Object-Oriented Design with
Smalltalk

A Pure Object Language and its Environment

Dr. Stéphane Ducasse

2002

Table of Contents

N

N

4.

Table of Contents

. Introduction

Structure of this Lecture
Structure of this Lecture (1I)
Structure of this Lecture (1Il)
Web Resources

About this lecture...

Part | - Basic Smalltalk Elements

. History and Concepts

Smalltalk - A State of Mind

Smalltalk - The Inspiration

The Precursor, The Innovator & The Visionary
The History

The History (Il)

Smalltalk’s Concepts

Messages, Methods and Protocols

Objects, Classes and Metaclasses

Smalltalk Run-Time Architecture
VisualWorks Smalltalk Run-Time Architecture
Quick Overview of the Environment

Mouse Semantics

Class MenuBar

Method MenuBar

Cross Reference Facilities

Filing Out

Hierarchy Browser

Debugger

Crash Recovery

Condensing Changes

UlBuilder

A Taste of Smalltalk

Power & Simplicity: The Syntax on a PostCard

Table of Contents

o

©

The Semantics of super

The Semantics of super (1I)

Object Instantiation

Instance Creation

Opening the Box

Class-specific Instantiation Messages
Basic Objects, Conditionals and Loops
Boolean Objects

Some Basic Loops

For the Curious...

Collections

Collections - Another View

Collection Methods

Sequenceable Specific (Array)
KeyedCollection Specific (Dictionary)
Choose your Camp!

Iteration Abstraction: do:/collect:
Iteration Abstraction: select:/reject:/detect:
Iteration Abstraction: inject:into:
Collection Abstraction

Examples of Use: NetworkManager
Common Shared Behavior

Identity vs. Equality

Common Shared Behavior (Il)
Common Shared Behavior (IIf)

. Numbers

The Basics of Numbers

Deeper into Numbers: Double Dispatch
Deeper into Numbers: Double Dispatch (1)
Deeper into Numbers: Coercion & Generality
Deeper into Numbers: #retry:coercing:

10. Exceptions

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

The Main Exceptions135

Basic Example of Catching
Exception Sets

Table of Contents

Synchronization Mechanisms (I1)
Synchronization using Semaphores
Semaphores

Semaphores for Mutual Exclusion
Synchronization using a SharedQueue
Delays

Promises

15. Classes and Metaclasses - an Analysis

The meaning of “Instance of"

Concept of Metaclass & Responsibilities
Classes, metaclasses and method lookup
Responsibilities of Object & Class classes
A possible kernel for explicit metaclasses
Singleton with explicit metaclasses
Deeper into it

Smalltalk Metaclasses in 7 points
Smalltalk Metaclasses in 7 points (11}
Smalltalk Metaclasses in 7 points (IV)
Behavior Responsibilities
ClassDescription Responsibilities
Metaclass and Class Responsibilities

16. Common Mistakes and Debugging

Common Beginner Bugs

Common Beginner Bugs (II)

Common Beginner Bugs (II1)

Instance Variable Access in Class Method
Common Beginner Bugs - Assignment
Common Beginner Bugs - Redefinition
Common Beginner Bugs - Collections
Use of Accessors: Protect your Cients
Debugging - Hints

Debugging - Where am 12

Debugging - Source Inspection
Debugging - Where am | going?
Debugging - How do | get out?

136
137

237

243

Table of Contents

Some Conventions

Hello World

Everything is an Object

Objects communicate via Messages
A LAN Simulator

Three Kinds of Objects

Interactions Between Nodes

Node and Packet Creation

Objects communicate via Messages (1)
The Definition of a LAN
Transmitting a Packet

How to Define a Class

How to Define a Method

5. Smalltalk Syntax in a Nutshell
Language Constructs
Syntax in a Nutshell
Syntax in a Nutshell (I1)
Messages instead of a predefined Syntax
Class and Method Definition Revisited
Instance Creation

6. Syntax and Messages
Literals, an Overview
Literals, an Overview (II)
Literals, the Arrays
Literals, the Arrays (1l)
Literals, the Arrays (1Il)
Literals, the Arrays (IV)
Symbols vs. Strings
Variables Overview
Temporary Variables
Assignments
Method Arguments

March 18, 2002

Exception Environment

Resumable and Non-Resumable

Resume:/Return:

Exiting Handlers Explicitly

Examples

11. Streams

Streams

An Example

printString, printOn:

Stream Classes

Stream Classes (1l)

Stream Tricks

Streams, Blocks and Files

Part Il - Advanced Smalltalk Elements

12. Advanced Classes

Types of Classes

Two Views on Classes

Indexed Classes

Indexed Classes / Instance Variables

The meaning of “Instance of”

Lookup and Class Messages

The Meaning of “Instance of” (Ill)
Concepts &

Class Instance Variables

About Behavior

Class Method

classVariable

Class Instance Variables / Class Variables

Summary of Variable Visibility

Example From The System: Geometric Class

Circle
poolDictionaries
Example of PoolVariables
13. The Model-View-Controller Paradigm
Context

Debugging - Files in VW
17. The Internal Structure of Objects
Three Ways to Create Classes
Let there be Code
Format and other
Object size in bytes
Analysis
Analysis (1)
18. Blocks and Optimization
Full Blocks
Copying Blocks
Clean Blocks
Inlined Blocks
Full to Copy
Contexts
inject:into:
About String Concatenation
Streams, Blocks and Optimization
Streams, Blocks and Optimization (1)
BlockClosure Class Comments
19. Advanced Blocks
Lexical Scope
Returning from a Block
Returning From a Block (I1)
Example of Block Evaluation
Part Il - Design Considerations
20. Abstract Classes
Case Study - Boolean, True and False
Case Study - Boolean, True and False (Il)
Case Study - Boolean, True and False (Il)
Case Study - Magnitude
Case Study - Date
21. Elements of Design
A First Implementation of Packet

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

161

245
246
247
248
249
250

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
271
272
273
274
275
276
277
278
279

Instance Variables

Six pseudo-variables

Six pseudo-variables (Il)
Global Variables

Three Kinds of Messages
Unary Messages

Binary Messages
Keyword Messages
Composition

Sequence

Cascade

yourself

Did you really understand yourself ?
Blocks - Definition

Blocks - Evaluation
Blocks - Continued
Primitives

~

. Dealing with Classes
Class Definition: The Class Packet
Named Instance Variables
Method Definition
Accessing Instance Variables
Methods always return a Value
Some Naming Conventions
Inheritance in Smalltalk
Remember...
Node
Workstation
Message Sending & Method Lookup
Method Lookup Examples
Method Lookup Examples (1I)
Method Lookup Examples (1il)
How to Invoke Overridden Methods

Program Architecture
Separation of Concerns
The notion of Dependency
Dependency Mechanism
Publisher-Subscriber: A Sample Session
Change Propagation: Push and Pull
The MVC Pattern
A Standard Interaction Cycle
MVC: Benefits and Liabilities
MVC and Smalltalk
Managing Dependents

1 of Change 1
Climbing up and down the Default-Ladder
Problems ...
Dependency Transformer
Inside a Dependency Transformer
ValueHolder
A Userlnterface Window
Widgets
The Application Model
The fine-grained Structure of an Application
Bibliography

14. Processes and Concurrency
Concurrency and Parallelism
Limitations
Atomicity
Safety and Liveness
Processes in Smalltalk: Process class
Processes in Smalltalk: Process class (I1)
Processes in Smalltalk: Process states
Process Scheduling and Priorities
Process Scheduling and Priorities (I1)
The Process Scheduling Algorithm
Process Scheduling
Synchronization Mechanisms

Packet CLASS Definition

Fragile Instance Creation

Assuring Instance Variable Initialization
Strengthen Instance Creation Interface
Other Instance Initialization

Lazy Initialization

Providing a Default Value

Invoking per default the creation interface
Forbidding new

Class Methods - Class Instance Variables
Class Initialization

A Case Study: Scanner

A Case Study: Scanner (I1)

A Case Study: Scanner (Ill)

Why are Coupled Classes bad?

The Law ot Demeter

The Law of Demeter (II)

About the Use of Accessors

About the Use of Accessors (Il)

About the Use of Accessors (I1l)

Provide a Complete Interface

Factoring Out Constants

Initializing without Duplicating

Constants Needed at Creation Time
Type Checking for Dispatching

Double Dispatch

A Step Back

Double Dispatch (Il)

Methods are the Basic Units of Reuse
Methods are the Basic Units of Reuse (1)
Methods are the Basic Units of Reuse (lll)
Class Factories

Hook and Template Methods

Hook Example: Copying

Hook Specialisation

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
£
91
92
93
94
95
%
o7
98
99

100

102

Table of Contents

Hook and Template Example: Printing
Override of the Hook

Specialization of the Hook

Behavior Up and State Down

Guidelines for Creating Template Methods
Towards Delegation: Matching Addresses
Reify and Delegate

Reifying Address

Matching Address

Addresses

Trade-Off

Designing Classes for Reuse

Do not overuse conversions

Hiding missing information

Different Self/Super

22. Selected Idioms

Composed Methods
Constructor Method
Constructor Parameter Method
Query Method

Boolean Property Setting Method
Comparing Method

Execute Around Method
Choosing Message

Intention Revealing Message
Intention Revealing Selector
Name your Methods Well

do: / collect:

isEmpty / includes:

Naming Suggestions
Reversing Method

Debug Printing Method
Method Comment

Delegation

Simple Delegation

315
316
317
318
319
320

337

Self Delegation
Self Delegation - Example
Pluggable Behavior
Pluggable Selector
Pluggable Block

23. Selected Design Patterns
The Singleton Pattern
singleton (If) - Theory
Singleton (1ll) - Implementation
Singleton (IV) - Implementation
Singleton (V) - Implementation
Singleton (VI) - Implementation
The Composite Pattern
Composite (Il) - A Possible Solution
Composite (Ill) - Theory
Composite (IV) - Implementation
The NullObject Pattern
NullObject (1) - With or Without
NullObject (IV) - Consequences
NullObject (V) - Applicability
NullObject (VI) - VisualWorks Examples
Part IV - Comparisons

24. Comparing C++, Java and Smalltalk
History
Target Application Domains
Evolution
Language Design Goals
Unique, Defining Features
Overview of Features
Syntax
Object Model
Memory Management
Dynamic Binding
Inheritance, Generics
Types, Modules

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

Exceptions, Concurrency
Reflection
Implementation Technology
Portability, Interoperability
Environments and Tools
Development Styles
The Bottom Line ...
25. Smalltalk for the Java Programmer
Syntax
Syntax (Il)
Syntax - Methods, Conditionals, Loops
No Primitive Types, Only Objects
Literals representing the same object
26. Smalltalk For the Ada Programmer
Class Definition
Method Definition
Method Definition (Il)
Method Definition(1I1)
Instance Creation Method
Instance Creation
27. References
A Jungle of Names
Team Development Environments
Some Free Smalltalks
Main References
Other References

Other References (Il)

Object-Oriented Design with Smalltalk

Introduction
1. Introduction
Q Lecture:
Object-Oriented Design with Smalltalk -
A Pure Object Language and its environment
a by:
[=] Dr. Stéphane Ducasse
Schuetzenmattstrasse 14 / Room 101/ Tel. +41 31 631 4903
ducasse@iam.unibe.ch - http://www.iam.unibe.ch/~ducasse/
[=] Michele Lanza
Schuetzenmattstrasse 14 / Room 106 / Tel. +41 31 631 4868
lanza@iam.unibe.ch - http://www.iam.unibe.ch/~lanza/
[=] Prof. Dr. Oscar Nierstrasz
Schuetzenmattstrasse 14 / Room 103/ Tel. +41 31 631 4618
oscar@iam.unibe.ch - http://www.iam.unibe.ch/~oscar/
[=] Dr. Roel Wuyts
Schuetzenmattstrasse 14 / Room 102 / Tel. +41 31 631 3314
wuyts@iam.unibe.ch - http://www.iam.unibe.ch/~wuyts/
Software Composition Group 1.6
Object-Oriented Design with Smalltalk Introduction
Structure of this Lecture
Q Introduction
O Part |- Basic Smalltalk Elements
[=] History and Concepts
[=] Quick Overview of the Environment
[=] A Taste of Smalltalk
[=] Smalltalk Syntax in a Nutshell
[=] Syntax and Messages
[=] Dealing with Classes
[=] Basic Objects, Conditionals and Loops
[=] Numbers
[=] Exceptions
[=] Streams
Software Composition Group 1.7
Object-Oriented Design with Smalltalk Introduction
Structure of this Lecture (ll)
Q Partll - Advanced Smalltalk Elements
=] Advanced Classes
[=] The Model-View-Controller Paradigm
[=] Processes and Concurrency
[=] Classes and Metaclasses - an Analysis
[=] Common Mistakes and Debugging
[=] The Internal Structure of Objects
[=] Blocks and Optimization
[=] Advanced Blocks
Q Partlll - Design Considerations
[=] Abstract Classes
[=] Elements of Design
[=] Elementary Design Issues
[=] Selected Idioms
[=] Selected Design Patterns
Software Composition Group 18

Object-Oriented Design with Smalltalk

Structure of this Lecture (lII)

Q Part IV - Comparisons

=
=

Comparing C++, Java and Smalltalk
Smalltalk for the Java Programmer
Smalltalk for the Ada Programmer

O References

Object-Oriented Design with Smalltalk

Web Resources

(] [0 [(] [£ (] [0] () 0 (] ()] o] (]

Local Website
Steph’s Website
Cincom Smalltalk
Squeak

Dolphin Smalltalk
STIC

VisualWorks Wiki:

VisualAge Wiki:
Local Wiki:
Newsgroup:
ESUG

BSUG

GSUG

SSUG

Object-Oriented Design with Smalltalk

Introduction

Software Composition Group

http://www.iam.unibe.ch/~scg/Resources/Smalltalk/

1.9

Introduction

http://www.iam.unibe.ch/~ducasse/PubHTML/Smalltalk.html

http://www.cincom.com
http://www.squeak.org
http://www.object-arts.com/Home.htm
http://www.stic.org
http://www.smalltalk.org
http://www.goodstart.com/index.shtml
http://st-www.cs.uiuc.edu/
http://brain.cs.uiuc.edu/VisualWorks/
http://brain.cs.uiuc.edu/VisualAge/
http://scgwiki.iam.unibe.ch:8080/SmalltalkWiki/
comp.lang.smalltalk
http://www.esug.org
http://www.bsug.org
http://www.gsug.org
http://www.iam.unibe.ch/~ssug/

Software Composition Group

About this lecture...

Q If you have problems or questions, ask!
Ignorance is not always bliss...

=

O Grab one of the Smalltalk distributions and play with it.
[Z] We suggest:

VisualWorks 5i from www.cincom.com or http://brain.cs.uiuc.edu/
Squeak from www.squeak.org

U Do the exercises!!!

Q Authors:

[=] Stéphane Ducasse

1.10

Introduction

[=] Juan Carlos Cruz, Michele Lanza, Oscar Nierstrasz, Matthias Rieger

Software Composition Group

111

Object-Oriented Design with Smalltalk - a Pure Object Language and its environment

Part | - Basic Smalltalk Elements

| oy oy o

History and Concepts

Quick Overview of the Environment

A Taste of Smalltalk

Smalltalk Syntax in a Nutshell

Syntax and Messages

Dealing with Classes

Basic Objects, Conditionals and Loops
Numbers

Exceptions

Streams

Software Composition Group

Object-Oriented Design with Smalltalk History and Concepts

2. History and Concepts

O History
O Context
O Run-Time Architecture
Q Concepts
Software Composition Group 2.13
Object-Oriented Design with Smalltalk History and Concepts

Smalltalk - A State of Mind

O A small and uniform language

[=] Syntax fits on one sheet of paper
O A large set of reusable classes

[=] Basic Data Structures, GUI classes, Database Access, Internet, Graphics
O A set of powerful development tools

[=] Browsers, GUI Builders, Inspectors, Change Management Tools, Crash
Recovery Tools, Project Management Tools

O A run-time environment based on virtual machine technology
[=] Platform Independent
a Enwy
[=] Team Working Environment (releasing, versioning, deploying).

Software Composition Group 2.14

Object-Oriented Design with Smalltalk History and Concepts

Smalltalk - The Inspiration

"Making simple things very simple and complex things very possible."

Alan Kay
O Flex (Alan Kay, 1969)
O Lisp (Interpreter, Blocks, Garbage Collection)
O Turtle graphics (The Logo Project, Programming for Children)
O Direct Manipulation Interfaces (Sketchpad, Alan Sutherland, 1960)
O NLS, (Doug Engelbart, 1968), “the augmentation of human intellect”
QO Simula (Classes and Message Sending)
[=] Description of real Phenomenons by means of a specification language
-> modelling
0 Xerox PARC (Palo Alto Research Center)

[=] DynaBook: a Laptop Computer for Children

Software Composition Group 2.15

Object-Oriented Design with Smalltalk History and Concepts

The Precursor, The Innovator & The Visionary

O First to be based on Graphics
=] Multi-Windowing Environment (Overlapping Windows)
[=] Integrated Development Environment
-> Debugger, Compiler, Text Editor, Browser
[=] With a pointing Device
-> Yes, a Mouse
Ideas were taken over
[=] Apple Lisa, Mac
=] Microsoft Windows 1.0
Virtual Machine -> Platform independent
Garbage Collector -> Time for some real thinking...
Just in Time Compilation
Everything was there, the complete Source Code

O

oOooD

Software Composition Group 2.16

Object-Oriented Design with Smalltalk History and Concepts

The History
%FORTRAN

Ago60 | | [copoL | | Lisp |-

PL/1

1980 |Small

Software Composition Group 2.17

Object-Oriented Design with Smalltalk History and Concepts

The History (1)

Q Internal
[=] 1972 - First Interpreter -> More Agents than Objects (every object can
specify its own syntax)
[=] 1976 - Redesign -> A Hierarchy of classes with a Unique Root, Fixed
Syntax, Compact Byte Code, Contexts, Processes, Semaphores,

Browsers, GUI Library. Projects: ThingLab, Visual Programming
Environment Programming by Rehearsal.

[=] 1978 - NoteTaker Project, Experimentation with 8086 Microprocessor with
only 256 KB RAM.

Q External
[=] 1980 - Smalltalk-80 (ASCII, cleaning primitives for portability, Metaclasses,

Blocks as first-class Objects, MVC). Projects: Gallery Editor (mixing text,
painting and animations) + Alternate Reality Kit (physics simulation)

1981 - Books + 4 external virtual machines (Dec, Apple, HP and Tektronix)
-> GC by generation scavenging

1988 - Creation of Parc Place Systems

1992 - ANSI Draft

1995 - New Smalltalk implementations (MT, Dolphin, Squeak)
2000 - Things are moving again...

(o [B [

Software Composition Group 2.18

Object-Oriented Design with Smalltalk History and Concepts

Smalltalk’s Concepts

O Everything is an object (humbers, files, editors, compilers, points, tools,
boolean).
U Objects communicate only by message passing.
O Each object is an instance of one class (which is also an object).
O A class defines the structure and the behaviour of its instances.
O Each object possesses its own set of values.
O Dynamic Typing.
Q Purely based on late binding.
O Programming in Smalltalk: Reading and writing an interactive Book
[=] Reading the interface of the classes: (table of contents of a book)
[=] Understanding the way the classes are implemented: (reading the
chapters)
[=] Extending and changing the contents of the system: (writing into the book)
Software Composition Group 2.19
Object-Oriented Design with Smalltalk History and Concepts

Messages, Methods and Protocols

O Message: What behaviour to perform
aWrkstation accept: aPacket

O Method: How to carry out the behaviour
accept: aPacket
(aPacket isAddressedTo: self)
ifTrue:[Transcript show 'A packet is accepted by the Wirkstation ', self name asString]
i fFal se: [super accept: aPacket]

O Protocol: The complete set of messages an object responds to:

#nane #initialize #hasNext Node #connectedTo: #nane: #nextNode #nextNode: #printOn: #sinple-
PrintString #typeNane #accept: #send:

O Often grouped into categories:

accessi ng #nanme

initialize-release #initialize

testing #hasNext Node

connecti on #connect edTo:

private #nane: #next Node #next Node:

printing #printOn: #sinplePrintString #typeNane

send-recei ve #accept: #send:

Software Composition Group 2.20

Object-Oriented Design with Smalltalk History and Concepts

Objects, Classes and Metaclasses

Every object is an instance of a class

A class specifies the structure and the behaviour of all its instances
Instances of a class share the same behaviour and have a specific state
Classes are objects that create other instances

Metaclasses are classes that create classes as instances

Metaclasses describe class behaviour and state (subclasses, method
dictionary, instance variables...)

ooooo0ooQ

Software Composition Group 221

Object-Oriented Design with Smalltalk History and Conc

Smalltalk Run-Time Architecture

Q Virtual Machine + Image + Changes and Sources

All the objects of the system
at amoment in time

I\ byte-code interpreter:
he virtual machine interpretes the image

IMAGEL.IM
IMAGEL.CHA
/

MAGE2.IM Stand:‘rd SOURCES
IMAGE2.CHA <<
Shared by everybody

One per user
The byte-code is in fact translated into native code by a just-in-time compiler.

0D

this is just for the development. Normally they are removed for deployment.

epts

The source and the changes are not necessary for interpreting the byte-code,

O An application can be delivered as some byte-code files that will be executed

with a VM. The development image is stripped to remove the unnecessary
development components.

Software Composition Group 2.22

Object-Oriented Design with Smalltalk History and Conc

VisualWorks Smalltalk Run-Time Architecture

rTT- T~ Ll
I I

Sources

| Shared by everybody

UV b \
VM
Image | ——={Change Image | — = Change
byt all the objects ~ Source of all the objects

yte code of f
currently in memory currently in memory —~

—

User 2

-

[
\ o (Parcel(pc)

piece of image (byte code) piece of source (text)

O Parcels reproduce the schema of the image and change:

*.pcl are the byte code, *.pst are the source code
Q Parcels allows for fast atomic loading/unloading and prerequisite parcels
O Good for dynamic loading and source code management

epts

Software Composition Group

2.23

Object-Oriented Design with Smalltalk

Quick Overview of the Environment

3. Quick Overview of the Environment

The following screenshots are taken from VisualWorks 2.5.

In the meantime VisualWorks has reached version 7.0.

Several other Smalltalk dialects have state-of-the-art GUIs, but a nice GUI is not the

point:

Try to look beyond the Facade...

Software Composition Group

Object-Oriented Design with Smalltalk

Mouse Semantics

Operate

Yellow
Select |

v X

Software Composition Group

Object-Oriented Design with Smalltalk

3.24

Quick Overview of the Environment

Window

Blue

3.25

Quick Overview of the Environment

Eile Browse Tools |Browse Tools Cha [5G Eile List
Save As__. @ All Classes File Editor___
Perm Save As... Class Named... [=] workspace

Perm Undo As... Parcel List

BResources

Collect Garbage
Collect All Garbage || Peferences To

X‘} Hew Canvas

= Implementors OF... Palette
ST 'y Canvas Tool
Exit ¥isualWorks... Image Editor

Changes Database

Open Change List

File Out Changes...
Empty Changes...
Changed Methods
Inspect ChangeSet

Open Project K
Exit Project

_—

Menu Editor
\ <
Zal UisW

File Browse Tools Chandes Database

Window Help

BlalE

: Pai pPhElor class<dlection access A

Opens afile clerBlodl<compari
selector

prepared.im crgabed ab AugusiNg1, 1997 94417 am

Copying prepalzd cha to test.ohid . done =

Opens a Sy Browser ens a canvas editor
Opens aworkspace
Software Composition Group 3.26

Object-Oriented Design with Smalltalk

Class MenuBar

pens a ClassBrowser

Quick Overview of the Environment

Opens a HierarchyBrowser

receiver. Answer newlbjsct”

iFTrue: [self mal

fi =firstindesx - 1.

self basicAl: firstindex put: newOkbject.

file outas.__ {
hardcopy rect () . /

Col | ection ())
spawn Sequenceabl eCol | ection () ¢
FHPED U . OrderedCol | ection (' firstlndex' 'lastlndex')
hierarchy = Li nkedOr der edCol | ection (' backup')
definition ~— SortedCol | ection ('sortBlock')
comment \ T
instvar refe... —. X&qows the class definition and the class comments
class yar refs.. — — »
class refs \; firstindex

. . irst:

move to... Ditto for class variables OrderedCollection makeRoomatLast g|
sramsas. and classreferences addFirst: newObject
SMOYE..- "did newObiect to the beginning of the N

keRoomALFirst.

|

Software Composition Group

Object-Oriented Design with Smalltalk

Method MenuBar

Opens a method browser

I ﬁile out as..
ardcopy

spawn

senders
implementors
messages... \

\

To know theYmplementors
of amethod sent in the
current method body

move to___
remoye...

3.27

Quick Overview of the Environment

Senders of #add:

HelpPage addSeedlso:
HigrarchyBrovser addClassrecursivelyTo: 1

keys
"Angwer a set containing the

|aSet|
aSel = ldentitySet nevw: self

“aset

self keysDo: [key | aSet R key].

receiver's keys”

size.

<|

Implementors of ad

Collection add: "i
add: newObject
“Incluge newObject as ong of the receiver’s elements.
Angwer newObject.”
“gelf add: newObject withCccurrences: 1
|

Software Composition Group

Object-Oriented Design with Smalltalk

3.28

Quick Overview of the Environment

Cross Reference Facilities

Browse Tocols Cha

@ All Classes

l Class Hamed. ..

1

Besources

References To...
Implementors OF...

Launcher

file cut as...
hardcopy

spawn

spawn hierarchy

hierarchy
definition
comment

T InSL ¥ar rers..
class var refs__.
class refs

moye bo__.

rename as...

emoye...

I fle out as...
ardcopy
spawn

senders
implementors
messages

moye to___
remove...

Software Composition Group

3.29

Object-Oriented Design with Smalltalk

Filing Out

Quick Overview of the Environment

file outas... file out as... file out as... I Ele outas...
hardcopy hardcopy hardcopy ardcopy
spawn spayrn spawn spawn
add... spawn hierarchy | "= qa senders
rename as... hierarchy Xrename as... implementors
remove... definition remove .. messages. ..
update - editall move to._.
edit all inst var refs... find method. .. remove. .. Changes Database
Open Change List
pfind class... classvarre - | protocol method e 9
class refs File Out Changes__.
movye to.__ Empty Changes...
category rename as... Changed Methods
emoye ... Inspect Change Set
| Open Project A
class Exit Project
Browser project
Software Composition Group 3.30

Object-Oriented Design with Smalltalk

Hierarchy Browser

Quick Overview of the Environ

Hierarchy Browser on: ArrayedCollection

@) instance

() class

’W convemni ~
Object private
Collection j testing

SequenceableCollection aceessing

ArrayedCollection

isLiteral

shorein:

printOn: aStream
"Append to the argument, aSream, the elemenl
enclosed by parentheses.”

| boahdany |
toohtany = aSream position + self maxPrint.
asiream nextPutall #".
selfdo: [element |
aSiream position = tooktany
iTrue:

“zelf]
element printion: aStream)]

b5 of the Array

X

[aSkeam nextPutsll: ' fmore).)’

Software Composition Group

Object-Oriented Design with Smalltalk

ment

3.31

Quick Overview of the Environment

Debugger
|

nhandled exception: Message not understood: #source

eclhdethod{Ob gehi==does NotUnderstand:]
. | ynore stack L
Test? class=-unkoundhethod —_—
Test2 class{Objech==perfonmiviethad:argurments proceed
Test2 class{Object)==perfonmbdethod: restart =
‘ step H send | senders
analysis: instyarName (ilasl o =
"Test2 new analysis replace. .. messages
“Test2 new analysis: 'swap’ W yndo erseam” skip to caret
Jem] k copy step
cut send
om = (CodeReaderSream in paste TwoByle Sring) at 2.
~compiler parse: cm rSiream
do it
print it
inspect &
accept |
cancel v
a Test? format instvartlame CodePeaderSirearm
idict]
span o
explain
hardcopy

Software Composition Group

3.32

Object-Oriented Design with Smalltalk

Crash Recovery

Changes Database

Quick Overview of the Environment

Change List

Open Change List >

File Out Changes...
Emply Changes...
Changed Method:
Inspect ChangeSet

L

Open Project
Exit Project

Project
enter |
FLO, *

™

| [show
[V show category

() comment Condition file inlout
(Initialize-re lease) Condition ermorBlock: {add)
{initialize-re lease) Condition typeblock etrorString: (acd) replay all +
{nitialize-release] Condiion wihBlock: (add) remove all
Condtinces () restore all
prF-Gond o P spawn all...
() dolt™ -
() Instvars for Condlion class forget
(Instance creation) Condition ¢lass canUnderstand:in: (add) "
instance creation) Condltion class definesClassarin (add) | FePIY selection
(remove selection
restore selection
definesinstyar: aString in:aClass 5
cel new spawn selection...
type: (Amray with: #definesinstyar with:aClass with:a conflicts -

block: [aClass alllnstyarhames includes: aString]
emorSiring: aClags printString , ' <17.does not >define<17s > ingtance variable ', aString

Changed Methods |
CharacterBlock betweenand J
=

Curser class dra
Methodustarowserclass openListBrowserOn:label.initialSelection e
Kt

Paragrap REEOr backwardwordiey. =
resetTheText =]
It

TextValue value: se i ket
initialSelection == nil
ifFalse: [tv = (buikder componentat #extyalue) widget
1y deselect.
by controller find: initialSelection
by display Selection: rue.
by selecthndS eroll]

Software Composition Group

Object-Oriented Design with Smalltalk

3.33

Quick Overview of the Environment

Condensing Changes

Change List

() cofnment Condition file infout + | [,
(initiz lize-release) Condition emrorBlock: (add) = D s
{initialize-release) Condition ype block:emorSiring: (add) replay all - [V show category
(initia lize- release) Condition thhEHock (add) remove all
0 PElTER R restore all |:|fi|e
I heckmg) ‘Condition: check (add) [type
{printiag-Sord spawn all... L
() dokt™-— - [[Jclass
(] instvars for Condition class forget [_] category
(mgiéggg grgztlgz) Condition class canlnderstand:in (a;:lgi()j replay selection [Clselector
e
remove selection vl [_]same

restore selection

definesinstyar: aShring in:aClass
“self new

bype: (Amay with: #definesinstyar with: aClass with: conflicts -
block: [aClass allinstYarMames includes: aSkring]
errorSiring: aClass printSiring , ' <1?does net =define<17s> instance variable ', aSking

spawn selection...

SourceFileManager new condenseChanges

Software Composition Group

Object-Oriented Design with Smalltalk

UIBuilder

3.34

Quick Overview of the Environment

|| Size as Default
[]LabelIs image

Drop Target

Canvas Tool on: A test Haenic
Edit Tools Layout Arrange Grid Look Special
EINRBRE! HED
Pale Install... Define... Browse... Open
OLD PRINTE
A test Properties Tool on: A test
o Action Button
Ba
A .
= Label: | Onmetoo | Details
:I Action: . ‘ | ¥alidation
| ‘ ‘ Notification
= N 1D:
(R Click on me Color
e [© [_| Be Default
g Position

| Apply ” Cancel ” Apply & Close

Prey Ne2

Software Composition Group

3.35

Object-Oriented Design with Smalltalk A Taste of Smalltalk

4. A Taste of Smalltalk

“Try not to care - Beginning Smalltalk programmers often have trouble because they

think they need to understand all the details of how a thing works before they can use it.
This means it takes quite a while before they can master Transcript show: ‘Hello World'.
One of the great leaps in OO is to be able to answer the question "How does this work?"

with "l don’t care™.

- Alan Knight, registered Guru
Two examples:
a “hello world”
O aLAN simulator
To give you an idea of:
Q the syntax
O the elementary objects and classes
O the environment
To provide the basis for all the lectures:
Q all the code examples,
O constructs,
Q design decisions, ...

Software Composition Group 4.36

Object-Oriented Design with Smalltalk A Taste of Smalltalk

Power & Simplicity: The Syntax on a PostCard

O From Ralph Johnson
exanpl eWt hNunber: x

“This is a small nmethod that illustrates every part of Smalltal k nmethod syntax
except primtives, which aren't very standard. It has unary, binary, and key
word nessages, declares argunents and tenporaries (but not block tenporaries),
accesses a global variable (but not and instance variable), uses literals (array,
character, synbol, string, integer, float), uses the pseudo variable true false,

nil, self, and super, and has sequence, assignnent, return and cascade. It has both
zero argurment and one argunent blocks. It doesn’t do anything useful, though”

Iyl

true & false not & (nil isNl) ifFalse: [self halt].

y 1= self size + super size.

