Lesson 6: Understanding Self and Super Better

This lesson wants you to give a better understanding of self and super. It will use the LAN example to do so.

We will first use the following scheme to illustrate the sending of originate: to an instance of Workstation.When we send originate: aPacket to an instance of class Workstation, the method lookup starts in the class of this instance. Since this instance has a method originate:, this method will be invoked. Following is the code for this method:

originate: thePacket

thePacket originator: self.

self send: thePacket

This message first sets the originator of the packet, and then sends the message send: thePacket to the receiver self. Self is the instance itself, so method lookup will start in the instance of Workstation. Since there is no method send: defined on the class Workstation, it tries to find it in the superclass of the class in which the method was found. (If the end of the previous sentence is not obvious for you refer to the lecture, when I explained the semantics of the super). In this case, this is Node. Node indeed implements send:, which will get invoked :

send: thePacket

Transcript show: self name printString , ' sending the packet to ' , self nextNode name printString; cr.

self nextNode accept: thePacket

First of all, this method prints some information on the Transcript. Therefore, it sends the message name to self. The lookup for this message starts at self, which is still our instance of Workstation. Since Workstation does not implement a message name, it asks its superclass. Indeed, Node has a message name, so this method is invoked.

Exercise 1: further finish this trace of self and super calls.

Exercise 2: Imagine now that we defined a subclass of Workstation called SpecificWorkstation, this class does NOT defined a method called originate:. Make the same exercise for the same message originate:. You should be convinced that the semantics of super change the lookup of the method so that the lookup (for the method via super) does NOT start in the superclass of the receiver but in the superclass of the class in which the method containing the super. To convince yourself try with the false semantics on the originate: message sent to an instance of SpecificWorkstation: that’s loop!!!

