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Programming Languages

Lecturer: Prof. O. Nierstrasz
Neubrückstr. 10/101

Tel.: 631.4618
Secr.: 631.4692
Assistants: P. Varone, S. Schweizer

Text:
❑ Wilson & Clark, Comparative Programming Langu

Additional material:
❑ On-line, see: http://iamwww.unibe.ch/~scg/Lecture
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Overview

1. Introduction
2. Functional programming — Gofer
3. Type systems
4. Programming language semantics
5. Object-oriented programming
6. Logic Programming — Prolog
7. Structured operational semantics
8. Concurrent programming
9. Programming in the π calculus — PICT
10. Objects as processes
11. Text manipulation languages — Perl
12. Scripting languages
13. Final exam
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What is a Programming Langua

☞ A formal language for describing computation
☞ A “user interface” to a computer
☞ “Turing tar pit” — equivalent computational po
☞ Programming paradigms — different express
☞ Syntax + semantics
☞ Compiler, or interpreter, or translator
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What Distinguishes Programmin
Languages?

Generations (increasing abstraction; imperative → dec
1. machine codes
2. symbolic assemblers
3. (machine independent) imperative languages (FOR
4. domain specific application generators (report gene

Common Constructs:
☞ basic data types (numbers, etc.); variables; e

keywords; control constructs; procedures; com
Uncommon Constructs:

☞ type declarations; special types (strings, array
execution; concurrency constructs; packages
functions; generics; modifiable state; ...



PS 5.

U Programming Languages

onstraints, lists, ...
niversität Bern

Programming Paradigms

A programming language is a problem-solving tool.

Imperative style:
☞ program = algorithms + data

Functional style:
☞ program = functions  functions

Logic programming style:
☞ program = facts + rules

Object-oriented style:
☞ program = objects + messages

Other styles and paradigms: blackboard, pipes and filters, c
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A Brief Chronology

Early 1950s  “order codes” (primitives assemblers)
1957 FORTRAN
1958 ALGOL
1960 LISP, COBOL
1962 APL, SIMULA
1964 BASIC, PL/I
1966 ISWIM
1970 Prolog
1972 C
1975 Pascal, Scheme
1978 CSP
1978 FP
1980 dBASE II
1983 Smalltalk-80, Ada
1984 Standard ML
1986 C++, Eiffel
1988 CLOS, Mathematica, Oberon
1990 Haskell
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Fortran
History:

❑ John Backus (1953) sought to write programs in c
notation, and generate code comparable to good 
☞ No language design effort (made it up as they
☞ Most effort spent on code generation and opt
☞ FORTRAN I released April 1957; working by 
☞ Current standards are FORTRAN 77 and FO

Innovations:
❑ comments
❑ assignments to variables of complex expressions
❑ DO loops
❑ Symbolic notation for subroutines and functions
❑ Input/output formats
❑ machine-independence

Successes:
❑ Easy to learn; high level
❑ Promoted by IBM; addressed large user base (sci
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ALGOL 60

History:
❑ Committee of PL experts formed in 1955 to design

independent, algorithmic language
❑ First version (ALGOL 58) never implemented; criti

Innovations:
❑ BNF (Backus-Naur Form) introduced to define syn

compilers)
❑ First block-structured language; variables with loc
❑ Variable size arrays
❑ Structured control statements
❑ Recursive procedures

Successes:
❑ Never displaced FORTRAN, but highly influenced
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COBOL

History:
❑ designed by committee of US computer manufact
❑ targeted business applications
❑ intended to be readable by managers

Innovations:
❑ separate descriptions of environment, data, and p

Successes:
❑ Adopted as de facto standard by US DOD
❑ Stable standard for 25 years
❑ Still the most widely used PL for business applica
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4GLs

“Problem-oriented” languages
❑ PLs for “non-programmers”
❑ Very High Level (VHL) languages for specific prob

Classes of 4GLs (no clear boundaries):
❑ Report Program Generator (RPG)
❑ Application generators
❑ Query languages
❑ Decision-support languages

Successes:
❑ highly popular, but generally ad hoc
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PL/I

History:
❑ designed by committee of IBM and users (early 19
❑ intended as (large) general-purpose language for 

Innovations:
❑ default interpretations for every variable, feature, o
❑ exception-handling by on  conditions

Successes:
❑ achieved both run-time efficiency and flexibility (at
❑ first “complete” general purpose language
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Interactive Languages

Made possible by advent of time-sharing systems (early 19

BASIC:
❑ developed at Dartmouth College in mid 1960s
❑ minimal; easy to learn
❑ incorporated basic O/S commands (NEW, LIST, D

APL:
❑ developed by Ken Iverson for concise description 
❑ large, non-standard alphabet (52 characters in ad
❑ primitive objects are arrays (lists, tables or matrice
❑ operator-driven (power comes from composing ar
❑ no operator precedence (statements parsed right 
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Special-Purpose Languages

SNOBOL:
❑ first successful string manipulation language
❑ influenced design of text editors more than other P
❑ string operations: pattern-matching and substitutio
❑ arrays and associative arrays (tables)
❑ variable-length strings

Lisp:
❑ performs computations on symbolic expressions
❑ symbolic expressions are represented as lists
❑ small set of constructor/selector operations to crea
❑ recursive rather than iterative control
❑ no distinction between data and programs
❑ first PL to implement storage management by gar
❑ affinity with lambda calculus
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Functional Languages

ISWIM (If you See What I Mean):
❑ Peter Landin (1968) — paper proposal

FP:
❑ John Backus (1978) — Turing award lecture

ML:
❑ Edinburgh
❑ initially designed as meta-language for theorem p
❑ Hindley-Milner type inference
❑ “non-pure” functional language (with assignments

Miranda, Haskell:
❑ “pure” functional languages with “lazy evaluation”
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Prolog

History:
❑ originated at U. Marseilles (early 1970s), and comp

and Edinburgh (mid to late 1970s)

Innovations:
❑ theorem proving paradigm
❑ programs as sets of clauses: facts, rules and ques
❑ computation by “unification”

Successes:
❑ prototypical logic programming language
❑ used in Japanese Fifth Generation Initiative
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Object-Oriented Languages

History:
❑ Simula was developed by Nygaard and Dahl (earl

language for simulation programming, by adding c
ALGOL 60

❑ Smalltalk was developed by Xerox PARC (early 1
workstations

Innovations:
❑ encapsulation of data and operations (contrast AD
❑ inheritance to share behaviour and interfaces

Successes:
❑ Smalltalk project pioneered OO user interfaces  ..
❑ Large commercial impact since mid 1980s
❑ Countless new languages ...
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Functional Programming

Overview
❑ Functional vs. Imperative Programming
❑ Referential Transparency
❑ Pattern Matching
❑ Higher Order Programming
❑ Lazy Evaluation

References:
❑ Paul Hudak, “Conception, Evolution, and Applicat

Programming Languages,” ACM Computing Surve
❑ Mark P. Jones, “An Introduction to Gofer,” manua
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What is a Function?

Extensional view:

A (total) function f: A → B is a subset of A × B (i.e., a relatio
1. for each a∈A, there exists some (a,b) ∈ f (i.e.,
2. if (a,b1) ∈ f and (a,b2) ∈ f, then b1 = b2 (i.e.,

Intensional view:

A function f: A → B is an abstraction λ x . e, where x is a va
expression, such that when a value a∈A is substituted for x in
f(a)) evaluates to some (unique) value b∈B.
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Computation as Functional Co

What is a Program?
A program (computation) is a transformation from input dat

❑ Program = Algorithms + Data
❑ Program = Functions  Functions

Church’s Thesis:

Effectively computable functions from positive intege
are just those definable in the lambda calculus.
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A Bit of History

❑ Lambda Calculus  (Church, 1932-33): formal mod
❑ Lisp  (McCarthy, 1960): symbolic computations wi
❑ APL  (Iverson, 1962): algebraic programming with
❑ ISWIM (Landin, 1966): let and where clauses; equ
❑ ML (Edinburgh, 1979): originally meta language fo
❑ SASL, KRC, Miranda  (Turner, 1976-85): lazy eva
❑ Haskell  (Hudak, Wadler, et al., 1988):
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Stateless Programming

Imperative style:
n := x;
a := 1;
while n>0 do
begin a:= a*n;

n := n-1;
end;

Declarative (functional) style:
fac n =

if n == 0 then 1
else n * fac (n-1)

Declarative languages, and in particular, functional languag
Programs are constructed entirely by composing expressio
In functional languages, the underlying model of computati
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24 * 1 ➪ 24
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Referential Transparency

Referential transparency means that “equals can be replac

Evaluation proceeds by replacing expression by their value

fac 4 ➪ if 4 == 0 then 1 else 4 * fac (4-1)
➪ 4 * fac (4-1)
➪ 4 * fac 3
➪ 4 * (if 3 == 0 then 1 else 3 * fac (3-1))
➪ 4 * 3 * fac (3-1)
➪ 12 * fac (3-1)
➪ 12 * fac 2
➪ 12 * (if 2 == 0 then 1 else 2 * fac (2-1))
➪ 12 * 2 * fac (2-1) ➪ 24 * fac (2-1) ➪ ... ➪
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The Church-Rosser property

“If an expression can be evaluated at all, it can be eva
using normal-order evaluation. If an expression can b
different orders (mixing normal-order and applicative 
all of these evaluation orders yield the same result”.

Consider:
sqr n = n * n

Applicative-order evaluation:
sqr (2+5) ➪ sqr 7 ➪ 7*7 ➪ 49

Normal-order evaluation:
sqr (2+5) ➪ (2+5) * (2+5) ➪ 7 * (2+5) ➪ 7 * 7 ➪ 49
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Modelling State

State can be modelled explicitly as a function parameter:

sfac s n =
if n == 0 then s
else sfac (s*n) (n-1)

sfac 1 4
➪ sfac (1*4) (4-1)
➪ sfac 4 3
➪ sfac (4*3) (3-1)
➪ sfac 12 2
➪ sfac (12*2) (2-1)
➪ sfac 24 1
➪ ... ➪ 24
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Equational Reasoning
Theorem:

For all n >= 0, fac n = sfac 1 n
Proof of theorem:

n = 0: fac 0 = sfac 1 0 = 1
n > 0: Suppose fac (n-1) = sfac 1 (n-1)

fac n = n * fac (n-1)
= n * sfac 1 (n-1)
= sfac n (n-1) -- by
= sfac 1 n

Lemma:
For all n >= 0, sfac s n = s * sfac 1 n

Proof of lemma:
n = 0: sfac s 0 = s = s * sfac 1 0
n > 0: Suppose sfac s (n-1) = s * sfac 1 (n-1)

sfac s n = sfac (s*n) (n-1)
= s * n * sfac 1 (n-1)
= s * sfac n (n-1)
= s * sfac 1 n
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Pattern Matching

Patterns:

fac' 0 = 1
fac' n = n * fac' (n-1)

Guards:
fac'' n | n == 0 = 1

| n >= 1 = n * fac'' (n-1)
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Lists

Lists are pairs of elements and lists of elements:
❑ [ ] stands for the empty list
❑ x : xs stands for the list with x as the head and
❑ [1,2,3] is syntactic sugar for 1:2:3:[ ]
❑ [1..n] stands for [1,2,3, ... n]

Lists can be deconstructed using patterns:
head (x:_) = x
len [ ] = 0
len (x:xs) = 1 + len xs

prod [ ] = 1
prod (x:xs) = x * prod xs

fac''' n = prod [1..n]
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Higher Order Functions

Higher-order functions are first-class values  that can be
new functions.

map f [ ] = [ ]
map f (x:xs)= f x : map f xs

map fac [1..5]
➪ [1, 2, 6, 24, 120]

Anonymous functions can be written as lambda abstraction
map (\x->x * x) [1..10]

➪ [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
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Currying

A curried function  takes its arguments one at a time, allow
higher-order function.

fac = sfac 1
where sfac s n

| n == 0 = s
| n >= 1 = sfa

The following higher-order function takes a binary function 
turns it into a curried function:

curry f a b = f (a,b)

sfac (s, n) = if n == 0 then s
else sfac (s*n, n-1)

fac = (curry sfac) 1
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Remembering State

Naive recursion may result in unnecessary recalculations:
fib 0 = 0
fib 1 = 1
fib (n+2) = fib n + fib (n+1)

Efficiency can be regained by explicitly passing calculated 
fib' 0 = 0
fib' n = a where (a,_) = fib'' n

fib'' 1 = (1,0)
fib'' (n+2) = (a+b,a) where (a,b) = fib'' (n+1
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Lazy Evaluation

“Lazy”, or normal-order evaluation only evaluates expressio
needed. Clever implementation techniques (Wadsworth, 19
expressions to be shared, and thus avoid needless recalcu
So:

sqr (2+5) ➪ (2+5) * (2+5) ➪ 7 * 7 ➪ 49

Lazy evaluation allows some functions to be evaluated even
or non-terminating arguments:

ifTrue True x y = x
ifTrue False x y = y

ifTrue True 1 (5/0)
➪ 1
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Lazy Lists
Lazy lists are infinite data structures whose values are gen

from n = n : from (n+1)

take 0 _ = [ ]
take _ [ ] = [ ]
take (n+1) (x:xs)= x : take n xs

take 5 (from 10)
➪ [10, 11, 12, 13, 14]

NB: The lazy list (from n) has the special syntax: [n..]

fibs = fibgen 0 1
where fibgen a b = a : fibgen b (a+b)

take 10 fibs
➪ [ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 ]
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Functional Programming Style
primes = 2 : primesFrom 3 -- or just: prim

primesFrom n = p : primesFrom (p+1)
where p = nextPrime n

nextPrime n
| isPrime n = n
| otherwise = nextPrime (

isPrime 2 = True
isPrime n = notdiv primes n

notdiv (k:ps) n
| (k*k) > n = True
| (mod n k) == 0 = False
| otherwise = notdiv ps n

take 100 primes ➪ [ 2, 3, 5, 7, 11, 13, ... 523, 541
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Type Systems

Overview
❑ What is a Type?
❑ Static vs. Dynamic Typing
❑ Kinds of Types
❑ Polymorphic Types
❑ Overloading
❑ User Data Types

Sources:
❑ Mark P. Jones, “An Introduction to Gofer,” manua
❑ Paul Hudak, “Conception, Evolution, and Applicat

Programming Languages,” ACM Computing Surve
❑ L. Cardelli and P. Wegner, “On Understanding Ty

Polymorphism,’“ACM Computing Surveys, vol. 17
522.