#(%a #a 'a’ 1 1.0)
do: [:each | Transcript
show (each class nane);
show (each printString);
show * ‘J.
Ax <y

Software Composition Group 4.37

Object-Oriented Design with Smalltalk A Taste of Smalltalk

Some Conventions

O Code Transcript show ‘Hello world’
O Return Values
1+3->4
Node new -> aNode
Node new Prit -> a Wrkstation with nane: #pc connect edt o: #mac
O Method selector #add:
O Method scope conventions
[=] Instance Method defined in class Node:
Node>>accept: aPacket
[=] Class Method defined in class Node (in the class of the the class Node)
Node cl ass>>wi t hNarre: aSynbol
O aSonet hi ng is an instance of the class Sonet hi ng
Q Dolt, Printlt, Inspectlt and Accept
[=] Accept = Compile: Accept a method or a class definition
[=] Dolt = send a message to an object
[=] Printlt = send a message to an object + print the result (#pri nt On:)
[=]1 Inspectlt = send a message to an object + inspect the result (#i nspect)

Software Composition Group 4.38

Object-Oriented Design with Smalltalk A Taste of Smalltalk

Hello World

EO=— Workspace =B LAN
Transcrpt show: 'Hello File Browse Tools Changes Database Window
world'; or, Help

B&E R

Hello world

Transcript show ‘hello world

O During implementation, we can dynamically ask the interpreter to evaluate an
expression. To evaluate an expression, select it and with the middle mouse
button apply dolt.

O Transcri pt is aspecial object that is a kind of standard output.
O Itrefersto a Text Col | ect or instance associated with the launcher.

Software Composition Group 4.39

Object-Oriented Design with Smalltalk A Taste of Smalltalk

Everything is an Object

The launcher is an object.

The icons are objects.

The workspace is an object.

The window is an object: it is an instance of Appl i cat i onW ndow.
The text editor is an object: it is an instance of Par agr aphEdi t or .
The scrollbars are objects too.

“hell o word’ is an object: itisaStri ng instance of St ri ng.
#show: is a Synbol thatis also an object.

The mouse is an object.

The parser is an object: instance of Par ser .

The compiler is also an object: instance of Conpi | er .

The process scheduler is also an object.

The garbage collector is an object: instance of Menor yCbj ect .

| I o Ay

O

Smalltalk is a consistent, uniform world written in itself. You can learn how it
is implemented, you can extend it or even modify it. AlImost all the code is
available and readable -> Book concept.

Software Composition Group 4.40

Object-Oriented Design with Smalltalk A Taste of Smalltalk

Objects communicate via Messages

Transcript show. ‘hello world’

0 The above expression is a message
— the object Transcri pt is the receiver of the message
— the selector of the message is #show.
— one argument: a string ‘ hel | o worl d’

Q Transcri pt is aglobal variable (starts with an uppercase letter) that refers to
the Launcher’s report part.

O Vocabulary Concerns: Message passing or sending a message is equivalent to
[=] invoking a method in Java or C++
[=] calling a procedure in procedural languages
[=] applying a function in functional languages

— of course the last two points must be considered under the light of
polymorphism

Software Composition Group 4.41

Object-Oriented Design with Smalltalk A Taste of Smalltalk

A LAN Simulator

O A LAN contains nodes, workstations, printers, file servers. Packets are sent in
a LAN and each node treats them differently.

=

mac
Ipr node3
—_— node2
[|
nodel pc

Software Composition Group 4.42

Object-Oriented Design with Smalltalk A Taste of Smalltalk

Three Kinds of Objects

Node and its subclasses represent the entities that are connected to form a LAN.
Packet represents the information that flows between Nodes.
Net wor kManager manages how the nodes are connected.

NetworkManager
declareNode: aNode
undeclareNode: aNode
connectNodes: anArrayOfAddressees namel}\lode nextNode
Q accept: aPacket
send: aPacket
hasNextNode
Packet
addressee Printer Workstation
contents print: aPacket originate: aPacket
originator accept: aPacket accept: aPacket
isSentBy: aNode
isAddressedTo: aNode

Software Composition Group 4.43

Object-Oriented Design with Smalltalk A Taste of Smalltalk

Interactions Between Nodes

nodePrinter aPacket nodel

accept: aPacket
isAddressedTo: nodePrinter

[false]

send: aPacket
accept: aPacket

iy U i

Software Composition Group 4.44

Object-Oriented Design with Smalltalk

Node and Packet Creation

| macNode pcNode nodel printerNode node2 node3 packet |

“nodes definition"

macNode : = Workstation withNane: #nmac.
pcNode : = Wrkstation w thName: #pc.
nodel := Node withName: #nodel.

node2 : = Node withNane: #node2.

node3 : = Node withNane: #node2.
printerNode : = Printer withName: #l pr.
"Node connecti ons"

macNode next Node: nodel.

nodel next Node: pcNode.

pcNode next Node: node2.

node3 next Node: pri nter Node.

| pr next Node: nacNode.

"packet creation”

A Taste of Smalltalk

packet := Packet send: 'This packet travelled to the printer' to: #l pr.

Software Composition Group

Object-Oriented Design with Smalltalk

Objects communicate via Messages (II)

O Message:1+2
- receiver : 1 (an instance of Smallinteger)
- selector: #+
- arguments: 2
O Message: Ipr nextNode: macNode
- receiver Ipr (an instance of LanPrinter)
- selector: #nextNode:
- arguments: macNode (an instance of Workstation)

4.45

A Taste of Smalltalk

O Message: Packet send: ‘'This packet travelled to the printer' to: #lpr

- receiver: Packet (a class)

- selector: #send:to:

- arguments: ‘This packet travelled to the printer' and #lpr
O Message: Workstation withName: #mac

- receiver: Workstation (a class)

- selector: #withName:

- arguments: #mac

Software Composition Group

Object-Oriented Design with Smalltalk

The Definition of a LAN

O To simplify the creation and the manipulation of a LAN:

| aLan |
alLan : = Networ kManager new.

4.46

A Taste of Smalltalk

alLan creat eAndDecl ar eNodesFr omAddr esses: #(nodel node2 node3) of Ki nd: Node.
alLan creat eAndDecl ar eNodesFr omAddr esses: #(mac pc) of Kind: Wrkstati on.

alLan creat eAndDecl ar eNodesFr omAddr esses: #(lpr) ofKind: LanPrinter.

alLan connect NodesFr omAddr esses: #(mac nodel pc node2 node3 | pr)

d Now we can query the LAN to get some nodes:

alLan findNodeWt hAddress: #nmac

Software Composition Group

4.47

Object-Oriented Design with Smalltalk A Taste of Smalltalk

Transmitting a Packet

| aLan packet macNode|

macNode : = alan findNodeWt hAddress: #nac.
packet := Packet send: 'This packet travelled to the printer' to: # pr.
macNode origi nate: packet.

-> mac sends a packet to pc

-> pc sends a packet to nodel
-> nodel sends a packet to node2
-> node2 sends a packet to node3
-> node3 sends a packet to |pr
->lpr is printing

-> this packet travelled to |pr

Software Composition Group 4.48

Object-Oriented Design with Smalltalk A Taste of Smalltalk

How to Define a Class
Q Fill the template:

NaneCf Super cl ass subcl ass: #NameCOf d ass
instanceVari abl eNanes: 'instVar Nanel i nst Var Nane2'
cl assVari abl eNanes: ' d assVar Nanel O assVar Nane2'

pool Di ctionari es:
category: 'LAN

O For example to create the class Packet
Chj ect subcl ass: #Packet

i nstanceVari abl eNanes: 'addressee originator contents
cl assVari abl eNanes: *'
pool D ctionari es:

category: 'LAN

Software Composition Group 4.49

Object-Oriented Design with Smalltalk A Taste of Smalltalk

How to Define a Method

O Follow the template:
message sel ector and argunent nanes

"coment stating purpose of nmessage"

| tenporary variable nanes |
statements

LanPri nt er >>accept: thePacket
"1f the packet is addressed to me, print it. Qherw se just behave like a normal node."
(thePacket isAddressedTo: self)

ifTrue: [self print: thePacket]

ifFal se: [super accept: thePacket]

O InJava we would write
voi d accept (t hePacket Packet)
I*1f the packet is addressed to ne, print it. Qherw se just behave |ike a normal node.*/
if (thePacket.isAddressedTo(this)){
this.print(thePacket)}
el se super. accept (t hePacket

Software Composition Group 4.50

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk Syntax in a Nutshell

5. Smalltalk Syntax in a Nutshell

Q From Ralph Johnson:
exanpl eWt hNunber: x

“This is a snmall nethod that illustrates every part of a Smalltalk nethod syntax
except primtives, which aren't very standard. It has unary, binary, and key

word nessages, declares argunents and tenporaries (but not block tenporaries),
accesses a global variable (but not an instance variable), uses literals (array,
character, synbol, string, integer, float), uses the pseudo variables true, false,

nil, self, and super, and has sequence, assignnent, return and cascade. It has both
zero argurment and one argunent blocks. It doesn’t do anything useful, though.”

Iyl

true & false not & (nil isNl) ifFalse: [self halt].

y 1= self size + super size.

#($a #a ‘a’ 1 1.0)
do: [:each | Transcript
show. (each class nane);
show (each printString);
show * ‘].
Nx o<y

Software Composition Group 5.51

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk Syntax in a Nutshell

Language Constructs

n return
“ comments
symbol or array
‘ string
[1] block or byte array

separator and not terminator (or namespace accessin V\W5i)
; cascade (sending several messages to the same instance)
| local or block variable
1= assignment
$ character
end of selector name
e r number exponent or radix

! file element separator

<primtive: ...>|forVM primitivecalls

Software Composition Group 5.52

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk Syntax in a Nutshell

Syntax in a Nutshell

comment: “a comrent”

character: | $¢c $h $a $r $a $c $t $e $r $s $# $@
string: ‘a nice string’ ‘lulu ‘“I’’idiot’
symbol: #mac #+

array: #(1 2 3 (1 3) %a 4)

byte array: #[1 2 3]

integer: 1, 2ri1o01

real: 1.5, 6.03e-34,4, 2. 4e7

float: 1/ 33

boolean: true, false

point: 10@20

O Note that @ is not an element of the syntax, but just a message sent to a
number. This is the same for /, bitShift, ifTrue:, do: ...

Software Composition Group 5.53

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk Syntax in a Nutshell

Syntax in a Nutshell (II)

O assigment:var := aVal ue
O block: [:var [|tnp] expr...]

tenporary vari abl e: |[tmp|
bl ock vari abl e: var
unary nessage: receiver selector
bi nary nessage: receiver selector argument
keyword based: receiver keywordl: argl keyword2: arg2...
cascade: message ; selector ...
separ at or: message . message
result: n
par ent hesi s: (...)
Software Composition Group 5.54
Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk Syntax in a Nutshell

Messages instead of a predefined Syntax

4 InJava, C, C++, Ada constructs like >>, if, for, etc. are hardcoded into the
grammar

O In Smalltalk there are just messages defined on objects

(>>) bitShift: is just a message sent to numbers
10 bitshift: 2
(if) ifTrue: is just messages sent to a boolean
(1> x) ifTrue:
(for) do:, to:do: are just messages to collections or numbers
#(a b ¢ d) do: [:each | Transcript show each ; cr]
1to: 10 do: [:i | Transcript show. each printString; cr]

-> Minimal parsing
-> Language is extensible

Software Composition Group 5.55

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk Syntax in a Nutshell

Class and Method Definition Revisited

Q Class Definition: A message sent to another class
Obj ect subcl ass: #Node

i nstanceVari abl eNanes: 'nanme next Node'

cl assVari abl eNanes:
pool Dictionaries: "'
category: 'LAN
[=] Instance variables are instance-based protected
O Method: Normally done in a browser or (by directly invoking the compiler)
Node>>accept: thePacket

"If the packet is addressed to ne, print it.
El se just behave like a nornmal node"

(thePacket isAddressedTo: self)
ifTrue: [self print: thePacket]
i fFal se: [super accept: thePacket]
[=] Methods are public

Software Composition Group 5.56

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk Syntax in a Nutshell

Instance Creation

a 1, ‘abc’

U Basic class creation messages are
new, new., basi cNew, basi cNew

Packet new

O Class specific message creation
Wor kst ati on w t hNane: #mac

Software Composition Group 5.57

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

6. Syntax and Messages

O The syntax of Smalltalk is simple and uniform, but it can look strange at first
sight!

— Literals: numbers, strings, arrays....
— Variable names

— Pseudo-variables
— Assignments, returns
— Message Expressions
— Block expressions
O Read it as a non-computer-literate person:
| bunny |
bunny := Actor fronFile: ‘bunny.vrni’.
bunny head doEachFrane:
[bunny head

poi nt At: (canera transfornfcreenPoi nt ToScenePoi nt: (Sensor nousePoi nt) using: bunny)
duration: canera rightNow]

Software Composition Group 6.58

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Literals, an Overview

Q Numbers:
[=] Smallinteger, Integer,
4, 2r100 (4 in base 2),3r1l1 (4 in base 3), 1232
[=] Fraction, Float, Double
3/4, 2.4e7, 0.75d
O Characters:
$F, $Q $U $E SN ST $i SN
O Unprintable characters:
Character space, Character tab, Character cr
d Symbols:

#cl ass #nmac #at:put: #+ #accept:

Q Strings:
#mac asString -> ' mac'
12 printString -> '12'
' This packet travelled around to the printer' 'I'"idiot'
String with: $A
[=] To introduce a single quote inside a string, just double it.

Software Composition Group 6.59

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Literals, an Overview (II)

O Arrays:
#(123) #('lulu' (12 3)) #'lulu #1 2 3))
#(mac nodel pc node2 node3 |pr) an array of synbols.
Wien one prints it it shows #(#mac #nodel #pc #node2 #node3 #l pr)
[=] Byte Array:
#[1 2 255]
Q Comments:

"This is a comment”

[=] A comment can span several lines. Moreover, avoid putting a space
between the “ and the first letter. When there is no space, the system helps
you to select a commented expression. You just go after the “ character
and double click on it: the entire commented expression is selected. After
that you can printlt or dolt, etc.

Software Composition Group 6.60

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Literals, the Arrays

O Heterogenous
#('lulu (12 3)) Prit->#("lulu #(1 2 3))
#('lulu 1.22 1) Prit-> #('lulu 1.22 1)
O An array of symbols:
#(cal vin hobbes suzie) Prlt-> #(#cal vin #hobbes #suzie)
O An array of strings:
#('calvin' 'hobbes' 'suzie') Prit-> #('calvin' 'hobbes' 'suzie')
O Only the creation time differs between literal arrays and arrays. Literal arrays
are known at compile time, arrays at run-time.
#(Packet new) an array with two synbols and not an instance of Packet
Array new at: 1 put: (Packet new) is an array with one elenment an instance of Packet
Q Literal or not
#(...) considers elenments as literals and fal se true and nil
#(1 +2) Prit-> #(1 #+ 2)
Array with: (1 +2) Prit-> #(3)

Software Composition Group 6.61

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Literals, the Arrays (1)

O Implementation dependent technical note: Literal arrays may only contain literal
objects, f al se,true andni |

‘mac' asArray is an array of character

(#(false true nil) at: 2)
ifTrue:[Transcript show ‘this is really true']
ifFalse: [1/0]

Q Literature (the Goldberg book) defines a literal as an object whose value always
refers to the same object. This is a first approximation to present the concept.
However, if we examine literals according to this principle, this is false in
VisualWorks (VisualAge has a safer definition.)

O Other Literature defines literals as numbers, characters, strings of characters,
arrays, symbols, and two strings, floats , arrays, but they do not refer (hopefully)
to the same object.

Q In fact literals are objects created at compile-time or even already exist in the
system and are stored into the compiled method literal frame. A compiled
method is an object that holds the bytecode translation of the source code. The
literal frame is part of a compiled method that stores the literals used by the
methods. To see it do: Point inspect ->methodDict-> aCompiledMethod

Software Composition Group 6.62

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Literals, the Arrays (111

O The following example illustrates the difference between a literal array and a
newly created instance of Array created via Array new:. Let us define the
following method:

Snal | | nt eger >>nil

| anArray|

anArray := #(nil).

(anArray at: 1) isNl ifTrue:[Transcript show ‘Put 1';cr. anArray at: 1 put: 1.]

O 1 mlwillonly display the message Put 1 once. Because the array #(nil) is stored
into the literal frame of the method and the #at:put: message modified the
compiled method itself.

Smal | | nt eger >>n

| anArray|

anArray := Array new. 1.

(anArray at: 1) isNll ifTrue:[Transcript show ‘Put 1';cr. anArray at: 1 put: 1]

O 1 m2 will always display the message Put 1 because in that case the array is
always created at run-time. Therefore it is not detected as a literal at compile-
time and not stored into the literal frame of the compiled method. You can find
this infomation yourself by defining these methods on a class, inspecting the
class and its method dictionary and then the corresponding methods.

Software Composition Group 6.63

Object-Oriented Design with Smalltalk a Pure OO Language

Literals, the Arrays (1V)

Q

Object-Oriented Design with Smalltalk a Pure OO Language

This internal representation of method objects has led to the following idioms to
prevent unwanted side effects :

[=] Never give direct access to a literal array but only provide a copy.
For example:
ar
A #(100@00 200@00) copy

Syntax and Messages

Software Composition Group 6.64

Symbols vs. Strings

a
a
a

Object-Oriented Design with Smalltalk a Pure OO Language

Symbols are used as method selectors, unique keys for dictionaries
A symbol is a read-only object, strings are mutable objects
A symbol is unique, strings are not

#calvin == #calvin Prit-> true

‘calvin' == ‘calvin’ Prit-> false

#cal vin, #zeBest Prlt-> 'cal vinzeBest"'

Symbols are good candidates for identity based dictionaries

(IdentityDictionary)

[=] Hint: Comparing strings is slower then comparing symbols by a factor of 5
to 10. However, converting a string to a symbol is more than 100 times
more expensive.

Syntax and Messages

Software Composition Group 6.65

Variables Overview

a
a
a

GobalVariable

Maintains a reference to an object
Dynamically typed and can reference different types of objects
Shared (starting with uppercase) or private (starting with lowercase)

variable

s
Loamedt| Lisdecea| |y tiociremporangfl | [method |

Syntax and Messages

Software Composition Group 6.66

Object-Oriented Design with Smalltalk a Pure OO Language

Temporary Variables

u]
Qa

Object-Oriented Design with Smalltalk a Pure OO Language

To hold temporary values during evaluation (method execution)
Can be accessed by the expressions composing the method body.

| macl pc nodel printer nmac2 packet |

Syntax and Messages

[=] Hint: Avoid using the same name for a temporary variable and a method

argument, an instance variable or another temporary variable or block
temporary. Your code will be more portable. Do not write:
ad ass>>printOn: aStream

| aStreani

[=] Instead, write:
ad ass>>printOn: aStream
| anot her St r eanj

[=] Hint: Avoid using the same temporary variable for referencing two different

objects

Software Composition Group

Assignments

6.67

Syntax and Messages

O An Assignment is not done by message passing. It is one of the few syntactic

Q

Object-Oriented Design with Smalltalk a Pure OO Language

elements of Smalltalk.

variabl e : = aVal ue
three : = 3 raisedTo: 1
variablel := variabl e2 : = aVal ue

In Smalltalk, objects are manipulated via implicit pointers: everything is a
pointer. Take care when different variables point to the same object:

pl := p2 := 0@00
pl x: 100

pl Prit-> 100@00
p2 Prit-> 100@00

Software Composition Group

Method Arguments

a
a
a

Can be accessed by the expressions composing the method.
Exist during the execution of the defining method.
Method Name Example:
accept: aPacket
In C++ or Java:

void Printer::accept(aPacket Packet)

Method arguments cannot change their value within the method body.
[=] Invalid Example, assuming cont ent s is an instance variable:
contents: asString
aString := aString, 'FromLpr'. “concatenates two strings”
addresse := aString
[=] Valid Example
addressee: aString
addressee := aString , 'FromLpr'

6.68

Syntax and Messages

Software Composition Group

6.69

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Instance Variables

O Private to a particular instance (not to all the instances of a class like in C++).
O Can be accessed by all the methods of the defining class and its subclasses.

O Has the same lifetime as the object.

[=] Declaration
(bj ect subcl ass: #Node
instanceVari abl eNanes: ' nane next Node '

[=]1 Scope
Node>>set Nane: aSynbol next Node: aNode
nane : = aSynbol .
next Node : = aNode
[=] But preferably accessed using accessor methods

Node>>nane
“nane
Software Composition Group 6.70
Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Six pseudo-variables

O Smalltalk expressions make references to these variables, but cannot change

their values. They are hardwired into the compiler.

1. nil

[=] nothing, the value for the uninitialized variables. Unique instance of the
class Undef i nedObj ect

2. true
[=] unique instance of the class Tr ue
3. false

[=] unique instance of the class Fal se
[=] Hint: Don't use Fal se instead of f al se. f al se is the boolean value,

Fal se the class representing it. So, the first produces an error, the second

not:
Fal se ifFalse: [Transcript show °‘False’]

false ifFalse: [Transcript show ‘False']

Software Composition Group

6.71

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Six pseudo-variables (1)

Q The following variables can only be used in a method body.
4. self
[=]1 in the method body it refers to the receiver of a message.
5. super

[=] in the method body it refers also to the receiver of the message but its
semantics affects the lookup of the method. It starts the lookup in the

superclass of the class of the method where the super was used and NOT

in the superclass of the receiver
Print er Server>>accept: thePacket
"1f the packet is addressed to me, print it. Qherw se behave nornally."
(thePacket isAddressedTo: self)
ifTrue: [self print: thePacket]
ifFal se: [super accept: thePacket]
6. thisContext

[=] itrefers to the instance of Met hodCont ext that represents the context of
a method (receiver, sender, method, pc, stack). Specific to VisualWorks.

Software Composition Group

6.72

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Global Variables

O Always Capitalized
MWd obal Pi := 3.1415
O [Ifitis unknown, Smalltalk will ask you if you want to create a new global
Smal ltal k at: #Wd obal Pi put: 3.14
MWd obal Pi Prit-> 3.14
Snalltalk at: #MyQobal Pi Prit-> 3.14
Q Stored in the default environment: Snal | t al k (aSyst enDi cti onary)
O Accessible from everywhere, but it is not a good idea to use them; use a
classVariable (if shared within an hierarchy or a instance variable of a class)
instead
O To remove a global variable:
Smal | tal k renmoveKey: #MWQ@ obal
O Some predefined global variables:
Smal ltal k (classes + globals)

Undecl ared (aPool Dictionary of undeclared variabl es accessible fromthe conpiler)
Transcript (Systemtranscript)

Schedul edControl | ers (w ndow control |l ers)

Processor (a ProcessScheduler list of all the process)

Software Composition Group 6.73

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Three Kinds of Messages

O Unary Messages
2.4 inspect

nmacNode namre
O Binary Messages
1+2->3
(1+2) * (2+3) Prit-> 15
3*5Prit->15
O Keyword Messages
6 gcd: 24 Prit-> 6
pcNode next Node: node2
aLan connect NodesFr onAddr esses: #(nmac nodel pc node2 node3 | pr)
O A message is composed of:
— areceiver, always evaluated (1+2)
— aselector, never evaluated
— and a list possibly empty of arguments that are all evaluated (2+3)

O The receiver is linked with sel f in a method body.

Software Composition Group 6.74

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Unary Messages

aReceiver aSelector

node3 next Node -> pri nter Node

node3 nane -> #node3

1 class Prit-> Small | nteger

false not Prit-> true

Date today Prit-> Date today Septenber 19, 1997
Time now Prlt-> 1:22:20 pm

Doubl e pi Prit-> 3.1415926535898d

Software Composition Group 6.75

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Binary Messages

aReceiver aSelector anArgument

O Used for arithmetic, comparison and logical operations
O One or two characters taken from: + - / \ * ~ <> = @%| &! ? ,

1+ 2

2>=3
100@L00
‘the', 'best’

O Restriction:
— second character is never $-
— no mathematical precedence so take care
3+ 2* 10 -> 50
3+ (2* 10) -> 23

Software Composition Group 6.76

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Keyword Messages
receiver keywordl1: argumentl keyword2: argument?2 ...

Q In C-like languages it would be:
receiver.keywordlkeyword2...(argumentl typel, argument2, type2) : return-type

Wrkstation w thName: #Mac2

mac next Node: nodel

Packet send: ' This packet travelled around to the printer' to: # wl00
alLan creat eAndDecl ar eNodesFr onAddr esses: #(nodel node2 node3) of Ki nd: Node
1@ setx 3

#(1 2 3) at: 2 put: 25

1to: 10 -> (1 to: 10) anlnterval

Browser newOnd ass: Poi nt

Interval from1l to: 20 Prit-> (1 to: 20)

12 between: 10 and: 20 Prit-> true

x > 0 ifTrue:['positive'] ifFalse:['negative']

Software Composition Group 6.77

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Composition

69 cl ass inspect
(0@ extent: 100@00) bottonRi ght
O Precedence Rules:

— (E) > Unary-E > Binary-E > Keywords-E

— at same level, from the left to the right
2 + 3 squared -> 11
2 raisedTo: 3 + 2 -> 32
#(123) at: 1+1 put: 10 + 2 * 3 -> #(1 36 3)

[=] Hint: Use () when two keyword-based messages occur within a single
expression, otherwise the precedence order is fine.
x isNl ifTrue: [...]
[=] isNi|l isan unary message, so it is evaluated priortoi f Tr ue:
(x includes: 3) ifTrue: [...]
[=] i ncl udes: is akeyword-based message, it has the same precedence as

ifTrue:, so it should be evaluated prior to ifTrue: because the method
i ncludes:ifTrue: does not exist.

Software Composition Group 6.78

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Seguence

messagel.
message?2.
message3

Q . is a separator, not a terminator

| macNode pcNode nodel printer Node node2 node3 packet |
"nodes definition"

macNode : = Workstation withNane: #nac.
pcNode := Wrkstation wthName: #pc.
nodel := Node withName: #nodel.

node2 := Node withName: #node2.

node3 : = Node withNane: #node2.
Transcript cr.

Transcript show 1 printString.
Transcript cr.

Transcript show 2 printString

Software Composition Group

6.79

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Cascade
receiver selectorl [arg] ; selector2 [arg] ; ...

Transcript show 1 printString. Transcript show cr

Is equivalent to:
Transcript show 1 printString ; cr
O Important: the semantics of the cascade is to send all the messages in the
cascade to the receiver of the FIRST message involved in the cascade.
| wor kst |
workst := Wrkstation new
wor kst name: #nmac .
wor kst next Node: aNode
[=] This is equivalent to:
Wrkstation new nane: #mac ; nextNode: aNode
[=] Where nane: is sent to the newly created instance of workstation and
next Node: too.

[=1 Inthe following example the FIRST message involved in the cascade is the
first#add: and not#wi t h: . So all the messages will be sent to the result

of the parenthesised expression, the newly created instance of
anOrder edCol | ecti on

(OrderedCol l ection with: 1) add: 25; add: 35

Software Composition Group

6.80

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

yourself

O One problem: The following expression returns 35 and not the collection object.

(OrderedCol l ection with: 1) add: 25; add: 35 Prit-> 35

O Letus analyze a bit:
O deredCol | ecti on>>add: new(bj ect
"I nclude newtbj ect as one of the receiver's elenents. Answer new(bject."”
~sel f addLast: newbj ect

O deredCol | ecti on>>addLast: newChj ect
"Add newCbj ect to the end of the receiver. Answer new(hject.”
lastlndex = self basicSize ifTrue: [self nakeRoomAtLast].
lastlndex := lastlndex + 1.
self basicAt: lastlndex put: newCbject.
~newbj ect
[=] How can we reference the receiver of the cascade? By using yourself:
your sel f returns the receiver of the cascade.
(O deredCol l ection with: 1) add: 25; add: 35 ; yourself
-> OrderedCol | ection(1 25 35)

Software Composition Group

6.81

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Did you really understand vourself ?

O yourself returns the receiver of the cascade:
Wrkstati on new nane: #mac ; nextNode: aNode ; yoursel f
[=] Here the receiver of the cascade is a newly created instance
aWr kst at i on and not the class Wor kst ati on. The sel f inthe
your sel f method is linked to this instance (aWor kst at i on)
(O deredCol l ection with: 1) add: 25; add: 35 ; yourself
anQOr deredCol | ection(1) = sel f
O Soif you are that sure that you really understand yourself, what is the code of
yourself?
Qbj ect >>your sel f
N sel f
Software Composition Group 6.82
Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Blocks - Definition

a
a
a

A deferred sequence of actions
The Return value is the result of the last expression of the block
Similar to Lisp Lambda-Expressions, C functions, anonymous functions or
procedures
[:variablel :variable2 |
| bl ockTenporaryl bl ockTenporary?2 |
expressi onl.
...variablel ...]
Two blocks without arguments and temporary variables
Print er Server>>accept: thePacket
(thePacket isAddressedTo: self)
ifTrue: [self print: thePacket]
i fFal se: [super accept: thePacket]
A block with one argument and no temporary variable
Net wor kManager >>f i ndNodeW t hAddr ess: aSynbol
“return the first node having the address aSynbol "
~sel f detectNode: [:aNode| aNode name = aSynbol] ifMNone: [nil]

Software Composition Group 6.83

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Blocks - Evaluation

a

[....] value
or val ue:
or val ue: val ue:

or val ue: val ue: val ue:

o]

The value of a block is the value of its last statement, except if there is an explicit
return »

Blocks are first class objects.

They are created, passed as argument, stored into variables...
fet(x) =x "2 + x
fct(2)=6
fct (20) = 420

val ueWt hArgunents: anArray

| fet]
fet:=[:x | x* x +x].
fct value: 2 Prit-> 6
fct value: 20 Prit-> 420
fct Prit-> aBl ockd osure

Software Composition Group 6.84

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Blocks - Continued

|index bloc |

index := 0.

bloc := [index := index +1].
index := 3.

bloc value -> 4

I nt eger >>f actori al
"Answer the factorial of the receiver. Fail if the receiver is less than 0."

| top |

tmp 1= 1.

2 to: self do: [:i | tnp :=tnp * i].
Atnp

O For performance reasons, avoid referring to variables outside a block.

Software Composition Group 6.85
Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages
Primitives
O For optimization, if a primitive fails, the code following is executed.
I nteger>>@y

"Answer a new Point whose x value is the receiver and whose y value is the argunent."”

<primtive: 18>
APoint x: self y: vy

O The End of the Smalltalk World: We need some operations that are not defined
as methods on objects but direct calls on the underlying implementation
language (C, Assembler,...)

== an(bj ect

"Answer true if the receiver and the argunent are the sane object (have the sane
obj ect pointer) and fal se otherwise. Do not redefine the nmessage == in any
other class! No Lookup."

<primtive: 110>
self prinitiveFailed

+ - <> [===bitsShift:\\ bitAnd: bitQ: >= <= at: at:put: new new

Software Composition Group 6.86

Object-Oriented Design with Smalltalk a Pure OO Language Dealing with Classes

7. Dealing with Classes

O Class definition
O Method definition
O Inheritance semantics
Q Basic class instantiation
Software Composition Group 7.87
Object-Oriented Design with Smalltalk a Pure OO Language Dealing with Classes

Class Definition: The Class Packet

O Atemplate is proposed by the browser:
NaneCf Super cl ass subcl ass: #NaneO' d ass
i nstanceVari abl eNanes: ' instVar Nanel i nst Var Nane2'

cl assVari abl eNanes: ' O assVar Nanel O assVar Nane2'
pool Di ctionaries:
category: ' CategoryName'
Q Just fill this Template in:
(bj ect subcl ass: #Packet
i nstanceVari abl eNanmes: ' contents addressee originator '
cl assVari abl eNanes: ''
pool D ctionaries:
category: 'LAN Sinmul ation'
O Automatically a class named “Packet cl ass”is created. Packet is the
gnique instance of Packet cl ass. To see it, click on the class button in the
rowser

Software Composition Group 7.88

Object-Oriented Design with Smalltalk a Pure OO Language Dealing with Classes

Named Instance Variables

NaneCf Super cl ass subcl ass: #NaneOf d ass

i nstanceVari abl eNanes: 'instVar Nanel i nst Var Nane2'

Chj ect subcl ass: #Packet
instanceVari abl eNanes: 'contents addressee originator '

Begins with a lowercase letter

Explicitly declared: a list of instance variables

Name should be unique because of inheritance

Default value of instance variable is ni |

Private to the instance: instance based (vs. C++ class-based)

Can be accessed by all the methods of the class and its subclasses (instance
methods)

Instance variables cannot be accessed by class methods.
A client cannot directly access instance variables.
The clients must invoke accessor methods to access an instance variable.

OO0 OO0oDOOO0OD

Software Composition Group 7.89

Object-Oriented Design with Smalltalk a Pure OO Language Dealing with Classes

Method Definition

O Follow the template:

message sel ector and argunent nanes

"conment stating purpose of nmessage"

| tenporary variable nanes |
statenents
O Fill in the template. For example:
Packet >>def aul t Cont ent s
“returns the default contents of a Packet”
A ‘contents no specified

Wor kst ati on>>ori gi nate: aPacket
aPacket originator: self.
sel f send: aPacket
O How to invoke a method on the same object? Send the message to sel f
Packet >>i sAddr essedTo: aNode
“returns true if I'maddressed to the node aNode”
~ self addressee = aNode nane

Software Composition Group 7.90

Object-Oriented Design with Smalltalk a Pure OO Language Dealing with Classes

Accessing Instance Variables

O Using direct access for the methods of the class
Packet >>i sSent By: aNode
A originator = aNode
is equivalent to use accessors
Packet >>or i gi nat or

A originator

Packet >>i sSent By: aNode
~ self originator = aNode
O Get/set accessors for the class Packet:
Packet >>addr essee
" addressee

Packet >>addr essee: aSymbol
addressee : = aSynbol

[=] Hint: Do not directly access instance variables of a superclass from the
subclass methods. This way classes will not be strongly linked at the
structure level.

