PS — Table of Contents

Programming Languages
Overview
What is a Programming Language?
What Distinguishes Programming Languages?
Programming Paradigms
A Brief Chronology
Fortran
ALGOL 60
COBOL
4GLs
PL/I
Interactive Languages
Special-Purpose Languages
Functional Languages
Prolog
Object-Oriented Languages
Functional Programming
What is a Function?
Computation as Functional Composition
A Bit of History
Stateless Programming
Referential Transparency
The Church-Rosser property
Modelling State
Equational Reasoning
Pattern Matching
Lists
Higher Order Functions

IAM, Universitit Bern

©O© 00 ~NO Ol WN P

NNRNNNNNNNRPRPRPRPRPEPREPRERRERER
©O NN WNRLROO®NODUNWNERO

Currying

Remembering State

Lazy Evaluation

Lazy Lists

Functional Programming Style

Type Systems

What is a Type?

Static and Dynamic Typing
Kinds of Types

Function Types

List and Tuple Types
Polymorphism

Polymorphic Type Inference
Type Specialization

The (Untyped) Lambda Calculus
The Typed Lambda Calculus
Kinds of Polymorphism
Overloading

User Data Types

Examples of User Data Types
Recursive Data Types:

Equality for Data Types and Functions

Introduction to Denotational Semantics

Defining Programming Languages
Uses of Semantic Specifications
Methods for Specifying Semantics
Concrete and Abstract Syntax
Semantic Domains

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56

PS — Table of Contents

A Calculator Language 57 Logic Programming 84
Calculator Semantics 58 Facts and Rules 85
Implementing the Calculator 59 Prolog Databases 86
A Language with Assignment 60 Rules, Searching and Backtracking 87
Abstract Syntax Trees 61 Conjunctions and Disjunctions 88
Modelling Environments 62 Recursion 89
Semantics of Assignments 63 Negation as Failure 90
Practical Issues 64 Changing the Database 91
Theoretical Issues 65 F_unctlonS and Arithmetic 92
Object-Oriented Programming 66 Lists _ o 93
What is Object-Oriented Programming? 67 Pattem _Matchlng _W'th Lists 94
. Exhaustive Searching 95
Objects 68 o ¢ 96
Message-Passing Paradigm 69 p_)era ors ,
Building a Simple Interpreter 97
Classes and Instances 70 .
: Concurrent Programming 98
Inheritance 71 :
Concurrency and Parallelism 99
Deferred Features and Classes 72 .

. _ Atomicity 100
Multlp'le Ihherltance |) 73 Concurrency Issues 101
The Principle of Substitutability 74 Deadlock and Starvation 102
Polymorphism & Dynamic Binding 75 Fairness 103
Subtyping _ 76 Process Creation 104
Covariance and Contravariance 7 Communication and Synchronization 105
Inheritance is not Subtyping /8 Synchronization Techniques 106
The Inheritance Interface 79 Busy-Waiting 107
Run Time Support 80 Semaphores 108
Dimensions of Object-Oriented Languages 81 Monitors 109
A Brief History of OO Languages 82 Problems with Monitors 110
Current Trends in Research and Practice 83 Message Passing 111

IAM, Universitit Bern

PS — Table of Contents

Unix Pipes
Send and Receive

Remote Procedure Calls and Rendezvous

Other Issues

Process Calculi
Limitations of Denotational Semantics
Structural Operational Semantics
Transition Semantics
Process Calculi
Pure Synchronization
Modeling Non-determinism
Implementing the Transition Semantics
Searching for Executions Paths
Running the Example
Finding Alternative Execution Paths

An Asynchronous Value-Passing Calculus

Implementing Value Passing
Implementing Substitution
A Value-Passing Example
Process Replication
Resources as Replicated Processes
Running the Example
Other Issues
PICT

Abstract Syntax of (Untyped) Core PICT

Binding Channels
Typed Channels
Synchrony and Asynchrony

IAM, Universitit Bern

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

Synchronizing Concurrent Clients
Modelling Booleans

Modelling Language Constructs
Natural Numbers

Counting

Arithmetic

Functional Notation

Functions as Processes

Functions as Processes
Sequencing

A Concurrent Queue
Implementing the Concurrent Queue

Object-Based Concurrency

What is an OBCL?
Overview of OBCLs
Requirements for OBCLs
Expression of Concurrency
Objects and Processes
Passive Object Models
Active/Passive Models
Active Object Models
Granularity of Concurrency
Sequential Objects
Quasi-Concurrent Objects
Concurrent Objects
Process Creation
Asynchronous Objects
Asynchronous Invocation

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

PS — Table of Contents V.

Futures 168 Scripting Languages ... 197
Communication and Synchronization 169 Fourth Generation Languages (4GLs) 198
Local Delays 170 Coordination Languages 199
Local Delays 171 The Bourne Shell 200
Transactions 172 Pipes and Filters 201
Classifying OBCLs 173 Example 202
Evaluation 174 Argument processing 203
Text Processing Languages 175 Command Substitution 204
What are Text Processing Languages? 176 Exec 205
Some Text Processing Languages 177 The Future of Scripting Languages 206
Regular Expressions (Perl) 179
SED 180
AWK 181
Perl 182
Regular Expressions 183
Arrays 184
Subroutines 185
File I/0O 186
Dynamic Compilation 187
Packages 188
Standard System Calls 189
Perl: Pros and Cons 190
Scripting Languages 191
Scripting Languages and Their Kin 192
Shell Languages 193
Command Languages 194
Command Languages ... 195
Scripting Languages 196

IAM, Universitit Bern

PS 1.

Programming Languages

Lecturer: Prof. O. Nierstrasz
Neubrickstr. 10/101

Tel.: 631.4618

Secr.. 631.4692

Assistants: P. Varone, S. Schweizer

Text:

0 Wilson & Clark, Comparative Programming Languages, Addison Wesley, 1988

Additional material:
0 On-line, see: http://lamwww.unibe.ch/~scg/Lectures/pl.html

Universitét Bern Programming Languages

PS

Overview

© 0N Ok WDNE

ol
wn o

Introduction

Functional programming — Gofer
Type systems

Programming language semantics
Object-oriented programming

Logic Programming — Prolog
Structured operational semantics
Concurrent programming

Programming in the mtcalculus — PICT
Objects as processes

. Text manipulation languages — Perl/

Scripting languages
Final exam

Universitat Bern

Programming Languages

PS 3.

What is a Programming Language?

A formal language for describing computation

A “user interface” to a computer

“Turing tar pit” — equivalent computational power
Programming paradigms — different expressive power
Syntax + semantics

Compiler, or interpreter, or translator

O O0O00Ond

Universitét Bern Programming Languages

PS 4.

What Distinguishes Programming.
Languages?

Generations (increasing abstraction; imperative - declarative):
1. machine codes
2. symbolic assemblers
3. (machine independent) imperative languages (FORTRAN, COBOL, Pascal)
4. domain specific application generators (report generators, database interfaces)

Common Constructs:
[0 basic data types (numbers, etc.); variables; expressions; statements;
keywords; control constructs; procedures; comments; errors ...
Uncommon Constructs:

[0 type declarations; special types (strings, arrays, matrices, ...); sequential
execution; concurrency constructs; packages/modules; objects; general
functions; generics; modifiable state; ...

Universitét Bern Programming Languages

PS 3.

Programming Paradigms

A programming language isa problem-solving tool.

Imperative style:
[1 program = algorithms + data
Functional style:
[1 program = functions o functions
Logic programming style:
[0 program = facts + rules
Object-oriented style:
[1 program = objects + messages
Other styles and paradigms: blackboard, pipes and filters, constraints, lists, ...

Universitét Bern Programming Languages

PS

A Brief Chronology

Early 1950s “order codes” (primitives assemblers)

1957 FORTRAN
1958 ALGOL

1960 LISP, COBOL
1962 APL, SIMULA
1964 BASIC, PL/I

1966 ISWIM

1970 Prolog

1972 C

1975 Pascal, Scheme
1978 CSP

1978 FP

1980 dBASE I

1983 Smalltalk-80, Ada

1984 Standard ML

1986 C++, Eiffel

1988 CLOS, Mathematica, Oberon
1990 Haskell

Universitat Bern

Programming Languages

PS /.

Fortran

History:
[0 John Backus (1953) sought to write programs in conventional mathematical
notation, and generate code comparable to good assembly programs
[0 No language design effort (made it up as they went along)
[Most effort spent on code generation and optimization
[0 FORTRAN I released April 1957; working by April 1958
[0 Current standards are FORTRAN 77 and FORTRAN 90
Innovations:
[1 comments
assignments to variables of complex expressions
DO loops
Symbolic notation for subroutines and functions
Input/output formats
[0 machine-independence
Successes:
[1 Easy to learn; high level
[0 Promoted by IBM; addressed large user base (scientific computing)

0O O O

Universitét Bern Programming Languages

PS 8.

ALGOL 60

History:

[1 Committee of PL experts formed in 1955 to design universal, machine-
independent, algorithmic language

[1 First version (ALGOL 58) never implemented; criticisms led to ALGOL 60

Innovations:

[0 BNF (Backus-Naur Form) introduced to define syntax (led to syntax-directed
compilers)

First block-structured language; variables with local scope
Variable size arrays

Structured control statements

Recursive procedures

N O O B

Successes:
[0 Never displaced FORTRAN, but highly influenced design of other PLs

Universitét Bern Programming Languages

PS

COBOL

History:
[1 designed by committee of US computer manufacturers
[1 targeted business applications
[0 intended to be readable by managers

Innovations:
[0 separate descriptions of environment, data, and processes

Successes:
[1 Adopted as de facto standard by US DOD
[0 Stable standard for 25 years
O Still the most widely used PL for business applications

Universitat Bern

Programming Languages

PS

4GLs

“Problem-oriented” languages
[1 PLs for “non-programmers”

10.

[1 Very High Level (VHL) languages for specific problem domains

Classes of 4GLs (no clear boundaries):
[0 Report Program Generator (RPG)
[1 Application generators
[0 Query languages
[1 Decision-support languages

Successes:
[0 highly popular, but generally ad hoc

Universitat Bern

Programming Languages

PS 11.

PL/I

History:
[0 designed by committee of IBM and users (early 1960s)
[0 intended as (large) general-purpose language for broad classes of applications

Innovations:
[0 default interpretations for every variable, feature, option etc.
[0 exception-handling by on conditions

Successes:
[1 achieved both run-time efficiency and flexibility (at expense of complexity)
[first “complete” general purpose language

Universitét Bern Programming Languages

PS 12.

Interactive Languages

Made possible by advent of time-sharing systems (early 1960s through mid 1970s).

BASIC:
[1 developed at Dartmouth College in mid 1960s
[0 minimal; easy to learn
I incorporated basic O/S commands (NEW, LIST, DELETE, RUN, SAVE)

APL:

developed by Ken lverson for concise description of numerical algorithms
large, non-standard alphabet (52 characters in addition to alphanumerics)
primitive objects are arrays (lists, tables or matrices)

operator-driven (power comes from composing array operators)

no operator precedence (statements parsed right to left)

N O O O B

Universitét Bern Programming Languages

PS

13.

Special-Purpose Languages

SNOBOL:

[]

0 O O O

Lisp:

N I O O O I B

first successful string manipulation language
iInfluenced design of text editors more than other PLs
string operations: pattern-matching and substitution
arrays and associative arrays (tables)
variable-length strings

performs computations on symbolic expressions

symbolic expressions are represented as lists

small set of constructor/selector operations to create and manipulate lists
recursive rather than iterative control

no distinction between data and programs

first PL to implement storage management by garbage collection

affinity with lambda calculus

Universitét Bern Programming Languages

PS 14.

Functional Languages

ISWIM (If you See What | Mean):
[1 Peter Landin (1968) — paper proposal

FP:
[0 John Backus (1978) — Turing award lecture

ML.:

Edinburgh

initially designed as meta-language for theorem proving
Hindley-Milner type inference

“non-pure” functional language (with assignments/side effects)

N O O B

Miranda, Haskell:
0 “pure” functional languages with “lazy evaluation”

Universitét Bern Programming Languages

PS 15.

Prolog

History:

[1 originated at U. Marseilles (early 1970s), and compilers developed at Marseilles
and Edinburgh (mid to late 1970s)

Innovations:
[0 theorem proving paradigm
[0 programs as sets of clauses: facts, rules and questions
[0 computation by “unification”

Successes:
[1 prototypical logic programming language
[1 used in Japanese Fifth Generation Initiative

Universitét Bern Programming Languages

16.

PS
ODbject-Oriented Languages
History:
[0 Simula was developed by Nygaard and Dahl (early 1960s) in Oslo as a
language for simulation programming, by adding classes and inheritance to
ALGOL 60
[0 Smalltalk was developed by Xerox PARC (early 1970s) to drive graphic
workstations
Innovations:
[1 encapsulation of data and operations (contrast ADTS)
[1 inheritance to share behaviour and interfaces
Successes:

[0 Smalltalk project pioneered OO user interfaces ...
[1 Large commercial impact since mid 1980s
[Countless new languages ...

Universitét Bern Programming Languages

PS

17.

Functional Programming

Overview
[1 Functional vs. Imperative Programming
[0 Referential Transparency
[1 Pattern Matching
[1 Higher Order Programming
[0 Lazy Evaluation
References:
[0 Paul Hudak, “Conception, Evolution, and Application of Functional
Programming Languages,” ACM Computing Surveys 21/3, pp 359-411.
[0 Mark P. Jones, “An Introduction to Gofer,” manual, 1991.

Universitét Bern Functional Programming

PS 18.

What is a Function?

Extensional view:

A (total) function f: A - B is a subset of A x B (i.e., a relation) such that:
1. for each alJA, there exists some (a,b) I f (i.e., f(a) is defined), and
2. if(a,bl) Ofand (a,b2) OIf, then bl = b2 (i.e., f(a) is unique)

Intensional view:

A function f: A - B is an abstraction A x . e, where x is a variable name, and e is an
expression, such that when a value alJA is substituted for x in e, then this expression (i.e.,

f(a)) evaluates to some (unique) value bLB.

Universitét Bern Functional Programming

PS 19.

Computation as Functional Compaosition

What is a Program?
A program (computation) is a transformation from input data to output data.

[0 Program = Algorithms + Data
[0 Program = Functions - Functions

Church’s Thesis:

Effectively computable functions from positive integers to positive integers
are just those definable in the lambda calculus.

Universitét Bern Functional Programming

PS 20.

A Bit of History

Lambda Calculus (Church, 1932-33): formal model of computation
Lisp (McCarthy, 1960): symbolic computations with lists

APL (lverson, 1962): algebraic programming with arrays

ISWIM (Landin, 1966): /et and where clauses; equational reasoning ...
ML (Edinburgh, 1979): originally meta language for theorem proving
SASL, KRC, Miranda (Turner, 1976-85): lazy evaluation

Haskell (Hudak, Wadler, et al., 1988):

OO 0O0O0ddd

Universitét Bern Functional Programming

PS 21.

Stateless Programming

Imperative style:
n:=x;
a:.=1;
while n>0 do
begin a:= a*n;
n:=n-1;
end;

Declarative (functional) style:

fac n =
fn==0then 1
else n * fac (n-1)

Declarative languages, and in particular, functional languages, have no implicit state.
Programs are constructed entirely by composing expressions.

In functional languages, the underlying model of computation is functional composition.

Universitét Bern Functional Programming

PS 22.

Referential Transparency

Referential transparency means that “equals can be replaced by equals”.

Evaluation proceeds by replacing expression by their values:

fac 4 [] if 4 == 0 then 1 else 4 * fac (4-1)

4 * fac (4-1)

4 *fac 3

4 * (if 3==0then 1 else 3 * fac (3-1))

4 * 3 *fac (3-1)

12 * fac (3-1)

12 * fac 2

12 * (if 2 ==0then 1 else 2 * fac (2-1))

12*2*fac (2-1) 0 24 *fac(2-1) 0 ..024*1 0 24

N O I O O

Universitét Bern Functional Programming

PS 23.

