
Smalltalk — a Pure Object
Language and its

Environment

Dr. S. Ducasse

University of Bern
Winter semester (W7070)

1998/99

Tab ii.

1. S
S
A
In
P
H
S
S
M
O
M
O
O

2. Th
S
H
E
O
A
O
A

3. S
L
A
S
V
T
A
M
In
S
S
G
T
M

Iteration Abstraction: select:/reject:/detect: 73
Iteration Abstraction: inject:into: 74
Collection Abstraction 75
Streams 76
An Example 77
printSring, printOn: 78
Stream classes(i) 79
Stream Classes (ii) 80
Stream tricks 81
Streams and Files 82
What you should know 83

5. Dealing with Classes 84
Class Definition 85
Named Instance Variables 86
classVariable 87
Class Instance Variables / ClassVariable 88
poolVariables 89
Example of PoolVariables 90
Method Definition 91
Iv Access Example 92
Return Value 93
Visibility of Variables 94
Example From The System: Geometric Class 95
Circle 96
Quick Naming Conventions 97
Inheritance in Smalltalk 98
Message Sending & Method Lookup 99
Example 101
Run the messages 102
Semantics of super 103
Let us be Absurb! 104
Lookup and Class Messages 105
Object Instantiation 106
Direct Instance Creation: (basic)new/new: 107
Messages to Instances that Create Objects 108
le of Contents

malltalk Concepts 1
malltalk: More than a Language 2
 Jungle of Names 3
spiration 4
recursor, Innovative and Visionary 5
istory 6
ource, Virtual Machine, Image and Changes 7
malltalk’s Concepts 8
essages, Methods and Protocols 9
bjects, Classes and Metaclasses 10
ain References 11
ther References (Old or Other Dialects) 12
ther References (ii) 13

e Taste of Smalltalk 14
ome Conventions and Precisions 15
ello World! 16
verything is an object 17
bjects communicate via messages 18
 LAN Simulator 19
nce the Classes Defined 20
 Step Further: Two Printer Methods 21

yntax and Messages 22
iterals 23
rrays 24
ymbols vs. Strings 27
ariables 28
emporary Variables 29
ssigments 30
ethod Arguments 31
stance Variables 32

ix pseudo-variables (i) 33
ix pseudo-variables (ii) 34
lobal Variables 35

hree Kinds of Messages 36
essage = Effect + Return 37

Unary Messages 38
Binary Messages 39
Keyword Messages 40
Composition 41
Sequence 42
Cascade 43
yourself 44
Have You Really Understood Yourself ? 45
Block (i): Definition 46
Block (ii): Evaluation 47
Block (iii) 48
Syntax Summary (i) 49
Syntax Summary (ii) 50
What You Should Know 51

4. Basic Objects, Conditional and Loops 52
Common Shared Behavior (i) 53
Identity vs. Equality 54
Common Shared Behavior (ii) 55
Essential Common Shared Behavior 56
Basics on Number 57
Deeper on Numbers: Double Dispatch (i) 58
Deeper on Numbers: Double Dispatch (ii) 59
Deeper on Numbers: Coercion & Generality 60
Deeper on Numbers: #retry:coercing: 61
Boolean Objects 62
Boolean Objects and Conditionals 63
Loops 64
For the Curious 65
Collections 66
Another View 67
Collection Methods 68
Sequenceable Specific (Array) 69
KeyedCollection Specific (Dictionary) 70
Choose your Camp! 71
Iteration Abstraction: do:/collect: 72

Tab iii.

O
C
T
T
In
In
W

6. B
A
P
A
O
S
C
S
S
C
D
A
C
B
F
C
D

7. C
H
T
E
L
U
O
S
O
M
D

9. Design Thoughts and Selected Idioms 178
About the Use of Accessors (i) 179
About the Use of Public Accessors (ii) 180
Composed Method 181
Constructor Method 182
Constructor Parameter Method 183
Query Method 184
Boolean Property Setting Method 185
Comparing Method 186
Execute Around Method 187
Choosing Message 188
Name Well your Methods (i) 191
do: 192
collect: 193
isEmpty, includes: 194

10. Processes and Concurrency 196
Concurrency and Parallelism 197
Limitations 198
Atomicity 199
Safety and Liveness 200
Processes in Smalltalk: Process class 201
Processes in Smalltalk: Process class 202
Processes in Smalltalk: Process states 203
Process Scheduling and Priorities 204
Processes Scheduling and Priorities 205
Processes Scheduling: The Algorithm 206
Process Scheduling 207
Synchronization Mechanisms 208
Synchronization Mechanisms 209
Synchronization using Semaphores 210
Semaphores 211
Semaphores for Mutual Exclusion 212
Synchronization using a SharedQueue 213
Delays 214
Promises 215
le of Contents

pening the Box 109
lass specific Instantiation Messages 110

wo Views on Classes 111
ypes of Classes 112
dexed Classes 113
dexed Class/Instance Variables 114
hat you should know 115

asic Elements of Design and Class Behavior 116
 First Implementation of Packet 117
acket CLASS Definition 118
ssuring Instance Variable Initialization 119
ther Instance Initialization 120

trengthen Instance Creation Interface 121
lass Methods - Class Instance Variables 122

ingleton Instance: A Class Behavior 123
ingleton Instance’s Implementation 124
lass Initialization 125
ate class>>initialize 126
bstract Classes 127
ase Study: Boolean, True and False 128
oolean 129
alse and True 130
aseStudy: Magnitude: 131
ate 132

omparing C++, Java and Smalltalk 133
istory 134
arget Application Domains 135
volution 136
anguage Design Goals 137
nique, Defining Features 138
verview of Features 139

yntax 140
bject Model 141
emory Management 142
ynamic Binding 143

Inheritance, Generics 144
Types, Modules 145
Exceptions, Concurrency 146
Reflection 147
Implementation Technology 148
Portability, Interoperability 149
Environments and Tools 150
Development Styles 151
The Bottom Line ... 152

8. The Model View Controller Paradigm 153
Context 154
Program Architecture 155
Separation of Concerns I: 156
Separation of Concerns II: 157
The notion of Dependency 158
Dependency Mechanism 159
Publisher-Subscriber: A Sample Session 160
Change Propagation: Push and Pull 161
The MVC Pattern 162
A Standard Interaction Cycle 163
MVC: Benefits and Liabilities 164
MVC and Smalltalk 165
Managment of Dependents 166
Implementation of Change Propagation 167
Climbing up and down the Default-Ladder 168
ProblemswiththeVanillaChangePropagationMechanism

169
Dependency Transformer 170
Inside a Dependency Transformer 171
ValueHolder 172
A UserInterface Window 173
Widgets 174
The Application Model 175
The fine-grained Structure of an Application 176
MVC Bibliography 177

Tab iv.

11.
T
C
C
R
A
S
D
S
S
S
B
C
M
C

12.
M
R
R
C
L
D
W
S
W
H
F

le of Contents

Classes and Metaclasses: an Analysis 216
he meaning of “Instance of” 217
oncept of Metaclass & Responsibilities 218
lasses, metaclasses and method lookup 219
esponsibilities of Object & Class classes 220
 possible kernel for explicit metaclasses 221
ingleton with explicit metaclasses 222
eeper into it 223
malltalk Metaclasses in 7 points 224
malltalk Metaclasses in 7 points (iii) 226
malltalk Metaclasses in 7 points (iv) 227
ehavior Responsibilities 228
lassDescription Responsibilities 229
etaclass Responsibilities 230
lass Responsibilities 231

Debugging 232
ost Common Beginner Bugs 233

eturn Value 234
edefinition Bugs 235
ompile time errors 236

ibrary Behavior-based Bugs 237
ebugging Hints 238
here am I and how did I get here? 239

ource Inspection 240
here am I going? 241
ow do I get out? 242
inding & Closing Open Files in VW 243

Smalltalk a Pure OO Language History and Concepts

U 1.1
niversität Bern Ducasse Stéphane

1. Smalltalk Concepts

Smalltalk a Pure OO Language History and Concepts

U 1.2

ge

yntax).
se accesses...).
, Inspector, changes, crash

ogy.
e, versioning, deployement).
niversität Bern Ducasse Stéphane

Smalltalk: More than a Langua

• A small and uniform language (two days for learning the s
• A set of reusable classes (basic data structure, UI, databa
• A set of powerfull development tools (Browsers, UIBuilder
recovery, projects).
• A run-time environment based on Virtual Machine technol
• With Envy team working + application management (releas

Smalltalk a Pure OO Language History and Concepts

U 1.3

e -> ObjectShare)

lk -> ObjectShare)

 them!!
er development but amazing
niversität Bern Ducasse Stéphane

A Jungle of Names
Some Smalltalk Dialects:
• Smalltalk-80 -> ObjectWorks -> VisualWorks by (ParcPlac
• IBM Smalltalk
• Smalltalk-V (virtual) -> Parts -> VisualSmalltalk by (Digita
• VisualAge -> IBMSmalltalk + Envy (OTI -> IBM)
• Smalltalk Agents (Mac)
• Smalltalk MT (PC)
• Dolphin Smalltalk (PC)
• Smalltalk/X, Enfin Smalltalk (Cimcon)

Team Development Environment:
• Envy (OTI), VSE (Digitalk), TeamV

Free Software:
• Gnu Smalltalk (no UI), Little Smalltalk (no UI): Do not use
• -> Squeak (Morphic Objects + Socket + all Platforms) und
• -> VisualWorks 3.0 on PC for free
• -> VisualWorks 3.0 on Linux (Red-Hat)

Smalltalk a Pure OO Language History and Concepts

U 1.4

y possible" [Kay]

al phenomen by means of a
niversität Bern Ducasse Stéphane

Inspiration
"making simple things Very simple and complex things Ver

• Flex (Alan Kay 1969)
• Lisp (interpreter, blocks, garbage collector)
• Turtle graphics (Logo Project, children programming)
• Direct manipulation interfaces (Sketchpad 1960)
• Simula (classes and message sending, description of a re
specification language: modeling)

-> DynaBook: a desktop computer for children

Smalltalk a Pure OO Language History and Concepts

U 1.5

nary

mpiler, editor, browser)

d the bitmap:
em.
niversität Bern Ducasse Stéphane

Precursor, Innovative and Visio
• First graphical bitmap-based

multi-windowing (overlapping windows)
programming environment (debugger, co
with a pointing device

Yes a mouse !!!!
Xerox Smalltalk Team developed the mouse technology an

it was revolutionary! MacIntosh copied th

• Virtual Machine +
Plateform independent image technology

• Garbage Collector

• Just in Time Compilation

Smalltalk a Pure OO Language History and Concepts

U 1.6

ects can specify its own

ed syntax (compact byte
ss library.
ramming by Rehearsal.
er project).

metaclasses, blocks as first-

s) + Alternate Reality Kit

P and Tektronix) -> gc by

ak VM in Smalltalk....)
niversität Bern Ducasse Stéphane

History
Internal.
1972: First interpreter, more agents than objects (every obj
syntax).
1976: Redesign: Hierarchy of classes with unique root + fix
code), contexts, process + semaphores + Browser + UI cla
Projects: ThingLab, Visual Programming Environment Prog
1978: Experimentation with 8086 microprocessor (NoteTak

External.
1980: Smalltalk-80 (Ascii, cleaning primitives for portability,
class objects, MVC,)
Projects: Galley Editor (mixing text, painting and animation
(physics simulation)
1981: books + four external virtual machines (Dec, Apple, H
generation scavenging
1988: Creation of Parc Place Systems
1992: Draft Ansi
1995-6: New Smalltalk implementations (MT, dolphin, Sque

Smalltalk a Pure OO Language History and Concepts

U 1.7

 and

rpreter:
ine interpretes the image

andard SOURCES

Shared by everybody
niversität Bern Ducasse Stéphane

Source, Virtual Machine, Image
Changes

A byte-code inte
the virtual mach

IMAGE2.IM
IMAGE2.CHA

St

IMAGE1.IM
IMAGE1.CHA

All the objects of the system
at a moment in time

One per user

+

Smalltalk a Pure OO Language History and Concepts

U 1.8

, points, tools, boolean).

oo).
ces.

ntents of a book)
nted: (reading the chapters)
em
niversität Bern Ducasse Stéphane

Smalltalk’s Concepts

• Everything is an object (numbers, files, editors, compilers
• Objects only communicate by message passing.
• Each object is an instance of one class (that is an object t
• A class defines the structure and the behavior of its instan
• Each object possesses its own set of values.

Programming in Smalltalk: Reading an Open Book
• Reading the interface of the classes: (table of co
• Understanding the way the classes are impleme
• Extending and changing the contents of the syst

Smalltalk a Pure OO Language History and Concepts

U 1.9

ols

Type: #normal

s to

r, #beSlave,
Events:

Block
ype:
Type:,
ource:
niversität Bern Ducasse Stéphane

Messages, Methods and Protoc
Message: What behavior to perform

aWindow openAroundCursorWithExtent: 0@0 extent: 100@100 and

Method: How to carry out the behavior (...........)
openAroundCursorWithExtent: extent andType: aType

| pt box |

pt := WindowSensor cursorPoint.

box := pt - (extent // 2) extent: extent.

self openIn: box withType: aType

Protocol: The complete set of messages an object respond
#close, #damageRepairIsLazy:, #finishOpening,
#noticeOfWindowClose, #release, #beMaster, #bePartne
#checkForEvents, #receiveWindowEvents, #receiveWindow
#sendWindowEvents #sendWindowEvents: #windowEvent
#windowEventBlock:, #openAroundCursorWithExtent:andT
#openIn:withType:, #openWithExtent:andType:, #openWith
#dropTargetForSource:, #findObjectInterestedInDropAt:forS

Smalltalk a Pure OO Language History and Concepts

U 1.10

ses

stances
ecific state

ces
classes, method dictionary,
niversität Bern Ducasse Stéphane

Objects, Classes and Metaclas

• Every object is instance of a class
• A class specifies the structure and the behavior of all its in
• Instances of a class share the same behavior and have sp

• Classes are objects that create other instances
• Metaclasses are just classes that create classes as instan
• Metaclasses described then class behavior and state (sub
instance variables...)

Smalltalk a Pure OO Language History and Concepts

U 1.11

nt using VisualWorks, Trevor
87-4
pement d'applications, X.

8, 0-201-49827-8

ntice Hall, 1997, isbn 0-13-

, ISBN 3-8272-9549-1
d D. Thomas, Prentice-Hall,

ide to VisualWorks, Tim

lpert and K. Brown and B.
niversität Bern Ducasse Stéphane

Main References
+ (Intro) Smalltalk: an Introduction to application developme
Hopkins and Bernard Horan, Prentice-Hall,1995, 0-13-3183
+ (Intro) Smalltalk, programmation orientée objet et dévelop
Briffault and G. Sabah, Eyrolles, Paris. 2-212-08914-7
+ (Intro) On To Smalltalk, P. Winston, Addison-Wesley, 199

+ (Idioms) Smalltalk Best Practice Patterns, Kent Beck, Pre
476904-x
Praxisnahe Gebrauchsmuster, K. Beck, Prentice-Hall, 1997
+ (Idioms) Smalltalk with Style, S. Skublics and E. Klimas an
1996, 0-13-165549-3.

+(User Interface Reference) The Smalltalk Developer’s Gu
Howard, Sigs Books, 1995, 1-884842-11-9

+(Design) The Design Patterns Smalltalk Companion, S. A
Woolf, Addison-Wesley, 1998,0-201-18462-1

Smalltalk a Pure OO Language History and Concepts

U 1.12

 Dialects)
ography on the lecture web

oldberg and David Robson,
T-80, part of the original blue

lltalk, Lewis J. Pinson and
127. (ST-80)

leb Drake, Prentice Hall,

rentice-Hall, 0-13-268335-0

gs Publishing, 1995,0-8053-

all,90, (ParcPlace ST-80)
ser, Addison-Wesley,89, 0-
niversität Bern Ducasse Stéphane

Other References (Old or Other
Before buying a book ask me or consult the annotated bibli
page. Do not buy a book with translated code in German!

+ (old but a reference) Smalltalk-80: The language, Adele G
Addison-Wesley, 1984-1989, 0-201-13688-0 (Purple book S
book)
• An introduction to Object-Oriented Programming and Sma
Richard S. Wiener, 1988, Addison-Wesley, ISBN 0-201-119

• Object-Oriented Programming with C++ and Smalltalk, Ca
1998, 0-13-103797-8
+ Smalltalk, Objects and Design, Chamond Liu, Manning-P
(IBM Smalltalk)
+ Smalltalk the Language, David Smith, Benjamin/Cummin
0908-X (IBM smalltalk)
• Discovering Smalltalk, John Pugh, 94 (Digitalk Smalltalk)
• Inside Smalltalk (I & II), Wilf Lalonde and Pugh, Prentice H
• Smalltalk-80: Bits of History and Words of Advice, G. Kran
201-11669-3

Smalltalk a Pure OO Language History and Concepts

U 1.13

Norton, 0-393-95505-2,1985
ldberg and Dave Robson, 0-

malltalk, ECOOP’89

ming Languages, Addsison-
niversität Bern Ducasse Stéphane

Other References (ii)

• The Taste of Smalltalk, Ted Kaehler and Dave Patterson,
• Smalltalk The Language and Its Implementation, Adele Go
201-11371-6, 1982 (called The blue Book)

To understand the language, its design, its intention....
• Peter Deutsch, The Past, The Present and the Future of S
• Byte 81 Special Issues on Smalltalk
• Alan Kay, The Early History of Smalltalk, History of Porgam
Wesley, 1996

Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.14
niversität Bern Ducasse Stéphane

2. The Taste of Smalltalk

Two examples:
- hello world
- a small LAN simulator

To give you an idea of:
- the syntax
- the elementary objects and classes
- the enviromnent

Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.15

ns

mac

e

n the class of the class Node)

finition

esult (#printOn:)
niversität Bern Ducasse Stéphane

Some Conventions and Precisio
• Code Transcript show: ‘Hello world’

• Return Value
1 + 3 -> 4

Node new -> aNode

Node new PrIt-> a Workstation with name:#pc and next node:#

• Method selector #add:

• Method scope
Node>>accept: aPacket

instance method defined in the class Nod
Node class>> withName: aSymbol

class method defined in the class Node (i
• aSomething is an instance of the class Something

• DoIt, PrintIt and Accept
Accept = Compile: Accept a method or a class de
DoIt = send a message to an object
PrintIt = send a message to an object + print the r

Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.16

ter to evaluate expression.
us button apply doIt .
niversität Bern Ducasse Stéphane

Hello World!

Transcript show: ‘hello world’

During implementation, we can dynamically ask the interpre
To evaluate an expression, select it and with the middle mo

Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.17

ct.

ven modify it.
niversität Bern Ducasse Stéphane

Everything is an object
The launcher is an object.
The icons are objects.
The workspace is an object.
The window is an object: instance of ApplicationWindow.
The text editor is an object: instance of ParagraphEditor.
The scrollbars are objects too.
‘hello word’ is an object: aString instance of String.
#show: is a Symbol that is also an object.
The mouse is an object.
The parser is an object instance of Parser.
The compiler is also an object instance of Compiler.
The process scheduler is also an object.
The garbage collector is an object: instance of MemoryObje
...
=> a world consistent , uniform written in itself!
you can learn how it is implemented, you can extend it or e
=> Book concept.

Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.18

sages

essage
niversität Bern Ducasse Stéphane

Objects communicate via mes
Transcript show: ‘hello world’

The above expression is a message:

– the object Transcript is the receiver of the m

– the selector of the message is #show:

– an argument: a string ‘hello world’

Transcript

is a global variable (starts with an uppercase letter)
that refers to the Launcher’s report part.

Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.19

servers.
m differently.

100

ac2
niversität Bern Ducasse Stéphane

A LAN Simulator
A LAN contains nodes, workstations, printers, file
Packets are sent in a LAN and the nodes treat the

mac1 node1 lw

m
pc

Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.20

 define it as a method.

thods, symbol, instance
tter, temporary not)
niversität Bern Ducasse Stéphane

Once the Classes Defined
We can invoke the following expressions in a workspace or

|mac1 pc node1 printer mac2 packet|

"nodes definition"

mac1 := Workstation withName: #Mac1.

pc := Workstation withName: #pc.

node1 := Node withName: #node1.

printer := Printer withName: #lw100.

mac2 := Workstation withName: #Mac2.

"Node connections"

mac nextNode: node1.

node1 nextNode: printer.

printer nextNode: mac2.

mac2 nextNode: pc.

pc nextNode: mac1.

"create a packet and start simulation"

packet := Packet send: 'This packet travelled around to the printer' to: #lw100.

mac2 originate: packet.

(temporary, comments, classes, instance creation class me
methods, string, sequence, classes start with uppercase le

Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.21

ods

 of the method
 an overriden method,
niversität Bern Ducasse Stéphane

A Step Further: Two Printer Meth
PrinterServer>>print: thePacket

"print the packet. Write this on the transcript"

Transcript show: 'printer ',

self name printString,

' printing the packet with contents: ',

thePacket contents printString ; cr

In C++, Java: we would write
void Printer::print(thePacket Packet)

....

PrinterServer>>accept: thePacket

"If the packet is addressed to me, print it. Else just behave like a normal node"

(thePacket isAddressedTo: self)

ifTrue : [self print: thePacket]

ifFalse : [super accept: thePacket]

Printer>> is an home made convention to precise the scope
(method definition, invoking a method one myself, invoking
conditionals, message composition, blocks, parentheses)

Smalltalk a Pure OO Language Syntax and Messages

U 3.22

thing new meets with resistance
Russian Proverb
niversität Bern Ducasse Stéphane

3. Syntax and Messages
Every

The syntax of Smalltalk is really simple and uniform

- Literals: numbers, strings, arrays....
- Variables names
- Pseudo-variables
- Assignment, return
- Message Expressions
- Block expressions

Smalltalk a Pure OO Language Syntax and Messages

U 3.23

to #titi)

een the “ and the first letter. Indeed
sion. You just go after the “ character
rintIt or doIt.
niversität Bern Ducasse Stéphane

Literals
Numbers: SmallInteger, Fraction, Float, Double

1232, 3/4, 4, 2.4e7, 2r101

Characters:
$F, Character space, Character tab, Character cr

Strings:
'This packet travelled around to the printer' 'l''idiot'

To introduce a single quote inside a string just double it.

Symbols:
#class #Mac1 #at:put: #+

Arrays:
#(1 2 3) #('lulu' (1 2 3)) #('lulu' #(1 2 3)) #(lulu toto titi)

The last array is an array of symbols. When one prints it it shows #(#lulu #to

Byte Array:
#[1 2 255]

Comments:
"This is a comment"

A comment can be more several lines. Moreover, avoid to put a space betw
when there is no space, the system helps you to select a commented expres
and double click: all the commented expression is selected. After you can p

Smalltalk a Pure OO Language Syntax and Messages

U 3.24

rg book) defines a literal as an object
on to present the concept. However,
ualWorks (VisualAge as a safer
niversität Bern Ducasse Stéphane

Arrays
Heterogenous

#('lulu' (1 2 3)) PrIt-> #('lulu' #(1 2 3))

#('lulu' 1.22 1) PrIt-> #('lulu' 1.22 1)

An array of symbols:
#(calvin hobbes suzie) PrIt-> #(#calvin #hobbes #suzie)

An array of strings:
#('calvin' 'hobbes' 'suzie') PrIt-> #('calvin' 'hobbes' 'suzie')

Literal or not
#(...) considers element as literals

#(1 + 2) PrIt-> #(1 #+ 2)

Array with: (1 +2) PrIt-> #(3)

About Literals for the CuriousNote about literals. Literature (Goldbe
which value refer always to the same objet. This is a first approximati
if we check the literals according to this principle, this is false in Vis

Smalltalk a Pure OO Language Syntax and Messages

U 3.25

 of character, arrays, symbols, and
me object.
st in the system and stored into the
olds the bytecode translation of the
res the literals used by the methods.

l array and a newly created instance
:

tored into the literal frame of the
.

niversität Bern Ducasse Stéphane

definition.) Literature defines literals as numbers, characters, strings
two strings , floats , arrays but they do not refer (hopefully) to the sa
In fact literals are objects created at compile-time or even already exi
compiled method literal frame. A compiled method is an object that h
source code. The literal frame is a part of a compiled method that sto
You can inspect a class->methodDict-> aCompiledMethod to see.
The following example can illustrate the difference between the litera
of Array created via Array new. Let us defined the following method

SmallInteger>m1

|anArray|

anArray := #(nil).

(anArray at: 1) isNil

ifTrue:[Transcript show: ‘Put 1’;cr.

anArray at: 1 put: 1.]

1 m1

will only display the message Put 1 once. Because the array #(nil) is s
method and the #at:put: message modified the compiled method itself

m2

|anArray|

anArray := Array new: 1.

Smalltalk a Pure OO Language Syntax and Messages

U 3.26

array is always created at run-time.
nto the literal frame of the compiled
ods on a class, inspecting the class
niversität Bern Ducasse Stéphane

(anArray at: 1) isNil

ifTrue:[Transcript show: ‘Put 1’;cr.

anArray at: 1 put: 1]

1 m2 will always display the message Put 1 because in that case the
Therefore it is not detected as literals at compile-time and not stored i
method. You can find yourself this infomation by defining these meth
then its method dictionary and then the corresponding methods.

Smalltalk a Pure OO Language Syntax and Messages

U 3.27

eys for dictionaries
le objects

. But converting a string to a

(IdentityDictionary)
niversität Bern Ducasse Stéphane

Symbols vs. Strings
- Symbols are used as method selectors, unique k
- A symbol is a read-only object, strings are mutab
- A symbol is unique, strings not
- Only created using #symbol

#lulu == #lulu PrIt-> true

‘lulu’ == ‘lulu’ PrIt-> false

#lulu, #zeBest PrIt-> 'luluzeBest'

Comparing strings is a factor of 5 to 10 slower than symbols
symbol is more than 100 times more expensive.

Symbols are good candidates for identity based dictionary

Smalltalk a Pure OO Language Syntax and Messages

U 3.28

temporaryVariable

method
parameter

rameter

emporary|

able

| methodTemporary|
niversität Bern Ducasse Stéphane

Variables
- Maintain a reference to an object
- Untyped, can reference different types of objects
- Shared or private

variable

SharedVariable

instanceVariable

named indexed

: blockPa

| blockT

privateVari

ClassVariable

GlobalVariable

PoolVariable

Smalltalk a Pure OO Language Syntax and Messages

U 3.29

tion)
d

 an argument, an instance
Your code will be more

two different objects.
niversität Bern Ducasse Stéphane

Temporary Variables
To hold temporary values during evaluation (method execu
Can be accessed by the expressions composing the metho

|mac1 pc node1 printer mac2 packet|

- Avoid to use the same name for a temporary variable than
variable or another temporary variable or block temporary.
portable.
Instead of

aClass>>printOn: aStream

|aStream|

...

Write
aClass>>printOn: aStream

|anotherStream|

...

- Avoid to use the same temporary variable for referencing

Smalltalk a Pure OO Language Syntax and Messages

U 3.30
niversität Bern Ducasse Stéphane

Assigments

variable := aValue

three := 3 raisedTo: 1

variable1 := variable2 := aValue

But assignment is not done by message passing.
This is one of the few Smalltalk syntax element

p1 := p2 := 0@100

p1 x: 100

p1 PrIt-> 100@100

p2 PrIt-> 100@100

Smalltalk a Pure OO Language Syntax and Messages

U 3.31

od.

ng oldObject"
niversität Bern Ducasse Stéphane

Method Arguments
- Can be accessed by the expressions composing the meth
- Exist during the execution of the defining method.

- Method Name
add: newObject after: oldObject

"Add the argument newObject as an element of the receiver in the position just succeedi

In C++ or Java:
“Object” Printer::addafter(newObject “Object”, oldObject “Object”)

- But their values cannot be reassigned within the method.
Invalid Example, assuming name is an instance variable:
name: aString

aString := aString, 'Device'.

 name := aString

Valid Example
name: aString

name := aString , 'Device'

Smalltalk a Pure OO Language Syntax and Messages

U 3.32

and its subclasses,
niversität Bern Ducasse Stéphane

Instance Variables
- Private to the object (not to the class like in C++),
- Can be accessed by all the methods of the defining class
- Has the same lifetime that the object.

Declaration
Model subclass: #Node

instanceVariableNames: 'name nextNode '

...

Scope
Node>>setName: aSymbol nextNode: aNode

name := aSymbol.

nextNode := aNode

But preferably accessed with accessors
Node>>name

^name

Smalltalk a Pure OO Language Syntax and Messages

U 3.33

but we cannot change their

 instance of the class
niversität Bern Ducasse Stéphane

Six pseudo-variables (i)
Smalltalk expressions make references to these variables,
value. They are hardwired in the compiler.

- nil (nothing) value for the uninitialized variables. Unique
UndefinedObject

- true unique instance of the class True

- false unique instance of the class False

Take care
False

ifFalse: [Transcript show: ‘False’]

Produces an error, but

false

ifFalse: [Transcript show: ‘False’]

works
(see most common bugs)

Smalltalk a Pure OO Language Syntax and Messages

U 3.34

.
age.
e message but its semantics
of the class in which the
of the receiver (see method

a normal node"

 that represents the context
ly in VisualWorks.
niversität Bern Ducasse Stéphane

Six pseudo-variables (ii)
The following variables can only be used in a method body
- self in the method body refers to the receiver of a mess
- super in the method body refers also to the receiver of th
affects the lookup of the method. It starts in the superclass
method where the super was used and NOT the superclass
lookup semantics)

PrinterServer>>accept: thePacket

"If the packet is addressed to me, print it. Else just behave like

(thePacket isAddressedTo: self)

ifTrue : [self print: thePacket]

ifFalse : [super accept: thePacket]

- thisContext refers to the instance of MethodContext
of a method (receiver, sender, method, pc, stack). Exists on

Smalltalk a Pure OO Language Syntax and Messages

U 3.35

ictionary)

riable (if shared within an

the compiler)
niversität Bern Ducasse Stéphane

Global Variables
• Capitalized

MyGlobal := 3.14

Smalltalk will prompt you.
Smalltalk at: #MyGlobal put: 3.14

Global PrIt-> 3.14

Smalltalk at: #MyGlobal PrIt-> 3.14

• Store in the default environment: Smalltalk (aSystemD

• Accessible from everywhere
• Usually not really a good idea to use them, use a classVa
hierarchy or a instance variable of a class)
• To remove a global variable:

Smalltalk removeKey: #MyGlobal

• Some predefined global variables:
Smalltalk (classes + globals)

Undeclared (a Pool dictionary of undeclared variables accessible from

Transcript (System transcript)

ScheduledControllers (window controllers)

Processor (a ProcessScheduler list of all the process)

Smalltalk a Pure OO Language Syntax and Messages

U 3.36

ated (2+3)
niversität Bern Ducasse Stéphane

Three Kinds of Messages
Unary

2.4 inspect

Binary
1 + 2 -> 3

Keyword based
6 gcd: 24 PrIt-> 6

(1 + 2) * (2 + 3) PrIt-> 15

Message composed by :
 - a receiver always evaluated (1+2)

 - a selector never evaluated
 - and a list possibly empty of arguments that are all evalu

Receiver linked with self in a method body

Smalltalk a Pure OO Language Syntax and Messages

U 3.37
niversität Bern Ducasse Stéphane

Message = Effect + Return

Three kind of message actions:

Affects the receiver and returns
pc nextNode: mac1 PrIt-> aWorkstation

Date new day: 12 year: 1997

PrIt-> January 12, 1997

Only returns a new object

3.14 truncated PrIt-> 3

Workstation withName: #Mac1 PrIt-> aWorkstation

Perform side effect and returns
Browser browseAllSendersOf: #open:label:

PrIt-> aBrowser + open a Browser

Smalltalk a Pure OO Language Syntax and Messages

U 3.38
niversität Bern Ducasse Stéphane

Unary Messages

aReceiver aSelector

1 class PrIt-> SmallInteger

false not PrIt-> true

Date today PrIt-> Date today September 19, 1997

Time now PrIt-> 1:22:20 pm

Double pi PrIt-> 3.1415926535898d

Smalltalk a Pure OO Language Syntax and Messages

U 3.39

t

niversität Bern Ducasse Stéphane

Binary Messages
aReceiver aSelector anArgumen

Binary messages:
 - arithmetic, comparison and logical operations
 - one or two characters long taken from

 + - / \ * ~ < > = @ % | & ! ? ,

 1 + 2 2 >= 3 100@100 'the', 'best'

Restriction:
 - second character is never $-

 - no mathematical precedence
3 + 2 * 10 -> 50

3 + (2 * 10) -> 23

Smalltalk a Pure OO Language Syntax and Messages

U 3.40

rgument2 ...
ent2, type2) : return-type
niversität Bern Ducasse Stéphane

Keyword Messages
receiver keyword1: argument1 keyword2: a

In C-like languages: receiver keyword1keyword2...(argument1 type1, argum

1@1 setX: 3

#(1 2 3) at: 2 put: 25

1 to: 10 -> (1 to: 10) anInterval

Browser newOnClass: Point

Interval from:1 to: 20 PrIt-> (1 to: 20)

12 between: 10 and: 20 PrIt-> true

x > 0 ifTrue:['positive'] ifFalse:['negative']

Workstation withName: #Mac2

mac nextNode: node1.

Packet send: 'This packet travelled around to the printer' to: #lw100.

Smalltalk a Pure OO Language Syntax and Messages

U 3.41

quent. Else the precedence
niversität Bern Ducasse Stéphane

Composition
69 class inspect

(0@0 extent: 100@100) bottomRight

Precedence Rules:

– (E) > Unary-E > Binary-E > Keywords-E

– at same level, from the left to the right

2 + 3 squared -> 11

2 raisedTo: 3 + 2 -> 32

#(1 2 3) at: 1+1 put: 10 + 2 * 3 -> #(1 36 3)

Hints: Put () when two keyword based messages are conse
order is fine.

x isNil

ifTrue: [...]

(x includes: 3)

ifTrue: [...]

Smalltalk a Pure OO Language Syntax and Messages

U 3.42
niversität Bern Ducasse Stéphane

Sequence
message1.
message2.
message3

Transcript cr.

Transcript show: 1 printString.

Transcript cr.

Transcript show: 2 printString

|mac1 pc node1 printer mac2 packet|

"nodes definition"

mac1 := Workstation withName: #Mac1.

pc := Workstation withName: #pc.

node1 := Node withName: #node1

Smalltalk a Pure OO Language Syntax and Messages

U 3.43

rg] ; ...

essages composing the
ed into the cascade.

d in a cascade is the first
the result of the parenthesed

and nextNode: too.
niversität Bern Ducasse Stéphane

Cascade
receiver selector1 [arg] ; selector2 [a

Transcript show: 1 printString.

Transcript show: cr

Equivalent to:
Transcript

show: 1 printString ; cr

Important: the semantics of the cascade is to send all the m
cascade to the receiver of the FIRST message being involv

In the following example the FIRST message being involve
#add: and not #with: . So all the messages will be sent to
expression the newly created instance anOrderedCollection

(OrderedCollection with: 1) add: 25; add: 35

Workstation new name: #mac ; nextNode: aNode

name: is sent to the newly created instance of workstation

Smalltalk a Pure OO Language Syntax and Messages

U 3.44

f the cascade.
niversität Bern Ducasse Stéphane

yourself
One problem:

(OrderedCollection with: 1) add: 25; add: 35 PrIt-> 35

Returns 35 and not the collection!
Let us analyze a bit:
OrderedCollection>>add: newObject

"Include newObject as one of the receiver's elements. Answer newObject."

^self addLast: newObject

OrderedCollection>>addLast: newObject

"Add newObject to the end of the receiver. Answer newObject."

lastIndex = self basicSize ifTrue: [self makeRoomAtLast].

lastIndex := lastIndex + 1.

self basicAt: lastIndex put: newObject.

^newObject

How can we reference the receiver of the cascade?

By using yourself: yourself returns the receiver o
(OrderedCollection with: 1) add: 25; add: 35 ; yourself

-> OrderedCollection(1 25 35)

Smalltalk a Pure OO Language Syntax and Messages

U 3.45

urself ?

ly created instance and not

hat is the code of yourself?
niversität Bern Ducasse Stéphane

Have You Really Understood Yo

Yourself returns the receiver of the cascade:
Workstation new name: #mac ; nextNode: aNode ; yourself

Here the receiver of the cascade is aWorkstation the new
the class Workstation

In
(OrderedCollection with: 1) add: 25; add: 35 ; yourself

anOrderedCollection(1) = self

So if you are that sure that you really understand yourself, w

Object>>yourself

^ self

Smalltalk a Pure OO Language Syntax and Messages

U 3.46

ck

a normal node"
niversität Bern Ducasse Stéphane

Block (i): Definition
• A deferred sequence of actions
• Return values is the result of the last expression of the blo
• = Lisp Lambda-Expression, ~ C functions

[:variable1 :variable2 |
| blockTemporary1 blockTemporary2 |
 expression1.
 ...variable1 ...
]

Two blocks without variables and temporary
PrinterServer>>accept: thePacket

"If the packet is addressed to me, print it. Else just behave like

(thePacket isAddressedTo: self)

ifTrue: [self print: thePacket]

ifFalse: [super accept: thePacket]

Smalltalk a Pure OO Language Syntax and Messages

U 3.47

ment, stored into variables...
niversität Bern Ducasse Stéphane

Block (ii): Evaluation
[....]

 value

or value:

or value:value:

or value:value:value:

or valueWithArguments: anArray

Blocks are first class objects, they are created, pass as argu
fct(x) = x ^ 2 + x
fct (2) = 6
fct (20) = 420

|fct|

fct:= [:x | x * x + x].

fct value: 2 PrIt-> 6

fct value: 20 PrIt-> 420

fct PrIt-> aBlockClosure

Smalltalk a Pure OO Language Syntax and Messages

U 3.48

 to variables that are
niversität Bern Ducasse Stéphane

Block (iii)

|index bloc |

index := 0.

bloc := [index := index +1].

index := 3.

bloc value 4

Integer>>factorial

"Answer the factorial of the receiver. Fail if the

receiver is less than 0. "

 | tmp |

 tmp := 1.

 2 to: self do: [:i | tmp := tmp * i].

 ^tmp

For performance reason avoid as much as possible to refer
outside a block.