❑ D. Watt, Programming Language Concepts and Pa
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What is a Type?
Type errors:

5 + [ ]
ERROR: Type error in application
*** expression : 5 + [ ]
*** term : 5
*** type : Int
*** does not match : [a]

A type is a set of values:
❑ int = { ... -2, -1, 0, 1, 2, 3, ... }
❑ bool = { True, False }
❑ Point = { [ x=0, y=0 ], [ x=1, y=0 ], [ x=0, y=1 ] ... }

Are all sets of values types?

A type is a partial specification of behaviour:
❑ n, m : int ⇒ n + m  is valid, but not(n)  is an error
❑ n : int ⇒ n := 1 is valid, but n := “hello world” is 

What kinds of specifications are interesting? Useful?
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Static and Dynamic Typing

Values have static types defined by the programming langu
Variables and expressions have dynamic types determined
at run-time.

A language is statically typed if it is always possible to dete
expression based on the program text alone.

A language is strongly typed if it is possible to ensure that e
consistent based on the program text alone.

A language is dynamically typed if only values have fixed typ
may take on different types at run-time, and must be check
are used.

Type consistency may be assured by (i) compile-time type-
or (iii) dynamic type-checking.
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Kinds of Types

All programming languages provide some set of built-in typ

Most strongly-typed modern languages provide for addition

❑ Primitive types:  booleans, integers, floats, chars
❑ Composite types:  functions, lists, tuples ...
❑ User-defined types:  enumerations, recursive typ

The Type Completeness Principle:

No operation should be arbitrarily restricted in the typ

First-class values can be evaluated, passed as arguments 
composite values. Functional languages attempt to make n
imperative languages typically treat functions (at best) as s
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 (t2 -> ( ... -> tn) ...)

(f x1) x2) ... xn).

 :: Int -> Int
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Function Types

Function types allow one to deduce the types of expression
evaluate them:

fact :: Int -> Int
42 :: Int
⇒ fact 42 :: Int

Curried types:
t1 -> t2 -> ... -> tn stands for: t1 ->

so
f x1 x2 ... xn stands for: ( ... (

(+) :: Int -> Int -> Int ⇒ (+) 5
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List and Tuple Types

List Types
If a is a type then [a] is the type whose elements are lists o

[ 1 ] :: [ Int ]
Note that all of the elements in a list must be of the same type
as ['a', 2, False] is not permitted.

Tuple Types
If t1, t2, ..., tn are types and n>=2, then there is a type of n-
whose elements are also written in the form (x1, x2, ..., xn) w
..., xn have types t1, t2, ..., tn respectively.

(1, [2], 3) :: (Int, [Int], Int)
('a', False) :: (Char, Bool)
((1,2),(3,4)) :: ((Int, Int), (Int, Int))

The unit type is written () and has a single element which is



PS 40.

U Type Systems

 every constant, variable,

s:
niversität Bern

Polymorphism

Languages like Pascal have monomorphic type systems:
parameter and function result has a unique type.

☞ good for type-checking
☞ bad for writing generic code

A polymorphic function accepts arguments of different type
length :: [a] -> Int
length [ ] = 0
length (x:xs) = 1 + length xs

map :: (a -> b) -> [a] -> [b]
map f [ ] = [ ]
map f (x:xs) = f x : map f xs

(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)
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Polymorphic Type Inference

Hindley-Milner Type Inference provides an effective algorith
determining the types of polymorphic functions. The corres
in many modern functional languages, including ML and Ha

map f [ ] = [ ]
map f (x:xs) = f x

map :: X -> Y -> Z

map :: (a -> b) -> [ c ] -> [ d

map :: (a -> b) -> [ a ] -> [ b 
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Type Specialization

A polymorphic function may be explicitly assigned a more s

idInt :: Int -> Int
idInt x = x

Note that the :t command can be used to find the type of a 
inferred by Gofer:

? :t \x -> [x]
\x -> [x] :: a -> [a]

? :t (\x -> [x]) :: Char -> String
\x -> [x] :: Char -> String
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The (Untyped) Lambda Calculu

Syntax:
e ::= x | e1 e2 | λ x.e

(Operational) Semantics:
α conversion (renaming): λ x . e ⇔ λ y . [y/x] e
β reduction: (λ x . e1) e2 ⇒ [ e2/x] e

η reduction: λ x . (e x) ⇒ e

Example:
True ≡ λ x . λ y . x
False ≡ λ x . λ y . y
if b then x else y ≡ λ b . λ x . λ y . b x y

if True then x else y = ( λ b . λ x . λ y . b x y
⇒* (λ x . λ y . x) x y
⇒* x
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The Typed Lambda Calculus

Syntax:

e ::= xτ | e1
τ2→τ1 e2

τ2 | (λ xτ2.eτ1)τ2→τ1

(Operational) Semantics:

α conversion (renaming): λ xτ2 . eτ1 ⇔ λ yτ2 . [ yτ2/xτ2 ] eτ1

β reduction: (λ xτ2 . e1
τ1) e2

τ2 ⇒ [ e2
τ2/xτ2 ] e

η reduction: λ xτ2. (eτ1 xτ2) ⇒ eτ1 if xτ2

Polymorphic functions like “map” cannot be typed in this ca
Need type variables  to capture polymorphism:

β reduction (ii): (λ xν . e1
τ1) e2

τ2 ⇒ [ τ2 / ν ] [ e2
τ
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Kinds of Polymorphism

Polymorphism:
❑ Universal:

– Parametric: polymorphic map function in Gofer

– Inclusion: subtyping — graphic objects

❑ Ad Hoc:

– Overloading: + applies to both integers and rea

– Coercion: integer values can be used where re

Coercion or overloading — how does one distinguish?
3 + 4
3.0 + 4
3 + 4.0
3.0 + 4.0
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Overloading
Overloaded operators are introduced by means of type

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)

For each overloaded instance a separate definition must be
instance Eq Int where (==) = primEqInt
instance Eq Bool where

True == True = True
False == False = True
_ == _ = False

instance Eq Char where c == d = ord c == ord
instance (Eq a, Eq b) => Eq (a,b) where

(x,y) == (u,v) = x==u && y=
instance Eq a => Eq [a] where

[ ] == [ ] = True
[ ] == (y:ys) = False
(x:xs) == [ ] = False
(x:xs) == (y:ys) = x==y && xs
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User Data Types

New data types can be introduced by specifying a datatype
eter types, and a set of constructors for elements of the typ

data DatatypeName a1 ... an = constr1 | ... | const

The constructors may be of the form:

1. Name type1 ... typek
which introduces Name as a new constructor of typ
type1 -> ...-> typek -> DatatypeName a1 ... an

2. type1 CONOP type2
which introduces (CONOP) as a new constructor of
type1 -> type2 -> DatatypeName a1 ... an
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Examples of User Data Types

Enumeration types:
data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
what_shall_I_do Sun = “relax”
what_shall_I_do Sat = “go shopping”
what_shall_I_do _ = “looks like I'll have to go to w

Union types:
data Temp = Centigrade Float | Fahrenheit Float
freezing :: Temp -> Bool
freezing (Centigrade temp) = temp <= 0.0
freezing (Fahrenheit temp) = temp <= 32.0
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Recursive Data Types:

data Tree a = Lf a | Tree a :^: Tree a

(Lf 12 :^: (Lf 23 :^: Lf 13)) :^: Lf 10 :: Tree Int

leaves, leaves' :: Tree a -> [a]

leaves (Lf l) = [l]
leaves (l :^: r) = leaves l ++ leaves r

leaves' t = leavesAcc t [ ]
where leavesAcc (Lf l) = (l:)

leavesAcc (l :^: r) = leavesAcc l . lea



PS 50.

U Type Systems

ctions

s?
ality!

subset` xs
` ys) xs

(==) {dict} 1 x)
niversität Bern

Equality for Data Types and Fun

Why not automatically provide equality for all types of value
Syntactic equality does not necessarily entail semantic equ

User data types:
data Set a = Set [a]

instance Eq a => Eq (Set a) where
Set xs == Set ys = xs `subset` ys && ys `

where xs `subset` ys = all (`elem

Functions:
? (1==) == (\x->1==x)
ERROR: Cannot derive instance in expression
*** Expression        : (==) d148 ((==) {dict} 1) (\x->
*** Required instance : Eq (Int -> Bool)
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Introduction to Denotational Se

Overview:
❑ Syntax and Semantics
❑ Approaches to Specifying Semantics
❑ Semantics of Expressions
❑ Semantics of Assignment
❑ Other Issues

Texts:
❑ D. A. Schmidt, Denotational Semantics, Wm. C. B
❑ D. Watt, Programming Language Concepts and Pa
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Defining Programming Languag

Three main characteristics of programming languages:

1. Syntax:  What is the appearance and structure of its
2. Semantics:  What is the meaning of programs?

The static semantics tells us which (syntactically v
semantically valid (i.e., which are type correct) and
us how to interpret the meaning of valid programs

3. Pragmatics:  What is the usability of the language?
How easy is it to implement? What kinds of applic
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Uses of Semantic Specification

Semantic specifications are useful for language designers t
implementors as well as to programmers:

1. A precise standard for a computer implementation: 
implemented on different machines?

2. User documentation: What is the meaning of a prog
combination of language features?

3. A tool for design and analysis: How can the languag
it can be implemented efficiently?

4. Input to a compiler generator: How can a reference
from the specification?
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Methods for Specifying Semant

Operational Semantics:
☞ [[ program ]] = abstract machine program
☞ can be simple to implement
☞ hard to reason about

Denotational Semantics:
☞ [[ program ]] = mathematical denotation
☞ facilitates reasoning
☞ not always easy to find suitable semantic dom

Axiomatic Semantics:
☞ [[ program ]] = set of properties
☞ good for proving theorems about programs
☞ somewhat distant from implementation

Structural Operational Semantics:
☞ [[ program ]] = transition system (defi
☞ good for concurrency and non-determinism
☞ hard to reason about equivalence
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Concrete and Abstract Syntax
How to parse “4 * 2 + 1”?

