
7042 Praktikum in
Software Engineering

Prof. O. Nierstrasz

Sommersemester 1998

Table of Contents ii.

March 16, 1998

1. Praktikum — Software Engineering 3
Overview 4
Goals of this Workshop ... 5
Project Overview 6
Project Characteristics 7
Schedule 8
Analysis and Design 10
Prototyping 11
Testing 12
Responsibilities 13
Supporting roles 14
Forming Teams 15
Tools 16
Component Development 17

2. Problem Description 18
Overview of ESEC PC activities 19
ESEC PC Software Support 20
Paper submission 21
Distribution of papers 22
Reviewing 23
Sample Review Form 24
Review submission 25
Ranking/conflict detection 26
PC Meeting/paper selection 27
Acceptance/Rejection 28
Special situations 29
Data Files 30
Authorization 31
Tailoring 32

3. An Introduction to Java 33
Java 34
Java and C++ — Similarities and Extensions 35
Java and C++ — Simplifications 36
The “Hello World” Program 37
Packages 38

Java Basics 39
Classes and Objects 40
Garbage Collection 41
Inheritance 42
Dynamic Binding 43
Downcasting 44
Feature Visibility 45
Modifiers 46
Exceptions 47
Defining Exceptions 48
Multiple Inheritance 49
Interfaces 50
Overriding and Overloading 51
Arrays 52
Arrays and Generics 53
The Java API 54
Applets 55
The Hello World Applet 56
Frameworks vs. Libraries 57
Standalone Applets 58
Events 59
The Scribble Applet 60
Responding to Events 61
Running the Scribble Applet 62

PSE 3.

U Praktikum — Software Engineering

ering

mas Hofmann
niversität Bern

1. Praktikum — Software Engine

Lecturer: Prof. Oscar Nierstrasz
Office: Schützenmattstr. 14/103
Tel. 631.4618
Email: oscar@iam.unibe.ch

Secretary: Frau I. Huber, Tel. 631.4692

Assistants: Markus Lumpe, Marc Heissenbüttel, Tho

WWW: http://www.iam.unibe.ch/~scg

PSE 4.

U Praktikum — Software Engineering

development
niversität Bern

Overview

❑ Goals of this workshop
❑ Project overview
❑ Schedule: milestones, deliverables
❑ Analysis and Design documents: guidelines
❑ Prototyping: requirements validation and iterative
❑ Testing: coverage and regression tests
❑ Teamwork: roles and responsibilities
❑ Tools: UML, rcs, make, SNiFF+, ...

PSE 5.

U Praktikum — Software Engineering

ion
niversität Bern

Goals of this Workshop ...

Methodological skills
❑ Practising Requirements Collection and Specificat
❑ Practising Responsibility-Driven Design
❑ Evaluating Implementation Strategies
❑ Prototyping

Practical skills
❑ Working with incomplete requirements
❑ Developing a complete product
❑ Teamwork

Technical skills
❑ Using UML
❑ Programming with Java
❑ Testing

PSE 6.

U Praktikum — Software Engineering

atives?)
cedures
niversität Bern

Project Overview

Programme Committee Support System
❑ Submission of papers by authors
❑ Bidding for papers to review
❑ Distribution and submission of review forms
❑ Conflict detection and report generation
❑ Keeping track of accepted/rejected papers
❑ Access rights

Wish list
❑ Both WWW and email support
❑ Java as implementation language of choice (altern
❑ Adaptable to different review forms and review pro

More details to follow ...

PSE 7.

U Praktikum — Software Engineering
niversität Bern

Project Characteristics

Several characteristics of “real” projects:
❑ Open, changing requirements
❑ Existing procedures in place
❑ Distributed, multi-platform
❑ New technology, methods imposed
❑ Ideal choice of implementation platform unclear

Non-issues:
❑ No legacy data or software
❑ No integration with existing applications

PSE 8.

U Praktikum — Software Engineering

Homework/Consultation

pare interview questions

cify requirements; prepare
entation; start prototyping ...

ise requirements spec; specify
rse design (architecture)

pare design review (of
peting design); start
otyping UI

vise coarse design; prepare
iled design

rototype UI; design test cases;
edule lab sessions

lementation
niversität Bern

Schedule
Meeting

1) 25.03.98 Introduction;form teams Pre

2) 01.04.98 Requirements interview;
introduction to Java

Spe
pres

3) 08.04.98 Deliver and present initial requirements
spec; feedback

Rev
coa

4) 15.04.98 Deliver design documents and revised
requirements; exchange designs with other
teams

Pre
com
prot

5) 22.04.98 Design review; feedback Re
deta

6) 29.04.98 Deliver detailed design spec; ... P
sch

7) 06.05.98 Validate UI and test cases;
trouble-shooting (lab)

Imp

PSE 9.

U Praktikum — Software Engineering

lementation ...

Homework/Consultation
niversität Bern

8) 13.05.98 Validate UI and test cases;
trouble-shooting (lab)

Imp

9) 20.05.98 Open ...