The Church-Rosser property

“If an expression can be evaluated at all, it can be evaluated by consistently
using normal-order evaluation. If an expression can be evaluated in several
different orders (mixing normal-order and applicative order evaluation), then
all of these evaluation orders yield the same result”.

Consider:
sgrn=n*n

Applicative-order evaluation:
sqr (2+5) O sqr 7 O 7*7 O 49

Normal-order evaluation;
sgr (2+5) 0 (2+5) *(2+5) 0 7*(2+5) 0 7*7 0 49

Universitét Bern Functional Programming

PS

Modelling State

State can be modelled explicitly as a function parameter:

sfacs n=

sfac 1 4

Universitat Bern

[]

O O0O00nd

ifn==0thens
else sfac (s*n) (n-1)

sfac (1*4) (4-1)
sfac 4 3

sfac (4*3) (3-1)
sfac 12 2

sfac (12*2) (2-1)
sfac 24 1
..024

24.

Functional Programming

PS 25.

Equational Reasoning

Theorem:
Foralln>=0, facnh=sfac1n
Proof of theorem:
n=0: facO=sfac10=1
n>0: Suppose fac (n-1) = sfac 1 (n-1)
fac n =n *fac (n-1)
=n*sfac 1 (n-1)
= sfac n (n-1) -- by lemma
=sfac1ln

Lemma:
Foralln>=0,sfacsn=s*sfac1n
Proof of lemma;
n=0: sfacsO=s=s*sfac10
n>0: Suppose sfacs (n-1) =s *sfac 1 (n-1)
sfac s n = sfac (s*n) (n-1)
=s*n*sfac 1 (n-1)
=s *sfac n (n-1)
=s*sfac1ln

Universitét Bern Functional Programming

PS 26.

Pattern Matching

Patterns:

fac'0 =1

fac'n =n*fac' (n-1)
Guards:

fac"n | n== =1

|n>=1 =n *fac" (n-1)

Universitét Bern Functional Programming

PS

Lists

Lists are pairs of elements and lists of elements:

[]

[]
[]
[]

[] stands for the empty list

27.

X I XS stands for the list with x as the head and xs as the rest of the list

[1,2,3] is syntactic sugar for 1:2:3:[]
[1..n] stands for [1,2,3, ... n]

Lists can be deconstructed using patterns:

head (X:_) = X

len[] =0

len (X:Xs) =1+lenxs

prod [] =

prod (X:xs) = X * prod xs
fac™ n = prod [1..n]

Universitat Bern

Functional Programming

PS 28.

Higher Order Functions

Higher-order functions are first-class values that can be composed to produce
new functions.

mapf[] =[]
map f (x:xs)=1fx : map f xs

map fac [1..5]
O [1, 2,6, 24, 120]

Anonymous functions can be written as lambda abstractions:
map (\x->x * x) [1..10]
O [1,4,9, 16, 25, 36, 49, 64, 81, 100]

Universitét Bern Functional Programming

PS 29.

Currying

A curried function takes its arguments one at a time, allowing it to be treated as a
higher-order function.

fac = sfac 1
where sfac s n
| n==0 =S
| n>=1 = sfac (s*n) (n-1)

The following higher-order function takes a binary function as an argument and
turns it into a curried function:

curry fab =f(a,b)

sfac (s, n) = ifn==0thens
else sfac (s*n, n-1)

fac = (curry sfac) 1

Universitét Bern Functional Programming

PS

Remembering State

Naive recursion may result in unnecessary recalculations:
fib0=0
fibl=1
fib (n+2) = fib n + fib (n+1)

Efficiency can be regained by explicitly passing calculated values:

fib' 0 =0

fib' n=a where (a,_) = fib" n

fib" 1 = (1,0)

fib" (n+2) = (atb,a) where (a,b) = fib" (n+1)

30.

Universitat Bern

Functional Programming

PS 31.

Lazy Evaluation

“Lazy”, or normal-order evaluation only evaluates expressions when they are actually
needed. Clever implementation techniques (Wadsworth, 1971) allow replicated
expressions to be shared, and thus avoid needless recalculations.

So:
sqgr (2+5) O (2+5) * (2+5) 0 7* 7 [0 49

Lazy evaluation allows some functions to be evaluated even if they are passed incorrect
or non-terminating arguments:

ifTrue True xy = X
ifTrue False xy =y

ifTrue True 1 (5/0)
0 1

Universitét Bern Functional Programming

PS

Lazy Lists

32.

Lazy lists are infinite data structures whose values are generated by need:

fromn =n:from (n+1)

take [] z % %
take (n+1) (X

N’

:XS)= X : take n xs

take 5 (from 10)
0 [10, 11, 12, 13, 14]

NB: The lazy list (from n) has the special syntax: [n..]

fibs = fibogen 0 1
where fibgen a b = a : fibgen b (a+b)

take 10 fibs
O [0,1,1,2,3,5,8,13,21, 34]

Universitat Bern

Functional Programming

PS 33.

Functional Programming Style

primes = 2 : primesFrom 3 -- Or just: primes = primesFrom 2

primesFrom n = p : primesFrom (p+1)
where p = nextPrime n

nextPrime n
| isPrime n =n
| otherwise = nextPrime (n+1)

iIsPrime 2 = True
iIsSPrime n = notdiv primes n

notdiv (k:ps) n

| (k*k) > n = True
| (mod n k) == = False
| otherwise = notdiv ps n

take 100 primes 0 [2, 3, 5, 7, 11, 13, ... 523, 541]

Universitét Bern Functional Programming

PS 34.

Type Systems

Overview
[Whatis a Type?

[1 Static vs. Dynamic Typing

[0 Kinds of Types

[0 Polymorphic Types

[0 Overloading

[1 User Data Types
Sources:

[1 Mark P. Jones, “An Introduction to Gofer,” manual, 1991.

[0 Paul Hudak, “Conception, Evolution, and Application of Functional
Programming Languages,” ACM Computing Surveys 21/3, pp 359-411.

0 L. Cardelli and P. Wegner, “On Understanding Types, Data Abstraction, and
Polymorphism,“ACM Computing Surveys, vol. 17, no. 4, Dec. 1985, pp. 471-
522.

0 D.Watt, Programming Language Concepts and Paradigms, Prentice Hall, 1990

Universitét Bern Type Systems

PS

What is a Type?

Type errors:

S +[]

ERROR: Type error in application
*** expression : 5+ []

*Fterm 5

** type : Int

*** does not match : [a]

A type is a set of values:

O int={..-2,-1,0,1,2,3, ...}

0 bool ={True, False }

0 Point={[x=0,y=01],[x=1,y=0],[x=0,y=1]...}
Are all sets of values types?

A type is a partial specification of behaviour:

0 n,m:int O n+ misvalid, but not(n) is an error

O n:int O n:=1isvalid, but n :=*hello world” is an error
What kinds of specifications are interesting? Useful?

35.

Universitat Bern

Type Systems

PS 36.

Static and Dynamic Typing

Values have static types defined by the programming language.

Variables and expressions have dynamic types determined by the values they assume
at run-time.

A language is statically typed if it is always possible to determine the type of an
expression based on the program text alone.

A language is strongly typed if it is possible to ensure that every expression is type
consistent based on the program text alone.

A language is dynamically typed if only values have fixed type. Variables and parameters
may take on different types at run-time, and must be checked immediately before they

are used.

Type consistency may be assured by (i) compile-time type-checking, (ii) type inference,
or (i) dynamic type-checking.

Universitét Bern Type Systems

PS 37.

Kinds of Types

All programming languages provide some set of built-in types.

Most strongly-typed modern languages provide for additional user-defined types.

0 Primitive types: booleans, integers, floats, chars ...
[0 Composite types: functions, lists, tuples ...
[0 User-defined types: enumerations, recursive types, generic types ...

The Type Completeness Principle:

No operation should be arbitrarily restricted in the types of values involved.

First-class values can be evaluated, passed as arguments and used as components of
composite values. Functional languages attempt to make no class distinctions, whereas
imperative languages typically treat functions (at best) as second-class values.

Universitét Bern Type Systems

PS 38.

Function Types

Function types allow one to deduce the types of expressions without the need to
evaluate them:

fact :: Int -> Int
42 :: Int
[1 fact 42 :: Int

Curried types:

tl1->12->...->1n stands for: t1->(t2->(...->1tn)..)
SO

fx1x2...xn stands for: (... ((fx1) x2) ... xn).

(+) - Int -> Int -> Int [] (+) 5: Int->Int

Universitét Bern Type Systems

PS 39.

List and Tuple Types

List Types
If a is a type then [a] is the type whose elements are lists of values of type a.
[1]:]Int]

Note that all of the elements in a list must be of the same type, so that an expression such
as ['a’, 2, False] is not permitted.

Tuple Types

If t1, t2, ..., tn are types and n>=2, then there is a type of n-tuples written (t1, t2, ..., tn)
whose elements are also written in the form (x1, x2, ..., xn) where the expressions x1, x2,
..., Xn have types tl, t2, ..., tn respectively.

(1, [2], 3) :: (Int, [Int], Int)
(‘a', False) :: (Char, Bool)
((1,2),(3,4)) :: ((Int, Int), (Int, Int))
The unit type is written () and has a single element which is also written as ().

Universitét Bern Type Systems

PS

Polymorphism

Languages like Pascal have monomorphic type systems:
parameter and function result has a unique type.

[0 good for type-checking
[0 bad for writing generic code

A polymorphic function accepts arguments of different types:
length :: [a] -> Int

length[]=0
length (x:xs) = 1 + length xs

map :: (a ->b) -> [a] -> [b]

map f[]=[]

map f (x:xs) =fx: map f xs
(J)::(b->c)->(a->b)->(a->c)
(f.9) x=1(gx)

Universitat Bern

40.

every constant, variable,

Type Systems

PS 41.

Polymorphic Type Inference
map
map
map ::
map ::

map ::

Hindley-Milner Type Inference provides an effective algorithm for automatically
determining the types of polymorphic functions. The corresponding type system is used
iIn many modern functional languages, including ML and Haskell.

Universitét Bern Type Systems

PS 42.

Type Specialization

A polymorphic function may be explicitly assigned a more specific type:

idInt :: Int -> Int
idInt x = x

Note that the :t command can be used to find the type of a particular expression that is
inferred by Gofer:

? 1\ -> [X]
\x ->[X] .- a->[q]

? .t (\x ->[Xx]) :: Char -> String
\x -> [x] :: Char -> String

Universitét Bern Type Systems

PS

43.

The (Untyped) Lambda Calculus

Syntax:
e =x|ejey|Axe
(Operational) Semantics:
a conversion (renaming):
B reduction:

n reduction:
Example:
True
False

if b then x else y

If True then x else y

Universitat Bern

AX.e = Ay.[y/X]e where y is not free in e
AXx.ep) ey U [eox] eq

Ax.(ex)d e if X is not free in e
=EAX.AY.X

=EAX.AY.Y

=EAb.AX.Ay.bxy

=(AD.AX.AYy.bXy)(AX.Ay.X)XYy
O*(AX.AYy.X) XYy
[*x

Type Systems

PS 44.

The Typed Lambda Calculus

Syntax:
e = I | elT2—>T1 eZTZ | O\ XTZ_erl)TZ_Jl
(Operational) Semantics:
o conversion (renaming): A x'2. e™ < A y™ . [y¥/x™] e"where y™is not free in e™
B reduction: A x?. e e, 0 [e,%xP] e

n reduction: AxP (e x™) O et if x'2 is not free in e™

Polymorphic functions like “map” cannot be typed in this calculus!
Need type variables to capture polymorphism:

B reduction (ii): Ax’. e e,?0 [12/v][e,%xY] e ™

Universitét Bern Type Systems

PS 45.

Kinds of Polymorphism

Polymorphism:
0 Universal:
— Parametric: polymorphic map function in Gofer, nil pointer type in Pascal

— Inclusion: subtyping — graphic objects
[0 Ad Hoc:
— Overloading: + applies to both integers and reals
— Coercion: integer values can be used where reals are expected and v.v.

Coercion or overloading — how does one distinguish?
3+4
3.0+4
3+4.0
3.0+4.0

Universitét Bern Type Systems

PS

Overloading

Overloaded operators are introduced by means of type classes:

class Egq a where
(==), (/=) :: a->a->Bool
XI=y =not(x==YyY)

For each overloaded instance a separate definition must be given:

instance Eq Int where (==) = primEglnt
instance Eq Bool where

True == True = True

False == False = True

== _ = False
instance Eq Char where ¢ == =ordc==ordd
iInstance (Eq a, Eq b) => Eq (a,b) where

(x,y) == (u,v) = X==U && y==v
instance Eq a => Eq [a] where

[1==1[] = True

[1==(y:yS) = False

(x:xs) ==[] = False

(x:xs) == (y:ys) = X==y && XS==yS

Universitat Bern

46.

Type Systems

PS 47.

User Data Types

New data types can be introduced by specifying a datatype name, a set of param-
eter types, and a set of constructors for elements of the type:

data DatatypeName al ... an = constrl | ... | constrm
The constructors may be of the form:

1. Name typel ... typek
which introduces Name as a new constructor of type:

typel -> ...-> typek -> DatatypeName al ... an

2. typel CONOP type2
which introduces (CONOP) as a new constructor of type:

typel -> type2 -> DatatypeName al ... an

Universitét Bern Type Systems

PS

Examples of User Data Types

Enumeration types:
data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

what_shall | do Sun = “relax”

what_shall | do Sat = “go shopping”
what_shall | do = “looks like I'll have to go to work”

Union types:
data Temp = Centigrade Float | Fahrenheit Float

freezing :: Temp -> Bool
freezing (Centigrade temp) = temp <= 0.0
freezing (Fahrenheit temp) = temp <= 32.0

Universitat Bern

48.

Type Systems

PS 49.

Recursive Data Types:

data Treea=Lfa| Tree a . Tree a A
PN
(Lf 12 A (Lf 23 A Lf 13)) A Lf 10 :: Tree Int N Lf10

YRR
Lf12 A

leaves, leaves' :: Tree a -> [a] Lf/23 Ef 13

leaves (Lf 1) =]
leaves (I .. r) = leaves | ++ leaves r

leaves' t = leavesAcc t[]
where leavesAcc (Lf1) = (l:)
leavesAcc (I :~: r) = leavesAcc | . leavesAcc r

Universitét Bern Type Systems

PS 50.

Equality for Data Types and Functions

Why not automatically provide equality for all types of values?
Syntactic equality does not necessarily entail semantic equality!

User data types:
data Set a = Set [a]

instance Eq a => Eq (Set a) where
Set xs == Set ys = xs ‘subset’” ys && ys ‘subset” xs
where xs subset ys = all (‘elem” ys) xs

Functions:
? (1::) == (\X->1zzx)
ERROR: Cannot derive instance in expression
*** EXpression . (==) d148 ((==) {dict} 1) (\x->(==) {dict} 1 x)
*** Required instance : Eq (Int -> Bool)

Universitét Bern Type Systems

PS

51.

Introduction to Denotational Semantics

Overview:
[1 Syntax and Semantics
[1 Approaches to Specifying Semantics
[0 Semantics of Expressions
[Semantics of Assignment
[0 Other Issues
Texts:
[0 D. A. Schmidt, Denotational Semantics, Wm. C. Brown Publ., 1986
O D.Watt, Programming Language Concepts and Paradigms, Prentice Hall, 1990

Universitat Bern Introduction to Denotational Semantics

PS 52.