Software Composition Group 7.91

Object-Oriented Design with Smalltalk a Pure OO Language Dealing with Classes

Methods always return a Value

O Message = effect + return value
Q By default, a method returns sel f

O Inamethod body, the * expression returns the value of the expression as the
result of the method execution.

Node>>accept : thePacket
"Having received the packet, send it on. This is the default behavior."
sel f send: thePacket

This is equivalent to:

Node>>accept : thePacket
"Having received the packet, send it on. This is the default behavior."
sel f send: thePacket.
~sel f

O If we want to return the value returned by #send:

Node>>accept : thePacket
"Having received the packet, send it on. This is the default behavior."
~sel f send: thePacket.

Software Composition Group 7.92

Object-Oriented Design with Smalltalk a Pure OO Language

Dealing with Classes

Some Naming Conventions

O0o0Do

Object-Oriented Design with Smalltalk a Pure OO Language

Shared variables begin with an upper case letter
Private variables begin with a lower case letter
Use imperative verbs for methods performing an action like #openOn:

For accessors, use the same name as the instance variable accessed:
addr essee
~ addressee

addr essee: aSynbol

1= aSynbol

For predicate methods (returning a boolean) prefix the method with i s or has
isNil, isAddressedTo:, isSentBy:

For converting methods prefix the method with as

asString

addr essee

Software Composition Group 7.93

Dealing with Classes

Inheritance in Smalltalk

OO0 0OO0OD

Object-Oriented Design with Smalltalk a Pure OO Language

Single inheritance
Static for the instance variables.

At class creation time the instance variables are collected from the
superclasses and the class. No repetition of instance variables.

Dynamic for the methods.

Late binding (all virtual) methods are looked up at run-time depending on the
dynamic type of the receiver.

Software Composition Group 7.94

Dealing with Classes

Remember...
nodePrinter aPacket nodel
accept: aPacket
isAddressedTo: nodePrinter
-« — — —
[true]
Node nextNode
name
accept: aPacket
send: aPacket
hasNextNode [false]
Printer Workstation .
print: aPacket originate: aPacket send: aPacket
accept: aPacket accept: aPacket accept: aPacket
Software Composition Group 7.95

Object-Oriented Design with Smalltalk a Pure OO Language Dealing with Classes

Node

Chj ect subcl ass: #Node

instanceVari abl eNanes: ' name nextNode '

Node net hodsFor: *accessing’

Node net hodsFor: ‘printing

Node net hodsFor: *send-receive’

accept: aPacket

"Having recei ved the packet, send it on. This is the default behavior subclasses
wi |l probably override ne to do sonething special."

sel f hasNext Node ifTrue: [self send: aPacket]

send: aPacket
"Precondition: there is a next node. Send a packet to the next node."

sel f next Node accept: aPacket

Software Composition Group 7.96

Object-Oriented Design with Smalltalk a Pure OO Language Dealing with Classes

Workstation

Node subcl ass: #Wrkstation

i nstanceVari abl eNanes: "'

Node nethodsFor: ‘printing’
Node nethodsFor: *send-receive’

accept: aPacket
“when a workstation accepts a packet addressed to it, it prints sone trace on the transcript”
(aPacket isAddressedTo: self)
ifTrue:[Transcript show 'A packet is accepted by the Wrkstation ', self name asString]
ifFal se: [super accept: aPacket]

Node net hodsFor: *send-receive’
originate: aPacket

aPacket originator: self.
sel f send: aPacket

Software Composition Group 7.97

Object-Oriented Design with Smalltalk a Pure OO Language Dealing with Classes

Message Sending & Method Lookup

receiver selector args

U Sending a message is the same as sending a method (associated with the
selector and the arguments) to the receiver

O Looking up a method: When a message (receiver selector args) is sent, the

method corresponding to the message selector is looked up through the

inheritance chain.

The lookup starts in the class of the receiver.

If the method is defined in the class dictionary, it is returned.

Otherwise the search continues in the superclasses of the receiver's class. If no

method is found and there is no superclass to explore (class Obj ect), a new

method called #doesNot Under st and: is sent to the receiver, with a

representation of the initial message.

oDooQg

Software Composition Group 7.98

Object-Oriented Design with Smalltalk a Pure OO Language Dealing with Classes

Method Lookup Examples

Node nextNode

name
accept: aPacket
send: aPacket

hasNextNode

T“‘4£>44447

Printer Workstation
print: aPacket originate: aPacket
accept: aPacket accept: aPacket

nodel accept: aPacket
7. nodel is an instance of Node
8. accept: islooked up in the class Node
9. accept: isdefined in Node O lookup stops + method executed

macNode accept: aPacket
1. macNode is an instance of Wor kst at i on
2. accept: islooked up in the class Wor kst ati on
3. accept: isdefined in Node O lookup stops + method executed

Software Composition Group 7.99

Object-Oriented Design with Smalltalk a Pure OO Language Dealing with Classes

Method Lookup Examples (II)

macNode nane
1. macNode is an instance of Wor kst at i on.
2. nane: islooked up in the class Wor kst ati on
3. nane is not defined in Wr kst ati on O lookup continues in Node
4. nane is defined in Node O lookup stops + method executed

nodel print: aPacket
1. node is an instance of Node

2. print: islooked up in the class Node

3. print: isnotdefinedin Node O lookup continues in Obj ect

4. print: isnotdefinedin Cbj ect O lookup stops + exception

5. message: nodel doesNot Under stand: #(#print aPacket) is executed

6. Rjggel is an instance of Node so doesNot Under st and: is looked up in the class
e

7. doesNot Under st and: is not defined in Node O lookup continues in Qbj ect

8. doesNot Under st and: is defined in Cbj ect O lookup stops + method executed
(open a dialog box)

Software Composition Group 7.100

Object-Oriented Design with Smalltalk a Pure OO Language Dealing with Classes

Method Lookup Examples (1)

Object

-
doesNotUnderstand: aMessage| | |

| print: :
|
4 [! 6

Node ittt J
name
accept: aPacket I B
send: aPacket 2
hasNextNode |< — — —

4
nodel doesNotUnderstand: 1
#(print: aPacket)

nodell print: aPacW Z PZ

Software Composition Group 7.101

Object-Oriented Design with Smalltalk a Pure OO Language Dealing with Classes

How to Invoke Overridden Methods

OQ Send messages to super

[=] When a packet is not addressed to a workstation, we just want to pass the
packet to the next node, i.e., we want to perform the default behavior
defined by Node.

Wor kst at i on>>accept: aPacket

“when a workstation accepts a packet that is addressed to it,
it just prints some trace in the transcript”

(aPacket isAddressedTo: self)
ifTrue:[Transcript show 'Packet accepted by the Wrkstation ', self name asString]
ifFal se: [super accept: aPacket]

[=1 Hint: Do not send messages to super with different selectors than the
original one. It introduces implicit dependency between methods with
different names.

Software Composition Group 7.102

Object-Oriented Design with Smalltalk a Pure OO Language Dealing with Classes

The Semantics of super

O Like sel f, super is a pseudo-variable that refers to the receiver of the
message.

Q Itis used to invoke overridden methods.

O When using sel f, the lookup of the method begins in the class of the
receiver.

U When using super, the lookup of the method begins in the superclass of the
class of the method containing the super expression and NOT in the superclass
of the receiver class.

[=] This means, super causes the method lookup to begin searching in the
superclass of the class of the method containing super
Software Composition Group 7.103
Object-Oriented Design with Smalltalk a Pure OO Language Dealing with Classes

The Semantics of super (I

O Letus suppose the WRONG hypothesis: “The Node
semantics of super is to start the lookup of amethod | accept: aPacket
in the superclass of the receiver class”

agate accept: aPacket

1. agat e is aninstance of DuplexWorkstation. accept :
is looked up in the class DuplexWorkstation

2. accept :is not defined in DuplexWorkstation, so the
lookup continues in Workstation

3. accept:is defined in Workstation, so the lookup
stops, and the method is executed

4. Workst ati on>>accept : does a super accept :

5. Our hypothesis: super = start the lookup in the
superclass of the receiver class. The superclass of the agate
receiver class is Wor kst at i on

super accept: aPacket

DuplexWorkstation

<<instance of >>

[=] This will result in a loop, therefore the hypothesis is WRONG

Software Composition Group 7.104

Object-Oriented Design with Smalltalk a Pure OO Language Dealing with Classes

Object Instantiation

O Objects can be created by:
— Direct Instance creation:
(basi c) new new:
— Messages to instances that create other objects
— Class specific instantiation messages

Software Composition Group 7.105

Object-Oriented Design with Smalltalk a Pure OO Language Dealing with Classes

Instance Creation

O ad ass newbasi cNewreturns a newly and UNINITIALIZED instance
O deredCol | ection new -> OrderedCol l ection ()
Packet new -> aPacket

Packet new addressee: #nmac ; contents: ‘hello mac’

Q Instance variable values = nil
O #new /basi cNew: is used to specify the size of the created instance
Array new 4 -> #(nil nil nil nil)
O #new#new: can be specialized to define customized creation
O #basi cNew#basi cNew. should never be overridden
Q #newbasi cNewand new. /basi cNew: are class methods
U Messages to Instances that create Objects
1to: 6 (an interval)
i@ (a point)
(0@) extent: (100@L00) (a rectangle)
#lulu asString (a string)
1 printString (a string)
3 asFl oat (a float)
#(23 2 3 4) asSortedCol |l ection (a sortedCollection)
Software Composition Group 7.106
Object-Oriented Design with Smalltalk a Pure OO Language Dealing with Classes

Opening the Box

1to: 6 -> an Interval

Nunber >>t o: st op
"Answer an Interval fromthe receiver up to the argument, stop, with
each next el enent conputed by incrementing the previous one by 1."
Anterval from self to: stop by: 1

1 printString -> aString
Chj ect >>print String
"Answer a String whose characters are a description of the receiver."”
| aStream |
aStream:= WiteStreamon: (String new 16).
sel f printOn: aStream

~aStream contents

1@ -> aPoi nt

Nunber >>@y
"Answer a new Poi nt whose x value is the receiver and whose y value is the argunent.”
<primtive: 18>

APoint x: self y: y

Software Composition Group 7.107

Object-Oriented Design with Smalltalk a Pure OO Language Dealing with Classes

Class-specific Instantiation Messages

Array with: 1 with: "lulu

OrderedCol lection with: 1 with: 2 with: 3
Rectangl e fromJser -> 179@5 corner: 409@19
Browser browseAl | | npl enentorsCf: #at: put:
Packet send: ‘Hello nac’ to: #mac
Wrkstation w thName: #mac

Software Composition Group 7.108

Object-Oriented Design with Smalltalk a Pure OO Language Basic Objects, Conditionals and Loops

8. Basic Objects, Conditionals and Loops

Booleans
Basic Loops
Overview of the Collection hierarchy— more than 80 classes:

(Bag, Array, OrderedCol | ecti on, SortedCol | ecti on, Set,
Di ctionary...)

O Loops and Iteration abstractions
O Common object behavior

oooQd

Software Composition Group 8.109

Object-Oriented Design with Smalltalk a Pure OO Language Basic Objects, Conditionals and Loops

Boolean Objects

Q fal seandtrue are objects described by classes Bool ean, Tr ue and Fal se
O uniform, but optimized and inlined (macro expansion at compile time)
Q

Logical Comparisons &, |, xor:, not

aBool eanExpr essi on conpari son anot her Bool eanExpr essi on
(1 isZero) & false

O Lazy Logical operators
aBool eanExpr essi on and: andBl ock, aBool eanExpression or: orBl ock

andBl ock will only be valued if aBool eanExpr essi onistrue
or Bl ock will only be valued if aBool eanExpr essi onis f al se
false and: [1 error: 'crazy'] Prit-> false and not an error
O Conditionals

aBool ean ifTrue: aTrueBl ock ifFalse: aFal seBl ock
aBool ean ifFal se: aTrueBlock ifTrue: aFal seBl ock
aBool ean i fTrue: aTrueBl ock

aBool ean i f Fal se: aFal seBl ock

[=] Hint: Take care —t r ue is the boolean value and Tr ue is the class of
t r ue, its unigue instance! Why do conditional expressions use blocks?
Because, when a message is sent, the receiver and the arguments of the
message are evaluated. Blocks are necessary to avoid evaluating both
branches.

Software Composition Group 8.110

Object-Oriented Design with Smalltalk a Pure OO Language Basic Objects, Conditionals and Loops

Some Basic Loops

aBl ockTest whil eTrue

aBl ockTest whi |l eFal se

aBl ockTest whil eTrue: aBl ockBody
aBl ockTest whil eFal se: aBl ockBody
anl nt eger tinesRepeat: aBl ockBody

[x<y] whileTrue: [x := x + 3]

10 timesRepeat: [Transcript show 'hello'; cr]

Software Composition Group 8.111

Object-Oriented Design with Smalltalk a Pure OO Language Basic Objects, Conditionals and Loops

For the Curious...

Bl ockd osur e>>whi | eTrue: aBl ock
~ self value ifTrue: [aBl ock val ue.
sel f whileTrue: aBl ock]

Bl ockd osur e>>whi | eTr ue
AN [self value] whileTrue:[]

I nt eger >>ti mesRepeat : aBl ock
"Eval uate the argunent, aBlock, the nunber of tines represented by the receiver."

| count |

count := 1.

[count <= self] whileTrue: [aBl ock val ue.
count := count + 1]

Software Composition Group 8.112

Object-Oriented Design with Smalltalk a Pure OO Language Basic Objects, Conditionals and Loops

Collections

O Some criteria to identify them
— Access: indexed, sequential or key-based.
— Size: fixed or dynamic.
— Element type: any or well-defined type.
— Order: defined, defineable or none.
— Duplicates: possible or not

Sequenceabl e
ArrayedCol | ection
Array
Char act er Array
String
I nt eger Array
Interval
Li nkedLi st
OrderedCol | ection
SortedCol | ection
Bag
Set
I dentitySet
Di ctionary
IdentityDictionary

Object-Oriented Design with Smalltalk a Pure OO Language

or dered

fixed size + key = integer
any kind of elenents

el ements = character

arithnmetique progression

dynam ¢ chai ning of the el enent
size dynanmic + arrival order
explicit order

possi bl e duplicate + no order

no duplicate + no order
identification based on identity
el enent = associations + key based
key based on identity

Software Composition Group 8.113

Basic Objects, Conditionals and Loops

Collections - Another View

eyed
y N Duplicates Allowed
Integer Key v n
y n ‘
Adds Allowed/ AN UniqueKey Bag Set
Y n y / \ n
Array Identity Dictionary
Sortedn String Dictionary
Sorted
Col | ecti on O'dered
Col | ection

Software Composition Group 8.114

Object-Oriented Design with Smalltalk a Pure OO Language Basic Objects, Conditionals and Loops

Collection Methods

O Wil be defined, redefined, optimized or forbidden in the subclasses

[=] Accessing: #si ze, #capacity, #at: anlnteger, #at:
anl nt eger put: anEl enent

Testing: #i sEnpty, #i ncludes: anEl ement, #contains:
aBl ock, occurencesOf: anEl enent

Adding: #add: anEl enent, #addAll: aColl ection

Removing: #r enpve: anEl ement, #renove: anEl ement
i f Absent: aBl ock, #renoveAll: aCollection

Enumerating (See generic enumerating): #do: aBl ock, #col |l ect:
aBl ock, #select: aBlock, #reject: aBlock, #detect:,

#detect: aBlock ifNone: aNoneBl ock, #inject: avalue
into: aBinaryBl ock

Converting: #asBag, #asSet, #asOrderedColl ection,
#asSort edCol | ection, #asArray, #asSortedColl ection:
aBl ock

[=] Creation:#wi t h: anEl ement, #with:with:, #fwith:with:with:,
#with:with:with:with:, #with: All: aCollection

o

b [[

(v

Software Composition Group 8.115

Object-Oriented Design with Smalltalk a Pure OO Language Basic Objects, Conditionals and Loops

Seguenceable Specific (Array)

|arr|

arr := #(calvin hates suzie).
arr at: 2 put: #l oves.
arr Prit-> #(#calvin #l oves #suzie)

[=] Accessing: #first, #last, #atAllPut: anElenment, #atAll:
anl ndexCol | ection: put: anEl enent

[=] Searching (*: + ifAbsent:): #i ndexOf : anEl ement, #i ndexOf :
anEl ement i f Absent: aBl ock

=] Changing: #r epl aceAl | : anEl ement with: anot her El enent

Copying: #copyFrom first to: last, copyWth: anEl enent,
copyW t hout: anEl enent

(v

Software Composition Group 8.116

Object-Oriented Design with Smalltalk a Pure OO Language Basic Objects, Conditionals and Loops

KeyedCollection Specific (Dictionary)

| dict]|

dict := Dictionary new

dict at: '"toto' put: 3.

dict at: '"titi' ifAbsent: [4]. -> 4
dict at: "titi' put: 5.

dict renoveKey: 'toto'.

dict keys -> Set ('titi')

[=] Accessing: #at: aKey, #at: aKey ifAbsent: aBlock, #at:
aKey i f Absent Put : aBl ock, #at: aKey put: aVal ue, #keys,
#val ues, #associ ations

[=] Removing: #r enpveKey: aKey, #renpveKey: aKey ifAbsent:

aBl ock

Testing: #i ncl udeKey: aKey

Enumerating: #keysAndVal uesDo: aBl ock, #associ ati onsDo:
aBl ock, #keysDo: aBl ock

[1]

Software Composition Group 8.117

Object-Oriented Design with Smalltalk a Pure OO Language Basic Objects, Conditionals and Loops

Choose your Camp!

O You could write:

absol ute: aCol | ection

|resul t]
result := aCol | ection species new aCollection size.
1 to: aCollection size do:
[:each | result at: each put: (aCollection at: each) abs].
~ resul t

O You could also write:
absol ute: aCol | ection
N aCol l ection collect: [:each| each abs]

[=] Really important: Contrary to the first solution, the second solution works
well for indexable collections and also for sets.

Software Composition Group 8.118

Object-Oriented Design with Smalltalk a Pure OO Language Basic Objects, Conditionals and Loops

lteration Abstraction: do:/collect:

aCol | ection do: aOneParaneterBl ock
aCol | ection collect: aOneParanet er Bl ock

aCol l ection with: anotherCollection do: aBinaryBl ock

#(15 10 19 68) do:
[:i | Transcript show i printString ; cr]

#(15 10 19 68) collect: [:i | i odd]
Prit-> #(true fal se true fal se)

#(1 2 3) with: #(10 20 30)
do: [:x :y| Transcript show (y ** x) printString ; cr]

Software Composition Group 8.119

Object-Oriented Design with Smalltalk a Pure OO Language Basic Objects, Conditionals and Loops

lteration Abstraction: select:/reject:/detect:

aCol | ection sel ect: aPredicateBl ock

aCol | ection reject: aPredicateBl ock
aCol | ection detect: aOneParaneter PredicateBl ock
aCol | ection

detect: aOneParanet er Predi cat eBl ock

i f None: aNoneBl ock

#(15 10 19 68) select: [:i]i odd] -> #(15 19)

#(15 10 19 68) reject: [:i|i odd] -> #(10 68)

#(12 10 19 68 21) detect: [:i|i odd] Prit-> 19

#(12 10 12 68) detect: [:i|i odd] ifNone:[1] Prit-> 1

Software Composition Group 8.120

Object-Oriented Design with Smalltalk a Pure OO Language Basic Objects, Conditionals and Loops

Iteration Abstraction: inject:into:

aCol l ection inject: aStartValue into: aBinaryBl ock

| acc|
acc := 0.
#(1 2 3 4 5) do: [:element | acc := acc + elenent].
acc
-> 15
#(1 23 45)
inject: 0
into: [:acc :elenent| acc + el ement]
-> 15
Software Composition Group 8.121
Object-Oriented Design with Smalltalk a Pure OO Language Basic Objects, Conditionals and Loops

Collection Abstraction

aCol | ection includes: anEl emrent
aCol | ection size

aCol | ection i sEnpty

aCol | ection contains: aBool eanBl ock

#(1 2 3 4 5) includes: 4 -> true

#(1 2 3 45) size ->5

#(1 2 3 4 5) isEnpty -> fal se

#(1 2 3 4 5) contains: [:each | each isCdd] -> true

Software Composition Group 8.122

Object-Oriented Design with Smalltalk a Pure OO Language Basic Objects, Conditionals and Loops

Examples of Use: NetworkManager

alLan findNodeWt hAddress: #mac

Net wor kManager >>f i ndNodeW t hAddr ess: aSynbol
~sel f findNodeW t hAddress: aSynbol ifNone: [nil]
Net wor kManager >>f i ndNodeW t hAddr ess: aSynbol ifNone: aBl ock

“nodes detect: [:aNode| aNode nane = aSynbol] ifNone: aBl ock

alLan creat eAndDecl ar eNodesFr onAddr esses: #(nodel node2 node3) of Ki nd: Node

Net wor kManager >>cr eat eAndDecl ar eNodesFr omAddr esses: anArrayf Addr esses of Ki nd: aNoded ass
"given a list of addresses, create the correspondi ng nodes of the aNoded ass ki nd"

(Node wi thAl | Subcl asses includes: aNoded ass)
ifTrue: [anArray(f Addresses do: [:each | self declareNode: (aNoded ass wi thNane: each)]]
ifFalse: [self error: aNoded ass nane , ' is not a class of nodes']

Software Composition Group 8.123

Object-Oriented Design with Smalltalk a Pure OO Language Basic Objects, Conditionals and Loops

Common Shared Behavior

O Object is the root of the inheritance tree
O Defines the common and minimal behavior for all the objects in the system. It
has 161 instance methods and 19 class methods
O Comparison of objects: #==, #~~, #=, #=~, #isNl, #notN |
O Copying of objects: #shal | owCopy, #copy
#shal | owCopy : the copy shares instance variables with the receiver.
default implementation of #copy is #shal | owCopy
a a copy
Software Composition Group 8.124
Object-Oriented Design with Smalltalk a Pure OO Language Basic Objects, Conditionals and Loops

Identity vs. Equality

0 = anObj ect returnstr ue if the structures are equivalent (the same hash
number)

(Array with: 1 with: 2) = (Array with:1 with:2) Prit-> true

a == anbj ect returns true if the receiver and the argument point to the same
object. #== should never be overridden. On Object #= is #==.

Q ~=is not =

Q ~~isnot ==

(Array with: 1 with: 2) == (Array with: 1 with:2) Prit-> false
(Array with: 1 with: 2) = (Array with: 1 with:2) Prit-> true
O Take care when redefining #= . One should override #hash too!

Software Composition Group 8.125

Object-Oriented Design with Smalltalk a Pure OO Language Basic Objects, Conditionals and Loops

Common Shared Behavior (II)

O Print and store objects: #print String, #printOn: aStream
#storeString, #storeOn: aStream

#(123 1 2 3) printString -> '#(123 1 2 3)"
Date today printString -> 'CQctober 5, 1997
Date today storeString -> '(Date readFronBtring: ''10/5/1997'")"
OrderedCol | ection new add: 4 ; add: 3 ; storeString ->
'((OderedCol | ection new) add: 4; add: 3; yourself)'
O You need the compiler, so for a deployment image this is not convenient
O Create instances from stored objects: class methods r eadFrom aStream
readFronBtring: aString
(bj ect readFronBtring: ' ((COderedCollection new add: 4; yourself)'
-> OrderedCol | ection (4)
O Notifying the programmer:
#error: astring, #doesNot Understand: aMessage,

#hal t, #shoul dNot | npl ement, #subcl assResponsi bility

Software Composition Group 8.126

Object-Oriented Design with Smalltalk a Pure OO Language Basic Objects, Conditionals and Loops

Common Shared Behavior (111

0O OO0 ODOO0OD

#cl ass returns the class of the object
#i nspect opens an inspector
#br owse opens a browser

#hal t stops the execution and opens a debugger (to be inserted in a body of
a method)

#printString (calls#printOn:)returns a string representing the object

#st or eSt ri ng returns a string whose evaluation recreates an object equal to
the receiver

#readFronfttring: aStreamrecreates an object

Software Composition Group 8.127

Object-Oriented Design with Smalltalk a Pure OO Language Numbers

9. Numbers

Software Composition Group 9.128

Object-Oriented Design with Smalltalk a Pure OO Language Numbers

The Basics of Numbers

Q Arithmetic
5+6, 5-6 5*86,
division 30 / 9, integer division 30 // 9, modulo 30 \\ 9
square root 9 sqrt, square 3 squar ed
0 Rounding
3.8 ceiling -> 4
3.8 floor -> 3
3.811 roundTo: 0.01 -> 3.81

0 Range
30 between: 5 and: 40
O Tests

3.8 islnteger
3.8 even, 3.8 odd

Q Signs
positive, negative, sign, negated
Q Other

mn:, nmax:, cos, In, log, log: arcSin, exp, **

Software Composition Group 9.129

Object-Oriented Design with Smalltalk a Pure OO Language Numbers

Deeper into Numbers: Double Dispatch

Q0 How to select a method depending on the receiver AND the argument?

[=] Send a message back to the argument passing the receiver as an
argument

O Example: Coercion between Float and Integer

[=] A not very good solution:

I nt eger >>+ aNunber
(aNunber isKindX: Float)
ifTrue: [aNunber asFloat + self]
ifFalse: [self addPrimitive: aNunber]

Fl oat >>+ aNunber
(aNunber isKindO: Integer)
ifTrue: [aNunber asFloat + self]
ifFalse: [self addPrinitive: aNumber]

Software Composition Group 9.130

Object-Oriented Design with Smalltalk a Pure OO Language Numbers

Deeper into Numbers: Double Dispatch (1)

(c) Integer>>sunfrom nteger: anlnteger
<prinmtive: 40>

(d) Float >>sunfroni nteger: anl nteger
A anlnteger asFloat + self

(a) I nt eger >>+ aNumber
~ aNunber sunfroninteger: self
(b) Fl oat >>+ aNunber
~ aNunber sunfronFl oat: self
(e) Integer>>sunfronfloat: aFl oat
~aFl oat + self asFl oat
(f) Fl oat >>sunfronFl oat: aFl oat
<prinmtive: 41>

0 Some Tests:
1+ 1 (a->c)
1.0 + 1.0: (b->f)
1+ 1.0: (a->d->b->f)
1.0 + 1: (b->e->b->f)

Software Composition Group 9.131

Object-Oriented Design with Smalltalk a Pure OO Language Numbers

Deeper into Numbers: Coercion & Generality

ArithmeticVal ue>>coerce: aNunber
"Answer a nunber representing the argunent, aNumber, that is the sane kind of Number
as the receiver. Mist be defined by all Nunber classes."

~sel f subcl assResponsi bility

Arit hm cVal ue>>general ity

"Answer the nunber representing the ordering of the receiver in the generality hierarchy. A
nunber

in this hierarchy coerces to nunbers higher in hierarchy (i.e., wth larger generality num
bers)."

~sel f subcl assResponsibility

I nt eger >>coer ce: aNumber
"Convert a nunber to a conpatible fornt

~aNunber asl nt eger

I nt eger >>general ity

Generality
Smal | I nteger 20
Integer 40
Fraction 60
Fi xedPoi nt 70
Fl oat 80
Doubl e 90

Software Composition Group 9.132

Object-Oriented Design with Smalltalk a Pure OO Language Numbers

Deeper into Numbers: #retry:coercing:

Ari thneticVal ue>>sunfroni nt eger: anl nt eger
"The argument anlnteger, known to be a kind of integer,
encountered a problemon addition. Retry by coercing either
anl nteger or self, whichever is the | ess general arithmetic value."
Transcript show 'here arthneticVal ue>>sunFroninteger’ ;cr.
Manlnteger retry: #+ coercing: self

ArithneticVal ue>>retry: aSynbol coercing: aNunber
"Arithnetic represented by the synbol, aSynbol, could not be perfornmed with the receiver and the
argunent, aNunber, because of the differences in representation. Coerce either the receiver or
the argunent, depending on which has higher generality, and try again. If the generalities are
the
sane, then this nessage should not have been sent so an error notification is provided."

self generality < aNumber generality

ifTrue: [~(aNunber coerce: self) perform aSynbol with: aNunmber].
self generality > aNumber generality

ifTrue: [~self perform aSynbol with: (self coerce: aNunber)].
self error: 'coercion attenpt failed

Software Composition Group 9.133

Object-Oriented Design with Smalltalk a Pure OO Language

10. Exceptions

Exceptions

O Standardized by ANSI and available since VW 3.0

O Excepti on is the root of the exception hierarchy: 84 predefined exceptions.
The two most important classes are:
[=]1 Error
[=] Notification

Q Specialised into predefined exceptions -> subclass them to create your own
exceptions

O Some methods of Exception:

— def aul t Acti on is executed when an exception occurs
— descri pti on string describing the actual exception

Software Composition Group

Object-Oriented Design with Smalltalk a Pure OO Language

The Main Exceptions

10.134

Exceptions

Exception class Exceptional Event Default Action
Error Any program error Open a Notifier
ArithmeticError Any error evaluating an Inherited from Error
arithmetic
MessageNotUnderstood A message was sent to an | Inherited from Error
object that did not define a
corresponding method
Notification Any unusual event that does | Do nothing continuing
not impair continued executing
execution of the program
Warning An unusual event that the | Display Yes/No dialog and
user should be informed return a boolean value tthe
about signaler
ZeroDivide Inherited from
ArithmeticError

Software Composition Group

Object-Oriented Design with Smalltalk a Pure OO Language

Basic Example of Catching

[yl
X :=7.y :=0.
[x/v1
on: ZeroDivide
do: [:exception| Transcript show exception description,
0....]
O an Exception Handler is defined using on: do:

exception class and a handler block
Zer oDi vi de
[:theException| Transcript show °

10.135

Exceptions

cr.

and is composed by an

di vi sion by zero']

O An Exception Handler completes by returning the value of the handler block in
place of the value of the protected block (here [x/y]).
O We can exit the current method by putting an explicit return inside the handler

block

Software Composition Group

10.136

Object-Oriented Design with Smalltalk a Pure OO Language

Exceptions
Exception Sets
O Exception Sets
[do sore work]
on: ZeroDivide, Wrning
do: [:ex| what you want]
Or
| excepti onSet s|
exceptionSets : = ExceptionSet with: ZeroDi vide w th: Warning.
[do sone work]
on: exceptionSets
do: [:ex| what you want]
O Signaling an Exception:
Error raiseSignal
Warning raiseSignal: ‘description of the exception’
Software Composition Group 10.137
Object-Oriented Design with Smalltalk a Pure OO Language Exceptions

Exception Environment
O Each process has its own exception environment: an ordered list of active
handlers.
Process starts —> list empty
[aaaa] on: Error do: [bbb] —> Error,bbb added to the beginning of the list

=] When an exception is signaled, the system sends a message to the first
handler of the exception handler.

