrency:
❑ Quasi-Concurrent Objects Hybrid

❑ Concurrent Objects:
☞ Client-Driven: Passive Objects
☞ Server-Driven: Active Objects

PS 162.

U Object-Based Concurrency

ait-queue
 next request is handled
jects
niversität Bern

Sequential Objects

In a sequential object model, requests are serialised in a w
☞ each operation runs to completion before the
☞ concurrency is introduced by having more ob

PS 163.

U Object-Based Concurrency

ltiple requests:
llows the serving object to

the thread servicing an
niversität Bern

Quasi-Concurrent Objects

Quasi-concurrent objects may switch attention between mu
☞ In Hybrid, a delegated call to another object a

switch to another request
☞ In ABCL, an express message may interrupt

ordinary invocation

PS 164.

U Object-Based Concurrency

tly:
f threads
ts
ice a single request
niversität Bern

Concurrent Objects

Concurrent Objects may serve multiple requests concurren
❑ Passive Objects require explicit synchronization o
❑ Active Objects control when to accept new reques

☞ may create additional internal threads to serv

Passive: Smalltalk-80, C++, ...
Active: Sina, PO, Eiffel//, ...

PS 165.

U Object-Based Concurrency
niversität Bern

Process Creation

❑ Asynchronous Objects
☞ Explicit bodies
☞ Implicit bodies

❑ Asynchronous Messages
☞ one-way message-passing
☞ futures

PS 166.

U Object-Based Concurrency

er
eduling, synchronization ...

nt execution
niversität Bern

Asynchronous Objects

The “body” of an active object may be:
☞ Implicit and inaccessible — standard schedul
☞ Explicit and customizable — initialization, sch

Implicit: Actalk, Act++, Actors
Explicit: Ada, Eiffel//, Pool

instantiation

independe

PS 167.

U Object-Based Concurrency
niversität Bern

Asynchronous Invocation

Clients do not wait for the reply to continue executing
❑ one-way message-passing:

☞ reply (if any) sent by another invocation

❑ futures:
☞ reply sent to a future object

PS 168.

U Object-Based Concurrency

ject..

ble when needed
itly for all requests.
niversität Bern

Futures

The reply to an asynchronous request is sent to a future ob
☞ The client obtains the result when needed.
☞ Clients block only if the result is not yet availa

Futures may be created either explicitly by clients or implic

Explicit: ACT++, ABCL, PO, ConcurrentSmalltalk
Implicit: Eiffel//, Karos, Meld

PS 169.

U Object-Based Concurrency

ization
niversität Bern

Communication and Synchron

❑ Intra-Object Synchronization:
☞ Remote Delays: asynchronous invocations
☞ Local Delays: condition synchronization

❑ Inter-Object Synchronization:
☞ Transactions

PS 170.

U Object-Based Concurrency

al inconsistency.

rald, Trellis, Smalltalk-80

 POOL, ABCL
lk, ABCL/R

e, Hybrid, SINA
ol, ACT++, Rosette
niversität Bern

Local Delays

An object may need to delay selected requests to avoid loc

❑ Unconditional acceptance Eme

❑ Conditional acceptance

☞ Centralized acceptance
➪ Explicit acceptance Ada,
➪ Reflective computation Acta

☞ Distributed activation conditions
➪ Representation specific Guid
➪ Abstract Proc

PS 171.

U Object-Based Concurrency

chronization conditions

licit acceptance
niversität Bern

Local Delays

?

Unconditional acceptance

Representation specific delays Abstract syn

Exp

PS 172.

U Object-Based Concurrency

isible to other transactions

are aborted with no visible
roperty)

xplicit start and end), or may
art and end).
niversität Bern

Transactions

❑ Concurrency atomicity:
☞ intermediate effects on shared objects are inv

(serialisability or isolation)

❑ Failure atomicity:
☞ transactions either complete successfully, or

effect on shared objects (the “all-or-nothing” p

Transactions may be associated with transaction blocks (e
be realized as atomic invocations (implicit with operation st

PS 173.

U Object-Based Concurrency

cations?

ns?
tion-specific?
niversität Bern

Classifying OBCLs

❑ Object Models
☞ Active or Passive Objects?

❑ Granularity of Concurrency
☞ Sequential, Quasi-Concurrent or Concurrent?

❑ Process Creation
☞ Asynchronous Objects or Asynchronous Invo

❑ Local Delays
☞ Conditional or Unconditional Acceptance?
☞ Centralized or Distributed Activation Conditio
☞ Explicit or Reflective / Abstract or Representa

PS 174.

U Object-Based Concurrency

 ...
niversität Bern

Evaluation

❑ Object autonomy:
☞ active objects

❑ Internal concurrency:
☞ server-driven

❑ Local delay transparency:
☞ various approaches ...

❑ Remote delay transparency:
☞ futures or internal threads

❑ Composable synchronization policies:
☞ composable abstract synchronization policies

PS 175.