Defining Programming Languages

Three main characteristics of programming languages:

1. Syntax: What is the appearance and structure of its programs?
2. Semantics: What is the meaning of programs?

The static semantics tells us which (syntactically valid) programs are
semantically valid (i.e., which are type correct) and the dynamic semantics tells
us how to interpret the meaning of valid programs.

3. Pragmatics: What is the usability of the language?
How easy is it to implement? What kinds of applications does it suit?

Universitat Bern Introduction to Denotational Semantics

PS 53.

Uses of Semantic Specifications

Semantic specifications are useful for language designers to communicate to the
implementors as well as to programmers:

1. A precise standard for a computer implementation: How should the language be
implemented on different machines?

2. User documentation: What is the meaning of a program, given a particular
combination of language features?

3. Atool for design and analysis: How can the language definition be tuned so that
it can be implemented efficiently?

4. Input to a compiler generator: How can a reference implementation be obtained
from the specification?

Universitat Bern Introduction to Denotational Semantics

PS 54.

Methods for Specifying Semantics

Operational Semantics:
[0 [program]| = abstract machine program
[1 can be simple to implement
[1 hard to reason about
Denotational Semantics:
[0 [program] = mathematical denotation (typically, a function)
[facilitates reasoning
[1 not always easy to find suitable semantic domains
Axiomatic Semantics:
[0 [program] = set of properties
[good for proving theorems about programs
[somewhat distant from implementation
Structural Operational Semantics:
[0 [program] = transition system (defined using inference rules)
[0 good for concurrency and non-determinism
[0 hard to reason about equivalence

Universitat Bern Introduction to Denotational Semantics

PS

Concrete and Abstract Syntax

How to parse “4 * 2 + 1"?

Abstract Syntax is compact but ambiguous:

Expr = Num
| Expr Op Expr
Op = -]

Concrete Syntax is unambiguous but verbose:

Expr = Expr LowOp Term
| Term

Term = Term HighOp Factor
| Factor

Factor ::= Num
| (Expr)

LowOp ::= + |-

HighOp ::= *|/

Universitat Bern

55.

Introduction to Denotational Semantics

PS 56.

Semantic Domains

In order to define semantic mappings of programs and their features to their math-
ematical denotations, the semantic domains must be precisely defined:

data Bool = True | False

(&&), (]]) :: Bool -> Bool -> Bool

False && X = False
True && X =X
False || X =X
True | X = True
not :: Bool -> Bool

not True = False
not False = True

Universitat Bern Introduction to Denotational Semantics

PS 57.

A Calculator Language
Abstract Syntax:

P = 'ON'S

S = E'TOTAL'S | E 'TOTAL' 'OFF

E = E1'+E2 | E1*E2 | 'FE1'E2''E3
| 'LASTANSWER' | '(E") | N

Test Program =“ON 4 * (3 + 2) TOTAL OFF "

Data Structures for Syntax Tree:

data Program = On ExprSequence

data ExprSequence = Total Expression ExprSequence
| Off Expression

data Expression = Plus Expression Expression

| Times Expression Expression

| If Expression Expression Expression
| LastAnswer

| Braced Expression

|

N Int

test = On (Off (Times (N 4)
(Braced (Plus (N 3)
(N2)))))

Universitat Bern Introduction to Denotational Semantics

PS 58.

Calculator Semantics

Programs:
P : Program - Int*
PITONS] =S[S]()
Sequences:
S :: ExprSequence - Int - Int*
STETOTAL S] (n) =letn"=EJE] (n)inn"'consS[S](n)

SJTETOTALOFF JJ(n) =ET[E] (n)consnil
Expressions:
E : Expression - Int - Int
ETEL+E2] (n) =EELI]J(M+E[E2] (n)
ETEL*E2] (n) =E[JE1I](n)*E[E2] (n)
EJIFEL,E2,E3](n) =E[JEL](nN)==0-E[E2](N)#E[E3] ()
E [LASTANSWER JJ (n) =n
ELCE)](n) =ETE](n)
EINT (n) =N

Universitat Bern Introduction to Denotational Semantics

PS 59.

Implementing the Calculator

Programs:
pp :: Program -> [Int]
pp (On s) = sssO
Sequences:
ss ;. ExprSequence -> Int -> [Inlj]
SS (Total es)n = letn'=(eeen)inn':(sssn
ss (Off e) n = (eeen):[]

Expressions:

ee .. Expression -> Int -> Int
ee (Plusele2)n

ee (Timesele2)n

ee (Ifele2el3)n

(eeeln)+ (eee2n)
(eeeln)*(eee2n)

| (eeeln) == = (ee e2n)
| otherwise = (ee e3 n)
ee (LastAnswer) n = n
ee (Braced e) n = (eeen)
ee (N num) n = num

Universitat Bern Introduction to Denotational Semantics

PS 60.

A Language with Assighment

Abstract Syntax:

P = Ccu
C = Cl''C2
| 'If' B 'then' C1 'else' C2
| | "="E
E = E1'+' E2
| I
| N
B = E1'="E2
| 'not' B

Example:
“z:=1:fa=0thenz:=3elsez:=z+a.”

Universitat Bern Introduction to Denotational Semantics

PS 61.

Abstract Syntax Trees

Data Structures:
data Program
data Command

Dot Command

CSeq Command Command
Assign Identifier Expression
If BooleanExpr Command Command

Plus Expression Expression
|d Identifier
Num Int

Equal Expression Expression
Not BooleanExpr

Char

data Expression

data BooleanExpr

type Identifier
Example:
Dot (CSeq (Assign 'z' (Num 1))
(If (Equal (Id 'a’) (Num 0))
(Assign 'z' (Num 3))
(Assign 'z' (Plus (Id 'z") (Id 'a")))

Universitat Bern Introduction to Denotational Semantics

PS 62.

Modelling Environments

A store is a mapping from identifiers to values:
type Store = Identifier -> Int

newstore :: Store
newstore id = 0

access :: ldentifier -> Store -> Int
access id store = store id

update :: Identifier -> Int -> Store -> Store

update id val store = store'
where store' id'
| id' ==id = val
| otherwise = store id'

Universitat Bern Introduction to Denotational Semantics

PS 63.

Semantics of Assignments

pp :: Program -> Int -> Int
pp (Dot ¢c) n = access 'z' (cc c (update 'a' n newstore))

cc :: Command -> Store -> Store

cc (CSegclc2)s =ccc2(cccls)

cc (Assignid e) s = update id (eee s) s
cc(ifbclc2)s = ifelse (bb b s) (cc cl s) (cc c2s)
ee :: Expression -> Store -> Int

ee (Plusele2)s =—(eee2s)+(eeels)

ee (Idid) s =accessids

ee (Numn)s =n

bb :: BooleanExpr -> Store -> Bool

bb (Equal el e2) s =(eeels)==(eee2s)
bb (Not b) s =not (bb b s)

ifelse :: Bool -> a ->a -> a

ifelse True xy = x

ifelse False xy =y

Universitat Bern Introduction to Denotational Semantics

PS 64.

Practical Issues

Modelling:
[1 Errors and non-termination:
[1 need a special “error” value in semantic domains
[0 Branching:

[1 semantic domains in which “continuations” model “the rest of the program”
make it easy to transfer control

[Interactive input
[0 Dynamic typing
[]

Universitat Bern Introduction to Denotational Semantics

PS 65.

Theoretical Issues

What are the denotations of lambda abstractions?

[0 need Scott’s theory of semantic domains
What is the semantics of recursive functions?

[0 need least fixed point theory
How to model concurrency and non-determinism?

[0 abandon standard semantic domains

[J use “interleaving semantics”

[0 “true concurrency” requires other models ...

Universitat Bern Introduction to Denotational Semantics

PS 66.

Object-Oriented Programming

Overview

[0 What is Object-Oriented Programming?
Objects, Classes and Inheritance
The Principle of Substitutability
Inheritance and Subtyping
Dimensions of Object-Oriented Languages

OO O

Suggested texts:
[0 B. Meyer, Object-Oriented Software Construction, Prentice Hall, 1988.

0 R. Wirfs-Brock, B. Wilkerson, L. Wiener, Designing Object-Oriented Software,
Prentice Hall, 1990

0 P.Wegner, “Concepts and Paradigms of Object-Oriented Programming,” ACM
OOPS Messenger, Vol. 1, No. 1, Aug. 1990

Universitét Bern Object-Oriented Programming

PS 67.

What is Object-Oriented Programming?

Object-oriented programs model applications as collections of communicating
objects:

[0 Objects encapsulate data and operations

Objects implement a client/server contract

Clients may only access an object’s services by sending it a message
Objects may have different methods to respond to the same set of messages
Classes define templates for instantiating objects

Classes may inherit features from parent classes and extend or modify them

Abstract classes may specify generic interfaces, representation and behaviour,
while deferring implementation of features to be defined by concrete subclasses

Frameworks define generic software architectures as hierarchies of related
abstract classes

O O0O0O0Ond

]

Universitét Bern Object-Oriented Programming

PS 68.

ODbjects

4)
Objects both encapsulate data and Public Interface (CIRCLE)
the operations that may be .
performed with them, and they Messages understood.

. - - erimeter, move, surface ...
hide their internal representation, P

thus promoting understandability,
maintainability and consistency.

4 . ™
Private
Representation
Instance variables
and methods:
centre, radius, ...

N\ J
N\ J

Universitét Bern Object-Oriented Programming

PS 69.

Message-Passing Paradigm

4 ™\ message 4 N\

Sender Receiver
(client) (object)

\- J \- J

a_circle.move(5,10)

Objects can only be accessed through their public interface.

A client requests a service of an object by sending it a “message” consisting of a service
name and some arguments.

The object selects the appropriate method to handle the message. Two objects may
understand the same messages, but use different methods to respond to them.

An object implements a client/server contract.

Universitét Bern Object-Oriented Programming

PS 70.

Classes and Instances

A class describes the implementation of a set of objects.
class POINT

exp Interface
X, Y, dlstanc

feature _
x: REAL; Operation
y: REAI,
Create (a, b: REAL) is

o Instance Variables

/ Method

X:=a;y:=Db;

end;
translate(a, b: REAL) is

do

X:=x+ay:=y+b;
end;
distance (other: POINT): REAL is
do
Result := sqgrt((x - other.x) * 2 + (y - other.y) * 2)
end;
end -- class POINT

An object is an instance of a class, sharing the same interface, structure and
iImplementations of methods as other instances of the same class, but with its own private
state (i.e., its instance variables).

Universitét Bern Object-Oriented Programming

PS

Inheritance

Parent Class S

4 Public Features A

N

Private ii i tures j\
S/

_

N

T inherits both public and private
features from its parent class S.

It may both extend the inherited
features (D, E, X, Y) or redefine
them (B', U")

Universitat Bern

Heir Class T

/\ Public Features A
5"
D, E

Private Features

U
X, Y

- J

71.

Object-Oriented Programming

PS 72.

Deferred Features and Classes

Deferred classes define common interfaces and behaviour for a set of implementations

deferred class STACK [T]
export
nb_elements, empty, full, top, push, pop, change_top, wipe_out
feature
nb_elements: INTEGER is deferred end ;
empty: BOOLEAN is
do
Result := (nb_elements = 0)
end;
full: BOOLEAN is deferred end ;
top: T is deferred end ;
push (v: T) is deferred end ;
pop is deferred end;
change top (v: T) is
do
pop; push(v)
end;
wipe_out is deferred end ;
end -- class STACK

Universitét Bern Object-Oriented Programming

PS 73.

Multiple Inheritance

Multiple inheritance can be used to combine functionality and implementation:

C STACK) C ARRAY)
\ /

CFIXED_S TACK)

class FIXED_STACK [T]

export
max_size, nb_elements, empty, full, top, push, pop, change_top, wipe_out
inherit
ARRAY [T]
rename Create as array_Create, size as max_size;
STACK [T]
redefine change_top

feature

end

Universitét Bern Object-Oriented Programming

PS 74.

The Principle of Substitutability

An instance of a subtype can always be used in any context in which an
instance of a supertype was expected.

— Wegner & Zdonik, ECOOP 88

.rﬁ.ove (obj: GRAPHIC_OBJECT, x, y: REAL) is -- operation of class BIT_MAP_SCREEN
do
obj.display_off;
obj.translate(x, y);
obj.display_on
end;

-- clear from screen

-- display on screen

S: SQUARE; r: RECTANGLE;

-- both subtypes of GRAPHIC _OBJECT
screen: BIT_MAP_SCREEN,;

screen.move(s, 1.5, 1.5); screen.move(r, 1.5, 1.5);

Universitét Bern Object-Oriented Programming

PS

Polymorphism & Dynamic Binding

The static type of a variable is its declared type.

75.

Its dynamic type is the type of the object to which it is currently bound.

p: POLYGON,;
rr RECTANGLE;

X = p.perimeter;

X = . perimeter;

X .= r.diagonal;
X .= p.diagonal,

p=r
X = p.perimeter;

X .= p.diagonal,

r:=p;

Universitat Bern

-- OK
-- OK

-- OK
-- ERROR

-- OK
-- OK
-- ERROR

-- ERROR

Object-Oriented Programming

PS /6.

Subtyping

Consider a type to be the specification of the interface to an object (i.e., the
messages that are understood, together with their argument and return types).

Message send:

[0 Itis always safe to send a message m(al,...an) understood by instances of type
X to an instance of a subtype of X

Assignment:
[Itis always safe to assign an instance of a subtype of X to a variable of type X

Subtyping:
[0 A subtype Y of atype X may add new message types to the interface
[0 Y may specialize the return type of a message (covariance)

Universitét Bern Object-Oriented Programming

PS /7.

Covariance and Contravariance

Can a subtype also specialize the argument types of a message?

class VECTOR
export move, add, ...
feature
move (X, Yy : REAL) : VECTOR ...
add (v: VECTOR) : VECTOR ...
end

class COLOUREDVECTOR
export move, add, ...

feature
move (X, y : REAL) : COLOUREDVECTOR ...
add (v : COLOUREDVECTOR) : COLOUREDVECTOR ... -- add colours too
end
v,vl, v2: VECTOR;
c : COLOUREDVECTOR; -- initialized elsewhere ...
vV =(;
vl ;= v.move (1,3); -- OK; return type is specialized
vl :=v.add (v2); -- not OK; can’t by sure v2 is a COLOUREDVECTOR!

Argument types may only be more general (contravariance) if substitutability is to be
guaranteed, but this is seldom useful for solving real problems!

Universitét Bern Object-Oriented Programming

PS 78.

Inheritance is not Subtyping

Various object-oriented programming languages (notably Eiffel and C++) attempt to unify
the notions of types and classes, and therefore constrain inheritance in order to achieve
reasonably subtyping rules. This can lead to various conflicts:

[0 Covariance vs. contravariance: for complex modelling problems, it is often
convenient to specialize both argument and return types of methods in
subclasses, but instances of such subclasses will not be substitutable for
superclass instances.

[0 Multiple inheritance: sometimes multiple inheritance is used to combine an
abstract interface with a particular representation (implementation reuse). This
may necessitate renaming (hiding) of features inherited from the representation
class, which violates any reasonable subtyping rule tied to inheritance.

[0 Post-hoc type equivalence: separately defined classes may actually have
compatible types, though they do not share any common superclass.

Universitét Bern Object-Oriented Programming

PS 79.

The Inheritance Interface

A class has two different kinds of clients: run-time clients of their instances, and
inheriting classes.

The interface to run-time clients is defined by the exports declaration in the class.
The interface to heirs (subclasses) is defined by the programming language:

[0 Heirs have full access to the implementation of parents
[0 Heirs may only access the public features of parents
[1 Heirs may only access features exported in an inheritance interface

Universitét Bern Object-Oriented Programming

PS 80.