10) 27.05.98 Open ...

11) 03.06.98 Open ...

12) 10.06.98 Deliver final application (source)and
documentation (including final A&D
docs)

13) 17.06.98 Feedback and Testat

14) 24.06.98

Meeting

PSE 10.

U Praktikum — Software Engineering

ented —
gn!
nd non-functional

lain them
 design a solution
 refined

ign decisions
ry
niversität Bern

Analysis and Design

Requirements Specification
❑ Describe what is required, not how it will be implem

don’t confuse requirements specification and desi
❑ Formalize scenarios, domain objects, functional a

requirements
❑ Use UML to formalize your models; use text to exp
❑ Specify enough detail so that someone else could
❑ Keep specification up-to-date as requirements are

Design
❑ Apply responsibility-driven design
❑ Evaluate technical alternatives and document des
❑ Keep it simple; add complexity only when necessa
❑ Anticipate changing requirements
❑ Identify and factor out reusable components

PSE 11.

U Praktikum — Software Engineering

ses of the software process.

validate your requirements

ity and usability of technical

 a running prototype of the
niversität Bern

Prototyping

Prototyping is an essential activity carried out during all pha

Requirements validation
❑ Prototype a user interface as early as possible to

specification.

Evaluating design decisions
❑ Prototype parts of your design to evaluate feasibil

alternatives.

Iterative development
❑ Integrate parts as early as possible to always have

target application that can be tested and demoed.

PSE 12.

U Praktikum — Software Engineering

nted functionality

ut after any system change

 event), or in
here tests have failed)
niversität Bern

Testing

Coverage
❑ Design tests that will exercise all required/impleme
❑ Check that all possible execution paths are tested

☞ Apply both black-box and white-box testing

Regression
❑ Automate testing so that all tests can be carried o
❑ Set up tests so they can run in either

☞ “verbose” mode (i.e., logging every interesting
☞ “silent” mode (i.e., only reporting when and w

PSE 13.

U Praktikum — Software Engineering

efined responsibilities
embers

ur team members
niversität Bern

Responsibilities

Guidelines
❑ Each team member should assume a set of well-d
❑ but the work should be distributed amongst team m
❑ Assign responsibilities according to the skills of yo

Sample responsibilities
❑ Project Administrator
❑ Chief programmer/architect
❑ Backup programmer
❑ Tester/test case developer
❑ Toolsmith
❑ Component librarian
❑ Documentation editor

PSE 14.

U Praktikum — Software Engineering

l solutions etc.
niversität Bern

Supporting roles

Client
❑ answer questions about requirements ☞ email log
❑ accept/reject requirements specs
❑ evaluate prototypes, final system

System support
❑ system administration
❑ maintain installation of required software
❑ (limited) help for technical problems ☞ email log

Consultants
❑ meet regularly (minimum weekly) with their teams
❑ oversee quality of work
❑ give advice concerning software process, technica
❑ crisis detection; trouble-shooting

PSE 15.

U Praktikum — Software Engineering

g for?

ibilities

nt?
 teams?
niversität Bern

Forming Teams

1. Identify your skills: strong and weak points
☞ What skills would complement your own?

2. Round table: 20 seconds to present yourself
☞ What do you have to offer; who are you lookin

3. Form teams of five: look for suitable partners
☞ Seek complementary skills that cover respons

4. Prepare your strategy and tactics:
☞ What questions do you need to ask of the clie
☞ What interactions do you anticipate with other

PSE 16.

U Praktikum — Software Engineering

e, just ask!

. requirements

ols (compilers, version
evelopment of software

., both source code and

ion, testing and cleanup.

on from source code.
niversität Bern

Tools

Use (at least) the following tools!

Many other tools are available — use them!
If you aren’t sure what tool you should use to get a job don

UML Use UML to document all your models (esp
specification and design).

SNiFF+ SNiFF+ integrates software development to
management etc.) and provides support for d
in teams.

rcs Use version control for all text documents (i.e
documentation).

make Use make to automate compilation, installat

javadoc Automate generation of HTML documentati

PSE 17.

U Praktikum — Software Engineering

enerally useful abstraction.
d reuse when the application

lass, package) of a final
lopment or testing of the

nstead of a complete project
 approval of the course

ontract):
niversität Bern

Component Development

Consider developing components wherever you identify a g
❑ Well-design components will be easier to adapt an

evolves.
❑ A component may be either a piece of software (c

application or a specialized tool to help in the deve
application.

Consider marketing components to other teams:
❑ A team can deliver a (substantial) component set i

if it finds at least two other client teams (subject to
instructors!)

❑ A component provider must supply (according to c
☞ complete software with documentation
☞ test drivers
☞ maintenance support

PSE 18.

U Problem Description
niversität Bern

2. Problem Description

ESEC Program Committee Support
❑ Overview of PC activities

☞ Paper submission
☞ Distribution of papers
☞ Reviewing
☞ Ranking/conflict detection
☞ PC Meeting/paper selection

❑ Special situations
❑ Data Files
❑ Authorization
❑ Tailoring

PSE 19.