U Text Processing Languages

eilly and Associates, 1992
 September 1994
/doc/misc/lang-list.txt)
niversität Bern

Text Processing Languages

Overview
❑ Text processing languages
❑ Sed and AWK
❑ Perl

Texts:
❑ L. Wall and R.L. Schwartz, Programming Perl, O’R
❑ Bill Kinnersley, The Language List — Version 2.3,

(http://cuiwww.unige.ch/langlist, ftp://ftp.wustl.edu

PS 176.

U Text Processing Languages

ages?

ic data types
niversität Bern

What are Text Processing Langu

Common features:
❑ Strings as built-in data types
❑ Pattern matching
❑ Textual substitution
❑ Regular expressions
❑ Lists and associative arrays
❑ Automatic conversion between strings and numer
❑ Formatting and report generation

PS 177.

U Text Processing Languages

es

rogramming Language” A. Aho, B.
://netlib.att.com/research/awk*

h specifies patterns, and an imperative table
rmations”, K. Cohen et al, CACM 8(11):657-

formation operations of COMIT with the
8):604-615 (Aug 1966).
 ”offical“ name, based on the EMACS FAQ

manipulation language. ftp://prep.ai.mit.edu/
gawk2.11.cpt.hqx

tomata. J. Mysior et al, “LOGOL, A String
D.G. Bobrow ed, N-H 1968, pp.166-177.

k, distributed under GNU license but distinct

ion of AWK, with dynamic regular

 Markov algorithms. “String Processing
g Conf on Symb Manip Languages, pp.141-
 on Conditional Functional GMA’s.
niversität Bern

Some Text Processing Languag

Selected from the Language List:

AWK — Aho Weinberger Kernighan. 1978. Text processing/macro language. “The AWK P
Kernighan, P. Weinberger, A-W 1988. (See Bawk, Gawk, Mawk, Nawk, Tawk.) ftp

AXLE — An early string processing language. Program consists of an assertion table whic
which specifies replacements. “AXLE: An Axiomatic Language for String Transfo
661 (Nov 1965).

bawk — Bob Brodt. AWK-like pattern-matching language, distributed with Minix.

CONVERT —
1. String processing language, combined the pattern matching and trans

recursive data structures of Lisp. “Convert”, A. Guzman et al, CACM 9(
EMACS LISP — Richard Stallman. Variant of LISP used by the EMACS editor. (This is the

file. See ELISP.)

Gawk — GNU’s implementation of a superset of POSIX awk, a pattern scanning and data
pub/gnu/gawk-2.15.4.tar.Z //archive.umich.edu/mac/utilities/developerhelps/mac

LOGOL — Strings are stored on cyclic lists or ’tapes’, which are operated upon by finite au
manipulation Language”, in Symbol Manipulations Languages and Techniques,

mawk — Mike Brennan <brennan@bcsaic.boeing.com> 1991. An implementation of naw
from GNU’s gawk. ftp://oxy.edu/public/mawk

Nawk — New AWK. AT&T. Pattern scanning and processing language. An enhanced vers
expressions, additional built-ins and operators, and user-defined functions.

PANON — A family of pattern-directed string processing languages based on generalized
Languages and Generalized Markov Algorithms”, A. C. Forino, Proc IFIP Workin
206, Amsterdam 1968. PANON-1, based on Simple GMA’s and PANON-2 based

PS 178.

U Text Processing Languages

K-like interpreted language for scanning text
ed variables and functions, extensible
ctures and object- oriented features.
/outgoing/perl.4.0 for Unix, MS-DOS, Amiga
u/programming/Perl_402_MPW_CPT_bin

nsky, Bell Labs 1962-3. String processing
nguage“, R. Griswold et al, J ACM 11(1):21

n and Implementation of Programming
e, Amsterdam 1982.

sprite.berkeley.edu> A string language
tend tcl with its own set of commands.
Winter USENIX Conf. ftp://

age for text editing, screen handling and
O programs are said to resemble line noise.)
S-DOS, Mac, Amiga

guage with Dynamic Storage Control“,
niversität Bern

Perl — Practical Extraction and Report Language. Larry Wall <lwall@netlabs.com> An AW
and printing formatted reports. Regular expression primitives, dynamically- scop
runtime libraries, exception handling, packages. Version 5 adds nested data stru
“Programming Perl”, Larry Wall et al, O’Reilly & Assocs. ftp://ftp.netlabs.com/pub
//ftp.netlabs.com/pub/outgoing/perl5.0/perl5a1.tar.Z for Sparc //rascal.utexas.ed
for Mac
uucp: osu-cis

Sed — Stream editor. The input language used by the Unix stream editor.

SNOBOL — StriNg Oriented symBOlic Language. David Farber, Ralph Griswold & I. Polo
language for text and formula manipulation. ”SNOBOL, A String Manipulating La
(Jan 1964).

SPRING — String PRocessING language. ”From SPRING to SUMMER: Design, Definitio
Languages for String Manipulation and Pattern Matching“, Paul Klint, Math Centr

TAWK — Tiny AWK.