Run Time Support

[]

Garbage collection: memory occupied by objects that are no longer
referenced may be automatically reclaimed

Persistence: objects may be automatically committed to persistent storage
Distribution: objects may be shared within a distributed environment
Reflection: class definitions may be accessed and (self-) modified at run-time

Concurrency: multiple objects may be concurrently active; individual objects
may manage multiple concurrent threads

0O O O

Universitét Bern Object-Oriented Programming

PS 81.

Dimensions of Object-Oriented Languages

[Object-Based languages support encapsulation of behaviour and state
(objects)

[0 Class-Based languages support instantiation of objects from object classes
[0 Object-Oriented languages support inheritance between classes
[0 Fully Object-Oriented languages model all data types as objects; classes are

also objects

[0 Strongly-Typed object-oriented languages guarantee that all expressions are
type-consistent

[0 Concurrent object-oriented languages allow multiple objects to serve requests
concurrently; individual objects can schedule and synchronize concurrent
requests

[0 Persistent object-oriented languages support objects whose lifetime may span
multiple user sessions

— Wegner, OOPS Messenger, Vol. 1, #1

Universitét Bern Object-Oriented Programming

PS

82.

A Brief History of OO Languages

[]

OO 000

Simula (1962): extended Algol with classes and inheritance; designed for
writing simulation applications

Smalltalk (1970s): “pure” OOPL,; developed by Xerox PARC to drive graphic
workstations

Modules (1972): Parnas promoted encapsulation and information hiding
Abstract Data Types (1974): Liskov and Zilles promoted formal specification
Ada (1983)

Objective C, Beta, etc. (1980s)

C++, Eiffel (1986)

Emerald, ABCL, ConcurrentSmalltalk, Oz ... and many others

Universitét Bern Object-Oriented Programming

PS 83.

Current Trends in Research and Practice

[Objects + X where X is ...

[Object-based concurrency

[0 Type theories for objects (mostly functional)

[Semantic models of objects (both functional and non-functional)
[0 Components

[1 Distribution and Interoperability (CORBA and ODP)

[0 Frameworks

[1 Design Patterns

[0 Role Modelling

Universitét Bern Object-Oriented Programming

PS
Logic Programming
Overview
[1 Facts and Rules
[1 Searching and Backtracking
[1 Recursion, Functions and Arithmetic
[1 Lists and other Structures
[0 Implementing a Simple Interpreter
Texts:

[0 Sterling and Shapiro, The Art of Prolog, MIT Press, 1986

84.

[0 Clocksin and Mellish, Programming in Prolog, Springer Verlag, 1981

Universitat Bern

Logic Programming

PS

85.

Facts and Rules

A Prolog program consists of facts, rules, and questions .

[]

[]

Facts are named relations between objects:

[0 parents(charles, elizabeth, philip).

Rules are relations (goals) that can be inferred from other relations (subgoals):
0 uncle(U,C) :- brother(U,P), parent(P,C).

Both rules and facts are instances of Horn clauses, of the form:

[Agif Ajand A, and ... A,

Questions are statements that can be answered using facts and rules:
0 ? brother(charles, X)

Questions are answered by matching goals against facts or rules, unifying
variables with terms, and backtracking when subgoals falil

A guestion is always answered with true or false, given some binding of
variables to terms

Prolog adopts a closed world assumption — whatever cannot be proved to be
true, is assumed to be false

Universitét Bern Logic Programming

PS

Prolog Databases

male(philip).
female(elizabeth).
male(charles).
female(anne).
male(andrew).
male(edward).
female(diana).
male(william).
male(harry).

parents(charles, elizabeth, philip).

parents(anne, elizabeth, philip).

parents(andrew, elizabeth, philip).
parents(edward, elizabeth, philip).

parents(william, diana, charles).
parents(harry, diana, charles).

?- male(charles).

?- male(anne).

?- male(mickey)

?- male(X).

?- parents(X,elizabeth,).

Universitat Bern

86.

Logic Programming

PS 87.

Rules, Searching and Backtracking

A Rule defines a relation as a conjunction of subgoals:

brother(X, Y) ;- male(X),
parents(X, M, F),
parents(Y, M, F),
X\==Y.

?- brother(charles, edward).
?- brother(charles, X).
?- brother(X, charles).

Universitét Bern Logic Programming

PS 88.

Conjunctions and Disjunctions

The same information can be represented in various forms:

mother(M,C) ;- parents(C,M,).
father(F,C) :- parents(C, ,F).

We could have chosen to represent parents/3 in terms of mother/2 and father/2:
parents(C,M,F) :- mother(M,C), father(F,C).

Both conjunctions and disjunctions can be easily represented:

uncle(U,C) :- brother(U,P),
parent(P,C).

parent(P,C) :- mother(P,C).

parent(P,C) :- father(P,C).

Universitét Bern Logic Programming

PS

Recursion

Recursive relations are defined in the obvious way:

ancestor(A,P) :- parent(A,P).

ancestor(A,P) :- parent(A,C),
ancestor(C,P).

?- ancestor(philip, harry).

?- ancestor(philip, X).
?- ancestor(X, harry).

Universitat Bern

89.

Logic Programming

PS

Negation as Failure

Searching can be controlled by explicit failure:

printall(X) :- X, print(X), nl, fail.
printall().

?- printall(brother(_,)).

The cut operator (!) commits Prolog to a particular search path:

parent(P,C) :- mother(P,C), !.
parent(P,C) :- father(P,C).

Negation can be implemented by a combination of cut and fail:

not(X) :- X, !, fail.
not().

Universitat Bern

90.

Logic Programming

PS 91.

Changing the Database

The Prolog database can be modified dynamically by means of assert and retract:

changename(X,Y) :- rename(X,Y),
retract(parents(X,M,F)),
assert(parents(Y,M,F)).

rename(X,Y) :- retract(male(X)),
assert(male(Y)).

rename(X,Y) :- retract(female(X)),
assert(female(Y)).

?- changename(charles, mickey).

Universitét Bern Logic Programming

PS

Functions and Arithmetic

Functions are relations between expressions and values:

Xis5+6.
Yields:
X=117

And is syntactic sugar for:
Is(X, +(5,6))

User-defined functions are written in a relational style:

fact(0,1).

fact(N,F) :- N > 0,
N1lis N -1,
fact(N1,F1),
Fis N *F1.

Universitat Bern

92.

Logic Programming

PS

Lists

Lists are pairs of elements and lists:

93.

Formal object Cons pair syntax Element syntax
(@, [[al[]] [a]
(@, .(b,[]) [al[b|[]]] [a,b]
(a,.(b,[D,.(,[D [al[[b[[]1][[cl[]]]] [a,[b], c]
(a, X) [a]|X] [a]X]
(@, .(b, X)) [a|[b|X]] [a,b|X]

Universitat Bern

Logic Programming

PS

Pattern Matching with Lists

member(X, [X | _]).
member(X, [_|L]) :- member(X, L).

?- member(a, [a,b,c]).
?- member(X, [a,b,c]).

?- member(a, L).
a

su:t>
~

w W—-—'
)

o O-

O ——

TR T
I
o O)--

- rr
N

| _
A,
A,
A,

O--
)

Universitat Bern

94.

Logic Programming

PS

Exhaustive Searching

Searching for permutations:

perm([][]).
perm([C|S1],S2) :- perm(S1,P1),
append(X,Y,P1),

append(X,[C|Y],S2).

append([],L,L).
append([X|L1],L2,[X]|L3]) :- append(L1,L2,L3).

?- printall(perm([a,b,c,d],)).

A declarative, but hopelessly inefficient sort program:

ndsort(L,S) :- perm(L,S),
Issorted(S).

issorted([]).

issorted([_]).

issorted([N,M|S]) :- N =< M,

issorted([M|S]).

Universitat Bern

95.

Logic Programming

PS 96.

Operators
Calculator example [Schmidt]:
P m= 'on'S
S = E'total' S | E 'total' 'OFF'
E = E1'+E2 | E1*E2 | 'if E1'then' E2 'else' E3
| 'lastanswer’ | '(E") | N

Syntax trees can be modelled directly as Prolog terms.

Operator type and precedence can be defined to achieve convenient syntax:

- op(900, fx, on).

- op(800, xfy, total).
- op(600, fx, if).

- op(590, xfy, then).
- op(580, xfy, else).
% op(500, yfx, +).
% op(400, yfx, *).

on 2+3 total lastanswer + 1 total off = on(total(2+3, total(lastanswer+1, off)))

on if lastanswer then 3*4 else 3+4 total off = on(total(if(then(lastanswer, else(3*4, 3+4))), off))

Universitét Bern Logic Programming

PS 97.

Building a Simple Interpreter

Top level programs:
on S :- seval(S, 0).

Statements:
seval(E total off, Prev) :- xeval(E, Prev, Val),
print(\Val), nl.
seval(E total S, Prev) :- xeval(E, Prev, Val),
print(Val), nl,
seval(S, Vval).
Expressions:
xeval(N, , N) :- number(N).
xeval(E1+E2, Prev, V) :- xeval(E1, Prev, V1),
xeval(E2, Prev, V2),
Vis V1+V2.
xeval(E1*EZ2, Prev, V) :- xeval(El, Prev, V1),
xeval(E2, Prev, V2),
Vis V1*V2.

xeval(lastanswer, Prev, Prev).

xeval(if E1 then E2 else _, Prev, Val) :- xeval(E1, Prev, 0), !
xeval(E2, Prev, Val).

xeval(if _then _else E3, Prev, Val) :- xeval(E3, Prev, Val).

Universitét Bern Logic Programming

PS 98.

Concurrent Programming

Overview
[0 Concurrency issues
[0 Process creation
[1 Synchronizing access to shared variables
[0 Message Passing Approaches

Texts:

[0 G. R. Andrews and F. B. Schneider, “Concepts and Notations for Concurrent
programming,”ACM Computing Surveys, vol. 15, no. 1, Mar. 1983, pp. 3-43.

[0 M. Ben-Ari, Principles of Concurrent and Distributed Programming, Prentice
Hall, 1990.

O L.Wilson & R. Clark, Comparative Programming Languages, Addison-Wesley,
1988.

Universitét Bern Concurrent Programming

PS 99.

Concurrency and Parallelism

“A sequential program specifies sequential execution of a list of statements; its execution
Is called a process. A concurrent program specifies two or more sequential programs that
may be executed concurrently as parallel processes.”

A concurrent program can be executed by:

1. Multiprogramming: processes share one or more processors

2. Multiprocessing: each process runs on its own processor
but with shared memory

3. Distributed processing: each process runs on its own processor

connected by a network to others

Assume only that all processes make positive finite progress.

Universitét Bern Concurrent Programming

PS 100.

Atomicity

Programs P1 and P2 execute concurrently:

{x=0}
P1: X = X+1
P2: X 1= X+2
{x=7?}

What are possible values of x after P1 and P2 complete?
What is the intended final value of x?

Synchronization mechanisms are needed to restrict the possible interleavings of
processes so that sets of actions can be seen as atomic.

Mutual exclusion ensures that statements within a critical section are treated atomically.

Universitét Bern Concurrent Programming

PS 101.

Concurrency lssues

There are two principal difficulties in implementing concurrent programs:

[1 Ensuring consistency:
[0 Mutual exclusion — shared resources must be updated atomically

[0 Condition synchronization — operations may need to be delayed if shared
resources are not in an appropriate state (e.g., read from empty buffer)

[1 Ensuring progress:
[0 Deadlock — some process can always access a shared resource
[0 Starvation — all processes can eventually access shared resources

Notations for expressing concurrent computation must address:
1. Process Creation: how is concurrent execution specified?

2. Communication: how do processes communicate?
3. Synchronization: how is consistency maintained?

Universitét Bern Concurrent Programming

PS

Deadlock and Starvation

Dining Philosophers
Philosophers alternate between thinking and eating.
A philosopher needs two forks to eat.

No two philosophers may hold the same fork simultaneously.

No deadlock and no starvation.
Efficient behaviour under absence of contention.

Universitat Bern

102.

Concurrent Programming

PS 103.

Fairness

There are subtle differences between definitions of fairness:

[0 Weak fairness: If a process continuously makes a request, eventually it will be
granted.

[1 Strong fairness: If a process makes a request infinitely often, eventually it will
be granted.

[0 Linearwaiting: If a process makes arequest, it will be granted before any other
process is granted the request more than once.

0 FIFO (first-in first out): If a process makes a request, it will be granted before
that of any process making a /ater request.

Universitét Bern Concurrent Programming

PS

Process Creation

Co-routines:
program P,

call A;

o ﬂ

104.

coroutine A; ‘///—» coroutine B;
J resume B; - —— fresume A;

resume B —j_—> return

Fork and Join:

program P1
fork P2;
join P2;
Cobegin:
cobegin S1||S2]|...
Universitét Bern

program P2

end

|| Sn coend

Concurrent Programming

PS 105.

Communication and Synchronization

Shared Variables:

Message-Passing:

OrrC

Universitét Bern Concurrent Programming

PS

Synchronization Technigues

Different approaches are roughly equivalent in expressive power and can
generally be implemented in terms of each other.

Busy- Waiting
Procedure Oriented Message Oriented

’/‘ Semaphores \

'/ Monitors Message Passing

Path Expressions

Remote Procedure Call

Operation Oriented

Each approach emphasizes a different style of programming.

106.

Universitét Bern Concurrent Programming

PS 10v.

Busy-Waiting

A simple approach to implement synchronization is to have processes set and test
shared variables. Condition synchronization is easy to implement, but mutual exclusion
Is more difficult to realize correctly and efficiently.

Condition synchronization:

[J to signal a condition, a process sets a shared variables
(bufferEmpty = FALSE)

[to wait for a condition, a process repeatedly tests the variable
Mutual exclusion:

[0 condition variables are used to implement entry and exit protocols to
access and release shared resources

process P1; process P2;
loop loop
enterl ;= true; { wants to enter} enter2 := true;
turn := “P27, { but yields priority } turn := “P17,
while enter2 and turn = “P2” while enterl and turn = “P1”
do skip ; do skip ;
Critical Section; Critical Section;
enterl ;= false; {exits} enter2 ;= false;
Non-critical Section, Non-critical Section,
end; end;
end; end;
Universitéat Bern

Concurrent Programming

PS 108.

Semaphores

Semaphores were introduced by Dijkstra (1968) as a higher-level primitive for process
synchronization.

A semaphore is a non-negative integer-valued variable s with two operations:
O P(s): delays until s>0; when s>0, atomically executes s := s-1

O V(s): atomically executes s:= s+1

Many problems can be solved using binary semaphores, which take on values 0 or 1.

process P1, process P2;
loop loop
P(mutex); { wants to enter} P(mutex);
Critical Section, Critical Section,
V(mutex); { exits } V(mutex);
Non-critical Section, Non-critical Section,
end; end;
end; end;

Universitét Bern Concurrent Programming

PS 109.

Monitors

A monitor encapsulates resources and operations that manipulate them:
[1 operations are invoked with usual procedure call semantics
[1 procedure invocations are guaranteed to be mutually exclusive
[1 condition synchronization is realized using signal and wait primitives
[1 there exist many variations of wait and signal ...

type buffer(T) = monitor procedure fetch(var it: T);
var begin
slots : array [0..N-1] of T; if size = 0 then notempty.wait
head, tail : 0..N-1,; it := slots[head];
size : 0..N; size ;= size - 1;
notfull, notempty : condition; head := (head+1) mod N;
notfull.signal
procedure deposit(p : T); end
begin
if size = N then notfull.wait begin
slots[tail] := p; size := 0; head := 0; tail :=0;
size :=size + 1; end

tail := (tail+1) mod N;
notempty.signal
end

Universitét Bern Concurrent Programming

PS 110.

Problems with Monitors

Although monitors provide a more structured approach to process synchronization than
semaphores, they suffer from various shortcomings.