=1 If the handler cannot handle the exception, the next one is asked
If no handler can handle the exception then the default action is performed

()][]

v

Software Composition Group 10.138

Object-Oriented Design with Smalltalk a Pure OO Language Exceptions

Resumable and Non-Resumable

O A handler block completes by executing the last statement of the block. The
value of the last statement is then the value returned by the handler block.
Where this value should be returned depends:

[=] Nonresumable: like Error -> ‘Value from handler’
([Error raiseSignal. ‘Value fromprotected bl ock’]
on: Error

do: [:ex|ex return: ‘Value fromhandler’])

[=] Resumable: like Warning, Notification -> ‘Value from protected Block'. In
this case Notification raiseSignal raises an exception, then the context is
restored and the value returned normally

([Notification raiseSignal. ‘Value fromprotected bl ock’]
on: Notification

do: [:ex|ex resume: ‘Value fromhandler’'])

Software Composition Group 10.139

Object-Oriented Design with Smalltalk a Pure OO Language Exceptions

Resume:/Return:

Transcript show

([Notification raiseSignal. 'Value fromprotected bl ock']
on: Notification
do: [:ex| Transcript show 'Entering handler '
'Value fromhandler'. '5'])
-> Entering handler 5
Transcript show
([Notification raiseSignal. 'Value fromprotected bl ock']
on: Notification
do: [:ex| Transcript show 'Entering handler '
ex resune: 'Value fromhandler'. '5'])
-> Entering handl er Value fromprotected bl ock
Transcript show
([Notification raiseSignal. 'Value fromprotected bl ock']
on: Notification
do: [:ex| Transcript show 'Entering handler '
ex return: 'Value fromhandler'. '5'])
-> Entering handl er Val ue from handl er

Software Composition Group 10.140

Object-Oriented Design with Smalltalk a Pure OO Language Exceptions

Exiting Handlers Explicitly

O exitorexit: (VW specific) Resumes on aresumable and returns on a
nonresumable exception
O resuneorresune: Attempts to continue processing the protected block,
immeditely following the message that triggered the exception.
d returnorreturn: ends processing the protected block that triggered the
exception
Q retry re-evaluates the protected block
O retryUsi ng: evaluates a new block in place of the protected block
O resignal As: resignal the exception as another one
O pass exit the current handler and pass to the next outer handler, control does
not return to the passer
O outer as with pass, except will regain control if the outer handler resumes
[=] exit:, resume: and return: return their argument as the return value, instead
of the value of the final statement of the handler block
Software Composition Group 10.141
Object-Oriented Design with Smalltalk a Pure OO Language Exceptions

Examples

O Look in Exception class examples categories

-2.0 to: 2.0 do:
i
[10.0 / i. Transcript cr; show i printString]
on: Number di vi si onByZeroSi gnal do:
[:ex | Transcript cr; show ‘divideByZero abort'.

ex return |
1
-2.0
-1.0
di vi deByZero abort
1.0
2.0

Q retry recreates the exception environment of active handlers

[x1y]
on: ZeroDivide
do: [:exception|
y := 0.00001.

exception retry]

Software Composition Group 10.142

Object-Oriented Design with Smalltalk a Pure OO Language

11. Streams

Software Composition Group

Object-Oriented Design with Smalltalk a Pure OO Language

Streams

O Allows the traversal of a collection
U Associated with a collection

Streams

11.143

Streams

[=] If the collection is a Smalltalk collection: | nt er nal St r eam
[=] If the collection is a file or an object that behaves like a collection:

Ext er nal St ream
O Stores the current position

AEEEEEEEEEN

>

Stream (abstract)
Peekabl eStream (abstract)
Posi ti onabl eStream (abstract)
Ext ernal Stream
Ext er nal ReadSt r eam
Ext er nal ReadAppendSt r eam
Ext er nal ReadW i t eSt r eam
External WiteStream
Internal Stream
ReadSt ream
WiteStream
ReadW i teStream

Software Composition Group

Object-Oriented Design with Smalltalk a Pure OO Language

An Example

| st]

st := ReadWiteStreamon: (OderedCollection new 5).

st nextPut: 1.
st nextPutAll: #4826 7).

st contents. Prit-> OrderedCollection (148 26 7)

st reset.

st next. -> 1

st position: 3.

st next. -> 2

st :=#(1 25 3 7) readStream
st next. ->1

Software Composition Group

e

11.144

Streams

11.145

Object-Oriented Design with Smalltalk a Pure OO Language

Streams
printString. printOn:
Chj ect >>printString
"Answer a String whose characters are a description of the receiver."
| aStream|
aStream:= WiteStreamon: (String new 16).
self printOn: aStream
~aStream contents
Node>>printOn: aStream
super printOn: aStream
aStreamnextPutAll: ' with name:'; print: self nane.
sel f hasNextNode ifTrue: [
aStreamnextPut All: ' and next node:'; print: self nextNode nane]
Software Composition Group 11.146
Object-Oriented Design with Smalltalk a Pure OO Language Streams

Object-Oriented Design with Smalltalk a Pure OO Language

Stream Classes

Q Stream

#next returns the next element

#next : n returns the n next elements

#cont ent s returns all the elements

#next Put : anEl enent inserts anEl enent at the next position

#next Put Al l : aCol | ecti on inserts the collection element from the
next position on

#at End returns true if at the end of the collection
O PeekableStream: Access to the current without passing to the next
] #peek
#ski pFor: anAr gunent
#ski p: nincreases the position of n
#ski pUpTo: anEl enent increases the position after anElement
#on: aCol | ection, creates a stream

#on: aCol from firstindex to: |astlndex (index elements
included)

[R R

HEEHEE

Software Composition Group 11.147

Streams

Stream Classes (ll)

O PositionableStream

[=] #ski pToAll: #throughAll: #upToAll:
[=] #position

[=] #position: anlnteger

[Z] #reset #setToEnd #i sEnpty
InternalStream

[=] #si ze returns the size of the internal collection
[=] Creation #wi t h: (without reinitializing the stream)
ReadStream

WriteStream

ReadWriteStream

ExternalStream and subclasses

O

ODO0O0OD

Software Composition Group 11.148

Object-Oriented Design with Smalltalk a Pure OO Language Streams

Stream Tricks

Q Transcript isaText Col | ect or that has aStream
Text Col | ect or >>show. aString
self nextPutAll: aString.
sel f endEntry

Q #endEnt ry via dependencies asks for refreshing the window. If you want to
speed up a slow trace, use #next Put Al | : + #endEnt ry instead of #show.

| st sc|
st := ReadStreamon: ‘we are the chanpions’.
sc := Scanner new on: st.

[st atEnd] whileFalse: [Transcript nextPutAll: sc scanToken, ‘ * ‘].
Transcript endEntry

Software Composition Group 11.149

Object-Oriented Design with Smalltalk a Pure OO Language Streams

Streams, Blocks and Files

O How to ensure that the open files are closed

MO ass>readFi |l e: aFi | enane
| readSt reanj
readStream : = aFil enane readStream
[[readStream at End] whileFalse: [....]]
val ueNowQr OnUnwi ndDo: [readSt ream cl ose]

O How to find open files (VW specific)

(External Stream cl assPool at: #OpenStreans) copy inspect

Q Filename
#appendStream (addition + creation if file doesnot exists)
#newReadAppendSt ream #newReadWiteStream (if receiver exists, contents renoved)
#readAppendStream #readWiteStream #readStream #witeStream

O Example: Removing Smalltalk comments from a file

|inStream out Stream |
inStream:= (Filename naned: ‘'/hone/ducasse/test.st’) readStream
out Stream : = (Fil enane nanmed: ‘/hone/ducasse/testout.st’) witeStream
“(or ‘/home/ ducasse/ ducasse’ asFil ename)”
[inStream at End] whi | eFal se: [
out Stream next Put Al I : (inStreamupTo: $").
inStream ski pTo: $"].
~out Stream cont ent s “do not forget to close the files too

Software Composition Group 11.150

Object-Oriented Design with Smalltalk a Pure OO Language

Part Il - Advanced Smalltalk Elements

Advanced Classes

The Model-View-Controller Paradigm
Processes and Concurrency

Classes and Metaclasses - an Analysis
Common Mistakes and Debugging
The Internal Structure of Objects
Blocks and Optimization

Advanced Blocks

[oy o iy Sy

Software Composition Group

Object-Oriented Design with Smalltalk a Pure OO Language Advanced Classes

12. Advanced Classes

O Indexed Classes
O Classes as Objects
O Class Instance Variables and Methods
Q Class Variables
Q Pool Dictionaries
Software Composition Group 12.152
Object-Oriented Design with Smalltalk a Pure OO Language Advanced Classes

Types of Classes

Indexed Named Definition Method Examples

No Yes #subcl ass: . .. Packet, Workstation
Yes Yes #vari abl eSubcl ass: Array, Conpil edMet hod
Yes No #vari abl eByt eSubcl ass String, ByteArray

Method related to class types: #i sPoi nters, #isBits, #i sBytes,
#i sFi xed, #isVariable, #kindO Subcl ass

classes defined using #subcl ass: support any kind of subclasses

classes defined using #vari abl eSubcl ass: can only have:
vari abl eSubcl ass: orvari abl eByt eSubcl ass: subclasses

classes defined using #vari abl eByt eSubcl ass

— can only be defined if the superclass has no defined instance variable
— pointer classes and byte classes don’t mix

— only byte subclasses

0O OO0 O

Software Composition Group 12.153

Object-Oriented Design with Smalltalk a Pure OO Language Advanced Classes

Two Views on Classes

O Named or indexed instance variables
Named: ‘ addr essee’ of Packet
Indexed: Arr ay

O Orlooking at them in another way:
Objects with pointers to other objects
Objects with arrays of bytes (word, long)

[=] Difference for efficiency reasons: arrays of bytes (like C strings) are faster
than storing an array of pointers, each pointing to a single byte.

Software Composition Group 12.154

Object-Oriented Design with Smalltalk a Pure OO Language Advanced Classes

Indexed Classes

O For classes that need a variable number of instance variables

Example: the class Arr ay

ArrayedCol | ection vari abl eSubcl ass: #Array
i nstanceVari abl eNanes:

cl assVari abl eNanes:

pool Di ctionari es:
category: 'Collections-Arrayed

Array new 4 -> #(nil nil nil nil)
#(1 2 3 4) class isVariable -> true

Software Composition Group 12.155

Object-Oriented Design with Smalltalk a Pure OO Language Advanced Classes

Indexed Classes / Instance Variables

O Indexed variable is implictly added to the list of instance variables
O Only one indexed instance variable per class
O Access with #at : and #at : put :
(#at : put : answers the value, not the receiver)
First access: anl nstance at: 1
#si ze returns the number of indexed instance variables
Instantiated with #new. max
It]
t 1= (Array new 4).

oooQd

t at: 2 put: 'lulu'.
t at: 1 ->nil
O Subclasses should also be indexed

Software Composition Group 12.156

Object-Oriented Design with Smalltalk a Pure OO Language Advanced Classes

The meaning of “Instance of”

O Every object is an instance of a class.
O Every class is ultimately a subclass of Obj ect (except Obj ect).
O When anObject receives a message, the method is looked
up in its class and/or its superclasses.
O Aclass defines the structure and the behavior of all its raolode
instances. | @accept: aPacket
. . send: aPacket
O Each instance possesses its own set of values. [| hasNextNode
O Each instance shares the behavior defined in its class with \
other instances via the instance of link.
\ Workstation
. iginate: aPacket
Example) [
macNode nane / ‘
1. macNode is an instance of Wr kst ati on O nane is rinstance of
looked up in the class Wor kst at i on Lr
2. nane is not defined in Workstation O lookup continues in ~ macNode name
Node
3. nane is defined in Node O lookup stops + method
executed

Software Composition Group 12.157

Object-Oriented Design with Smalltalk a Pure OO Language Advanced Classes

The meaning of “Instance of” (II)

O Aclass is an object too, so messages sent to it are looked up into the class of
the class, its metaclass.

O Every class (X) is the unique instance of its associated metaclass named X
class

Example:
Node wit hName: #nodel
1. Node is an instance of Node cl ass [w t hNane: is looked up in the class
Node cl ass
2. wi thNane: defined in Node cl ass 0O lookup stops + method executed

Wor kst ation w t hNanme: #mac
1. Workstationisaninstanceof Wor kst ati on cl ass 00 wi t hNane: islooked
up in the class Wor kst at i on cl ass

2. withNane: is notdefinedin Wor kst ati on cl ass O lookup continues in the
superclass of Wor kst at i on class = Node cl ass

3. wi thNane: is defined in Node cl ass [lookup stops + method executed

Software Composition Group 12.158

Object-Oriented Design with Smalltalk a Pure OO Language Advanced Classes

Lookup and Class Messages

[Object | >\ Object class |
! | \ | w
\ Node Node class /
name \
| accept: aPacket |- — = withName:
send: aPacket \ cl ass
X (hasNextNode met hod
i nstance | ookup
method | |
| ookup
\ /
Workstation Workstation class
> originate: aPacket | —
/ accept: aPacket \ .
Wrkstation wthName: #mac
nmacNode nane
- —+instance of
Software Composition Group 12.159
Object-Oriented Design with Smalltalk a Pure OO Language Advanced Classes

The Meaning of “Instance of” (111

Node new. #nodel
1. Node is aninstance of Node cl ass O new. islooked up in the class Node
cl ass

2. new. is notdefined in Node cl ass O lookup continues in the superclass of
Node cl ass = (bj ect cl ass

3. new isnotdefinedin Obj ect cl ass [0 lookup continues in the superclass of
Node cl assCl ass, Cl assDescri ption, Behavi or

4. new: is defined in Behavi or O lookup stops + method executed.

Q This is the same for Array new: 4
new: is defined in Behavior (the ancestor of Array class)

[=] Hint: Behavior is the essence of a class. ClassDescription represents the
extra functionality for browsing the class. Class supports poolVariable and
classVariable.

Software Composition Group 12.160

Object-Oriented Design with Smalltalk a Pure OO Language Advanced Classes

Metaclass Concepts & Responsibilities

O Concepts:
=] Everything is an object
[=] Each object is instance of one class
[=] Aclass (X) is also an object, the sole instance of its associated metaclass
named X class
[=] An object is a class if and only if it can create instances of itself.
U Metaclass Responsibilities:
[=] instance creation
[=] class information (inheritance link, instance variables, method
compilation...)
Q Examples:
Node al | Subcl asses -> OrderedCol | ection (WrkStation QutputServer Wrkstation File
Server PrintServer)
LanPrint alllnstances -> #()
Node i nst Var Nanes -> #(' nane' ' next Node')
Wrkstation wthNane: #mac -> aWrkstation

Wrkstation selectors -> IdentitySet (#accept: #originate:)
Wrkstation canUnderstand: #nextNode -> true

Software Composition Group 12.161

Object-Oriented Design with Smalltalk a Pure OO Language Advanced Classes

Class Instance Variables

O Like any object, a class is an instance of a class that can have instance
variables that represent the state of a class.

O Singleton Design Pattern: a class with only one instance
Net wor kManager cl ass
i nstanceVari abl eNanes: ' uni quel nst ance'

O Networ kManager being an instance of Net wor kManager cl ass has an
instance variable named uni quel nst ance.

[=] Hint: An instance variable of a class can be used to represent information
shared by all the instances of the class. However, you should use class
instance variables to represent the state of the class (like the number of
instances, ...) and use classVariable instead.

Software Composition Group 12.162

Object-Oriented Design with Smalltalk a Pure OO Language Advanced Classes

About Behavior

O Behavi or is the first metaclass. All other metaclasses inherit from it
Q Behavi or describes the minimal structure of a class:

— superclass and subclasses
— method dictionary

— format (instance variable compressed description)

Cbj ect subcl ass: #Behavi or
i nstanceVari abl eNanes: ' superclass nethodDict format subclasses '
classVari abl eNanes: "'
pool Dictionaries: "'
category: 'Kernel-d asses'

O Example of Queries

Packet superclass -> bj ect

Packet subclasses - #()

Packet selectors -> IdentitySet (#originator: #addressee: #addressee
#i sOri gi nat edFrom #print On: #i sAddressedTo: #originator #initialize
#contents #contents:)

Packet al | I nstVarNanes -> OrderedCol | ection ('addressee' 'originator’
‘contents' 'visitedNodes')

Packet isDirectSubclassO: Chject -> true

Software Composition Group 12.163

Object-Oriented Design with Smalltalk a Pure OO Language

Advanced Classes

Class Method

Q

Q

As any object a metaclass can have methods that represent the behavior of a
class.

Some examples of class behavior:

- class definition, finding all instances of a class

- navigation in the hierarchy, NetworkManager NetworkManager]
- finding the instance variable names, methods|nodes - uniqﬁ:f;[ance
- instance creation, compiling methods findNode... new

Can only access instance variable of the class:

Examples: Net wor kManager cl ass>>new can only access
uni quel nst ance class instance variable and not instance variables
(like nodes).
Default Instance Creation class method:
- new/new: and basicNew/basicNew: (see Direct Instance Creation)
Packet new
Specific instance creation method
Packet send: ‘Smalltalk is fun' to: #l pr
Workstation withNane: #nac
Wr kst ation withName: #mac connectedTo: #l pr

Software Composition Group 12.164

Object-Oriented Design with Smalltalk a Pure OO Language Advanced Classes

classVariable

Q

a

How to share state between all the instances of a class: Use classVariable

[=] aclassVariable is shared and directly accessible by all the instances of the
class and subclasses

A pretty bad name: should have been called Shared Variables
Shared Variable O begins with an uppercase letter

a classVariable can be directly accessed in instance methods and class
methods

NaneCf Super cl ass subcl ass: #NaneCf d ass

[[[0

cl assVari abl eNanes: ' d assVar Nanel O assVar Nane2'
Chj ect subcl ass: #Net wor kManager

cl assVari abl eNanes: * Domai n’
Sometimes classVariable can be replaced by class methods
Net wor kManager cl ass>>donai n
A ‘i am uni be. ch’

Software Composition Group 12.165

Object-Oriented Design with Smalltalk a Pure OO Language Advanced Classes

Class Instance Variables / Class Variables

Q

a

a classVariable is shared and directly accessible by all the instances and
subclasses

Class instance variables, just like normal instance variables, can be accessed
only via class message and accessors:

[=] aninstance variable of a class is private to this class.

[=] aninstance

Take care: when you change the value of a classVariable the whole inheritance
tree is impacted!

ClassVariables can be used in conjunction with instance variables to cache
some common values that can be changed locally in the classes.

Examples: in the Scanner class a table describes the types of the characters
(strings, comments, binary....). The original table is stored into a classVariable,
its value is loaded into the instance variable. It is then possible to change the
value of the instance variable to have a different scanner.

Cbj ect subcl ass: #Scanner

instanceVari abl eNanes: 'source mark prevEnd hereChar token tokenType buffer typeTable '
cl assVari abl eNanes: ' TypeTabl e '
category: 'System Conpiler-Public Access'

Software Composition Group 12.166

Object-Oriented Design with Smalltalk a Pure OO Language

Summary of Variable Visibility

Advanced Classes

instance methods

NetworkManager>>detectNode: aBoolBlock | | NetworkManager class>>new

“nodes detect: aBool Bl ock uni quel nstance isN |
ifTrue:[uniquel nstance

Auni quel nst ance

1= super new .

instance variables .
nodes classVariables

Domai n

Software Composition Group

Object-Oriented Design with Smalltalk a Pure OO Language

class methods

class instance variables
uni quel nst ance

12.167

Advanced Classes

Example From The System: Geometric Class

Chj ect subcl ass: #Geonetric
i nstanceVari abl eNanes:
classVariabl eNanes: ' InverseScale Scale '

Geonetric class>>initialize

"Reset the class variables."

Scal e : = 4096.
InverseScale := 1.0 / Scale

Software Composition Group

Object-Oriented Design with Smalltalk a Pure OO Language

Circle

Geonetric subclass: #Grcle
instanceVari abl eNanes: ' center radius'
cl assVari abl eNanes:

Gircl e>>center

“center

Grcle>>setCenter: aPoint radius: aNunmber
center := aPoint.
radius := aNurber

Grcle>>area
Iri
r ;= self radius asLinitedPrecisionReal .

Ar class pi *r *r

G rcl e>>di anet er

~self radius * 2

Grcle class>>center: aPoint radius: aNunber
~sel f basi cNew set Center: aPoint radius: aNunber

Software Composition Group

12.168

Advanced Classes

12.169

Object-Oriented Design with Smalltalk a Pure OO Language

poolDictionaries

Also called Pool Variables.
Shared variable O begins with a uppercase letter.

Each class possesses its own pool dictionary.
They are not inherited.

o0oo0ooOo

O Examples of PoolDictionaries from the System:Text
Character Array subcl ass: #Text
i nstanceVari abl eNarmes: ‘string runs '

cl assVari abl eNanes:

pool Dictionaries: 'TextConstants
category: 'Collections-Text'

Variable shared by a group of classes not linked by inheritance.

Advanced Classes

O Elements stored into TextConstants like Ctrl, CR, ESC, Space can be directly

accessed from all the classes like ParagraphEditor....
0 On VW poolDictionary should not be an IdentityDictionary

Software Composition Group

Object-Oriented Design with Smalltalk a Pure OO Language

Example of PoolVariables

Q Instead of
Smalltal k at: #NetworkConstant put: Dictionary new.
Net wor kConstant at: #rates put: 9000.
Node>>conput eAver ageSpeed

Net wor kConstant at: #rates
Write:
hj ect subcl ass: #Packet
i nstanceVari abl eNanes: ' contents addressee originator '
classVari abl eNanes: ‘ Domai n’
pool Di ctionaries: 'NetworkConstant'

Node>>conput eAver ageSpeed

. rates

12.170

Advanced Classes

O rat es is directly accessed in the global dictionary Net wor kConst ant .

O As a beginner policy, do not use pool Di cti onari es

Software Composition Group

12171

Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

13. The Model-View-Controller Paradigm

Q Commonly named MVC
O Not a tutorial on how to build user interface (look at the exercises)
O => Observer pattern in Smalltalk
Software Composition Group 13.172
Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm
Context

O Building interactive applications with a Graphical User Interface
[=] Obvious example: the Smalltalk Development Environment
O Characteristics of such applications:

[=] Event driven user interaction, not predictable -> Interface Code can get
very complex

[=] Interfaces are often subject of changes.

“As far as the user is concerned, the interface IS the program.”

O Question: How can we reduce the complexity of developing such applications?
O The Answer is Modularity

Software Composition Group 13.173

Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

Program Architecture

O A Software Architecture is a collection of software and system components,
connections between them and a number of constraints they have to fulfill.

O Goals we want to achieve with our architecture:
[=] manageable complexity
[=] reusability of the individual components

[=] pluggability, i.e., an easy realization of the connections between the
components

O The Solution for the domain of GUI-driven applications is to partition an
application as follows:

— Model
— View

— Controller
[=] This leads to a separation of concerns

Software Composition Group 13.174

Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

Separation of Concerns

Functionality vs. Display and Display vs. Interaction
O Model is the Functionality, i.e., the Domain
[=] Domain specific information

[=] Core functionality, where the computation/data processing
takes place

O View is the Display, i.e., the User Interface

[=1 Presentation of the data in various formats

[=] “What the user sees”

[=] dealing with user input (Mouse, Keyboard, etc.)
O Controller is the Interaction

[=1 relaying the user input to the View (e.qg., scrolling, resizing)
or the model (e.g., modification of the data)

O View and Controller are very much related. There is always a 1:1 relationship
between views and controllers. There are also examples of systems where view
and controller are not separated. Rationale for separating View and Controller:

— reusability of the individual components and freedom of choice is better:
the same view with different controllers (different modes of interaction)
the same controller for different views (Action Button/Radio Button)

Software Composition Group 13.175

Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

The notion of Dependency

O Anobject B that depends on another object A must be informed about changes
in the state of A, in order to be able to adapt its own state.

@ modification

@ change propagation

Subject |

O Dependencies that are realised via messages sent directly to dependent
objects are not very reusable and are likely to break in times of change.

[=1 Decoupling of subject and dependent

Software Composition Group 13.176

Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

Dependency Mechanism

O The Publisher-Subscriber Pattern (a.k.a. Observer Pattern)
a

Intent: Define a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated automatically.

O The pattern ensures the automatisation of
[=] adding and removing dependents
[=1 change propagation

O The publisher (subject) has a list of subscribers (observers, dependents). A
subscriber registers with a publisher.

Software Composition Group 13.177

Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

Publisher-Subscriber: A Sample Session

Publisher Subscriberl Subscriber2
J“ addDependent : Subscri ber 1
addDependent : Subscri ber 2 F]
T]
changed
updat e —
oo L]
pdat e [
L]
renoveDependent : Subscri ber 1 Fj
- [
changed
updat e ﬁ
Software Composition Group 13.178
Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

Change Propagation: Push and Pull

How is the changed data transferred
from the publisher to the subscriber?

Q Push: the publisher sends the changed data along with the update message

Advantages: only one message per subscriber needed.

Disadvantage: Either the publisher knows for each subscriber what data
it needs which increases coupling between publisher and subscriber, or

many subscribers receive unnecessary data.

O Pull: the subscriber, after receiving the update message, asks the publisher for

the specific data he is interested in
Advantage: Only the necessary amount of data is transferred.
Disadvantage: a lot of messages have to be exchanged.

O Mixture: the publisher sends hints (“Aspects” in ST terminology) and other

parameters along with the update messages

Software Composition Group 13.179
Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm
The MVC Pattern
Dependencies:
/\l\/\/\‘ View
Model change propagation
V\/\/\/\, Controller
Other Messages:
. display output
s —View =
Mo d e| and view messages
editing messages — Controller user input
Software Composition Group 13.180

Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

A Standard Interaction Cycle

Software Composition Group 13.181

Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

MVC: Benefits and Liabilities

Benefits: Liabilities:
O Multiple views of the same model O Increased complexity
O Synchronized views O Potential for excessive number of
O ‘Pluggable’ views and controllers updates
Q0 Exchangeability of ‘look and feel Q Intimate connection between
view and controller
Q Close coupling of views and
D controllers to a model
Q Inefficiency of data access in
75% ! Y
view
O Inevitability of change to view and
controller when porting
Multiple Views per Model
Software Composition Group 13.182
Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

MVC and Smalltalk

0 MVC is a pattern and can be also applied with other programming languages.
[=]1 Examples:
— ET++ User Interface Framework (C++)
— Swing-Toolkit in the Java Framework

O Nevertheless, the ties between MVC and Smalltalk are exceptionally strong:
[=] MVC was invented by a Smalltalker (Trygve Reenskaug)
[=] firstimplemented in Smalltalk-80; the Application Framework of Smalltalk
is built around it
[=] The first implementations of MVC in Smalltalk have undergone a strong
evolution. Newer implementations (for example in VisualWorks) solve
many of the problems of the first, straightforward implementations.

Software Composition Group 13.183

Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

Managing Dependents

O Protocol to manage dependents (defined in Obj ect >>dependent s access):
— addDependent : anObject
— renopveDependent : anObject

[=] Attention: Storage of Dependents !

O j ect : keeps all its dependents in a class variable Dependent sFi el d .

Dependent sFi el disanldentityDi cti onary, where the keys are
the objects themselves and the values are the collections of dependents
for the corresponding objects.

U Model : defines an instance variable dependent s.

[=] access is much more efficient than looking up the dependents in a class
variable.

Software Composition Group 13.184

Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

Implementation of Change Propagation

U Change methods are implemented in Obj ect >>changi ng:
changed: anAspect Synbol

"The receiver changed. The change is denoted by the argument anAspect Synbol .
Usual ly the argument is a Synbol that is part of the dependent’s change protocol,
that is, sonme aspect of the object’s behavior, and aParaneter is additional in-
formation. Informall of the dependents."

sel f nyDependents update: anAspect Synbol

O Update methods are implemented in Obj ect >>updat i ng:
updat e: anAspect Synbol

“Check anAspectSynbol to see if itequals sone aspect of interest and if it does,
performthe necessary action”

anAspect Synbol == anAspect O | nt er est
ifTrue: [self doUpdate].

Software Composition Group 13.185

Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

Climbing up and down the Default-Ladder

changed
sel f changed: nil
C changed: anAspect Synbol
sel f changed: anAspect Synbol with: nil

Cchanged: anAspect Synbol wi th: aParanet er

self nyDependents update: anAspectSynbol with: aParameter from

updat e: anAspect Synbol with: aParaneter from aSender

C Asel f update: anAspect Synbol with: aParaneter

updat e: anAspect Synbol with: aParaneter

Asel f update: anAspect Synbol
Cupdate: anAspect Synbol

~sel f

Software Composition Group 13.186

Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

Problems ...

O Problems with the Vanilla Change Propagation Mechanism:

[=] every dependent is notified about all the changes, even if they are not
interested (broadcast).
the updat e: anAspect methods are often long lists of tests of
anAspect . This is not clean object-oriented programming.
all the methods changing something have to send sel f changed, since
there might just be some dependent that is interested in that change
danger of name clashes between apsects that are defined in different
models that have to work together (can be solved by using
update:wi th: from)
O General problem: complex objects depending on other complex objects. We
need means to be more specific:
[=] publisher: send messages only to interested dependents

[=] subscriber: being notified directly by a call to the method that handles that
specific change

o

b [

Software Composition Group 13.187

Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

Dependency Transformer

O ADependencyTransf or mer is an intermediate object between a model and
its dependent. It

[=] waits for a specific updat e: anAspect message
[=] sends a specific method to a specific object

O A dependent that is only interested in a specific aspect of its model and has a
method to handle the update installs a DependencyTr ansf or mer on its
model:

interested
nodel g obj ect
changed: #anAspect
dependent s updat e: #anAspect dependency
col I ection transf or ner

nodel expressinterestln: anAspect
for: self

\]

sendBack: aChangeMessage

Software Composition Group 13.188

Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

Inside a Dependency Transformer

Q Initializing a DependencyTr ansf or ner :
set Recei ver: aReceiver aspect: anAspect sel ector: aSynbol
recei ver := aReceiver.
aspect := anAspect.
sel ector := aSynbol .
numAr gunents : = sel ector numArgs.
numArgunents > 2 ifTrue: [self error: 'selector expects too many argunents’]

O Transforming an updat e: message:
updat e: anAspect with: paraneters from anQhject

aspect == anAspect ifFalse: [“self].

numArgunents == 0 ifTrue: [“receiver perform selector].

numArgunents == 1 ifTrue: [“receiver perform selector with: paraneters].
numArgunments == 2 ifTrue: [“receiver perform selector with: parameters wth:

anQbj ect]

Software Composition Group 13.189

Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

ValueHolder

O AVal ueHol der is an object that encapsulates a value and allows it to behave
like a model, i.e. it notifies the dependents of the model automatically when it is
changed.

O Creating a Val ueHol der:
O Accessing a Val ueHol der:

O Advantages:
[=] change propagation is triggered automatically by the Val ueHol der ; the
programmer does not have to do sel f changed any more
[=] objects can become dependents only of the values they are interested in
(reduces broadcast problem)

Software Composition Group 13.190

Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

A Userlnterface Window

Buffers Browse Category Class Protocol Selector Tool
Collections- Support 5 [Boolean 4 linitialize-release 4 |performUpdate =Y
Graphics-Geometry | |False accessing J performUpdate:with:
Graphics-Yisual Objects todel changing update
Graphics-Geometrical Ot | [Dbject comparing updatewith:
Graphics-Images True converting uEdate with-frarm:
i / |copying updateReguest
|[# category - hierarchy|[4> instance . class _ +|| printing |updateRequest

update: anAspectSymbol with: aParameter from: aSentld

"Receive a change notice from an object, denoted
The argument anAspect3ymbal is typically a Symhal that i
is additional information. The default behavior is to do nathi
way."

~gelf update: anAspectSymbal with: aParameter
"Note that in this implementation, assumption is that the oby
should be made to try a simpler message.”
L
The widgets that make up the Ul
Software Composition Group 13.191
Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

Widgets

O A widget is responsible for displaying some aspect of a User Interface.
[=] A widget can display an aspect of a model

[=1 A widget can be combined with a controller, in which case the user can
modify the aspect of the model displayed by the widget.

O The connection between widgets and the model:
[=] Each component of a User Interface is a widget
[=] Each component of a model is an attribute or operation
[=] Most widgets modify an attribute or start an operation

Q The communication between a widget and the model component it represents
visually is standardized:

Value Model Protocol
O Each model component is put into an aspect model, which can be a
Val ueHol der for example. The Widget deals only with this aspect model.
[=] the widget does not have to know any specifics about its model

Software Composition Group 13.192

Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

The Application Model

O An ApplicationModel is a model that is responsible for creating and managing a
runtime user interface, usually consisting of a single window. It manages only
application information. It leaves the domain information to its aspect models.

Domain Application User

Models Models Interfaces
OJSI - \ g g
BankAccount

L
—

Transaction

Software Composition Group 13.193

Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

The fine-grained Structure of an Application

User
Interface

widgets

Application _—
Model \

value
models

Domain T
Model \ o

attributes

Software Composition Group 13.194

Object-Oriented Design with Smalltalk a Pure OO Language The Model-View-Controller Paradigm

Bibliography

O E. Gamma et. al.: Design Patterns, Addison Wesley, 1995
[=] Observer Pattern, pp. 239

O F. Buschmann et. al.: A System of Patterns. Pattern-Oriented Software
Architecture, Wiley, 1996

[=] Model-View-Controller, p. 125
[=] Publisher-Subscriber, p. 339
Q The VisualWorks Application Framework:

[=] VisualWorks Users Guide: Chapter 18, Application Framework (available
online)

Visual Works Cookbook: Part Il, User Interface (available online)

Tim Howard: The Smalltalk Developer’s Guide to VisualWorks, SIGS
Books, 1995

=
=

Software Composition Group 13.195

Object-Oriented Design with Smalltalk a Pure OO Language

14. Processes and Concurrency

ooo0oooQ

O

0o

Object-Oriented Design with Smalltalk a Pure OO Language

Concurrency and Parallelism

Applications of Concurrency

Limitations

Atomicity

Safety and Liveness

Processes in Smalltalk:

[=] Class Process, Process States, Process Scheduling and Priorities
Synchronization Mechanisms in Smalltalk:

[=]1 Semaphores, Mutual Exclusion Semaphores, SharedQueues
Delays

Promises

Processes and Concurrency

Software Composition Group

Concurrency and Parallelism

Q

Object-Oriented Design with Smalltalk a Pure OO Language

14.196

Processes and Concurrency

A sequential program specifies sequential execution of a list of statements; its
execution is called a process. A concurrent program specifies two or more
sequential programs that may be executed concurrently as parallel processes

A concurrent program can be executed by:
[=] Multiprogramming: processes share one or more processors

[=] Multiprocessing: each process runs on its own processor but with shared

memory

[=] Distributed processing: each process runs on its own processor connected

by a network to others
Motivations for concurrent programming:
[=] Parallelism for faster execution
[=1 Improving processor utilization
[=] Sequential model inappropriate

Software Composition Group

Limitations

Q

Concurrent applications introduce complexity:

14.197

Processes and Concurrency

[=] Safety -> synchronization mechanisms are needed to maintain consistency
[=] Liveness -> special techniques may be needed to guarantee progress

[=] Non-determinism -> debugging is harder because results may depend on
=

“race conditions”

Run-time overhead -> process creation, context switching and
synchronization take time

Software Composition Group

14.198

Object-Oriented Design with Smalltalk a Pure OO Language Processes and Concurrency

Atomicity

O Programs P1 and P2 execute concurrently:

{x=0}
Pl: x :=x +1
P2: x :=x +2

{x=72}

=] What are possible values of x after P1 and P2 complete?
[=] What is the intended final value of x?

O Synchronization mechanisms are needed to restrict the possible interleavings
of processes so that sets of actions can be seen as atomic.