Smalltalk a Pure OO Language Syntax and Messages

U 3.49
niversität Bern Ducasse Stéphane

Syntax Summary (i)

comment: “a comment”

character: $c $h $a $r $a $c $t $e $r $s $# $@

string: ‘a nice string’ ‘lulu’ ‘l’’idiot ’
symbol: #mac #+

array: #(1 2 3 (1 3) $a 4)

byte array: #[1 2 3]

point: 10@120

integer: 1

real: 1.5, 6.03e-34,4, 2.4e7, 2r101

float: 1/33

boolean: true, false

Smalltalk a Pure OO Language Syntax and Messages

U 3.50

d2: arg2...
niversität Bern Ducasse Stéphane

Syntax Summary (ii)
block: [:var ||tmp| expr...]

var := aValue

unary message: receiver selector
binary message: receiver selector selector
keyword based: receiver keyword1: arg1 keywor
cascade: message ; selector ...
sequence: message . message
result: ^

parenthesis: (...)

byte array: #[...]

Smalltalk a Pure OO Language Syntax and Messages

U 3.51

d type in some expressions,
niversität Bern Ducasse Stéphane

What You Should Know

- Syntax
- Basic objects
- Message constituants
- Message semantics
- Message precedence
- Block definition
- Block use
- yourself semantics
- pseudo-variables

To know all that, the best thing to do is to take a Smalltalk an
to look at the return expressions

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.52

nd Loops

ction , Set , Dictionary ...)
niversität Bern Ducasse Stéphane

4. Basic Objects, Conditional a
- Common Shared Behavior (minimal version)
- Number (subclass of Magnitude)

Fraction
Integer

LargeInteger
SmallInteger

LimitedPrecisionReal
Double
Float

- Boolean : superclass of True and False

- Collection super of more than 80 classes:
(Bag, Array , OrderedCollection , SortedColle

- Loops and Iteration abstraction

- Streams and Files

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.53

ts in the system.

h the receiver.
niversität Bern Ducasse Stéphane

Common Shared Behavior (i)
Object class is the root of inheritance tree
Defines the common and minimal behavior for all the objec

=> 161 instance methods + 19 class methods
• #class

• Comparison of objects: #==, #~~, #=, #=~, #isNil, #notNil

• Copy of objects: #shallowCopy, #copy

#shallowCopy : the copy shares instance variables wit
 default implementation of #copy is #shallowCopy

a a copy

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.54

ash number)

true

e same
#==.

It-> false

-> true

too!
niversität Bern Ducasse Stéphane

Identity vs. Equality
= anObject

 returns true if the structures are equivalent (the same h

(Array with: 1 with: 2) = (Array with:1 with:2) PrIt->

== anObject

 returns true if the receiver and the argument point to th
 object. #== should never be overriden. On Object #= is
~= is not = , ~~ is not ==

(Array with: 1 with: 2) == (Array with: 1 with:2) Pr

(Array with: 1 with: 2) = (Array with: 1 with:2) PrIt

Take care when redefining #= one should override #hash
(See most common bugs)

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.55

,

self)'
niversität Bern Ducasse Stéphane

Common Shared Behavior (ii)
Print and store objects: #printString, #printOn: aStream

#storeString, #storeOn: aStream
#(123 1 2 3) printString -> '#(123 1 2 3)'

Date today printString -> 'October 5, 1997'

Date today storeString -> '(Date readFromString: ''10/5/1997'')'

OrderedCollection new add: 4 ; add: 3 ; storeString ->

'((OrderedCollection new) add: 4; add: 3; yourself)'

Create instances from stored objects: class methods
readFrom: aStream, readFromString: aString

 Object readFromString: '((OrderedCollection new) add: 4; add: 3; your

-> OrderedCollection (4 3)

Notifying the programmer:
 #error: aString, #doesNotUnderstand: aMessage,

 #halt, #shouldNotImplement, #subclassResponsibility

Examing Objects: #browse, #inspect

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.56

vior

serted in a body of a method)

enting the object

s an object equal to the
niversität Bern Ducasse Stéphane

Essential Common Shared Beha
#class returns the class of the object

#inspect opens an inspector

#browse opens a browser

#halt stops the execution and opens a debugger (to be in

#printString (calls #printOn:) returns a string repres

#storeString returns a string whom evaluation recreate
receiver

#readFromString: aStream recreates an object

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.57

lo 30 \\ 9
niversität Bern Ducasse Stéphane

Basics on Number
• Arithemic

5 + 6, 5 - 6, 5 * 6,

division 30 / 9 , integer division 30 // 9 , modu
square root 9 sqrt , square 3 squared

• Rounding
3.8 ceiling -> 4

3.8 floor -> 3

3.811 roundTo: 0.01 -> 3.81

• Range 30 between: 5 and: 40

• Tests
3.8 isInteger

3.8 even, 3.8 odd

• Signs
positive, negative, sign, negated

• Other
min:, max:, cos, ln, log, log: arcSin, exp, **

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.58

ispatch (i)
e argument ?
r as an argument
niversität Bern Ducasse Stéphane

Deeper on Numbers: Double D
How to select a method depending on the receiver AND th
Send a message back to the argument passing the receive

Example: Coercion between Float and Integer

A not really good solution:
Integer>>+ aNumber

(aNumber isKindOf: Float)
ifTrue: [aNumber asFloat + self]
ifFalse: [self addPrimitive: aNumber]

Float>>+ aNumber
(aNumber isKindOf: Integer)

ifTrue: [aNumber asFloat + self]
ifFalse: [self addPrimitive: aNumber]

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.59

ispatch (ii)
ger>>sumFromInteger: anInteger

<primitive: 40>
at>>sumFromInteger: anInteger

^ anInteger asFloat + self

eger>>sumFromFloat: aFloat
^aFloat + self asFloat

t>>sumFromFloat: aFloat
<primitive: 41>
niversität Bern Ducasse Stéphane

Deeper on Numbers: Double D
(c) Inte

(d) Flo

(a) Integer>>+ aNumber
^ aNumber sumFromInteger: self

(b) Float>>+ aNumber
^ aNumber sumFromFloat: self

(e) Int

(f) Floa

Some Tests:
1 + 1: (a->c)
1.0 + 1.0: (b->f)
1 + 1.0: (a->d->b->f)
1.0 + 1: (b->e->b->f)

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.60

 & Generality
mber

rarchy. A number
numbers)."
niversität Bern Ducasse Stéphane

Deeper on Numbers: Coercion
ArithmeticValue>>coerce: aNumber

"Answer a number representing the argument, aNumber, that is the same kind of Nu
as the receiver. Must be defined by all Number classes."

^self subclassResponsibility

ArithmicValue>>generality
"Answer the number representing the ordering of the receiver in the generality hie
in this hierarchy coerces to numbers higher in hierarchy (i.e., with larger generality

^self subclassResponsibility

Integer>>coerce: aNumber
"Convert a number to a compatible form"

^aNumber asInteger

Integer>>generality
^40

Generality
SmallInteger 20
Integer 40
Fraction 60
FixedPoint 70
Float 80
Double 90

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.61

rcing:

e receiver and the
er the receiver or
neralities are the
ed."
niversität Bern Ducasse Stéphane

Deeper on Numbers: #retry:coe

ArithmeticValue>>sumFromInteger: anInteger
"The argument anInteger, known to be a kind of integer,
encountered a problem on addition. Retry by coercing either
anInteger or self, whichever is the less general arithmetic value."
Transcript show: 'here arthmeticValue>>sunFromInteger' ;cr.
^anInteger retry: #+ coercing: self

ArithmeticValue>>retry: aSymbol coercing: aNumber
"Arithmetic represented by the symbol, aSymbol, could not be performed with th
argument, aNumber, because of the differences in representation. Coerce eith
the argument, depending on which has higher generality, and try again. If the ge
same, then this message should not have been sent so an error notification is provid

self generality < aNumber generality
ifTrue: [^(aNumber coerce: self) perform: aSymbol with: aNumber].

self generality > aNumber generality
ifTrue: [^self perform: aSymbol with: (self coerce: aNumber)].

self error: 'coercion attempt failed'

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.62

Boolean , True and False

ssion

is true

 is false
niversität Bern Ducasse Stéphane

Boolean Objects
Boolean false and true are objects described by classes

- uniform
- but optimized, inlined

• Logical Comparisons &, |, xor:, not
aBooleanExpression comparison anotherBooleanExpre

(1 isZero) & false

• Lazy Logical operators

aBooleanExpression and: aBlock

aBlock will only be valued if aBooleanExpression
false and: [1 error: 'crazy'] PrIt-> false

aBooleanExpression or: aBlock

 aBlock will only be valued if aBooleanExpression

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.63

als

of true its unique instance!

uments of the message are
e both branchs.
niversität Bern Ducasse Stéphane

Boolean Objects and Condition
aBoolean ifTrue: aTrueBlock ifFalse: aFalseBlock

aBoolean ifTrue: aTrueBlock

aBoolean ifFalse: aTrueBlock ifTrue: aFalseBlock

aBoolean ifFalse: aFalseBlock

1 < 2 ifTrue: [...] ifFalse: [...]

1 < 2 ifFalse: [...] ifTrue: [...]

1 < 2 ifTrue: [...]

1 < 2 ifFalse: [...]

Take care true is the boolean value and True is the class

Note: Why conditional expressions use blocks?

Because, when a message is sent: the receiver and the arg
evaluated. So block uses are necessary to avoid to evaluat

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.64
niversität Bern Ducasse Stéphane

Loops
aBlockTest whileTrue

aBlockTest whileFalse

aBlockTest whileTrue: aBlockBody

aBlockTest whileFalse: aBlockBody

anInteger timesRepeat: aBlockBody

[x<y] whileTrue: [x := x + 3]

10 timesRepeat: [Transcript show: 'hello'; cr]

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.65

by the receiver."
niversität Bern Ducasse Stéphane

For the Curious
whileTrue:

BlockClosure>>whileTrue: aBlock

 ^ self value ifTrue:[aBlock value.

self whileTrue: aBlock]

BlockClosure>>whileTrue

 ^ [self value] whileTrue:[]

timesRepeat:

Integer>>timesRepeat: aBlock

"Evaluate the argument, aBlock, the number of times represented

 | count |

 count := 1.

 [count <= self] whileTrue: [aBlock value.

count := count + 1]

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.66

ial or key-based.
pe.
niversität Bern Ducasse Stéphane

Collections
• Only the most important
• Some criterias to identify them. Access: indexed, sequent
Size: fixed or dynamic. Element type: any or well-defined ty
Order: defined, defineable or no. Duplicate: possible or not
Sequenceable ordered

ArrayedCollection fixed size + key = integer
Array any kind of elements
CharacterArray elements = character

String
IntegerArray

Interval arithmetique progression
LinkedList dynamic chaining of the element
OrderedCollection size dynamic + arrival order

SortedCollection explicit order
Bag possible duplicate + no order
Set no duplicate + no order

IdentitySet identification based on identity
Dictionary element = associations + key based

IdentityDictionary key based on identity

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.67

Duplicates Allowed

Bag Set

y n
niversität Bern Ducasse Stéphane

Another View

Keyed

Adds Allowed

Sorted

UniqueKey

Sorted

Ordered

Array
String

Identity Dictionary

Integer Key

Dictionary

Collection

Collection

y

y

y

y

yn

n

n

n

n

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.68

lasses
put:

k,

ent: aBlock,

aBlock,
ue

k

niversität Bern Ducasse Stéphane

Collection Methods
Will be defined, redefined, optimized or forbiden in subc
Accessing: #size, #capacity, #at: anInteger, #at: anInteger
anElement

Testing: #isEmpty, #includes: anElement, #contains: aBloc
occurencesOf: anElement

Adding: #add: anElement, #addAll: aCollection

Removing: #remove: anElement, #remove:anElement ifAbs
#removeAll: aCollection

Enumerating (See generic enumerating)
#do: aBlock, #collect: aBlock, #select: aBlock, #reject:
#detect:, #detect: aBlock ifNone: aNoneBlock, #inject: aval
into: aBinaryBlock

Converting: #asBag, #asSet, #asOrderedCollection,
#asSortedCollection, #asArray, #asSortedCollection: aBloc

Creation: #with: anElement, #with:with:, #with:with:with:,
#with:with:with:with:, #with:All: aCollection

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.69

ment

k

t:
niversität Bern Ducasse Stéphane

Sequenceable Specific (Array)
Accessing
#first, #last

#atAllPut: anElement, #atAll: anIndexCollection: put: anEle

Searching (*: + ifAbsent:)
#indexOf: anElement, #indexOf: anElement ifAbsent: aBloc

Changing
#replaceAll: anElement with: anotherElement

Copying
#copyFrom: first to: last, copyWith: anElement, copyWithou
anElement

|arr|

arr := #(calvin hates suzie).

arr at: 2 put: #loves.

arr PrIt-> #(#calvin #loves #suzie)

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.70

ionary)

t:
s

ysDo:
niversität Bern Ducasse Stéphane

KeyedCollection Specific (Dict
Accessing
#at: aKey, #at: aKey ifAbsent: aBlock, #at: aKey ifAbsentPu
aBlock, #at: aKey put: aValue, #keys, #values, #association

Removing:
#removeKey: aKey, #removeKey: aKey ifAbsent: aBlock

Testing:
#includeKey: aKey

Enumerating
#keysAndValuesDo: aBlock, #associationsDo: aBlock, #ke
aBlock

|dict|

dict := Dictionary new.

dict at: 'toto' put: 3.

dict at: 'titi' ifAbsent: [4]. -> 4

dict at: 'titi' put: 5.

dict removeKey: 'toto'.

dict keys -> Set ('titi')

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.71

ndexable collection and also
niversität Bern Ducasse Stéphane

Choose your Camp!
You could write:

absolute: aCollection

|result|

result := aCollection species new: aCollection size.

1 to: aCollection size do:

[:each | result at: each put: (aCollection at: each) abs].

^ result

Sure!
Or

absolute: aCollection

^ aCollection collect: [:each| each abs]

And contrary to the first solution, this solution works well for i
for sets.

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.72

ct:
niversität Bern Ducasse Stéphane

Iteration Abstraction: do:/colle
aCollection do: aOneParameterBlock

aCollection collect: aOneParameterBlock

aCollection with: anotherCollection do: aBinaryBlock

#(15 10 19 68) do:

 [:i | Transcript show: i printString ; cr]

#(15 10 19 68) collect: [:i | i odd]

PrIt-> #(true false true false)

#(1 2 3) with: #(10 20 30)

do: [:x :y| Transcript show: (y ** x) printString ; cr]

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.73

ject:/detect:

cateBlock

edicateBlock
niversität Bern Ducasse Stéphane

Iteration Abstraction: select:/re
aCollection select: aPredicateBlock

aCollection reject: aPredicateBlock

aCollection detect: aOneParameterPredi

aCollection

detect: aOneParameterPr

ifNone: aNoneBlock

#(15 10 19 68) select: [:i|i odd] -> #(15 19)

#(15 10 19 68) reject: [:i|i odd] -> #(10 68)

#(12 10 19 68 21) detect: [:i|i odd] PrIt-> 19

#(12 10 12 68) detect: [:i|i odd] ifNone:[1] PrIt-> 1

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.74

:

lock
niversität Bern Ducasse Stéphane

Iteration Abstraction: inject:into

aCollection inject: aStartValue into: aBinaryB

|acc|

acc := 0.

#(1 2 3 4 5) do: [:element | acc := acc + element].

acc

-> 15

#(1 2 3 4 5)

 inject: 0

 into: [:acc :element| acc + element]

-> 15

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.75
niversität Bern Ducasse Stéphane

Collection Abstraction

aCollection includes: anElement

aCollection size

aCollection isEmpty

#(1 2 3 4 5) contains: 4 -> true

#(1 2 3 4 5) size -> 5

#(1 2 3 4 5) isEmpty -> false

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.76

llection: ExternalStream
niversität Bern Ducasse Stéphane

Streams
• Allows the traversal of a collection
• Associated with a collection

- collection is a Smalltalk collection: InternalStream

- collection is a file or an object that behaves like a co
• Stores the current position

Stream (abstract)
PeekableStream (abstract)

PositionableStream (abstract)
ExternalStream

ExternalReadStream
ExternalReadAppendStream
ExternalReadWriteStream

ExternalWriteStream
InternalStream

ReadStream
WriteStream

ReadWriteStream

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.77
niversität Bern Ducasse Stéphane

An Example
|st|

st := ReadWriteStream on: (OrderedCollection new: 5).

st nextPut: 1.

st nextPutAll: #(4 8 2 6 7).

st contents. PrIt-> OrderedCollection (1 4 8 2 6 7)

st reset.

st next. -> 1

st position: 3.

st next. -> 2

st := #(1 2 5 3 7) readStream.

st next. -> 1

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.78

"

e]
niversität Bern Ducasse Stéphane

printSring, printOn:
Object>>printString

"Answer a String whose characters are a description of the receiver.

| aStream |

aStream := WriteStream on: (String new: 16).

self printOn: aStream.

^aStream contents

Node>>printOn: aStream

super printOn: aStream .

aStream nextPutAll: ' with name:'; print: self name.

self hasNextNode ifTrue: [

aStream nextPutAll: ' and next node:'; print: self nextNode nam

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.79

on
ent from the next position

lement

ex elements included)
niversität Bern Ducasse Stéphane

Stream classes(i)
Stream.
#next returns the next element
#next: n returns the n next elements
#contents returns all the elements
#nextPut: anElement inserts element at the next positi
#nextPutAll: aCollection inserts the collection elem
#atEnd returns true if at the end of the collection

PeekableStream.
Access to the current without passing to the next
#peek

#skipFor: anAgrument

#skip: n increases the position of n
#skipUpTo: anElement increases the position after anE
Creation
#on: aCollection,

#on: aCol from: firstIndex to: lastIndex (ind

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.80
niversität Bern Ducasse Stéphane

Stream Classes (ii)
PositionnableStream
#skipToAll: #throughAll: #upToAll:

#position

#position: anInteger

#reset #setToEnd #isEmpty

InternalStream
#size returns the size of the internal collection
Creation #with: (without reinitializing the stream)

ReadStream WriteStream and ReadWriteStream
ExternalStream and subclasses

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.81

ow
+ #endEntry instead of
niversität Bern Ducasse Stéphane

Stream tricks
Transcript is a TextCollector that has aStream

TextCollector>>show: aString

self nextPutAll: aString.

self endEntry

#endEntry via dependencies asks for refreshing the wind
If you want to speed up a slow trace, use #nextPutAll:
#show:

|st sc|

st := ReadStream on: ‘we are the champions’.

sc := Scanner new on: st.

[st atEnd] whileFalse: [Transcript nextPutAll: sc scanToken, ‘ * ‘].

Transcript endEntry

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.82

ntents removed)

.

niversität Bern Ducasse Stéphane

Streams and Files
Filename.

#appendStream (addition + creation if file doesnot exists)

#newReadAppendStream, #newReadWriteStream (if receiver exists, co

#readAppendStream, #readWriteStream, #readStream, #writeStream

Example: removing Smalltalk comments of a file

|inStream outStream |

inStream := (Filename named: ‘/home/ducasse/test.st’) readStream.

outStream := (Filename named: ‘/home/ducasse/testout.st’) writeStream

“(or ‘/home/ducasse/ducasse’ asFilename)”

[inStream atEnd] whileFalse: [

outStream nextPutAll: (inStream upTo: $”).

inStream skipTo: $”].