Tcl —
1. (“tickle”) Tool Command Language. John Ousterhout, UCB. <ouster@

for issuing commands to interactive programs. Each application can ex
“Tcl: An Embeddable Command Language”, J. Ousterhout, Proc 1990
ucbvax.berkeley.edu

TECO — Text Editor and COrrector. (Originally “Tape Editor and COrrector”). Macro langu
keyboard management. Has a reputation for being cryptic and hard to learn. (TEC
The first EMACS editor was written in TECO. ftp://usc.edu, for VAX/VMS, Unix, M

VULCAN —
3. Early string manipulation language. ”VULCAN - A String Handling Lan

E.P. Storm et al, Proc FJCC 37, AFIPS (Fall 1970).
ZUG — Geac. [?] A low-level Awk?

PS 179.

U Text Processing Languages

l characters: +?.*()[]{}|\
newline
single element
ne or more times

; {N,} N or more
^...] negates the class

hes non-alphanumerics

itespace

d with (...)
niversität Bern

Regular Expressions (Perl)

Each character matches itself, unless it is one of the specia
❑ . matches an arbitrary character except a
❑ (...) groups a series of pattern elements to a
❑ + matches the preceding pattern element o
❑ ? matches zero or one times
❑ * matches zero or more times
❑ {N,M} matches from N to M times; {N} exactly N
❑ [...] denotes a class of characters to match; [
❑ (...|...|...) matches one of the alternatives
❑ \w matches alphanumerics and “_”; \W matc
❑ \b matches word boundaries; \B negation
❑ \s matches whitespace; \S matches non-wh
❑ \d matches digits; \D matches non-digits
❑ \n \r \t match newlines, carriage returns, tabs
❑ \1...\9 refer to matched sub-expressions groupe
❑ $& string matched by the last pattern match

PS 180.

U Text Processing Languages
niversität Bern

SED

SED performs substitutions on a stream of text:

#! /bin/sed -f
escape special characters for Framemaker
s/\\/&&/g
s/ /\\t/g
s/[<>]/\\&/g
s/–/<endash>/g
s/“/<quotedblleft>/g
s/’\’\”/<quoteblright>/g

Alternatively, at command level:
sed -e ’s/\\/&&/g’ \

-e ’s//\\t/g’ \
-e ’s/[<>]/\\&/g’ \
-e ’s/–/<endash>/g’ \
-e ’s/“/<quotedblleft>/g’ \
-e ’s/’\’\”/<quoteblright>/g’ \
$*

PS 181.

U Text Processing Languages
niversität Bern

AWK

AWK modifies text streams by transformation rules:

#! /bin/awk -f
#
pgs --- count pages in %P fields of refer files

/%P [0-9]*$/ { pgs += $2 ; next }

/%P [0-9]* *- *[0-9]*$/ {
p = substr($0,4)
n = split(p, pp, "-")
pgs += 1 + pp[2] - pp[1]

}

END { print pgs }

PS 182.

U Text Processing Languages

 ...)
niversität Bern

Perl

“Practical Extraction and Report Language”
or

“Pathologically Eclectic Rubbish Lister”

Principle features:
❑ uniform selected merge of: sed, awk, csh, c ...
❑ numbers, text, binary data
❑ file, string processing, regular expressions
❑ built-in lists, associative arrays
❑ special variables to control processing ($/, $[...)
❑ common systems calls (files, directories, sockets,
❑ compilation; dynamic evaluation; error-handling
❑ packages

PS 183.

U Text Processing Languages

 case

 lower case
of words to upper case

 $_

rl.
niversität Bern

Regular Expressions

Sed-like behaviour can be obtained with the -p flag:
#! /usr/local/bin/perl -p
#
caps --- change initial letters of words to upper
#
But don't capitalize isolated letters!

s/\w/\l$&/g; # convert all alphabetics to
s/\b\w\w/\u$&/g ; # change initial characters

is equivalent to:
#! /usr/local/bin/perl
while (<>) { # read a line of input into $_

s/\w/\l$&/g; # perform a substitution on
s/\b\w\w/\u$&/g ;
print; # print $_

}
Sed and AWK scripts can be automatically translated to Pe

PS 184.

U Text Processing Languages

ssociative arrays depending

n text processing operations
niversität Bern

Arrays

#! /local/bin/perl -s
#
rsort –- sort a file of records

$/ = ""; # blank line separates records

print sort(@input=<>);

☞ Special variables control default behaviour
☞ Values are interpreted as scalars, arrays or a

on the current context
☞ Built-in functions efficiently implement commo

PS 185.

U Text Processing Languages

 ...]\n";

 }
niversität Bern

Subroutines
#! /usr/local/bin/perl -s
rsort --- sort a file of records

$usg = "Usage : rsort [-r(everse)] [-u(nique)] [<file>
die $usg if $h;

$/ = ""; # blank line separates records
if ($r) {

if ($u) { &uniq(sort({$b cmp $a} @input=<>));
else { print sort({$b cmp $a} @input=<>); }

} else {
if ($u) { &uniq(sort(@input=<>)); }
else { print sort(@input=<>); }

}

sub uniq {
foreach $current (@_) {

next if ($current eq $previous);
print $previous = $current;

}
}

PS 186.