Abstract Syntax is compact but ambiguous:
Expr ::= Num

| Expr Op Expr
Op ::= +| - | * | /

Concrete Syntax is unambiguous but verbose:
Expr ::= Expr LowOp Term

| Term
Term ::= Term HighOp Factor

| Factor
Factor ::= Num

| ( Expr )
LowOp ::= + | -
HighOp ::= * | /
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Semantic Domains

In order to define semantic mappings of programs and their
ematical denotations, the semantic domains must be precis

data Bool = True | False

(&&), (||) :: Bool -> Bool -> Bool
False && x = False
True && x = x
False || x = x
True || x = True

not :: Bool -> Bool
not True = False
not False = True
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A Calculator Language
Abstract Syntax:

P ::= 'ON' S
S ::= E 'TOTAL' S | E 'TOTAL' 'OFF'
E ::= E1 '+' E2 | E1 '*' E2 | 'IF' E1 ',' E2

| 'LASTANSWER' | '(' E ')' | N

Test Program = “ ON 4 * ( 3 + 2 ) TOTAL OFF ”

Data Structures for Syntax Tree:
data Program = On ExprSequence
data ExprSequence = Total Expression ExprSequence

| Off Expression
data Expression = Plus Expression Expression

| Times Expression Expression
| If Expression Expression Expression
| LastAnswer
| Braced Expression
| N Int

test = On (Off (Times (N 4)
(Braced (Plus (N 3)

(N 2) ) ) ) )
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Calculator Semantics
Programs:

P : Program → Int *
P [[ ON S ]] = S [[ S ]] (0)

Sequences:
S :: ExprSequence → Int → Int *
S [[ E TOTAL  S ]] (n) = let n' = E [[ E ]] (n) in
S [[ E TOTAL OFF ]] (n) = E [[ E ]] (n) cons nil

Expressions:
E : Expression → Int → Int
E [[ E1 + E2 ]] (n) = E [[ E1 ]] (n) + E [[ E2
E [[ E1 * E2 ]] (n) = E [[ E1 ]] (n) * E [[ E2
E [[ IF E1 , E2 , E3 ]] (n) = E [[ E1 ]] (n) == 0 →
E [[ LASTANSWER ]] (n) = n
E [[ ( E ) ]] (n) = E [[ E ]] (n)
E [[ N ]] (n) = N
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Implementing the Calculator

Programs:
pp :: Program -> [Int]
pp (On s) = ss s 0

Sequences:
ss :: ExprSequence -> Int -> [Int]
ss (Total e s) n = let n' = (ee e n
ss (Off e) n = (ee e n) : [ ]

Expressions:
ee :: Expression -> Int -> Int
ee (Plus e1 e2) n = (ee e
ee (Times e1 e2) n = (ee e
ee (If e1 e2 e3) n

| (ee e1 n) == 0 = (ee e
| otherwise = (ee e

ee (LastAnswer) n = n
ee (Braced e) n = (ee e
ee (N num) n = num
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A Language with Assignment

Abstract Syntax:
P ::= C '.'
C ::= C1 ';' C2

| 'if' B 'then' C1 'else' C2
| I ':=' E

E ::= E1 '+' E2
| I
| N

B ::= E1 '=' E2
| 'not' B

Example:
“ z := 1 ; if a = 0 then z := 3 else z := z + a . ”
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Abstract Syntax Trees
Data Structures:

data Program = Dot Comman
data Command = CSeq Comma

| Assign Identif
| If BooleanExp

data Expression = Plus Express
| Id Identifier
| Num Int

data BooleanExpr = Equal Expres
| Not BooleanE

type Identifier = Char
Example:

Dot (CSeq (Assign 'z' (Num 1))
(If (Equal (Id 'a') (Num 0))

(Assign 'z' (Num 3))
(Assign 'z' (Plus (Id 'z')

)
)
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Modelling Environments

A store is a mapping from identifiers to values:

type Store = Identifier -> Int

newstore :: Store
newstore id = 0

access :: Identifier -> Store -> Int
access id store = store id

update :: Identifier -> Int -> Store -> Store
update id val store = store'

where store' i
| id' == id
| otherwise
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Semantics of Assignments
pp :: Program -> Int -> Int
pp (Dot c) n = access 'z' (cc c (upda

cc :: Command -> Store -> Store
cc (CSeq c1 c2) s = cc c2 (cc c1 s)
cc (Assign id e) s = update id (ee e s) s
cc (If b c1 c2) s = ifelse (bb b s) (cc c1 

ee :: Expression -> Store -> Int
ee (Plus e1 e2) s = (ee e2 s) + (ee e1 s)
ee (Id id) s = access id s
ee (Num n) s = n

bb :: BooleanExpr -> Store -> Bool
bb (Equal e1 e2) s = (ee e1 s) == (ee e2 s
bb (Not b) s = not (bb b s)
ifelse :: Bool -> a -> a -> a
ifelse True x y = x
ifelse False x y = y
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Practical Issues

Modelling:
❑ Errors and non-termination:

☞ need a special “error” value in semantic doma
❑ Branching:

☞ semantic domains in which “continuations” mo
make it easy to transfer control

❑ Interactive input
❑ Dynamic typing
❑ ...
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Theoretical Issues

What are the denotations of lambda abstractions?
❑ need Scott’s theory of semantic domains

What is the semantics of recursive functions?
❑ need least fixed point theory

How to model concurrency and non-determinism?
❑ abandon standard semantic domains
❑ use “interleaving semantics”
❑ “true concurrency” requires other models ...
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Object-Oriented Programming

Overview
❑ What is Object-Oriented Programming?
❑ Objects, Classes and Inheritance
❑ The Principle of Substitutability
❑ Inheritance and Subtyping
❑ Dimensions of Object-Oriented Languages

Suggested texts:
❑ B. Meyer, Object-Oriented Software Construction,
❑ R. Wirfs-Brock, B. Wilkerson, L. Wiener, Designin

Prentice Hall, 1990
❑ P. Wegner, “Concepts and Paradigms of Object-O

OOPS Messenger, Vol. 1, No. 1, Aug. 1990
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What is Object-Oriented Progra

Object-oriented programs model applications as collections
objects:

❑ Objects encapsulate data and operations
❑ Objects implement a client/server contract
❑ Clients may only access an object’s services by s
❑ Objects may have different methods to respond to
❑ Classes define templates for instantiating objects
❑ Classes may inherit features from parent classes 
❑ Abstract classes may specify generic interfaces, re

while deferring implementation of features to be de
❑ Frameworks define generic software architectures

abstract classes
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Objects

Public Interf

Messages
perimeter, m

Pr
Repre

Instanc
and m

centre,

Objects both encapsulate data and
the operations that may be
performed with them, and they
hide their internal representation,
thus promoting understandability,
maintainability and consistency.
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Message-Passing Paradigm

Objects can only be accessed through their public interface
A client requests a service of an object by sending it a “mes
name and some arguments.
The object selects the appropriate method to handle the m
understand the same messages, but use different methods
An object implements a client/server contract.

Sender
(client)

Re
(o

message

a_circle.move(5,10)
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Classes and Instances
A class describes the implementation of a set of objects.

An object is an instance of a class, sharing the same interfa
implementations of methods as other instances of the same 
state (i.e., its instance variables).

class  POINT
export

x, y, distance, translate,
feature

x: REAL;
y: REAl;
Create (a, b: REAL) is

do
x := a; y := b;

end ;
translate(a, b: REAL) is

do
x := x + a; y := y + b;

end ;
distance (other: POINT): REAL is

do
Result := sqrt((x - other.x) ^ 2 + (y - other.y

end ;
end  -- class POINT
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Inheritance

Private Features
U, V, W

Public Features
A, B, C

Pr

P

Parent Class S

T inherits both public and private
features from its parent class S.
It may both extend the inherited
features (D, E, X, Y) or redefine
them (B′, U′)
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Deferred Features and Classes

Deferred classes define common interfaces and behaviour
deferred class  STACK [T]

export
nb_elements, empty, full, top, push, pop, change_to

feature
nb_elements: INTEGER is deferred end ;
empty: BOOLEAN is

do
Result := (nb_elements = 0)

end ;
full: BOOLEAN is deferred end ;
top: T is deferred end ;
push (v: T) is deferred end ;
pop is deferred end;
change_top (v: T) is

do
pop; push(v)

end ;
wipe_out is deferred end ;

end  -- class STACK
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Multiple Inheritance
Multiple inheritance can be used to combine functionality a

class  FIXED_STACK [T]
export

max_size, nb_elements, empty, full, top, push, pop, 
inherit

ARRAY [T]
rename Create as array_Create, size as m

STACK [T]
redefine change_top

feature
...;

end

ARRAYSTACK

FIXED_STACK
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The Principle of Substitutability

An instance of a subtype can always be used in any 
instance of a supertype was expected.

— Wegne

...
move (obj: GRAPHIC_OBJECT, x, y: REAL) is -- ope

do
obj.display_off; -- clea
obj.translate(x, y);
obj.display_on -- disp

end;
...

s: SQUARE; r: RECTANGLE; -- bot
screen: BIT_MAP_SCREEN;

screen.move(s, 1.5, 1.5); screen.move(r, 1.5, 1.5);
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Polymorphism & Dynamic Bind

The static type  of a variable is its declared type.
Its dynamic type  is the type of the object to which it is curr

p: POLYGON;
r: RECTANGLE;

x := p.perimeter; -- OK
x := r. perimeter; -- OK

x := r.diagonal; -- OK
x := p.diagonal; -- ERROR

p := r; -- OK
x := p.perimeter; -- OK
x := p.diagonal; -- ERROR

r := p; -- ERROR



PS 76.

U Object-Oriented Programming

n object (i.e., the
t and return types).

erstood by instances of type

e of X to a variable of type X

pes to the interface
variance)
niversität Bern

Subtyping

Consider a type  to be the specification of the interface to a
messages that are understood, together with their argumen

Message send:
❑ It is always safe to send a message m(a1,...an) und

X to an instance of a subtype of X

Assignment:
❑ It is always safe to assign an instance of a subtyp

Subtyping:
❑ A subtype Y of a type X may add new message ty
❑ Y may specialize the return type of a message (co
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Covariance and Contravarianc

Can a subtype also specialize the argument  types of a m
class  VECTOR

export  move, add, ...
feature

move (x, y : REAL) : VECTOR ...
add (v : VECTOR) : VECTOR ...

end
class  COLOUREDVECTOR

export  move, add, ...
feature

move (x, y : REAL) : COLOUREDVECTOR ...
add (v : COLOUREDVECTOR) : COLOUREDVECT

end
v, v1, v2 : VECTOR;
c : COLOUREDVECTOR; -- initialized elsewhere ...
v := c;
v1 := v.move (1,3); -- OK; return type is specializ
v1 := v.add (v2); -- not OK; can’t by sure v2 is

Argument types may only be more general (contravariance
guaranteed; but this is seldom useful for solving real proble
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Inheritance is not Subtyping

Various object-oriented programming languages (notably Ei
the notions of types and classes, and therefore constrain in
reasonably subtyping rules. This can lead to various conflic

❑ Covariance vs. contravariance: for complex mode
convenient to specialize both argument and return
subclasses, but instances of such subclasses will 
superclass instances.

❑ Multiple inheritance: sometimes multiple inheritan
abstract interface with a particular representation (
may necessitate renaming (hiding) of features inhe
class, which violates any reasonable subtyping ru

❑ Post-hoc type equivalence: separately defined cla
compatible types, though they do not share any co
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The Inheritance Interface

A class has two different kinds of clients: run-time clients o
inheriting classes.

The interface to run-time clients is defined by the expor
The interface to heirs (subclasses) is defined by the progra

❑ Heirs have full access to the implementation of pa
❑ Heirs may only access the public features of pare
❑ Heirs may only access features exported in an inh
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Run Time Support

❑ Garbage collection:  memory occupied by objects
referenced may be automatically reclaimed

❑ Persistence:  objects may be automatically comm
❑ Distribution:  objects may be shared within a distr
❑ Reflection:  class definitions may be accessed an
❑ Concurrency:  multiple objects may be concurren

may manage multiple concurrent threads
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Dimensions of Object-Oriented

❑ Object-Based languages support encapsulation o
(objects)

❑ Class-Based  languages support instantiation of o
❑ Object-Oriented languages support inheritance b
❑ Fully Object-Oriented languages model all data t

also objects
❑ Strongly-Typed  object-oriented languages guara

type-consistent
❑ Concurrent  object-oriented languages allow multi

concurrently; individual objects can schedule and 
requests

❑ Persistent  object-oriented languages support obje
multiple user sessions

— Wegner, OOPS
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A Brief History of OO Language

❑ Simula  (1962): extended Algol with classes and in
writing simulation applications

❑ Smalltalk (1970s): “pure” OOPL; developed by Xe
workstations

❑ Modules  (1972): Parnas promoted encapsulation
❑ Abstract Data Types  (1974): Liskov and Zilles pr
❑ Ada  (1983)
❑ Objective C, Beta, etc. (1980s)
❑ C++, Eiffel  (1986)
❑ Emerald, ABCL, ConcurrentSmalltalk, Oz ...  an
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Current Trends in Research and

❑ Objects + X where X is ...
❑ Object-based concurrency
❑ Type theories for objects (mostly functional)
❑ Semantic models of objects (both functional and n
❑ Components
❑ Distribution and Interoperability (CORBA and ODP
❑ Frameworks
❑ Design Patterns
❑ Role Modelling
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Logic Programming

Overview
❑ Facts and Rules
❑ Searching and Backtracking
❑ Recursion, Functions and Arithmetic
❑ Lists and other Structures
❑ Implementing a Simple Interpreter

Texts:
❑ Sterling and Shapiro, The Art of Prolog, MIT Press
❑ Clocksin and Mellish, Programming in Prolog, Spr
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Facts and Rules

A Prolog program consists of facts , rules , and question
❑ Facts are named relations between objects:

☞ parents(charles, elizabeth, philip).
❑ Rules are relations (goals) that can be inferred fro

☞ uncle(U,C) :- brother(U,P), parent(P,C).
❑ Both rules and facts are instances of Horn clauses

☞ A0 if A1 and A2 and ... An

❑ Questions are statements that can be answered u
☞ ? brother(charles, X)

❑ Questions are answered by matching goals again
variables with terms, and backtracking when subg

❑ A question is always answered with true  or false ,
variables to terms

❑ Prolog adopts a closed world assumption — what
true, is assumed to be false
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Prolog Databases
male(philip).
female(elizabeth).
male(charles).
female(anne).
male(andrew).
male(edward).
female(diana).
male(william).
male(harry).
parents(charles, elizabeth, philip).
parents(anne, elizabeth, philip).
parents(andrew, elizabeth, philip).
parents(edward, elizabeth, philip).
parents(william, diana, charles).
parents(harry, diana, charles).
?- male(charles).
?- male(anne).
?- male(mickey)
?- male(X).
?- parents(X,elizabeth,_).
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Rules, Searching and Backtrac

A Rule defines a relation as a conjunction of subgoals:

brother(X, Y) :- male(X),
parents(X, M, F),
parents(Y, M, F),
X \== Y.