A signalling process is temporarily suspended to allow waiting processes to enter!
[Monitor state may change between signal and resumption of signaller

Simultaneous signal and return is not supported

Unlike semaphores, multiple signals are not saved

Boolean expressions are not explicitly associated to condition variables

Nested monitor calls must be specially handled to prevent deadlock

N O O B

Universitét Bern Concurrent Programming

PS 111.

Message Passing

Message Passing combines both communication and synchronization:

[0 A message is sent by specifying the message and a destination

[0 The destination may be a process, a port, a set of processes, ...
[A message is received by specifying message variables and a source

[The source may or may not be explicitly identified

[Source and destination may be statically fixed or dynamically computed
[Message transfer may be synchronous or asynchronous

0 With asynchronous message passing, send operations never block

[0 With buffered message passing, sent messages pass through a bounded
buffer ; the sender may block if the buffer is full

[0 With synchronous message passing, both the sender and receiver must be
ready for a message to be exchanged

Universitét Bern Concurrent Programming

PS 112.

Unix Pipes

Unix pipes are bounded buffers that connect producer and consumer processes
(sources, sinks and filters):

cat file

| tr -c ‘a-zA-Z’ \012’
| sort

| uniq -c

| sort -rn

| more

Processes should read from standard input and write to standard output streams.

Process creation and scheduling are handled by the O/S, and synchronization is handled
implicitly by the 1/0 system.

Universitét Bern Concurrent Programming

PS

Send and Receive

In CSP or Occam, source and destination are explicitly named:

PROC buffer(CHAN OF INT give, take, signal)
VAL INT size IS 10:
INT inindex, outindex, numitems:
[size]INT thebuffer:
SEQ
numitems := 0
inindex := 0
outindex := 0
WHILE TRUE
ALT
numitems < size & give ? thebuffer[inindex]
SEQ
numitems := numitems + 1
inindex := (inindex + 1) REM size
numitems > 0 & signal ? any
SEQ
take ! thebuffer[outindex]
numitems := numitems - 1
outindex := (outindex + 1) REM size

Universitat Bern

113.

Concurrent Programming

PS

114.

Remote Procedure Calls and Rendezvous

In Ada, the caller identity need not be known in advance:

task body buffer is
size : constant integer := 10;
the_buffer : array (1 .. size) of item;
no_of _items : integer range O .. size :=0;
in_index, out_index : integer range 1 .. size =1,
begin
loop
select
when no_of_items < size =>
accept give(x : in item) do
the buffer(in_index) := x;
end give;
no_of _items := no_of_items + 1,
in_index :=in_index mod size + 1;
or when no_of items >0 =>
accept take(x : out item) do
x :=the_buffer(out_index);
end take;
no_of _items := no_of_items - 1;
out_index := out_index mod size + 1;
end select ;
end loop ;
end buffer ;

Universitat Bern

Concurrent Programming

PS

Other Issues

Atomic Transactions:
[0 RPC with possible failures
[failure atomicity
[1 synchronization atomicity

Real-Time Programming:
0 embedded systems
[0 responding to interrupts within strict time limits

Universitat Bern

115.

Concurrent Programming

PS 116.

Process Calculi

Overview
0 SOS Style
[1 Process calculi and transition semantics
I Atiny language with pure synchronization
I Implementing the transition semantics
[1 Value passing across channels
[Replicated processes

Texts:
0 R. Milner, Communication and Concurrency, Prentice Hall, 1989

[0 B. Pierce, Programming in the Pi-Calculus, Tutorial Notes for PICT Version
3.6a, 1995

[0 G. Kahn, “Natural Semantics,” INRIA Report No. 601, Feb. 1987

Universitat Bern Process Calculi

PS 117.

Limitations of Denotational Semantics

Denotational Semantics:
[0 [program] = function from program input to output

Concurrent programs are not functions

[0 Input and output are on-going
Same input may produce different results at different times
Concurrent inputs may produce non-deterministic results
Correct programs may not terminate
“True concurrency” cannot be captured by interleaving

0O O O

Universitat Bern Process Calculi

PS 118.

Structural Operational Semantics

SOS Style:
[0 [program] = logical inferences about the program

fact fact

fact

Transition Semantics:

[0 Facts are statements about possible transitions from program states
(represented as expressions) to other states

Natural Semantics:

[1 Facts take the form: E |- ¢ where E is an environment and c is a statement
about a program fragment

Universitat Bern Process Calculi

PS 1109.

Transition Semantics

Concurrent processes can be viewed as state machines that evolve by named transitions
to new states. A concurrent system can be viewed as a composition of processes whose
possible transitions are synchronized as actions.

Q out(m)
P

in(m)

&G

80’

‘

(o)
. Q (silent action)
P&Q

Universitat Bern Process Calculi

PS 120.

Process Calculi

A process calculus is a formal language for describing concurrent processes together
with its transition semantics.

[1 processes evolve by synchronizing communications along named channels
[1 concurrency is reduced to:

I input, output, choice, hiding/renaming, composition, replication
[close affinity with the lambda calculus:

[0 afunction is a process with only one input channel called “A”

[0 minimal syntax and inference rules

[1 pioneered by Milner (CCS: Calculus of Communicating Systems)
and by Hoare (CSP: Communicating Sequential Processes

Universitat Bern Process Calculi

PS

Pure Synchronization

A tiny process calculus: P ::= C?P | CIP | P&P | nil

121.

out(C) in(C)
ClP —> P C?P—— P

PP Q>Q

P&Q ~» P &Q

a

pIsp Q— Q'

P&Q —» P'&Q P&Q —» P&Q

NB: out(C) = in(C), out(C) = in(C), T stands for a “silent” action.

Universitat Bern

Process Calculi

PS 122.

Modeling Non-determinism

p'alb!v!nil — a client of resources a and b
& p!blalv!nil — a competing client
& p?2v?p?2v7nil — a (non-reusable) semaphore
& a?a?a?a?nil — a server for resource a
& b?b?b?b?nil — a server for resource b

P

a?a?a?a?nil b?b?b?b?nil

Universitat Bern Process Calculi

PS

Implementing the Transition Semantics

- op(700,xfy,&). % concurrent composition
- op(600,xfy,?). % input
- op(600,xfy,. % output

out(Channel!Process, Channel, Process).

out(P & Q, Comm, P & R) - out(Q, Comm, R).
out(P & Q, Comm, R & Q) - out(P, Comm, R).

in(Channel?Process, Channel, Process).

in(P & Q, Comm, P & R) - in(Q, Comm, R).
in(P & Q, Comm, R & Q) - in(P, Comm, R).
act(P1&Q1, Comm, P2&Q2) - out(P1,Comm,P2),

iNn(Q1,Comm,Q2).

act(P1&Q1, Comm, P2&Q2) - in(P1,Comm,P2),
out(Q1,Comm,Q2).

123.

act(P&Process, Comm, P&NewProcess) - act(Process, Comm, NewProcess) .
act(Process&P, Comm, NewProcess&P) - act(Process, Comm, NewProcess) .

Universitat Bern

Process Calculi

PS

Searching for Executions Paths

op(900,xfx,===>).

P ===> End

P===>P

dead(P)
dead().

Universitat Bern

% actions till stop

act(P,Comm,R),

print(’’), print(Comm), nl,

print(=>"), print(R), nl,
R ===> End.

dead(P).

act(P,_,), !, fail.

124.

Process Calculi

PS 125.

Running the Example

y o RN
| ?- plalb!vInil&p!blalvinil & p?v?p?v?nil & a?a?a?a?nil & b?b?b?b?nil ===> X.
p & N
=> alb!vInil & p!blalv!nil & v?p?v?nil & a?a?a?a?nil & b?b?b?b?nil
a
=> plvlnil & p!blalvnil & v?p?v?nil & a?a?a?nil & b?b?b?b?nil
b R\
=> vlnil & p!blalvinil & v?p?v?nil & a?a?a?nil & b?b?b?nil
Y
=> nil & p!blalvinil & p?v?nil & a?a?a?nil & b?b?b?nil
P
=> nil & blalv!nil & v?nil & a?a?a?nil & b?b?b?nil
b 4 RN
=> nil & alvInil & v?nil & a?a?a?nil & b?b?nil
a & &
=> nil & vinil & v?nil & a?a?nil & b?b?nil
Y

=> nil & nil & nil & a?a?nil & b?b?nil

Universitat Bern Process Calculi

PS

Finding Alternative Execution Paths

X = (nil & nil & nil & a?a?nil & b?b?nil) ?;

=> p!aF!)b!v!niI & blalvinil & v?p?v?nil & a?a?a?a?nil & b?b?b?b?nil
=> p!ab!b!v!nil & alvinil & v?p?v?nil & a?a?a?a?nil & b?b?b?nil
=> p!aallb!v!nil & vinil & v?p?v?nil & a?a?a?nil & b?b?b?nil
=> p!a:/!b!v!nil & nil & p?v?nil & a?a?a?nil & b?b?b?nil
=> a!bp!v!nil & nil & v?nil & a?a?a?nil & b?b?b?nil
=> b!va!‘nil & nil & v?nil & a?a?nil & b?b?b?nil
=> v!nti)l & nil & v?nil & a?a?nil & b?b?nil
Y

=> nil & nil & nil & a?a?nil & b?b?nil
X = (nil & nil & nil & a?a?nil & b?b?nil) ? ;

no

126.

Universitat Bern

Process Calculi

PS

127.

An Asynchronous Value-Passing Calculus

P = C?X>P [CIV |P&P [nil
\Y = [] | [C]
X = [] | [C] I[_]
C! n(Cl!
cv 2EV coxs>p MY b avixy
Pl b 0
P&Q —> P &Q
a a
powp Q> Q

Universitat Bern

Process Calculi

PS 128.

Implementing Value Passing

out(Channel!Message, Channel'Message, nil).

out(P & Q, Comm, P & R) - out(Q, Comm, R).
out(P & Q, Comm, R & Q) - out(P, Comm, R).

in(Channel?Pattern>AbsProcess, Channel'Message, NewProcess)
- AbsProcess @ {Message/Pattern} —> NewProcess .

in(P & Q, Comm, P & R) - in(Q, Comm, R).

in(P & Q, Comm, R & Q) - in(P, Comm, R).

act(P1&Q1, Comm, P2&Q2) - out(P1,Comm,P2), in(Q1,Comm,Q2).
act(P1&Q1, Comm, P2&Q2) - in(P1,Comm,P2), out(Q1,Comm,Q2).
act(P&Process, Comm, P&NewProcess) - act(Process, Comm, NewProcess) .
act(Process&P, Comm, NewProcess&P) - act(Process, Comm, NewProcess) .

For convenience:
out(N, Comm, R) - N :
in(N, Comm, R) - N :
act(N, Comm, R) - N :

P, !, out(P, Comm, R).
P, !, in(P, Comm, R).
P, !, act(P, Comm, R).

Universitat Bern Process Calculi

PS

Implementing Substitution

D @ {XL/NL} —> E

M@ {[_VIN]}—>M
Expr @ {[/[]} —> Expr .

N @ {[XJ/[N]} —-> X

[N] @ {[XV[N]} —> [X] .

CE?AProc @ {XL/NL} —> C?Proc

CE!AMsg @ {XL/NL} —> CIMsg

P&Q @ {XL/NL} —> PR & QR

Pat>Abs @ {XL/NL} —> PatR>AbsR

D:=P,,P @ {XLINL} —> E .

atom(M), M\==N, |

CE @ {XL/NL} —> C,
AProc @ {XL/NL} —> Proc.

CE @ {XL/NL} —> C,
AMsg @ {XL/NL} —> Msg.

P @ {XL/NL} —> PR,
Q @ {XL/NL} —> QR.

Pat @ {XL/NL} —> PatR,
Abs @ {XL/NL} —> AbsR.

NB: The rule for input channels is not quite right — why not?

Universitat Bern

129.

Process Calculi

PS 130.

A Value-Passing Example

| ?- (@?[r]>r'[1 & a?[r]>rl[] & a?[r]>r![]) & al[b] & (b?[]>nil) & al[c] & (c?[]>nil) ===> X.

al[c]
—
=> (c![]&a?[c]>c![]&a?[c]>c![) &a![b]&(b?[]>nil)&nil&c?[]>nil
cl[]
e RN
=> (nil&a?[c]>c![]&a?[c]>c![])&a![b]&(b?[]>nil)&nil&nil
al[b]
e RN

=> (nil&b![]&a?[b]>b![])&nil&(b?[J>nil)&nil&nil
b![]

=> (nil&nil&a?[b]>b![])&nil&nil&nil&nil

NB: substituting bound names works here, but not in general. Why not?

Universitat Bern Process Calculi

PS

Universitat Bern

Process Replication

X < > T

C”*A |C?A |CIV |P&P |nil
X>P

[] | [C]

[] 1S B .

131.

n(C!
Crxsp ML corxsp & P {VIX)

in(Channel?*Pattern>AbsProcess, Channel!Message,

CE?*AProc @ {XL/NL} —> C?*Proc

(Channel?*Pattern>AbsProcess) & NewProcess)
AbsProcess @ {Message/Pattern} —> NewProcess .

CE @ {XL/NL} —> C,
AProc @ {XL/NL} —> Proc.

Process Calculi

PS 132.

Resources as Replicated Processes

A counting semaphore: sem :=p!l[] & V?*[]>p![]
A printer: printer := print?*[r]>r![].
A template for client processes: client(R) := p?[>print![R] & R?[]>print![R] & R?[]>V![].

A configuration with two distinct clients: eg := sem & printer & client(rl) & client(r2).

print![rl]

Universitat Bern Process Calculi

PS 133.

Running the Example

sem & printer & client(rl) & client(r2)

P[] => (V*[]>p'[] & (print?*[r]>r![]) & client(rl) & print!/[r2] & (r2?[]>print![r2] & r2?[]>V![])
print![r2] => (vV?*[]>p![]) & (print?*[r]>r[]) & r2![] & client(rl) & (r2?[[>print![r2] & r2?[[>vI[])
r21] => (V?*[]>p'[]) & (print?*[r]>r![]) & client(rl) & print!/[r2] & r2?[|>V![]

print![r2] => (v?*[]>p![]) & (print?*[r]>r'[]) & r2![] & client(rl) & r2?[]>vI[]

r21] => (v?*]>p![]) & (print?*[r]>r![]) & client(rl) & v![]

vI[] => (V?*[]>p'[]) & p![] & (print?*[r]>r![]) & client(rl)

P[] => (V?*[]>p'[] & (print?*[r]>r![) & print![r1] & (r1?[]>print![rl] & r1?[]>VI[])
print![rl] => v?*[]>p![]) & (print?*[r]>r'[]) & r1![] & (r1?[[>print![r1] & r1?[[>VI[])
ri!] => (VX[]>p!'[] & (print?*[r]>r![) & print![r1] & r1?[|>V![]

print![rl] => (vV?*[]>p![]) & (print?*[r]>r'[]) & r1![] & r1?[]>vI[]

ril] => (v?* >p![]) & (print?*[r]>r![]) & vI[]

vI[] => (vV?*[[>p![]) & p![] & (print?*[r]>r![])

Universitat Bern Process Calculi

PS 134.

Other Issues

[1 Choice:

[How to express choice of inputs?
[1 Encapsulation:

[0 How to encapsulate subsystems?

[How to generate new channel names?
1 Structural Equivalence:

0 Simplifying the transition semantics by giving structural equivalence rules
—e.g., p&Qq == gq&p
[0 Semantic Equivalence:
[0 When do two expressions represent the same process?

Universitat Bern Process Calculi

PS 135.
PICT

Overview
[0 PICT core syntax
[1 Creating new channels
[0 Channel types
[0 Modelling language constructs
[1 A concurrent queue

Texts:
[0 R. Milner, “The Polyadic tT=Calculus: A Tutorial,” U. Edinburgh, 1991
[0 B. Pierce, Programming in the Pi-Calculus, Tutorial Notes for PICT Version

3.6a, 1995

Universitét Bern PICT

PS 136.