O Mutual exclusion ensures that statements within a critical section are treated
atomically.

Software Composition Group 14.199

Object-Oriented Design with Smalltalk a Pure OO Language Processes and Concurrency

Safety and Liveness

O There are two principal difficulties in implementing concurrent programs:

Safety - ensuring consistency:
[=] mutual exclusion - shared resources must be updated atomically
[=] condition synchronization - operations may need to be delayed if shared
resources are not in an appropriate state (e.g, read from an empty buffer)

Liveness - ensuring progress:
[=] No Deadlock - some process can always access a shared resource
[=] No Starvation - all processes can eventually access shared resources

O Notations for expressing concurrent computation must address:
1. Process creation: how is concurrent execution specified?
2. Communication: how do processes communicate?
3. Synchronization: how is consistency maintained?

Software Composition Group 14.200

Object-Oriented Design with Smalltalk a Pure OO Language Processes and Concurrency

Processes in Smalltalk: Process class

O A Smalltalk system supports multiple independent processes.

Each instance of class Pr ocess represents a sequence of actions which can
be executed by the virtual machine concurrently with other processes.

Q
O Processes share a common address space (object memory)
a

Blocks are used as the basis for creating processes in Smalltalk. The simplest
way to create aPr ocess is to send a block the message #f or k

[Transcript cr; show 5 factorial printString] fork

O The new process is added to the list of scheduled processes. This process is
runnable (i.e., scheduled for execution) and will start executing as soon as the
current process releases the control of the processor.

Software Composition Group 14.201

Object-Oriented Design with Smalltalk a Pure OO Language Processes and Concurrency

Processes in Smalltalk: Process class (II)

O We can create a new instance of class Pr ocess which is not scheduled by
sending the #newPr ocess message to a block:

| aProcess |
aProcess := [Transcript cr; show 5 factorial printString] newProcess
O The actual process is not actually runnable until it receives the #r esune
message.
O A process can be created with any number of arguments:
aProcess :=[:n | Transcript cr; show n factorial printString]

newPr ocessWt hArgunents: #(5).
O A process can be temporarily stopped using a #suspend message. A
suspended process can be restarted later using the #r esunme message.
O A process can be stopped definitely using a message #t er ni nat e. Once a

process has received the #t er mi nat e message it cannot be restarted any
more.

Software Composition Group 14.202

Object-Oriented Design with Smalltalk a Pure OO Language Processes and Concurrency

Processes in Smalltalk: Process states

A process may be in one of

newProcess the five states:
suspended fork
resume 1. suspended
- = = = 2. waiting
\ Wwaiting p--__ 3. runnable
— — - i % .
v signal runnable 4. running, or
N .
wait* . 5. terminated
D scheduled
by the VM
running
terminate yield
< terminated >
*sent to aSemaphore
Software Composition Group 14.203
Object-Oriented Design with Smalltalk a Pure OO Language Processes and Concurrency

Process Scheduling and Priorities

O Process scheduling is based on priorities associated to processes.
O Processes of high priority run before processes of lower priority.
O Priority values go between 1 and 100.
O Eight priority values have assigned names.
Priority Name Purpose
100 timingPriority Used' by Processes that are dependent on
real time.
98 highlOPriority Used by time-critical 1/0
90 lowlOPriority Used by most I/O Processes
L Used by user Processes desirin
70 userlnterruptPriority imm ediy e service 9
50 userSchedulingPriority Useq by Processes governing normal
user interaction
30 userBackgroundPriority Used by user background processes
10 systemBackgroundPriority | Used by system background processes
1 systemRockBottonPriority | The lowest possible priority

Software Composition Group 14.204

Object-Oriented Design with Smalltalk a Pure OO Language

Process Scheduling and Priorities (1)

Q

Q

Processes are scheduled by the unique instance of class
Processor Schedul er called Processor.

A runnable process can be created with an specific priority using the #f or kAt :
message:

[Transcript cr; show 5 factorial printString]
forkAt: Processor userBackgroundPriority.
The priority of a process can be changed by using a #pri ority: message
| processl process2 |
Transcript clear.

Processes and Concurrency

processl := [Transcript show ‘first’] newProcess.
processl priority: Processor systenBackgroundPriority.
process2 := [Transcript show ‘second’] newProcess.
process2 priority: Processor highlCPriority.

processl resune.

process2 resune.

U The default process priority is user Schedul i ngPri ority (50)

Software Composition Group

Object-Oriented Design with Smalltalk a Pure OO Language

14.205

Processes and Concurrency

The Process Scheduling Algorithm

The active process can be
identifie|<\j/ b)l?the expression: Processor(ProcessorScheduler)
Processor acti veProcess activeProcess p
quiescentProcessList rocess i
The processor is given to nextLink nil
the process having the . . suspendedContext
highest priority. Array (inde by priority) [priority 50
100 myList
A process will run until itis || 99 Process Process
suspended, terminated or firstLinkl—» _
pre-empted by a higher v irsttin =
priority process, before 50 lastLink >
giving up the processor.
. o 3 Process
When the highest priority is 5 i firstLink 1—
held by multiple processes, [astLink
the active process can give 1 A
up the processor by using
the message #yi el d.

Software Composition Group

Object-Oriented Design with Smalltalk a Pure OO Language

Process Scheduling

Active Process
A

suspend
_——

14.206

Processes and Concurrency

Suspended
Processes

»
\
\
\
\
\
\
. \
yield \
\ Processor
- newProcess
‘ activeProcess
quiescentProcessList
scheduled 100 [.. [50] [1
by the VM 1]] —— fork
\ LI
Software Composition Group 14.207

Object-Oriented Design with Smalltalk a Pure OO Language Processes and Concurrency

Svynchronization Mechanisms

O Concurrent processes typically have references to some shared objects. Such
objects may receive messages from these processes in an arbitrary order,
which can lead to unpredictable results. Synchronization mechanisms serve
mainly to maintain consistency of shared objects.

[=] We can calculate the sum of the first N natural numbers:
[nl
n := 100000.
[

| i tenp |

Transcript cr; show ‘Pl running .

i :=1. tenp :=0.

[i <=n] whileTrue: [tenp :=tenp +i. i :=i +1].

Transcript cr; show ‘Pl sum="‘; show tenp printString] forkAt: 60.
P1 running

P1 sumis = 5000050000

Software Composition Group 14.208

Object-Oriented Design with Smalltalk a Pure OO Language Processes and Concurrency

Svynchronization Mechanisms (II)

O What happens if at the same time another process modifies the value of n?

| nd]

n := 100000.

d := Delay forMIliseconds: 400.
[17 temp |

Transcript cr; show ‘Pl running .
i :=1. tenp :=0.
[i <=n] whileTrue: [tenp :=tenp +i.
(i =5000) ifTrue: [dwait].
=i +1].

Transcript cr; show ‘Pl sumis = ‘; show tenp printString] forkAt: 60.
[Transcript cr; show ‘P2 running’. n := 10] forkAt: 50.

P1 running
P2 runni ng
P1 sumis = 12502500

Software Composition Group 14.209

Object-Oriented Design with Smalltalk a Pure OO Language Processes and Concurrency

Synchronization using Semaphores

O A semaphore is an object used to synchronize multiple processes. A process
waits for an event to occur by sending the message #wai t to the semaphore.
Another process then signals that the event has occurred by sending the
message #si gnal to the semaphore.

| sem|

Transcript clear.
sem : = Semaphore new.
[Transcript show ‘The'] fork.
[Transcript show ‘quick’. semwait.
Transcript show ‘fox'. semsignal] fork.
[Transcript show ‘brown’. semsignal.
semwait. Transcript show ‘junps over the lazy dog ; cr] fork
O If a semaphore receives a #wai t message for which no corresponding
#si gnal has been sent, the process sending the #wai t message is
suspended.
Each semaphore maintains a linked list of suspended processes.

If a semaphore receives a #wai t from two or more processes, it resumes only
one process for each signal it receives

O A semaphore pays no attention to the priority of a process. Processes are
queued in the same order in which they “waited” on the semaphore.

(my

Software Composition Group 14.210

Object-Oriented Design with Smalltalk a Pure OO Language Processes and Concurrency

Semaphores

ActiveProcess suspend
\ Suspended
Processes
@

\
\
N resume
. Processor
yield newProcess

' activeProcess
quiescentProcessList

scheduled 100 [.. [s0] [a
by the VM Y Y fork
| |
wait
Y aSemaphore resume x
T
signal*
Waiting Processes for aSemaphore
Software Composition Group 14.211
Object-Oriented Design with Smalltalk a Pure OO Language Processes and Concurrency

Semaphores for Mutual Exclusion

O Semaphores are frequently used to provide mutual exclusion for a “critical
section”. This is supported by the instance method #cri ti cal : . The block
argument is only executed when no other critical blocks sharing the same
semaphore are evaluating.

| ndsem]|
n := 100000.
d := Delay forMIIiseconds: 400.
[17 tenp |
Transcript cr; show ‘Pl running’ .
i :=1. tenp :=0.
semcritical: [[i <= n] whileTrue: [tenp :=tenp +i.
(i =5000) ifTrue: [dwait].
=i +17].1].
Transcript cr; show ‘Pl sumis = *‘; show tenp printString] forkAt: 60.
[Transcript cr; show ‘P2 running’. semcritical: [n:= 10]] forkAt: 50.

O A semaphore for mutual exclusion must start with one extra #si gnal ,
otherwise the critical section will never be entered. A special instance creation
method is provided:

Senaphor e f or Mut ual Excl usi on.

Software Composition Group 14.212

Object-Oriented Design with Smalltalk a Pure OO Language Processes and Concurrency

Svnchronization using a SharedQueue

O A Shar edQueue enables synchronized communication between processes. It
works like a normal queue (First in First Out, reads and writes), with the main
difference being that aShar edQueue protects itself against possible concurrent
accesses (multiple writes and/or multiple reads).

O Processes add objects to the shared queue by using the message #next Put :
(1) and read objects from the shared queue by sending the message #next (3).

| aSharedQueue d |
d := Delay forMIliseconds: 400.
aShar edQueue : = SharedQueue new.

[1to: 5do:[:i | aSharedQueue nextPut: i]] fork.
[6 to: 10 do:[:i | aSharedQueue nextPut: i. d wait]] forkAt: 60.
[1to: 5do:[:i | Transcript cr; show aSharedQueue next printString]] forkAt: 60.

O If no object is available in the shared queue when the messsage #next is
received, the process is suspended.

O We can query whether the shared queue is empty or not with the message
#i sEnpty

Software Composition Group 14.213

Object-Oriented Design with Smalltalk a Pure OO Language Processes and Concurrency

Delays

O Instances of class Del ay are used to delay the execution of a process.
O Aninstance of class Del ay will respond to the message #wai t by suspending
the active process for a certain amount of time.

U The time at which to resume is specified when the delay instance is created.
Time can be specified relative to the current time with the messages
#forM11iseconds: and #f or Seconds: .

| minuteWait |
mnuteWait := Delay forSeconds: 60.
mnuteVait wait.

O The resumption time can also be specified at an absolute time with respect to
the system’s millisecond clock with the message #unti |l M | | i seconds: .
Delays created in this way can be sent the message wait at most once.

Software Composition Group 14.214

Object-Oriented Design with Smalltalk a Pure OO Language Processes and Concurrency

Promises
O Class Proni se provides a means to evaluate a block within a concurrent
process.
O Aninstance of Promise can be created by sending the message #pr om se to
a block:

[5 factorial] promse
O The message #pr oni seAt : can be used to specify the priority of the process

created.
O The result of the block can be accessed by sending the message value to the
promise:
| pronise |
promise :=[5 factorial] proni se.

Transcript cr; show pronise value printString.

O Ifthe block has not completed evaluation, then the process that attempts to read
the value of a promise will wait until the process evaluating the block has
completed.

O A promise may be interrogated to discover if the process has completed by
sending the message #hasVal ue

Software Composition Group 14.215

Object-Oriented Design with Smalltalk a Pure OO Language Classes and Metaclasses - an Analysis

15. Classes and Metaclasses - an Analysis

“Some books are to be tasted,
others to be swallowed,
and some few to be chewed and digested”
— Francis Bacon, Of Studies

Q Atfirst sight, a difficult topic!

O You can live without really understanding them, but metaclasses provide a
uniform model, and you will make less errors if you learn how they work, and
you will really understand the object model

O Recap on Instantiation

O Recap on Inheritance

Software Composition Group 15.216
Object-Oriented Design with Smalltalk a Pure OO Language Classes and Metaclasses - an Analysis

The meaning of “Instance of”

OO0 O O OO

O

Every object is an instance of a class.

Every class (except Object) is ultimately a subclass of Node
Object. send:...

When anObject receives a message, the method is self subclass
looked up in its class and/or its superclasses.

A class defines the structure and the behavior of allits 4
instances.

Each instance possesses its own set of values.

Each instance shares its behavior with other
instances. This behavior is defined in its class, andis \
accessed via the instance of link.

Classes are objects: Try to understand
OrderedCol | ection alllnstVar Nanes
OrderedCol | ection class alllnstVar Nares

Look at Class class

subclass
of

instance of

aPrinter send....

Software Composition Group 15.217

Object-Oriented Design with Smalltalk a Pure OO Language Classes and Metaclasses - an Analysis

Concept of Metaclass & Responsibilities

Q

Concept:
[=] Everything is an object
[=] Every object is instance of exactly one class
[=] Aclass is also an object, and is an instance of its bmetaclass
[=] An object is a class if and only if it can create instances of itself.
Metaclass Responsibilities:
=] instance creation
[=] method compilation (different semantics can be introduced)
[=] class information (inheritance link, instance variable, ...)
Examples:
Node al | Subcl asses -> OrderedCol | ecti on (WrkStation QutputServer Wrkstation
Fil eServer PrintServer)
PrintServer alllnstances -> #()
Node i nstVar Nanes -> #(' nane' ' next Node')
Workstation withNane: #nmac -> aWrkstation

Wrkstation selectors -> ldentitySet (#accept: #originate:)
Wr kst ation canUnderstand: #nextNode -> true

Software Composition Group 15.218

Object-Oriented Design with Smalltalk a Pure OO Language Classes and Metaclasses - an Analysis

Classes, metaclasses and method lookup

d When anObject receives a
message, the method is looked

up in its class and/or its ~
superclasses. (
O So when aClass receives a \ K inherits
message, the method is looked \
up in its class (a metaclass) Wr kst ati on
and/or its superclass class
QO Here Wor kst at i on receives instance of
wi t hName: #nmac
O The method associated with
#wi t hNanme: selectorislooked verkstation withNane: #nac
up in the class of
Wor kst ati on: Workstation cl ass
Software Composition Group 15.219
Object-Oriented Design with Smalltalk a Pure OO Language Classes and Metaclasses - an Analysis

Responsibilities of Object & Class classes

O Object

[=] represents the common behavior (like error, halting...) shared by all the
instances (final instances and classes)

[=] all the classes should inherit ultimately from Object
-> Workstation inherits from Node
-> Node inherits from Object

a Class

[=] represents the common behavior of all the classes (compilation, method
storing, instance variable storing)

[=] Class inherits from Object because Class is an Object, although a special
one -> Class knows how to create instances

[=1 So all the classes should inherit ultimately from Class

Software Composition Group 15.220

Object-Oriented Design with Smalltalk a Pure OO Language Classes and Metaclasses - an Analysis

A possible kernel for explicit metaclasses
O The kernel of CLOS and ObjVlisp but not the kernel of Smalltalk

(o) --L |

inherits

from i nstance of

S inherits
’ from

’
Y

Workstation

instance of

i nstance of

aWrkstation

Software Composition Group 15.221

Object-Oriented Design with Smalltalk a Pure OO Language Classes and Metaclasses - an Analysis

Singleton with explicit metaclasses

K inherits Class
(o) irask [©=)
3 \

,’inherils
from

instance of

Lan
i nstance of
i nstance of
awr k aLan
aWr k2
aSpec\Wr k
Software Composition Group 15.222
Object-Oriented Design with Smalltalk a Pure OO Language Classes and Metaclasses - an Analysis
Deeper into it
ance
e
/
Wr kst ation new -
Unique \
4 Instance
i nstance of \
"Sni I fstance i sNi |
uni quel s
A uniquet nst ancé
/ /
i nstance of
/
~
—
-
Speci al Wr kst ati on new
Software Composition Group 15.223
Object-Oriented Design with Smalltalk a Pure OO Language Classes and Metaclasses - an Analysis

Smalltalk Metaclasses in 7 points

1.

2.

3.

O No explicit metaclasses, only implicit non-sharable metaclasses.

Every class is ultimately a subclass of Object (except Object itself)
Behavi or
d assDescription
d ass
Met acl ass

Every object is an instance of a class = every class is an instance of a class which
is its metaclass.

Every class is an instance of a metaclass.
[=] Every user defined class is the sole instance of another class (a
metaclass).
[=] Metaclasses are system generated so they are unnamed. You can access
them by sending the message #cl ass to a class.

Software Composition Group 15.224

Object-Oriented Design with Smalltalk a Pure OO Language Classes and Metaclasses - an Analysis

Smalltalk Metaclasses in 7 points (1)

Nunber

Smal | I nteger _ | nt eger Obj ect

- — - — >

Tyl 0 — Tl - e RS- e Pl
[=] If Xiis a subclass of Y then X class is a subclass of Y class.
[=] But what is the superclass of the metaclass of Obj ect ?
[=] The superclass of Obj ect classis Cl ass

4. All metaclasses are (ultimately) subclasses of Cl ass.

d ass |
‘ Smal | Integer _ g Integer _ _ , MNunber_ _ , Object :

I
G ass Smal || nt eger I nt eger Nunber j ect I
class class 9 — e [5e - = e - — > gﬂss e —

[=] But metaclasses are also objects so they should be instances of a
Metaclass

Software Composition Group 15.225

Object-Oriented Design with Smalltalk a Pure OO Language Classes and Metaclasses - an Analysis

Smalltalk Metaclasses in 7 points (llI)

e e e e -
I
¢ ‘
. I
Jd ass Small Integer _ g Integer _ _ MNunber_ _ , Cbject |
cl ass I
Smal | | nt eger I nt eger Nunber j ect !
class g’7’c|asg -~ class T~ ™ gﬂss -——
Met acl ass ‘ ‘ ‘ ‘
Met acl ass
cl ass
5. Every metaclass is an instance of Met acl ass. So Met acl ass is an instance of
itself

[=] Obj ect : common object behavior
[=] d ass: common class behavior (hame, multiple instances)
[=] Met acl ass: common metaclass behavior (no name, unique instance)

6. The methods of Class and its superclasses support the behavior common to
those objects that are classes.

Software Composition Group 15.226

Object-Oriented Design with Smalltalk a Pure OO Language Classes and Metaclasses - an Analysis

Smalltalk Metaclasses in 7 points (1V)

7. The methods of instances of Met acl ass add the behavior specific to particular
classes.
[=] Methods of instance of Metaclass = methods of “Packet class” = class
methods (for example #wi t hNane:)

O@SSeq _ _ o _____ .
X I

~
h I
‘ RN ot . _ !
dass P Q assDescription — — — — — — +Behavi or- — — = bj ect |
class S~ |
A assDescriptien — — — — — > i j ect !
/ class P Becflla;’;sm -—» PiEet]

Met aé I/ass /{ ‘ ‘
, /
/
/

/.
Met acl ass
class

[=] An instance method defined in Behavi or or Cl assDescri pti on,is
available as a class method. Example: #new, #new:

Software Composition Group 15.227

Object-Oriented Design with Smalltalk a Pure OO Language Classes and Metaclasses - an Analysis

Behavior Responsibilities

Minimum state necessary for objects that have instances.
Basic interface to the compiler.

State: class hierarchy link, method dictionary, description of instances
(representation and number)

Methods:

[=] creating a method dictionary, compiling method (#conpi | e:)

[=] instance creation (#new, #basi cNew, #new., #basi cNew.)
[=] class into hierarchy (#supercl ass:, #addSubcl ass:)

[=] accessing (#selectors, #allSelectors, #compiledMethodAt:)

[=] accessing instances and variables (#al | | nst ances,
#i nst VAr Nanes, #all | nst Var Nanes, #cl assVar Nanes,
#al | Cl assVar Nanes)

[=] accessing clas hierarchy (#super cl ass, #al | Supercl asses,
#subcl asses, #al | Subcl asses)

[=] testing (#hasMet hods, #i ncl udesSel ect or, #canUnder st and:,
#i nheritsFrom, #isVariable)

O OoO0Oo

Software Composition Group 15.228

Object-Oriented Design with Smalltalk a Pure OO Language Classes and Metaclasses - an Analysis

ClassDescription Responsibilities

O d assDescri pti on adds a number of facilities to basic Behavi or :

named instance variables

category organization for methods

the notion of a name of this class (implemented as subclass responsibility)
the maintenance of the Changes set, and logging changes on a file

most of the mechanisms needed for fileOut

O dassDescription is an abstract class: its facilities are intended for
inheritance by the two subclasses, Cl ass and Met acl ass.

O Subclasses must implement #addl nst Var Nane: and
#renovel nst Var Nane:

O Instance Variables:
[=] instanceVariables<Array of: String> names of instance fields

[=] organization <ClassOrganizer> provides organization of message
protocol

(] (o) [o] [0]

Software Composition Group 15.229

Object-Oriented Design with Smalltalk a Pure OO Language Classes and Metaclasses - an Analysis

Metaclass and Class Responsibilities

O Metaclass
[=] initialization of class variables
[=] creating initialized instances of the metaclass’s sole instance
[=] instance creation (#subcl assCf ;)

[=] metaclass instance protocol
(#name: i nEnvi ronnent : subcl assOf @)

O Class
[=] d ass adds naming for class

[=] d ass adds the representation for classVariable names and shared pool
variables (#addCl assVar aNanes, #addShar edPool : ,
#initialize)

Software Composition Group 15.230

Object-Oriented Design with Smalltalk a Pure OO Language Common Mistakes and Debugging

16. Common Mistakes and Debugging

O Preventing: Most Common Mistakes
O Curing: Debugging Fast (from ST Report July 93)
U Extras

Software Composition Group 16.231

Object-Oriented Design with Smalltalk a Pure OO Language Common Mistakes and Debugging

Common Beginner Bugs

Q trueisthe boolean value, Tr ue its class. Which one is correct?
Book>>initialize

inLibrary := True

Book>>i nitialize
inLibrary := true

O nil isnotan acceptable receiver fori f Tr ue:
O whi | eTr ue receiver must be a block

[x<y] whileTrue: [x :=x + 3]
O Before creating a class, check if it already exists. This is (sigh) a weakness of

the system
Obj ect subcl ass: #View

Software Composition Group 16.232

Object-Oriented Design with Smalltalk a Pure OO Language Common Mistakes and Debugging

Common Beqginner Bugs (1)

O Inamethodsel f isreturned by default. Do not forget ~ for returning something
else.

Packet >>i sAddr essedTo: aNode
A self addressee = aNode nane
Q Ina#newmethod do not forget the ” to return the newly created instance
Packet cl ass>>new
super new initialize
[=] The above code returns the class Packet and not the newly created
instance. The correct code is
Packet cl ass>>new

A super new initialize

Software Composition Group 16.233

Object-Oriented Design with Smalltalk a Pure OO Language Common Mistakes and Debugging

Common Beginner Bugs (1)

O Inanewmethod do not forget to use super or to invoke basi cNewto create
the new instance.

[=] The following Example loops:
Packet class>> new

"self newinitialize
[=] The correct code is:

Packet cl ass>> new
N self basicNew initialize
“or ™ super new initialize”

O Before redefining new as follows:

Packet cl ass>>new

Asuper new initialize

[=] checkif this is not already done by super. If so, i ni ti al i ze will be called
twice!

Software Composition Group 16.234

Object-Oriented Design with Smalltalk a Pure OO Language Common Mistakes and Debugging

Instance Variable Access in Class Method

O Do nottry to access instance variables to initialize them in the newmethod. You
do not have the right. The newmethod can only access class instance variables
and classVariables.

[=] -> Define and invoke ani ni ti al i ze method on instances.
[=] Example: Do not write

Packet class>>send: aString to: anAddress
contents := aString.
addressee : = anAddress
[=] Instead create an instance and invoke instance methods
Packet class>>send: aString to: anAddress
sel f new contents: aString; addressee: anAddress

Software Composition Group 16.235

Object-Oriented Design with Smalltalk a Pure OO Language Common Mistakes and Debugging

Common Beqginner Bugs - Assignment

O Do not try to assign a value to a method argument
set Nane: aString

aString := aString, 'Device'.
name : = aString
O Do not assign to a class, it will damage your system
OrderedCol I ection := 2
O Do not try to modify sel f and super

Software Composition Group 16.236

Object-Oriented Design with Smalltalk a Pure OO Language

Common Beginner Bugs - Redefinition

[my

Object-Oriented Design with Smalltalk a Pure OO Language

Never redefine basic-methods (#==, #basi cNew, #basi cNew: ,
#basi cAt:, #basicAt: Put:..)

Never redefine #cl ass
Redefine #hash when you redefine #= so that if a = b then a hash = b hash
Book>>=aBook
Aself title = aBook title & (self author = aBook author)

Book>>hash
Aself title hash bitXor: self author hash

Common Mistakes and Debugging

Software Composition Group 16.237

Common Beqginner Bugs - Collections

Object-Oriented Design with Smalltalk a Pure OO Language

#add: returns the argument and not the receiver, so use your sel f to getthe
collection back.
Do not forget to specialize #copy Enpt y when adding named instance
variables to a subclass which has indexed instance variables (subclasses of
Collection)
Never iterate over a collection which the iteration somehow modifies.

tinmers do:[:aTiner| aTiner isActive ifFalse: [tinmers renove: aTiner]]
[=] First Copy the collection

timers copy do:[:aTiner| aTimer isActive ifFalse: [timers renove: aTiner]
Take care, since the iteration can involve various methods and modifications
which may not be obvious!

Common Mistakes and Debugging

Software Composition Group 16.238

Use of Accessors: Protect your Cients

Q

The literature says: “Access instance variables using methods”
Schedul e>>initialize
tasks := OrderedCol | ection new.
Schedul e>>t asks
~tasks
However, accessors methods should be PRIVATE by default.

If accessors would be public, a client could write
Schedul eVi ew>>addTaskBut t on

nodel tasks add: newTask
[=1 What happens if we change the representation of tasks? If t asks is now a
dictionary everything will break.
[=] Provide an adding method
Schedul e>>addTask: aTask
tasks add: aTask
Schedul eVi ew>>addTaskBut t on

nodel addTask: newTask

Common Mistakes and Debugging

Software Composition Group 16.239

Object-Oriented Design with Smalltalk a Pure OO Language

Debugqging - Hints

O Basic Printing
Transcript cr;

show ‘The total=",

self total

Common Mistakes and Debugging

printString.

[=] Use a global or a class to control printing information

Debug i fTrue:[Transcript cr; show
Debug > 4 ifTrue:[Transcript cr;
show:

Debug print:[Transcript cr; ‘The total =",

Snal | tal k renoveKey: #Debug
Q Inspecting
Qbj ect >>i nspect

[=] You can create your own inspect method

M/l nspect or new i nspect: an(bj ect

‘The total =",
show ‘The total=",
self total

self total printString]
self total printString]
printString]

O Naming: useful to add an id for debugging purposes

Software Composition Group

Object-Oriented Design with Smalltalk a Pure OO Language

Debuqaging - Where am 1?

O Identifying the current context
“if this is not a block”

Transcript show thisContext printString; cr.
Debug ifTrue:[“use this expression in a bl ock”

16.240

Common Mistakes and Debugging

Transcript show thisContext sender home printString; cr]

Q Audible Feedback
Screen default ringBell
Q Catching Itin the Act

<Grl-C (WR.5) <Crl-shift-C Emergency stop
<Qrl-Y> (WB.0) <Crl-Shift-C Energency stop

O Suppose that you cannot open a debugger
Transcript cr;

[=] Orinafile
|filel
file := *errors’ asFilename appendStream
file cr; nextPutAll: (NotifierView shortStackFor:
file close

Software Composition Group

Object-Oriented Design with Smalltalk a Pure OO Language

show. (Notifierview short StackFor:

t hi sCont ext of Si ze: 5)

thi sContext of Size: 5).

16.241

Common Mistakes and Debugging

Debugging - Source Inspection

O Source Code for Blocks
aBl ockd osure nethod get Source
aMet hodCont ext sour ceCode

O Decompiling a Method
[=] Shift + select the method in the browser

[=] Interesting for modifying literals or fixing MethodWrapper bugs:
initialize
arrayConst := #(1 2 3 4)

[=] then somebody somewhere does
arrayConst at:1 put:100

[=] Soyour array is polluted. Note that if you recompile the method the original
contents of the literal array are restored. So always consider returning

copies of your literals.

O Entry Points

[=] How is a window opened or what happens when the menu is invoked?
Look into Launcher Vi ewand Ul Vi sual | Launcher implementors of

enu

Software Composition Group

16.242

Object-Oriented Design with Smalltalk a Pure OO Language Common Mistakes and Debugging

Debugqging - Where am | going?
O Breakpoints

sel f halt.

self error: * invalid
Q Conditional halt
i > 10 ifTrue:[self halt]
Input State default shiftDown ifTrue:[self halt]
Input State default altDown ifTrue:[self halt]
Input State default metabDown ifTrue:[self halt]
Q Inacontroller:
self sensor shiftDown ifTrue:[self halt]
O Slowing Down Actions: useful for complex graphics
CQursor wait showile: [(Delay forMIliseconfs: 800) wait]
[=] (Do not forget the wait) until a mouse button is clicked.
CQursor crossHair showil e:
[Schedul edControl | ers activeControl | er sensor waitNoButton; waitd ickButton]

Software Composition Group 16.243

Object-Oriented Design with Smalltalk a Pure OO Language Common Mistakes and Debugging

Debuqgging - How do | get out?

1 <CTR +Shift-C or Y> Energency Debugger
2 OhjectMenory quit

3 <ESC> to eval uate the expression
4 An Advanced Emergency Procedure: recompile the wrong method if you know
it!
ad ass conpile: ‘nethodnane methodcode’ classified: ‘what you want’
exanpl e:
Controller conpile: ‘controllnitialize ~self' classified: ‘basic’
O Graphical Feedback
(=1 Where the cursor is:
Schedul edControl l ers activeControl |l er sensor cursor Point
[=] Position the cursor explicitly
Schedul edControl l ers activeController sensor cursorPoint: aPoint
Rectangl e froniser
[=] Indicating an area with a filled rectangle
Schedul edControl | ers activeController view graphi csCont ext
di splay Rectangle: (0@ extent: 10@L00)

Software Composition Group 16.244

Object-Oriented Design with Smalltalk a Pure OO Language Common Mistakes and Debugging

Debugqing - Files in VW

Ext ernal Stream cl assPool at: #openStreans

O How do you ensure that an open file will be closed in case of an error?
[=] Use #val ueNowOr OnUnwi ndDo: or #val ueOnUnwi ndDo:
| streani
[stream:= (Filenane named: aString) readStream

] val ueNowQr OnUnwi ndDo: [st ream cl ose].

Bl ockd osur e>>val uenUnwi ndDo: aBl ock
"Answer the result of evaluating the receiver. If an exception woul d cause
the evaluation to be abandoned, eval uate aBl ock. "

Bl ockd osur e>>val ueNowQr OnUnwi ndDo: aBl ock

"Answer the result of evaluating the receiver. If an exception would cause the
eval uation to be abandoned, evaluate aBlock. The logic for this is in Exception.
I'f no exception occurs, also evaluate aBl ock."

Software Composition Group 16.245

Object-Oriented Design with Smalltalk

The Internal Structure of Objects

17. The Internal Structure of Objects

QO Smalltalk gives to the programmer the illusion of uniformity

[=] for example Smallintegers are defined as any other object but in memory
they are different than objects. In that case the object pointer represents

the Smalllnteger

Q Inthe memory representation Smalltalk objects can be of

— pointer type

— non-pointer type

— index type (e.g.,#(123)at: 2)

— non-index type (e.g., aPacket name)
— immediate type

O This difference is transparent for the programmer’s daily job, but if we want to
do some optimizations, performance and memory analysis.... how can we

compute the size in bytes of an object?

Software Composition Group

Object-Oriented Design with Smalltalk

Three Ways to Create Classes

O Non indexable, pointer
hj ect subcl ass: #Packet

instanceVari abl eNames: ' contents addressee originator '

classVari abl eNanes: **
pool Dictionaries: "'
category: ' Deno- LAN
O Indexable pointer
ArrayedCol | ection variabl eSubcl ass: #Array
i nstanceVari abl eNanes: "'
classVari abl eNanes: **
pool Dictionaries: "'
category: 'Collections-Arrayed'
O Indexable, non pointer
Li ni t edPreci si onReal vari abl eByt eSubcl ass: #Fl oat
i nstanceVari abl eNanes: "'
classVari abl eNanes: ' Pi Radi ansPer Degree '
pool Dictionaries: "'
category: ' Magnitude- Nunbers'
Q Itis not possible to define named instance variables

Software Composition Group

Object-Oriented Design with Smalltalk

Let there be Code

O Identifying subclass:

| collection |

col lection := SortedCol | ection new.