?- brother(charles, edward).
?- brother(charles, X).
?- brother(X, charles).
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Conjunctions and Disjunctions

The same information can be represented in various forms

mother(M,C) :- parents(C,M,_).
father(F,C) :- parents(C,_,F).

We could have chosen to represent parents/3 in terms of m
parents(C,M,F) :- mother(M,C), father(F,C).

Both conjunctions and disjunctions can be easily represent

uncle(U,C) :- brother(U,P),
parent(P,C).

parent(P,C) :- mother(P,C).
parent(P,C) :- father(P,C).
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Recursion

Recursive relations are defined in the obvious way:

ancestor(A,P) :- parent(A,P).
ancestor(A,P) :- parent(A,C),

ancestor(C,P).

?- ancestor(philip, harry).
?- ancestor(philip, X).
?- ancestor(X, harry).
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Negation as Failure

Searching can be controlled by explicit failure:

printall(X) :- X, print(X), nl, fail .
printall(_).

?- printall(brother(_,_)).

The cut  operator (!) commits Prolog to a particular search 

parent(P,C) :- mother(P,C), !.
parent(P,C) :- father(P,C).

Negation can be implemented by a combination of cut and 

not(X) :- X, !, fail.
not(_).
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Changing the Database

The Prolog database can be modified dynamically by mean

changename(X,Y) :- rename(X,Y),
retract(parents(X,M,F)
assert(parents(Y,M,F))

rename(X,Y) :- retract(male(X)),
assert(male(Y)).

rename(X,Y) :- retract(female(X)),
assert(female(Y)).

?- changename(charles, mickey).
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Functions and Arithmetic

Functions are relations between expressions and values:

X is 5 + 6 .
Yields:

X = 11 ?

And is syntactic sugar for:
is(X, +(5,6))

User-defined functions are written in a relational style:

fact(0,1).
fact(N,F) :- N > 0,

N1 is N - 1,
fact(N1,F1),
F is N * F1.
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[ a ]

[ a , b ]

[ a , [ b ] , c ]

[ a | X ]

[ a , b | X ]
niversität Bern

Lists

Lists are pairs of elements and lists:

Formal object Cons pair syntax
.(a , [ ]) [ a | [ ] ]

.(a , .(b, [ ])) [ a | [ b | [ ] ] ]

.(a , .(.(b , [ ]) , .(c , [ ]))) [ a | [ [ b | [ ] ] | [ c | [ ] ] ] ]

.(a , X) [ a | X ]

.(a , .(b , X)) [ a | [ b | X ] ]
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Pattern Matching with Lists

member(X, [X | _ ]).
member(X, [ _ | L]) :- member(X, L).

?- member(a, [a,b,c]).

?- member(X, [a,b,c]).

?- member(a, L).
L = [ a | _A ] ? ;
L = [ _A , a | _B ] ? ;
L = [ _A , _B , a | _C ] ? ;
L = [ _A , _B , _C , a | _D ] ? ;
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Exhaustive Searching

Searching for permutations:
perm([ ],[ ]).
perm([C|S1],S2) :- perm(S1,P1),

append(X,Y,P1),
append(X,[C|Y],S2).

append([ ],L,L).
append([X|L1],L2,[X|L3]) :- append(L1,L2,L3) .

?- printall(perm([a,b,c,d],_)).

A declarative, but hopelessly inefficient sort program:
ndsort(L,S) :- perm(L,S),

issorted(S).
issorted([ ]).
issorted([ _ ]).
issorted([N,M|S]) :- N =< M,

issorted([M|S]).
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Operators
Calculator example [Schmidt]:

P ::= 'on' S
S ::= E 'total' S | E 'total' 'OFF'
E ::= E1 '+' E2 | E1 '*' E2 | 'if' E1 'then'

| 'lastanswer' | '(' E ')' | N

Syntax trees can be modelled directly as Prolog terms.
Operator type and precedence can be defined to achieve c

:- op(900, fx, on).
:- op(800, xfy, total).
:- op(600, fx, if).
:- op(590, xfy, then).
:- op(580, xfy, else).
% op(500, yfx, +).
% op(400, yfx, *).

on 2+3 total lastanswer + 1 total off = on(total(2+3, to

on if lastanswer then 3*4 else 3+4 total off = on(total(if(then(
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Building a Simple Interpreter
Top level programs:

on S :- seval(S, 0).

Statements:
seval(E total off, Prev) :- xeval(E, Prev, Val),

print(Val), nl.

seval(E total S, Prev) :- xeval(E, Prev, Val),
print(Val), nl,
seval(S, Val).

Expressions:
xeval(N, _, N) :- number(N).
xeval(E1+E2, Prev, V) :- xeval(E1, Prev, V1),

xeval(E2, Prev, V2),
V is V1+V2.

xeval(E1*E2, Prev, V) :- xeval(E1, Prev, V1),
xeval(E2, Prev, V2),
V is V1*V2.

xeval(lastanswer, Prev, Prev).
xeval(if E1 then E2 else _, Prev, Val) :- xeval(E1, Prev, 0),

xeval(E2, Prev, Val).
xeval(if _ then _ else E3, Prev, Val) :- xeval(E3, Prev, Val).
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Concurrent Programming

Overview
❑ Concurrency issues
❑ Process creation
❑ Synchronizing access to shared variables
❑ Message Passing Approaches

Texts:
❑ G. R. Andrews and F. B. Schneider, “Concepts an

programming,’“ACM Computing Surveys, vol. 15, 
❑ M. Ben-Ari, Principles of Concurrent and Distribut

Hall, 1990.
❑ L. Wilson & R. Clark, Comparative Programming L

1988.
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Concurrency and Parallelism

“A sequential program specifies sequential execution of a lis
is called a process. A concurrent program specifies two or m
may be executed concurrently as parallel processes.”

A concurrent program can be executed by:
1. Multiprogramming: processes share one o
2. Multiprocessing: each process runs on 

but with shared memo
3. Distributed processing: each process runs on 

connected by a networ

Assume only that all processes make positive finite progres
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Atomicity

Programs P1 and P2 execute concurrently:

{ x = 0 }
P1: x := x+1
P2: x := x+2

{ x = ? }

What are possible values of x after P1 and P2 complete?
What is the intended final value of x?

Synchronization mechanisms are needed to restrict the pos
processes so that sets of actions can be seen as atomic.
Mutual exclusion ensures that statements within a critical s
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Concurrency Issues

There are two principal difficulties in implementing concurre

❑ Ensuring consistency:
☞ Mutual exclusion — shared resources must b
☞ Condition synchronization — operations may 

resources are not in an appropriate state (e.g
❑ Ensuring progress:

☞ Deadlock — some process can always acces
☞ Starvation — all processes can eventually ac

Notations for expressing concurrent computation must add

1. Process Creation: how is concurrent execution spe
2. Communication: how do processes communicate
3. Synchronization: how is consistency maintained?
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Deadlock and Starvation

Dining Philosophers
Philosophers alternate between thinking and eating.
A philosopher needs two forks to eat.
No two philosophers may hold the same fork simultaneously.
No deadlock and no starvation.
Efficient behaviour under absence of contention.
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Fairness

There are subtle differences between definitions of fairness

❑ Weak fairness:  If a process continuously makes a
granted.

❑ Strong fairness:  If a process makes a request inf
be granted.

❑ Linear waiting:  If a process makes a request, it wil
process is granted the request more than once.

❑ FIFO (first-in first out):  If a process makes a requ
that of any process making a later request.
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coroutine  B;
...
resume  A;
...
return
niversität Bern

Process Creation

Co-routines:

Fork and Join:

Cobegin:
cobegin  S1 || S2 || ... || Sn coend

program  P;
...
call  A;
...
end

coroutine  A;
...
resume  B;
...
resume  B

program  P1
...
fork  P2;
...
join  P2;
...

program  P2
...
...
end
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Communication and Synchron

Shared Variables:

Message-Passing:

x y z ...

P1 P2

xP1 P

P3

y
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Synchronization Techniques

Different approaches are roughly equivalent in expressive p
generally be implemented in terms of each other.

Each approach emphasizes a different style of programmin

Busy-Waiting

Semaphores

Monitors Mess

Remote Procedure Call

Path Expressions

Procedure Oriented

Operation Oriented
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enter2 := true;
turn := “P1”;
while  enter1 and  turn = “P1”

do skip ;
Critical Section;
enter2 := false;
Non-critical Section;
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Busy-Waiting
A simple approach to implement synchronization is to have
shared variables. Condition synchronization is easy to impl
is more difficult to realize correctly and efficiently.
Condition synchronization:

☞ to signal a condition, a process sets a shared
(bufferEmpty = FALSE)

☞ to wait for a condition, a process repeatedly t
Mutual exclusion:

☞ condition variables are used to implement en
access and release shared resources

process  P1;
loop

enter1 := true; { wants to enter }
turn := “P2”; { but yields priority }
while  enter2 and  turn = “P2”

do skip ;
Critical Section;
enter1 := false; { exits }
Non-critical Section;

end ;
end ;

process  P
loop

end ;
end ;
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Semaphores

Semaphores were introduced by Dijkstra (1968) as a highe
synchronization.

A semaphore is a non-negative integer-valued variable s w
❑ P(s): delays until s>0; when s>0, atomically ex
❑ V(s): atomically executes s:= s+1

Many problems can be solved using binary semaphores, w

process  P1;
loop

P(mutex); { wants to enter }
Critical Section;
V(mutex); { exits }
Non-critical Section;

end ;
end ;

process  P
loop

end ;
end ;
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ar  it : T);

= 0 then  notempty.wait
ts[head];
 size - 1;
= (head+1) mod  N;
signal

ad := 0; tail := 0;
niversität Bern

Monitors

A monitor encapsulates resources and operations that man
❑ operations are invoked with usual procedure call s
❑ procedure invocations are guaranteed to be mutu
❑ condition synchronization is realized using signal 

☞ there exist many variations of wait and signal

procedure  fetch(v
begin

if  size 
it := slo
size :=
head :
notfull.

end

begin
size := 0; he

end

type  buffer(T) = monitor
var
slots : array  [0..N-1] of  T;
head, tail : 0..N-1;
size : 0..N;
notfull, notempty : condition;

procedure  deposit(p : T);
begin

if  size = N then  notfull.wait
slots[tail] := p;
size := size + 1;
tail := (tail+1) mod  N;
notempty.signal

end
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Problems with Monitors

Although monitors provide a more structured approach to p
semaphores, they suffer from various shortcomings.