Abstract Syntax of (Untyped) Core PICT

Proc = Val? Abs Val = Name

Val ?7* Abs BasicVal

Val! val [val, ...]

Proc | Proc record end

let new Name in Proc end Val with Id = Val end
Abs= Pat> Proc Name = Id
Pat= Name BasicVal = String

[Pat, ...]

record /d = Pat, ... end

Name @ Pat

Universitét Bern PICT

PS

Binding Channels

All channel names must be bound, either by “let new” or by an input pattern:

run
let new X in

X[]
| (xX?[I>print!"Got it!")
end

NB: print is a built-in channel

137.

Universitat Bern

PICT

PS 138.

Typed Channels

Channels in PICT are typed, and may only carry values matching their type:

Type= " Type
I Type
? Type
[Type, ...]
Record end

Type with Id: Type end
Top

In most cases, types can be automatically inferred, and declarations are unnecessary:

run
let new x : M[]in
xI[]
| (X?[]>print!"Got it!")
end

Universitét Bern PICT

PS 139.

Synchrony and Asynchrony

Although PICT uses asynchronous message-passing, synchrony can be recovered by
waiting for a response on a (fresh) channel:

def sem [p,v] >

(p2r > 1))
| v?2*r>rl[]| (p?r>r]))

A definition is syntactic sugar for a (new) replicated process

let new sem

run (sem?*[p,v] >
(p?r>r11])
| (v?r>r[]] (p?r>rl[])))

Note that all channel names are bound, and that channels can be passed as values.

Universitét Bern PICT

PS 140.

Synchronizing Concurrent Clients

def client [p,v] >
let new r, s1, s2 in
p'r
| (r?[] > pr!'['"FIRST\n",s1])
| (s1?[] > pr!['SECOND\n",s2])
| (s2?[]>v!r | (r?[] > skip))
end

run
let new p, vin
sem![p,v]
| client![p,V]
| client![p,V]
| client![p,V]
end

Universitét Bern PICT

PS

Modelling Booleans

def tt [b] > b?*[t,_] >t]
def ff [b] > b?*[_,f] > fI[]

def test [b] >
let new t, fin
b![t,f]
| (t?[] > print!"True")
| (f?[] > print!"False")
end

def notB [b,c] > c?*[t,f] > b![f,{]

run
let new b, cin
ffl[b] | notB![b,c] | test![c]
end

Universitat Bern

141.

PICT

PS

Modelling Language Constructs

Higher-level language constructs are modelled by translation to core PICT:

run

let new X in

end

IS translated to:
run

x!false

(x?b >

if b

then print!"True"
else print!"False"
end)

let new X in

end

Universitat Bern

x!false
(x?b >
let new t,fin

primif![b,t,f]
| (t?[] > print!"True")
| (f?[] > print!"False")
end)

142.

PICT

PS 143.

Natural Numbers

A natural number n can be modelled by a channel n that reads a pair [p,z] of channels,
and either sends z![] if it is equal to zero, or else sends p![k] where k represents n-1.

def zero [p,z] > z![]
def one [p,z] > p![zero]
def two [p,z] > p![one]
def three [p,z] > p![twO]

def count [n] >
let new p,z in
n![p,z]
| (z?[] > print!"0")
| (p?[m] > print!"1+" | count![m])
end

run count![three]

Universitét Bern PICT

PS

Counting

New numbers can be generated by constructing a

def succ [n, r] >
let new s in
r's
| (s?*[p,z] > p![n])
end

run
let new rin
succl![three,r]
| (r?s > count![s])
end

Universitat Bern

Successor process.

144.

PICT

PS

Arithmetic

Arithmetic operators can be built up in the same way:

def add [m,n,r] >
let new p, z in
m![p,z]
| (z?[]>r'n)
| (p?[pm]>
let new rn in
succ![n,rn]
| (rn?sn>add![pm,sn,r])
end)
end

run let new r in
add![two,three,r]
| (r?s > count![s])
end

Universitat Bern

145.

PICT

PS

Functional Notation

Infix notation and functional application are syntactic sugar for communication:
run printi!(2+5)

translates to:
run printi!((+)[2,5])

which translates to:

run
let new r in
(H)'[2,5,r] | (r?value > printilvalue)
end

146.

Universitat Bern

PICT

PS

Functions as Processes

Functions can be defined as processes:

def double [n] = n+n

translates to:
def double [n,r] > ri(n+n)

which translates to:

def double [n,r] >
let new rl in
(+)![n,n,r1]
| (r1?value > rlvalue)
end

run printi!(double[5])

Universitat Bern

147.

PICT

PS 148.

Functions as Processes

def fact [n] = def fact [n,r] >
ifn== let new br in
then 1 translates to: (==)![n,0,br]
else n * fact[n-1] | (br?b >
end let new t, fin
primif![b,t,f]
| (t?[]>r!1)
| (f2[1>
let new nr in
(-)'[n,1,nr]
| (nr?k >
let new Kfr in
fact![k, kfr]
| (kfr?2kf >
. let new fr in
run printi!(fact[5]) (Y[, Kf,fr]
| (fr2f > rlf)
end)
end)

end)
end

Universitét Bern PICT

PS

Sequencing

run
pr[*hello ";
pr["world\n"];
skip

translates to:

run
let new r in
pri[*hello ",r]
| (?[]>
let new r in
pr!["world\n",r]
| (r?[]> skip)
end)
end

Universitat Bern

149.

PICT

PS 150.

A Concurrent Queue

\

X
get![r] r'[value]
celll[value,next”,next’]
A
The head accepts a get request to yield its | linkinext”
value and trigger the next cell.
A cell waits to be triggered by the head, and link!next™”

then itself becomes the head of the queue.

The tail services put requests by
constructing a new cell that waits for the put'[value,r] []
next trigger from the cell in front of it.

Universitét Bern PICT

PS 151.

Implementing the Concurrent Queue

new get, put deftail[] >
let new link, init in
link!init
def head[value, next] >
| (put?*[value,r] >
get?[r] > rlvalue | next![] link?ready >
let new next in
def cell[value, ready, next] > celll[value,ready,next]
ready?[] > head![value, next] | link!next
| r[]
end)
| init![]
end
run
let new r in
tail'[]
| (put["one"]; put['good"]; put[‘turn"]; put['deserves"]; put['another"]; skip)
| get![r]
| get![r]
| get![r]
| get![r]
| get![r]
|

(r ?* s > printls)
end

Universitét Bern PICT

PS

Object-Based Concurrency

Overview
[0 Whatis an OBCL?
[0 Dimensions of OO Languages
[1 Expression of Concurrency
[Objects and Processes
[0 Granularity of Concurrency
[0 Creating Processes
[0 Communication and Synchronization
[Intra-Object and Inter-Object Synchronization
[0 Evaluating OBCLs
[Research Topics

Universitat Bern

152.

Object-Based Concurrency

PS

What is an OBCL?

An Object-Based Concurrent Language supports:
[1 Encapsulation
[1 objects encapsulate data and operations
[0 Concurrency
[1 multiple processes may be concurrently active
[0 need to: specify, create and synchronize processes

Why do we need OBCLs?
[0 Inherent application (real-world) concurrency
[0 Distributed applications
[0 Application integration and interoperability
[0 Parallel applications

153.

Universitat Bern

Object-Based Concurrency

PS

Overview of OBCLs

[1 Traditional OBLSs:
[0 Smalltalk-80, C++, Objective C, Ada
[1 libraries

[0 Extended OBLs:
[0 CLU: Argus
[0 Smalltalk-80: ConcurrentSmalltalk, Actalk, PO
[0 C++: ACT++, Arjuna, Avalon, Karos
O Eiffell/

[1 Concurrent OBLs:
[0 Actors, ABCL, POOL, Guide, Hybrid, Meld

Universitat Bern

154.

Object-Based Concurrency

PS

155.

Requirements for OBCLs

[]

Object autonomy:
[1 protection from concurrent requests

Internal concurrency:
[0 should be transparent to clients

Local delay transparency:
[0 handling of local delays should be transparent to the client

Remote delay transparency:
[0 handling of remote delays should be transparent to the service provider

Composable synchronization policies:
[J subclasses should share synchronization code with superclasses

REF. Papathomas, PhD thesis, 1992.

Universitét Bern Object-Based Concurrency

PS 156.

Expression of Concurrency

[0 Objects and Processes:
[0 How are processes and objects related?

[0 Granularity of Concurrency:
[0 How many processes can be associated with an object?

[0 Process Creation:
[How are processes created?

Universitét Bern Object-Based Concurrency

PS 157.

ODbjects and Processes

How are processes related to objects?

Three Classes of OBCL:

[0 Passive Objects: objects & concurrency independent
(Smalltalk-80, C++, Objective-C, Emerald)

[0 Active/Passive: passive + “concurrent” objects
(PAL)
[0 Active Objects: objects and processes are unified

(ABCL/1, Hybrid, POOL ...)

Universitét Bern Object-Based Concurrency

PS

Passive Object Models

Process

158.

Process

=

operations’
data—

=

\datgu

il
i

Concurrent processes access passive objects.

Processes synchronize according to a shared memory model:
objects must be designed to be shared, or

[0 processes must explicitly synchronize via locks, etc.

[

Smalltalk-80, C++, Objective-C, Emerald

Universitat Bern

Object-Based Concurrency

PS 1509.

Active/Passive Models

Active Objects

Passive Objects —

Active Objects are identified with processes

Passive objects are protected by the active objects containing them
[0 lightweight/heavyweight distinction
[J two class hierarchies are incompatible

PAL

Universitét Bern Object-Based Concurrency

PS 160.

Active Object Models

Active Obijects

\ \
Objects and processes are integrated:

[0 each operation invocation is a potentially concurrent thread
[0 an object with a running operation is active
[J every object is autonomous and synchronizes its own threads

ABCL, Hybrid, POOL, ...

Universitét Bern Object-Based Concurrency

PS

Granularity of Concurrency

Approaches to Concurrency:

Inter-Object Concurrency:
[1 Sequential Objects Ada, POOL

Intra-Object Concurrency:
[0 Quasi-Concurrent Objects Hybrid

[0 Concurrent Objects:

[0 Client-Driven: Passive Objects
[0 Server-Driven: Active Objects

Universitat Bern

161.

Object-Based Concurrency

PS 162.

Seqguential Objects

EEEE —

In a sequential object model, requests are serialised in a wait-queue
[1 each operation runs to completion before the next request is handled
[1 concurrency is introduced by having more objects

Universitét Bern Object-Based Concurrency

PS 163.

Quasi-Concurrent Objects

Quasi-concurrent objects may switch attention between multiple requests:
0 In Hybrid, a delegated call to another object allows the serving object to
switch to another request
0 In ABCL, an express message may interrupt the thread servicing an
ordinary invocation

Universitét Bern Object-Based Concurrency

PS 164.

Concurrent Objects

Concurrent Objects may serve multiple requests concurrently:
[1 Passive Objects require explicit synchronization of threads
[0 Active Objects control when to accept new requests
[0 may create additional internal threads to service a single request

Passive: Smalltalk-80, C++, ...
Active: Sina, PO, Eiffel//, ...

Universitét Bern Object-Based Concurrency

PS 165.

Process Creation

[1 Asynchronous Objects
[1 Explicit bodies
[0 Implicit bodies

[1 Asynchronous Messages
[one-way message-passing
[0 futures

Universitét Bern Object-Based Concurrency

PS 166.

Asynchronous ODbjects

: Instantiation

independent execution

The “body” of an active object may be:
I Implicit and inaccessible — standard scheduler
[1 Explicit and customizable — initialization, scheduling, synchronization ...

Implicit: Actalk, Act++, Actors
Explicit: Ada, Eiffel//, Pool

Universitét Bern Object-Based Concurrency

PS 167.

Asynchronous Invocation

Clients do not wait for the reply to continue executing
[one-way message-passing:
I reply (if any) sent by another invocation

[futures:
I reply sent to a future object

Universitét Bern Object-Based Concurrency

PS 168.

Futures

The reply to an asynchronous request is sent to a future object..

[The client obtains the result when needed.

[1 Clients block only if the result is not yet available when needed
Futures may be created either explicitly by clients or implicitly for all requests.

Explicit: ACT++, ABCL, PO, ConcurrentSmalltalk
Implicit: Eiffel//, Karos, Meld

Universitét Bern Object-Based Concurrency

PS 169.

Communication and Synchronization

[0 Intra-Object Synchronization:
[Remote Delays: asynchronous invocations
[1 Local Delays: condition synchronization

[0 Inter-Object Synchronization:
[0 Transactions

Universitét Bern Object-Based Concurrency

PS

Local Delays

170.

An object may need to delay selected requests to avoid local inconsistency.

[Unconditional acceptance
[0 Conditional acceptance
[0 Centralized acceptance
[1 Explicit acceptance
[0 Reflective computation
[1 Distributed activation conditions

[Representation specific
1 Abstract

Universitat Bern

Emerald, Trellis, Smalltalk-80

Ada, POOL, ABCL

Actalk, ABCL/R

Guide, Hybrid, SINA
Procol, ACT++, Rosette

Object-Based Concurrency

PS 171.

Local Delays

Unconditional acceptance Explicit acceptance

\@

Representation specific delays Abstract synchronization conditions

=

Universitét Bern Object-Based Concurrency

PS 172.

Transactions

[1 Concurrency atomicity:

[0 intermediate effects on shared objects are invisible to other transactions
(serialisability or isolation)

[1 Failure atomicity:

[J transactions either complete successfully, or are aborted with no visible
effect on shared objects (the “all-or-nothing” property)

Transactions may be associated with transaction blocks (explicit start and end), or may
be realized as atomic invocations (implicit with operation start and end).

Universitét Bern Object-Based Concurrency

PS 173.

Classifying OBCLs

[Object Models
[1 Active or Passive Objects?

[0 Granularity of Concurrency
[0 Sequential, Quasi-Concurrent or Concurrent?

[0 Process Creation
[0 Asynchronous Objects or Asynchronous Invocations?

[0 Local Delays
[1 Conditional or Unconditional Acceptance?
[0 Centralized or Distributed Activation Conditions?
[0 Explicit or Reflective / Abstract or Representation-specific?

Universitét Bern Object-Based Concurrency

PS 174.

Evaluation

[1 Object autonomy:
[1 active objects

[I Internal concurrency:
[0 server-driven

[1 Local delay transparency:
[1 various approaches ...

[Remote delay transparency:
[1 futures or internal threads

[Composable synchronization policies:
[composable abstract synchronization policies ...

Universitét Bern Object-Based Concurrency

PS 175.

Text Processing Languages

Overview
[0 Text processing languages
[0 Sedand AWK
O Perl

Texts:
0 L. Walland R.L. Schwartz, Programming Perl, O'Reilly and Associates, 1992

0 Bill Kinnersley, The Language List — Version 2.3, September 1994
(http://cuiwww.unige.ch/langlist, ftp://ftp.wustl.edu/doc/misc/lang-list.txt)

Universitét Bern Text Processing Languages

PS

176.

What are Text Processing Languages?

Common features:

[]

N O O B

Strings as built-in data types

Pattern matching

Textual substitution

Regular expressions

Lists and associative arrays

Automatic conversion between strings and numeric data types
Formatting and report generation

Universitét Bern Text Processing Languages

PS 177.