U Problem Description

SEC 99 will be held in
s responsible for selecting
.

arly 99)
C (3 reviews per paper)
iew forms back to the PCC

pted/rejected (Spring 99)
accepted or not and sends

opy to the PCC (possibly

 for publication
niversität Bern

Overview of ESEC PC activities

ESEC is the European Software Engineering Conference. E
Toulouse in Sept. 1999. The Programme Committee (PC) i
original, scientific papers to be presented at the conference

❑ Authors submit papers to the PC Chair (deadline e
❑ The PCC distributes papers for evaluation to the P
❑ PC members (PCMs) review papers and send rev
❑ The PCC collects, analyzes and ranks the reviews
❑ The PCC distributes conflicting reviews to PCMs
❑ At the PC meeting papers are discussed and acce
❑ The PCC informs authors whether their papers are

back extracts of the reviews
❑ Authors of accepted papers send camera-ready c

incorporating changes requested in the reviews)
❑ The PCC prepares the camera-ready proceedings
❑ Authors present their papers at the conference

PSE 20.

U Problem Description

d reviews for ESEC 99, that
erent review procedures.

m templates)
s

niversität Bern

ESEC PC Software Support

The PCC would like a simple system to manage papers an
can be adapted easily to other conferences with slightly diff

❑ Paper submission (WWW registration)
❑ Review management

☞ bidding and distribution
☞ review submission (email or WWW)
☞ status reports
☞ ranking and conflict detection

❑ Correspondence with authors
☞ generation of acceptance/rejection letters (fro
☞ extraction of comments to authors from review

PSE 21.

U Problem Description

y the first) is designated as

eadline)

net ...

it a paper (by WWW form)

ation

acknowledged by email
niversität Bern

Paper submission

Most papers have multiple authors, but one (not necessaril
the contact author for correspondance with the PCC.

❑ Papers should be submitted electronically (strict d

– URL of PDF or postscript document

– some authors may not have access to the inter
(PCC must be able to handle exceptions)

❑ Authors may be required to register intent to subm

– title, authors, keywords, abstract, contact inform

– deadline ~ one week before paper deadline

❑ Receipt of intent and paper submissions must be

PSE 22.

U Problem Description

PCM should get roughly the

 15 reviews / PCM

rests

onflict of interest

may bid for papers
W access)

, not interested, conflict

e useful for an initial
niversität Bern

Distribution of papers

Each paper should be reviewed by (at least) 3 PCMs. Each
same number of papers to review:

(~ 100 papers * 3 reviews / paper) / 20 PCMs = ~

❑ Papers should be matched to PCMs’ research inte
☞ use keywords, abstract, reference list, etc.

❑ Papers should not be reviewed by a PCM with a c
☞ i.e., previous research collaboration ...

❑ If “intent to submit” is received in advance, PCMs
☞ distribute abstracts electronically (email or WW
☞ PCMs rank papers: e.g. interested, indifferent

Paper distribution cannot be fully automated, but it would b
distribution to be automatically generated.

PSE 23.

U Problem Description

ay use additional reviewers

weak reject / strong reject

expert

.

niversität Bern

Reviewing

Although PCMs are responsible for their own reviews, they m
to evaluate papers.

❑ Review forms consist of several parts, commonly:

– paper identification (#, title etc.)

– reviewer identification (PCM/reviewer)

– comments for author

– additional comments for PC

– decision (ABCD): strong accept / weak accept /

– expertise (XYZ): expert / knowledgeable / non-

❑ There may also be various other fields:

– summary, theme

– rating of presentation, originality, relevance etc

PSE 24.

U Problem Description

rary, but it should be easy to
ation.
niversität Bern

Sample Review Form
Review forms should be simple. The precise format is arbit
add different kinds of fields and to check for missing inform
Please fill in the parts labelled “XXX”. Do not otherwise modify this form,
as it will be electronically processed.
TITLE:XXX
AUTHOR:XXX
REVIEWER:XXX

Assign a numeric score from 1 to 4 using the following criteria:
4- Accept(I will argue for acceptance)
3- Weak Accept(I vote to accept, but don’t mind if it is rejected)
2- Weak Reject(I vote to reject, but don’t mind if it is accepted)
1- Reject(I will argue for rejection)
OVERALL RATING:XXX
TECHNICAL QUALITY:XXX
ORIGINALITY: XXX
RELEVANCE TO ESEC 99:XXX
PRESENTATION:XXX

Use the rating [X=Expert/Y=Knowledgeable/Z=Not my field]
REFEREE’S EXPERTISE:XXX

Short summary of the rationale for your recommendation (3 lines max):
XXX

Detailed comments to authors:
XXX

PSE 25.