^outStream contents

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.83

rpreter! Yes again!
niversität Bern Ducasse Stéphane

What you should know
- Number protocol
- Boolean protocol
- Collection protocol
- Loops
- Conditional
- Iteration Abstraction
- Collection Abstraction

But the best way to know that is to play with a Smalltalk inte

Smalltalk a Pure OO Language Dealing with Classes

U 5.84
niversität Bern Ducasse Stéphane

5. Dealing with Classes

- Class definition
- Method definition
- Inheritance semantics
- Basic class instanciation

Smalltalk a Pure OO Language Dealing with Classes

U 5.85

'

niversität Bern Ducasse Stéphane

Class Definition

A template is proposed by the browser:
NameOfSuperclass subclass: #NameOfClass

 instanceVariableNames: ' instVarName1 instVarName2 '

 classVariableNames: 'ClassVarName1 ClassVarName2 '

 poolDictionaries: ''

 category: ' CategoryName '

Example
Object subclass: #Packet

instanceVariableNames: ' contents addressee originator

classVariableNames: ''

poolDictionaries: ''

category: ' LAN-Simulation '

Automatically a class named “Packet class ” is created.
Packet is the unique instance of Packet class .
(To see it click on the class button in the browser)

Smalltalk a Pure OO Language Dealing with Classes

U 5.86

'

)
classes (instance methods)
ods.
 like in C++
niversität Bern Ducasse Stéphane

Named Instance Variables
NameOfSuperclass subclass: #NameOfClass

 instanceVariableNames: 'instVarName1 instVarName2'

 ...

Object subclass: #Packet

instanceVariableNames: ' contents addressee originator

...

• Begins with a lowercase letter
• Explicitly declared: a list of instance variables
• Name should be unique / inheritance
• Default value is nil

• Private to the instance: instance based (C++ class-based
• Can be accessed by all the methods of the class and sub
• But instance variables cannot be accessed by class meth
• A client cannot directly access to iv. No private, protected
• Accessing methods to access instance variable.

Smalltalk a Pure OO Language Dealing with Classes

U 5.87

bles

e instances and subclasses
ods and class methods

'

ble before using it!
niversität Bern Ducasse Stéphane

classVariable
• A pretty bad name: should have been called Shared Varia
• Begins with a uppercase letter
• a classVariable is shared and directly accessible by all th
• a classVariable can be directly accessed in instance meth

NameOfSuperclass subclass: #NameOfClass

...

classVariableNames: 'ClassVarName1 ClassVarName2 '

...

Object subclass: #Packet

instanceVariableNames: ' contents addressee originator

classVariableNames: ‘Domain’

Pay attention and be sure than you really need a classVaria

• Often classVariable can be replaced by class methods
 Packet class>>domain

 ^ ‘iam.unibe.ch’

Smalltalk a Pure OO Language Dealing with Classes

U 5.88

sVariable
e instances and subclasses

 be accessed only via class

 to this class.

all the inheritance tree is
niversität Bern Ducasse Stéphane

Class Instance Variables / Clas
• a classVariable is shared and directly accessible by all th

• Class instance variables as normal instance variables can
message and accessors:

- an instance variable of a class is private
- an instance

• Take care when you change the value of a classVariable
impacted!

Smalltalk a Pure OO Language Dealing with Classes

U 5.89

tance.
niversität Bern Ducasse Stéphane

poolVariables
• Also called Pool Variables.
• Begins with a uppercase letter
• Variable shared by a group of classes not linked by inheri
• Each class possesses its own pool dictionary.
• They are not inherited.

Smalltalk a Pure OO Language Dealing with Classes

U 5.90

kConstant .
niversität Bern Ducasse Stéphane

Example of PoolVariables
Instead of

Smalltalk at: #NetworkConstant put: Dictionary new.

NetworkConstant at: #rates put: 9000.

Node>>computeAverageSpeed

...

NetworkConstant at: #rates

Write:
Object subclass: #Packet

instanceVariableNames: ' contents addressee originator '

classVariableNames: ‘Domain’

poolDictionaries: 'NetworkConstant'

Node>>computeAverageSpeed

...

.. rates

rates is directly accessed in the global dictionary Networ

As a beginner policy, never use poolDictionaries

Smalltalk a Pure OO Language Dealing with Classes

U 5.91

e like a node”
niversität Bern Ducasse Stéphane

Method Definition
A template is proposed by the browser

message selector and argument names

 "comment stating purpose of message"

 | temporary variable names |

 statements

Example from PrinterServer

You type:
accept: thePacket

"If the packet is addressed to me, I print it. Else I just behav

(thePacket isAddressedTo: self)

ifTrue: [self print: thePacket]

ifFalse: [super accept: thePacket]

I show
PrinterServer>>accept: thePacket

Smalltalk a Pure OO Language Dealing with Classes

U 5.92
niversität Bern Ducasse Stéphane

Iv Access Example

Packet>>isOriginatingFrom: aNode

^ self originator = aNode

is equivalent to:

Packet>>isOriginatingFrom: aNode

^ originator = aNode

Accessors are interesting to implement lazzy initialization

A lazzy initialization schema:
Packet>>originator

originator isNil

ifTrue: [originator := Node new]

^ originator

Smalltalk a Pure OO Language Dealing with Classes

U 5.93

e expression as the result of
niversität Bern Ducasse Stéphane

Return Value
• Message = effect + return
• A message always returns an object as a result.
• In a method body, the ^ expression returns the value of th
the method execution.
• By default, a method returns self

accept: thePacket

"Having received the packet, send it on. This is the default behavior"

self send: thePacket

is equivalent to
accept: thePacket

"Having received the packet, send it on. This is the default behavior"

self send: thePacket.

^self

If we want to return the value returned by #send:
accept: thePacket

"Having received the packet, send it on. This is the default behavior"

^self send: thePacket.

Smalltalk a Pure OO Language Dealing with Classes

U 5.94

class instance variables
superclass

send: aString to: anAdress
asicNew initialize
ontents: aString ;
ddressee: anAddress

 methods
niversität Bern Ducasse Stéphane

Visibility of Variables

Packet>>printOn:

instance variables
addressee

classVariables
Domain

Packet>>
^self b

c
a

instance methods
class

Smalltalk a Pure OO Language Dealing with Classes

U 5.95

metric Class
niversität Bern Ducasse Stéphane

Example From The System: Geo

Object subclass: #Geometric

instanceVariableNames: ''

classVariableNames: 'InverseScale Scale '

...

Geometric class>>initialize

"Reset the class variables."

Scale := 4096.

InverseScale := 1.0 / Scale

Smalltalk a Pure OO Language Dealing with Classes

U 5.96
niversität Bern Ducasse Stéphane

Circle
Geometric subclass: #Circle

instanceVariableNames: 'center radius '

classVariableNames: ''

...

Circle>>center

^center

Circle>>area

| r |

r := self radius asLimitedPrecisionReal.

^r class pi * r * r

Circle>>diameter

^self radius * 2

Circle class>>center: aPoint radius: aNumber

^self basicNew setCenter: aPoint radius: aNumber

Smalltalk a Pure OO Language Dealing with Classes

U 5.97

ble

thod with is or has
niversität Bern Ducasse Stéphane

Quick Naming Conventions
• Shared variables begin with an upper case letter
• Private variables begin with a lower case letter
• Use imperative for methods performing action #openOn:

For accessor, use the same name as for the instance varia
upperLimit

^ upperLimit

upperLimit: aNumber

upperLimit := aNumber

• For predicate methods (returning a boolean) prefix the me
 isNil, hasBorder, isEmpty

• For converting methods prefix the method with as
 asString

Smalltalk a Pure OO Language Dealing with Classes

U 5.98

m the superclasses and the

depending of the type of the
niversität Bern Ducasse Stéphane

Inheritance in Smalltalk
• Single inheritance

• Static for the instance variables.
At class creation time the instance variables are collected fro
class. No repetition of instance variables.

• Dynamic for the methods.
Late binding (all virtual) methods are looked up at run-time
receiver.

Smalltalk a Pure OO Language Dealing with Classes

U 5.99

okup

e receiver and the args

 corresponding to
n.

.

er's class.
s to explore (class Object),
 sent to the receiver,
niversität Bern Ducasse Stéphane

Message Sending & Method Lo
sending a message: receiver selector args <=>
applying a method looked up associated with selector to th

Looking up a method:
When a message receiver selector args is sent, the method
the message selector is looked up through inheritance chai

=> the lookup starts in the class of the receiver.
If the method is defined in the class dictionary, it is returned

Else the search continues in the superclasses of the receiv
If no method is found and that there is no superclas
a new method called #doesNotUnderstand: is
with a representation of the initial message.

Smalltalk a Pure OO Language Dealing with Classes

U 5.100

e

C
change
 self put: 33333

inherits-from

instance-of
niversität Bern Ducasse Stéphane

inherits-from

inherits-from
change
 self put: 11111
give
 ^i
put: aNumber
 i := aNumber

A

B
selfChange

self change

superChange
super chang

aA

aB

instance-of

instance-of

Smalltalk a Pure OO Language Dealing with Classes

U 5.101
niversität Bern Ducasse Stéphane

Example
Object subclass: #A

 instanceVariableNames: 'i '...

A>>change

self put: 11111

A>>give

 ^i

A>>put: aNumber

 i := aNumber

A subclass: #B ...

B>>selfChange

 self change

B>>superChange

 super change

B subclass: #C

C>>change

 self put: 33333

Smalltalk a Pure OO Language Dealing with Classes

U 5.102
niversität Bern Ducasse Stéphane

Run the messages

aA change give -> 11111

aB change give -> 11111

aC change give -> 33333

aC selfchange give -> 33333

aC superchange give -> 11111

aB selfchange give -> 11111

aB superchange give -> 11111

Smalltalk a Pure OO Language Dealing with Classes

U 5.103

ceiver of the message.

class of the receiver .

e superclass of the class of
e superclass of the receiver

e superclass of the class of
niversität Bern Ducasse Stéphane

Semantics of super
• As self , super is a pseudo-variable that refers to the re
• Used to invoke overriden methods.

• When using self the lookup of the method begins in the

• When using super the lookup of the method begins in th
the method containing the super expression and NOT in th
class.
Other said:
• super causes the method lookup to begin searching in th
the method containing super

Smalltalk a Pure OO Language Dealing with Classes

U 5.104

Let us be Absurb!

Let us suppose the WRONG hypothesis:
"IF super semantics =

eiver class"

iver class.

A

B

C

m1
super m1

m1
 ...

aC
niversität Bern Ducasse Stéphane

starting the lookup of method in the superclass of the rec

What will happen for the following message: aC m1
m1 is not defined in C
m1 is found in B

By Hypothesis: super = lookup in the superclass of the rece
And we know that the superclass of the receiver class = B

=> That's loop So Hypothesis is WRONG !!

Smalltalk a Pure OO Language Dealing with Classes

U 5.105

m

ithName: #Mac

new
niversität Bern Ducasse Stéphane

Lookup and Class Messages

inherits fro

Node

Workstation

Node class

Workstation class

aWorkstation

accept: aPacket

instance
method lookup

aWorkstation Workstation w

Smalltalk a Pure OO Language Dealing with Classes

U 5.106
niversität Bern Ducasse Stéphane

Object Instantiation
Objects can created by:
- Direct Instance creation: (basic)new/new:

- Messages to Instances that Create Other Objects
- Class specific Instantiation Messages

Smalltalk a Pure OO Language Dealing with Classes

U 5.107

)new/new:
s

IALIZED instance

tance (indexed variable)

ation
niversität Bern Ducasse Stéphane

Direct Instance Creation: (basic
• #new/basicNew and new: /basicNew: are class method

• aClass new /basicNew => returns a newly and UNINIT

OrderedCollection new -> OrderedCollection ()

Packet new -> aPacket

Packet new addressee: #mac ; contents: ‘hello mac’

Instance variable values = nil
• #new: /basicNew: to precise the size of the created ins

 Array new: 4 -> #(nil nil nil nil)

• #new/#new: can be specialized ot have a customized cre
• #basicNew /#basicNew: should never be specialized

Smalltalk a Pure OO Language Dealing with Classes

U 5.108

ate Objects
niversität Bern Ducasse Stéphane

Messages to Instances that Cre
1 to: 6 (an interval)

1@2 (a point)

(0@0) extent: (100@100) (a rectangle)

#lulu asString (a string)

1 printString (a string)

3 asFloat (a float)

#(23 2 3 4) asSortedCollection (a sortedCollection)

Smalltalk a Pure OO Language Dealing with Classes

U 5.109

."
niversität Bern Ducasse Stéphane

Opening the Box
1 to: 6 -> an Interval

Number>>to: stop

 "Answer an Interval from the receiver up to the argument, stop, with

 each next element computed by incrementing the previous one by 1."

^Interval from: self to: stop by: 1

1 printString -> aString

Object>>printString

 "Answer a String whose characters are a description of the receiver."

| aStream |

aStream := WriteStream on: (String new: 16).

self printOn: aStream.

^aStream contents

1@2 -> aPoint

Number>>@ y

 "Answer a new Point whose x value is the receiver and whose y value is the argument

<primitive: 18>

^Point x: self y: y

Smalltalk a Pure OO Language Dealing with Classes

U 5.110

sages
niversität Bern Ducasse Stéphane

Class specific Instantiation Mes
Array with: 1 with: 'lulu'

OrderedCollection with: 1 with: 2 with: 3

Rectangle fromUser -> 179@95 corner: 409@219

Browser browseAllImplementorsOf: #at:put:

Packet send: ‘Hello mac’ to: #mac

Smalltalk a Pure OO Language Dealing with Classes

U 5.111

y of pointers, each pointing
niversität Bern Ducasse Stéphane

Two Views on Classes
• Named or indexed instance variables

Named: ‘addressee’ of Packet

Indexed: Array

• Or looking at them in another way:
Objects with pointers to other objects
Objects with arrays of bytes (word, long)

Difference for efficiency reason:
arrays of bytes (like C string) are faster than storing an arra
to a single byte.

Smalltalk a Pure OO Language Dealing with Classes

U 5.112

ples
rkstation

piledMethod

Array

es, #isFixed,

ubclasses

nly:
lasses

ned instance variables
niversität Bern Ducasse Stéphane

Types of Classes
Indexed Named Definition Method Exam
No Yes #subclass:... Packet, Wo

Yes Yes #variableSubclass: Array, Com

Yes No #variableByteSubclass String, Byte

Related Method to class types: #isPointers, #isBits, #isByt
#isVariable, #kindOfSubclass

• classes defined using #subclass: support any kind of s

• classes defined using #variableSubclass: support o
variableSubclass: or variableByteSubclass: subc

• classes defined using #variableByteSubclass

- can only be defined if the superclass has no defi
- pointer classes anmd byet classes don’t mix
- only byte subclasses

Smalltalk a Pure OO Language Dealing with Classes

U 5.113

les
niversität Bern Ducasse Stéphane

Indexed Classes
• For class that needs a variable number of instance variab

Example: the class Array

ArrayedCollection variableSubclass: #Array

 instanceVariableNames: ''

 classVariableNames: ''

 poolDictionaries: ''

 category: 'Collections-Arrayed'

Array new: 4 -> #(nil nil nil nil)

#(1 2 3 4) class isVariable -> true

Smalltalk a Pure OO Language Dealing with Classes

U 5.114

les
ariables
niversität Bern Ducasse Stéphane

Indexed Class/Instance Variab
• Indexed variable is implictly added to the list of instance v
• Only one indexed instance variable per class
• Access with #at: and #at:put:

(#at:put: answers the value not the receiver)
• First access: anInstance at: 1

• #size returns the number of indexed instance variables
• Instantiated with #new: max

|t|

t := (Array new: 4).

t at: 2 put: 'lulu'.

t at: 1 -> nil

• Subclasses should also be indexed

Smalltalk a Pure OO Language Dealing with Classes

U 5.115
niversität Bern Ducasse Stéphane

What you should know

• Defining a class
• Defining methods
• Semantics of self

• Semantics of super

• Instance creation

Again open a browser and test!

Smalltalk a Pure OO Language Basic Elements of Design

U 7.116

 Class
niversität Bern Ducasse Stéphane

6. Basic Elements of Design and
Behavior

• Class definition
• Supporting Instance initialisation
• Supporting Instance creation

• Instance/Class methods
• Instance variable/ Class instance variables
• Class initialisation
• Abstract Classes

Smalltalk a Pure OO Language Basic Elements of Design

U 7.117

t

niversität Bern Ducasse Stéphane

A First Implementation of Packe

Object subclass: #Packet

instanceVariableNames: ‘contents addressee originator ‘

classVariableNames: ‘’

poolDictionaries: ‘’

category: ‘Lan-Simulation’

One instance method
Packet>>printOn: aStream

super printOn: aStream.

aStream nextPutAll: ‘ addressed to: ‘; print: self addressee.

aStream nextPutAll: ‘ with contents: ’; print: self contents

Some Accessors
Packet>>addressee

^addressee

Packet>>addressee: aSymbol

addressee := aSymbol

Smalltalk a Pure OO Language Basic Elements of Design

U 7.118

ess
ple, printOn:)
niversität Bern Ducasse Stéphane

Packet CLASS Definition
Packet Class is Automatically defined

Packet class

 instanceVariableNames: ''

Example of instance creation

Packet new addressee: # mac ; contents: ‘hello mac’

Problems of this approach:
- responsibility of the creation relies on the clients
- can create packet without contents, without addr
- instance variable not initialized -> error (for exam

- > system fragile

Smalltalk a Pure OO Language Basic Elements of Design

U 7.119

alization
ith uninitialized instance
nce variables of an instance.

d by creation methods

tance variables and override

Class Method

Instance Method

ket

 method like #new
niversität Bern Ducasse Stéphane

Assuring Instance Variable Initi
Problem. By default #new class method returns instance w
variables. Remind that class methods cannot access to insta
-> How to initialize a newly created instance ?
Moreover, #initialize method is not automatically calle
#new/new:

Solution. Defines an instance method that initializes the ins
#new to invoke it.

1 Packet class>>new

2 ^ super new initialize

3 Packet>>initialize

super initialize.

contents := ‘default message’

Packet new (1-2) -> aPacket initialize (3-4) -> returning anInitializedPac

Remind. You cannot access instance variable from a class

Smalltalk a Pure OO Language Basic Elements of Design

U 7.120

od

ethod
niversität Bern Ducasse Stéphane

Other Instance Initialization
step 1. SortedCollection sortBlock: [:a :b| a name < b name]

SortedCollection class>>sortBlock: aBlock

 "Answer a new instance of SortedCollection such that its elements are sorted

according to the criterion specified in aBlock."

^self new sortBlock: aBlock Class meth

step 2. self new = aSortedCollection

step 3. aSortedCollection sortBlock: aBlock Instance m

step 4. returning the instance aSortedCollection

step 1. OrderedCollection with: 1

Collection class>>with: anObject

 "Answer a new instance of a Collection containing anObject."

| newCollection |

 newCollection := self new.

 newCollection add: anObject.