U Text Processing Languages

eyword

$IN.1"; $REST =
niversität Bern

File I/O

#! /local/bin/perl -s
rsplit–- split a file of records into two parts by a k

$usg = "Usage: rsplit <key> <file>\n";
blank line is record separator
$/ = "";
$key = $ARGV[0];
if ($#ARGV == 1) { $IN = $ARGV[1]; $MATCH = "
"$IN.2"; }
else { die $usg; }
open(IN,$IN);
open(MATCH,">$MATCH");
open(REST,">$REST");
while (<IN>) {

/$key/o && do { print MATCH $_ ; next; };
print REST $_;

}

PS 187.

U Text Processing Languages

m files

or
niversität Bern

Dynamic Compilation
#! /usr/local/bin/perl -s
#
rgrep --- extract records matching a pattern fro

$u = "Usage: rgrep [-i] <pattern> [<file> ...]\n" ;

($pattern,@files) = @ARGV ;
defined($pattern) || die($u) ;
@ARGV = @files ;

$/ = "" ; # set blank line to be record separat

if ($i) { $i = "i"; }

patterns with alternatives are slow to evaluate,
so construct a logical alternative instead:
foreach $p (split(/\|/,$pattern)) {

$mpat .= "/$p/o$i && (print, next);\n";
}
eval "while(<>) { $mpat }";

PS 188.

U Text Processing Languages

(FILE); }

>\n";

 and make them live
niversität Bern

Packages
#! /local/bin/perl
#
pre –- produced pre-formatted HTML text
unshift(@INC,"/user/oscar/Cmd/PerlLib");
require("url.pl");
if ($#ARGV >= $[) {

foreach $file (@ARGV)
{ open(FILE,$file); &pre($file,FILE); close

}
else { &pre("stdin", stdin); }
sub pre {

local($file,$input) = @_;
print "<TITLE>Ascii file: $file</TITLE>\n<PRE
while(<$input>) {

study;
s/&/&/g; s/</</g; s/>/>/g;
&url’href; # recognize hypertext links
print;

}
print "</PRE>\n";

}

PS 189.

U Text Processing Languages

thostbyname($host);
hataddr);
roto) || return undef;
niversität Bern

Standard System Calls
sub http {

local($host,$port,$request) = @_;
($fqdn, $aliases, $type, $len, $thataddr) = ge
$that = pack($sockaddr, &AF_INET, $port, $t
socket(FS, &AF_INET, &SOCK_STREAM, $p
bind(FS, $thissock) || return undef;
local($/);
unless (eval q!

$SIG{’ALRM’} = "url’timeout";
alarm(30);
connect(FS, $that) || return undef;
select(FS); $| = 1; select(STDOUT);
print FS "GET $request\r\n";
$page = <FS>;
$SIG{’ALRM’} = "IGNORE";
!) { return undef; }

close(FS);
$page;

}

PS 190.

U Text Processing Languages
niversität Bern

Perl: Pros and Cons

Pros:
❑ Highly optimized for text processing
❑ Convenient for writing Unix administration scripts
❑ Acceptable support for writing modules
❑ On-the-fly compilation (+ error detection)

Cons:
❑ Weak encapsulation (global variables)
❑ No facility for defining complex data types
❑ Easy to introduce type errors

PS 191.

U Scripting Languages

 Languages, Fourth
s

 September 1994
/doc/misc/lang-list.txt)
UNIX User’s Manual, 1978
niversität Bern

Scripting Languages

Overview
❑ Shell Languages, Command Languages, Scripting

Generation Language and Coordination Language
❑ The Bourne Shell

Texts:
❑ Bill Kinnersley, The Language List — Version 2.3,

(http://cuiwww.unige.ch/langlist, ftp://ftp.wustl.edu
❑ S.R. Bourne, “An Introduction to the UNIX Shell,”

PS 192.

U Scripting Languages

Kin

re fuzzy at best.

 operating system

 a system

onents of a system

atabase) applications

s

niversität Bern

Scripting Languages and Their

The distinctions between the following languages classes a

Shell Language:
☞ language for interacting with an application or

Command Language:
☞ interactive language for issuing commands to

Scripting Language:
☞ language for controlling and composing comp

Fourth Generation Language:
☞ high-level language for specialized (usually d

Coordination Language:
☞ language for coordinating multi-agent system

PS 193.

U Scripting Languages

erset of HyperTalk.