U Problem Description

 before the PC meeting so
ts identified and special

CII text (email) or via WWW

)
y have been entered

 work at home, on the train,

 forms
n be easily parsed and
 fields etc.)
niversität Bern

Review submission

Reviews should be submitted to the PCC at least one week
that the results can be analysed, reports generated, conflic
problems detected.

Review must be submitted electronically, either as plain AS
forms:

❑ Some PCMs like to fill review forms on-line (WWW
☞ It must be possible to revise reviews after the

❑ Other PCMs prefer off-line reviewing (so they can
etc., or to exchange reviews with extra reviewers)
☞ must be able to handle both email and WWW
☞ email forms must use a simple format that ca

checked for consistency (missing or duplicate

PSE 26.

U Problem Description

nce cannot be automatically
erent subjective impressions

w chances of acceptance

 rank as BBC

t (“conflict”)

per number, reviewer etc.
niversität Bern

Ranking/conflict detection
Papers that will be accepted for presentation at the confere
selected on the basis of the review forms because of the diff
of the reviewers.

It is useful, however, to rank papers into groups with high/lo

Papers can be ranked according to various schemes:
❑ Weighted average of scores

– generally not very useful since AAD gets same

❑ Group by best/worst score (AA, AB, AC, etc.)

– AAD (AD) is different from BBC (BC)

❑ Identify papers where there is strong disagreemen

– i.e., high/low = AD, BD, AC

❑ It is useful to have lists of papers sorted also by pa

PCMs should be notified of disagreements in advance!

PSE 27.

U Problem Description

accepted papers by email
nd other larger conferences
sus which papers to accept.

r of acceptance (a

ually accepted
d
d with little or no discussion

may need to be discussed in

us on all papers
 have to vote on a paper)
niversität Bern

PC Meeting/paper selection

Although some smaller conferences and workshops select
discussion, or at the discretion of the PCC, ESEC, ECOOP a
require the PC to meet during 1-2 days to arrive at a consen

Discussions roughly follow these rules:
❑ Papers are discussed if there is someone in favou

“champion”)
❑ Papers with uniformly high scores (AA, AB) are us
❑ If there is no champion for a paper it will be rejecte
❑ Papers with low rankings (CC, CD, DD) are rejecte

unless someone wants to change their score
❑ Borderline papers (BB, BC) and conflicts (AD, AC)

depth
❑ The PCC tries to get the PC to arrive at a consens

☞ (in case of unresolvable conflicts, the PC may

PSE 28.

U Problem Description

tion after the meeting

apers

uctions
ance
niversität Bern

Acceptance/Rejection

Authors are informed by email (or post) of acceptance/rejec

❑ Authors receive an extract of the reviews of their p
☞ i.e., comments for the authors

❑ In some cases, the PCC may have additional instr
☞ i.e., obligatory changes for conditional accept

PSE 29.

U Problem Description

 dealt with in an exceptional

en the paper is discussed

oup

s)

tion)

as possible (i.e., before the
niversität Bern

Special situations

Various problematic situations always arise that need to be
way. The most common problems are:

❑ Conflicts of interest:

– The concerned PCMs should leave the room wh

– PC authored papers should be discussed as gr

❑ Underrepresented papers (may need extra review

– missing reviews

– incomplete reviews

– no expert reviewers

– absent PCMs (may need email/phone consulta

Special situations should be identified and handled as early
PC Meeting).

PSE 30.

U Problem Description

ion:

words, URL)

s by PCM; ...)
niversität Bern

Data Files

The PCC needs to manage (at least) the following informat

❑ Authors (contact information)
❑ Papers (title, authors, contact author, abstract, key
❑ PCMs (contact information, interests)
❑ Reviewers (contact information)
❑ Reviews (filled out forms)
❑ Various reports (ranked reviews; completed review

PSE 31.

U Problem Description

on will be accessible through
pers, reviews and other

ss

 for a paper are in
nflict of interest
niversität Bern

Authorization

The entire review process is sensitive. Although all informati
the WWW, only authorized PCMs will be able to access pa
information concerning the review process.

❑ The PCC has access to all information
❑ PCMs will be assigned passwords for WWW acce
❑ All PCMs may see all abstracts and papers
❑ Non-PCMs may access nothing
❑ Reviews are accessible to PCMs when all reviews
❑ A PCM may not see a review if he or she has a co

PSE 32.

U Problem Description

ace:

 of papers by country)
niversität Bern

Tailoring

The PCC should be able to tailor the system once it is in pl

❑ add or change fields of the review form
❑ add or change PCMs
❑ add new kinds of report generation
❑ easily generate ad hoc statistics (e.g., submission

PSE 33.

U An Introduction to Java

tions ...

orial , The Java Series,

nguage spec, etc):
niversität Bern

3. An Introduction to Java

Overview
❑ Java vs. C++
❑ Java language features: packages, classes, excep
❑ The Java API
❑ Applets

Texts:
❑ David Flanagan, Java in a Nutshell, O’Reilly, 1996
❑ Mary Campione and Kathy Walrath, The Java Tut

Addison-Wesley, 1996
On-line resources:

❑ Locally installed Java resources (on-line tutorial, la
http://www.iam.unibe.ch/~scg/Resources/Java/

PSE 34.