 ^newCollection

Smalltalk a Pure OO Language Basic Elements of Design

U 7.121

terface
.
n. Providing an interface for
niversität Bern Ducasse Stéphane

Strengthen Instance Creation In
Problem. A client can still create aPacket without address
Solution. Force the client to use the class interface creatio
creation and avoiding the use of #new

Packet send: ‘Hello mac’ to: #Mac

First try
Packet class>>send: aString to: anAddress

^ self new contents: aString ; addressee: anAddress

Problem! #new should raise an error!

The solution:
Packet class>>new

self error: 'Packet should only be created using send:to:'

Packet class>>send: aString to: anAddress

^ self basicNew contents: aString ; addressee: anAdress

Smalltalk a Pure OO Language Basic Elements of Design

U 7.122

 Variables

s: number of created
sses....
tion, class initialization,

n be used to define common

ed. Instead of writing:
niversität Bern Ducasse Stéphane

Class Methods - Class Instance
• Classes (Packet class) represents class (Packet).
• Class instance variable should represent the state of clas
instances, number of messages sent, superclasses, subcla
• Class methods represent CLASS behavior: instance crea
counting the number of instances....
• If you weaken the second point: class state and behavior ca
properties shared by all the instances

Ex: If we want to encapsulate the way “no next node” is cod
aNode nextNode isNil

=> aNode hasNextNode

Node>>hasNextNode

^ self nextNode = self class noNextNode

Node class>>noNextNode

^ nil

Smalltalk a Pure OO Language Basic Elements of Design

U 7.123

avior

e instance already exists this
tore and returned it as result
niversität Bern Ducasse Stéphane

Singleton Instance: A Class Beh
Problem. We want a class with a unique instance.
Solution. We specialize the #new class method so that if on
will be the only one. When the first instance is created, we s
of #new.

|db|

db := LAN new.

db == LAN new -> true

LAN uniqueInstance == LAN new -> true

Smalltalk a Pure OO Language Basic Elements of Design

U 7.124

tation

elf basicNew initialize].

sssary. It depends what we
eInstance is:

 no initialization.
niversität Bern Ducasse Stéphane

Singleton Instance’s Implemen

LAN class

instanceVariableNames: 'uniqueInstance '

LAN class>>new

self error: ‘should use uniqueInstance’

LAN class>>uniqueInstance

uniqueInstance isNil ifTrue: [uniqueInstance := s

^uniqueInstance

Providing access to the unique instance is not always nece
want to express. The difference between #new and #uniqu
- #new potentially initializes a new instance.
- #uniqueInstance only returns the unique instance there is

(see Smalltalk Companion for an interesting discussion)

Smalltalk a Pure OO Language Basic Elements of Design

U 7.125

 by the programmer.
stance variables.

econdsInDay
niversität Bern Ducasse Stéphane

Class Initialization
Automatically called by the system at load time or explicitly
- Used to initialize classVariable, pool dictionary or class in
- ‘Classname initialize ’ at the end of the saved files.

Example: Date

Magnitude subclass: #Date

 instanceVariableNames: 'day year'

 classVariableNames: 'DaysInMonth FirstDayOfMonth MonthNames S

WeekDayNames'

 poolDictionaries: ''

 category: 'Magnitude-General'

Smalltalk a Pure OO Language Basic Elements of Design

U 7.126

d days and the
niversität Bern Ducasse Stéphane

Date class>>initialize
Date class>>initialize

"Initialize class variables representing the names of the months an
number of seconds, days in each month, and first day of each month. "

 "Date initialize."

 MonthNames := #(January February March April May

June July August September October November December).

 SecondsInDay := 24 * 60 * 60.

 DaysInMonth := #(31 28 31 30 31 30 31 31 30 31 30 31).

 FirstDayOfMonth := #(1 32 60 91 121 152 182 213 244 274

305 335).

 WeekDayNames := #(Monday Tuesday Wednesday Thursday

Friday Saturday Sunday)

Smalltalk a Pure OO Language Basic Elements of Design

U 7.127

is independent from the

ethods to which it should

sibility .
rror.

stantiable classes.
ass comment.
should be specialized.

se. Its subclasses
niversität Bern Ducasse Stéphane

Abstract Classes
• Should not be instantiated (deferred class of Eiffel).
• Defines a protocol common to a hierarchy of classes that
representation choices.
• A class is considered as abstract as soon as one of the m
respond to is not implemented (can be a inherited one).

• Deffered method send the message self subclassRespon

• Depending of the situation, override #new to produce an e

• Abstract classes are not syntactically distinguable from in
BUT as conventions use class comments: So look at the cl
and write in the comment which methods are abstract and
Advanced tools check this situation.

Class Boolean is an abstract class that implements behavior common to true and fal

are True and False. Subclasses must implement methods for

logical operations &, not, |

controlling and:, or:, ifTrue:, ifFalse:, ifTrue:ifFalse:, ifFalse:ifTrue:

Smalltalk a Pure OO Language Basic Elements of Design

U 7.128

 False

)

True:,ifFalse:,
lse:,ifFalse:ifT r
niversität Bern Ducasse Stéphane

Case Study: Boolean, True and

Object ()
 Boolean (&, not, |, and:, or:,ifTrue:,
 ifFalse:,ifTrue:ifFalse:,ifFalse:ifTrue:
 False ()
 True ()

Boolean

False True
and:, or:,ifTrue:,ifFalse:,
ifTrue:ifFalse:,ifFalse:ifTrue:
&, not, |

and:, or:,if
ifTrue:ifFa
&, not, |

eqv:, xor:, storeOn:,
shallowCopy

Smalltalk a Pure OO Language Basic Elements of Design

U 7.129

e receiver is

an."

r essential methods and Just In Time
de. So the second time it is invoked
niversität Bern Ducasse Stéphane

Boolean
Abstract method

Boolean>>not

"Negation. Answer true if the receiver is false, answer false if th
true."

self subclassResponsibility

Concrete method efined in terms of an abstract method
Boolean>>xor: aBoolean

 "Exclusive OR. Answer true if the receiver is not equivalent to aBoole

 ^(self == aBoolean) not

When #not will be defined, #xor: is automatically defined

Note that VisualWorks introduced a kind of macro expansion, optimisation fo
compilation. A method is executed once and after it is compiled in native co
the native code is executed.

Smalltalk a Pure OO Language Basic Elements of Design

U 7.130

ecause

invoked because
niversität Bern Ducasse Stéphane

False and True
False>>not

"Negation -- answer true since the receiver is false."

 ^true

True>>not

"Negation--answer false since the receiver is true."

 ^false

False>>ifTrue: trueBlock ifFalse: falseBlock

 "Answer the value of falseBlock. This method is typically not invoked b
ifTrue:/ifFalse: expressions are compiled in-line for literal blocks."

^falseBlock value

True>>ifTrue: trueBlock ifFalse: falseBlock

"Answer the value of trueBlock. This method is typically not
ifTrue:/ifFalse: expressions are compiled in-line for literal blocks."

^trueAlternativeBlock value

Smalltalk a Pure OO Language Basic Elements of Design

U 7.131
niversität Bern Ducasse Stéphane

CaseStudy: Magnitude:
1 > 2 = 2 < 1 = false

Magnitude>> < aMagnitude

 ^self subclassResponsibility

Magnitude>> = aMagnitude

^self subclassResponsibility

Magnitude>> <= aMagnitude

^(self > aMagnitude) not

Magnitude>> > aMagnitude

^aMagnitude < self

Magnitude>> >= aMagnitude

^(self < aMagnitude) not

Magnitude>> between: min and: max

^self >= min and: [self <= max]

1 <= 2 = (1 > 2) not

 = false not

 = true

Smalltalk a Pure OO Language Basic Elements of Design

U 7.132

er."

r. "
niversität Bern Ducasse Stéphane

Date
Date>>< aDate

 "Answer whether the argument, aDate, precedes the date of the receiv

year = aDate year

 ifTrue: [^day < aDate day]

 ifFalse: [^year < aDate year]

Date>>= aDate

 "Answer whether the argument, aDate, is the same day as the receive

self species = aDate species

 ifTrue: [^day = aDate day & (year = aDate year)]

 ifFalse: [^false]

Date>>hash

 ^(year hash bitShift: 3) bitXor: day

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.133

malltalk

y

ols, development styles
niversität Bern Oscar Nierstrasz

7. Comparing C++, Java and S
Commented version

Overview
❑ History:

☞ target applications, evolution, design goals
❑ Language features:

☞ syntax, semantics, implementation technolog
❑ Pragmatics:

☞ portability, interoperability, environments & to

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.134

BOL

a

Lisp

Prolog

Modula-2

Modula-3

Oberon

a 95
niversität Bern Oscar Nierstrasz

History

1960

1970

1980

1990

FORTRAN
Algol 60

CO

PL/1
Simula 67

Smalltalk 72

Smalltalk 80

Objective C

C

C++ Ad

Pascal

ANSI C++

Self
Eiffel

Algol 68

Clu

Java Ad

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.135

es. “Elastic” applications.

s).
er high-performance
niversität Bern Oscar Nierstrasz

Target Application Domains

Smalltalk
Originally conceived as PL for children.
Designed as language and environment for “Dynabook”.
Now: Rapid prototyping. Simulation. Graphical user interfac

C++
Originally designed for simulation (C with Simula extension
Now: Systems programming. Telecommunications and oth
domains.

Java
Originally designed for embedded systems.
Now: Internet programming. Graphical user interfaces.

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.136

entity. The language evolved

 environments and

irtual functions (Simula-like).
, multiple inheritance,
ures.
ill evolving.

le language.
nsions (inner classes being

rhauled to support a more
ll expanding and evolving.
niversität Bern Oscar Nierstrasz

Evolution
Smalltalk

❑ Originally (1972) every object was an independent
to incorporate a meta-reflective architecture.

❑ Now the language (Smalltalk-80) is stable, but the
frameworks continue to evolve.

C++
❑ Originally called C with classes, inheritance and v
❑ Since 1985 added strong typing, new and delete

templates, exceptions, and many, many other feat
❑ Standard libraries and interfaces are emerging. St

Java
❑ Originally called Oak, Java 1.0 was already a stab
❑ Java 1.1 and 1.2 introduced modest language exte

the most important).
❑ The Abstract Windowing Toolkit was radically ove

general-purpose event model. The libraries are sti

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.137

st

ntically)
 innovations)
niversität Bern Oscar Nierstrasz

Language Design Goals

Smalltalk
❑ “Everything is an object”
❑ Self-describing environment
❑ Tinkerability

C++
❑ C with classes

☞ and strong-typing, and ...
❑ “Every C program is also a C++ program” ... almo
❑ No hidden costs

Java
❑ C++ minus the complexity (syntactically, not sema
❑ Simple integration of various OO dimensions (few
❑ “Java — it’s good enough”

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.138

isms

ional sense
ncurrency, exceptions ...)
niversität Bern Oscar Nierstrasz

Unique, Defining Features

Smalltalk
❑ Meta-reflective architecture

☞ The ultimate modelling tool
❑ Mature framework technology

C++
❑ “Portable assembler” with HL abstraction mechan

☞ Programmer is in complete control
❑ Templates (computationally complete!)

Java
❑ Dynamically loaded classes

☞ Applications are not “installed” in the convent
❑ First clean integration of many OO dimensions (co

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.139

Java

pure

l automatic

l yes (it depends)

single

s no (coming soon?)

static

r files) packages

rated)
yes

(well integrated)

ries) yes (monitors)

limited
niversität Bern Oscar Nierstrasz

Overview of Features
Smalltalk C++

object model pure hybrid

memory management automatic manua

dynamic binding always optiona

inheritance single multiple

generics no template

type checking dynamic static

modules no (categories) no (heade

exceptions
yes

(not commonly used)
yes

(weakly integ

concurrency yes (semaphores) no (libra

reflection
reflective

architecture
limited

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.140

locks, returning etc.

ence levels, opaque type
niversität Bern Oscar Nierstrasz

Syntax

Smalltalk
Minimal. Essentially there are only objects and messages.
A few special operators exist for assignment, statements, b

C++
Baroque. 50+ keywords, two commenting styles, 17 preced
expressions, various syntactic ambiguities.

Java
Simplified C++. Fewer keywords. No operator overloading.

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.141

lly aliases
niversität Bern Oscar Nierstrasz

Object Model

Smalltalk
❑ “Everything is an object”
❑ Objects are the units of encapsulation
❑ Objects are passed by reference

C++
❑ “Everything is a structure”
❑ Classes are the units of encapsulation
❑ Objects are passed by value

☞ Pointers are also values; “references” are rea

Java
❑ “Almost everything is an object”
❑ Classes are the units of encapsulation (like C++)
❑ Objects are passed by reference

☞ No pointers

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.142

 to other objects
lected
trusive

s to other objects
CF)

d

nd tools (Purify) can help

latform applications!
niversität Bern Oscar Nierstrasz

Memory Management

Smalltalk
❑ Objects are either primitive, or made of references
❑ No longer referenced objects may be garbage col

☞ Garbage collection can be efficient and non-in

C++
❑ Objects are structures, possibly containing pointer
❑ Destructors should be explicitly programmed (cf. O

☞ Automatic objects are automatically destructe
☞ Dynamic objects must be explicitly delete d

❑ Reference counting, garbage collection libraries a

Java
❑ Objects are garbage collected

☞ Special care needed for distributed or multi-p
— closed world assumption!

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.143

inlining, JIT compilation etc.)

ler!)
 by the type system
d!

e!
oat)

ically bound
fere!
niversität Bern Oscar Nierstrasz

Dynamic Binding

Smalltalk
❑ Message sends are always dynamic

☞ aggressive optimization performed (automatic

C++
❑ Only virtual methods are dynamically bound

☞ explicit inling (but is only a “hint” to the compi
❑ Overloaded methods are statically disambiguated

☞ Overridden, non-virtuals will be statically boun
❑ Overloading, overriding and coercion may interfer
— A::f(float); B::f(float), B::f(int); A b = new A; b.f(3) calls A::f(fl

Java
❑ All methods (except “static,” and “final”) are dynam
❑ Overloading, overriding and coercion can still inter

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.144

ded for generic classes

)
t”

ltiple interfaces)
cast” (dynamic typecheck)
d ...
niversität Bern Oscar Nierstrasz

Inheritance, Generics

Smalltalk
❑ Single inheritance; single root Object
❑ Dynamic typing, therefore no type parameters nee

C++
❑ Multiple inheritance; multi-rooted
❑ Generics supported by templates (glorified macros

☞ multiple instantiations may lead to “code bloa

Java
❑ Single inheritance; single root Object

☞ Multiple subtyping (a class can implement mu
❑ No support for generics; you must explicitly “down

☞ Several experimental extensions implemente

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.145

into categories

ing)
niversität Bern Oscar Nierstrasz

Types, Modules

Smalltalk
❑ Dynamic type-checking

☞ invalid sends raise exceptions
❑ No module concept — classes may be organized

☞ some implementations support namespaces

C++
❑ Static type-checking
❑ No module concept

☞ use header files to control visibility of names
— C++ now supports explicit name spaces? does this help?

Java
❑ Static and dynamic type-checking (safe downcast
❑ Classes live inside packages

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.146

ems not to be widely used!

ight context!

n or Error
ass)
sses/methods + wait/signal)

ich they are raised
niversität Bern Oscar Nierstrasz

Exceptions, Concurrency
Smalltalk

❑ Can signal/catch exceptions — se
❑ Multi-threading by instantiating Process

☞ synchronization via Semaphores

C++
❑ Try/catch clauses

☞ any value may be thrown
❑ No concurrency concept (various libraries exist)

☞ exceptions are not necessarily caught in the r

Java
❑ Try/catch clauses

☞ exception classes are subclasses of Exceptio
❑ Multi-threading by instantiating Thread (or a subcl

☞ synchronization by monitors (synchronized cla
☞ exceptions are caught within the thread in wh

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.147

Class)
Object)
ed at run-time

packages

ction”
and reacting on an object’s interface
niversität Bern Oscar Nierstrasz

Reflection

Smalltalk
❑ Meta-reflective architecture:

☞ every class is a subclass of Object (including
☞ every class is an instance of Class (including
☞ classes can be created, inspected and modifi
☞ Smalltalk’s object model itself can be modified

C++
❑ Run-time reflection only possible with specialized
❑ Compile-time reflection possible with templates

Java
❑ Standard package supports limited run-time “refle

☞ only supports introspection — i.e. inspecting

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.148

piled to “byte code”, which is
st-in-time” to native code.

s (if link-compatible.)
nguage model.
o resolve polymorphism at

amically loaded into a Java
iles it “just in time” to the

 others must be loaded
niversität Bern Oscar Nierstrasz

Implementation Technology
Smalltalk
Virtual machine running “Smalltalk image.” Classes are com
then “interpreted” by the VM — now commonly compiled “ju
— Most of the Java VM techniques were pioneered in Smalltalk.
C++
Originally translated to C. Now native compilers.
Traditional compile and link phases. Can link foreign librarie
Opportunities for optimization are limited due to low-level la
Templates enable compile-time reflection techniques (i.e., t
compile-time; to select optimal versions of algorithms etc.)

Java
Hybrid approach.
Each class is compiled to byte-code. Class files may be dyn
virtual machine that either interprets the byte-code, or comp
target machine.
Standard libraries are statically linked to the Java machine;
dynamically.

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.149

dleware

 a “portable assembler”)
re

eware
niversität Bern Oscar Nierstrasz

Portability, Interoperability

Smalltalk
❑ Portability through virtual machine
❑ Interoperability through special bytecodes and mid

C++
❑ Portability through language standardization (C as
❑ Interoperability through C interfaces and middlewa

Java
❑ Portability through virtual machine
❑ Interoperability through native methods and middl

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.150

guages, with class and
facilities, version control,

urify)
niversität Bern Oscar Nierstrasz

Environments and Tools

Advanced development environments exist for all three lan
hierarchy browsers, graphical debuggers, profilers, “make”
configuration management etc.

In addition:

Smalltalk
❑ Incremental compilation and execution is possible

— NB: Envy supports programming by teams (version control etc.)
C++

❑ Special tools exist to detect memory leaks (e.g., P

Java
❑ Tools exist to debug multi-threaded applications.

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.151

ging.

gging cycles.

ameworks.
niversität Bern Oscar Nierstrasz

Development Styles

Smalltalk
❑ Tinkering, growing, rapid prototyping.
❑ Incremental programming, compilation and debug
❑ Framework-based (vs. standalone applications).

C++
❑ Conventional programming, compilation and debu
❑ Library-based (rich systems libraries).

Java
❑ Conventional, but with more standard libraries & fr

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.152

; wrapping
logy
need special tools)
mming

level implementation
g language complexity

nd idioms
niversität Bern Oscar Nierstrasz

The Bottom Line ...
You can implement an OO design in any of the three.