A signalling process is temporarily suspended to allow wait
❑ Monitor state may change between signal and res
❑ Simultaneous signal and return is not supported
❑ Unlike semaphores, multiple signals are not saved
❑ Boolean expressions are not explicitly associated 
❑ Nested monitor calls must be specially handled to
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Message Passing

Message Passing combines both communication and sync

❑ A message is sent by specifying the message and
☞ The destination may be a process, a port, a s

❑ A message is received by specifying message var
☞ The source may or may not be explicitly ident
☞ Source and destination may be statically fixed

❑ Message transfer may be synchronous or asynch
☞ With asynchronous message passing, send o
☞ With buffered message passing, sent messag

buffer ; the sender may block if the buffer is fu
☞ With synchronous message passing, both the

ready for a message to be exchanged
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Unix Pipes

Unix pipes are bounded buffers that connect producer and 
(sources, sinks and filters):

cat file
| tr -c ‘a-zA-Z’ ‘\012’
| sort
| uniq -c
| sort -rn
| more

Processes should read from standard input and write to sta
Process creation and scheduling are handled by the O/S, an
implicitly by the I/O system.
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Send and Receive

In CSP or Occam, source and destination are explicitly nam

PROC buffer(CHAN OF INT give, take, signal)
VAL INT  size IS 10:
INT inindex, outindex, numitems:
[size]INT thebuffer:
SEQ

numitems := 0
inindex := 0
outindex := 0
WHILE TRUE
ALT

numitems ≤ size & give ? thebuffer[inindex]
SEQ

numitems := numitems + 1
inindex := (inindex + 1) REM size

numitems > 0 & signal ? any
SEQ

take ! thebuffer[outindex]
numitems := numitems - 1
outindex := (outindex + 1) REM siz
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Remote Procedure Calls and R
In Ada, the caller identity need not be known in advance:

task body  buffer is
size : constant  integer := 10;
the_buffer : array  (1 .. size) of  item;
no_of_items : integer range  0 .. size := 0;
in_index, out_index : integer range  1 .. size := 1;

begin
loop

select
when  no_of_items < size =>

accept  give(x : in  item) do
the_buffer(in_index) := x;

end  give;
no_of_items := no_of_items + 1;
in_index := in_index mod  size + 1;

or when  no_of_items > 0 =>
accept  take(x : out  item) do

x := the_buffer(out_index);
end  take;
no_of_items := no_of_items - 1;
out_index := out_index mod  size + 1;

end select ;
end loop ;

end buffer ;
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Other Issues

Atomic Transactions:
☞ RPC with possible failures
☞ failure atomicity
☞ synchronization atomicity

Real-Time Programming:
☞ embedded systems
☞ responding to interrupts within strict time limit
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Process Calculi

Overview
❑ SOS Style
❑ Process calculi and transition semantics
❑ A tiny language with pure synchronization
❑ Implementing the transition semantics
❑ Value passing across channels
❑ Replicated processes

Texts:
❑ R. Milner, Communication and Concurrency, Pren
❑ B. Pierce, Programming in the Pi-Calculus, Tutoria

3.6a, 1995
❑ G. Kahn, “Natural Semantics,” INRIA Report No. 6
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Limitations of Denotational Sem

Denotational Semantics:
☞ [[ program ]] = function from program input to

Concurrent programs are not functions
☞ Input and output are on-going
☞ Same input may produce different results at d
☞ Concurrent inputs may produce non-determin
☞ Correct programs may not terminate
☞ “True concurrency” cannot be captured by int
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Structural Operational Semanti

SOS Style:
☞ [[ program ]] = logical inferences about the pr

Transition Semantics:
☞ Facts are statements about possible transitio

(represented as expressions) to other states
Natural Semantics:

☞ Facts take the form: E |– c where E is an envir
about a program fragment

fact fact

fact
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Transition Semantics

Concurrent processes can be viewed as state machines tha
to new states. A concurrent system can be viewed as a com
possible transitions are synchronized as actions.

P´P
out(m)

Q´Q
in(m)

P´&Q´P&Q
(silent action)⇒
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Process Calculi

A process calculus is a formal language for describing conc
with its transition semantics.

❑ processes evolve by synchronizing communicatio
❑ concurrency is reduced to:

☞ input, output, choice, hiding/renaming, compo
❑ close affinity with the lambda calculus:

☞ a function is a process with only one input ch
☞ minimal syntax and inference rules

❑ pioneered by Milner (CCS: Calculus of Communic
and by Hoare (CSP: Communicating Sequential P
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Q
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Q´
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Pure Synchronization

A tiny process calculus: P ::= C?P | C!P | P&P | nil

NB: out(C) = in(C), out(C) = in(C); τ stands for a “silent” act

P
α

P´

P & Q P´ & Q´

C!P
out(C)

P C

P
α

P´

P & Q P´ & Q
α

P & 

Q
α

Q´

τ
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e b

?b?b?b?nil

b

p!b!a!v!nil
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Modeling Non-determinism

p!a!b!v!nil — a client of resources
& p!b!a!v!nil — a competing client
& p?v?p?v?nil — a (non-reusable) se
& a?a?a?a?nil — a server for resourc
& b?b?b?b?nil — a server for resourc

p?v?p?v?nil

a?a?a?a?nil b

vp

a
b

a

v
p!a!b!v!nil p
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m, R).
m, R).

, R).
, R).

m,P2),
,Q2).

,P2),
m,Q2).

, Comm, NewProcess) .
, Comm, NewProcess) .
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Implementing the Transition Se
:- op(700,xfy,&). % concurrent composition
:- op(600,xfy,?). % input
:- op(600,xfy,!). % output

out(Channel!Process, Channel, Process).

out(P & Q, Comm, P & R) :- out(Q, Com
out(P & Q, Comm, R & Q) :- out(P, Com

in(Channel?Process, Channel, Process).

in(P & Q, Comm, P & R) :- in(Q, Comm
in(P & Q, Comm, R & Q) :- in(P, Comm

act(P1&Q1, Comm, P2&Q2) :- out(P1,Com
in(Q1,Comm

act(P1&Q1, Comm, P2&Q2) :- in(P1,Comm
out(Q1,Com

act(P&Process, Comm, P&NewProcess) :- act(Process
act(Process&P, Comm, NewProcess&P) :- act(Process
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Searching for Executions Paths

:- op(900,xfx,===>). % actions till stop

P ===> End :- act(P,Comm,R),
print(’’), print(Comm), n
print(’=> ’), print(R), nl,

R ===> End.

P ===> P :- dead(P).

dead(P) :- act(P,_,_), !, fail.
dead(_).
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Running the Example

| ?- p!a!b!v!nil&p!b!a!v!nil & p?v?p?v?nil & a?a?a?a?nil & b?b?b?

p
=> a!b!v!nil & p!b!a!v!nil & v?p?v?nil & a?a?a?a?nil & b?b?b?b?

a
=> b!v!nil & p!b!a!v!nil & v?p?v?nil & a?a?a?nil & b?b?b?b?nil

b
=> v!nil & p!b!a!v!nil & v?p?v?nil & a?a?a?nil & b?b?b?nil

v
=> nil & p!b!a!v!nil & p?v?nil & a?a?a?nil & b?b?b?nil

p
=> nil & b!a!v!nil & v?nil & a?a?a?nil & b?b?b?nil

b
=> nil & a!v!nil & v?nil & a?a?a?nil & b?b?nil

a
=> nil & v!nil & v?nil & a?a?nil & b?b?nil

v
=> nil & nil & nil & a?a?nil & b?b?nil
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Finding Alternative Execution P

X = (nil & nil & nil & a?a?nil & b?b?nil) ? ;

p
=> p!a!b!v!nil & b!a!v!nil & v?p?v?nil & a?a?a?a?nil & b?b?b?b?

b
=> p!a!b!v!nil & a!v!nil & v?p?v?nil & a?a?a?a?nil & b?b?b?nil

a
=> p!a!b!v!nil & v!nil & v?p?v?nil & a?a?a?nil & b?b?b?nil

v
=> p!a!b!v!nil & nil & p?v?nil & a?a?a?nil & b?b?b?nil

p
=> a!b!v!nil & nil & v?nil & a?a?a?nil & b?b?b?nil

a
=> b!v!nil & nil & v?nil & a?a?nil & b?b?b?nil

b
=> v!nil & nil & v?nil & a?a?nil & b?b?nil

v
=> nil & nil & nil & a?a?nil & b?b?nil

X = (nil & nil & nil & a?a?nil & b?b?nil) ? ;

no
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P
in(C!V)

P {V/X}

Q
α

Q´

 Q P & Q´
α

niversität Bern

An Asynchronous Value-Passin
P ::= C?X>P | C!V | P&P | nil
V ::= [ ] | [C]
X ::= [ ] | [C] | [ _ ]

P
α

P´

P & Q P´ & Q´

C!V
out(C!V)

nil C?X>

P
α

P´

P & Q P´ & Q
α

P &

Q
α

Q´

τ



PS 128.

U Process Calculi

m, R).
m, R).

ss)
cess .

, R).
, R).

m,P2), in(Q1,Comm,Q2).
,P2), out(Q1,Comm,Q2).

, Comm, NewProcess) .
, Comm, NewProcess) .

t(P, Comm, R).
(P, Comm, R).
t(P, Comm, R).
niversität Bern

Implementing Value Passing
out(Channel!Message, Channel!Message, nil).

out(P & Q, Comm, P & R) :- out(Q, Com
out(P & Q, Comm, R & Q) :- out(P, Com

in(Channel?Pattern>AbsProcess, Channel!Message, NewProce
:- AbsProcess @ {Message/Pattern} –-> NewPro

in(P & Q, Comm, P & R) :- in(Q, Comm
in(P & Q, Comm, R & Q) :- in(P, Comm

act(P1&Q1, Comm, P2&Q2) :- out(P1,Com
act(P1&Q1, Comm, P2&Q2) :- in(P1,Comm

act(P&Process, Comm, P&NewProcess) :- act(Process
act(Process&P, Comm, NewProcess&P) :- act(Process

For convenience:
out(N, Comm, R) :- N := P, !, ou
in(N, Comm, R) :- N := P, !, in
act(N, Comm, R) :- N := P, !, ac
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> C,
 –-> Proc.

> C,
 –-> Msg.

PR,
 QR.

> PatR,
-> AbsR.

t?
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Implementing Substitution

D @ {XL/NL} –-> E :- D := P, !, P @ {XL

M @ {[ _ ]/[N]} –-> M :- atom(M), M \== N
Expr @ {[ ]/[ ]} –-> Expr .

N @ {[X]/[N]} –-> X :- !.
[N] @ {[X]/[N]} –-> [X] .

CE?AProc @ {XL/NL} –-> C?Proc :- CE @ {XL/NL} –-
AProc @ {XL/NL}

CE!AMsg @ {XL/NL} –-> C!Msg :- CE @ {XL/NL} –-
AMsg @ {XL/NL}

P&Q @ {XL/NL} –-> PR & QR :- P @ {XL/NL} –-> 
Q @ {XL/NL} –->

Pat>Abs @ {XL/NL} –-> PatR>AbsR :- Pat @ {XL/NL} –-
Abs @ {XL/NL} –

NB: The rule for input channels is not quite right — why no
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A Value-Passing Example

NB: substituting bound names works here, but not in gener

| ?- (a?[r]>r![ ] & a?[r]>r![ ] & a?[r]>r![ ]) & a![b] & (b?[ ]>nil) & a![c] &

a![c]

=> (c![ ]&a?[c]>c![ ]&a?[c]>c![ ])&a![b]&(b?[ ]>nil)&nil&c?[ ]>nil

c![ ]

=> (nil&a?[c]>c![ ]&a?[c]>c![ ])&a![b]&(b?[ ]>nil)&nil&nil

a![b]

=> (nil&b![ ]&a?[b]>b![ ])&nil&(b?[ ]>nil)&nil&nil

b![ ]

=> (nil&nil&a?[b]>b![ ])&nil&nil&nil&nil
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Process Replication
P ::= C?*A | C?A | C!V | P&
A ::= X>P
V ::= [ ] | [C]
X ::= [ ] | [C] | [ _ ]

in(Channel?*Pattern>AbsProcess, Channel!Message,
(Channel?*Pattern>AbsProcess) & NewProcess)

:- AbsProcess @ {Message/Pattern} –-> NewPro

CE?*AProc @ {XL/NL} –-> C?*Proc :- CE @ {XL/NL} –-
AProc @ {XL/NL}

C?*X>P
in(C!V)

C?*X>P & P {V
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rint![R] & R?[ ]>v![ ].

lient(r2).

 ]

client(r2)

r2![ ]
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Resources as Replicated Proce
A counting semaphore: sem := p![ ] & v?*[ ]>p![ ].

A printer: printer := print?*[r]>r![ ].

A template for client processes: client(R) := p?[ ]>print![R] & R?[ ]>p

A configuration with two distinct clients: eg := sem & printer & client(r1) & c

sem

printer

v![p![ ]

print![r2]

v![ ]client(r1) p![ ]

print![r1] r1![ ]
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>print![r2] & r2?[ ]>v![ ])

nt![r2] & r2?[ ]>v![ ])

v![ ]

]

 r1?[ ]>v![ ])
[ ]>v![ ])
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Running the Example
sem & printer & client(r1) & client(r2)

p![ ] =>  (v?*[ ]>p![ ]) & (print?*[r]>r![ ]) & client(r1) & print![r2] & (r2?[ ]

print![r2] =>  (v?*[ ]>p![ ]) & (print?*[r]>r![ ]) & r2![ ] & client(r1) & (r2?[ ]>pri

r2![ ] =>  (v?*[ ]>p![ ]) & (print?*[r]>r![ ]) & client(r1) & print![r2] & r2?[ ]>

print![r2] =>  (v?*[ ]>p![ ]) & (print?*[r]>r![ ]) & r2![ ] & client(r1) & r2?[ ]>v![ 

r2![ ] =>  (v?*[ ]>p![ ]) & (print?*[r]>r![ ]) & client(r1) & v![ ]

v![ ] =>  (v?*[ ]>p![ ]) & p![ ] & (print?*[r]>r![ ]) & client(r1)

p![ ] =>  (v?*[ ]>p![ ]) & (print?*[r]>r![ ]) & print![r1] & (r1?[ ]>print![r1] &
print![r1] =>  (v?*[ ]>p![ ]) & (print?*[r]>r![ ]) & r1![ ] & (r1?[ ]>print![r1] & r1?
r1![ ] => (v?*[ ]>p![ ]) & (print?*[r]>r![ ]) & print![r1] & r1?[ ]>v![ ]
print![r1] =>  (v?*[ ]>p![ ]) & (print?*[r]>r![ ]) & r1![ ] & r1?[ ]>v![ ]
r1![ ] =>  (v?*[ ]>p![ ]) & (print?*[r]>r![ ]) & v![ ]
v![ ] =>  (v?*[ ]>p![ ]) & p![ ] & (print?*[r]>r![ ])
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Other Issues

❑ Choice:
☞ How to express choice of inputs?