/bash-1.10.tar.Z

osures, exceptions, and the ability to
 Functions“, P. Haahr et al, Proc Winter
-0.84.tar.Z
u/pub/machine-learning-programs/KR-

ward chaining, fuzzy logic. Version 4.0. For

rposes, with forward and backward chaining
1990. Version 2.03 ftp://hcrl.open.ac.uk/pub/

u> ftp://archone.tamu.edu

. ”Unix Time-Sharing System: The Unix

ge used in Tandem computers.
niversität Bern

Shell Languages

AppleScript — An object-oriented shell language for the Macintosh, approximately a sup

bash — Bourne Again SHell. GNU’s command shell for Unix. ftp://prep.ai.mit.edu/pub/gnu

csh — C-Shell. William Joy. Command shell interpreter and script language for Unix.

es —
1. Extensible Shell. Unix shell derived from rc, includes real functions, cl

redefine most internal shell operations. ”Es - A Shell with Higher Order
1993 Usenix Technical Conference. ftp://ftp.sys.utoronto.ca/pub/es/es

FOCL — Expert system shell, a backward chaining rule interpreter for Mac. ftp://ics.uci.ed
FOCL-ES.cpt.hqx
info: pazzani@ics.uci.edu

GEST — Generic Expert System Tool. Expert system shell with frames, forward and back
Symbolics LISP machines only. ftp://ftp.gatech.edu/pub/ai/gest.tar.Z
info: John Gilmore <John.Gilmore@gtri.gatech.edu>

ksh — Korn Shell command interpreter for Unix.

MIKE — Micro Interpreter for Knowledge Engineering. Expert system shell for teaching pu
and user- definable conflict resolution strategies. In Edinburgh Prolog. BYTE Oct
software/src/MIKE-v2.03
info: Marc Eisenstadt <M.Eisenstadt@hcrl.open.ac.uk>

rc — Tom Duff. AT&T Plan 9 shell. Lookalike by Byron Rakitzis <byron@archone.tamu.ed

sh — (or ”Shellish“). S.R. Bourne. Command shell interpreter and script language for Unix
Shell“, S.R. Bourne, Bell Sys Tech J 57(6):1971-1990 (Jul 1978).

TACL — Tandem Advanced Command Language. Tandem, about 1987. The shell langua

PS 194.

U Scripting Languages

terface for Satellite Systems“, R.J. Dakin in

gned for the SOC Network“, J. du Masle, in

file transfer between I/O devices on the

d to IBM JCL. “Reduced Control Language
H 1973.

ng system on the ICL2900. Block
an trigger a block whenever a condition

ike procedure calls. Default arguments.

ge used in Tandem computers.
niversität Bern

Command Languages

GCL — General Control Language. A portable job control language. ”A General Control In
Command Languages, C. Unger ed, N-H 1973.

IBEX — Command language for Honeywell’s CP-6 OS.

LE/1 — Langage External. ”An Evaluation of the LE/1 Network Command Language Desi
Command Languages, C. Unger ed, N-H 1973.

PCL —
3. Peripheral Conversion Language. Honeywell. Command language for

CP-V and CP-6 operating systems.
POCAL — PETRA Operator’s CommAnd Language.

RCL — Reduced Control Language. A simplified job control language for OS360, translate
for Non- Professional Users”, K. Appel in Command Languages, C. Unger ed, N-

RECOL — REtrieval COmmand Language. CACM 6(3):117-122 (Mar 1963).

SCL —
1. System Control Language. Command language for the VME/B operati

structured, strings, superstrings (lists of strings), int, bool, array types. C
on a variable value occurs. Macros supported. Commands are treated l
”VME/B SCL Syntax“, Intl Computers Ltd 1980.

TACL — Tandem Advanced Command Language. Tandem, about 1987. The shell langua

PS 195.

U Scripting Languages

sprite.berkeley.edu> A string language
tend tcl with its own set of commands.
Winter USENIX Conf. ftp://

OS. “Exploring the Pick Operating

ortable Job Control“, I.A. Newman, Proc

700 under MCP. WFL was a compiled block-
’s. ”Work Flow Management User’s Guide“,

age“, R.M. Cowan in Command Languages,
niversität Bern

Command Languages ...

Tcl —
1. (“tickle”) Tool Command Language. John Ousterhout, UCB. <ouster@

for issuing commands to interactive programs. Each application can ex
“Tcl: An Embeddable Command Language”, J. Ousterhout, Proc 1990
ucbvax.berkeley.edu

Tcl —
2. Terminal Control Language. The command language used in the Pick

System”, J.E. Sisk et al, Hayden 1986.
tcsh — Command language for Unix, a dialect of csh.

UNIQUE — A portable job control language, used. ”The UNIQUE Command Language - P
DATAFAIR 73, 1973, pp.353-357.

WFL — Work Flow Language. Burroughs, ca 1973. A job control language for the B6700/B7
structured language similar to ALGOL-60, with subroutines and nested begin-end
Burroughs Manual 5000714 (1973). ”Burroughs B6700/B7700 Work Flow Langu
C. Unger ed, N-H 1975.

PS 196.