Smalltalk
❑ Good for rapid development; evolving applications
❑ Requires investment in learning framework techno
❑ Not suitable for connection to evolving interfaces (

— Not so great for intensive data processing, or client-side internet progra
C++

❑ Good for systems programming; control over low-
❑ Requires rigid discipline and investment in learnin
❑ Not suitable for rapid prototyping (too complex)

Java
❑ Good for internet programming
❑ Requires investment in learning libraries, toolkits a
❑ Not suitable for reflective programming (too static)

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.153

radigm
niversität Bern Matthias Rieger

8. The Model View Controller Pa

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.154

al User Interface

 development of such
niversität Bern Matthias Rieger

Context

Building interactive applications with a Graphic

Obvious example: the Smalltalk Development Environment

Characteristics of such applications:
❑ Event driven user interaction, not predictable

☞ Interface Code can get very complex
❑ Interfaces are often subject of changes

Question:
➪ How can we reduce the complexity of the

applications

Answer:
➪ Modularity

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.155

stem components,
y have to fullfill.

 the components

ition:
niversität Bern Matthias Rieger

Program Architecture

A Software Architecture is a collection of software and sy
connections between them and a number of constraints the

Goals we want to achieve with our architecture:
❑ manageable complexity
❑ reusability of the individual components
❑ pluggability,

i.e. an easy realization of the connections between

The Solution for the domain of GUI-driven applications:
We structure our application according to the following part

– Model

– View

– Controller

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.156

nterface

 processing

)

niversität Bern Matthias Rieger

Separation of Concerns I:

Functionality vs. User U
Model:

– Domain specific information

– Core functionality, where the computation/data
takes place

User Interface:

– Presentation of the data in various formats

– dealing with user input (Mouse, Keyboard, etc.

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.157

tion

g)

 a 1:1 relationship between
e view and controller are not

edom of choice is better:
nt modes of interaction)
utton/Radio Button)
niversität Bern Matthias Rieger

Separation of Concerns II:

Display vs. Interac
View:

– displaying the data from the model

Controller:

– relaying the user input to the View (e.g. Scrollin
or the model (e.g. modification of the data)

View and Controller are very much related. There is always
views and controllers. There are examples of systems wher
separated.

Rationale for separating View and Controller:

– reusability of the individual components and fre
the same view with different controllers (differe
the same controller for different views (Action B

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.158

rmed about changes in the

to dependent objects are not

B

niversität Bern Matthias Rieger

The notion of Dependency
An object B that depends on another object A must be info
state of A, in order to be able to adapt its own state.

Dependencies that are realised via messages sent directly
very reusable and likely to break in times of change.

☞ Decoupling of subject and dependent

A

modification

change propagation

1

2

Subject

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.159

 so that when one object
pdated automatically.

, dependents). A subscriber

ges
niversität Bern Matthias Rieger

Dependency Mechanism
The Publisher-Subscriber Pattern (a.k.a. Observer Pattern)

Intent: Define a one-to-many dependency between objects
changes state, all its dependents are notified and u

The pattern ensures the automatisation of
❑ adding and removing dependents
❑ change propagation

The publisher (subject) has a list of subscribers (observers
registers with a publisher.
Protocol:

1. a publisher receives a changed message
2. all the subscribers receive update messa

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.160

 Session

Subscriber2

ent:Subscriber2
niversität Bern Matthias Rieger

Publisher-Subscriber: A Sample

Publisher Subscriber1

addDepend

addDependent:Subscriber1

changed

update

update

removeDependent:Subscriber1

changed

update

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.161

 Pull

ferred
riber?

g with the update message
eded.

subscriber what data
her and subscriber, or

ssage asks the publisher for

transferred.
nged.

 terminology) and other
niversität Bern Matthias Rieger

Change Propagation: Push and

How is the changed data trans
from the publisher to the subsc

❑ Push: the publisher sends the changed data alon
Advantages: only one message per subscriber ne
Disadvantage: Either the publisher knows for each
it needs which enhances coupling between publis
many a subscriber receives unnecessary data.

❑ Pull : the subscriber after receiving the update me
the specific data he is interested in
Advantage: Only the necessary amount of data is
Disadvantage: a lot of messages have to be excha

❑ Mixture: the publisher sends hints (“Aspects” in ST
parameters along with the update messages

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.162

ller

tput

er input

er input
niversität Bern Matthias Rieger

The MVC Pattern

Dependencies:

Other Messages:

Model

View

Contro

change propagation

Model

View

Controller

view messages

model access

and

editing messages

display ou

us

editing messages
us

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.163
niversität Bern Matthias Rieger

A Standard Interaction Cycle

<<diagram from the Buschmann et. al. book>>

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.164

ased complexity
ntial for excessive number of
tes
ate connection between
 and controller
e coupling of views and
rollers to a model
iciency of data access in

itability of change to view and
roller when porting
niversität Bern Matthias Rieger

MVC: Benefits and Liabilities

Benefits:

❑ Multiple views of the same model
❑ Synchronized views
❑ ‘Pluggable’ views and controllers
❑ Exchangeability of ‘look and feel’

Liabilities:

❑ Incre
❑ Pote

upda
❑ Intim

view
❑ Clos

cont
❑ Ineff

view
❑ Inev

cont

75

75%

Multiple Views per Model

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.165

ependently of the

 (due mid February 98)

eptionally strong:

skaug)
ramework of Smalltalk is

e undergone a strong
VisualWorks) solve many of
tations.
niversität Bern Matthias Rieger

MVC and Smalltalk

MVC is a pattern and can be used to desing applictions ind
programming language.

Examples:
❑ ET++ User Interface Framework (C++)
❑ Swing-Toolkit in the Java Foundation Classes 1.0

Nevertheless, the ties between MVC and Smalltalk are exc

❑ MVC was invented by a Smalltalker (Trygve Reen
❑ first implemented in Smalltalk-80; the Application F

built around it
❑ The first implementations of MVC in Smalltalk hav

evolution. Newer Implementations (for example in
the problems of the first, straightforward implemen

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.166

dents access):

ariable DependentsField .
, where the keys are

ections of dependents

.
 the dependents in a class
niversität Bern Matthias Rieger

Managment of Dependents

Protocol to manage dependents (defined in Object>>depen

– addDependent: anObject

– removeDependent: anObject

Attention: Storage of Dependents !

❑ Object : keeps the all his dependents in a class v
DependentsField is an IdentityDictionary
the objects themselves and the values are the coll
for the corresponding objects.

❑ Model : defines an instance variable dependents

☞ access is much more efficient than looking up
variable.

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.167

pagation

:

nAspectSymbol. Usu-
e protocol, that

al information.

:

if it does, per-
niversität Bern Matthias Rieger

Implementation of Change Pro

Change methods are implemented in Object>>changing

changed: anAspectSymbol

"The receiver changed. The change is denoted by the argument a
ally the argument is a Symbol that is part of the dependent’s chang
is, some aspect of the object’s behavior, and aParameter is addition
Inform all of the dependents."

self myDependents update: anAspectSymbol

Update methods are implemented in Object>>updating

update: anAspectSymbol

“Check anAspectSymbol to see if itequals some aspect of interest and
form the necessary action”

anAspectSymbol == anAspectOfInterest

ifTrue: [self doUpdate].

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.168

ault-Ladder

 from: self

om: aSender

ameter
niversität Bern Matthias Rieger

Climbing up and down the Def
changed

self changed: nil

changed: anAspectSymbol

self changed: anAspectSymbol with: nil

changed: anAspectSymbol with: aParameter

self myDependents update: anAspectSymbol with: aParameter

update: anAspectSymbol with: aParameter fr

^self update: anAspectSymbol with: aPar

update: anAspectSymbol with: aParameter

^self update: anAspectSymbol

update: anAspectSymbol

^self

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.169

ge

ven if they are not interested

lists of tests of anAspect .

elf changed, since there
 that change
 defined in different models
update:with:from:)

lex objects.

ndents
ethod that handles that
niversität Bern Matthias Rieger

Problems with the Vanilla Chan
Propagation Mechanism

❑ every dependent is notified about all the changes, e
(broadcast).

❑ the update: anAspect methods are often long
This is not clean object-oriented programming.

❑ all the methods changing something have to send s
might just be some dependent that is interested in

❑ danger of name clashes between apsects that are
that have to work together (can be solved by using

General problem:
complex objects depending on other comp

We need means to be more specific:
❑ publisher: send messages only to interested depe
❑ subscriber: being notified directly by a call to the m

specific change

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.170

tween a model and its

f its model and has a method
 at his model:

dependency
transformer

interested
object
niversität Bern Matthias Rieger

Dependency Transformer
A DependencyTransformer is an intermediate object be
dependent. It

❑ waits for a specific update: anAspect message
❑ sends a specific method to a specific object

A dependent that is only interested in a specific aspect o
to handle the update installs a DependencyTransformer

model expressInterestIn: anAspect

for: self

sendBack: aChangeMessage

dependents
collection

model

changed: #anAspect

update: #anAspect

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.171

er

uments’]

eters].

eters with:

anObject]
niversität Bern Matthias Rieger

Inside a Dependency Transform

Initializing a DependencyTransformer :

setReceiver: aReceiver aspect: anAspect selector: aSymbol

receiver := aReceiver.

aspect := anAspect.

selector := aSymbol.

numArguments := selector numArgs.

numArguments > 2 ifTrue: [self error: ’selector expects too many arg

Transforming an update: message:

update: anAspect with: parameters from: anObject

aspect == anAspect ifFalse: [^self].

numArguments == 0 ifTrue: [^receiver perform: selector].

numArguments == 1 ifTrue: [^receiver perform: selector with: param

numArguments == 2 ifTrue: [^receiver perform: selector with: param

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.172

d allows it to behave like a
cally when it is changed.

he ValueHolder , the
 any more
s they are interested in

bject asValue

he dependents)

dents automatically)
niversität Bern Matthias Rieger

ValueHolder
A ValueHolder is an object that encapsulates a value an
model, i.e. it notifies the dependents of the model automati

Creating a ValueHolder :

Accessing a ValueHolder :

Advantages:
❑ change propagation is triggered automatically by t

programmer does not have to do self changed

❑ objects can become dependents only of the value
(reduces broadcast problem)

ValueHolder with: anObject anOor

aValueholder value: aNewValue

aValueholder setValue: aNewValue (without notifying t

aValueholder value

(notifies the depen

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.173

ts that make up the UI
niversität Bern Matthias Rieger

A UserInterface Window

The widge

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.174

r Interface.

ch case the user can modify

ation
tion

nent it represents visually is

can be a ValueHolder for

s about its model
niversität Bern Matthias Rieger

Widgets
A widget is responsible for displaying some aspect of a Use

❑ A widget can display an aspect of a model
❑ A widget can be combined with a controller, in whi

the aspect of the model displayed by the widget.

The connection between widgets and the model:
❑ Each component of a User Interface is a widget
❑ Each component of a model is an attribute or oper
❑ Most widgets modify an attribute or start an opera

The communication between a widget and the model compo
standardized:

Value Model Protocol

Each model component is put into an aspect model, which
example. The Widget deals only with this aspect model.

☞ the widget does not have to know any specific

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.175

ing and managing a runtime
ages only application
odels.

User
Interfaces
niversität Bern Matthias Rieger

The Application Model
An ApplicationModel is a model that is responsible for creat
user interface, usually consisting of a single window. It man
information. It leaves the domain information to its aspect m

Domain
Models

Application
Models

Customer

BankAccount

Transaction

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.176

 Application

value
models

attributes
niversität Bern Matthias Rieger

The fine-grained Structure of an

Application
Model

Domain
Model

User
Interface

widgets

Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.177

ed Software Architecture,

ork (available online)

nline)

rks, SIGS Books, 1995
niversität Bern Matthias Rieger

MVC Bibliography

The Pattern:
E. Gamma et. al.: Design Patterns, Addison Wesley, 1995

☞ Observer, p. 239

F. Buschmann et. al.: A System of Patterns. Pattern-Orient
Wiley, 1996

☞ Model-View-Controller, p. 125
☞ Publisher-Subscriber, p. 339

The VisualWorks Application Framework:
VisualWorks Users Guide: Chapter 18, Application Framew

Visual Works Cookbook: Part II, User Interface (available o

Tim Howard: The Smalltalk Developer’s Guide to VisualWo

Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 178

d Idioms

r one!

ata
niversität Bern Ducasse Stéphane

9. Design Thoughts and Selecte

The Object Manifesto
Be lazy:

- Never do the job that you can delegate to anothe

Be private:
- Never let someone else plays with your private d

The Programmer Manifesto
- Say something only once

Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 179

 accessor use
e invoked by clients
l

 least at the beginning.
niversität Bern Ducasse Stéphane

About the Use of Accessors (i)
Literature says: “Access instance variables using methods”
- Be consistent inside a class, do not mix direct access and
- First think accessors as private methods that should not b
- Only when necessary put accessors in accessing protoco

Schedule>>initialize

tasks := OrderedCollection new.

Schedule>>tasks

^tasks

BUT: accessors methods should be PRIVATE by default at

Accessors are good for lazy initialization
Schedule>>tasks

tasks isNil ifTrue:[task := ...].

^tasks

Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 180

ors (ii)
you provide a good data

c you could be tempted to

 tasks is now a dictionary

provide a good interface!

e collection (else people can
niversität Bern Ducasse Stéphane

About the Use of Public Access
This is not because there are methods in the interface that
encapsulation.
If they are mentioned (no inforcement in Smalltalk) as publi
write in a client:

ScheduledView>>addTaskButton

...

model tasks add: newTask

What’s happen if we change the representation of tasks? If
THAT’S BREAK.

So take care about the coupling between your objects and

Schedule>>addTask: aTask

tasks add: aTask

Returns consistenly the receiver or the element but the not th
look inside and modifies it)

Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 181

ble task. Keep all of
.

niversität Bern Ducasse Stéphane

Composed Method
How do you divide a program into methods?

- Messages take time
- Flow of control is difficult with small methods
But:

- Reading is improved
- Performance tuning is simpler (Cache...)
- Easier to maintain / inheritance impact

Divide your program into methods that perform one identifia
the operations in a method at the same level of abstraction

Controller>>controlActvity

self controlInitialize.

self controlLoop.

self controlTerminate

Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 182

: ‘hello mac’

you have to read the code to

ach valid way to create an

reate well-formed
niversität Bern Ducasse Stéphane

Constructor Method
How do you represent instance creation?
Most simple way: Packet new addressee: # mac ; contents

Good if there are different combinations of parameters. But
understand how to create an instance.
Alternative: make sure that there is a method to represent e
instance.

Provide methods in class “instance creation” protocol that c
instances. Pass all required parameters to them

Packet class>>send: aString to: anAddress

^ self basicNew contents: aString ; addressee: anAdress ; yourself

Point class>>x:y:

Point class>> r: radiusNumber theta: thetaNumber

^ self

x: radiusNumber * thetaNumber cos

y: radiusNumber * thetaNumber sin

SortedCollection class>>sortBlock: aBlock

Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 183

the class, how to you pass

initialize)
he variables. Preface

, because the return value
niversität Bern Ducasse Stéphane

Constructor Parameter Method
Once you have the parameters of a Constructor Method to
them to the newly created instance?
Packet class>>send: aString to: anAddress

^ self basicNew

contents: aString ;

addressee: anAdress ;

yourself

But violates the “say things only once and only once” rule (
Code a single method in the “private” procotol that sets all t
its name with “set”, then the names of the variables.

Packet class>>send: aString to: anAddress

^ self basicNew setContents: aString addressee: anAddress

Packet>>setContents: aString addressee: anAddress

contents:= aString.

addressee := anAddress.

^self

Note self (Interesting Result) in setContents:addressee
of the method will be used as the return of the caller

Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 184

tocol. Name it by
s ”- is, was, will, has
niversität Bern Ducasse Stéphane

Query Method
How do you represent testing a property of an object?
What to return from a method that tests a property?
Instead of:
Switch>>makeOn

status := #on

Switch>>makeOff

status := #off

Switch>>status

^status

Client>>update

self switch status = #on ifTrue: [self light makeOn]

self switch status = #off ifTrue: [self light makeOff]

Defines
Switch>>isOn, Switch>>isOff

Provide a method that returns a Boolean in the “testing” pro
prefacing the property name with a form of “ be” or “ ha

Switch>>on is not a good name... #on: or #isOn ?

Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 185

d

 not the object itself

ty name, the other the
out the current state
niversität Bern Ducasse Stéphane

Boolean Property Setting Metho
How do you set a boolean property?

Switch>>on: aBoolean

isOn := aBoolean

• Expose the representation of the status to the clients
• Responsibility of who turn off/on the switch: the client and

Create two methods beginning with “be”. One has the proper
negation. Add “toggle” if the client doesn’t want to know ab

beVisible/beInvisible/toggleVisible

Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 186

receiver should be

s

niversität Bern Ducasse Stéphane

Comparing Method
How do we order objects?

<,<=,>,>= are defined on Magnitude and its subclasses.

Implement “<=” in “comparing” protocol to return true if the
ordered before the argument

But also we can use sortBlock: of SortedCollection clas

...sortBlock: [:a :b | a income > b income]

Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 187

ether?

oke them on the right order.
method by appending

o be invoked. In the
d, evaluate the block,
niversität Bern Ducasse Stéphane

Execute Around Method
How do represent pairs of actions that have to be taken tog
When a filed is opened it has to be closed....
Basic solutions: under the client responsibility, he should inv
Code a method that takes a Block as an argument. Name the
“During: aBlock” to the name of the first method that have t
body of the Execute Around Method, invoke the first metho
then invoke the second method.
File>>openDuring: aBlock

self open.

aBlock value.

self close

Cursor>>showWhile: aBlock

|old|

old := Cursor currentCursor.

self show.

aBlock value.

old show

Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 188

of which executes one

uture refinement by
niversität Bern Ducasse Stéphane

Choosing Message
How do you execute one of several alternatives?
responsible := (anEntry isKindOf: Film)

ifTrue:[anEntry producer]

ifFalse:[anEntry author]

Use polymorphism
Film>>responsible

^self producer

Entry>>responsible

^self author

responsible := anEntry responsible

Send a message to one of several different of objects, each
alternative
Examples:
Number>>+ aNumber

Object>>printOn: aStream

Collection>>includes:

A Choosing Message can be sent to self in anticipation of f
inheritance. See also the State Pattern.

Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 189

tion is simple?

ystem will run in the same
.

ates what is to be done
the message.
niversität Bern Ducasse Stéphane

Intention Revealing Message
How do you communicate your intent when the implementa

We are not writing for computer but for reader
ParagraphEditor>>highlight: aRectangle

self reverse: aRectangle

If you would replace #highlight: by #reverse: , the s
way but you would reveal the implementation of the method

Send a message to self. Name the message so it communic
rather than how it is to be done. Code a simple method for

Collection>>isEmpty

^self size = 0

Number>>reciprocal

^ 1 / self

Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 190

type of the objects.

 a different implementations.
niversität Bern Ducasse Stéphane

Intention Revealing Selector
What do you name a method?
If we choose to name after HOW it accomplished its task
Array>>linearSearchFor:

Set>>hashedSearchFor:

BTree>>treeSearchFor:

These names are not good because you have to know the

Name methods after WHAT they accomplish
Better:

Collection>>searchFor:

Even better:
Collection>>includes:

Try to see if the name of the selector would be the same in

Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 191

nd not about the
niversität Bern Ducasse Stéphane

Name Well your Methods (i)
Not precise, not good
setType: aVal

"compute and store the variable type"

self addTypeList: (ArrayType with: aVal).

currentType := (currentType computeTypes: (ArrayType with: aVal))

Precise, give to the reader a good idea of the functionality a
implementation
computeAndStoreType: aVal

"compute and store the variable type"

self addTypeList: (ArrayType with: aVal).

currentType := (currentType computeTypes: (ArrayType with: aVal))

Instead Of:
setTypeList: aList

"add the aList elt to the Set of type taken by the variable"

typeList add: aList.