Some Text Processing Languages

Selected from the Language List:

AWK — Aho Weinberger Kernighan. 1978. Text processing/macro language. “The AWK Programming Language” A. Aho, B.
Kernighan, P. Weinberger, A-W 1988. (See Bawk, Gawk, Mawk, Nawk, Tawk.) ftp://netlib.att.com/research/awk*

AXLE — An early string processing language. Program consists of an assertion table which specifies patterns, and an imperative table
which specifies replacements. “AXLE: An Axiomatic Language for String Transformations”, K. Cohen et al, CACM 8(11):657-

661 (Nov 1965).
bawk — Bob Brodt. AWK-like pattern-matching language, distributed with Minix.
CONVERT —

1. String processing language, combined the pattern matching and transformation operations of COMIT with the
recursive data structures of Lisp. “Convert’, A. Guzman et al, CACM 9(8):604-615 (Aug 1966).

EMACS LISP — Richard Stallman. Variant of LISP used by the EMACS editor. (This is the "offical* name, based on the EMACS FAQ
file. See ELISP)

Gawk — GNU’s implementation of a superset of POSIX awk, a pattern scanning and data manipulation language. ftp://prep.ai.mit.edu/
pub/gnu/gawk-2.15.4.tar.Z //archive.umich.edu/mac/utilities/developerhelps/macgawk?2.11.cpt.hgx

LOGOL — Strings are stored on cyclic lists or 'tapes’, which are operated upon by finite automata. J. Mysior et al, “LOGOL, A String
manipulation Language”, in Symbol Manipulations Languages and Techniques, D.G. Bobrow ed, N-H 1968, pp.166-177.

mawk — Mike Brennan <brennan@bcsaic.boeing.com> 1991. An implementation of nawk, distributed under GNU license but distinct
from GNU'’s gawk. ftp://oxy.edu/public/mawk

Nawk — New AWK. AT&T. Pattern scanning and processing language. An enhanced version of AWK, with dynamic regular
expressions, additional built-ins and operators, and user-defined functions.

PANON — A family of pattern-directed string processing languages based on generalized Markov algorithms. “String Processing
Languages and Generalized Markov Algorithms”, A. C. Forino, Proc IFIP Working Conf on Symb Manip Languages, pp.141-
206, Amsterdam 1968. PANON-1, based on Simple GMA’s and PANON-2 based on Conditional Functional GMA's.

Universitét Bern Text Processing Languages

PS 178.

Perl — Practical Extraction and Report Language. Larry Wall <lwall@netlabs.com> An AWK-like interpreted language for scanning text
and printing formatted reports. Regular expression primitives, dynamically- scoped variables and functions, extensible
runtime libraries, exception handling, packages. Version 5 adds nested data structures and object- oriented features.
“Programming Perl”, Larry Wall et al, O’Reilly & Assocs. ftp://ftp.netlabs.com/pub/outgoing/perl.4.0 for Unix, MS-DOS, Amiga
/ftp.netlabs.com/pub/outgoing/perl5.0/perl5al.tar.Z for Sparc //rascal.utexas.edu/programming/Perl_402_MPW_CPT _bin
for Mac
uucp: osu-cis

Sed — Stream editor. The input language used by the Unix stream editor.

SNOBOL — StriNg Oriented symBOlic Language. David Farber, Ralph Griswold & I. Polonsky, Bell Labs 1962-3. String processing
language for text and formula manipulation. "'SNOBOL, A String Manipulating Language*, R. Griswold et al, J ACM 11(1):21
(Jan 1964).

SPRING — String PRocessING language. "From SPRING to SUMMER: Design, Definition and Implementation of Programming
Languages for String Manipulation and Pattern Matching“, Paul Klint, Math Centre, Amsterdam 1982.

TAWK — Tiny AWK.

Tcl —
1. (“tickle”) Tool Command Language. John Ousterhout, UCB. <ouster@sprite.berkeley.edu> A string language
for issuing commands to interactive programs. Each application can extend tcl with its own set of commands.
“Tcl: An Embeddable Command Language”, J. Ousterhout, Proc 1990 Winter USENIX Conf. ftp://
ucbvax.berkeley.edu

TECO — Text Editor and COrrector. (Originally “Tape Editor and COrrector”). Macro language for text editing, screen handling and
keyboard management. Has a reputation for being cryptic and hard to learn. (TECO programs are said to resemble line noise.)
The first EMACS editor was written in TECO. ftp://usc.edu, for VAX/VMS, Unix, MS-DOS, Mac, Amiga

VULCAN —
3. Early string manipulation language. "VULCAN - A String Handling Language with Dynamic Storage Control“,
E.P. Storm et al, Proc FICC 37, AFIPS (Fall 1970).

ZUG — Geac. [?] A low-level Awk?

Universitét Bern Text Processing Languages

PS

179.

Reqgular

Expressions (Perl)

Each character matches itself, unless it is one of the special characters: +?.*()[]{}|\

\d

\n \r \t
\1...\9
$&

N e e)) I OO
I
<

Universitat Bern

matches an arbitrary character except a newline

groups a series of pattern elements to a single element
matches the preceding pattern element one or more times
matches zero or one times

matches zero or more times

matches from N to M times; {N} exactly N; {N,} N or more
denotes a class of characters to match; [*...] negates the class
matches one of the alternatives

matches alphanumerics and “_”; \W matches non-alphanumerics
matches word boundaries; \B negation

matches whitespace; \S matches non-whitespace

matches digits; \D matches non-digits

match newlines, carriage returns, tabs

refer to matched sub-expressions grouped with (...)

string matched by the last pattern match

Text Processing Languages

PS

ED

SED performs substitutions on a stream of text:

#! Ibin/sed -f

escape special characters for Framemaker

s\V&&/g

s/

Ng

s/[<>]\&/g
s/-/<endash>/g
s/“/<quotedblleft>/g
s/'\'\"/<quoteblright>/g

Alternatively, at command level:

sed

Universitat Bern

-e 's/\\V&&/g’

-e 's/\t/g’

-e 's/[<>]\&/g’

-e 's/-/<endash>/g’

-e 's/*/<quotedblleft>/g’
-e 's/'\'\"/<quoteblright>/g’
$*

\
\
\
\
\
\

180.

Text Processing Languages

PS 181.

AWK

AWK modifies text streams by transformation rules:

#! [binfawk -f
#
#pgs --- count pages in %P fields of refer files

[%P [0-9]*$/ { pgs += $2 ; next }

[%P [0-9]* *- *[0-9]*$/ {
p = substr($0,4)
n = split(p, pp, "-*)
\ pgs +=1 + pp[2] - pp[1]

END { print pgs }

Universitét Bern Text Processing Languages

PS

Perl

“Practical Extraction and Report Language”
or
“Pathologically Eclectic Rubbish Lister”

Principle features:

[0 uniform selected merge of: sed, awk, csh, c ...
numbers, text, binary data
file, string processing, regular expressions
built-in lists, associative arrays
special variables to control processing ($/, $[...)

compilation; dynamic evaluation; error-handling
packages

(N O O O O I

Universitat Bern

common systems calls (files, directories, sockets, ..

)

182.

Text Processing Languages

PS 183.

Reqgular Expressions

Sed-like behaviour can be obtained with the -p flag:
#! /usr/local/bin/perl -p

#

caps --- change initial letters of words to upper case

#

But don't capitalize isolated letters!

s\WNI$&/qg; # convert all alphabetics to lower case
s\b\WwW\wA\u$&/qg ; # change initial characters of words to upper case

is equivalent to:
#! /usr/local/bin/perl

while (<>) { # read a line of input into $
s\wWN\I$&/g; # perform a substitution on $
s\b\w\wA\u$&/qg ;
print; #print$_

}

Sed and AWK scripts can be automatically translated to Perl.

Universitét Bern Text Processing Languages

PS 184.

Arrays
#! /local/bin/perl -s
#
#rsort — sort a file of records
$/ =" # blank line separates records

print sort(@input=<>);

]

Special variables control default behaviour

Values are interpreted as scalars, arrays or associative arrays depending
on the current context

[0 Built-in functions efficiently implement common text processing operations

]

Universitét Bern Text Processing Languages

PS 185.

Subroutines

#! /usr/local/bin/perl -s
#rsort --- sort a file of records

$usg = "Usage : rsort [-r(everse)] [-u(nique)] [<file> ...]\n";
die $usg if $h;

$/ =" # blank line separates records
if ($r) {
if ($u) { &unig(sort({$b cmp $a} @input=<>)); }
else { print sort({$b cmp $a} @input=<>); }
} else {
if ($u) { &uniq(sort(@input=<>)); }
else { print sort(@input=<>); }

}
sub uniq {
foreach $current (@) {
next if ($current eq $previous);
print $previous = $current;
}
}

Universitét Bern Text Processing Languages

PS 186.

File 1/0

#! /local/bin/perl -s
rsplit— split a file of records into two parts by a keyword

$usg = "Usage: rsplit <key> <file>\n";

blank line is record separator

$/ ="

$key = $SARGVIO];

if (B#ARGV == 1) { $IN = SARGVI[1]; SMATCH = "$IN.1"; $REST =
"$IN.2"; }

else { die $usg; }

open(IN,$IN);

open(MATCH,">$MATCH");

open(REST,">$REST");

while (<IN>) {
/$key/o && do { print MATCH $_; next; };
print REST $_;

}

Universitét Bern Text Processing Languages

PS

Dynamic Compilation

#! /usr/local/bin/perl -s
#
rgrep --- extract records matching a pattern from files

$u = "Usage: rgrep [-i] <pattern> [<file> ...]\n" ;
($pattern, @files) = @ARGV ;

defined($pattern) || die($u) ;

@ARGV = @files ;

$/=""; # set blank line to be record separator
if ($1) { $i="1";}

patterns with alternatives are slow to evaluate,
so construct a logical alternative instead:
foreach $p (split(\|/,$pattern)) {

$mpat .= "/$p/o$i && (print, next);\n";

eval "while(<>) { $mpat }*;

187.

Universitat Bern

Text Processing Languages

PS 188.

Packages

#! /local/bin/perl
#

pre — produced pre-formatted HTML text
unshift(@INC,"/user/oscar/Cmd/PerlLib");
require("url.pl");
if (P#ARGV >= $)) {
foreach $file (@ARGV)
{ open(FILE,$file); &pre($file,FILE); close(FILE); }

else { &pre("stdin”, stdin); }

sub pre {
local($file,$input) = @ ;
print "<TITLE>Ascii file: $file</TITLE>\n<PRE>\n";
while(<$input>) {

study;
s/&/&/qg; s/</</g; s/>/>/q;
&url’href; # recognize hypertext links and make them live
print;

b

print "</PRE>\n";

}
Universitét Bern

Text Processing Languages

PS 189.

Standard System Calls

sub http {
local($host,$port,$request) = @ _;
($fgdn, $aliases, $type, $len, $thataddr) = gethostbyname($host);
$that = pack($sockaddr, &AF _INET, $port, $thataddr);
socket(FS, &AF_INET, &SOCK_STREAM, $proto) || return undef;
bind(FS, $thissock) || return undef;
local($));
unless (eval g!
$SIG{ALRM’} = "url'timeout";
alarm(30);
connect(FS, $that) || return undef;
select(FS); $| = 1; select(STDOUT);
print FS "GET $request\r\n®;
$page = <FS>;
$SIG{ALRM’} = "IGNORE";
1) { return undef; }
close(FS);
$page;

Universitét Bern Text Processing Languages

PS

Perl: Pros and Cons

Pros:
[0 Highly optimized for text processing
[1 Convenient for writing Unix administration scripts
[1 Acceptable support for writing modules
[0 On-the-fly compilation (+ error detection)
Cons:

[0 Weak encapsulation (global variables)
[0 No facility for defining complex data types
[1 Easy to introduce type errors

Universitat Bern

190.

Text Processing Languages

PS 191.

Scripting Languages

Overview

[0 Shell Languages, Command Languages, Scripting Languages, Fourth
Generation Language and Coordination Languages

[1 The Bourne Shell

Texts:

[0 Bill Kinnersley, The Language List— Version 2.3, September 1994
(http://cuiwww.unige.ch/langlist, ftp://ftp.wustl.edu/doc/misc/lang-list.txt)

[1 S.R. Bourne, “An Introduction to the UNIX Shell,” UNIX User’'s Manual, 1978

Universitét Bern Scripting Languages

PS 192.

Scripting Languages and Their Kin

The distinctions between the following languages classes are fuzzy at best.

Shell Language:

[0 language for interacting with an application or operating system
Command Language:

[interactive language for issuing commands to a system
Scripting Language:

[0 language for controlling and composing components of a system
Fourth Generation Language:

[0 high-level language for specialized (usually database) applications
Coordination Language:

[0 language for coordinating multi-agent systems

Universitét Bern Scripting Languages

PS 193.

Shell Languages

AppleScript — An object-oriented shell language for the Macintosh, approximately a superset of HyperTalk.
bash — Bourne Again SHell. GNU’s command shell for Unix. ftp://prep.ai.mit.edu/pub/gnu/bash-1.10.tar.Z
csh — C-Shell. William Joy. Command shell interpreter and script language for Unix.

es —
1. Extensible Shell. Unix shell derived from rc, includes real functions, closures, exceptions, and the ability to
redefine most internal shell operations. "Es - A Shell with Higher Order Functions®, P. Haahr et al, Proc Winter
1993 Usenix Technical Conference. ftp://ftp.sys.utoronto.ca/pub/es/es-0.84.tar.Z
FOCL — Expert system shell, a backward chaining rule interpreter for Mac. ftp://ics.uci.edu/pub/machine-learning-programs/KR-
FOCL-ES.cpt.hgx
info: pazzani@ics.uci.edu

GEST — Generic Expert System Tool. Expert system shell with frames, forward and backward chaining, fuzzy logic. Version 4.0. For
Symbolics LISP machines only. ftp://ftp.gatech.edu/pub/ai/gest.tar.Z
info: John Gilmore <John.Gilmore@gtri.gatech.edu>

ksh — Korn Shell command interpreter for Unix.

MIKE — Micro Interpreter for Knowledge Engineering. Expert system shell for teaching purposes, with forward and backward chaining
and user- definable conflict resolution strategies. In Edinburgh Prolog. BYTE Oct 1990. Version 2.03 ftp://hcrl.open.ac.uk/pub/
software/src/MIKE-v2.03
info: Marc Eisenstadt <M.Eisenstadt@hcrl.open.ac.uk>

rc — Tom Duff. AT&T Plan 9 shell. Lookalike by Byron Rakitzis <byron@archone.tamu.edu> ftp://archone.tamu.edu

sh — (or "Shellish®). S.R. Bourne. Command shell interpreter and script language for Unix. "Unix Time-Sharing System: The Unix
Shell®, S.R. Bourne, Bell Sys Tech J 57(6):1971-1990 (Jul 1978).

TACL — Tandem Advanced Command Language. Tandem, about 1987. The shell language used in Tandem computers.

Universitét Bern Scripting Languages

PS 194.

Command Languages

GCL — General Control Language. A portable job control language. "A General Control Interface for Satellite Systems®, R.J. Dakin in
Command Languages, C. Unger ed, N-H 1973.

IBEX — Command language for Honeywell's CP-6 OS.
LE/1 — Langage External. "An Evaluation of the LE/1 Network Command Language Designed for the SOC Network*, J. du Masle, in
Command Languages, C. Unger ed, N-H 1973.

PCL —

3. Peripheral Conversion Language. Honeywell. Command language for file transfer between 1/O devices on the
CP-V and CP-6 operating systems.

POCAL — PETRA Operator's CommAnd Language.

RCL — Reduced Control Language. A simplified job control language for OS360, translated to IBM JCL. “Reduced Control Language
for Non- Professional Users”, K. Appel in Command Languages, C. Unger ed, N-H 1973.

RECOL — REtrieval COmmand Language. CACM 6(3):117-122 (Mar 1963).

SCL —

1. System Control Language. Command language for the VME/B operating system on the ICL2900. Block
structured, strings, superstrings (lists of strings), int, bool, array types. Can trigger a block whenever a condition
on a variable value occurs. Macros supported. Commands are treated like procedure calls. Default arguments.
"WVME/B SCL Syntax”, Intl Computers Ltd 1980.

