Lesson 3: Viewing, creating and editing classes

This lesson will show you the use of the System Browser to browse through the class system, to define class, and to save this class to file. For this lesson you need to work on your own image, so first start a new image (use visual.im), and save it under a different name (for example, lesson).

From the Browse menu, open a Class Browser. This is the basic tool you use to find classes, browse their code, and implement your own classes and methods. In the first part, we will browse through some classes. In the second part, we will create our first class. In the third part, we will save it.

Part 1: looking at existing classes

The Class Browser consists of four lists on top, and of an edit space. The four lists are (from left to right):

1.
the category list: displays groups of classes (= categories)

2.
the class list: shows the classes in a selected category

3.
the protocol list: shows groups of methods (= protocols) in a class

4.
the method list: shows methods in a protocol

The contents of the edit field change depending on the current selection you make in the lists. Initially, with nothing selected, it is empty.

We will begin with selecting a category called Graphics-Geometry. If you do, the content of the edit field will update to present you a class-template. This template is used when you want to create classes (we will do so later on). The class list shows the classes in the selected category.

Exercise 0:

Now select the class Point. The edit window shows you the definition of the class Point. Note how the template is filled in. Try to understand the structure of this class.

- Ask for all the references to this class

- Ask for all references to the instance variable x
- Ask for all the senders of the method x

- Ask for the comment of the class Point
You can now select the protocol called accessing. The edit field updates again, to enable you to add a method to the class Point in the selected protocol. Have a look at the different protocols and their methods. Select methods in the method list, and look at their code. Begin in the accessing protocol, and try to understand what is going on.

Every list has its own operation menu that is displayed if you press the operation button on a list. Do this for the four lists, and try out any commands that you do not fully understand (do not remove anything).

Exercise 1: What are the superclasses of Array ?

Exercise 2: Who references (by name) the class ByteArray ?

Exercise 3:

How many instance variables does an instance of class LuminanceBasedColorPolicy have ?

Exercise 4: How would you rename a method such that other methods that once used it can still do ?

Exercise 5: Find at least 3 classes that implement the method at:
Exercise 6: The printing protocol of class BlockContext contains the method printOn:. Determine the messages that this method sends. Also, for any of these messages, determine which class(es) implement the corresponding method.

Exercise 7: Can I compare instances of the class Date with the > and < operators ? Motivate your answer.

Exercise 8: Go to the class FixedPoint, and locate the protocol double dispatching. This protocol contains the methods for a technique called double dispatching. Try to figure out what this technique is all about, and what it solves. To do so, look at where the methods of this protocol are used.

Exercise 9: Find all the classes implementing ifTrue:

Exercise 10: Evaluate and explain the differences between the two following expressions

0 to: 10 by: 2 do:

[:i | Transcript show: I printString ; cr]

(0 to: 10 by: 2) do:

[:i | Transcript show: I printString ; cr]

Hint: Find the method to:by:do: and the method to:by: defined on Integer
Exercise 11: Print the following expression and find why the result is different

Array with: 1 with: 2 with: 3

Array with: 1 ; with: 2 ; with: 3

Exercise 12: Find the method factorial and reimplement it using inject:into:

Exercise 13: Check using a hierarchy browser which subclasses of Magnitude are abstract classes.

Check especially the comments.

Exercise 14: Search the implementors of ->

Inspect the expressions

#lulu->23

23->34

Exercise 15: Find an expression that returns the subclasses of Collection class.

Using only public methods of the class Behavior, find the expression that returns the number of methods defined in one class.

Exercise 16 (for the wild and fool): Find the method browseAllSelect:

Using this emthod write an expression that opens a browser showing all the unary methods.

Hint: look in the CompiledMethod class or its superclasses how we can know the number of arguments of a method.

Browser browseAllSelect: [:method | method]

Exercise 17: Inspect the following expression:

#(calvin hates suzie) at: 1 + 1 put: #loves

The result is not waht we expected, How do you explain that?

Find the method responsible for such an abnormal behavior.

Propose (yourself) a solution, so that the array (the receiver) is return instead of the result of the message.

Part 2: Creating your own class

In this part we will create our first class in a category of our own. The steps we are going to take are the same every time you create a class, so follow them well. We are going to create a class SimpleCounter in a category called DemoCounter.

Step 1: Creating a category

Bring up the operate menu, and select add. The system will prompt you for a name. Fill in the name DemoCounter. This new category will be created and added to the category list.

Step 2: Creating a class

This step consists basically of editing the template method to make it into the definition of the class you want to create. Before you begin, make sure that only the category DemoCounter is selected.

-
first, replace the word NameOfSuperclass with the word Model. This is to fill in the superclass of the class you are creating. (Note that Model is the superclass used for object that will play a model role in a MVC triade see future lessons. So, for your others classes you should type the superclass of the class that you are creating)

-
next, fill in the name of your class by replacing the word NameOfClass with the word SimpleCounter. Take care that the name of the class starts with a capital, and that you do not remove the # sign in front of NameOfClass.

-
now, fill in the names of the instance variables of this class. We will need one instance variable called counterValue. You add it by replacing the words instVarName1 and instVarName2 with the word counterValue. Take care that you leave the string quotes!

-
now you can fill in any class variables you might use. Since we need none, remove the words ClassVarName1 and ClassVarName2, leaving an empty string (i.e. 2 single quotes).

This is it ! We now have a filled-in class definition for the class SimpleCounter. To add it to the system, we still have to compile it. Therefore, select the accept option from the operate menu. The class SimpleCounter is now compiled and added to the system.

-
give SimpleCounter a class comment by selecting comment from the operate menu of the class list. Give this comment:

SimpleCounter is a concrete class which supports incrementing and decrementing.

Instance Variables:
counterValue
<Integer>

Select accept to store this class definition in the class.

Part 3: Filing the category out on disk

To be able to load your class next week, we will now create a so-called file-out. A file-out is a text file that contains method and/or class definitions, and that you can use to load your classes and/or methods in an image.

To create the file-out:

Select the category DemoCounter, and select file-out from the operate menu. Give a filename (for example 'democounter.st'). The system will now write the textual representation of all the classes in the selected category to this file. If you want to just save one class, one protocol or even a single method, you can use the appropriate operate menu on the item you want to save.

