Lesson 9: More about Applications
This lesson uses lesson 8 as basis, and explains some extras about application building.
Outlining
On the canvas tool you see a line of buttons as below, that is used to line out components. The first 6 are used to align them with other widgets, the middle 4 are used to equal spacing between widgets, and the last two are concerned with equalling heights and widths.

�
�

Exercise 1: Use these alignment tools to properly align your application
Making the widget’s positions relative
A handy feature is to set up the size and position of the widgets relative to window bounds. You make widgets relative using the Position page in their properties. The proportion sets the percentage (between 0 and 1) for the relative position; the offset uses this as start. Note that 0 means left or top and 1 means right or bottom. For example, to say to our input field that it should at all times keep 10 pixels from the left and right border, we would set the first (L) and the third (R) positions to:
L	0	10
R	1	-10
To make sure that our left button keeps ten from the left side, and keeps ten from the middle of the window, we use:
	L	0	10
	R	0.5	-10
Likewise, for the other button:
	L	0.5	10
	R	1	-10
Exercise 2: Make the components relative, and resize your application…
Changing the input field’s model
Currently, the model of our input field is a simple number. This means that we have to put more logic in our application, including behavior that one would expect in the model. In other words, there is too much logic in the application, which gives problems when updating/reusing this application and model. This section will therefore use our implementation of SimpleCounter (see lessons 3 and 4) as model instead of number.

There are two major issues we have to deal with:
1.	use a SimpleCounter instance as model instead of a number,
2.	take care of the dependency-mechanism
Make a SimpleCounter instance the model
As explained before, the inputfield has a valueholder as model, and uses the messages value and value: to get/put the data from it. However, SimpleCounter has no messages value and value: but messages counterValue and counterValue:. This means we cannot use a simple value holder that holds the SimpleCounter instance, but have to use a more sophisticated one that translates these messages. This is done using the class AspectAdaptor. So, our input field will hold an AspectAdaptor, which will actually hold the instance of SimpleCounter. To use this aspectAdaptor, we have to initialize counterValue like this:
counterValue := (AspectAdaptor forAspect: #counterValue)
				subject: SimpleCounter new;
				subjectSendsUpdates: true

In the application model, the method counterValue is used to return the actual model to be used by the input field. Since this method uses lazy initialization, it actually performs two functions (see lesson 8):
1.	initialize and return the value model (the ifTrue:-branch),
2.	return the value model if it has been initialized
Exercise 3: Adapt the implementation to use the implementation given above. Take care because, when a user uses define… in the Canvas Tool, the counterValue method is regenerated !
Dependency mechanism
As explained in the lectures, in the Model-View-Controller the model does not know its dependents and does not invoked directly their update when it changes. Instead, it sends to itself a changed message, this has as a consequence that its dependents know their model has changed and that their update method is invoked. Our model, the SimpleCounter instance does not send change messages… yet. Since the aspect we are interested in is counterValue, we have to send a change message in the counterValue mutator (the accessor is just used to get the value, so there's no need to send a change message there). Change the counterValue mutator code so it resembles the following:

	counterValue: aNumber
		counterValue := aNumber.
		self changed: #counterValue

Test your application now. Does it work correctly ?

Exercise 4: Adapt the implementation of increment and decrement method in SimpleCounterAppl to use the increment and decrement methods that are already defined on SimpleCounter. Hint: take a look at the AspectAdaptor class if necessary.
Using the builder at run-time
The builder (class UIBuilder) is the part of the User Interface Builder (UIB) that is responsible for constructing user interfaces from the resources (interface specification, menu specification,...). It is also responsible for helping create the user interface in the canvas editing process, and it provides access to the interface after the user interface is built. We will explore this last functionality by adding extra behavior that disables the decrement button when the value displayed is 0.
Assigning an ID to the button
To disable the button, we will need to talk to the button at run-time. The button is kept in the builder (that we can access at runtime by sending a message builder to self), but we need to give it an identifier to be able to identify it. To give it an identifier, open a canvas tool on the simpleCounter canvas used in previous exercises (use the resources editor or if you use the refactoring browser just look at the class method windowSpec and click on edit), open a properties tool on the decrement button and get the Basics page. Fill in #decrementButton in the ID-field. We will use this identifier later on. Also, on the details page, check the Initially Disabled check box. Install the new canvas and open it.
Enhancing our domain model
Exercise 5: Write a method named isZero that returns whether counterValue equals 0 or not on SimpleCounter in a protocol testing.
OnchangeSend: to:
We now want to be notified when the value of our domain-model changes by using the message onchangeSend: #aSymbol to: anObject that is defined on all value models. It expresses that we want the value model to send the message aSymbol to anObject when its value changes (note that in most of the cases we set anObject to be self). Usually this dependency is set up in the initialize method of the application.
Exercise 6: Set up a dependency to be notified with a message counterValueChanged whenever the value of counterValue changes.
SimpleCounterApp>>initialize
....
	counterValue onChangeSend: #counterValueChanged to: self

To enable or disable the button, you first have to ask the builder for it, and then send enable: aBoolean to it.

Exercise 7: Define the method counterValueChanged so that if the value of the counter is zero, the decrement button is enable. Your code should contain the following expressions:

(self builder componentAt: #decrementButton) isEnabled: true