TACL — Tandem Advanced Command Language. Tandem, about 1987. The shell language used in Tandem computers.

Universitét Bern Scripting Languages

PS 195.

Command Languages ...

Tcl —
1. (“tickle”) Tool Command Language. John Ousterhout, UCB. <ouster@sprite.berkeley.edu> A string language
for issuing commands to interactive programs. Each application can extend tcl with its own set of commands.
“Tcl: An Embeddable Command Language”, J. Ousterhout, Proc 1990 Winter USENIX Conf. ftp://
ucbvax.berkeley.edu
Tcl —

2. Terminal Control Language. The command language used in the Pick OS. “Exploring the Pick Operating
System”, J.E. Sisk et al, Hayden 1986.

tcsh — Command language for Unix, a dialect of csh.

UNIQUE — A portable job control language, used. "The UNIQUE Command Language - Portable Job Control“, . A. Newman, Proc
DATAFAIR 73,1973, pp.353-357.

WFL — Work Flow Language. Burroughs, ca 1973. A job control language for the B6700/B7700 under MCP. WFL was a compiled block-
structured language similar to ALGOL-60, with subroutines and nested begin-end’s. "Work Flow Management User’s Guide®,
Burroughs Manual 5000714 (1973). "Burroughs B6700/B7700 Work Flow Language*®, R.M. Cowan in Command Languages,
C. Unger ed, N-H 1975.

Universitét Bern Scripting Languages

PS 196.

Scripting Languages

AppleScript — An object-oriented shell language for the Macintosh, approximately a superset of HyperTalk.
Cmm — C Minus Minus. Scripting language. ftp://ftp.std.com/vendors/CEnvi-Cmm/share
csh — C-Shell. William Joy. Command shell interpreter and script language for Unix.
DCL —
1. DIGITAL Command Language. The interactive command and scripting language for VAX/VMS.

ECSS Il — Extendable Computer System Simulator. An extension of SIMSCRIPT II. "The ECSS Il Language for Simulating Computer
Systems*”, D.W. Kosy, R- 1895-GSA, Rand Corp.

expect — A script language for dealing with interactive programs. Written in Tcl. "expect: Scripts for Controlling Interactive Tasks", Don
Libes, Comp Sys 4(2), U Cal Press Journals, Nov 1991. ftp://ftp.uu.net/languages/tcl/expect/*

Hyperscript — Informix. The object-based programming language for Wingz, used for creating charts, graphs, graphics, and
customized data entry.

HyperTalk — Bill Atkinson and Dan Winkler. A verbose semicompiled language with loose syntax and high readability. Relies on
HyperCard as an object management system, development environment, and interface builder. Programs are organized into
"stacks" of "cards", each of which may have "buttons* and "fields”. All data storage is in zero-terminated strings in fields, local,
or global variables; all data references are through "chunk expressions*” of the form last item of background field "Name List"
of card ID 34217’. Flow of control is event-driven and message-passgin among scripts that are attached to stack, background,
card, field and button objects. "Apple Macintosh HyperCard User Guide®, Apple Computer 1987. "HyperTalk Language
Reference Manual®, A-W 1988. Available from Claris Corp.

Lakota — Scripting language, extends existing OS commands.
info: Richard Harter <rh@smds.UUCP> SMDS Inc.

Lingo — An animation scripting language. MacroMind Director V3.0 Interactivity Manual, MacroMind 1991.

Universitét Bern Scripting Languages

PS 197.

Scripting Languages ...

Oblig — Luca Cardelli, 1993. A distributed object-oriented scripting language. Small, statically scoped, untyped, higher order, and
concurrent. State is local to an address space, while computation can migrate over the network. The distributed computation
mechanism is based on Modula-3 network objects. ftp://gatekeeper.dec.com/pub/DEC/Modula-3/contrib

PSML — Processor System Modeling Language. Simulating computer systems design. A preprocessor to SIMSCRIPT. “Processor
System Modeling - A Language and Simulation System”, F. Pfisterer, Proc Symp on Simulation of Computer Systems (Aug
1976).

QUIKSCRIPT — Simulation language derived from SIMSCRIPT, based on 20-GATE. “Quikscript - A Simpscript-like Language for the
G-20", EM. Tonge et al, CACM 8(6):350-354 (June 1965).

REXX — Restructured EXtended eXecutor. M. Cowlishaw, IBM ca. 1979. (Original name: REX. They also call it “System Product
Interpreter”). Scripting language for IBM VM and MVS systems, replacing EXEC2. “The REXX Language: A Practical
Approach to Programming”, M.F. Cowlishaw, 1985. Versions: PC-Rexx for MS-DOS, and AREXX for Amiga.
list: REXX-L@UIUCVMD.BITNET. ftp://rexx.uwaterloo.ca/pub/freerexx/* REXX interpreters for Unix

sh — (or "Shellish®). S.R. Bourne. Command shell interpreter and script language for Unix. "Unix Time-Sharing System: The Unix
Shell®, S.R. Bourne, Bell Sys Tech J 57(6):1971-1990 (Jul 1978).

SIMSCRIPT — Harry Markowitz et al, Rand Corp 1963. Implemented as a Fortran preprocessor on IBM 7090. Large discrete
simulations, influenced Simula. "SIMSCRIPT: A Simulation Programming Language®, P.J. Kiviat et al, CACI 1973. Versions:
SIMSCRIPT 1.5 (CACI 1965 - produced assembly language), SIMSCRIPT Il, SIMSCRIPT I1.5. CACI, (619)457-9681.

TUTOR — Scripting language on PLATO systems from CDC. “The TUTOR Language”, Bruce Sherwood, Control Data, 1977.

Universitét Bern Scripting Languages

PS 198.

Fourth Generation Languages (4GLs)

Clarion — MS-DOS 4GL.
D—
1. "The Data Language.” MS-DOS 4GL.
Linc — Burroughs/Unisys 4GL. Designed in New Zealand.

NATURAL — Software AG, Germany. Integrated 4GL used by the database system ADABAS. Menu-driven version: SUPER/
NATURAL. Also NATURAL 2?

R:BASE — MS-DOS 4GL from Microrim. Based on Minicomputer DBMS RIM. Was Wayne Erickson the author?

Universitét Bern Scripting Languages

PS 199.

Coordination Languages

Linda — Yale. A "coordination language®, providing a model for concurrency with communication via a shared tuple space. Usually
implemented as a subroutine library for a specific base language. "Generative Communication in Linda“, D. Gelernter
<gelernter@cs.yale.edu> ACM TOPLAS 7(1):80-112 (1985). "Linda in Context“, N. Carreiro <carreiro@cs.yale.edu> et al,
CACM 32(4):444-458 (Apr 1989). (See C-Linda, Ease, Fortran-Linda, LindaLISP, Lucinda, Melinda, Prolog-Linda).

MeldC — Columbia U, 1990. A C-based concurrent object-oriented coordination language built on a reflective architecture. A redesign
of MELD. Version 2.0 for Sun4’s and DECstations.
info: Gail Kaiser <meldc@cs.columbia.edu>

Also sometimes classified as coordination languages:

GAMMA —
2. A high-level parallel language. Research Directions in High-Level Parallel Languages, LeMetayer ed, Springer
1992.

LO — Linear Objects. Concurrent logic programming language based on “linear logic”, an extension of Horn logic with a new kind of

OR- concurrency. “LO and Behold! Concurrent Structured Processes”, J. Andreoli et al, SIGPLAN Notices 25(10):44-56
(OOPSLA/ECOOP "90) (Oct 1990).

Universitét Bern Scripting Languages

PS

The Bourne Shell

Executing programs as commands
Background commands

Input and output redirection

Pipes and filters

File “globs”

Shell scripts (parameterized)

Control flow

Shell variables (with parameter and command substitution)
Associated commands (test, echo ...)
Built-in commands (read, wait, trap, exec)
Signal handling

N) D I O

200.

Universitat Bern

Scripting Languages

PS 201.

Pipes and Filters

#! /bin/sh

#

words --- produce a sorted list of words in a file
#

cat $* |\

tr -c A-Za-z0-9 \012' |\

sed '/"$$/d’ |\

sort -u -f

Universitét Bern Scripting Languages

PS 202.

Example

#! /bin/sh
#

glue --- glue two files side-by-side

a=a$P
b=b$$

sed 's/MNMAl' $1 | cat -n > $a
sed 's/NMA' $2 | cat -n > $b

clean='BEGIN { FS = "*A" }
{ printf "%s%s\n", $2, $3 }'

join -al -a2 -t"A $a $b | awk "$clean”
rm $a $b

Universitét Bern Scripting Languages

PS 203.

Argument processing

#! /bin/sh
#
nsort --- sort lines by name (final word)
for arg
do
case $arg in

-*) flags="$flags $arg" ;;
*) files="$files $arg" ;;

esac

done

sed 's/.* \([* [*\)$N1?&/) $files |\
sort $flags |\
sed 's/.*?/I'

Universitét Bern Scripting Languages

PS

Command Substitution

#! /bin/sh
rdiff --- merge of two files with diffs marked by > or <
deleted fields are prefixed with "<" and new fields with a ">"
plus=">"
min='<"'
u='Usage: rdiff [+=<string>] [-=<string>] <old> <new>'
for arg
do
case $arg in

+=*) plus="echo "$arg" | sed 's/*+=/I";;
-=*) min="echo "$arg" | sed 's/*-=/I" ;;
-*) echo "$u" 1>&2 ; exit ;;
*) files="$files $arg" ;;
esac

done

diff -D diff $files | awk '
INtifdef/ { prefix = plus ; next }
I"tifndef/ { prefix = min ; next }
Ntelsel { if (prefix == min)

prefix = plus
else prefix = min
next
}
Mtendif/ { prefix =""; next }

{ printf "%s%s\n", prefix, $0 }'

Universitat Bern

plus="${plus}" min="${min}"

204.

Scripting Languages

PS 205.

EXec

#! /bin/sh

#

src --- locate source of files and invoke lynx

Includes $PATH in the list of directories to search.

Also looks in $BIN, $MAN and $SRC environment variables.
bin="$BIN"

man="$MAN"

src="$SRC /local/src /local/pck /local/gnu”

case $# in
0) echo"Usage :src<cmd>..." 1>&2 ; exit ;;
esac
echo -n "Searching ... "
path="echo $PATH | sed 's/:/ /g"
files="(whereis $* ; \
whereis -B $path $bin -M $man -S $src -f $*) |\
awk 'BEGIN{FS ="""}{print $2 }' |\
tr''"\012' |\
sort -u

case $files in

") echo "nothing found" ;;
*) exec lynx $files ;;
esac

Universitét Bern Scripting Languages

PS

The Future of Scripting Languages

Multimedia scripting

Configuring open applications
Composing objects, applications
Coordinating distributed services

0O O O

206.

Universitat Bern

Scripting Languages

	Programming Languages
	Overview
	What is a Programming Language?
	What Distinguishes Programming Languages?
	Programming Paradigms
	A Brief Chronology
	Fortran
	ALGOL 60
	COBOL
	4GLs
	PL/I
	Interactive Languages
	Special-Purpose Languages
	Functional Languages
	Prolog
	Object-Oriented Languages

	Functional Programming
	What is a Function?
	Computation as Functional Composition
	A Bit of History
	Stateless Programming
	Referential Transparency
	The Church-Rosser property
	Modelling State
	Equational Reasoning
	Pattern Matching
	Lists
	Higher Order Functions
	Currying
	Remembering State
	Lazy Evaluation
	Lazy Lists
	Functional Programming Style

	Type Systems
	What is a Type?
	Static and Dynamic Typing
	Kinds of Types
	Function Types
	List and Tuple Types
	Polymorphism
	Polymorphic Type Inference
	Type Specialization
	The (Untyped) Lambda Calculus
	The Typed Lambda Calculus
	Kinds of Polymorphism
	Overloading
	User Data Types
	Examples of User Data Types
	Recursive Data Types:
	Equality for Data Types and Functions

	Introduction to Denotational Semantics
	Defining Programming Languages
	Uses of Semantic Specifications
	Methods for Specifying Semantics
	Concrete and Abstract Syntax
	Semantic Domains
	A Calculator Language
	Calculator Semantics
	Implementing the Calculator
	A Language with Assignment
	Abstract Syntax Trees
	Modelling Environments
	Semantics of Assignments
	Practical Issues
	Theoretical Issues

	Object-Oriented Programming
	What is Object-Oriented Programming?
	Objects
	Message-Passing Paradigm
	Classes and Instances
	Inheritance
	Deferred Features and Classes
	Multiple Inheritance
	The Principle of Substitutability
	Polymorphism & Dynamic Binding
	Subtyping
	Covariance and Contravariance
	Inheritance is not Subtyping
	The Inheritance Interface
	Run Time Support
	Dimensions of Object-Oriented Languages
	A Brief History of OO Languages
	Current Trends in Research and Practice

	Logic Programming
	Facts and Rules
	Prolog Databases
	Rules, Searching and Backtracking
	Conjunctions and Disjunctions
	Recursion
	Negation as Failure
	Changing the Database
	Functions and Arithmetic
	Lists
	Pattern Matching with Lists
	Exhaustive Searching
	Operators
	Building a Simple Interpreter

	Concurrent Programming
	Concurrency and Parallelism
	Atomicity
	Concurrency Issues
	Deadlock and Starvation
	Fairness
	Process Creation
	Communication and Synchronization
	Synchronization Techniques
	Busy-Waiting
	Semaphores
	Monitors
	Problems with Monitors
	Message Passing
	Unix Pipes
	Send and Receive
	Remote Procedure Calls and Rendezvous
	Other Issues

	Process Calculi
	Limitations of Denotational Semantics
	Structural Operational Semantics
	Transition Semantics
	Process Calculi
	Pure Synchronization
	Modeling Non-determinism
	Implementing the Transition Semantics
	Searching for Executions Paths
	Running the Example
	Finding Alternative Execution Paths
	An Asynchronous Value-Passing Calculus
	Implementing Value Passing
	Implementing Substitution
	A Value-Passing Example
	Process Replication
	Resources as Replicated Processes
	Running the Example
	Other Issues

	PICT
	Abstract Syntax of (Untyped) Core PICT
	Binding Channels
	Typed Channels
	Synchrony and Asynchrony
	Synchronizing Concurrent Clients
	Modelling Booleans
	Modelling Language Constructs
	Natural Numbers
	Counting
	Arithmetic
	Functional Notation
	Functions as Processes
	Functions as Processes
	Sequencing
	A Concurrent Queue
	Implementing the Concurrent Queue

	Object-Based Concurrency
	What is an OBCL?
	Overview of OBCLs
	Requirements for OBCLs
	Expression of Concurrency
	Objects and Processes
	Passive Object Models�
	Active/Passive Models
	Active Object Models
	Granularity of Concurrency
	Sequential Objects
	Quasi-Concurrent Objects
	Concurrent Objects
	Process Creation
	Asynchronous Objects
	Asynchronous Invocation
	Futures
	Communication and Synchronization
	Local Delays
	Local Delays
	Transactions
	Classifying OBCLs
	Evaluation

	Text Processing Languages
	What are Text Processing Languages?
	Some Text Processing Languages
	Regular Expressions (Perl)
	SED
	AWK
	Perl
	Regular Expressions
	Arrays
	Subroutines
	File I/O
	Dynamic Compilation
	Packages
	Standard System Calls
	Perl: Pros and Cons

	Scripting Languages
	Scripting Languages and Their Kin
	Shell Languages
	Command Languages
	Command Languages ...
	Scripting Languages
	Scripting Languages ...
	Fourth Generation Languages (4GLs)
	Coordination Languages
	The Bourne Shell
	Pipes and Filters
	Example
	Argument processing
	Command Substitution
	Exec
	The Future of Scripting Languages

