Lesson 11: Building a Dialog and originating packets

In the previous exercise we build a graphical user interface to structure the nodes in the LAN application. We left one thing for this exercise: the originate button. When the user clicks the originate button, we want a dialog box to open that allows us to fill in the originator, addressee and contents of the packet we are going to send. Based on this information, we can then start simulating.

Dialogs

Custom Dialogs are the least simple VisualWorks applications. A custom dialog can get its resources and widgets from the main application model. Or you can create a separate application model for it, typically a subclass of SimpleDialog. Using the main application model provides tighter integration, since the main model does not need to query a second model for the values that it needs.

You can configure a SimpleDialog dynamically, as we will do in this exercise. This approach is typically used when the widget models needed by the dialog are not needed beyond the lifetime of the dialog. Simple Dialogs are self-contained applications that can be used to collect user input in a controlled way. VisualWorks helps you build the dialog interface, but you must supply the underlying ValueModels to hold the user input until the user selects the Accept button.

The canvas

Open a new canvas from the Launcher and paint the window shown to the right (there are two menu buttons and a text editor). Then fill in next properties:

�

Menu button�
�
Basics�
Label:�
<none>�
�
�
Aspect:�
originator�
�
�
Menu:�
originatorMenu�
�
Details�
Bordered�
On�
�

Menu Button�
�
Basics�
Label:�
<none>�
�
�
Aspect:�
addressee�
�
�
Menu:�
addresseeMenu�
�
Details�
Bordered�
On�
�

Text Editor�
�
Basics�
Aspect:�
contents�
�
Details�
Scroll Bars�
Vertical�
�
�
Bordered�
On�
�

Action Button�
�
Basics�
Label:�
Accept�
�
�
Action:�
accept�
�

Action Button�
�
Basics�
Label:�
Cancel�
�
�
Action:�
cancel�
�

Define the aspects of the canvas.

Take care when installing the canvas: we are going to install it in our application class (LANInterface), but under a different name than windowSpec (because the interface of our application is stored there, and we do not want to override it, right?). Instead, call the method originateDialogSpec.

(to be checked)

Try to open the canvas. You will notice an exception, because the dialog is supposed to work with a SimpleDialog, not the LANInterface itself (a subclass of ApplicationModel). Close the exception and proceed to the next step.

Extending the domain models to support dynamic menus

The two menu buttons will have to show appropriate lists of workstations or outputservers. In fact, we would like to be able to select all nodes that can originate packets or that can do output.

Open a Browser.

Select the class Node

-	Create a new protocol called ‘testing’.

-	Add the method canOriginate that returns false.

-	Add the method canOutput that returns false.

Select the class Workstation

-	Create a new protocol called ‘testing’.

-	override the method canOriginate to return true.

Select the class OutputServer

-	Create a new protocol called ‘testing’.

-	Override the method canOutput to return true.

We can now ask every node these two questions, and they will answer what's appropriate in their case. These methods allow us to dynamically build menus of the appropriate devices for the user to select when originating a new packet.

Connecting the dialog to the LANINterface

We will start by filling in the originate method. Use following implementation:

originate

	| dialogModel dialogBuilder returnVal packet dialogOriginator dialogAddressee dialogContents |

	"the next three lines create ValueHolders to support the three dialog widgets"

	dialogOriginator := nil asValue.

	dialogAddressee := nil asValue.

	dialogContents := String new asValue.

	"next two lines create a new SimpleDialog object and retrieves the builder"

	dialogModel := SimpleDialog new.

	dialogBuilder := dialogModel builder.

	

	"the following lines connect the widgets of the interface with the ValueHolders created"

	dialogBuilder aspectAt: #originator put: dialogOriginator.

	dialogBuilder aspectAt: #addressee put: dialogAddressee.

	dialogBuilder aspectAt: #contents put: dialogContents.

	"the following lines ask the LANInterface for the originators and outputters menus. We will write these next, so select proceed when VisualWorks indicates that they are new messages."

	dialogBuilder aspectAt: #originators put: self originatorsMenu.

	dialogBuilder aspectAt: #addressees put: self addresseesMenu.

	

	"the following lines open the dialog interface, originateDialog, and accept user input"

	returnVal := dialogModel openFor: self interface: #originateDialog.

	"returnvalue will be true if the user selected Accept, otherwise it will be false"

	returnVal ifTrue: ["create a new packet, fill it in and give it to the workstation"

		packet := Packet send: dialogContents value to:dialogAddressee value name.

		packet originator: dialogOriginator value]

We still have to write two messages originatorsMenu and addresseesMenu that have to dynamically create and return a menu. Write these two messages, using canOriginate and canOutput and the hints provided in previous lesson when we wrote the method changedNode (in the section 'Connecting the next node field).

If you want, you can now experiment with other additions:

-	disable the remove button, the name field or the next node field if no device is selected

-	add a window menu that mimics the buttons on the interface

-	catch the #closeRequest message and pop up a dialog asking the user if they really want to close

-	…

