Lesson 5: Basic LAN Application

We will now start with an application that simulates a simple LAN network. The purpose of this lesson is to create a basis for further lessons on writing OO programs. It will use the notions of previous lessons for creating classes and methods. We will create several classes for simulating the LAN: Packet, Node, Workstation, and PrintServer.

Creating the Class Node

The class Node will be the root of our LAN simulation application. It contains the basic behavior common for all nodes. The responsibilities of a node is to be put into a Lan, so a Node should know its next node. A node should be uniquely identifiable with a name. This is its responsibility to send and receive packets of information.

Exercise 1: create a new category Demo-LAN, and create a subclass of Model called Node, with two instance variables: name and nextNode.

Exercise 2: create accessors and mutators for the two instance variables. Document the mutators to inform users that the argument passed to name: will be a Symbol, and the arguments passed to nextNode: will be a node. Define them in a ‘private’
Exercise 3: create a class method new and an instance method initialize. Make sure that a new instance of Node created with the new method uses initialize (see previous lesson). Leave initialize empty for the moment (it is difficult to give meaningful default values for the name and nextNode of Node. However, subclasses might want to override this method to do something).

Exercise 4: Define a method called hasNextNode that returns whether the node contains a next node or not. Create an instance method printOn: that puts my class name and my name variable on the argument, aStream. Include my next node's name ONLY if there is a next node (Hint: look at the method printOn: from previous lesson, think about name being a symbol and nextNode being a node).

Exercise 5: A node has two basic messages to send and receive packets. When a packet is sent to a node, the node has to accept the packet, and send it on. Note that with this simple behavior the packet can loop infinitely in the LAN. We will propose some solutions to this issue later. To implement this behavior, add a protocol ‘send/receive’, and implement the following two methods, for which I only give the selector and the comment (and some partial code):

accept: thePacket

"Having received the packet, send it on.

This is the default behavior"

"My subclasses will probably override me to

do something special"
…

send: thePacket

"Display debug information in the Transcript, then

end the packet to the node with whom I communicate"

Transcript show:

self name printString,

' sending the packet to ',

self nextNode name printString;cr.
…

Creating the class Packet

A packet in an object representing an information that is sent from a node to another node. So the responsibilities of this object is to allow us to define the originator of the sending, the address of the receiver and the contents. Moreover, this is the responsibilities of a packet to say if the packet is addressed to a particular node or if it was sent by a particular node.

Exercise 6: In the category Demo-LAN, create a subclass of Object called Packet, with three instance variables: contents, addressee and originator. Create accessors and mutators for each of them in a ‘private’ protocol.

Exercise 7:

- Define a printOn: aStream method that puts a textual representation on the argument, aStream.

- Define
a method named isAddressedTo: aNode

- Define a method named isOriginatingFrom: aNode

Note that a node is identifiable via its name. Its name is part of its public interface, so you should move the method name from the ‘private’ protocol to the ‘accessing’ protocol.

Creating the class Workstation

A workstation is the entry point for new packets onto the LAN network. Since it is kind of a network node, but provides additional behavior, we will make it a subclass of Node. That way, it inherits the instance variables and methods defined in Node.

Exercise 8: In the category Demo-LAN, create a subclass of Node called Workstation, without instance variables.

Exercise 9: Write the body for the method originate: that is responsible for inserting packets in the network:

originate: thePacket

"This is how packets get inserted into the network. This is a likely method to be rewritten to permit packets to be entered in various ways. Currently, I assume that someone else creates the packet and passes it to me as an argument."

Creating the class LANPrinter and FileServer

Exercise 10: Think what would happen if we used Nodes and Workstations to create a LAN, and would send originate: with an instance of Packet as argument to one of the workstations.

Of course, we would like to do something with the packets that are travelling around the LAN. Therefore, you will create a class LANPrinter here, a node that can receive packets addressed to it, and print them (on the Transcript). We would also like a class FileServer, a node that can save packets that are addressed to it (just display a message on the Transcript). Write these two classes yourself.

Simulating the LAN

Implement following two methods on the class side of the class Node, in a protocol called testing. Afterwards use them to test your implementation, and propose solutions for every problem you encounter:

example1

"create the nodes, workstations, printers and fileserver"

mac := Workstation new name: #mac.

pc := Workstation new name: #pc.

node1 := Node new name: #node1.

node2 := Node new name: #node2.

node3 := Node new name: #node3.

dinfNT2 := FileServer new name: #DinfNT2.

igPrinter := Printer new name: #IGPrinter.

"connect the different nodes."

"I make following connections:

mac -> node1 -> dinfNT2 -> node2 ->

igPrinter -> node3 -> pc -> mac"

mac nextNode: node1.

node1 nextNode: dinfNT2.

dinfNT2 nextNode: node2.

node2 nextNode: igPrinter.

igPrinter nextNode: node3.

node3 nextNode: pc.

pc nextNode: mac.

"create a packet and start simulation"

packet := Packet new

addressee: #IGPrinter;

contents: 'This packet travelled around to the printer.

mac originate: packet.

example2

"create the nodes, workstations, printers and fileserver"

mac := Workstation new name: #mac.

pc := Workstation new name: #pc.

node1 := Node new name: #node1.

node2 := Node new name: #node2.

node3 := Node new name: #node3.

dinfNT2 := FileServer new name: #DinfNT2.

igPrinter := Printer new name: #IGPrinter.

"connect the different nodes."

"I make following connections:

mac -> node1 -> dinfNT2 -> node2 ->

igPrinter -> node3 -> pc -> mac"

mac nextNode: node1.

node1 nextNode: dinfNT2.

dinfNT2 nextNode: node2.

node2 nextNode: igPrinter.

igPrinter nextNode: node3.

node3 nextNode: pc.

pc nextNode: mac.

"create a packet and start simulation”

packet := Packet new

addressee: #anotherPrinter;

contents: 'This packet travels around to the printer.

pc originate: packet.

Question of creation responsibility

One of the problem with the previous approach for creating the nodes and the packets is the following:

it is the responsibility of the client of the objects to create them well-formed. For example, it is possible to create a node without specifying a name! This is a disaster for our LAN system (create an example method 3, and try it out). The same problem occurs with the packet: it is possible to create a packet without address nor contents.

We will find a solution to these problems.

Exercise 11: Define a class method named withName: in the class Node (protocol ‘instance creation’) that creates a new node and assign its name.

withName: aSymbol

....

Define a class method named withName:nextNode: in the class Node (protocol ‘instance creation’) that creates a new node and assign its name and the next node in the LAN

withName: aSymbol nextNode: aNode

....

Note that the first method can simply invoke the second one.

Define a class method named send:to: in the class Packet (protocol ‘instance creation’) that creates a new Packet with a contents and an address.

send: aString to: aSymbol

....

Now the problem is that we want to forbid the creation of non-well formed instances of these classes. To do so, we will simply redefine the creation method new so that it will raise an error.

Exercise 12: Rewrite the new method of the class Node and Packet as the following:

new

self error: ‘you should invoke the method... to create a ...’

However, you have just introduced a problem: the instance creation methods you just wrote in exercise 11 will not work anymore, because they call new, and that calling results in an error ! The solution is to rewrite them such as

Node>>withName: aSymbol nextNode: aNode

^ self basicNew initialize name: aSymbol ; nextNode: aNode
Do the same for the instance creation methods in class Packet.

Exercise 13: Update and rerun your examples to make sure that your changes were correct.