Smal | tal k al | BehaviorsDo: [:each ||bool ean|
bool ean : = each isMeta not and: [each isCbsolete not].
bool ean : = bool ean and: [each isFixed].

bool ean ifTrue: [collection add: each nane]].
~col I ection

Q Identifying variableSubclass:

bool ean : = each isMeta not and: [each isCbsolete not].
bool ean : = bool ean and: [each isPointers].
bool ean : = bool ean and: [each isVariable].

bool ean ifTrue: [collection add: each nane]]

Q Identifying variableByteSubclass:

bool ean : = each isMeta not and: [each isChsolete not].
bool ean : = bool ean and: [each isBits].
bool ean : = bool ean and: [each isVariable].

bool ean ifTrue: [collection add: each name]]

Software Composition Group

17.246

The Internal Structure of Objects

17.247

The Internal Structure of Objects

17.248

Object-Oriented Design with Smalltalk The Internal Structure of Objects

Format and other

O The information for distinguishing between these three type is stored in the
format instance variable of Behavior.
Behavi or>>i sBits

"Answer whet her the receiver contains just bits (not pointers)."
~format noMask: self pointersMask

Behavi or >>has| nmedi at el nst ances imedi ate type object?
Behavi or >>i sFi xed non- i ndexabl e type obj ect?
Behavi or >>i sPoi nters pointers type object?
Behavi or >>i sVari abl e i ndexabl e type obj ect?

pointer type [isPointers]

indexable type [isVariable] variableSubclass:
non-index type [isFixed] subclass:

non-pointer [isBits]

index type [isVariable] variableByteSubclass:
non-index type [isFixed] subclass:

immediate [haslmmediatelnstances] subclass:

Software Composition Group 17.249

Object-Oriented Design with Smalltalk The Internal Structure of Objects

Object size in bytes

obj ect Si zel nByt es: anChj ect

| byt esl nOTE byt esl nOOP ad ass i ndexabl eFi el dSi ze i nst Var Fi el dSi ze si ze|
byt esI nOTE : = Cbj ect Menory current byt esPer OTE.
bytesI nOOP : = Cbj ect Menory current byt esPer OOP.
aC ass := an(bj ect class.
ad ass isPointers
ifTrue:
[instVarFiel dSize := ad ass instSize * bytesl nOOP.
ad ass isVariable
ifTrue: [indexabl eFiel dSize : = an(oj ect basicSize * bytesl nOOP]
ifFal se: [indexabl eFiel dSize := 0]]
i f Fal se:
[instVarFiel dSize := 0.
ad ass isVariable
ifTrue: [indexabl eFiel dSize : = anChj ect basicSize +
(bytesI nOOP -1) bitAnd: byteslnOOP negat ed]
i f Fal se: [i ndexabl eFi el dSi ze := 0]].
size := bytesInOTE + instVarFiel dSi ze + i ndexabl eFi el dSi ze.

"si ze

Software Composition Group 17.250

Object-Oriented Design with Smalltalk The Internal Structure of Objects

Analysis

O OTE (ObjectTable Entry) = 12 bytes: OTE is a description of an Object (class,
iv, hash, gc flags,)
O OOP (Object Oriented Pointer) = 4 bytes
O Pointers Type
Internal s new obj ect Si zel nBytes: WrkStation new
pointer, instSize = 3 (dependents nanme nextNode) * 4 = 12
not indexabl e
Internal s new obj ect Si zel nBytes: (WrkStation new name: #abc)
idem because not recursive
Internal s new obj ect Si zel nBytes: 1@
12 + 2 * 4 = 20 bytes
O Indexable and Pointers Type

Internal s new obj ect Si zel nBytes: (OrderedCol | ection new 10)
OrderedCol | ection new. 10
= 2 inst variable and 10 i ndexes
class instSize =2 * 4
basicSize = 10 * 4
= 60 bytes

Software Composition Group 17.251

Object-Oriented Design with Smalltalk The Internal Structure of Objects

Analysis (II)

O Indexable pure
Internal s new obj ect Si zel nBytes: Float pi

4 indexed variable * 4 = 16 bytes

O Non pointer, non Index = immediate, but an immediate type object has no
object table entry. The immediate object is stored into the OOP.

Internal s new obj ect Si zel nBytes: 1

= 12 bytes, but the code should use islnmediate

Software Composition Group 17.252

Object-Oriented Design with Smalltalk a Pure OO Language Blocks and Optimization

18. Blocks and Optimization

O Recall:

[tx:y | Jtnp] ...]
val ue
val ue:

val ue: val ue:
val ue: val ue: val ue:
val ueWt hAr gunent s:
Q In VisualWorks there are four types of blocks:
[=] Full Blocks
[=] Copying Blocks
[=] Clean Blocks
[=1 Inlined Blocks

O The programmer does not have to explicitly mention which one is needed. This
is inferred by the compiler. However, knowing the subtle differences allows the
programmer to write more efficient code.

Software Composition Group 18.253

Object-Oriented Design with Smalltalk a Pure OO Language Blocks and Optimization

Full Blocks

O Read and assign temporary variables.
Block containing explicit return ~.
Compiled in a BlockClosure.

a

Q

O Evaluation by the creation of an explicit MethodContext or BlockContext object
instead of using a pseudo-object contained in the stack.

Q

Most costly

Instead of:
ml: argl
argl isN |
ifTrue: [~ 1]
ifFalse: [* 2]
Better:
ml: argl
N argl isN |
ifTrue: [1]
ifFalse: [2]

Software Composition Group 18.254

Object-Oriented Design with Smalltalk a Pure OO Language Blocks and Optimization

Copying Blocks

Read temporary variables but do not assign them.

No explicit return.

Access instance variables of self and assign them.

Not compiled into a BlockClosure.

They are compiled by copying every access into the block, thus avoiding explicit
references to a context where the copied variables appear.

Their arguments and temporaries are merged into the enclosing method'’s
context as “compiler-generated temporaries”.

0O ODODOOD

Software Composition Group 18.255

Object-Oriented Design with Smalltalk a Pure OO Language Blocks and Optimization

Clean Blocks

O Contain only reference block temporary variables or global variables.
O No reference to self or to instance variables.

nodes do: [:each | each name = #stef]
nodes select: [:each | each islLocal]

Software Composition Group 18.256

Object-Oriented Design with Smalltalk a Pure OO Language Blocks and Optimization

Inlined Blocks

O Code of certain methods, like whileFalse: ifTrue:, is directly inlined into the
code of the calling method.

O The literal blocks (without arguments) passed as argument to such methods
are also inlined in the byte-code of the calling method.

O Inlined methods are whileTrue, whileTrue:, whileFalse, whileFalse:, and: or:,
ifTrue:, ifFalse:, ifTrue:ifFalse:, ifFalse:ifTrue:, to:do:, to:do:by:
O Look in MessageNode>>transform* methods to see the inlining

testinLined
1to: 5do: [:x]]

Compiled into :
| t1]
tl =1
[t1l <= 5] whileTrue: [t1 :=1t1 + 1].

[=1 But no BlockClosure is created (look into the byte codes)

Software Composition Group 18.257
Object-Oriented Design with Smalltalk a Pure OO Language Blocks and Optimization
Full to Copy
Q Instead of:
[t]
[:x] t :=x foo] value: 1.
t =t * 2
t

[=] The reference to t inside the block makes it at least a copying block.
[=] t:=makes it full.

Q With the following we have a clean block.
[t

t :=[:x | x foo] value:1.
t o=t * 2.
t

Software Composition Group 18.258

Object-Oriented Design with Smalltalk a Pure OO Language Blocks and Optimization

Contexts

O Full blocks are evaluated in a separate context.
O The following code evaluates to false:
| out er Cont ext answer |
out er Context := thisContext.
(1 to: 1) do: [:i | answer := thisContext == outerContext].
Aanswer

O But the following evaluates to true because: to:do: is an inlined block

| out er Cont ext answer |

outerContext := thisContext.
1 to: 1 do: [:i | answer := thisContext == outerContext].
~answer

O Soitis better to use to:do: than (to:) do:

Software Composition Group 18.259
Object-Oriented Design with Smalltalk a Pure OO Language Blocks and Optimization
Inject:into:
Q Instead of:
| maxNunber |
nmaxNunber := 0.
#(1 2 43 56 2 49 3 2 0) do: [:each] maxNumber := each max: maxNunber].
~maxNunber
Q Write
#(1 2 4356 249 320) inject: O into: [:maxNunber :ele| maxNunber nax: ele]
O no need for a temporary variable
Q full block becomes a clean block
Software Composition Group 18.260
Object-Oriented Design with Smalltalk a Pure OO Language Blocks and Optimization

About String Concatenation

Q strl, str2 creates a new structure in which strl and str2 elements are stored

Sequenceabl eCol | ecti on>>, aSequenceabl eCol | ection
"Answer a copy of the receiver concatenated with the argunent,
a Sequenceabl eCol | ection.”

~sel f copyRepl aceFrom self size + 1
to: self size
wi th: aSequenceabl eCol | ecti on
Sequenceabl eCol | ecti on>>copyRepl aceFrom start to: stop with: replacenentCol | ection
"Answer a copy of the receiver satisfying the follow ng conditions:

Software Composition Group

18.261

Object-Oriented Design with Smalltalk a Pure OO Language Blocks and Optimization

Streams, Blocks and Optimization

(from Alan Knight)

O Suppose that we want to concatenate a pretty long list of strings, for example
the keys of the Smalltalk dictionary.

| bi gString|

bigString := String new.
Smal I tal k keys do: [:aString | bigString := bigString, aString].
O Here the assignment of bigString leads to a Full Block
O We can suppress the assignment like that and thus obtain a clean block

| aSt r eanj
aStream = WiteStreamon: String new.
Smal ltal k keys do: [:aString | aStreamnextPutAll: aString].
O inject:into: allows us to suppress the reference to variables that are outside the
block and to obtain a clean block.
| aStreani
aStream = WiteStreamon: String new.

Smal I talk keys inject: aStreaminto: [:cumul :aString| cunul nextPutAll: aString. cumul].
Software Composition Group 18.262
Object-Oriented Design with Smalltalk a Pure OO Language Blocks and Optimization

Streams, Blocks and Optimization (II)

O Now if we use a stream for the Smalltalk keys we can avoid an iteration method.
With whileFalse: that is inlined the block itself will be inlined.

| aReadStream aWi t eSt r eam

aReadStream : = ReadStreamon: Smalltal k keys asArray.

aWiteStream:= WiteStreamon: String new

[aReadStream at End] whi |l eFal se: [aWiteStreamnextPutAll: a ReadStream next].

[=] Optimization Yes, but Readibility First

Software Composition Group 18.263

Object-Oriented Design with Smalltalk a Pure OO Language Blocks and Optimization

BlockClosure Class Comments

Q Instance Variables:
met hod <Conpi | edBl ock>

out er Cont ext <Context | nil>
copi edVal ues <Cbject | Array | nil>
Q There are currently three kinds of closures:

1. "Clean" closure with no references to anything from outer scopes. A clean closure
has outerContext = nil and copiedValues = empty Array.

2. "Copying" closure that copies immutable values from outer scopes when the
closure is created. A copying closure has outerContext = nil and copiedValues =
Object or Array.

3. "Full" closure that retains a reference to the next outer scope. A full closure has
outerContext ~= nil and copiedValues = nil.

O As an optimization, copiedValues holds the single copied value if there is
exactly one, or an Array of values if there is more than one. Note that if there is
a single copied value, the value being copied can be nil, so testing for nil in
copiedValues is not a reliable means of classifying closures. The way to check
whether a closure has copied values is to ask its method whether
numCopiedValues > 0.

Software Composition Group 18.264

Object-Oriented Design with Smalltalk a Pure OO Language

Advanced Blocks

19. Advanced Blocks

O VM represents the state of execution as Context objects
[=] for method MethodContext
[=] for block BlockContext

O aContext contains a reference to

[=] the context from which it is invoked,
=] the receiver
[=] arguments

=] temporaries in the Context

O We call home context the context in which a block is defined

Software Composition Group 19.265

Object-Oriented Design with Smalltalk a Pure OO Language

Advanced Blocks

Lexical Scope

O Arguments, temporaries, instance variables are lexically scoped in Smalltalk

U These variables are bound in the context in which the block is defined and not
in the context in which the block is evaluated

Test >>t est Scope

"sel f new test Scope"

It]

t = 15.

sel f testBlock: [Transcript show t printString]
Test >>t est Bl ock: aBl ock

[t]

t 1= 50.

aBl ock val ue

Test new testBl ock
-> 15 and not 50

Software Composition Group 19.266

Object-Oriented Design with Smalltalk a Pure OO Language

Advanced Blocks

Returning from a Block

O ~should be the last statement of a block body
[Transcript show ‘two'.
A osel f.

Transcript show 'not printed]

Q Areturn exits the method containing it.

test
"self new test"”
Transcript show 'one'.
1 isZero

ifFalse: [O isZero ifTrue: [Transcript show 'two'.

N oself]].
Transcript show ' not printed

-> one two

Software Composition Group 19.267

Object-Oriented Design with Smalltalk a Pure OO Language Advanced Blocks

Returning From a Block (1)

O Taking returning as a differenciator
[=] Simple block [:x :y| x *x. X + y] returns the value of the last statement to the
method that send it the message value
[=] Continuation blocks [:x :y| * x + y] returns the value to the method that
activated @@not clear activated@ @ its homeContext
O As ablock is always evaluated in its homeContext, it is possible to attempt to
return from a method which has already returned using other return. This
runtime error condition is trapped by the VM.
Cbj ect >>r et ur nBl ock

A ~sel f]
Cbj ect new returnBl ock
-> Exception
| bl
b:=[:x| Transcript show x. x].
b value: * a. b value: * b.

b:= [:x| Transcript show x. "x].

b val ue: a . bvalue: ' b.

[=] Continuation blocks cannot be executed several times!

Software Composition Group 19.268

Object-Oriented Design with Smalltalk a Pure OO Language Advanced Blocks

Example of Block Evaluation

Test >>t est Scope

"sel f new test Scope”

[t]

t = 15.

self testBlock: [Transcript show t printString.
"sel f]

Test >>t est Bl ock: aBl ock
[t]
t := 50.
aBl ock val ue.
self halt.

Test new testBl ock
-> 15 and not halt!!

Software Composition Group 19.269

Object-Oriented Design with Smalltalk a Pure OO Language Advanced Blocks

Creating an Escape Mechanism

| val |

val (= [:exit |
| goSoon|
goSoon := Dialog confirm 'Exit now?' .
goSoon ifTrue: [exit value: 'Bye'].
Transcript show 'Not exiting' .
‘last value'] valueWthExit.
Transcript show val

a yes -> print ‘Bye’
O no -> print ‘Not Exiting’ last value

Bl ockd osur e>>val ueWt hExi t
Asel f value: [:rarg| "arg]

Software Composition Group 19.270

Object-Oriented Design with Smalltalk a Pure OO Language

Part lll - Design Considerations

Abstract Classes
Elements of Design
Elementary Design Issues
Selected Idioms

Selected Design Patterns

o0oo0ooOo

Software Composition Group

Object-Oriented Design with Smalltalk Abstract Classes

20. Abstract Classes

O Should not be instantiated (abstract in Java).

O Defines a protocol common to a hierarchy of classes that is independent from
the representation choices.

O Aclass is considered as abstract as soon as one of the methods to which it
should respond to is not implemented (can be a inherited one).

Q Deferred methods send the message sel f subcl assResponsi bility.

O Depending of the situation, override #newto produce an error.

O Abstract classes are not syntactically different from instantiable classes, BUT a
common convention is to use class comments: So look at the class comment
and write in the comment which methods are abstract and should be
specialized.

[=] Advanced tools check this situation and exploit it.
“C ass Bool ean is an abstract class that inplements behavior conmon to true and fal se.
Its subclasses are True and Fal se. Subcl asses nust inplenent nethods for |ogical
operations
& not, controlling and:, or:, ifTrue:, ifFalse:, ifTrue:ifFalse:, ifFalse:ifTrue:"
Software Composition Group 20.272
Object-Oriented Design with Smalltalk Abstract Classes

Case Study - Boolean, True and False

o) ect ()
Bool ean (& not, |, and:, or:,ifTrue:,
ifFalse:,ifTrue:ifFalse:,ifFalse:ifTrue:)
Fal se ()
True ()
[Bool ean
eqv:, xor:, storeOn:,
shal | owCopy
al se
and:, or:,1 rue:,ifFal se:, e or:,ifTrue:,ifFal se:,
ifTrue:ifFalse:,ifFalse:ifTrue: ifTrue:ifFalse:,ifFalse:ifTr
& not, | & not, |
Software Composition Group 20.273
Object-Oriented Design with Smalltalk Abstract Classes

Case Study - Boolean, True and False (II)
O Abstract method

Bool ean>>not

"Negation. Answer true if the receiver is false,
answer false if the receiver is true.”
sel f subcl assResponsi bility
O Concrete method defined in terms of an abstract method
Bool ean>>xor: aBool ean
"Exclusive OR Answer true if the receiver is not equivalent to aBool ean."
~(sel f == aBool ean) not
[=] When #not will be defined, #xor : is automatically defined

O Note that VisualWorks introduced a kind of macro expansion, an optimisation
for essential methods and Just In Time (JIT) compilation. A method is executed
once and afterwards it is compiled into native code. So the second time it is
invoked, the native code will be executed.

Software Composition Group 20.274

Object-Oriented Design with Smalltalk

Abstract Classes

Case Study - Boolean, True and False (IlI)

Fal se>>not

"Negation -- answer true since the receiver is false."

Atrue

True>>not

"Negation--answer false since the receiver is true."

~al se

Fal se>>i f True: trueBl ock ifFal se: fal seBl ock

"Answer the value of falseBl ock. This nmethod is typically not invoked because

ifTrue:/ifFal se: expressions are conpiled in-line for literal

~fal seBl ock val ue

True>>i fTrue: trueBl ock ifFalse: falseBlock

"Answer the value of trueBlock. This nethod is typically not invoked because

ifTrue:/ifFalse: expressions are conpiled in-line for literal

“trueAl ternativeBl ock val ue

Software Composition Group

Object-Oriented Design with Smalltalk

Case Study - Magnitude
1>2 = 2<1 =false

Magni t ude>> < aMagni t ude

~sel f subcl assResponsi bility
Magni t ude>> = aMagni t ude

~sel f subcl assResponsi bility
Magni t ude>> <= aMagni t ude

~(sel f > aMagni tude) not
Magni t ude>> > aMagni t ude

~aMagni tude < sel f
Magni t ude>> >= aMagni t ude

~(sel f < aMagni tude) not
Magni t ude>> between: min and: nax

nself >= min and: [self <= max]

1 <=2 = (1 > 2) not
= fal se not
= true

Software Composition Group

Object-Oriented Design with Smalltalk

Case Study - Date

Dat e>>< aDat e

"Answer whether the argunment, aDate, precedes the date of the receiver."

year = aDate year
ifTrue: [~day < aDate day]
ifFal se: [“year < aDate year]

Dat e>>= aDate

"Answer whether the argunent, aDate, is the sane day as the receiver.

sel f species = aDate species
ifTrue: [~day = aDate day & (year = aDate year)]
ifFalse: [~false]

Dat e>>hash
A(year hash bitShift: 3) bitXor: day

Software Composition Group

20.275

Abstract Classes

20.276

Abstract Classes

20.277

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

21. Elements of Design

Class definition

Instance initialization

Enforcing the instance creation
Instance / Class methods
Instance variables / Class instance variables
Class initialization

Law of Demeter

Factoring Constants

Abstract Classes

Template Methods

Delegation

Bad Coding Style

[y iy oy o o)

Software Composition Group 21.278

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

A First Implementation of Packet

Chj ect subcl ass: #Packet
i nstanceVari abl eNanes: ‘contents addressee originator *
classVari abl eNanes: *’
pool Dictionaries: '
category: ‘Lan-Sinulation’

O One instance method
Packet >>print On: aStream
super printOn: aStream
aStreamnextPutAll: * addressed to: ‘; nextPutAll: self addressee.
aStreamnextPutAll: * with contents: '; nextPutAll: self contents

O Some Accessors
Packet >>addr essee
~addr essee

Packet >>addr essee: aSynbol
addr essee : = aSynbol

Software Composition Group 21.279

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Packet CLASS Definition

O Packet Class is Automatically defined
Packet cl ass

i nstanceVari abl eNanes:

O Example of instance creation
Packet new addressee: # mac ; contents: ‘hello mac

Software Composition Group 21.280

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Fraqgile Instance Creation

Packet new addressee: # nmac ; contents: ‘hello mac’

O If we do not specify a contents, it breaks!

I pl
p := Packet new addressee: #nac.
p printOn: aStream-> error

O Problems of this approach:
[=] responsibility of the instance creation relies on the clients
[=] can create packet without contents, without address

=] instance variable not initialized -> error (for example, pri nt On:) ->
system fragile

O Solutions:
[=] Automatic initialization of instance variables
[=] Proposing a solid interface for the creation
[=] Lazy initialization

Software Composition Group 21.281

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Assuring Instance Variable Initialization

O Problem: By default #new class method returns instance with uninitialized
instance variables. Moreover, #i ni ti al i ze method is not automatically
called by creation methods #new' new.

[=] How to initialize a newly created instance ?

O Solution: Define an instance method that initializes the instance variables and
override #newto invoke it.

1 Packet cl ass>>new d ass Met hod
2 N super new initialize
3 Packet>>initialize I nstance Met hod

super initialize.
4 contents := ‘defaul t nmessage’

Packet new (1-2) -> aPacket initialize (3-4) -> returning anlnitializedPacket

O Reminder: You cannot access instance variables from a class method like
#new

Software Composition Group 21.282

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Strengthen Instance Creation Interface

O Problem: A client can still create aPacket without address.

O Solution: Force the client to use the class interface creation.
[=] Providing an interface for creation and avoiding the use of #new
Packet send: ‘Hello mac’ to: #Mac
[=]1 Firsttry:
Packet class>>send: aString to: anAddress
A self new contents: aString ; addressee: anAddress

Software Composition Group 21.283

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Other Instance Initialization

step 1. SortedCol | ection sortBlock: [:a :b|] a nane < b nane]

SortedCol | ection class>>sortBl ock: aBl ock
"Answer a new instance of SortedCollection such that its elenments are sorted
according to the criterion specified in aBlock."
~sel f new sortBl ock: aBl ock d ass et hod

step 2. self new = aSortedCol | ection
step 3. aSortedCol | ection sortBlock: aBl ock I nst ance net hod
step 4. returning the instance aSortedCol | ection

step 1. OderedCollection with: 1

Col | ection class>>wi th: anCbj ect
"Answer a new instance of a Collection containing anChject."
| newCol | ection |
newCol | ection := self new
newCol | ection add: anChject.
~newCol | ecti on

Software Composition Group 21.284

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Lazy Initialization

O When some instance variables are:
— not used all the time
— consuming space, difficult to initialize because depending on other
— need a lot of computation

[=] Use lazy initialization based on accessors
[=] Lazy initialization should be used consistently!

Q Alazy initialization scheme with default value
Packet >>cont ent s
contents isN |
ifTrue: [contents := ‘no contents’]
A contents
O A lazy initialization scheme with computed value
Dummy>>r at i oBet weenTher nonucl ear AndSol ar
ratio isN |
ifTrue: [ratio := self heavyConputation]

Nratio

Software Composition Group 21.285

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Providing a Default Value

O The case of SortedCollection
OrderedCol | ection variabl eSubcl ass: #SortedCol | ection
i nstanceVari abl eNanes: 'sortBlock '
classVari abl eNanes: ' Def aul t Sort Bl ock *

SortedCol | ection class>>initialize
DefaultSortBlock := [:x 1y | x <=y]

SortedCol | ection>>initialize
"Set the initial value of the receiver's sorting algorithmto a default."
sort Bl ock := Defaul t Sort Bl ock

SortedCol | ection class>>new. anl nt eger
"Answer a new instance of SortedCollection. The default sorting is a <= conparison on el enents."
~(super new. anlnteger) initialize

SortedCol | ection class>>sortBl ock: aBl ock
"Answer a new instance of SortedCollection such that its elenents
are sorted according to the criterion specified in aBlock."
~sel f new sortBl ock: aBl ock

Software Composition Group 21.286

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Invoking per default the creation interface

OrderedCol | ection cl ass>>new
"Answer a new enpty instance of OrderedCollection."”

"self new. 5

Software Composition Group 21.287

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Forbidding new

O Problem: We can still use #newto create fragile instances
U Solution: #new should raise an error!
Packet cl ass>>new

self error: 'Packet should only be created using send:to:’

[=] But we still have to be able to create instance!
Packet class>>send: aString to: anAddress
N self new contents: aString ; addressee: anAddress
-> raises an error
Packet class>>send: aString to: anAddress
A super new contents: aString ; addressee: anAddress
-> bad style: link between class and superclass dangerous in case of evolution

O Solution: use basi cNewand basi cNew:
Packet class>>send: aString to: anAddress

~ sel f basi cNew contents: aString ; addressee: anAddress

Software Composition Group 21.288

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Class Methods - Class Instance Variables

O Classes (Packet cl ass) represents class (Packet).

O Class instance variable are instance variable of class
-> should represent the state of class: number of created instances, number of
messages sent, superclasses, subclasses....

O Class methods represent CLASS behavior: instance creation, class
initialization, counting the number of instances....

O If you weaken the second point: class state and behavior can be used to define
common properties shared by all the instances

[=] Ex: If we want to encapsulate the way “no next node” is coded. Instead of
writing:
aNode next Node i sNil not => aNode hasNext Node

Node>>hasNext Node

~ self nextNode = self noNext Node
Node>>noNext Node

~sel f class noNext Node
Node cl ass>>noNext Node

Aol

Software Composition Group 21.289

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Class Initialization

O Automatically called by the system at load time or explicitly by the programmer.

[=] Used to initialize a classVariable, a pool dictionary or class instance
variables.

[=1 ‘Classnane initialize atthe end of the saved files.

Magni t ude subcl ass: #Date
instanceVari abl eNanes: 'day year'
cl assVari abl eNanes: ' Daysl nMonth First DayOf Mont h Mont hNanes Secondsl nDay WeekDayNanes'
pool Dictionaries: "'
category: 'Magnitude-General’

Date class>>initialize

“Initialize class variables representing the nanes of the nonths and days and the nunber of
seconds, days in each nonth, and first day of each nonth. "

Mont hNanes : = #(January February March April My

June July August Septenmber October Novenber Decenber).

Secondsl nDay := 24 * 60 * 60.

Dayslnhonth := #(31 28 31 30 31 30 31 31 30 31 30 31).

FirstDayO'Month := #(1 32 60 91 121 152 182 213 244 274 305 335).
WeekDayNames : = #(Monday Tuesday Wednesday Thursday Friday Saturday Sunday)

Software Composition Group 21.290

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

A Case Study: Scanner

Scanner new

scanTokens: 'identifier keyword: 8r31 ''string' ' enbedded. period key: word:

-> #(#identifier #keyword: 25 'string 'enbedded. period #key:word: # .')
Q Class Definition

(hj ect subcl ass: #Scanner

instanceVari abl eNanes: 'source mark prevEnd hereChar token tokenType saveCom
nents current Corment buffer typeTable '

cl assVari abl eNanes: ' TypeTabl e
pool Dictionaries: "'
category: ' System Conpiler-Public Access'
O Why having an instance variable and a classVariable denoting the same object
(the scanner table)?
[=] TypeTable is used to initialize once the table

[=] typeTable is used by every instance and each instance can customize the
table (copying).

Software Composition Group 21.291

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

A Case Study: Scanner (1)

Scanner>>initialize

“Scanner initialize"

| newTabl e |

newTabl e : = Scanner Tabl e new. 255 withAl|: #xDefault. "default"”

newTabl e at Al | Separat orsPut: #xDelimter.

newTabl e atAll DigitsPut: #xDigit.

newlabl e atAll LettersPut: #xlLetter.

newTabl e at: $_ aslnteger put: #xlLetter.

"1OR*+, -/ <=>?@~' do: [:bin | newTable at: bin aslnteger put: #xBinary].
"Qther multi-character tokens”

newTabl e at: $" aslnteger put: #xDoubl eQuote.

"Singl e-character tokens"
newTabl e at: $# aslnteger put: #literal Quote.
newTabl e at: $(aslnteger put: #l eftParenthesis.

newTabl e at: $" aslnteger put: #upArrow. “"spacing circunflex, formerly up arrow'
newTabl e at: $| aslnteger put: #vertical Bar.
TypeTabl e : = newTabl e

Software Composition Group 21.292

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

A Case Study: Scanner (I11)

O Instances only access the type table via the instance variable that points to the
table that has been initialized once.

Scanner cl ass>> new

Asuper new init Scanner
Scanner >>i ni t Scanner
buffer := WiteStreamon: (String new 40).
saveComments : = true.
typeTabl e : = TypeTabl e

O Asubclass just has to specialize initScanner without copying the initialization of
the table

MyScanner >>i ni t Scanner
super i nit Scanner
typeTabl e : = typeTabl e copy.
typeTable at: $(aslnteger put: #xDefault.
typeTable at: $) aslnteger put: #xDefault.

Software Composition Group 21.293

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Why are Coupled Classes bad?

Packet >>addr essee
Naddr essee
Wr kst at i on>>accept: aPacket
aPacket addressee = self name
ifTrue:[Transcript show 'A packet is accepted by the Wrkstation '
sel f name asString]
i fFal se: [super accept: aPacket]

O If Packet changes the way addressee is represented, Workstation, Node,
PrinterServer have to be changed too

Software Composition Group 21.294

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

The Law ot Demeter

O You should only send messages to:
[=] an argument passed to you
[=] an object you create
=] self, super
[=] your class
O Avoid global variables
O Avoid objects returned from message sends other than self
soneMet hod: aPar anet er

sel f foo.

super someMet hod: aParaneter.
self class foo.

sel f instVarOne foo.

i nst Var One foo.

sel f classVar tne foo.

cl assVar One foo.

aPar anet er foo.

thing := Thing new

thing foo

Software Composition Group 21.295

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

The Law of Demeter (II)

a Example
NodeManager >>decl ar eNewNode: aNode
| nodeDescri pti on|

(aNode isValid) “Ck passed as an argurment to ne”

ifTrue: [aNode certified].
nodeDescription : = NodeDescription for: aNode.

nodeDescription | ocal Ti ne. “l created it”

sel f addNodeDescri ption: nodeDescri ption. “l can talk to nyself*

nodeDescri ption data “Wong | should not know
at: self creatorKey “that data is a dictionary”

put: self creator

Software Composition Group

21.296

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

About the Use of Accessors

O Literature says: “Access instance variables using methods”

[=] Be consistent inside a class, do not mix direct access and accessor use
[=] First think accessors as private methods that should not be invoked by

clients
=1 Only when necessary put accessors in accessing protocol

Schedul er>>initialize
tasks := O deredCol | ection new

Schedul er >>t asks
"t asks

O BUT: accessors methods should be PRIVATE by default at least at the

beginning
O Accessors are good for lazy initialization
Schedul e>>t asks
tasks isNi| ifTrue: [task :=...].
"t asks

Software Composition Group

21.297

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

About the Use of Accessors (II)

O The fact that accessors are methods doesn’t provide you with a good data

encapsulation.

Q If they are mentionned as public (no enforcement in Smalltalk) you could be

tempted to write in a client:
Schedul edVi ew>>addTaskBut t on

nodel tasks add: newTask

[=] What's happen if we change the representation of tasks? If tasks is now an

array it will break

O Take care about the coupling between your objects and provide a good

interface!

Schedul e>>addTask: aTask
tasks add: aTask

O Return consistenly the receiver or the element but not the collection (otherwise

people can look inside and modify it) or return a copy of it.

Software Composition Group

21.298

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

About the Use of Accessors (Ill)

Q Alan Knight: Never do the work somebody else can do!

XXX>>m
total := 0.
aPlant bilings do: [:each | (each status == #paid and: [each date>startDate])
ifTrue: [total := total + each anount]].
O Instead write
XXX>m
total := aPlant total BillingsPai dSince: startDate
Software Composition Group 21.299
Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Provide a Complete Interface

Packet >>addr essee

~addr essee
Wr kst at i on>>accept: aPacket
aPacket addressee = self name
ifTrue:[Transcript show 'A packet is accepted by the Wrkstation ',
sel f name asString]
i fFal se: [super accept: aPacket]
Q Itis the responsibility of an object to propose a complete interface that propects
itself from client intrusion.
O Shift the responsibility to the Packet object
Packet >>i sAddr essedTo: aNode
A addressee = aNode nane
Wor kst ati on>>accept: aPacket
(aPacket i sAddressedTo: self)

ifTrue:[Transcript show 'A packet is accepted by the Wrkstation '
sel f name asString]

if Fal se: [super accept: aPacket]

Software Composition Group 21.300

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Factoring Out Constants

O Ex: We want to encapsulate the way “no next node” is coded. Instead of writing:
Node>>next Node

~ next Node
Noded i ent >>transmi t To: aNode
aNode next Node = ‘no next node’
Q Write:

Noded i ent >>transm t To: aNode
aNode hasNext Node

Node>>hasNext Node
A (self nextNode = sel f class noNext Node) not

Node cl ass>>noNext Node
~ ‘no next node’

Software Composition Group 21.301

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Initializing without Duplicating

Node>>i nitialize

accessType := ‘local’

Node>>j sLocal
A accessType = ‘local’

O It's better to write
Node>>i ni ti al i ze
accessType : = self |ocal AccessType

Node>>i sLocal
" accessType = self |ocal AccessType

Node>>| ocal AccessType
A ‘local’
O Ideally you could be able to change the constant without having any problems.