❑ Encapsulation:
☞ How to encapsulate subsystems?
☞ How to generate new channel names?

❑ Structural Equivalence:
☞ Simplifying the transition semantics by giving

— e.g., p&q == q&p
❑ Semantic Equivalence:

☞ When do two expressions represent the same
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PICT

Overview
❑ PICT core syntax
❑ Creating new channels
❑ Channel types
❑ Modelling language constructs
❑ A concurrent queue

Texts:
❑ R. Milner, “The Polyadic π-Calculus: A Tutorial,” U
❑ B. Pierce, Programming in the Pi-Calculus, Tutoria

3.6a, 1995
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asicVal
Val , ... ]
cord end
al with Id = Val end

String
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Abstract Syntax of (Untyped) C

Proc = Val ? Abs
Val ?* Abs
Val ! Val
Proc | Proc
let new Name in Proc end

Abs = Pat > Proc

Pat = Name
[ Pat , ... ]
record Id = Pat , ... end
Name @ Pat
_

Val = N
B
[
re
V

Name = Id

BasicVal =
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Binding Channels

All channel names must be bound, either by “let new” or by

run
let new x in

x![ ]
| (x?[ ]>print!"Got it!")
end

NB: print is a built-in channel
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Typed Channels

Channels in PICT are typed, and may only carry values ma

Type = ^ Type
! Type
? Type
[ Type , ... ]
Record end
Type with Id : Type end
Top

In most cases, types can be automatically inferred, and dec

run
let new x : ^[ ] in

x![ ]
| (x?[ ]>print!"Got it!")
end
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Synchrony and Asynchrony

Although PICT uses asynchronous message-passing, sync
waiting for a response on a (fresh) channel:

def sem [p,v] >
(p?r > r![ ])

| (v?*r > r![ ] | (p?r > r![ ]))

A definition is syntactic sugar for a (new) replicated proces

let new sem
run (sem?*[p,v] >

(p?r > r![ ])
| (v?*r > r![ ] | (p?r > r![ ])))

Note that all channel names are bound, and that channels 
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Synchronizing Concurrent Clien

def client [p,v] >
let new r, s1, s2 in

p!r
| (r?[ ] > pr!["FIRST\n",s1])
| (s1?[ ] > pr!["SECOND\n",s2])
| (s2?[ ] > v!r | (r?[ ] > skip))
end

run
let new p, v in

sem![p,v]
| client![p,v]
| client![p,v]
| client![p,v]
end
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Modelling Booleans

def tt [b] > b?*[t,_] > t![ ]
def ff [b] > b?*[_,f] > f![ ]

def test [b] >
let new t, f in

b![t,f]
| (t?[ ] > print!"True")
| (f?[ ] > print!"False")
end

def notB [b,c] > c?*[t,f] > b![f,t]

run
let new b, c in

ff![b] | notB![b,c] | test![c]
end
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Modelling Language Construct
Higher-level language constructs are modelled by translatio

run
let new x in

x!false
| (x?b >

if  b
then  print!"True"
else  print!"False"
end )

end

is translated to:
run

let new x in
x!false

| (x?b >
let new t,f in

primif![b,t,f]
| (t?[ ] > print!"True")
| (f?[ ] > print!"False")
end)

end
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Natural Numbers
A natural number n can be modelled by a channel n that re
and either sends z![ ] if it is equal to zero, or else sends p![k

def zero [p,z] > z![ ]
def one [p,z] > p![zero]
def two [p,z] > p![one]
def three [p,z] > p![two]

def count [n] >
let new p,z in

n![p,z]
| (z?[ ] > print!"0")
| (p?[m] > print!"1+" | count![m])
end

run count![three]
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Counting

New numbers can be generated by constructing a succ

def succ [n, r] >
let new s in

r!s
| (s?*[p,z] > p![n])
end

run
let new r in

succ![three,r]
| (r?s > count![s])
end
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Arithmetic

Arithmetic operators can be built up in the same way:

def add [m,n,r] >
let new p, z in

m![p,z]
| (z?[ ] > r!n)
| (p?[pm] >

let new rn in
succ![n,rn]

| (rn?sn>add![pm,sn,r])
end)

end

run let new r in
add![two,three,r]

| (r?s > count![s])
end
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Functional Notation

Infix notation and functional application are syntactic sugar

run printi!(2+5)

translates to:
run printi!((+)[2,5])

which translates to:
run

let new r in
(+)![2,5,r] | (r?value > printi!value)

end
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Functions as Processes

Functions can be defined as processes:

def double [n] = n+n

translates to:
def double [n,r] > r!(n+n)

which translates to:
def double [n,r] >

let new r1 in
(+)![n,n,r1]

| (r1?value > r!value)
end

run printi!(double[5])



PS 148.

U PICT

br in
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r?b >
t new t, f in

primif![b,t,f]
(t?[ ] > r!1)
(f?[ ] >
let new nr in

(-)![n,1,nr]
| (nr?k >

let new kfr in
fact![k,kfr]

| (kfr?kf >
let new fr in

(*)![n,kf,fr]
| (fr?f > r!f)
end)

end)
end)

d)
niversität Bern

Functions as Processes

def fact [n,r] >
let new 

(=
| (b

le

|
|

en
end

def fact [n] =
if n == 0
then 1
else n * fact[n-1]
end

run printi!(fact[5])

120

translates to:
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Sequencing

run
pr["hello "];
pr["world\n"];
skip

translates to:
run

let new r in
pr!["hello ",r]

| (r?[ ] >
let new r in

pr!["world\n",r]
| (r?[ ] > skip)
end)

end
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tail
link!next’’’

alue,next’’,next’’’]

lue,r] r![ ]

link!next’’

ll
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A Concurrent Queue

head

r![value]

next![ ]

cell![v

put![va

get![r]

cell

The head accepts a get request to yield its
value and trigger the next cell.
A cell waits to be triggered by the head, and
then itself becomes the head of the queue.
The tail services put requests by
constructing a new cell that waits for the
next trigger from the cell in front of it.

ce
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 link!init
(put?*[value,r] >
link?ready >
let new next in

cell![value,ready,next]
| link!next
| r![ ]
end )
init![ ]
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Implementing the Concurrent Q
new get, put

def head[value, next] >
get?[r] > r!value | next![ ]

def cell[value, ready, next] >
ready?[ ] > head![value, next]

run
let new r in

tail![ ]
| (put["one"]; put["good"]; put["turn"]; put["deserves"]; put["anot
| get![r]
| get![r]
| get![r]
| get![r]
| get![r]
| (r ?* s > print!s)
end

def tail [ ]
let n

|

|
end
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Object-Based Concurrency

Overview
❑ What is an OBCL?
❑ Dimensions of OO Languages
❑ Expression of Concurrency

☞ Objects and Processes
☞ Granularity of Concurrency
☞ Creating Processes

❑ Communication and Synchronization
☞ Intra-Object and Inter-Object Synchronization

❑ Evaluating OBCLs
❑ Research Topics
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What is an OBCL?

An Object-Based Concurrent Language supports:
❑ Encapsulation

☞ objects encapsulate data and operations
❑ Concurrency

☞ multiple processes may be concurrently activ
☞ need to: specify, create and synchronize proc

Why do we need OBCLs?
❑ Inherent application (real-world) concurrency
❑ Distributed applications
❑ Application integration and interoperability
❑ Parallel applications
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Overview of OBCLs

❑ Traditional OBLs:
☞ Smalltalk-80, C++, Objective C, Ada
☞ libraries

❑ Extended OBLs:
☞ CLU: Argus
☞ Smalltalk-80: ConcurrentSmalltalk, Actalk, PO
☞ C++: ACT++, Arjuna, Avalon, Karos
☞ Eiffel//

❑ Concurrent OBLs:
☞ Actors, ABCL, POOL, Guide, Hybrid, Meld
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Requirements for OBCLs

❑ Object autonomy:
☞ protection from concurrent requests

❑ Internal concurrency:
☞ should be transparent to clients

❑ Local delay transparency:
☞ handling of local delays should be transparen

❑ Remote delay transparency:
☞ handling of remote delays should be transpar

❑ Composable synchronization policies:
☞ subclasses should share synchronization cod

REF: Papathomas, PhD thesis, 1992.
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Expression of Concurrency

❑ Objects and Processes:
☞ How are processes and objects related?

❑ Granularity of Concurrency:
☞ How many processes can be associated with

❑ Process Creation:
☞ How are processes created?
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Objects and Processes

How are processes related to objects?

Three Classes of OBCL:

❑ Passive Objects: objects & concurrency
(Smalltalk-80, C++, Ob

❑ Active/Passive: passive + “concurrent”
(PAL)

❑ Active Objects: objects and processes
(ABCL/1, Hybrid, POO
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Passive Object Models

Concurrent processes access passive objects.
Processes synchronize according to a shared memory mod

☞ objects must be designed to be shared, or
☞ processes must explicitly synchronize via lock

Smalltalk-80, C++, Objective-C, Emerald

operations
data operations

data

Process Process
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Active/Passive Models

Active Objects are identified with processes
Passive objects are protected by the active objects contain

☞ lightweight/heavyweight distinction
☞ two class hierarchies are incompatible

PAL

Active Objects

Passive Objects
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Active Object Models

Objects and processes are integrated:
☞ each operation invocation is a potentially con
☞ an object with a running operation is active
☞ every object is autonomous and synchronizes

ABCL, Hybrid, POOL, ...

Active Objec
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Granularity of Concurrency

Approaches to Concurrency:

Inter-Object Concurrency:
❑ Sequential Objects Ada, POOL

Intra-Object Concurrency:
❑ Quasi-Concurrent Objects Hybrid

❑ Concurrent Objects:
☞ Client-Driven: Passive Objects
☞ Server-Driven: Active Objects
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Sequential Objects

In a sequential object model, requests are serialised in a w
☞ each operation runs to completion before the
☞ concurrency is introduced by having more ob
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Quasi-Concurrent Objects

Quasi-concurrent objects may switch attention between mu
☞ In Hybrid, a delegated call to another object a

switch to another request
☞ In ABCL, an express message may interrupt 

ordinary invocation
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Concurrent Objects

Concurrent Objects may serve multiple requests concurren
❑ Passive Objects require explicit synchronization o
❑ Active Objects control when to accept new reques

☞ may create additional internal threads to serv

Passive: Smalltalk-80, C++, ...
Active: Sina, PO, Eiffel//, ...
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Process Creation

❑ Asynchronous Objects
☞ Explicit bodies
☞ Implicit bodies

❑ Asynchronous Messages
☞ one-way message-passing
☞ futures
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Asynchronous Objects

The “body” of an active object may be:
☞ Implicit and inaccessible — standard schedul
☞ Explicit and customizable — initialization, sch

Implicit: Actalk, Act++, Actors
Explicit: Ada, Eiffel//, Pool

instantiation

independe
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Asynchronous Invocation

Clients do not wait for the reply to continue executing
❑ one-way message-passing:

☞ reply (if any) sent by another invocation

❑ futures:
☞ reply sent to a future object
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Futures

The reply to an asynchronous request is sent to a future ob
☞ The client obtains the result when needed.
☞ Clients block only if the result is not yet availa

Futures may be created either explicitly by clients or implic

Explicit: ACT++, ABCL, PO, ConcurrentSmalltalk
Implicit: Eiffel//, Karos, Meld
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Communication and Synchron

❑ Intra-Object Synchronization:
☞ Remote Delays: asynchronous invocations
☞ Local Delays: condition synchronization

❑ Inter-Object Synchronization:
☞ Transactions
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Local Delays

An object may need to delay selected requests to avoid loc

❑ Unconditional acceptance Eme

❑ Conditional acceptance

☞ Centralized acceptance
➪ Explicit acceptance Ada,
➪ Reflective computation Acta

☞ Distributed activation conditions
➪ Representation specific Guid
➪ Abstract Proc
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Local Delays

?