Write:
addTypeList: aList

"add the aList elt to the Set of type taken by the variable"

typeList add: aList.

Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 192
niversität Bern Ducasse Stéphane

do:
Instead of writing that:

|index|

index := 1.

[index <= aCollection size] whileTrue:

[... aCollection at: index...

index := index + 1]

Write that
aCollection do: [:each | ...each ...]

Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 193

d also for sets.
niversität Bern Ducasse Stéphane

collect:
Instead of :

absolute: aCollection

|result|

result := aCollection species new: aCollection size.

1 to: aCollection size do:

[:each | result at: each put: (aCollection at: each) abs].

^ result

Write that:
absolute: aCollection

^ aCollection collect: [:each| each abs]

Note that this solution works well for indexable collection an
The previous one not!!!

Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 194
niversität Bern Ducasse Stéphane

isEmpty, includes:
Instead of writing:
...aCollection size = 0 ifTrue: [...]

...aCollection size > 0 ifTrue: [...]

Write:
... aCollection isEmpty

Instead of writing:
|found|

found := false.

aCollection do: [:each| each = anObject ifTrue: [found : = true]].

...

Or:
|found|

found := (aCollection

detect: [:each| each | anObject]

ifNone:[nil]) notNil.

Write:
|found|

found := aCollection includes: anObject

Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 195

rpose in the design

ctive to the superclass name
niversität Bern Ducasse Stéphane

Class Naming
• Name a superclass with a single word that conveys its pu

Number

Collection

View

Model

• Name subclasses in your hierarchy by prepending an adje

OrderedCollection

SortedCollection

LargeInteger

Smalltalk a Pure OO Language Processes and Concurrency

U 10.196

Scheduling and Priorities

res, SharedQueues
niversität Bern Juan Carlos Cruz

10. Processes and Concurrency

- Concurrency and Parallelism
- Applications of Concurrency
- Limitations
- Atomicity
- Safety and Liveness
- Processes in Smalltalk:

Class Process, Process States, Process
- Synchronization Mechanisms in Smalltalk:

Semaphores, Mutual Exclusion Semapho
- Delays
- Promises

Smalltalk a Pure OO Language Processes and Concurrency

U 10.197

t of statements; its execution
ore sequential programs that

r more processors
ts own processor but

ts own processor
k to others
niversität Bern Juan Carlos Cruz

Concurrency and Parallelism

“A sequential program specifies sequential execution of a lis
is called a process. A concurrent program specifies two or m
may be executed concurrently as parallel processes”

A concurrent program can be executed by:
1. Multiprogramming: processes share one o
2. Multiprocessing: each process runs on i

with shared memory
3. Distributed processing: each process runs on i

connected by a networ

Motivations for concurrent programming:
1. Parallelism for faster execution
2. Improving processor utilization
3. Sequential model inappropriate

Smalltalk a Pure OO Language Processes and Concurrency

U 10.198

ain consistency

rogress

 on “race conditions”

zation take time
niversität Bern Juan Carlos Cruz

Limitations

But concurrent applications introduce complexity:

- Safety
synchronization mechanisms are needed to maint

- Liveness
special techniques may be needed to guarantee p

- Non-determinism
debugging is harder because results may depend

- Run-time overhead
process creation, context switching and synchroni

Smalltalk a Pure OO Language Processes and Concurrency

U 10.199

sible interleavings of

ection are treated atomically.
niversität Bern Juan Carlos Cruz

Atomicity

Programs P1 and P2 execute concurrently:

{ x = 0 }
P1: x := x + 1
P2: x := x + 2

{ x = ? }

What are possible values of x after P1 and P2 complete?
What is the intended final value of x?

Synchronization mechanisms are needed to restrict the pos
processes so that sets of actions can be seen as atomic.

Mutual exclusion ensures that statements within a critical s

Smalltalk a Pure OO Language Processes and Concurrency

U 10.200

nt programs:

 updated atomically
ed to be delayed if shared

, read from an empty buffer)

ess a shared resource
ccess shared resources

ress:
cified?
niversität Bern Juan Carlos Cruz

Safety and Liveness

There are two principal difficulties in implementing concurre

Safety - ensuring consistency:
+ mutual exclusion - shared resources must be
+ condition synchronization - operations may ne

resources are not in an appropriate state (e.g

Liveness - ensuring progress:
+ No Deadlock - some process can always acc
+ No Starvation - all processes can eventually a

Notations for expressing concurrent computation must add
1. Process creation : how is concurrent execution spe
2. Communication : how do processes communicate?
3. Synchronization : how is consistency maintained?

Smalltalk a Pure OO Language Processes and Concurrency

U 10.201

 class

ses.

f actions which can be
cesses.

ry)

alltalk. The simplest way to

es. This process is runnable
n as the current process
niversität Bern Juan Carlos Cruz

Processes in Smalltalk: Process

- A Smalltalk system supports multiple independent proces

- Each instance of class Process represents a sequence o
executed by the virtual machine concurrently with other pro

- Processes share a common address space (object memo

- Blocks are used as the basis for creating processes in Sm
create aProcess is to send a block a message #fork

[Transcript cr; show: 5 factorial printString] fork

- The new process is added to the list of scheduled process
(i.e scheduled for execution) and will start executing as soo
releases the control of the processor.

Smalltalk a Pure OO Language Processes and Concurrency

U 10.202

 class

ot scheduled by sending the

cess

s the #resume message.

 message. A suspended
.

rminate . Once a process
rted any more.
niversität Bern Juan Carlos Cruz

Processes in Smalltalk: Process

- We can create a new instance of class Process which is n
#newProcess message to a block:

| aProcess |

aProcess := [Transcript cr; show: 5 factorial printString] newPro

- The actual process is not actually runnable until it receive
aProcess resume

- A process can be created with any number of arguments:
aProcess := [:n | Transcript cr; show: n factorial printString]

 newProcessWithArguments: #(5).

- A process can be temporarily stopped using a #suspend
process can be restarted later using the #resume message

- A process can be stopped definitely using a message #te
has received the #terminate message it cannot be resta

Smalltalk a Pure OO Language Processes and Concurrency

U 10.203

 states
A process may be in one of
the five states:

1. suspended
2. waiting
3. runnable
4. running, or
5. terminated
niversität Bern Juan Carlos Cruz

Processes in Smalltalk: Process

suspended

runnable

running

terminated

resume

suspend

newProcess
fork

suspend

terminate

waiting
signal*

wait*

*sent to aSemaphore

yield

scheduled
by the VM

Smalltalk a Pure OO Language Processes and Concurrency

U 10.204

s
ocesses.
riority.

Purpose

esses that are dependant on

e-critical I/O

t I/O Processes

r Processes desiring
rvice

esses governing normal
on

er background processes

stem background processes

 possible priority
niversität Bern Juan Carlos Cruz

Process Scheduling and Prioritie
- Process scheduling is based on priorities associated to pr
- Processes of high priority run before processes of lower p
- Priority values go between 1 and 100.
- Eight priority values have assigned names.

Priority Name

100 timingPriority
Used by Proc
real time.

98 highIOPriority Used by tim

90 lowIOPriority Used by mos

70 userInterruptPriority
Used by use
immediate se

50 userSchedulingPriority
Used by proc
user interacti

30 userBackgroundPriority Used by us

10 systemBackgroundPriority Used by sy

1 systemRockBottonPriority The lowest

Smalltalk a Pure OO Language Processes and Concurrency

U 10.205

ities
s ProcessorScheduler

y using the #forkAt:

rity: message

lingPriority (50)
niversität Bern Juan Carlos Cruz

Processes Scheduling and Prior
- Process scheduling is done by the unique instance of clas
called Processor .

- A runnable process can be created with an specific priorit
message:

[Transcript cr; show: 5 factorial printString]

forkAt: Processor userBackgroundPriority.

- The priority of a process can be changed by using a #prio
| process1 process2 |

Transcript clear.

process1 := [Transcript show: ‘first’] newProcess.

process1 priority: Processor systemBackgroundPriority.

process2 := [Transcript show: ‘second’] newProcess.

process2 priority: Processor highIOPriority.

process1 resume.

process2 resume.

The default process priority is userSchedu

Smalltalk a Pure OO Language Processes and Concurrency

U 10.206

rithm
-The active process can be
identified by the expression:

Processor activeProcess

-The processor is given to
the process having the
highest priority.

-A process will run until it is
suspended or terminated
before giving up the
processor, or pre-empted
by a higher priority process.

-When the highest priority is
held by multiple processes,
the active process can give
up the processor by using
the message #yield .
niversität Bern Juan Carlos Cruz

Processes Scheduling: The Algo

Processor(ProcessorScheduler)
activeProcess
quiescentProcessList

Array (indexed by priority)

100
99

50

3
2
1

...

...

Process

nextLink
suspendedContext
priority
myList

nil

50

firstLink
lastLink

firstLink
lastLink

Process Process

Process

Smalltalk a Pure OO Language Processes and Concurrency

U 10.207

Suspended
Processes

P0

Py

1

resume
newProcess

fork
niversität Bern Juan Carlos Cruz

Process Scheduling

Active Process
P0

suspend

Processor

activeProcess
quiescentProcessList

P1 Px

100 50... ...scheduled
by the VM

yield

Smalltalk a Pure OO Language Processes and Concurrency

U 10.208

 objects may receive
is may lead to unpredictable
tain consistency of shared

0.
niversität Bern Juan Carlos Cruz

Synchronization Mechanisms
Processes have references to some common objects, such
messages from several processes in an arbitrary order. Th
results. Synchronization mechanisms serve mainly to main
objects.

We can calculate the sum of the first N natural numbers:
| n |

n := 100000.

[| i temp |

Transcript cr; show: ‘P1 running’.

i := 1. temp := 0.

[i <= n] whileTrue: [temp := temp + i. i := i + 1].

Transcript cr; show: ‘P1 sum is = ‘; show: temp printString] forkAt: 6

P1 running

P1 sum is = 5000050000

Smalltalk a Pure OO Language Processes and Concurrency

U 10.209

 the value of n?

forkAt : 60.

: 50.
niversität Bern Juan Carlos Cruz

Synchronization Mechanisms
What happens if at the same time another process modifies

| n d |

n := 100000.

d := Delay forMilliseconds: 400.

[| i temp |

Transcript cr; show: ‘P1 running’.

i := 1. temp := 0.

[i <= n] whileTrue: [temp := temp + i.

(i = 5000) ifTrue: [d wait].

i := i + 1].

Transcript cr; show: ‘P1 sum is = ‘; show: temp printString]

[Transcript cr; show: ‘P2 running’. n := 10] forkAt

P1 running

P2 running

P1 sum is = 12502500

Smalltalk a Pure OO Language Processes and Concurrency

U 10.210

ores
cesses. A process waits for
maphore. Another process
ssage #signal to the

orresponding #signal has
pended.
cesses.
sses, it resumes only one

. Processes are queued in
niversität Bern Juan Carlos Cruz

Synchronization using Semaph
A semaphore is an object used to synchronize multiple pro
an event to occur by sending the message #wait to the se
then signals that the event has occurred by sending the me
semaphore.

| sem |

Transcript clear.

sem := Semaphore new.

[Transcript show: ‘The’] fork.

[Transcript show: ‘quick’. sem wait.

Transcript show: ‘fox’. sem signal] fork.

[Transcript show: ‘brown’. sem signal.

sem wait. Transcript show: ‘jumps over the lazy dog’; cr] fork

- If a semaphore receives a #wait message for which no c
been sent, the process sending the #wait message is sus
- Each semaphore maintains a linked list of suspended pro
- If a semaphore receives a #wait from two or more proce
process for each signal it receives
- A semaphore pays no attention to the priority of a process
the same order in which they “waited” on the semaphore.

Smalltalk a Pure OO Language Processes and Concurrency

U 10.211

Suspended
Processes

P0

Py

1

resume
newProcess

fork
niversität Bern Juan Carlos Cruz

Semaphores
ActiveProcess

P0

suspend

Processor

activeProcess
quiescentProcessList

P1 Px

100 50... ...scheduled
by the VM

yield

aSemaphore

PP0

wait

z

Waiting Processes for aSemaphore

resume

signal*

*

Smalltalk a Pure OO Language Processes and Concurrency

U 10.212

n
from a “critical region”. This
k argument is only executed
are evaluating.

forkAt : 60.

 n := 10]] forkAt : 50.

xtra #signal , otherwise the
ation method is provided:
niversität Bern Juan Carlos Cruz

Semaphores for Mutual Exclusio
A semaphore is used frequently to provide mutual exclusion
is supported by the instance method #critical: . The bloc
when no other critical blocks sharing the same semaphore

| n d sem |

n := 100000.

d := Delay forMilliseconds: 400.

[| i temp |

Transcript cr; show: ‘P1 running’.

i := 1. temp := 0.

sem critical: [[i <= n] whileTrue: [temp := temp + i.

(i = 5000) ifTrue: [d wait].

i := i + 1].].

Transcript cr; show: ‘P1 sum is = ‘; show: temp printString]

[Transcript cr; show: ‘P2 running’. sem critical: [

A semaphore for mutual exclusion must start out with one e
critical section will never be entered. A special instance cre

Semaphore forMutualExclusion .

Smalltalk a Pure OO Language Processes and Concurrency

U 10.213

Queue
tween processes. Its works

e main difference is that
access (multiple writes and/

ssage #nextPut: (1) and
e #next (3).

] forkAt: 60.

sssage #next is received,

ng the message #isEmpty
niversität Bern Juan Carlos Cruz

Synchronization using a Shared
A SharedQueue enables to synchronize communication be
like a normal queue (First in First Out, reads and writes), th
aSharedQueue protects itself against possible concurrent
or multiple reads).

Processes add objects to the sharedqueue by using the me
read objects from the sharedqueue by sending the messag

| aSharedQueue d |

d := Delay forMilliseconds: 400.

aSharedQueue := SharedQueue new.

[1 to: 5 do:[:i | aSharedQueue nextPut: i]] fork.

[6 to: 10 do:[:i | aSharedQueue nextPut: i. d wait]] forkAt: 60.

[1 to: 5 do:[:i | Transcript cr; show:aSharedQueue next printString]

- If no object is available into the sharedqueue when the me
the process is suspended.
- We can request if the sharedqueue is empty or not by usi

Smalltalk a Pure OO Language Processes and Concurrency

U 10.214

y in the execution of a

ait by suspending the

hen the delay instance is
ith the messages

me with respect to the
nds: . Delays created
niversität Bern Juan Carlos Cruz

Delays

Instances of class Delay are used to cause a real time dela
process.

An instance of class Delay will respond to the message #w
active process for a certain amount of time.

The time for resumption of the active process is specified w
created. Time can be specified relative to the current time w
#forMilliseconds: and #forSeconds: .

| minuteWait |

minuteWait := Delay forSeconds: 60.

minuteWait wait.

The resumption time can also be specified at an absolute ti
system’s millisecond clock with the message #untilMilliseco
in this way cannot be sent the message wait repeatedly.

Smalltalk a Pure OO Language Processes and Concurrency

U 10.215

 a concurrent process.

ssage #promise to a block:

riority of the process created.

essage value to the promise:

 that attempts to read the
 block has completed.

ompleted by sending the
niversität Bern Juan Carlos Cruz

Promises

- Class Promise provides a means of evaluating a block in

- An instance of promise can be created by sending the me
[5 factorial] promise

- The message #promiseAt: can be used to specify the p

- The result of the block can be accessed by sending the m
| promise |

promise := [5 factorial] promise.

Transcript cr; show: promise value printString.

If the block has not completed evaluation, then the process
value of a promise will wait until the process evaluating the

A promise may be interrogated to discover if process has c
message #hasValue

Smalltalk a Pure OO Language Classes and Metaclasses

U 11.216

n Analysis
books are to tasted,

to be swallowed,

me few to be chewed and digested

Francis Bacon, Of Studies

ll made less errors.
l

niversität Bern Ducasse Stéphane

11. Classes and Metaclasses: a
Some

others

and so

 At first look, a difficult topic!
You can live without really understand them
But metaclasses give a uniform model and you wi
And you will really understand the Smalltalk mode

Recap on Instantiation
Recap on Inheritance

Smalltalk a Pure OO Language Classes and Metaclasses

U 11.217

The meaning of “Instance of”

- Every object is an instance of a class.
- Every class is ultimately subclass of Object (except Object).
- When anObject receives a message, the method is lookup in
its class and/or its superclasses.

e

Printer

subclass
of

aPrinter send:...

instance of

send:....
.....

Node
send:...

self subclass
niversität Bern Ducasse Stéphane

-A class defines the structure and the behavior of all its
instances.
-Each instance possesses its own set of values.
- Each instance shares the behavior with other instances th
bevahior defined in its class via the instance of link.

Smalltalk a Pure OO Language Classes and Metaclasses

U 11.218

nsibilities

tances of itself.

ntroduced)
ble, ...)

rver PrintServer)
niversität Bern Ducasse Stéphane

Concept of Metaclass & Respo
Concept:

- Everything is an object
- Each object is instance of one class
-A class is also an object instance of a metaclass
- An object is a class if and only if it can create ins

Metaclass Responsibilities:
- instance creation
- method compilation (different semantics can be i
- class information (inheritance link, instance varia

Examples:
Node allSubclasses -> OrderedCollection (WorkStation OutputServer Workstation FileSe

PrintServer allInstances -> #()

Node instVarNames -> #('name' 'nextNode')

Workstation withName: #mac -> aWorkstation

Workstation selectors -> IdentitySet (#accept: #originate:)

Workstation canUnderstand: #nextNode -> true

Smalltalk a Pure OO Language Classes and Metaclasses

U 11.219

od lookup

d up in the class of

mac

Workstation

Workstation
class

instance of

class

inherits
from
niversität Bern Ducasse Stéphane

Classes, metaclasses and meth
 When anObject receives a message,
the method is lookup in its class and/or
its superclasses.

So when aClass receives a message,
the method is lookup in its class (a
metaclass) and/or its superclass

Here Workstation receives withName: #mac

The method associated with #withName: selector is looke
Workstation : Workstation class

Workstation withName: #

Smalltalk a Pure OO Language Classes and Metaclasses

U 11.220

ss classes

red by all the instances (final

ilation, method storing,

 a special one.
niversität Bern Ducasse Stéphane

Responsibilities of Object & Cla
Object
- represents the common behavior (like error, halting...) sha
instances and classes)
- so all the classes should inherit ultimately from Object

Workstation inherits from Node
Node inherits from Object

Class
- represents the common behavior of all the classes (comp
instance variable storing)
- Class inherits form Object because Class is an Object but
=> Class knows how to create instances
- So all the classes should inherit ultimately form Class

Smalltalk a Pure OO Language Classes and Metaclasses

U 11.221

etaclasses
lltalk
niversität Bern Ducasse Stéphane

A possible kernel for explicit m
The kernel of CLOS and ObjVlisp but not the kernel of Sma

Workstation

inherits
from

Object

aWorkstation

Class

inherits
from instance of

instance of

instance of

Smalltalk a Pure OO Language Classes and Metaclasses

U 11.222

sses

ance of

Lan

aLan

instance of
niversität Bern Ducasse Stéphane

Singleton with explicit metacla

inherits
from

Object
Classinherits

from

inst

instance of

instance of

Unique
Instance

Workstation

Special

inherits
from

Workstation

aWork1

aWork2

aSpecWork

Smalltalk a Pure OO Language Classes and Metaclasses

U 11.223

s

nique
stance
new
 uniqueInstance isNil...
^ uniqueInstance

 new instance

tion new
niversität Bern Ducasse Stéphane

Deeper into it

Clas

instance of

instance of

U
In

Workstation

Special

inherits
from

Workstation

new
 returns a

Workstation new

SpecialWorksta

Smalltalk a Pure OO Language Classes and Metaclasses

U 11.224

ts
asses.

bject itself)

ss (a metaclass).
an accessed them using
niversität Bern Ducasse Stéphane

Smalltalk Metaclasses in 7 poin
- no explicit metaclasses, only implicit non sharable metacl

(1): Every class is ultimately a subclass of Object (except O
Behavior

ClassDescription

Class

Metaclass

(2) Every object is instance of a class.
Each class is instacne of a class its metaclass.