U An Introduction to Java

+, Smalltalk ...):
nguage

, concurrency, network
tract machine

ects

d by users
niversität Bern

Java

Language design influenced by existing OO languages (C+
❑ Strongly-typed, concurrent, pure object-oriented la
❑ Syntax, type model influenced by C++
❑ Single-inheritance but multiple subtyping
❑ Garbage collection

Innovation in support for network applications:
❑ Standard API for language features, basic GUI, IO
❑ Compiled to bytecode; interpreted by portable abs
❑ Support for native methods
❑ Classes can be dynamically loaded over network
❑ Security model protects clients from malicious obj

Java applications do not have to be installed and maintaine

PSE 35.

U An Introduction to Java

d Extensions

t)

)

niversität Bern

Java and C++ — Similarities an

Java resembles C++ only superficially:

Similarities:
❑ primitive data types (in Java, platform independen
❑ syntax: control structures, exceptions ...
❑ classes, visibility declarations (public , private

❑ multiple constructors, this , new

❑ types, type casting

Extensions:
❑ garbage collection
❑ standard classes (Strings, collections ...)
❑ packages
❑ standard abstract machine
❑ final classes

PSE 36.

U An Introduction to Java

s

riented language that

 variables
 methods

ng
r can be called
d automatic inlining
interfaces

..
niversität Bern

Java and C++ — Simplification

Whereas C++ is a hybrid language, Java is a pure object-o
eliminates many of the complex features of C++:

Simplifications:
❑ no pointers — just references
❑ no functions — can declare static methods
❑ no global variables — can declare public static

❑ no destructors — garbage collection and finalize

❑ no linking — dynamic class loading
❑ no header files — can define interface

❑ no operator overloading — only method overloadi
❑ no member initialization lists — super constructo
❑ no preprocessor — static final constants an
❑ no multiple inheritance — can implement multiple
❑ no structs, unions, enums — typically not needed
❑ no templates — but generics will likely be added .

PSE 37.

U An Introduction to Java

rgv[]) {

bal functions

st have a main
in some class

 is a standard class

able a public method
niversität Bern

The “Hello World” Program

// My first Java program!

public class helloWorld {
public static void main (String a

System.out.println(“Hello World”);
}

}

helloWorld objects can be instantiated by any client

only classes can be declared (pure OO)

class methods behave like glo

Every program mu
method declared

String

a class in the package java.lang a public class vari

PSE 38.

U An Introduction to Java

ckages
ain() method

e package name:

 bytecode files (e.g.,

ponding to the package

 must be given:

ted by default

:

niversität Bern

Packages

A Java program is a collection of classes organized into pa
❑ At least one class must have a public static void m

❑ The first statement of a source file may declare th
package games.tetris;

❑ Source files (e.g., helloWorld.java) are compiled to
helloWorld.class), one for each target class

❑ Class files must be stored in subdirectories corres
hierarchy

❑ When using classes, either the full package name
java.lang.System.out.println(“Hello World”);

or classes from the package may be imported:
import java.lang.*; // this package is always impor

❑ Class names are usually capitalized for readability
a.b.c.d.e.f(); // which is the name of the class?!

PSE 39.

U An Introduction to Java

e those of C/C++:
niversität Bern

Java Basics
Java’s primitive data types and control statements resembl

Primitive Data Types:
boolean byte char double float int long short void

Literals:
false null true

Control flow:
if (boolean) { Statements } else { Statements }

for (boolean) { Statements }

while (boolean) { Statements }

do { Statements } while (boolean)

switch (variable) {
case label : Statements;

break; ...
default : ... break;

}

PSE 40.

U An Introduction to Java

ven subclasses)

rd; y = yCoord; }
n access private data here

); }

ce, not by value:

B: a & b coerced!)

odified
niversität Bern

Classes and Objects
The encapsulation boundary is a class (not an object):

public class Point {
private double x, y; // not accessible to other classes (e

// constructors:
public Point (double xCoord, double yCoord) { x = xCoo
public Point (Point p) { x = p.x; y = p.y; } // ca

// public methods:
public double getX () { return x; }
public void setX (double xCoord){ x = xCoord; }
public double getY () { return y; }
public void setY (double yCoord){ y = yCoord; }
public double distance () { return Math.sqrt(x*x + y*y

}

In pure OOLs, (non-primitive) objects are passed by referen
int a = 3, b = 4; // a and b are primitive objects
Point p1 = new Point(a,b);// p1 is a reference to an object (N

int c = a; // c gets value of a
c = 8; // c gets new value; a is unchanged

Point p2 = p1; // p2 refers to p1
Point p3 = new Point(p1); // p3 is a copy of p1
p2.setX(c); // The object p1 and p2 refer to is m

PSE 41.