U Scripting Languages

erset of HyperTalk.

 language for VAX/VMS.
ECSS II Language for Simulating Computer

cripts for Controlling Interactive Tasks“, Don
s/tcl/expect/*

ating charts, graphs, graphics, and

 syntax and high readability. Relies on
terface builder. Programs are organized into
 is in zero-terminated strings in fields, local,
m last item of background field ”Name List“
ripts that are attached to stack, background,
omputer 1987. ”HyperTalk Language

MacroMind 1991.
niversität Bern

Scripting Languages

AppleScript — An object-oriented shell language for the Macintosh, approximately a sup

Cmm — C Minus Minus. Scripting language. ftp://ftp.std.com/vendors/CEnvi-Cmm/share

csh — C-Shell. William Joy. Command shell interpreter and script language for Unix.

DCL —
1. DIGITAL Command Language. The interactive command and scripting

ECSS II — Extendable Computer System Simulator. An extension of SIMSCRIPT II. ”The
Systems“, D.W. Kosy, R- 1895-GSA, Rand Corp.

expect — A script language for dealing with interactive programs. Written in Tcl. ”expect: S
Libes, Comp Sys 4(2), U Cal Press Journals, Nov 1991. ftp://ftp.uu.net/language

Hyperscript — Informix. The object-based programming language for Wingz, used for cre
customized data entry.

HyperTalk — Bill Atkinson and Dan Winkler. A verbose semicompiled language with loose
HyperCard as an object management system, development environment, and in
”stacks“ of ”cards“, each of which may have ”buttons“ and ”fields“. All data storage
or global variables; all data references are through ”chunk expressions“ of the for
of card ID 34217’. Flow of control is event-driven and message-passgin among sc
card, field and button objects. ”Apple Macintosh HyperCard User Guide“, Apple C
Reference Manual“, A-W 1988. Available from Claris Corp.

Lakota — Scripting language, extends existing OS commands.
info: Richard Harter <rh@smds.UUCP> SMDS Inc.

Lingo — An animation scripting language. MacroMind Director V3.0 Interactivity Manual,

PS 197.

U Scripting Languages

ically scoped, untyped, higher order, and
er the network. The distributed computation
/DEC/Modula-3/contrib

 preprocessor to SIMSCRIPT. “Processor
 on Simulation of Computer Systems (Aug

ikscript - A Simpscript-like Language for the

 REX. They also call it “System Product
2. “The REXX Language: A Practical
OS, and AREXX for Amiga.
nterpreters for Unix

. ”Unix Time-Sharing System: The Unix

cessor on IBM 7090. Large discrete
age“, P.J. Kiviat et al, CACI 1973. Versions:
SCRIPT II.5. CACI, (619)457-9681.

uce Sherwood, Control Data, 1977.
niversität Bern

Scripting Languages ...

Obliq — Luca Cardelli, 1993. A distributed object-oriented scripting language. Small, stat
concurrent. State is local to an address space, while computation can migrate ov
mechanism is based on Modula-3 network objects. ftp://gatekeeper.dec.com/pub

PSML — Processor System Modeling Language. Simulating computer systems design. A
System Modeling - A Language and Simulation System”, F. Pfisterer, Proc Symp
1976).

QUIKSCRIPT — Simulation language derived from SIMSCRIPT, based on 20-GATE. “Qu
G-20”, F.M. Tonge et al, CACM 8(6):350-354 (June 1965).

REXX — Restructured EXtended eXecutor. M. Cowlishaw, IBM ca. 1979. (Original name:
Interpreter”). Scripting language for IBM VM and MVS systems, replacing EXEC
Approach to Programming”, M.F. Cowlishaw, 1985. Versions: PC-Rexx for MS-D
list: REXX-L@UIUCVMD.BITNET. ftp://rexx.uwaterloo.ca/pub/freerexx/* REXX i

sh — (or ”Shellish“). S.R. Bourne. Command shell interpreter and script language for Unix
Shell“, S.R. Bourne, Bell Sys Tech J 57(6):1971-1990 (Jul 1978).

SIMSCRIPT — Harry Markowitz et al, Rand Corp 1963. Implemented as a Fortran prepro
simulations, influenced Simula. ”SIMSCRIPT: A Simulation Programming Langu
SIMSCRIPT I.5 (CACI 1965 - produced assembly language), SIMSCRIPT II, SIM

TUTOR — Scripting language on PLATO systems from CDC. “The TUTOR Language”, Br

PS 198.

U Scripting Languages

4GLs)

AS. Menu-driven version: SUPER/

e Erickson the author?
niversität Bern

Fourth Generation Languages (

Clarion — MS-DOS 4GL.

D —
1. ”The Data Language.“ MS-DOS 4GL.

Linc — Burroughs/Unisys 4GL. Designed in New Zealand.

NATURAL — Software AG, Germany. Integrated 4GL used by the database system ADAB
NATURAL. Also NATURAL 2?

R:BASE — MS-DOS 4GL from Microrim. Based on Minicomputer DBMS RIM. Was Wayn

PS 199.

