Lesson 4: Defining protocols and methods

This lesson will show how to use the System Browser to add protocols and methods. Therefore, we will use the class SimpleCounter created in the previous lesson, and add some behavior. We will also test this class.

If you saved your image at the end of the last lesson and you can restart it, just skip the following explanation.

Filing in the category from previous lesson

At the end of the previous lesson we created a file-out containing the classes in the category DemoCounter. To import these classes in the environment we are working, we need to perform a file-in operation. To do so, we will use a tool called the File List. To start with, open this tool (it's under Tools, in the VisualWorks Launcher). You get something like this:

[image: image1.wmf]
There are three important parts in this window. The first one is the edit field on top, the middle one is a list, and the one at the bottom is a text viewer. To easily file in the file you created:

-
open an operate menu in the edit field on top. The last menu item is volumes. Select this to get a list with the file volumes of your computer (partitions on a PC, hard disks on a Mac,…).

-
Select the volume your files are on. If you have done that, the file list will contain the files and directories of that volume. To change to a specific directory, select the directory in the list, bring up the operate menu, and select new pattern.

-
If you want to file-in a file, select the file in the file list and choose file in in the operate menu.

Exercise 1: file-in the file you have created in the previous lesson.

Creating and testing methods

The class we have defined has one instance variable, counterValue. Remember that in Smalltalk, everything is an object, and that the only way to interact with an object is by sending it messages. Therefore, there is no mechanism to access the instance variables from outside. What you can do is define messages that return the value of the instance variable of a class. Such methods are called accessors, and it is common practice to always define and use them. We will start to create an accessor method for our instance variable counterValue.

Remember that every method belongs to one protocol. These protocols are just of group of methods without semantics, but are really important for the reader of your program. Although protocols can have any name, Smalltalk Programmers follow certain conventions for naming these protocols. If you define a method and are not sure what protocol it should be in, first go through existing code and try to find a fitting name.

An important remark: Accessors can be defined in protocols ‘accessing’ or ‘private’. Use the ‘accessing’ protocol when a client object like an interface really needs to access your data. Use ‘private’ to clearly mention that no client should use the accessors. To emphasize that objects are not just data structure but provide services more elaborate than just accessing data, put your accessors in a ‘private’ protocols. So if you are not sure first define yours accessors in a ‘private’ protocol and once some clients really need access to some specific data, create a new protocol ‘accessing’. Note that this discussion could seem not very important in the context of this specific simple example. However, this question is central to the notion of object and encapsulation of the data. An important side effect of this discussion is that you should always ask yourself when you are, as a client of an object, using an accessor on this object if this object is really well defined and if it does not need extra functionality.

Exercise 2: Decide in which protocol you are going to put the accessor for counterValue

We will now create the accessor method for the instance variable counterValue. Start by selecting the class DemoCounter in a browser, and make sure the class/instance switch is set to instance. Create a new protocol with the name found in exercise 2. Select this newly created protocol. The test field should display a method template, laying out the default structure of a method. Replace the template with the following method definition, defining a method called counterValue, without arguments, that contains some comment and in the body just returns the instance variable counterValue (and then choose accept in the operate menu to compile the method):

counterValue

"return the current value of the counterValue
instance variable"

^counterValue
You can now test your new method by typing and evaluating next expression in a workspace:

SimpleCounter new counterValue

This expression first creates a new instance of SimpleCounter, and then sends the message counterValue to it to retrieve the current value of counterValue. This should return nil (the default value for anything unassigned; at the end of this lesson we will create instances where counterValue has a better default initialization).

Exercise 3: another method that is normally used besides the accessor method is a so-called mutator method. Such a method is used to change the value of an instance variable from outside. For example, next expression would first create a new SimpleCounter instance and would then set the value of counterValue to 7:

SimpleCounter new counterValue: 7
This mutator method is currently non-existent, so write this method counterValue: such that, when invoked on an instance of SimpleCouter, the counterValue instance variable is set to the argument given to the message. Test your message by typing and evaluating the expression above.

Exercise 4: implement the following methods in the given protocols (only the code is given, write the comments yourself):

protocol
methods

operations
increment

 self counterValue: self counterValue + 1

operations
decrement

 self counterValue: self counterValue - 1

printing
printOn: aStream

 super printOn: aStream.

 aStream nextPutAll: ' with counterValue ', self counterValue printString.

 aStream cr.

Now test the methods increment and decrement. Note that the method printOn: is used when you do print it or click on self in an inspector.

Adding an instance creation method

When we create a new instance of the class SimpleCounter using the new message, we would like to obtain an initialized instance. To do so, we need to override the method new, to add additional behavior (invoking an initialize method is very common). Notice that new is always sent to a class, that’s why the primary new and basicNew methods are defined on the class Behavior. This means we have to define the new method on the class side.

To define a new method on the class side, set the class/instance switch on class. Define a new protocol called instance creation, and implement the method new as follows:

new

"Create and return a new, initialized instance of SimpleCounter"

^super new initialize

We now also have to write an initialization method that gives a default value to the counterValue instance variable. Therefore, create a protocol initialize-release, and create following method (the body of this method is left blank. Fill it in !):

initialize

"set the initial value of the counterValue to 0"
Note that this method is not automatically invoked by the method new. We had to override the method new to call the initialize method and do the initialization. This a weakness of the Smalltalk libraries, so you should always check if the class that you are creating inherits a new method that implement the automatic call of the initialize method.
Now create a new instance of class SimpleCounter. Is it initialized by default ?

_963656914.doc
[image: image1.png]