U An Introduction to Java

ed to are automatically

 still in use

 method
ckets etc.)
otten”
the value null to a variable
igned variables)
niversität Bern

Garbage Collection

In Java (as in Smalltalk and Eiffel), objects no longer referr
garbage-collected:

❑ no need to explicitly delete objects
❑ no destructors need to be defined
❑ no need to write reference-counting code
❑ no danger of accidentally deleting objects that are

You can still exercise extra control:

❑ Cleanup activities can be specified in a finalize

☞ useful for freeing external resources (files, so
❑ Objects you no longer need can be explicitly “forg

☞ you can explicitly forget objects by assigning
(this is the initial value of declared, but unass

PSE 42.

U An Introduction to Java

nd possibly overriding some

radius) {

 c as Point

r; }

f overridden.
niversität Bern

Inheritance

A subclass extends a superclass, inheriting all its features, a
or adding its own:

public class Circle extends Point {
private double r;

public Circle (double xCoord, double yCoord, double
super(xCoord, yCoord); // call Point constructor
r = radius;

}

public Circle (Circle c) {
super(c); // call Point constructor with
r = c.r;

}

public double getR () { return r; }
public void setR (double radius){ r = radius; }
public double distance () { return super.distance() -

}

Public superclass features can always be accessed, even i

PSE 43.

U An Introduction to Java

ynamic binding — the actual
nds on the dynamic type of

lt.

lly bound

ically bound
niversität Bern

Dynamic Binding

One of the key features of object-oriented programming is d
method that will be executed in response to a request depe
target, not the static type of the reference:

Point p = new Circle(5, 12, 4);

System.out.println("p.distance() = " + p.distance());

yields:
p.distance() = 9

In pure OOLs, all methods are dynamically bound by defau
Static binding is the exception:

❑ static methods belong to classes, so are statica
❑ private methods have purely local scope
❑ final methods cannot be overridden, so are stat

PSE 44.

U An Introduction to Java

 upcast ok
 can’t downcast

sts and casts:

cast ok

 at run-time:

es run-time exception
niversität Bern

Downcasting

Dynamic binding can cause type information to be lost:

Point p = new Circle(5, 12, 4); // p refers to a Circle —
Circle c1 = p; // compile-time error! —

Type information can be recovered at run-time by explicit te

if (p instanceof Circle) { // run-time test
c1 = (Circle) p; // explicit run-time down

}

An attempt to cast to an invalid type will raise an exception

p = new Point(3,4);
c1 = (Circle) p; // invalid downcast rais

PSE 45.

U An Introduction to Java

:

embers of the same package

package only
al access
niversität Bern

Feature Visibility

Features can be declared with different degrees of visibility

❑ private — accessible only within the class body

❑ public — accessible everywhere

❑ protected — accessible to subclasses and to m
☞ allows access to cooperating classes

❑ default (no modifier) — accessible throughout the
☞ allows package access but prevents all extern

PSE 46.

U An Introduction to Java

other important attributes of

 also be declared abstract
stead of body

den by subclass

instances; implicitly final

nguage, usually C
niversität Bern

Modifiers

In addition to feature visibility, modifiers can specify several
classes, methods and variables:

❑ abstract — unimplemented method; class must
☞ method signature is followed by semi-colon in

❑ final — class/method/variable cannot be overrid

❑ static — method/variable belongs to class, not

❑ native — method implemented in some other la

PSE 47.

U An Introduction to Java

t catch them:

t this point

;

);

Exception {

tringException {
niversität Bern

Exceptions

A class must declare which exceptions it throws , or it mus
public class TryException {

public static void main(String args[]) {
try {

alwaysThrow(0); // NB: we never get pas
alwaysThrow("hello");

} catch (NumException e) {
System.out.println("Got NumException: " + e.getMessage())

} catch (StringException e) {
System.out.println("Got StringException: " + e.getMessage()

} finally {
System.out.println("Cleaning up");

}
}

public static void alwaysThrow(int arg) throws Num
throw new NumException("don't call me with an int arg!");

}

public static void alwaysThrow(String arg) throws S
throw new StringException("don't call me with a String arg!");

}
}

PSE 48.

U An Introduction to Java

 Exception
niversität Bern

Defining Exceptions

You can define your own exception classes that inherit from
Typically, you will only define constructors:

// Most exception classes look like this:
public class NumException extends Exception {

public NumException() { super(); }
public NumException(String s) { super(s); }

}

public class StringException extends Exception {
public StringException() { super(); }
public StringException(String s) { super(s); }

}

PSE 49.

U An Introduction to Java

ignificant pragmatic

ircle?

edPoint

edPoint
ame
ame
niversität Bern

Multiple Inheritance
Although conceptually elegant, multiple inheritance poses s
problems for language designers:

Which version of distance() should be inherited by NamedC

Circle

-r : double

+Circle
+getR
+setR
+distance

Point

- x, y

+Point
+setX
+getX
+setY
+getY
+distance

Nam

- n

+Nam
+setN
+getN

NamedCircle

+NamedCircle

PSE 50.