(3) Every class is instance of A metaclass.
Every user defined class is the sole instance of another cla
Metaclass are system generated so they are unamed you c
#class

Smalltalk a Pure OO Language Classes and Metaclasses

U 11.225

 (ii)

.

es of a Metaclass

Object

Object
class
niversität Bern Ducasse Stéphane

Smalltalk Metaclasses in 7 points

If X is a subclass of Y then X class is a subclass of Y class
But what is the superclass of the metaclass of Object ?
The superclass of Object class is Class

(4) All metaclasses are (ultimately) subclasses of Class .

But metaclasses are also objects so they should be instanc

SmallInteger

SmallInteger
class

Integer

Integer
class

Number

Number
class

Object

Object
class

SmallInteger

SmallInteger
class

Integer

Integer
class

Number

Number
class

Class

Class
class

Smalltalk a Pure OO Language Classes and Metaclasses

U 11.226

ts (iii)

 is instance of itself

e instance)
behavior common to those

Object

Object
class
niversität Bern Ducasse Stéphane

Smalltalk Metaclasses in 7 poin

(5) Every metaclass is instance of Metaclass. Metaclass

Object : common object behavior
Class : common class behavior (name, multiple instances)
Metaclass : common metaclass behavior (no name, uniqu
(6) The methods of Class and its superclasses support the
objects that are classes.

SmallInteger

SmallInteger
class

Integer

Integer
class

Number

Number
class

Class

Class
class

Metaclass

Metaclass
class

Smalltalk a Pure OO Language Classes and Metaclasses

U 11.227

ts (iv)
ior specific to particular

 class” = class methods (for

ion , is available as a

Object

Object
class
niversität Bern Ducasse Stéphane

Smalltalk Metaclasses in 7 poin
(7) The methods of instances of Metaclass add the behav
classes.
=> Methods of instance of Metaclass = methods of “Packet
example #withName:)

An instance method defined in Behavior or ClassDescript
class method. Example: #new, #new:

ClassDescription

ClassDescription
class

Behavior

Behavior

Class

Class
class

Metaclass

Metaclass
class

class

Smalltalk a Pure OO Language Classes and Metaclasses

U 11.228

of instances (representation

:)
)

:)
rNames,

)
#subclasses,

d:,
niversität Bern Ducasse Stéphane

Behavior Responsibilities
- Minimum state necessary for objects that have instances.
- Basic interface to the compiler.
- State: class hierarchy link, method dictionary, description
and number)
Methods:
- creating a method dictionary, compiling method (#compile

- instance creation (#new, #basicNew, #new:, #basicNew:

- class into hierarchy (#superclass:, #addSubclass:)

- accessing (#selectors, #allSelectors, #compiledMethodAt
- accessing instances and variables (#allInstances, #instVA
#allInstVarNames, #classVarNames, #allClassVarNames

- accessing clas hierarchy (#superclass, #allSuperclasses,
#allSubclasses)
- testing (#hasMethods, #includesSelector, #canUnderstan
#inheritsFrom:, #isVariable)

Smalltalk a Pure OO Language Classes and Metaclasses

U 11.229

s
ehavior :

s subclass responsibility)
 changes on a file

tended for inheritance by the

lds
of message protocol
niversität Bern Ducasse Stéphane

ClassDescription Responsibilitie
ClassDescription adds a number of facilities to basic B

- named instance variables
- category organization for methods
- the notion of a name of this class (implemented a
- the maintenance of the Changes set, and logging
- most of the mechanism for fileOut

ClassDescription is an abstract class: its facilities are in
two subclasses, Class and Metaclass .

Subclasses must implement
#addInstVarName:

#removeInstVarName:

Instance Variables:
- instanceVariables<Array of: String> names of instance fie
- organization <ClassOrganizer> provides organization

Smalltalk a Pure OO Language Classes and Metaclasses

U 11.230

ce

assOf:)
niversität Bern Ducasse Stéphane

Metaclass Responsibilities
- initialization of class variables
- creating initialized instances of the metaclass’s sole instan

- instance creation (#subclassOf:)
- metaclass instance protocol (#name:inEnvironment:subcl

Smalltalk a Pure OO Language Classes and Metaclasses

U 11.231

d shared pool variables
)

niversität Bern Ducasse Stéphane

Class Responsibilities
Class adds naming for class
Class adds the representation for classVariable names an
(#addClassVaraNames, #addSharedPool:, #initialize

Smalltalk a Pure OO Language Debugging Hints

U 12.232
niversität Bern Ducasse Stéphane

12. Debugging

• Preventing: Most Common Mistakes
• Curing: Debugging Fast (from ST Report July 93)
• Extra

Smalltalk a Pure OO Language Debugging Hints

U 12.233

 it already exists
niversität Bern Ducasse Stéphane

Most Common Beginner Bugs
- true is the boolean value, True its class
Instead of:

Book>>initialize

inLibrary := True

that:
Book>>initialize

inLibrary := true

- nil is not acceptable for ifTrue:

- whileTrue receiver must be a block
 [x<y] whileTrue: [x := x + 3]

- (weakness of the system) Before creating a class check if
Object subclass: #View

- Do not assign class
OrderedCollection := 2 will damage your system

Smalltalk a Pure OO Language Debugging Hints

U 12.234

reated instance

ted instance !!!
niversität Bern Ducasse Stéphane

Return Value

- In a method self is returned by default,
 do not forget ^ for returning something else.

- In a #new method do not forget the ^ to return the newly c
 Packet class>>new

^ super new initialize

 returns self : the class Packet and not the newly crea

- Take care about loops
Book>>new

^self new initialize

Smalltalk a Pure OO Language Debugging Hints

U 12.235

ew:, #basicAt:,

n a hash = b hash

ck if this is not already done.
ice initialize
niversität Bern Ducasse Stéphane

Redefinition Bugs

- Never redefine basic -methods (#==, #basicNew, #basicN
#basicAt:Put: ...)

- Never redefine #class

- Redefine #hash when you redefine #= so that if a = b the

Book>>=aBook

^self title = aBook title & (self author = aBook author)

Book>>hash

^self title hash bitXor: self author hash

- Before redefining new like super new initialize che
Else twice that expression in the same hierarchy will call tw

Smalltalk a Pure OO Language Debugging Hints

U 12.236

n the #new method.
niversität Bern Ducasse Stéphane

Compile time errors

- Do not try to access instance variables to initialize them i
You do not have the rigth.
Define and invoke #initialize method on instances.

- Do not try to modify self and super

- Do not try to assign a method argument
 setName: aString

 aString := aString, 'Device'.

 name := aString

Smalltalk a Pure OO Language Debugging Hints

U 12.237

med instance variables
sses of Collection)

w modifies.

bvious!
niversität Bern Ducasse Stéphane

Library Behavior-based Bugs

- #add: returns the argument and not the receiver
So use yourself

- Do not forget to specialize #copyEmpty when adding na
 to a subclass having indexed instance variables (subcla

- Never iterate over a collection which the iteration someho
timers do:[:aTimer|

aTimer isActive ifFalse: ‘timers remove: aTimer]

Copy first the collection
timers copy do:[:aTimer|

aTimer isActive ifFalse: ‘timers remove: aTimer]

- Take care the iteration can involve different methods and can be less o

Smalltalk a Pure OO Language Debugging Hints

U 12.238
niversität Bern Ducasse Stéphane

Debugging Hints
Basic Printing

Transcript cr; show: ‘The total= ’, self total printString.

Use a global or a class to control printing information
Debug ifTrue:[Transcript cr; show: ‘The total= ’, self total printString]

Debug > 4

ifTrue:[Transcript cr; show: ‘The total= ’, self total printString]

Debug print:[Transcript cr; show: ‘The total= ’, self total printString]

Smalltalk removeKey: #Debug

Inspecting
Object>>inspect

you can create your own inspect method
MyInspector new inspect: anObject

Naming: usefull to add a id for debugging purpose

Smalltalk a Pure OO Language Debugging Hints

U 12.239

ere?
niversität Bern Ducasse Stéphane

Where am I and how did I get h
Identifying the current context
“if this is not a block”

Transcript show: thisContext printString; cr.

Debug ifTrue:[“use this expression in a block”

Transcript show: thisContext sender home printString; cr]

Audible Feedback
Screen default ringBell

Catching It in the Act
<Ctrl-C> (VW2.5) <Ctrl-Shift-C> Emergency stop

<Ctrl-Y> (VW3.0) <Ctrl-Shift-C> Emergency stop

Suppose that you cannot open a debugger
Transcript cr; show: (Notifierview shortStackFor: thisContext ofSize: 5)

Or in a file
|file|

file := ‘errors’ asFilename appendStream.

file cr; nextPutAll: (NotifierView shortStackFor: thisContext ofSize: 5).

file close

Smalltalk a Pure OO Language Debugging Hints

U 12.240

:

thod the original contents of
our literals.

is invoked?
mentors of ‘*enu*’
niversität Bern Ducasse Stéphane

Source Inspection
Source Code for Blocks
aBlockClosure method getSource

aMethodContext sourceCode

Decompiling a Method
Shift + select the method is the browser
Interesting for literals modification or MethodWrapper bugs
initialize

arrayConst := #(1 2 3 4)

then somebody somewhere does
arrayConst at:1 put:100

So your array is polluted. Note that if you recompile the me
the literal array is restored. So think also to return copy of y

Entry Points
How a window is opened or what happens when the menu
look into LauncherView and UIVisualILauncher imple

Smalltalk a Pure OO Language Debugging Hints

U 12.241
niversität Bern Ducasse Stéphane

Where am I going?
Breakpoints
self halt.

self error: ‘ invalid’

Conditional halt
i > 10 ifTrue:[self halt]

InputState default shiftDown ifTrue:[self halt]

InputState default altDown ifTrue:[self halt]

InputState default metaDown ifTrue:[self halt]

In a controller:
self sensor shiftDown ifTrue:[self halt]

Slowing Down Actions: usefull for complex graphics
Cursor wait showWhile: [(Delay forMilliseconfs: 800) wait]

(Do not forget the wait)
Until a mouse button is cliked.
Cursor crossHair showWhile:

[ScheduledControllers activeController sensor waitNoButton; waitClickButton]

Smalltalk a Pure OO Language Debugging Hints

U 12.242

method if you know it!

extent: 10@100)
niversität Bern Ducasse Stéphane

How do I get out?

1 <CTRl+Shift-C or Y> Emergency Debugger

2 ObjectMemory quit

3 <ESC> to evaluate the expression

An Advanced Emergency Procedure: recompile the wrong
aClass compile: ‘methodname methodcode’ classified: ‘what you want’

ex:

Controller compile: ‘controlInitialize ^self’ classified: ‘basic’

Graphical Feedback
Where the cursor is:
ScheduledControllers activeController sensor cursorPoint

Position the cursor explicitly
ScheduledControllers activeController sensor cursorPoint: aPoint

Rectangle fromUser

Indicating an area with a filled rectangle
ScheduledControllers activeController view graphicsContext display Rectangle: (0@0

Smalltalk a Pure OO Language Debugging Hints

U 12.243

 VW

r?

the evaluation to

tion to

ccurs,
niversität Bern Ducasse Stéphane

Finding & Closing Open Files in
ExternalStream classPool at: #openStreams

How to ensure that an open file willl be close in case of erro
Use #valueNowOrOnUnwindDo: or #valueOnUnwindDo:

|stream|

[stream := (Filename named: aString) readStream.

...

] valueNowOrOnUnwindDo: [stream close].

BlockClosure>>valueOnUnwindDo: aBlock

"Answer the result of evaluating the receiver. If an exception would cause

be abandoned, evaluate aBlock. "

BlockClosure>>valueNowOrOnUnwindDo: aBlock

"Answer the result of evaluating the receiver. If an exception would cause the evalua

be abandoned, evaluate aBlock. The logic for this is in Exception. If no exception o

also evaluate aBlock."

	Smalltalk — a Pure Object Language and its Environment
	1. Smalltalk Concepts
	Smalltalk: More than a Language
	A Jungle of Names
	Inspiration
	Precursor, Innovative and Visionary
	History
	Source, Virtual Machine, Image and Changes
	Smalltalk’s Concepts
	Messages, Methods and Protocols
	Objects, Classes and Metaclasses
	Main References
	Other References (Old or Other Dialects)
	Other References (ii)

	2. The Taste of Smalltalk
	Some Conventions and Precisions
	Hello World!
	Everything is an object
	Objects communicate via messages
	A LAN Simulator
	Once the Classes Defined
	A Step Further: Two Printer Methods

	3. Syntax and Messages
	Literals
	Arrays
	Symbols vs. Strings
	Variables
	Temporary Variables
	Assigments
	Method Arguments
	Instance Variables
	Six pseudo-variables (i)
	Six pseudo-variables (ii)
	Global Variables
	Three Kinds of Messages
	Message = Effect + Return
	Unary Messages
	Binary Messages
	Keyword Messages
	Composition
	Sequence
	Cascade
	yourself
	Have You Really Understood Yourself ?
	Block (i): Definition
	Block (ii): Evaluation
	Block (iii)
	Syntax Summary (i)
	Syntax Summary (ii)
	What You Should Know

	4. Basic Objects, Conditional and Loops
	Common Shared Behavior (i)
	Identity vs. Equality
	Common Shared Behavior (ii)
	Essential Common Shared Behavior
	Basics on Number
	Deeper on Numbers: Double Dispatch (i)
	Deeper on Numbers: Double Dispatch (ii)
	Deeper on Numbers: Coercion & Generality
	Deeper on Numbers: #retry:coercing:
	Boolean Objects
	Boolean Objects and Conditionals
	Loops
	For the Curious
	Collections
	Another View
	Collection Methods
	Sequenceable Specific (Array)
	KeyedCollection Specific (Dictionary)
	Choose your Camp!
	Iteration Abstraction: do:/collect:
	Iteration Abstraction: select:/reject:/detect:
	Iteration Abstraction: inject:into:
	Collection Abstraction
	Streams
	An Example
	printSring, printOn:
	Stream classes(i)
	Stream Classes (ii)
	Stream tricks
	Streams and Files
	What you should know

	5. Dealing with Classes
	Class Definition
	Named Instance Variables
	classVariable
	Class Instance Variables / ClassVariable
	poolVariables
	Example of PoolVariables
	Method Definition
	Iv Access Example
	Return Value
	Visibility of Variables
	Example From The System: Geometric Class
	Circle
	Quick Naming Conventions
	Inheritance in Smalltalk
	Message Sending & Method Lookup
	Example
	Run the messages
	Semantics of super
	Let us be Absurb!
	Lookup and Class Messages
	Object Instantiation
	Direct Instance Creation: (basic)new/new:
	Messages to Instances that Create Objects
	Opening the Box
	Class specific Instantiation Messages
	Two Views on Classes
	Types of Classes
	Indexed Classes
	Indexed Class/Instance Variables
	What you should know

	6. Basic Elements of Design and Class Behavior
	A First Implementation of Packet
	Packet CLASS Definition
	Assuring Instance Variable Initialization
	Other Instance Initialization
	Strengthen Instance Creation Interface
	Class Methods - Class Instance Variables
	Singleton Instance: A Class Behavior
	Singleton Instance’s Implementation
	Class Initialization
	Date class>>initialize
	Abstract Classes
	Case Study: Boolean, True and False
	Boolean
	False and True
	CaseStudy: Magnitude:
	Date

	7. Comparing C++, Java and Smalltalk
	History
	Target Application Domains
	Evolution
	Language Design Goals
	Unique, Defining Features
	Overview of Features
	Syntax
	Object Model
	Memory Management
	Dynamic Binding
	Inheritance, Generics
	Types, Modules
	Exceptions, Concurrency
	Reflection
	Implementation Technology
	Portability, Interoperability
	Environments and Tools
	Development Styles
	The Bottom Line ...

	8. The Model View Controller Paradigm
	Context
	Program Architecture
	Separation of Concerns I:
	Separation of Concerns II:
	The notion of Dependency
	Dependency Mechanism
	Publisher-Subscriber: A Sample Session
	Change Propagation: Push and Pull
	The MVC Pattern
	A Standard Interaction Cycle
	MVC: Benefits and Liabilities
	MVC and Smalltalk
	Managment of Dependents
	Implementation of Change Propagation
	Climbing up and down the Default-Ladder
	Problems with the Vanilla Change Propagation Mechanism
	Dependency Transformer
	Inside a Dependency Transformer
	ValueHolder
	A UserInterface Window
	Widgets
	The Application Model
	The fine-grained Structure of an Application
	MVC Bibliography

	9. Design Thoughts and Selected Idioms
	About the Use of Accessors (i)
	About the Use of Public Accessors (ii)
	Composed Method
	Constructor Method
	Constructor Parameter Method
	Query Method
	Boolean Property Setting Method
	Comparing Method
	Execute Around Method
	Choosing Message
	Name Well your Methods (i)
	do:
	collect:
	isEmpty, includes:

	10. Processes and Concurrency
	Concurrency and Parallelism
	Limitations
	Atomicity
	Safety and Liveness
	Processes in Smalltalk: Process class
	Processes in Smalltalk: Process class
	Processes in Smalltalk: Process states
	Process Scheduling and Priorities
	Processes Scheduling and Priorities
	Processes Scheduling: The Algorithm
	Process Scheduling
	Synchronization Mechanisms
	Synchronization Mechanisms
	Synchronization using Semaphores
	Semaphores
	Semaphores for Mutual Exclusion
	Synchronization using a SharedQueue
	Delays
	Promises

	11. Classes and Metaclasses: an Analysis
	The meaning of “Instance of”
	Concept of Metaclass & Responsibilities
	Classes, metaclasses and method lookup
	Responsibilities of Object & Class classes
	A possible kernel for explicit metaclasses
	Singleton with explicit metaclasses
	Deeper into it
	Smalltalk Metaclasses in 7 points
	Smalltalk Metaclasses in 7 points (iii)
	Smalltalk Metaclasses in 7 points (iv)
	Behavior Responsibilities
	ClassDescription Responsibilities
	Metaclass Responsibilities
	Class Responsibilities

	12. Debugging
	Most Common Beginner Bugs
	Return Value
	Redefinition Bugs
	Compile time errors
	Library Behavior-based Bugs
	Debugging Hints
	Where am I and how did I get here?
	Source Inspection
	Where am I going?
	How do I get out?
	Finding & Closing Open Files in VW