O You may have to have mapping tables from model constants to Ul constants or
database constants.

Software Composition Group 21.302

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Constants Needed at Creation Time
O Works well for:

Node cl ass>>| ocal NodeNaned: aString

|inst]|
inst := self new
inst nane: asString.
inst type: inst |ocal AccessType
O If you want to have the following creation interface
Node cl ass>>nane: aString accessType: aType
~sel f new nanme: aString ; accessType: aType
Node cl ass>>nane: aString
~sel f nanme: aString accessType: self |ocal AccessType
O You need:
Node cl ass>>l ocal AccessType
~ “local’
O -> Factor the constant between class and instance level
Node>>| ocal AccessType
~sel f class | ocal AccessType
O ->You could also use a ClassVariable that is shared between a class and its
instances.

Software Composition Group 21.303

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Type Checking for Dispatching

O How to invoke a method depending on the receiver and an argument?
[=] A not so good solution:

PSPrinter>>print: aDocument
~ aDocurent i sPS
ifTrue: [self printFronPS: aDocunent]
ifFalse: [self printFronPS: aDocunent asPS]

PSPri nt er >>pri nt For nPS: aPSDoc
<primtive>

Pdf Printer>>print: aDocunent
~ aDocunent isPS
ifTrue: [self printFronPDF: aDocunent asPDF]
ifFalse: [self printFronPDF: aDocunent]

Pdf Pri nt er>>pri nt FornPS: aPdf Doc
<prinmitive>

O As we do not know how to coerce form the PSPrinter to a PdfPrinter we only
use coercion between documents.

Software Composition Group 21.304

Object-Oriented Design with Smalltalk a Pure OO Language

Double Dispatch

u]
Qa

Elements of Design

How to invoke a method depending on the receiver and an argument?
Solution: use the information given by the single dispatch and redispatch with

the argument (send a message back to the argument passing the receiver as

an argument)

(c)
(d)
(a) PSPrinter>>print: aDoc
~ aDoc printnPSPrinter: self
(b) Pdf Printer>>print: abDoc
~ abDoc printOnPdfPrinter: self
(e)

(f)

Q Some Tests:

psptr print:
pdfptr print:
psptr print:
pdfptr print:

psdoc =>(a->c)
pdf doc => (b->f)

pdf doc => (a->d->b->f)
psdoc => (b->e->b->f)

Software Composition Group

Object-Oriented Design with Smalltalk a Pure OO Language

A Step Back

PSDoc>>pri nt OnPSPri nt er :
<primtive>

Pdf Doc>>pri nt OnPdf Printer:

aPSprinter print:

aPSPri nter

aPSPrint er
sel f asPS

PSDoc>>print OnPSPri nter: aPdf Printer
aPdf Printer print: self asPdf
Pdf Doc>>pri nt OnPdf Pri nt er : aPdf Pri nt er

<primtive>

21.305

Elements of Design

QO Example: Coercion between Float and Integer

[=] Not a really good solution:

I nt eger >>+ aNunber
(aNunber isKindO': Float)
ifTrue: [aNunber asFloat + self]
ifFalse: [self addPrinitive: aNumber]

Fl oat >>+ aNumber
(aNunber isKindO: Integer)
ifTrue: [aNunber asFloat + self]
ifFalse: [self addPrimtive: aNunber]

O Here receiver and argument are the same, we can coerce in both senses.

Software Composition Group

Object-Oriented Design with Smalltalk a Pure OO Language

Double Dispatch (1)

(a) I nt eger >>+ aNunber
~ aNunber sunfromi nteger: self
(b) Fl oat >>+ aNunber
~ aNunber sunfronfloat: self
U Some Tests:
1+ 1 (a->c)
1.0 + 1.0: (b->f)
1+ 1.0: (a->d->b->f)
1.0 + 1: (b->e->b->f)

Software Composition Group

21.306

Elements of Design

(c) I nteger>>sunfrom nteger: anlnteger
<primtive: 40>
(d) Float>>sunfroninteger: anlnteger

~ anlnteger asFloat + self

(e) Integer>>sunfronfloat: aFloat
~aFl oat + self asFloat

(f) Float>>sunfronfl oat: aFl oat
<prinmtive: 41>

21.307

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Methods are the Basic Units of Reuse

Node>>conput eRat i oFor D spl ay
| aver ageRati o def aul t NodeSi ze|

averageRatio := 55.
def aul t NodeSi ze : = sel f mai nW ndowCoor di nate / maxi n seVi ewRat i o.
sel f wi ndow add:
U Node new with:
(self bandWdth * averageRatio / defaul t WndowSi ze)

O We are forced to copy the method!
Speci al Node>>conput eRat i oFor Di spl ay

| aver ageRat i o def aul t NodeSi ze|
averageRatio := 55.

def aul t NodeSi ze := self mainWndowCoordinate + minimalRatio / maxim seVi ewRa-

tio.
sel f wi ndow add:
U Node new with: (self bandWdth * averageRatio / defaul t WndowSi ze)

Software Composition Group

21.308

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Methods are the Basic Units of Reuse (Il)

O Self sends = planning for Reuse

Node>>conput eRat i oFor D spl ay
| aver ageRat i o def aul t NodeSi ze|
averageRatio := 55.
def aul t NodeSi ze : = sel f defaul t NodeSi ze.
sel f wi ndow add:
U Node new wi t h:
(self bandWdth * averageRatio / defaul t WndowSi ze)

Node>>def aul t NodeSi ze
~sel f mai nW ndowCoor di nate / maxi m seVi ewRat i o

Speci al Node>>def aul t NodeSi ze
~sel f mai nW ndowCoor di nate + nininal Ratio / maxini seVi ewRati o

Software Composition Group

21.309

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Methods are the Basic Units of Reuse (lll)

Node>>conput eRat i oFor Di spl ay
| aver ageRati o def aul t NodeSi ze|
averageRatio := 55.
def aul t NodeSi ze : = sel f mai nWndowCoor di nate / naxi m seVi ewRati o.
sel f wi ndow add:
U Node new wi t h:
(self bandWdth * averageRatio / defaul t WndowSi ze).

Q We are forced to copy the method!
Speci al Node>>conput eRat i oFor Di spl ay
| aver ageRati o def aul t NodeSi ze|
averageRatio := 55.
def aul t NodeSi ze : = sel f mai nWndowCoor di nate / maxi m seVi ewRati o.
sel f wi ndow add:
Ext endedU Node new wi t h:
(self bandWdth * averageRatio / defaul t WndowSi ze).

Software Composition Group

21.310

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Class Factories

Node>>conput eRat i oFor D spl ay

| aver ageRatio |
averageRatio := 55.
sel f wi ndow add:
self UWdass new with:
(self bandWdth * averageRatio / self defaul t WndowSi ze)

Node>>U d ass

~U Node

Speci al Node>>U d ass
~Ext endedU Node

Software Composition Group 21.311

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Hook and Template Methods

AbstractClass
template Methodg,
hookMethod1
hookMethod2

A

self hookMethod1

self hookMethod?2

|
ConcreteClass

hookMethod1
hookMethod2

O Hook methods do not have to be abstract, they may define default behavior or
no behavior at all.

O This has an influence on the instantiability of the superclass.

Software Composition Group 21.312

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Hook Example: Copying

Cbj ect >>copy

Answer another instance just |ike the receiver. Subclasses normally override the postCopy
nmessage, but sone objects that should not be copied override copy. "

~sel f shal | owCopy post Copy

Cbj ect >>shal | owCopy
"Answer a copy of the receiver which shares the receiver's instance
variables."

<primtive: 532>

Cbj ect >>post Copy
" Finish doing whatever is required, beyond a shall owCopy, to inplenent 'copy'.
Answer the receiver. This nessage is only intended to be sent to the newy created instance.
Subcl asses may add functionality, but they should al ways do super postCopy first. "
" Note that any subclass that 'nixes in Mdelness' (i.e., inplenents dependents with an instance
variable) nust include the equival ent of 'self breakDependents'"

~sel f

Software Composition Group 21.313

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Hook Specialisation

Bag>>post Copy

"Make sure to copy the contents fully."

| new |
super post Copy.
new : = contents class new contents capacity.
contents keysAndVal uesDo:

[:obj :count | new at: obj put: count].
contents := new.

Software Composition Group 21.314

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Hook and Template Example: Printing

Chj ect >>print String

"Answer a String whose characters are a description of the receiver."

| aStream |

aStream:= WiteStreamon: (String new 16).
self printOn: aStream

~aStream contents

Chj ect >>printOn: aStream
"Append to the argunent aStream a sequence of characters
that describes the receiver.”

| title |
title := self class nane.
aStream next Put Al | :

((title at: 1) isVowel ifTrue: ['an '] ifFalse: ['a ']).
aStreamprint: self class

Software Composition Group 21.315

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Override of the Hook

Array>>printOn: aStream

"Append to the argunent, aStream the elenents of the Array
encl osed by parentheses."

| tooMany |

tooMany := aStream position + self naxPrint.
aStream next Put Al l: " #('.

self do: [:element |

aStream posi tion > tooMany
ifTrue:
[aStream nextPutAll: '...(nmore)...)".
~sel f].
el enent printOn: aStreani
separ at edBy: [aStream space].
aStream next Put: $)

Fal se>>printOn: aStream
"Print false.”

aStream nextPutAll: ‘false'

Software Composition Group 21.316

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Specialization of the Hook

O The class Behavior that represents a class extends the default hook but still
invokes the default one.

Behavi or >>print On: aStream

"Append to the argunment aStream a statenent of which
supercl ass the receiver descends from"

aStream nextPut All: 'a descendent of *
superclass printOn: aStream

Software Composition Group 21.317

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Behavior Up and State Down

Q 4 steps
1. Define classes by behavior, not state

2. Implement behavior with abstract state: if you need state do it indirectly via
messages. Do not reference the state variables directly

3. Identify message layers: implement class’s behavior through a small set of kernel
method

4. Deferidentification of state variable: The abstract state messages become kernel
methods that require state variables. Declare the variable in the subclass and
defer the kernel methods’ implementation to the subclasses

Col | ecti on>>renoveAl | : aCol | ection
aCol | ection do: [:each | self renove: each]

A aCol | ection

Col | ecti on>>renove: ol dCbj ect
self renove: ol dCbject ifAbsent: [self notFoundError]

Col l ection>>renove: anhject ifAbsent: anExceptionBl ock
sel f subcl assResponsi bility

Software Composition Group 21.318

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Guidelines for Creating Template Methods

Simple implementation. Implement all the code in one method.

Break into steps. Comment logical subparts

Make step methods. Extract subparts as methods

Call the step methods (including when using the refactoring browser)
Make constant methods, i.e., methods doing nothing else than returning.
Repeat steps 1-5 if necessary on the methods created

ooooO0oo

Software Composition Group 21.319

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Towards Delegation: Matching Addresses

O New requirement: A document can be printed on different printers for example
Iw100s or Iw200s depending on which printer is first encountered.

[=] -> Packet need more than one destination
0 Ad-hoc Solution:

LanPri nt er >>accept: aPacket
(thePacket addressee = #*| w)
ifTrue: [self print: thePacket]
ifFalse: [(thePacket isAddressedTo: self)
ifTrue: [self print: thePacket]

ifFal se: [super accept: thePacket]]
LanPrinter>>print: aPacket
Transcript
show. self nane ;
Cxxxx printing ***or
show. aPacket contents ;cr
a Limits:
[=1 not general
[=] brittle because based on a convention
[=] adding a new kind of address behavior requires editing the class Printer

Software Composition Group 21.320

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Reify and Deleqgate

node
nodePrinter aPacket anAddress

accept: aPacket
isAddressedTo: nodePrinter

print: aPacket

[false]

send: aPacket
accept: aPacket
) U U U

O An alternative solution: isAddressedTo: could be sent directly to the address
O With the current solution, the packet can still control the process if needed

Software Composition Group 21.321

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Reifying Address

Reify: v. making something an object (philosophy)

O NodeAddress is responsible for identifying the packet receivers
hj ect subcl ass: #NodeAddr ess
i nstanceVari abl eNares: ‘id"

NodeAddr ess>>i sAddr essedTo: aNodeAddr ess
~ self id = aNodeAddress id

Packet >>i sAddr essedTo: aNode
~ self addressee i sAddressedTo: aNode nane

U Having the same name for packet and for address is not necessary but the
name is meaningful!
[=] Refactoring Remark: name was not a good name anyway, and now it has
become an address -> we should rename it.

Software Composition Group 21.322

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Matching Address

Addr ess subcl ass: #Mat chi ngAddr ess

instanceVari abl eNanes: *’

NodeAddr ess>>i sAddr essedTo: aNodeAddr ess
~ self id match: aNodeAddress id

O Works for packets with matchable addresses
Packet send: ‘lulu’ to: (MatchingAddress with: #*1w)

O Does not work for nodes with matchable addresses because the match is
directed. But it corresponds to the requirements!

Node wi t hName: (Mat chi ngAddress with: #* | w¥)

Packet >>i sAddr essedTo: aNode
M sel f addressee i sAddressedTo: aNode nane
O Remarks
[=] inheritance class relationship is not really good because we can avoid
duplication (coming soon)
[=] Creation interfaces could be drastically improved

Software Composition Group 21.323

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Addresses

Chj ect subcl ass: #Address
i nstanceVari abl eNanes: ‘id’

Addr ess>>i sAddr essedTo: anAddr ess
~sel f subcl assResponsi bility

Address subcl ass: #NodeAddr ess
i nstanceVari abl eNanes: **

Address subcl ass: #Mat chi ngAddr ess
i nstanceVari abl eNanes: **

Software Composition Group 21.324

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Trade-Off

O Delegation Pros
[=] No blob class: one class one responsibility
[=] Variation possibility
[=] Pluggable behavior without inheritance extension
[=] Runtime pluggability

O Delegation Cons
[=] Difficult to follow responsibilities and message flow
[=] Adding new classes = adding complexities (more names)
[=] New object

Software Composition Group 21.325

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Designing Classes for Reuse

O Encapsulation principle: minimize data representation dependencies
— Complete interface

— No overuse of accessors

— Responsibility of the instance creation

Loose coupling between classes

Methods are units of reuse (self send)

Use polymorphism as much as possible to avoid type checking
Behavior up and state down

Use correct names for class

Use correct names for methods

ocOoo0ooO0oo

Software Composition Group 21.326

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Do not overuse conversions

nodes asSet

Q removes all the duplicated nodes (if node knows how to compare). But a
systematic use of asSet to protect yourself from duplicate is not good

nodes asSet asOrderedCol | ection
Q returns an ordered collection after removing duplicates

O Look for the real source of duplication if you do not want it!

Software Composition Group 21.327

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Hiding missing information

Dictionary>>at: aKey

O This raises an error if the key is not found

Dictionary>>at: aKey ifAbsent: aBl ock

O This allows one to specify action <aBlock> to be done when the key does not
exist. Do not overuse it:

nodes at: nodeld ifAbsent:[]

O This is bad because at least we should know that the nodel d was missing

Software Composition Group 21.328

Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

Different Self/Super

O Do notinvoke a super with a different method selector. It's bad style because it
links a class and a superclass. This is dangerous in case the software evolves.

Packet cl ass>>new
self error: 'Packet should only be created using send:to:'

Packet class>>send: aString to: anAddress
A super new contents: aString ; addressee: anAddress

O Usebasi cNewand basi cNew:
Packet class>>send: aString to: anAddress

~ sel f basi cNew contents: aString ; addressee: anAddress

O Neveroverride basi cNewand basi cNew: (another name allocate only create
instance without instance variable initialization)

Software Composition Group 21.329

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

22. Selected Idioms

O The Object Manifesto: Be lazy and be private
[=] Never do the job that you can delegate to another one
[=] Never let someone else plays with your private data

O The Programmer Manifesto: Say something only once

Software Composition Group 22.330

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Composed Methods

Q How do you divide a program into methods?
[=] Messages take time
[=] Flow of control is difficult with small methods
a But:
=1 Reading is improved
[=] Performance tuning is simpler (Cache...)
[=] Easier to maintain / inheritance impact

Divide your program into methods that perform one identifiable task. Keep all of
the operations in a method at the same level of abstraction.

Control | er>>control Actvity
self controllnitialize.
sel f control Loop.
sel f control Terni nate

Software Composition Group 22.331

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Constructor Method

O How do you represent instance creation?
[=] Most simple way: Packet new addressee: # mac

. contents:

‘hell o mac’
O Good if there are different combinations of parameters. But you have to read the
code to understand how to create an instance.
Q

Alternative: make sure that there is a method to represent each valid way to
create an instance.

Provide methods in class “instance creation” protocol that create well-formed
instances. Pass all required parameters to them

Packet class>>send: aString to: anAddress
~ sel f basi cNew contents: aString ; addressee: anAdress ; yourself
Point class>>x:y:
Poi nt class>> r: radi usNunber theta: thetaNurmber
~ sel f
x: radi usNunber * thetaNunber cos
y: radi usNunber * thetaNunber sin
SortedCol | ection class>>sortBl ock: aBl ock

Software Composition Group 22.332

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Constructor Parameter Method

O Once you define a constructor with paramteres, how do you pass them to the
newly created instance?
Packet class>>send: aString to: anAddress

~ self basicNew contents: aString ; addressee: anAdress ; yourself
O But this violates the “say things once and only once” rule (initialize)

Code a single method in the “private” procotol that sets all the variables. Preface
its name with “set”, then the names of the variables.

Packet class>>send: aString to: anAddress
" sel f basicNew setContents: aString addressee: anAddress
Packet >>set Contents: aString addressee: anAddress
contents:= aString.
addressee : = anAddress.
~sel f
[=] Note sel f (Interesting Result) in set Cont ent s: addr essee, because
the return value of the method will be used as the return of the caller

Software Composition Group 22.333

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Query Method

Od How do you represent testing a property of an object?
d What to return from a method that tests a property?
Q Instead of:
Swi t ch>>makeOn
status : = #on
Swi t ch>>nakef f
status := #of f
Swi t ch>>st at us
st atus

d i ent >>updat e
self switch status = #on ifTrue: [self l|ight nmakeOn]
self switch status = #of f ifTrue: [self |ight nakeOff]

O Itis better to define
Swi tch>>i sOn, Swi tch>>i sOF f

Provide a method that returns a Boolean in the “testing” protocol. Name it by
prefacing the property name with a form of “be” or “has”- is, was, will, has

[=] Switch>>on is not a good name... #on: or #isOn ?

Software Composition Group 22.334

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Boolean Property Setting Method

O How do you set a boolean property?
Swi t ch>>on: aBool ean

isOnh : = aBool ean
O Expose the representation of the status to the clients
O Responsibility of who turn off/on the switch: the client and not the object itself

Create two methods beginning with “be”. One has the property name, the other the
negation. Add “toggle” if the client doesn’t want to know about the current state

beVi si bl e/ bel nvi si bl e/ t oggl eVi si bl e

Software Composition Group 22.335

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Comparing Method

O How do we order objects?
a <,<=,>,>= are defined on Magnitude and its subclasses.

Implement “<=" in “comparing” protocol to return true if the receiver should be
ordered before the argument

[=] We can also use sort Bl ock: of SortedCol | ecti oncl ass

...sortBlock: [:a :b | a income > b incone]

Software Composition Group 22.336

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Execute Around Method

O How do we represent pairs of actions that have to be taken together?
[=] When afiled is opened it has to be closed....

O Basic solutions: under the client responsibility, he should invoke them on the
right order.

Code a method that takes a Block as an argument. Name the method by appending
“During: aBlock” to the name of the first method that have to be invoked. In the
body of the Execute Around Method, invoke the first method, evaluate the block,
then invoke the second method.

Fi | e>>openDuring: aBl ock Fi | e>>openDuring: aBl ock
sel f open. sel f open.
aBl ock val ue. [aBl ock val ue]
self close val ueNowQr Unwi ndDo: [sel f cl ose]

Cur sor >>showwi | e: aBl ock
| oldcursor |
ol dcursor := self class currentCursor.
sel f show.
~aBl ock val ueNowQr OnUnwi ndDo:
[ol dcursor showj

Software Composition Group 22.337

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Choosing Message

O How do you execute one of several alternatives?
responsible := (anEntry isKindOf: Film
ifTrue:[anEntry producer]

ifFal se:[anEntry author]
O Use polymorphism
Fi | mp>r esponsi bl e
~sel f producer
Ent ry>>r esponsi bl e
~sel f aut hor
responsi ble : = anEntry responsibl e
Send a message to one of several different of objects, each of which executes one
alternative

Q Examples:
Nunber >>+ aNunber
hj ect >>printOn: aStream
Col | ecti on>>i ncl udes:
U0 A Choosing Message can be sent to self in anticipation of future refinement by
inheritance. See also the State Pattern.

Software Composition Group 22.338

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Intention Revealing Messaqge

d How do you communicate your intent when the implementation is simple?
0 We are not writing for computer but for reader
Par agr aphEdi t or >>hi ghl i ght: aRect angl e

sel f reverse: aRectangle

O Ifyouwould replace #hi ghli ght: by#reverse: ,the system will runin the
same way but you would reveal the implementation of the method.

Send a message to self. Name the message so it communicates what is to be done
rather than how it is to be done. Code a simple method for the message.

Col | ecti on>>i sEnpty
~self size = 0

Nunber >>r eci procal
N1 oself

Software Composition Group 22.339

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Intention Revealing Selector

Q How do you name a method?
[=] If we choose to name after HOW it accomplished its task
Array>>| i near Sear chFor :
Set >>hashedSear chFor :
BTr ee>>t r eeSear chFor :
[=] These names are not good because you have to know the type of the
objects.

Name methods after WHAT they accomplish

O Better:
Col | ecti on>>sear chFor:

Q Even better:
Col | ecti on>>i ncl udes:

[=] Try to see if the name of the selector would be the same in a different
implementation.

Software Composition Group 22.340

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Name your Methods Well

O Not precise, not good
set Type: aval

"conpute and store the variable type"
sel f addTypeList: (ArrayType with: aval).
current Type := (current Type conputeTypes: (ArrayType with: aval))
O Precise, give to the reader a good idea of the functionality and not about the
implementation
conput eAndSt or eType: aval
"conpute and store the variable type"
sel f addTypeList: (ArrayType with: aval).
current Type := (currentType conputeTypes: (ArrayType with: aval))
Q Instead Of:
set TypeLi st: aLi st
"add the aList elt to the Set of type taken by the variable"
typeLi st add: aList.
Q Write:
addTypelLi st: aLi st
"add the aList elt to the Set of type taken by the variable"
typeLi st add: aList.

Software Composition Group 22.341

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

do: /collect:

Q Instead of writing:

| i ndex|

index := 1.
[index <= aCol | ection size] whileTrue:

[... aCollection at: index...
index := index + 1]
Q Write:
aCol l ection do: [:each | ...each ...]

O Instead of writing:
absol ute: aCol | ection

|result]
result := aCollection species new aCollection size.
1 to: aCollection size do: [:each | result at: each put: (aCollection at: each) abs].
M result
Q Write:

absol ute: aCol | ection
A aCol l ection collect: [:each| each abs]
[=] Note that this solution works well for indexable collection and also for sets.
The previous doesn't.

Software Composition Group 22.342

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

iISsEmpty /includes:

O Instead of writing:
...aCollection size = 0 ifTrue: [...]

...aCollection size > 0 ifTrue: [...]
O Write:
. aCol l ection isEnpty

Q Instead of writing:

| f ound|
found : = fal se.
aCol | ection do: [:each| each = anCbject ifTrue: [found : = true]].
| f ound|
found := (aCol l ection detect: [:each|] each | anChject] ifNone:[nil]) notNil.
Q Write:
| f ound|
found := aCol | ection includes: anChject
Software Composition Group 22.343
Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Naming Suggestions

O Attributes: The type of an attribute should not be reflected in its name
nodes

instead of
nodeAr r ay

Q Classes:
[=] Name a superclass with a single word that conveys its purpose in the
design
Nurber
Col I ecti on
Vi ew
Model
[=] Name subclasses in your hierarchy by prepending an adjective to the
superclass name
O deredCol | ecti on
SortedCol | ection
Lar gel nt eger

Software Composition Group 22.344

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Reversing Method

0 How to code a smooth flow of messages?
Poi nt >>print On: aStream

X printOn: aStream
aStreamnextPutAll: * @.
y printOn: aStream

O Here three objects receive different messages.

Code amethod on the parameter. Derive its name form the original message. Take
the original receiver as a parameter to the new method. Implement the method by
sending the original message to the original receiver.

U But creating new selectors just ofr fun is not a good idea. Each selector must
justify its existence.
Streane>print: anChj ect
anCbj ect printOn: sel f
Poi nt>>printOn: aStream

aStreamprint: x; nextPutAll: * @; print: y
[=] Note that the receiver can now change without affecting the other
parameters
Software Composition Group 22.345
Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Debuqg Printing Method

0 How do you code the default printing method?
U There are two audiences:
[=] you (a lot of information)
[=] your clients (should not be aware of the internal)

Override printOn: to provide information about object’s structure to the
programmer

O In VisualWorks, two needs are supported
[=] displayString for clients
[=] printString for you (call printOn:)

Software Composition Group 22.346

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Method Comment

a How do you comment methods?
Q Templates are not a good idea. Uses:
[=] Intention Revealing Selector says what the method does
[=] Type Suggesting Parameter Name says what the arguments are expected
to be.....
Communicate important information that is not obvious from the code in a
comment at the beginning of the method

O Example of important information:
[=] Method dependencies, preconditions
[=] Todo

[=] Reasons for changes (in a base class)
(self flags bitAnd: 2r1000) = 1 “Am| visible?"
ifTrue:[...]

isVisible
N(self flags bitAnd: 2r1000) = 1

self isVisible ifTrue:[...]

Software Composition Group 22.347

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Delegation

Od How does an object share implementation whitout inheritance?

O With inheritance
[=] code in written in context of superclasses
[=] in rich hierarchies, you may to read and understand many superclasses
[=1 how to simulate multiple inheritance (if this is really necessary)

Pass part of its work on to another object

O Many objects need to display, all objects delegate to a brush-like object (Pen in
VisualSmalltalk, GraphicsContext in VisualAge and VisualWorks)

O Allthe detailed code is concentrated in a single class and the rest of the system
has a simplified view of the displaying.

Software Composition Group 22.348

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Simple Delegation

O How do you invoke a disinterested delegate?
O Some important question on delegation:

[=1 isthe identity of the delegating object important? The delegating object can
pass itself to be notified by the delegate.The delegate could not want to
have an explicit reference to the delegating but still need access to it.

[=] is the state of the delegating object important to the delegate? If the
delegate has no reason to need the identity of the delegating object and it
is self-contained to accomplish its task without additional state: Simple
Delegation

Delegate messages unchanged

O Suppose an object that acts a LITTLE as a collection but has lots of other
protocols, instead fo inheriting from a collection, delegates to a collection.
[=] Collection doesn't care who invoked it. No state from the delegating is
required.

Software Composition Group 22.349

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Self Delegation

O How do you implement delegation to an object that needs reference to the
delegating object?

O One way is to have a reference in the delegate to the delegating.

QO Drawbacks:
[=] extra complexity,

each time the delegate changes, one should destroy the old reference and
set a new

=
[=] each delegate can only be used by one delegating,
=

If creating multiple copies of the delegate is expensive or impossible, this
does not work

Pass along the delegating object (i.e., self) in an additional parameter called “for:”

Software Composition Group 22.350

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Self Delegation - Example

O In VisualSmalltalk, hashed collections (dictionaries) use a hash table. Variants
of the hash table can be used depending on different criterias.

O Hash value is implemented differently by different collections. Dictionaries
compute hash by sending “hash” and IdentityDictionaries by sending
“basicHash”

Dictionary>>at: key put: val ue

sel f hashTable at: key put: value for: self

HashTabl e>>at: key put: value for: aCollection
| hash|
hash : = aCol | ection hashCf: key

Di cti onary>>hashO': anhj ect
~anCbj ect hash

I dentityDictionary>>hashCf: anObj ect
~anChbj ect basi cHash

O The hierarchy of hashed Collections is then independent of the hierarchy of the
HashTable

Software Composition Group 22.351

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Pluggable Behavior

Q0 How do you parameterize the behavior of an object?

O Inthe class based model instances have private values and share the
behavior.When you want a different behavior you create a new class. But
creating class is not always valuable: imagine a large number of classes with
only a single method.

O Questions to consider: how much felxibility you need? How many methods will
need to vary dynamically? How hard is it to follow the code? Will clients specify
the code to be plugged?

Add a variable that will be used to trigger different behavior

O Typical examples are user-interface object that have to display the contents of
many dfferent objects

Software Composition Group 22.352

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Pluggable Selector

Od How do you code simple instance specific behavior?
O The simplest way to implement Pluggable Behavior is to store a selector.

Add avariable that contains a selector to be performed. Append “Message” to the
Role Suggesting Instance Variable Name. Create a Composed Method that simply
performs the selector.

Li st Pane>>pri nt El enent: anCObj ect

~anCbj ect printString
O And subclasses only specializing
Dol | ar Li st Pane>>pri nt El enent: anChj ect
~anChbj ect asDol | ar For mat Stri ng
Descri ptionLi st Pane>>pri nt El enent: anChj ect
~ anChj ect description
Li st Pane>>pri nt El enent: anChj ect
~anChj ect perform print Message
Li st Pane>>initialize
print Message : = #printString
O Readibility: harder to follow than simple class-based behavior
O Extent: if you need more than twice per object use State Object

Software Composition Group 22.353

Object-Oriented Design with Smalltalk a Pure OO Language Selected Idioms

Pluggable Block

O How do you code COMPLEX Pluggable Behavior that is not quite worth its own
class?

Add an instance variable to store a Block. Append “Block” to the Role Suggesting
Instance Variable Name. Create aComposed Method to evaluate the Block to
invoke the Pluggable Behavior.

O Drawbacks: Enormous cost, readibility is worse, blocks are difficult to store
O PluggableAdaptor in VisualWorks allows one to map any interface to the value
model. A simplified version:
Car >>speedAdapt or
Pl uggabl eAdapt or
get Bl ock: [self speed]
put Bl ock: [:newSpeed| self speed: newSpeed]
Pl uggabl eAdapt or >>val ue
~get Bl ock val ue
Pl uggabl eAdapt or >>val ue: anChj ect
put Bl ock val ue: anChbj ect

Software Composition Group 22.354

Object-Oriented Design with Smalltalk Selected Design Patterns

23. Selected Design Patterns

Q Singleton
Q Composite
O Null Object
Software Composition Group 23.355
Object-Oriented Design with Smalltalk Selected Design Patterns

The Singleton Pattern

O Problem: We want a class with a unique instance.

U Solution: We specialize the #new class method so that if one instance already
exists this will be the only one. When the first instance is created, we store and
return it as result of #new.

| aLan|

alLan := Networ kManager new

alan == LAN new -> true

alan uni quel nstance == Networ kManager new -> true

Net Wor kManager cl ass
i nstanceVari abl eNanes: ' uni quel nstance '
Net wor kManager cl ass>>new
self error: ‘should use uniquel nstance’
Net wor kManager cl ass>>uni quel nstance
uni quel nstance i sNi | ifTrue: [uniquelnstance := self basicNew initialize].
“uni quel nst ance
O Providing access to the unique instance is not always necesssary. It depends
on what we want to express. The difference between #new and
#uni quel nst ance is that #new potentially initializes a new instance, while
#uni quel nst ance only returns the unique instance (there is no initialization).

Software Composition Group 23.356

Object-Oriented Design with Smalltalk Selected Design Patterns

Singleton (1l) - Theory

O Intent: Ensure that a class has only one instance, and provide a global point of
access to it

OQ A Possible Structure

Singleton «uniqueé | gingleton class
- Instance» -
singletonMethod uniquelnstance ¢
singletonState new o \
1 7 \
«shared variable» / Uni quel nstance isN |
Uniguelnstance // i f True: [Uni quel nstance : = sel f basi cNew
/ AUni quel nst ance
/
/
Client sel'f error:

clientMethodo | _

TS ngl eton uni quel nst ance si ngl et onMet hod

Software Composition Group 23.357

Object-Oriented Design with Smalltalk Selected Design Patterns

Singleton (Il) - Implementation
a

In some Smalltalk dialects, singletons are accessed via a global variable (ex:
NotificationManager uniquelnstance notifier).

Sessi onMbdel >>st ar t upW ndowSyst em
“Private - Perform OS wi ndow system startup”
| ol dW ndows|

Notifier initializeWndowHandl es.

ol dWndows := Notifier w ndows.
Notifier initialize.
ol dW ndows
Global Variable or Class Method Access

Global Variable Access is dangerous: if we reassign Notifier we lose all
references to the current window.

Class Method Access is better because it provides a single access point. This
class is responsible for the singleton instance (creation, initialization,...).

[my

Software Composition Group 23.358

Object-Oriented Design with Smalltalk Selected Design Patterns

Singleton (1V) - Implementation

O Singleton Variations

[=] Persistent Singleton: only one instance exists and its identity does not
change (ex: NotifierManager in Visual Smalltalk)

Transient Singleton: only one instance exists at any time, but that instance

changes (ex: SessionModel in Visual Smalltalk, SourceFileManager,

Screen in VisualWorks)

Single Active Instance Singleton: a single instance is active at any point in

time, but other dormant instances may also exist. Project in VisualWorks,

ControllerManager.