U An Introduction to Java

tion:

plement multiple interfaces:

e
ble radius, String name) {
ctor
dObject instance

/ forwarding

ss:
niversität Bern

Interfaces
An interface declares methods but provides no implementa

interface Named {
public void setName (String name);
public String getName ();

}

A Java class can extend at most one superclass, but may im
public class NamedCircle extends Circle implements Named {

private NamedObject n; // object composition vs. inheritanc
public NamedCircle (double xCoord, double yCoord, dou

super(xCoord, yCoord, radius); // call Circle constru
n = new NamedObject(name); // compose a Name

}
public void setName (String name) { n.setName(name); } /
public String getName () { return n.getName(); }

}

Reusable behaviour can be encapsulated as a separate cla
public class NamedObject implements Named {

private String n;
public NamedObject (String name) { n = name; }
public void setName (String name) { n = name; }
public String getName () { return n; }

}

PSE 51.

U An Introduction to Java

pes
ument types

:

ss!
niversität Bern

Overriding and Overloading
Overridden methods have the same name and argument ty
Overloaded methods have the same name but different arg

public class A {
public void f (float x) { System.out.println("A.f(float)"); }
public void g (float x) { System.out.println("A.g(float)"); }

}

public class B extends A {
public void f (float x) { System.out.println("B.f(float)"); }
public void g (int x) { System.out.println("B.g(int)"); }

}

Overloaded methods are disambiguated by their arguments
B b = new B(); // both dynamic and static type B
A a = b; // static type is A but dynamic type is B

b.f(3.14f); // B.f(float) -- overridden
b.f(3); // B.f(float) -- 3 is converted to 3.0
b.g(3.14f); // A.g(float) -- not overridden
b.g(3); // B.g(int) -- overloaded

a.f(3.14f); // B.f(float) -- overridden
a.f(3); // B.f(float) -- 3 is converted to 3.0
a.g(3.14f); // A.g(float) -- not overridden
a.g(3); // A.g(float) -- g(int) does not exist in SuperCla

PSE 52.

U An Introduction to Java
niversität Bern

Arrays
Arrays are polymorphic objects:

❑ Can declare arrays of any type
int[] array1;

MyObject s[];

❑ Can build array of arrays
int a[][] = new int[10][3];

a.length --> 10

a[0].length --> 3

Creating arrays
❑ An empty array:

int list[] = new int [50];

❑ Pre-initialized:
String names[] = { “Marc”, “Tom”, “Pete” };

❑ Cannot create static compile time arrays
int nogood[20]; // compile time error

PSE 53.

U An Introduction to Java

tainers:

returns an Object
niversität Bern

Arrays and Generics

Arrays are the only polymorphic containers in Java:

Point [] pa = new Point[3];
pa[0] = new Point(3,4);
pa[1] = new Point(5,12);
Point p = pa[0]; // ok -- pa is an array of Points

It is not possible to program other kinds of polymorphic con

Stack s = new Stack(); // defined in package java.util
s.push(pa[0]);
s.push(pa[1]);
// p = s.pop(); // compile-time error -- s.pop()
p = (Point) s.pop(); // ok -- run-time cast

PSE 54.

U An Introduction to Java

erics, strings, objects,
e only package that is

pplet class.

ams to read data from

generic data
, etc.

ockets, UDP sockets,
niversität Bern

The Java API
java.lang. contains essential Java classes, including num

compiler, runtime, security, and threads. This is th
automatically imported into every Java program.

java.awt. Abstract Windowing Toolkit

java.applet. enables the creation of applets through the A

java.io. provides classes to manage input and output stre
and write data to files, strings, and other sources.

java.util. contains miscellaneous utility classes, including
structures, bit sets, time, date, string manipulation

java.net. provides network support, including URLs, TCP s
IP addresses, and a binary-to-text converter.

And many others ...

PSE 55.

U An Introduction to Java

Server

pplet Class

downloaded from an
d by an HTTP client.
et will be init ialized

ke (restricted) use of
or other Server
ynamically.
ded, only classes!
niversität Bern

Applets
Client

API Classes

AApplet
Instance

other classes ...

Java Applet classes can be
HTTP server and instantiate
When instantiated, the Appl
and start ed by client.
The Applet instance may ma
either standard API classes
classes to be downloaded d
NB: objects are not downloa

PSE 56.

U An Introduction to Java

00 height=200>
niversität Bern

The Hello World Applet

The simplest Applet:
// From Java in a Nutshell, by David Flanagan.

import java.applet.*; // To extended Applet
import java.awt.*; // Abstract windowing toolkit

public class HelloApplet extends Applet {
// This method displays the applet.
// The Graphics class is how you do all drawing in Java.
public void paint(Graphics g) {

g.drawString("Hello World", 25, 50);
}

} // NB: there is no main() method!