Unconditional acceptance

Representation specific delays Abstract syn

Exp
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Transactions

❑ Concurrency atomicity:
☞ intermediate effects on shared objects are inv

(serialisability or isolation)

❑ Failure atomicity:
☞ transactions either complete successfully, or 

effect on shared objects (the “all-or-nothing” p

Transactions may be associated with transaction blocks (e
be realized as atomic invocations (implicit with operation st
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Classifying OBCLs

❑ Object Models
☞ Active or Passive Objects?

❑ Granularity of Concurrency
☞ Sequential, Quasi-Concurrent or Concurrent?

❑ Process Creation
☞ Asynchronous Objects or Asynchronous Invo

❑ Local Delays
☞ Conditional or Unconditional Acceptance?
☞ Centralized or Distributed Activation Conditio
☞ Explicit or Reflective / Abstract or Representa
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Evaluation

❑ Object autonomy:
☞ active objects

❑ Internal concurrency:
☞ server-driven

❑ Local delay transparency:
☞ various approaches ...

❑ Remote delay transparency:
☞ futures or internal threads

❑ Composable synchronization policies:
☞ composable abstract synchronization policies
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Text Processing Languages

Overview
❑ Text processing languages
❑ Sed and AWK
❑ Perl

Texts:
❑ L. Wall and R.L. Schwartz, Programming Perl, O’R
❑ Bill Kinnersley, The Language List — Version 2.3,

(http://cuiwww.unige.ch/langlist, ftp://ftp.wustl.edu
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What are Text Processing Langu

Common features:
❑ Strings as built-in data types
❑ Pattern matching
❑ Textual substitution
❑ Regular expressions
❑ Lists and associative arrays
❑ Automatic conversion between strings and numer
❑ Formatting and report generation
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manipulation language. ftp://prep.ai.mit.edu/
gawk2.11.cpt.hqx

tomata. J. Mysior et al, “LOGOL, A String
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Some Text Processing Languag

Selected from the Language List:

AWK  — Aho Weinberger Kernighan. 1978. Text processing/macro language. “The AWK P
Kernighan, P. Weinberger, A-W 1988. (See Bawk, Gawk, Mawk, Nawk, Tawk.) ftp

AXLE  — An early string processing language. Program consists of an assertion table whic
which specifies replacements. “AXLE: An Axiomatic Language for String Transfo
661 (Nov 1965).

bawk  — Bob Brodt. AWK-like pattern-matching language, distributed with Minix.

CONVERT —
1. String processing language, combined the pattern matching and trans

recursive data structures of Lisp. “Convert”, A. Guzman et al, CACM 9(
EMACS LISP  — Richard Stallman. Variant of LISP used by the EMACS editor. (This is the

file. See ELISP.)

Gawk  — GNU’s implementation of a superset of POSIX awk, a pattern scanning and data 
pub/gnu/gawk-2.15.4.tar.Z //archive.umich.edu/mac/utilities/developerhelps/mac

LOGOL  — Strings are stored on cyclic lists or ’tapes’, which are operated upon by finite au
manipulation Language”, in Symbol Manipulations Languages and Techniques, 

mawk  — Mike Brennan <brennan@bcsaic.boeing.com> 1991. An implementation of naw
from GNU’s gawk. ftp://oxy.edu/public/mawk

Nawk  — New AWK. AT&T. Pattern scanning and processing language. An enhanced vers
expressions, additional built-ins and operators, and user-defined functions.

PANON — A family of pattern-directed string processing languages based on generalized
Languages and Generalized Markov Algorithms”, A. C. Forino, Proc IFIP Workin
206, Amsterdam 1968. PANON-1, based on Simple GMA’s and PANON-2 based
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/outgoing/perl.4.0 for Unix, MS-DOS, Amiga
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nsky, Bell Labs 1962-3. String processing
nguage“, R. Griswold et al, J ACM 11(1):21

n and Implementation of Programming
e, Amsterdam 1982.

sprite.berkeley.edu> A string language
tend tcl with its own set of commands.
Winter USENIX Conf. ftp://

age for text editing, screen handling and
O programs are said to resemble line noise.)
S-DOS, Mac, Amiga

guage with Dynamic Storage Control“,
niversität Bern

Perl  — Practical Extraction and Report Language. Larry Wall <lwall@netlabs.com> An AW
and printing formatted reports. Regular expression primitives, dynamically- scop
runtime libraries, exception handling, packages. Version 5 adds nested data stru
“Programming Perl”, Larry Wall et al, O’Reilly & Assocs. ftp://ftp.netlabs.com/pub
//ftp.netlabs.com/pub/outgoing/perl5.0/perl5a1.tar.Z for Sparc //rascal.utexas.ed
for Mac
uucp: osu-cis

Sed — Stream editor. The input language used by the Unix stream editor.

SNOBOL  — StriNg Oriented symBOlic Language. David Farber, Ralph Griswold & I. Polo
language for text and formula manipulation. ”SNOBOL, A String Manipulating La
(Jan 1964).

SPRING — String PRocessING language. ”From SPRING to SUMMER: Design, Definitio
Languages for String Manipulation and Pattern Matching“, Paul Klint, Math Centr

TAWK  — Tiny AWK.

Tcl  —
1. (“tickle”) Tool Command Language. John Ousterhout, UCB. <ouster@

for issuing commands to interactive programs. Each application can ex
“Tcl: An Embeddable Command Language”, J. Ousterhout, Proc 1990 
ucbvax.berkeley.edu

TECO — Text Editor and COrrector. (Originally “Tape Editor and COrrector”). Macro langu
keyboard management. Has a reputation for being cryptic and hard to learn. (TEC
The first EMACS editor was written in TECO. ftp://usc.edu, for VAX/VMS, Unix, M

VULCAN  —
3. Early string manipulation language. ”VULCAN - A String Handling Lan

E.P. Storm et al, Proc FJCC 37, AFIPS (Fall 1970).
ZUG — Geac. [?] A low-level Awk?
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Regular Expressions (Perl)

Each character matches itself, unless it is one of the specia
❑ . matches an arbitrary character except a 
❑ (...) groups a series of pattern elements to a 
❑ + matches the preceding pattern element o
❑ ? matches zero or one times
❑ * matches zero or more times
❑ {N,M} matches from N to M times; {N} exactly N
❑ [...] denotes a class of characters to match; [
❑ (...|...|...) matches one of the alternatives
❑ \w matches alphanumerics and “_”; \W matc
❑ \b matches word boundaries; \B negation
❑ \s matches whitespace; \S matches non-wh
❑ \d matches digits; \D matches non-digits
❑ \n \r \t match newlines, carriage returns, tabs
❑ \1...\9 refer to matched sub-expressions groupe
❑ $& string matched by the last pattern match
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SED

SED performs substitutions on a stream of text:

#! /bin/sed -f
# escape special characters for Framemaker
s/\\/&&/g
s/ /\\t/g
s/[<>]/\\&/g
s/–/<endash>/g
s/“/<quotedblleft>/g
s/’\’\”/<quoteblright>/g

Alternatively, at command level:
sed -e ’s/\\/&&/g’ \

-e ’s//\\t/g’ \
-e ’s/[<>]/\\&/g’ \
-e ’s/–/<endash>/g’ \
-e ’s/“/<quotedblleft>/g’ \
-e ’s/’\’\”/<quoteblright>/g’ \
$*
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AWK

AWK modifies text streams by transformation rules:

#! /bin/awk -f
#
# pgs --- count pages in %P fields of refer files

/%P [0-9]*$/ { pgs += $2 ; next }

/%P [0-9]* *- *[0-9]*$/ {
p = substr($0,4)
n = split(p, pp, "-")
pgs += 1 + pp[2] - pp[1]

}

END { print pgs }



PS 182.

U Text Processing Languages

 ...)
niversität Bern

Perl

“Practical Extraction and Report Language”
or

“Pathologically Eclectic Rubbish Lister”

Principle features:
❑ uniform selected merge of: sed, awk, csh, c ...
❑ numbers, text, binary data
❑ file, string processing, regular expressions
❑ built-in lists, associative arrays
❑ special variables to control processing ($/, $[ ...)
❑ common systems calls (files, directories, sockets,
❑ compilation; dynamic evaluation; error-handling
❑ packages
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Regular Expressions

Sed-like behaviour can be obtained with the -p flag:
#! /usr/local/bin/perl -p
#
# caps --- change initial letters of words to upper
#
# But don't capitalize isolated letters!

s/\w/\l$&/g; # convert all alphabetics to
s/\b\w\w/\u$&/g ; # change initial characters 

is equivalent to:
#! /usr/local/bin/perl
while (<>) { # read a line of input into $_

s/\w/\l$&/g; # perform a substitution on
s/\b\w\w/\u$&/g ;
print; # print $_

}
Sed and AWK scripts can be automatically translated to Pe
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Arrays

#! /local/bin/perl -s
#
# rsort –- sort a file of records

$/ = ""; # blank line separates records

print sort(@input=<>);

☞ Special variables control default behaviour
☞ Values are interpreted as scalars, arrays or a

on the current context
☞ Built-in functions efficiently implement commo



PS 185.

U Text Processing Languages

 ...]\n";

 }
niversität Bern

Subroutines
#! /usr/local/bin/perl -s
# rsort --- sort a file of records

$usg = "Usage : rsort [-r(everse)] [-u(nique)] [<file>
die $usg if $h;

$/ = ""; # blank line separates records
if ($r) {

if ($u) { &uniq(sort({$b cmp $a} @input=<>));
else { print sort({$b cmp $a} @input=<>); }

} else {
if ($u) { &uniq(sort(@input=<>)); }
else { print sort(@input=<>); }

}

sub uniq {
foreach $current (@_) {

next if ($current eq $previous);
print $previous = $current;

}
}
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File I/O

#! /local/bin/perl -s
# rsplit–- split a file of records into two parts by a k

$usg = "Usage: rsplit <key> <file>\n";
# blank line is record separator
$/ = "";
$key = $ARGV[0];
if ($#ARGV == 1) { $IN = $ARGV[1]; $MATCH = "
"$IN.2"; }
else { die $usg; }
open(IN,$IN);
open(MATCH,">$MATCH");
open(REST,">$REST");
while (<IN>) {

/$key/o && do { print MATCH $_ ; next; };
print REST $_;

}
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Dynamic Compilation
#! /usr/local/bin/perl -s
#
# rgrep --- extract records matching a pattern fro

$u = "Usage: rgrep [-i] <pattern> [<file> ...]\n" ;

($pattern,@files) = @ARGV ;
defined($pattern) || die($u) ;
@ARGV = @files ;

$/ = "" ; # set blank line to be record separat

if ($i) { $i = "i"; }

# patterns with alternatives are slow to evaluate,
# so construct a logical alternative instead:
foreach $p (split(/\|/,$pattern)) {

$mpat .= "/$p/o$i && (print, next);\n";
}
eval "while(<>) { $mpat }";
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Packages
#! /local/bin/perl
#
# pre –- produced pre-formatted HTML text
unshift(@INC,"/user/oscar/Cmd/PerlLib");
require("url.pl");
if ($#ARGV >= $[) {

foreach $file (@ARGV)
{ open(FILE,$file); &pre($file,FILE); close

}
else { &pre("stdin", stdin); }
sub pre {

local($file,$input) = @_;
print "<TITLE>Ascii file: $file</TITLE>\n<PRE
while(<$input>) {

study;
s/&/&amp;/g; s/</&lt;/g; s/>/&gt;/g;
&url’href; # recognize hypertext links
print;

}
print "</PRE>\n";

}
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Standard System Calls
sub http {

local($host,$port,$request) = @_;
($fqdn, $aliases, $type, $len, $thataddr) = ge
$that = pack($sockaddr, &AF_INET, $port, $t
socket(FS, &AF_INET, &SOCK_STREAM, $p
bind(FS, $thissock) || return undef;
local($/);
unless (eval q!

