Lesson 10: Building an Interface for the LAN Application


In this exercise you will build a basic interface that allows us to more easily create and run LAN simulations. You will learn how to use some other widgets, more value models and a dialog interface. We will start with an interface for the basic LAN example (containing Node, Workstation, PrintServer and FileServer).


Overview


This is an example of the application running:











�





As said before, there are several stages when developing an application


1.	developing the domain model,


2.	building an interface, and


3.	programming the application model


Model Work


For this exercise, our domain model will be our LAN classes (Node and subclasses, Packet and subclasses,…). We already have this domain model, but it doesn't send changed messages. 


Exercise 1: Adapt the class Node and Packet to send change messages. When you consistently used your mutator, this boils down to adding self changed: #nameOfMessageWithoutColons in the body of the mutators.





(ask roel: should they be subclasses of Model? what will be the value of nameOfMessage...)


Building the interface


We are then ready to build the interface as displayed above and using the properties given here:


Action Button�
�
Basics�
Label:�
Workstation�
�
�
Action:�
newWorkstation�
�



Action Button�
�
Basics�
Label:�
Node�
�
�
Action:�
newNode�
�









Action Button�
�
Basics�
Label:�
PrintServer�
�
�
Action:�
newPrintServer�
�



Action Button�
�
Basics�
Label:�
FileServer�
�
�
Action:�
newFileServer�
�



Action Button�
�
Basics�
Label:�
Remove�
�
�
Action:�
remove�
�
�
ID:�
removeButton�
�



List View�
�
Basics�
Aspect:�
nodeList�
�
Details�
Scroll Bars�
Horizontal, Vertical�
�
�
Bordered�
On�
�
�
Can Tab�
On�
�



Label�
�
Basics�
Label:�
Name�
�



Input Field�
�
Basics�
Aspect:�
nodeName�
�
�
Type:�
Symbol�
�
Notification�
Change:�
changedNode�
�
	The last raw means that when the value of the inputField is changed, the application get a notification: its method changedNode is invoked. 





Label�
�
Basics�
Label:�
Next Node�
�



Menu Button�
�
Basics�
Label:�
<none>�
�
�
Aspect:�
nextNode�
�
�
Menu:�
deviceNameMenu�
�
Details�
Bordered�
On�
�
Notification�
Change:�
changedNode�
�



Action Button�
�
Basics�
Label:�
Originate�
�
�
Action:�
originate�
�
�
ID:�
originateButton�
�



Group box�
�
Basics�
Label:�
Create�
�



Install and define the action and aspect methods of this application.


Opening the Application, and manually adding some methods


Try to open the application. You will get an exception saying that the menu binding #deviceNameMenu is not found. The reason is that the define process does not generate menus, and that we have to do it manually. We will therefore have to manually create a method deviceNameMenu (in the aspect protocol). This method should return a valueHolder containing a menu. In the beginning, this menu will be empty. 


Exercise: Using the inspiration of other generated aspect methods, add another instance variable and write the method deviceNameMenu.





(ask roel: why do you use a menu editor?) 





Open your application again. Try the different buttons. Afterwards, type in first in the input field, and the press tab, return, or select accept in the input field's operate menu. You should get an exception, because we asked to be notified when the input field changes with a message changedNode, but this is not generated.


Exercise: Add a method changedNode in a protocol ‘private’. For the moment let it return self, just as the other action methods do.


Programming the application model


The basic action methods


We now have to connect our interface  to our domain model. We start with the list widget, because it is the most interesting one. A list widget uses a SelectionInList value model. SelectionInList is a value model with three instance variables:


-	dependents: the dependents of the SelectionInList include at least the list widget. Users might want to become dependent to.


-	listHolder: this is a ValueHolder on the list to be displayed in the list view.


-	selectionIndex: this is a ValueHolder that contains the index of the currently selected element.


This is not really important to know the instance variable. The important messages of SelectionInList are list (returns  the list)  , list: (to set up a list), selection (returns the current selected element), selection: (to set the current selected element of the list), selectionIndex (returns the index of the current selected element) , selectionIndex: (to set the index of the selected element), and selectionHolder (returns the selectionHolder).





Exercise: read the class comment and browse the messages listed above of SelectionInList.


We now implement the action methods to add different kinds of nodes. We start with the method newNode. In the method body: 


-	get the list object from your nodeList, 


-	ask this list to add a new Node,


-	test it





Afterwards


-	proceed and implement the messages newFileServer, newPrintServer and newWorkstation.


-	implement the method remove (nothing should happen if there is no selection, otherwise the current selection should be removed)


Connecting the name field


In the previous lesson we used an AspectAdaptor to connect our input field to an instance of SimpleCounter. The AspectAdaptor did the translation between the input field (that uses value and value: ) and its model (which used counterValue and counterValue: ). We now use AspectAdaptors to let several widgets share a single model. 





The model of the name and nextNode widget should be the currently selected node in the nodeList. Therefore, if this selection changes, we would like both widgets to get updated, and when we fill in and accept a value, this should affect the current selection. Therefore, we should create and assign AspectAdaptors for the name and nextNode aspects that both have the same subjectChannel. Note that here we will use subjectChannel instead of subject, because the model will be a valueHolder. With a subject, this is the subject (i.e. some domain specific element itself).





(Following to be checked Is it really the selectionHolder) 





We will again need to write an initialize method in a protocol called ‘initialize-release’ to initialize the variables:


-	get the selectionHolder object from your nodeList (store it in an temporary variable)


-	create a new AspectAdaptor with as subjectChannel the selectionHolder, and a forAspect: of #name. Assign this to the variable nodeName.


-	create a new AspectAdaptor with a subjectChannel the selectionHolder, and a forAspect: of #nextNode. Assign this to the variable nextNode.





Open your application, add some nodes, select a node. The input field should update. Change the name and select accept in the operate menu (or do tab or return). Deselect the node again and it should update. 


Connecting the next node field


When the application is running, and you try to expand the menu button, nothing happens. this is because the menu that is supposed to be there, and that should contain the nodes to point to, is still empty. So, we still need to create this menu. 





Note that menus basically contain Association's (an Association is a key/value pair (look it up)), where the key is the name that is used to display in the menu, and the value is the object you get when asking for the selection. In our case, the keys will be the names of the nodes, and the values will be the nodes themselves. Now, you should first check a class MenuBuilder that aids in creating menus:





Exercise: Browse the class MenuBuilder (especially the examples at the class side).





Then, go to the method changedNode in the ‘private’ protocol:


-	create a new instance of  MenuBuilder, and hold it in a temporary variable


-	iterate through the nodeList's list adding an Association of "item name -> item" to the MenuBuilder for each item in the list.





(not understood) 


-	set the value of DeviceNameMenu to be the menuBuilder's menu (use setValue: to do this; using value: the menu button will flash each time you add or change a node)


Test the implementation by creating some nodes, filling in their names and their next nodes.





Remove a device from the list. If you do this, you will notice that the menu still contains the removed node ! Modify the remove method to send self changedNode as the last action in the method. Test your application again.