HTML applet inclusion:
<title>Hello Applet</title>
<hr>
<applet codebase="HelloApplet.out" code="HelloApplet.class" width=2
</applet>
<hr>
The source.

PSE 57.

U An Introduction to Java

ke use of library functionality

ric and application code.
ion architecture:

.”

Library classes

User classes
niversität Bern

Frameworks vs. Libraries

In traditional application architectures, user applications ma
in the form of procedures or classes:

A framework reverses the usual relationship between gene
Frameworks provide both generic functionality and applicat

Essentially, a framework says: “Don’t call me — I’ll call you

User Application

main()

Framework Application

main()

PSE 58.

U An Introduction to Java

mework:

00);

width, int height) {
h the specified title.

 window.

 applet.
niversität Bern

Standalone Applets
An Applet is just a user object instantiated by the Applet fra

// Adapted from Java in a Nutshell, by David Flanagan.
// A simple example of directly instantiating an Applet.

import java.applet.*;
import java.awt.*;

public class HelloStandalone {
public static void main(String args[]) {

Applet applet = new HelloApplet();
Frame frame = new AppletFrame("Hello Applet", applet, 300, 3

}
}

class AppletFrame extends Frame {
public AppletFrame(String title, Applet applet, int

super(title); // Create the Frame wit

this.add("Center", applet); // Add the applet to the
this.resize(width, height); // Set the window size.
this.show(); // Pop it up.

applet.init(); // Initialize and start the
applet.start();

}
}

PSE 59.

U An Introduction to Java

callback methods that will be

ing Frame and Applet) and
lement.

Callback methods

... are handled by
application objects
niversität Bern

Events

Instead of actively checking for GUI events, you can define
invoked when your GUI objects receive events:

Component is the superclass of all GUI components (includ
defines all the callback methods that components must imp

AWT Framework

Hardware events ...
(mouseUp,
mouseDown, ...)

PSE 60.

U An Introduction to Java

ging the mouse:
del!

et the background colour
reate a Button

dd it to the Applet
niversität Bern

The Scribble Applet

Scribble is a simple Applet that supports drawing by drag
NB: This example uses the (deprecated) Java 1.0 event mo

// Adapted from Java in a Nutshell, by David Flanagan.

import java.applet.*;
import java.awt.*;

public class Scribble extends Applet {
private int last_x = 0;
private int last_y = 0;
private Button clear_button;

// Called to initialize the applet.
public void init() {

this.setBackground(Color.white); // S
clear_button = new Button("Clear"); // C
clear_button.setForeground(Color.black);
clear_button.setBackground(Color.lightGray);
this.add(clear_button); // A

}

PSE 61.

U An Introduction to Java

turn true if event handled
niversität Bern

Responding to Events
// Called when the user clicks the mouse to start a scribble
public boolean mouseDown(Event e, int x, int y) {

last_x = x; last_y = y; return true; // Always re
}

// Called when the user scribbles with the mouse button down
public boolean mouseDrag (Event e, int x, int y) {

Graphics g = this.getGraphics();
g.setColor(Color.black); g.drawLine(last_x, last_y, x, y);
last_x = x; last_y = y; return true;

}

// Called when the user clicks the button
public boolean action (Event event, Object arg) {

// If the Clear button was clicked on, handle it.
if (event.target == clear_button) {

Graphics g = this.getGraphics();
Rectangle r = this.bounds();
g.setColor(this.getBackground());
g.fillRect(r.x, r.y, r.width, r.height);
return true;

} // Otherwise, let the superclass handle it.
else return super.action(event, arg) ;

}
}

PSE 62.

U An Introduction to Java
niversität Bern

Running the Scribble Applet

	7042 Praktikum in Software Engineering
	1. Praktikum — Software Engineering
	Overview
	Goals of this Workshop ...
	Project Overview
	Project Characteristics
	Schedule
	Analysis and Design
	Prototyping
	Testing
	Responsibilities
	Supporting roles
	Forming Teams
	Tools
	Component Development

	2. Problem Description
	Overview of ESEC PC activities
	ESEC PC Software Support
	Paper submission
	Distribution of papers
	Reviewing
	Sample Review Form
	Review submission
	Ranking/conflict detection
	PC Meeting/paper selection
	Acceptance/Rejection
	Special situations
	Data Files
	Authorization
	Tailoring

	3. An Introduction to Java
	Java
	Java and C++ — Similarities and Extensions
	Java and C++ — Simplifications
	The “Hello World” Program
	Packages
	Java Basics
	Classes and Objects
	Garbage Collection
	Inheritance
	Dynamic Binding
	Downcasting
	Feature Visibility
	Modifiers
	Exceptions
	Defining Exceptions
	Multiple Inheritance
	Interfaces
	Overriding and Overloading
	Arrays
	Arrays and Generics
	The Java API
	Applets
	The Hello World Applet
	Frameworks vs. Libraries
	Standalone Applets
	Events
	The Scribble Applet
	Responding to Events
	Running the Scribble Applet