$SIG{’ALRM’} = "url’timeout";
alarm(30);
connect(FS, $that) || return undef;
select(FS); $| = 1; select(STDOUT);
print FS "GET $request\r\n";
$page = <FS>;
$SIG{’ALRM’} = "IGNORE";
!) { return undef; }

close(FS);
$page;

}
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Perl: Pros and Cons

Pros:
❑ Highly optimized for text processing
❑ Convenient for writing Unix administration scripts
❑ Acceptable support for writing modules
❑ On-the-fly compilation (+ error detection)

Cons:
❑ Weak encapsulation (global variables)
❑ No facility for defining complex data types
❑ Easy to introduce type errors
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Scripting Languages

Overview
❑ Shell Languages, Command Languages, Scripting

Generation Language and Coordination Language
❑ The Bourne Shell

Texts:
❑ Bill Kinnersley, The Language List — Version 2.3,

(http://cuiwww.unige.ch/langlist, ftp://ftp.wustl.edu
❑ S.R. Bourne, “An Introduction to the UNIX Shell,” 
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Scripting Languages and Their 

The distinctions between the following languages classes a

Shell Language:
☞ language for interacting with an application or

Command Language:
☞ interactive language for issuing commands to

Scripting Language:
☞ language for controlling and composing comp

Fourth Generation Language:
☞ high-level language for specialized (usually d

Coordination Language:
☞ language for coordinating multi-agent system
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Shell Languages

AppleScript  — An object-oriented shell language for the Macintosh, approximately a sup

bash  — Bourne Again SHell. GNU’s command shell for Unix. ftp://prep.ai.mit.edu/pub/gnu

csh  — C-Shell. William Joy. Command shell interpreter and script language for Unix.

es —
1. Extensible Shell. Unix shell derived from rc, includes real functions, cl

redefine most internal shell operations. ”Es - A Shell with Higher Order
1993 Usenix Technical Conference. ftp://ftp.sys.utoronto.ca/pub/es/es

FOCL — Expert system shell, a backward chaining rule interpreter for Mac. ftp://ics.uci.ed
FOCL-ES.cpt.hqx
info: pazzani@ics.uci.edu

GEST — Generic Expert System Tool. Expert system shell with frames, forward and back
Symbolics LISP machines only. ftp://ftp.gatech.edu/pub/ai/gest.tar.Z
info: John Gilmore <John.Gilmore@gtri.gatech.edu>

ksh  — Korn Shell command interpreter for Unix.

MIKE — Micro Interpreter for Knowledge Engineering. Expert system shell for teaching pu
and user- definable conflict resolution strategies. In Edinburgh Prolog. BYTE Oct 
software/src/MIKE-v2.03
info: Marc Eisenstadt <M.Eisenstadt@hcrl.open.ac.uk>

rc  — Tom Duff. AT&T Plan 9 shell. Lookalike by Byron Rakitzis <byron@archone.tamu.ed

sh  — (or ”Shellish“). S.R. Bourne. Command shell interpreter and script language for Unix
Shell“, S.R. Bourne, Bell Sys Tech J 57(6):1971-1990 (Jul 1978).

TACL  — Tandem Advanced Command Language. Tandem, about 1987. The shell langua
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Command Languages

GCL — General Control Language. A portable job control language. ”A General Control In
Command Languages, C. Unger ed, N-H 1973.

IBEX — Command language for Honeywell’s CP-6 OS.

LE/1 — Langage External. ”An Evaluation of the LE/1 Network Command Language Desi
Command Languages, C. Unger ed, N-H 1973.

PCL —
3. Peripheral Conversion Language. Honeywell. Command language for 

CP-V and CP-6 operating systems.
POCAL  — PETRA Operator’s CommAnd Language.

RCL — Reduced Control Language. A simplified job control language for OS360, translate
for Non- Professional Users”, K. Appel in Command Languages, C. Unger ed, N-

RECOL — REtrieval COmmand Language. CACM 6(3):117-122 (Mar 1963).

SCL —
1. System Control Language. Command language for the VME/B operati

structured, strings, superstrings (lists of strings), int, bool, array types. C
on a variable value occurs. Macros supported. Commands are treated l
”VME/B SCL Syntax“, Intl Computers Ltd 1980.

TACL  — Tandem Advanced Command Language. Tandem, about 1987. The shell langua
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tend tcl with its own set of commands.
Winter USENIX Conf. ftp://

OS. “Exploring the Pick Operating

ortable Job Control“, I.A. Newman, Proc

700 under MCP. WFL was a compiled block-
’s. ”Work Flow Management User’s Guide“,

age“, R.M. Cowan in Command Languages,
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Command Languages ...

Tcl  —
1. (“tickle”) Tool Command Language. John Ousterhout, UCB. <ouster@

for issuing commands to interactive programs. Each application can ex
“Tcl: An Embeddable Command Language”, J. Ousterhout, Proc 1990 
ucbvax.berkeley.edu

Tcl  —
2. Terminal Control Language. The command language used in the Pick 

System”, J.E. Sisk et al, Hayden 1986.
tcsh  — Command language for Unix, a dialect of csh.

UNIQUE — A portable job control language, used. ”The UNIQUE Command Language - P
DATAFAIR 73, 1973, pp.353-357.

WFL — Work Flow Language. Burroughs, ca 1973. A job control language for the B6700/B7
structured language similar to ALGOL-60, with subroutines and nested begin-end
Burroughs Manual 5000714 (1973). ”Burroughs B6700/B7700 Work Flow Langu
C. Unger ed, N-H 1975.
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Scripting Languages

AppleScript  — An object-oriented shell language for the Macintosh, approximately a sup

Cmm  — C Minus Minus. Scripting language. ftp://ftp.std.com/vendors/CEnvi-Cmm/share

csh  — C-Shell. William Joy. Command shell interpreter and script language for Unix.

DCL —
1. DIGITAL Command Language. The interactive command and scripting

ECSS II — Extendable Computer System Simulator. An extension of SIMSCRIPT II. ”The 
Systems“, D.W. Kosy, R- 1895-GSA, Rand Corp.

expect  — A script language for dealing with interactive programs. Written in Tcl. ”expect: S
Libes, Comp Sys 4(2), U Cal Press Journals, Nov 1991. ftp://ftp.uu.net/language

Hyperscript  — Informix. The object-based programming language for Wingz, used for cre
customized data entry.

HyperTalk  — Bill Atkinson and Dan Winkler. A verbose semicompiled language with loose
HyperCard as an object management system, development environment, and in
”stacks“ of ”cards“, each of which may have ”buttons“ and ”fields“. All data storage
or global variables; all data references are through ”chunk expressions“ of the for
of card ID 34217’. Flow of control is event-driven and message-passgin among sc
card, field and button objects. ”Apple Macintosh HyperCard User Guide“, Apple C
Reference Manual“, A-W 1988. Available from Claris Corp.

Lakota  — Scripting language, extends existing OS commands.
info: Richard Harter <rh@smds.UUCP> SMDS Inc.

Lingo  — An animation scripting language. MacroMind Director V3.0 Interactivity Manual, 
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uce Sherwood, Control Data, 1977.
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Scripting Languages ...

Obliq  — Luca Cardelli, 1993. A distributed object-oriented scripting language. Small, stat
concurrent. State is local to an address space, while computation can migrate ov
mechanism is based on Modula-3 network objects. ftp://gatekeeper.dec.com/pub

PSML — Processor System Modeling Language. Simulating computer systems design. A
System Modeling - A Language and Simulation System”, F. Pfisterer, Proc Symp
1976).

QUIKSCRIPT — Simulation language derived from SIMSCRIPT, based on 20-GATE. “Qu
G-20”, F.M. Tonge et al, CACM 8(6):350-354 (June 1965).

REXX — Restructured EXtended eXecutor. M. Cowlishaw, IBM ca. 1979. (Original name:
Interpreter”). Scripting language for IBM VM and MVS systems, replacing EXEC
Approach to Programming”, M.F. Cowlishaw, 1985. Versions: PC-Rexx for MS-D
list: REXX-L@UIUCVMD.BITNET. ftp://rexx.uwaterloo.ca/pub/freerexx/* REXX i

sh  — (or ”Shellish“). S.R. Bourne. Command shell interpreter and script language for Unix
Shell“, S.R. Bourne, Bell Sys Tech J 57(6):1971-1990 (Jul 1978).

SIMSCRIPT — Harry Markowitz et al, Rand Corp 1963. Implemented as a Fortran prepro
simulations, influenced Simula. ”SIMSCRIPT: A Simulation Programming Langu
SIMSCRIPT I.5 (CACI 1965 - produced assembly language), SIMSCRIPT II, SIM

TUTOR — Scripting language on PLATO systems from CDC. “The TUTOR Language”, Br
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Fourth Generation Languages (

Clarion  — MS-DOS 4GL.

D —
1. ”The Data Language.“ MS-DOS 4GL.

Linc  — Burroughs/Unisys 4GL. Designed in New Zealand.

NATURAL  — Software AG, Germany. Integrated 4GL used by the database system ADAB
NATURAL. Also NATURAL 2?

R:BASE  — MS-DOS 4GL from Microrim. Based on Minicomputer DBMS RIM. Was Wayn
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mmunication in Linda“, D. Gelernter

 N. Carreiro <carreiro@cs.yale.edu> et al,
, Lucinda, Melinda, Prolog-Linda).

 built on a reflective architecture. A redesign

llel Languages, LeMetayer ed, Springer

 extension of Horn logic with a new kind of
li et al, SIGPLAN Notices 25(10):44-56
niversität Bern

Coordination Languages

Linda  — Yale. A ”coordination language“, providing a model for concurrency with commun
implemented as a subroutine library for a specific base language. ”Generative Co
<gelernter@cs.yale.edu> ACM TOPLAS 7(1):80-112 (1985). ”Linda in Context“,
CACM 32(4):444-458 (Apr 1989). (See C-Linda, Ease, Fortran-Linda, LindaLISP

MeldC  — Columbia U, 1990. A C-based concurrent object-oriented coordination language
of MELD. Version 2.0 for Sun4’s and DECstations.
info: Gail Kaiser <meldc@cs.columbia.edu>

Also sometimes classified as coordination languages:

GAMMA  —
2. A high-level parallel language. Research Directions in High-Level Para

1992.
LO — Linear Objects. Concurrent logic programming language based on “linear logic”, an

OR- concurrency. “LO and Behold! Concurrent Structured Processes”, J. Andreo
(OOPSLA/ECOOP ’90) (Oct 1990).
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The Bourne Shell

❑ Executing programs as commands
❑ Background commands
❑ Input and output redirection
❑ Pipes and filters
❑ File “globs”
❑ Shell scripts (parameterized)
❑ Control flow
❑ Shell variables (with parameter and command sub
❑ Associated commands (test, echo ...)
❑ Built-in commands (read, wait, trap, exec)
❑ Signal handling
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Pipes and Filters

#! /bin/sh
#
# words --- produce a sorted list of words in a file
#

cat $* | \
tr -c A-Za-z0-9 '\012' | \
sed '/^$$/d' | \
sort -u -f
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Example

#! /bin/sh
#
# glue --- glue two files side-by-side

a=a$$
b=b$$

sed 's/^/^A/' $1 | cat -n > $a
sed 's/^/^A/' $2 | cat -n > $b

clean='BEGIN { FS = "^A" }
{ printf "%s%s\n", $2, $3 }'

join -a1 -a2 -t^A $a $b | awk "$clean"
rm $a $b
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Argument processing

#! /bin/sh
#
# nsort --- sort lines by name (final word)

for arg
do

case $arg in
-* ) flags="$flags $arg" ;;
* ) files="$files $arg" ;;
esac

done

sed 's/.* \([^ ]*\)$/\1?&/' $files | \
sort $flags | \
sed 's/.*?//'
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Command Substitution
#! /bin/sh
# rdiff --- merge of two files with diffs marked by > or <
# deleted fields are prefixed with "<" and new fields with a ">"
plus='> '
min='< '
u='Usage: rdiff [+=<string>] [-=<string>] <old> <new>'
for arg
do

case $arg in
+=* ) plus=`echo "$arg" | sed 's/^+=//'` ;;
-=* ) min=`echo "$arg" | sed 's/^-=//'` ;;
-* ) echo "$u" 1>&2 ; exit ;;
* ) files="$files $arg" ;;
esac

done
diff -D diff $files | awk '

/^#ifdef/ { prefix = plus ; next }
/^#ifndef/ { prefix = min ; next }
/^#else/ { if (prefix == min)

prefix = plus
else prefix = min
next

}
/^#endif/ { prefix = "" ; next }
{ printf "%s%s\n", prefix, $0 }' plus="${plus}" mi
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Exec
#! /bin/sh
#
# src --- locate source of files and invoke lynx
# Includes $PATH in the list of directories to search.
# Also looks in $BIN, $MAN and $SRC environment variables.
bin="$BIN"
man="$MAN"
src="$SRC /local/src /local/pck /local/gnu"

case $# in
0 ) echo "Usage : src <cmd> ..." 1>&2 ; exit ;;
esac
echo -n "Searching ... "
path=`echo $PATH | sed 's/:/ /g'`
files=`( whereis $* ; \

whereis -B $path $bin -M $man -S $src -f $* ) | \
awk 'BEGIN { FS = ":" } { print $2 }' | \
tr ' ' '\012' | \
sort -u`

case $files in
"" ) echo "nothing found" ;;
* ) exec lynx $files ;;
esac
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The Future of Scripting Languag

❑ Multimedia scripting
❑ Configuring open applications
❑ Composing objects, applications
❑ Coordinating distributed services
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