U Scripting Languages

ication via a shared tuple space. Usually
mmunication in Linda“, D. Gelernter

 N. Carreiro <carreiro@cs.yale.edu> et al,
, Lucinda, Melinda, Prolog-Linda).

 built on a reflective architecture. A redesign

llel Languages, LeMetayer ed, Springer

 extension of Horn logic with a new kind of
li et al, SIGPLAN Notices 25(10):44-56
niversität Bern

Coordination Languages

Linda — Yale. A ”coordination language“, providing a model for concurrency with commun
implemented as a subroutine library for a specific base language. ”Generative Co
<gelernter@cs.yale.edu> ACM TOPLAS 7(1):80-112 (1985). ”Linda in Context“,
CACM 32(4):444-458 (Apr 1989). (See C-Linda, Ease, Fortran-Linda, LindaLISP

MeldC — Columbia U, 1990. A C-based concurrent object-oriented coordination language
of MELD. Version 2.0 for Sun4’s and DECstations.
info: Gail Kaiser <meldc@cs.columbia.edu>

Also sometimes classified as coordination languages:

GAMMA —
2. A high-level parallel language. Research Directions in High-Level Para

1992.
LO — Linear Objects. Concurrent logic programming language based on “linear logic”, an

OR- concurrency. “LO and Behold! Concurrent Structured Processes”, J. Andreo
(OOPSLA/ECOOP ’90) (Oct 1990).

PS 200.

U Scripting Languages

stitution)
niversität Bern

The Bourne Shell

❑ Executing programs as commands
❑ Background commands
❑ Input and output redirection
❑ Pipes and filters
❑ File “globs”
❑ Shell scripts (parameterized)
❑ Control flow
❑ Shell variables (with parameter and command sub
❑ Associated commands (test, echo ...)
❑ Built-in commands (read, wait, trap, exec)
❑ Signal handling

PS 201.

U Scripting Languages
niversität Bern

Pipes and Filters

#! /bin/sh
#
words --- produce a sorted list of words in a file
#

cat $* | \
tr -c A-Za-z0-9 '\012' | \
sed '/^$$/d' | \
sort -u -f

PS 202.

U Scripting Languages
niversität Bern

Example

#! /bin/sh
#
glue --- glue two files side-by-side

a=a$$
b=b$$

sed 's/^/^A/' $1 | cat -n > $a
sed 's/^/^A/' $2 | cat -n > $b

clean='BEGIN { FS = "^A" }
{ printf "%s%s\n", $2, $3 }'

join -a1 -a2 -t^A $a $b | awk "$clean"
rm $a $b

PS 203.

U Scripting Languages
niversität Bern

Argument processing

#! /bin/sh
#
nsort --- sort lines by name (final word)

for arg
do

case $arg in
-*) flags="$flags $arg" ;;
*) files="$files $arg" ;;
esac

done

sed 's/.* \([^]*\)$/\1?&/' $files | \
sort $flags | \
sed 's/.*?//'

PS 204.

U Scripting Languages

n="${min}"
niversität Bern

Command Substitution
#! /bin/sh
rdiff --- merge of two files with diffs marked by > or <
deleted fields are prefixed with "<" and new fields with a ">"
plus='> '
min='< '
u='Usage: rdiff [+=<string>] [-=<string>] <old> <new>'
for arg
do

case $arg in
+=*) plus=`echo "$arg" | sed 's/^+=//'` ;;
-=*) min=`echo "$arg" | sed 's/^-=//'` ;;
-*) echo "$u" 1>&2 ; exit ;;
*) files="$files $arg" ;;
esac

done
diff -D diff $files | awk '

/^#ifdef/ { prefix = plus ; next }
/^#ifndef/ { prefix = min ; next }
/^#else/ { if (prefix == min)

prefix = plus
else prefix = min
next

}
/^#endif/ { prefix = "" ; next }
{ printf "%s%s\n", prefix, $0 }' plus="${plus}" mi

PS 205.

U Scripting Languages
niversität Bern

Exec
#! /bin/sh
#
src --- locate source of files and invoke lynx
Includes $PATH in the list of directories to search.
Also looks in $BIN, $MAN and $SRC environment variables.
bin="$BIN"
man="$MAN"
src="$SRC /local/src /local/pck /local/gnu"

case $# in
0) echo "Usage : src <cmd> ..." 1>&2 ; exit ;;
esac
echo -n "Searching ... "
path=`echo $PATH | sed 's/:/ /g'`
files=`(whereis $* ; \

whereis -B $path $bin -M $man -S $src -f $*) | \
awk 'BEGIN { FS = ":" } { print $2 }' | \
tr ' ' '\012' | \
sort -u`

case $files in
"") echo "nothing found" ;;
*) exec lynx $files ;;
esac

PS 206.