In Smalltalk we cannot prevent a client to send a message (protected in C++).
To prevent additional creation we can redefine new/new:
hj ect subcl ass: #Si ngl et on

=

i nstanceVari abl eNanes: *’
cl assVari abl eNanes: * Uni quel nst ance’
pool Dictionaries: ‘'

Si ngl et on cl ass>>new

self error: ‘dass ‘', self name, ' cannot create new instances’

Software Composition Group 23.359

Object-Oriented Design with Smalltalk Selected Design Patterns

Singleton (V) - Implementation

Q Providing Access:

Lazy Access, however with this solution we lose the initialization part of the
superclass

Singl eton cl ass>>uni quel nst ance

Uni quel nstance i sNil ifTrue:[Uniquelnstance := self basicNew.
~AUni quel nst ance

=1 Wan also try the following, if the initialization was done using initialize

. ifTrue: [Uniquelnstance := self basicNew initialize] ...
[=] The following is also done, but is bad practice and may break
. ifTrue: [Uniquelnstance := super new ...

O Access using new
Si ngl et on cl ass>>new
~sel f uni quel nst ance
[=] The intent (uniqueness) is not clear anymore! New is normally used to
return newly created instances. The programmer does not expect this:
| screenl screen2|
screenl := Screen new.

screen2 := Screen uni quel nstance

Software Composition Group 23.360

Object-Oriented Design with Smalltalk Selected Design Patterns

Singleton (VI) - Implementation

O Singleton for an entire subhierarchy of classes:

Obj ect subcl ass: #Singl eton

i nstanceVari abl eNares: ‘'
cl assVari abl eNanes: ‘ Uni quel nst ance’
Q ClassVariables are shared by all the subclasses
O Singleton for each of the classes in an hierarchy
Singl eton class instanceVariabl eNames: ‘ uni quel nstance’
Si ngl eton cl ass>>uni quel nst ance
uni quel nstance i sNi| ifTrue:[uniquelnstance := self basicNew.
“uni quel nst ance
[=] Instances variables of classes are private to the class
O When a class should only have one instance, it could be tempting to define all
its behavior at the class level. But this is not good:
=] Class behavior represents behavior of classes: “Ordinary objects are used
to model the real world. MetaObjects describe these ordinary objects”
[=] Do not mess up this separation and do not mix domain objects with
metaconcerns.
[=]1 What's happens if later on an object can have multiple instances? You
would have to change a lot of client code!

Software Composition Group 23.361

Object-Oriented Design with Smalltalk Selected Design Patterns

The Composite Pattern

O A Case study: Queries. We want to be able to

[=] Specify different queries over a repository
ql := PropertyQuery property: #H\L with: #< value: 4.

q2 := PropertyQuery property: #NOMwith: #> value: 10.
q3 := MatchNane match: ‘*figure*’
[=] Compose these queries and treat composite queries as one query
(el e2 e3 e4 ... en)((gql and g2 and g4) or g3) -> (e2 eb5)
conposer := AndConposeQuery with: (Array with: gl with: g2 with: g3)

Software Composition Group 23.362

Object-Oriented Design with Smalltalk Selected Design Patterns

Composite () - A Possible Solution

AbstraciQue ™macol ect el [Feach™ [T sélf hol dstn:?
- acol [ection “séleéct: ~ [T éach™ [“sél ol dsCn!
runOn: aCollectiom| - - — - -1 ;

holdsOn: anElement

[|
MatchingProperty| Composite

holdsOn: anElement add: aQuery

' !
:‘ A queries all: | /\
[

o |
AndComposite OrComposite
b e mm——— - holdsOn: anElement holdsOn: anElement

Software Composition Group 23.363

Object-Oriented Design with Smalltalk

Composite (1ll) - Theory

Selected Design Patterns

O Intent: Compose objects into tree structure to represent part-whole hierarchies.
Composite lets clients treat individual objects and compositions of objects

uniformly
(Cllent | »{Component]_
operation | children
[|
Leaf Composite
Operation Operation o-——— { _children do: [:child]

[]

add: aComponent
remove: aComponent

child operation]

Composite not only groups leaves but can also contain composites
In Smalltalk add:, remove: do not need to be declared into Component but

only on Composite. This way we avoid to have to define dummy behavior

for Leaf

Software Composition Group 23.364

Object-Oriented Design with Smalltalk

Selected Design Patterns

Composite (IV) - Implementation

hierarchy)

Doo0ooO0do0 0D

Forward

Use a Component superclass (To define the interface and factor code there)
Consider implementing abstract Composite and Leaf (in case of complex

Only Composite delegates to children
Composites can be nested
Composite sets the parent back-pointer (add:/remove:)
Can Composite contain any type of child? (domain issues)
Is the Composite’s number of children limited?

— Simple forward. Send the message to all the children and merge the
resuslts without performing any other behavior

— Selective forward. Conditionally forward to some children
— Extended forward. Extra behavior
— Override. Instead of delegating

Software Composition Group 23.365

Object-Oriented Design with Smalltalk

The NullObject Pattern

Selected Design Patterns

O Intent: Provides a surrogate for another object that shares the same interface
but does nothing. The NullObject encapsulates the implementation decisions of
how to do nothing and hides those details from its collaborators

AbstractObject

operation

len

[
RealObject

]
NullObject

operation

operation o

e e e
| 1do nothing or returns the default val uej‘

Software Composition Group 23.366

Object-Oriented Design with Smalltalk Selected Design Patterns

NullObject (I1) - With or Without

O Without this pattern, for example in MVC the View has to check that its controller
is not nil before invoking the normal behavior.

Vi sual Part >>obj ect Want i ngCont r ol

. Mctrl isNl ifFalse: [ctrl isControlWanted ifTrue: [self] ifFalse: [nil]]
O With NullObject, we avoid to make explicit tests
Vi sual Part >>obj ect Want i ngCont r ol
. Noctrl isControlWanted ifTrue: [self] ifFalse: [nil]
Control | er>>i sControl Active
~sel f viewHasQursor and:[...]
Control | er>>startUp
self controllnitialize. self control Loop. self control Terninate
Control | er>>i sCont r ol Want ed
~sel f vi ewHasCQur sor
NoCont rol | er >>i sCont r ol Want ed
~fal se
NoControl | er>>startUp
~sel f
NoControl | er>>i sControl Active
~fal se

Software Composition Group 23.367

Object-Oriented Design with Smalltalk Selected Design Patterns

NullObject (llIl) - Controller Hierarchy Example

Controller
%__VI W
startUp controller -2
isControlWanted
[]
TextController NoController
- - vt
isControlWanted| |isControlWanted| " fa'se
startUp startUp o oo
TR self)
! I
L—— —
Software Composition Group 23.368

Object-Oriented Design with Smalltalk Selected Design Patterns

NullObject (IV) - Consequences
Q Advantages

=] Uses polymorphic classes: NullObject and real ones share the same
interface so are interchangeable

[=] Simplifies client code: Clients does not have to handle null case
[=] Encapsulates do-nothing behavior: easy to identify, coded efficiently
[=] Make do-nothing behavior reusable

O Disadvantages

Forces encapsulation: the same null object cannot be added to several
classes unless they all delegate to a collaborator that can be a null object.

[=] May cause class explosion: one class -> superclass and null object
[=] Is non-mutable: a null object does not transform into a real object

Software Composition Group 23.369

Object-Oriented Design with Smalltalk Selected Design Patterns

NullObject (V) - Applicability

O Apply NullObject

[=] When an object requires a collaborator that already exists before the
NullObject pattern.

When some instances should do nothing

When you want clients to be able to ignore the difference between
collaborators

When you want the do-nothing behavior
When all the do-nothing behavior is encapsulated in the collaborator class

b o) [

O Do not apply NullObject (i.e., use a variable set to nil)
[=] When very little code actually uses the variable directly
[=] When the code that does use the variable is well encapsulated in one place
[=] When the code that uses the variable handles it always the same way

Software Composition Group 23.370

Object-Oriented Design with Smalltalk Selected Design Patterns

NullObject (VI) - VisualWorks Examples

O Null Strategies: NoController in the (MVC) Controller hierarchy. NoController
represents a controller that never wants control. It is the controller for views that
is noninteractive.

[=] DragMode implements the dragging of widgets in the window painter.
SelectionDragMode allows the move of the widget, CornerDragMode lets
the user resize it. NullDragMode responds to the mouse’s drag motions by
doing nothing.

O Null Adapters: NulllnputManager in the InputManager hierarchy. An
InputManager is a platform neutral object interface to platform events that affect
internationalised input. Subclasses represent specific platforms.
NullinputManager represents platforms that don’t support internatialisation.

O Reusable Nulls: ANameScope represents a name scope -- static (global / pool
/ class pool), instance variables (of a class or class hierarchy), or local
(argument / temporary, of a method or block). A StaticScope holds global and
class variables, LocalScopes holds instance and temporary variables. They
form a tree that defines all the variables. Every scope has an outer scope.
GlobalScope has an outer scope a NullScope. When the lookup reaches a
NullScope it answers that the variable is not defined in the code scope.
NullScope are reused by simple and clean block

Software Composition Group 23.371

Object-Oriented Design with Smalltalk a Pure OO Language

Part IV - Comparisons

O Comparing C++, Java and Smalltalk
O Smalltalk for the Java Programmer
QO Smalltalk for the Ada Programmer

Software Composition Group

Object-Oriented Design with Smalltalk a Pure OO Language Comparing C++, Java and Smalltalk

24. Comparing C++, Java and Smalltalk

O History

[=] target application domains

[=] evolution

[=] design goals
O Language features

[=] syntax

[=] semantics

[=] implementation technology
O Pragmatics
portability
interoperability
environments & tools

=
=
=
[=] development styles

Software Composition Group

24.373

Object-Oriented Design with Smalltalk a Pure OO Language Comparing C++, Java and Smalltalk

History
% FORTRAN

Algol€0 | | [cosoL | |

1970

1980 | Smalltalk 80 -

},,

Smalltalk 72] " N_>~_ [C | V—+

Software Composition Group

24374

Object-Oriented Design with Smalltalk a Pure OO Language Comparing C++, Java and Smalltalk

Target Application Domains

Q Smalltalk
[=] Originally conceived as programming language for children.

[=] Designed as language and environment for the “Dynabook”.

[=] Now: Rapid prototyping. Simulation. Graphical user interfaces. “Elastic”

applications.
a C++

[=] Originally designed for simulation (C with Simula extensions).
[=] Now: Systems programming. Telecommunications and other high-

performance domains.
Q Java
[=] Originally designed for embedded systems.
[=] Now: Internet programming. Graphical user interfaces.

Software Composition Group

24.375

Object-Oriented Design with Smalltalk a Pure OO Language Comparing C++, Java and Smalltalk

Evolution

Q Smalltalk

[=] Originally (1972) every object was an independent entity. The language
evolved to incorporate a meta-reflective architecture.

[=] Now the language (Smalltalk-80) is stable, but the environments and
frameworks continue to evolve.

a C++
=] ﬁ(ri%inally called C with classes, inheritance and virtual functions (Simula-
ike).
[=] Since 1985 added strong typing, new and del et e, multiple inheritance,
templates, exceptions, and many other features.
[=] Standard libraries and interfaces are emerging. Still evolving.
a Java
[=] Originally called Oak, Java 1.0 was already a stable language.

[=] Java 1.1 and 1.2 introduced modest language extensions (inner classes
being the most important).

[=] The Abstract Windowing Toolkit was radically overhauled to support a
more general-purpose event model. The libraries are still expanding and
evolving.

Software Composition Group 24.376

Object-Oriented Design with Smalltalk a Pure OO Language Comparing C++, Java and Smalltalk

Language Design Goals

O Smalltalk
[=] “Everything is an object”
[=] Self-describing environment
[=] Tinkerability, a “state of mind”
a C++
[=] C with classes with strong-typing
[=] “Every C program is also a C++ program” ... almost
[=] No hidden costs
a Java
[=] C++ minus the complexity (syntactically, not semantically)
[=] Simple integration of various OO dimensions (few innovations)
[=] “Java —it's good enough”

Software Composition Group 24.377

Object-Oriented Design with Smalltalk a Pure OO Language Comparing C++, Java and Smalltalk

Unigue, Defining Features

O Smalltalk
[=] Meta-reflective architecture
[=] The ultimate modelling tool
[=] Mature framework technology
a C++
[=] “Portable assembler” with HL abstraction mechanisms
[=] Programmer is in complete control
[=] Templates (computationally complete!)
a Java

[=] Dynamically loaded classes, applications are not “installed” in the
conventional sense

[=] First clean integration of many object-oriented dimensions (concurrency,
exceptions ...)

Software Composition Group 24.378

Object-Oriented Design with Smalltalk a Pure OO Language Comparing C++, Java and Smalltalk

Overview of Features

Smalltalk C++ Java
object model pure hybrid pure
memory management automatic manual automatic
dynamic binding aways optional yes (it depends)
inheritance single multiple single
generics no templates no
type checking dynamic static static
modules namespaces no (header files) packages
. yes yes yes
exceptions (weakly integrated) | (well integrated)
concurrency yes (semaphores) no (libraries) yes (monitors)
reflection fully reflective archi- limited limited
tecture
Software Composition Group 24.379
Object-Oriented Design with Smalltalk a Pure OO Language Comparing C++, Java and Smalltalk

Syntax

O Smalltalk
[=] Minimal. Essentially there are only objects and messages.

[=1 Afew special operators exist for assignment, statements, blocks, returning
etc.

a C++

[=] Baroque. 50+ keywords, two commenting styles, 17 precedence levels,
opaque type expressions, various syntactic ambiguities.

a Java
[=] Simplified C++. Fewer keywords. No operator overloading.

Software Composition Group 24.380

Object-Oriented Design with Smalltalk a Pure OO Language Comparing C++, Java and Smalltalk

Object Model

O Smalltalk
[=] “Everything is an object”
[=] Objects are the units of encapsulation
[=] Objects are passed by reference

a C++
[=] “Everything is a structure”
[=] Classes are the units of encapsulation
[=] Objects are passed by value
[=] Pointers are also values; “references” are really aliases

a Java
[=] “Almost everything is an object”
[=] Classes are the units of encapsulation (like C++)
[=] Objects are passed by reference -> no pointers

Software Composition Group 24.381

Object-Oriented Design with Smalltalk a Pure OO Language Comparing C++, Java and Smalltalk

Memory Management

O Smalltalk
[=] Objects are either primitive, or made of references to other objects

[=] Nolonger referenced objects may be garbage collected, garbage collection
can therefore be efficient and non-intrusive

Q C++

Objects are structures, possibly containing pointers to other objects
Destructors should be explicitly programmed (cf. OCF)

Automatic objects are automatically destructed

Dynamic objects must be explicitly del et ed

Reference counting, garbage collection libraries and tools (Purify) can help

(o) o] [] o]

a Java
[=] Objects are garbage collected
[=] Special care needed for distributed or multi-platform applications!

Software Composition Group 24.382

Object-Oriented Design with Smalltalk a Pure OO Language Comparing C++, Java and Smalltalk

Dynamic Binding

Smalltalk
0 Message sends are always dynamic
[=] aggressive optimization performed (automatic inlining, JIT compilation etc.)

C++
O Only virtual methods are dynamically bound
[=] explicit inling (but is only a “hint” to the compiler!)
O Overloaded methods are statically disambiguated by the type system
[=] Overridden, non-virtuals will be statically bound!
O Overloading, overriding and coercion may interfere!
A:f(float); B::f(float), B::f(int); Ab =newA b.f(3) calls A:f(float)

O All methods (except “static,” and “final”) are dynamically bound
O Overloading, overriding and coercion can still interfere!

Software Composition Group 24.383

Object-Oriented Design with Smalltalk a Pure OO Language Comparing C++, Java and Smalltalk

Inheritance, Generics

Smalltalk
Q Single inheritance; single root: Object,
Q Dynamic typing, therefore no type parameters needed for generic classes

C++
Q Multiple inheritance; multi-rooted
O Generics supported by templates (glorified macros)
[=] multiple instantiations may lead to “code bloat”

O Single inheritance; single root Object
[=] Multiple subtyping (a class can implement multiple interfaces)

O No support for generics; you must explicitly “downcast” (dynamic typecheck)
[=] Several experimental extensions implemented ...

Software Composition Group 24.384

Object-Oriented Design with Smalltalk a Pure OO Language Comparing C++, Java and Smalltalk

Types, Modules

Smalltalk
Q Dynamic type-checking
[=] invalid sends raise exceptions
d No module concept — classes may be organized into categories
[=] some implementations support namespaces

C++
O Static type-checking
O No module concept
[=] use header files to control visibility of names

O Static and dynamic type-checking (safe downcasting)
O Classes live inside packages

Software Composition Group 24.385

Object-Oriented Design with Smalltalk a Pure OO Language Comparing C++, Java and Smalltalk

Exceptions, Concurrency

Smalltalk
O Can signal/catch exceptions
O Multi-threading by instantiating Process
[=] synchronization via Semaphores

C++
Q Try/catch clauses
[=] any value may be thrown
O No concurrency concept (various libraries exist)
[=] exceptions are not necessarily caught in the right context!

Java
O Try/catch clauses
[=] exception classes are subclasses of Exception or Error
O Multi-threading by instantiating Thread (or a subclass)
[=1 synchronization by monitors (synchronized classes/methods + wait/signal)
[=] exceptions are caught within the thread in which they are raised

Software Composition Group 24.386

Object-Oriented Design with Smalltalk a Pure OO Language Comparing C++, Java and Smalltalk

Reflection

Smalltalk

O Meta-reflective architecture:
every class is a subclass of Object (including Class)
every class is an instance of Class (including Object)
classes can be created, inspected and modified at run-time
Smalltalk’s object model itself can be modified

(] [0 o] [n]

C++
O Run-time reflection only possible with specialized packages
O Compile-time reflection possible with templates

Java
O Standard package supports limited run-time “reflection”
[=]1 only supports introspection

Software Composition Group 24.387

Object-Oriented Design with Smalltalk a Pure OO Language Comparing C++, Java and Smalltalk

Implementation Technology

Smalltalk

Virtual machine running “Smalltalk image.” Classes are compiled to “byte code”, which is
then “interpreted” by the VM — now commonly compiled “just-in-time” to native code.

Most of the Java VM techniques were pioneered in Smalltalk.
C++
Originally translated to C. Now native compilers.

Traditional compile and link phases. Can link foreign libraries (if link-compatible.)
Opportunities for optimization are limited due to low-level language model.

Templates enable compile-time reflection techniques (i.e., to resolve polymorphism at
compile-time; to select optimal versions of algorithms etc.)

Java
Hybrid approach.

Each class is compiled to byte-code. Class files may be dynamically loaded into a Java
virtual machine that either interprets the byte-code, or compiles it “just in time” to the
target machine.

Standard libraries are statically linked to the Java machine; others must be loaded
dynamically.

Software Composition Group 24.388

Object-Oriented Design with Smalltalk a Pure OO Language Comparing C++, Java and Smalltalk

Portability, Interoperability

Smalltalk
O Portability through virtual machine
O Interoperability through special bytecodes,native methods and middleware

C++
O Portability through language standardization (C as a “portable assembler”)
U Interoperability through C interfaces and middleware

O Portability through virtual machine
Q Interoperability through native methods and middleware

Software Composition Group 24.389

Object-Oriented Design with Smalltalk a Pure OO Language Comparing C++, Java and Smalltalk

Environments and Tools

Advanced development environments exist for all three languages, with class and
hierarchy browsers, graphical debuggers, profilers, “make” facilities, version control,
configuration management etc.

In addition:

Smalltalk
Q Incremental compilation and execution is possible

C++
O Special tools exist to detect memory leaks (e.g., Purify)

Java
O Tools exist to debug multi-threaded applications.

Software Composition Group 24.390

Object-Oriented Design with Smalltalk a Pure OO Language Comparing C++, Java and Smalltalk

Development Styles

Smalltalk
Q Tinkering, growing, rapid prototyping.
O Incremental programming, compilation and debugging.
O Framework-based (vs. standalone applications).

C++
4 Conventional programming, compilation and debugging cycles.
O Library-based (rich systems libraries).

Java
Q Conventional, but with more standard libraries & frameworks.

Software Composition Group 24.391

Object-Oriented Design with Smalltalk a Pure OO Language Comparing C++, Java and Smalltalk

The Bottom Line....

You can implement an OO design in any of the three.

Smalltalk
O Good for rapid development; evolving applications; wrapping
O Requires investment in learning framework technology
O Not suitable for connection to evolving interfaces (need special tools)

C++
O Good for systems programming; control over low-level implementation
O Requires rigid discipline and investment in learning language complexity
O Not suitable for rapid prototyping (too complex)

Java
0 Good for internet programming
O Requires investment in learning libraries, toolkits and idioms
O Not suitable for reflective programming (too static)

Software Composition Group 24.392

Object-Oriented Design with Smalltalk Smalltalk for the Java Programmer

25. Smalltalk for the Java Programmer

O Syntax
Q A bit of semantics

Software Composition Group 25.393

Object-Oriented Design with Smalltalk Smalltalk for the Java Programmer

Syntax

O Reference to nowhere
nul | nil
Q Comment
/* comment */, // comment “conment”
O Assignment
a=1 a:=1
U Basic types
“string” ‘string
‘c’ $c
true, false true, false
O Identity and Equality
“lulu” ==“lulu” “lulu == "lulw
“lulu”.equals (“lulu”)
Q Self reference

this, super sel f, super
this.getd ass() sel f class

Software Composition Group 25.394

Object-Oriented Design with Smalltalk Smalltalk for the Java Programmer

Syntax (Il

Q Instance Variables Access

X X
this.x X
anot her Ghj ect . x

O Instance Variable Definition

Node aNode; aNode
O Local Variable
Node aNode; | aNode |

Software Composition Group 25.395

Object-Oriented Design with Smalltalk Smalltalk for the Java Programmer

Syntax - Methods, Conditionals, Loops
0 Message Sends

anChbj ect . f 0o() anQbj ect foo

this.foo() ; foo() self foo

anoj ect . foo(a, b) an(hject foo: a with: b
addAl | (i ndex, col) at: index addA |: col
anChj ect fooA() ; anChject fooB() anChj ect fooA ; fooB

anChj ect fooA(); another Chject fooB() anCbj ect fooA. anot her Ohj ect fooB
d Method Definition
public bool ean addAl | (int index, Collection aCollection)
at: index addAll: aCollection

O Conditionals

if (col.isEnpty()) {a} col isEnpty ifTrue: [a]
if (col.isEnpty()) {a} else {b} col isEnpty ifTrue: [a] ifFalse: [b]
while (col.isEnpty()){a} [col isEnpty] whileTrue: [a]
do{a} while(col.isEnmpty())

O Loops
for (int n=1; n<k; nt+){...n..} 1to: k do: [:n] ...]

k tinesRepeat: []
col lection do:, collect:, detect:,
try {a} catch (Exception e) {b} [a] on: Exception do: [b]

Software Composition Group 25.396

Object-Oriented Design with Smalltalk Smalltalk for the Java Programmer

No Primitive Types, Only Objects

“string” ‘string’
new String (“string”)

true true
new Bool ean (true)

1
new I nteger (1) 1

int i,j; i+
i+

Integer i, j;
i add(j)

Software Composition Group 25.397

Object-Oriented Design with Smalltalk Smalltalk for the Java Programmer

Literals representing the same object

“a” == “b” ‘ai=='b

“a”. equal s(“b") ‘al b’

a = “string”; a:=‘'string’ .

b = “string”; b :=‘string .

c = new String (“string”); c := #string.
d := #string

a == b true a=btrue

a == c fal se a == b fal se

a.equal s(c) true c =dtrue

a.equal s(b) true c ==d true

Software Composition Group 25.398

Object-Oriented Design with Smalltalk

Smalltalk For the Ada Programmer

26. Smalltalk For the Ada Programmer

O Vocabulary
— package + type -> class
— subprograms -> methods
— record component -> instance variable
— package variable -> classVariable

Class Definition

Method Definition
Instance Creation Method
Instance Creation

oO0oD

Software Composition Group

Object-Oriented Design with Smalltalk

Class Definition

wi th Ada. Strings. Unbounded; use Ada. Strings. Unbounded;
wi th Nodes; use Nodes;
package Packets is

26.399

Smalltalk For the Ada Programmer

type Packet is new Cbject with private; -- extending the data structure
private
type Packet is new Chbject with record -- the record component

Contents: Unbounded_Stri ng;
Addr essee: | nteger;
Originator: Node;
end record;
end Packets;

Chj ect subcl ass: #Packet
i nstanceVari abl eNanes: 'contents addressee originator '
classVari abl eNanes: **

pool Di ctionari es:
category: 'LAN Sinul ation'

Software Composition Group

Object-Oriented Design with Smalltalk

Method Definition

package Packets is

26.400

Smalltalk For the Ada Programmer

type Packet is new Chbject with private; -- extending the data structure

function Addressee(A Packet: Packet) return Integer;
procedure Addressee (A Packet: in out Packet, An_Address:

in Integer);

function Is_Sent_By (A _Packet: Packet, A Node: Node) return Bool ean;
function |s_Addressed_To (A _Packet: Packet, A Node: Node) return Bool ean;

private
end Packets;

Packet >>addr essee
~ addressee
Packet >>addr essee: aSynbol
addr essee : = aSynbol
Packet >>i sAddr essedTo: aNode
“returns true if I’ maddressed to the node aNode”
~ self addressee = aNode nane
Packet >>i sSent By: aNode
A~ originator = aNode

Software Composition Group

26.401

Object-Oriented Design with Smalltalk

Method Definition (1)

package body Packets is

function Addressee (A Packet: Packet) return Integer is
begi n
return A Packet. Addressee;

end Addressee;

procedure Addressee (A Packet: in out Packet, An_Address:
begi n
A _Packet . Addr essee : = An_Address;
end Addressee;
end Packets;
Packet >>addr essee
M addressee
Packet >>addr essee: aSynbol
addressee : = aSynbol

Software Composition Group

Object-Oriented Design with Smalltalk

Method Definition(ll1)

package body Packets is

function I's_Sent_By (A Packet: Packet, A Node: Node) retur
begi n

A _Packet. Originator = A Node;
end |s_Sent_By;

function |s_Addressed_To (A _Packet: Packet, A Node: Node)
begi n
A _Packet . Addressee = Name(A_Node) ;

end | s_Addressed_To;
end Packets;

aNode
I’ m addressed to the node aNode”

Packet >>i sAddr essedTo:
“returns true if
~ self addressee = aNode nane

Packet >>i sSent By: aNode

~ originator

aNode

Software Composition Group

Object-Oriented Design with Smalltalk

Instance Creation Method

package Packets is

type Packet
function Send_To (Contents:

is new Cbject with private;
String, Address:
end Packets;

package body Packets is

Smalltalk For the Ada Programmer

inlInteger) is

26.402

Smalltalk For the Ada Programmer

n Boolean is

return Boolean is

--Nane is a function on type Node

26.403

Smalltalk For the Ada Programmer

-- extending the data structure
Integer) return Packet;

function Send_To (Contents: String, Address: Integer) return Packet;

begi n
return (To_Unbounded(Contents),
end Send_To;

end Packets;

I nteger, Enpty_Node);

Packet class>>send: aString to: anAddress
|inst]

inst := self new
inst contents: aString.
inst to: anAddress.

~i nst

Software Composition Group

26.404

Object-Oriented Design with Smalltalk Smalltalk For the Ada Programmer

Instance Creation

procedure XXX

P: Packet := Send_To (“This packet travelled to the printer*, 123);
begi n

Addressee(P);

end XXX

XXX

Ipl
p := Packet send: 'This packet travelled to the printer' to: 123.

p addressee

Software Composition Group 26.405

Object-Oriented Design with Smalltalk References

27. References

Software Composition Group 27.406

Object-Oriented Design with Smalltalk References

A Jungle of Names

Some Smalltalk Dialects:
* Smalltalk-80 -> ObjectWorks -> VisualWorks by (ParcPlace -> ObjectShare->Cincom)
mac, pc, hp, linux, unix
www.cincom.com/visualworks/
« IBM Smalltalk (pc, unix, aix...)
www.software.ibm.com/ad/smalltalk/
* Smalltalk-V (virtual) -> Parts -> VisualSmalltalk by (Digitalk -> ObjectShare)
« VisualAge = IBMSmalltalk + Envy (OTI -> IBM)
» Smalltalk Agents (Mac) www.quasar.com
* SmallScript www.quasar.com (.Net, PC and Mac)
« Smalltalk MT (PC, assembler)
« Dolphin Smalltalk (PC)
www.object-arts.com/Home.htm
* Smalltalk/X -> www.exept.de (run java byte code into Smalltalk VM)
« Smalltalk/Express (free now but not maintained anymore)
« Enfin Smalltalk -> Object Studio (Cincom)
www.cincom.com/objectstudio/

Software Composition Group 27.407

Object-Oriented Design with Smalltalk References

Team Development Environments

* Envy (OTI) most popular, available for VisualWorks
« VSE (Digitalk), (not available)

« TeamV, (not available)

« Store (new Objectshare)

* ObjectStudio v6 (similar to Envy)

Software Composition Group 27.408

Object-Oriented Design with Smalltalk References

Some Free Smalltalks

Professional Environment
« VisualWorks 3.0 and VWS5i.2 on PC for free
« VisualWorks 3.0 and VW5i.2 on Linux (Red-Hat)
www.cincom.com
« Dolphin Smalltalk on PC (not the last version)
www.object-arts.com/Home.htm

New concepts
« Squeak (Morphic Objects + Socket + all Platforms) continous development
http://www.squeak.org/
« Gnu Smalltalk (not evaluated)

Free for Universities:
« VisualWorks 3.0 and VW5i.2) all platforms and products (www.cincom.com/vwnc/)

« VisualAge is free for University:
www.software.ibm.com/ad/smalltalk/education/univagr.html

« Envy is free for University
contact amy_divis@oti.com

Software Composition Group 27.409

Object-Oriented Design with Smalltalk References

Main References

O Smalltalk: an Introduction to application development using VisualWorks, T.
Hopkins and B. Horan, Prentice-Hall,1995, 0-13-318387-4
O Smalltalk, programmation orientée objet et développement d'applications, X.
Briffault and G. Sabah, Eyrolles, Paris. 2-212-08914-7
O On To Smalltalk, P. Winston, Addison-Wesley, 1998, 0-201-49827-8
O Smalltalk by Example : The Developer's Guide, A. Sharp, McGraw Hill, ISBN:
0079130364, 1997
O Smalltalk Best Practice Patterns, K. Beck, Prentice Hall, 1997, ISBN 0-13-
476904-x
O Smalltalk with Style, S. Skublics and E. Klimas and D. Thomas, Prentice-Hall,
1996, 0-13-165549-3.
O The Smalltalk Developer’'s Guide to VisualWorks, T. Howard, Sigs Books, 1995,
1-884842-11-9
O Mastering Envy/Developer, J. Pelrine, A. Knight and A. Chou..., SIG Press.
U The Design Patterns Smalltalk Companion, S. Alpert and K. Brown and B.
Woolf, Addison-Wesley, 1998,0-201-18462-1
Software Composition Group 27.410
Object-Oriented Design with Smalltalk References

Other References

** Smalltalk-80: The language, Adele Goldberg and David Robson, Addison-Wesley,
1984-1989, 0-201-13688-0 (Purple book ST-80, part of the original blue book). VW. old
but still really interesting: a reference!

« An introduction to Object-Oriented Programming and Smalltalk, Lewis J. Pinson and
Richard S. Wiener, 1988, Addison-Wesley, ISBN 0-201-119127. (ST-80)

 Object-Oriented Programming with C++ and Smalltalk, Caleb Drake, Prentice Hall,
1998, 0-13-103797-8
+ Smalltalk, Objects and Design, Chamond Liu, Manning, 0-13-268335-0 (IBM Smalltalk)

+ Smalltalk the Language, David Smith, Benjamin/Cummings Publishing, 1995,0-8053-
0908-X (IBM smalltalk)

« Discovering Smalltalk, John Pugh, 94 (Digitalk Smalltalk)
« Inside Smalltalk (I & II), Wilf Lalonde and Pugh, Prentice Hall,90, (ParcPlace ST-80)

« Smalltalk-80: Bits of History and Words of Advice, G. Kranser, Addison-Wesley,89, 0-
201-11669-3

Software Composition Group 27.411

Object-Oriented Design with Smalltalk References

Other References (ll)

» The Taste of Smalltalk, Ted Kaehler and Dave Patterson, Norton, 0-393-95505-2,1985
« Smalltalk The Language and Its Implementation (contains the original VM description

available at users.ipa.net/~dwighth/smalltalk/bluebook/), Adele Goldberg and Dave
Robson, 0-201-11371-6, 1982 (called The Blue Book)

To understand the language, its design, its intention....
« Peter Deutsch, The Past, The Present and the Future of Smalltalk, ECOOP’89
« Byte 81 Special Issues on Smalltalk (read Dan Ingalls paper on language intent)

« Alan Kay, The Early History of Smalltalk, History of Programming Languages, Addison-
Wesley, 1996

Software Composition Group 27.412