U Scripting Languages

es
niversität Bern

The Future of Scripting Languag

❑ Multimedia scripting
❑ Configuring open applications
❑ Composing objects, applications
❑ Coordinating distributed services

	Programming Languages
	Overview
	What is a Programming Language?
	What Distinguishes Programming Languages?
	Programming Paradigms
	A Brief Chronology
	Fortran
	ALGOL 60
	COBOL
	4GLs
	PL/I
	Interactive Languages
	Special-Purpose Languages
	Functional Languages
	Prolog
	Object-Oriented Languages

	Functional Programming
	What is a Function?
	Computation as Functional Composition
	A Bit of History
	Stateless Programming
	Referential Transparency
	The Church-Rosser property
	Modelling State
	Equational Reasoning
	Pattern Matching
	Lists
	Higher Order Functions
	Currying
	Remembering State
	Lazy Evaluation
	Lazy Lists
	Functional Programming Style

	Type Systems
	What is a Type?
	Static and Dynamic Typing
	Kinds of Types
	Function Types
	List and Tuple Types
	Polymorphism
	Polymorphic Type Inference
	Type Specialization
	The (Untyped) Lambda Calculus
	The Typed Lambda Calculus
	Kinds of Polymorphism
	Overloading
	User Data Types
	Examples of User Data Types
	Recursive Data Types:
	Equality for Data Types and Functions

	Introduction to Denotational Semantics
	Defining Programming Languages
	Uses of Semantic Specifications
	Methods for Specifying Semantics
	Concrete and Abstract Syntax
	Semantic Domains
	A Calculator Language
	Calculator Semantics
	Implementing the Calculator
	A Language with Assignment
	Abstract Syntax Trees
	Modelling Environments
	Semantics of Assignments
	Practical Issues
	Theoretical Issues

	Object-Oriented Programming
	What is Object-Oriented Programming?
	Objects
	Message-Passing Paradigm
	Classes and Instances
	Inheritance
	Deferred Features and Classes
	Multiple Inheritance
	The Principle of Substitutability
	Polymorphism & Dynamic Binding
	Subtyping
	Covariance and Contravariance
	Inheritance is not Subtyping
	The Inheritance Interface
	Run Time Support
	Dimensions of Object-Oriented Languages
	A Brief History of OO Languages
	Current Trends in Research and Practice

	Logic Programming
	Facts and Rules
	Prolog Databases
	Rules, Searching and Backtracking
	Conjunctions and Disjunctions
	Recursion
	Negation as Failure
	Changing the Database
	Functions and Arithmetic
	Lists
	Pattern Matching with Lists
	Exhaustive Searching
	Operators
	Building a Simple Interpreter

	Concurrent Programming
	Concurrency and Parallelism
	Atomicity
	Concurrency Issues
	Deadlock and Starvation
	Fairness
	Process Creation
	Communication and Synchronization
	Synchronization Techniques
	Busy-Waiting
	Semaphores
	Monitors
	Problems with Monitors
	Message Passing
	Unix Pipes
	Send and Receive
	Remote Procedure Calls and Rendezvous
	Other Issues

	Process Calculi
	Limitations of Denotational Semantics
	Structural Operational Semantics
	Transition Semantics
	Process Calculi
	Pure Synchronization
	Modeling Non-determinism
	Implementing the Transition Semantics
	Searching for Executions Paths
	Running the Example
	Finding Alternative Execution Paths
	An Asynchronous Value-Passing Calculus
	Implementing Value Passing
	Implementing Substitution
	A Value-Passing Example
	Process Replication
	Resources as Replicated Processes
	Running the Example
	Other Issues

	PICT
	Abstract Syntax of (Untyped) Core PICT
	Binding Channels
	Typed Channels
	Synchrony and Asynchrony
	Synchronizing Concurrent Clients
	Modelling Booleans
	Modelling Language Constructs
	Natural Numbers
	Counting
	Arithmetic
	Functional Notation
	Functions as Processes
	Functions as Processes
	Sequencing
	A Concurrent Queue
	Implementing the Concurrent Queue

	Object-Based Concurrency
	What is an OBCL?
	Overview of OBCLs
	Requirements for OBCLs
	Expression of Concurrency
	Objects and Processes
	Passive Object Models�
	Active/Passive Models
	Active Object Models
	Granularity of Concurrency
	Sequential Objects
	Quasi-Concurrent Objects
	Concurrent Objects
	Process Creation
	Asynchronous Objects
	Asynchronous Invocation
	Futures
	Communication and Synchronization
	Local Delays
	Local Delays
	Transactions
	Classifying OBCLs
	Evaluation

	Text Processing Languages
	What are Text Processing Languages?
	Some Text Processing Languages
	Regular Expressions (Perl)
	SED
	AWK
	Perl
	Regular Expressions
	Arrays
	Subroutines
	File I/O
	Dynamic Compilation
	Packages
	Standard System Calls
	Perl: Pros and Cons

	Scripting Languages
	Scripting Languages and Their Kin
	Shell Languages
	Command Languages
	Command Languages ...
	Scripting Languages
	Scripting Languages ...
	Fourth Generation Languages (4GLs)
	Coordination Languages
	The Bourne Shell
	Pipes and Filters
	Example
	Argument processing
	Command Substitution
	Exec
	The Future of Scripting Languages

