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1. Smalltalk Concepts
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Smalltalk: More than a Langua

• A small and uniform language (two days for learning the s
• A set of reusable classes (basic data structure, UI, databa
• A set of powerfull development tools (Browsers, UIBuilder
recovery, projects).
• A run-time environment based on Virtual Machine technol
• With Envy team working + application management (releas
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A Jungle of Names
Some Smalltalk Dialects:
• Smalltalk-80 -> ObjectWorks -> VisualWorks by (ParcPlac
• IBM Smalltalk
• Smalltalk-V (virtual) -> Parts ->  VisualSmalltalk by (Digita
• VisualAge -> IBMSmalltalk + Envy (OTI ->  IBM)
• Smalltalk Agents (Mac)
• Smalltalk MT (PC)
• Dolphin Smalltalk (PC)
• Smalltalk/X, Enfin Smalltalk (Cimcon)

Team Development Environment:
• Envy (OTI), VSE (Digitalk), TeamV

Free Software:
• Gnu Smalltalk (no UI), Little Smalltalk (no UI): Do not use
• -> Squeak (Morphic Objects + Socket + all Platforms) und
• -> VisualWorks 3.0 on PC for free
• -> VisualWorks 3.0 on Linux (Red-Hat)
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Inspiration
"making simple things Very simple and complex things Ver

• Flex (Alan Kay 1969)
• Lisp (interpreter, blocks, garbage collector)
• Turtle graphics (Logo Project, children programming)
• Direct manipulation interfaces (Sketchpad 1960)
• Simula (classes and message sending, description of a re
specification language: modeling)

-> DynaBook: a desktop computer for children
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Precursor, Innovative and Visio
• First graphical bitmap-based

multi-windowing (overlapping windows)
programming environment (debugger, co
with a pointing device

Yes a mouse !!!!
Xerox Smalltalk Team developed the mouse technology an

it was revolutionary! MacIntosh copied th

• Virtual Machine +
Plateform independent image technology

• Garbage Collector

• Just in Time Compilation
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History
Internal.
1972: First interpreter, more agents than objects (every obj
syntax).
1976: Redesign: Hierarchy of classes with unique root + fix
code), contexts, process + semaphores + Browser + UI cla
Projects: ThingLab, Visual Programming Environment Prog
1978: Experimentation with 8086 microprocessor (NoteTak

External.
1980: Smalltalk-80 (Ascii, cleaning primitives for portability,
class objects, MVC, )
Projects: Galley Editor (mixing text, painting and animation
(physics simulation)
1981: books + four external virtual machines (Dec, Apple, H
generation scavenging
1988: Creation of Parc Place Systems
1992: Draft Ansi
1995-6: New Smalltalk implementations (MT, dolphin, Sque
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Source, Virtual Machine, Image
Changes

A byte-code inte
the virtual mach

IMAGE2.IM
IMAGE2.CHA

St

IMAGE1.IM
IMAGE1.CHA

All the objects of the system
at a moment in time

One per user

+
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Smalltalk’s Concepts

• Everything is an object (numbers, files, editors, compilers
• Objects only communicate by message passing.
• Each object is an instance of one class (that is an object t
• A class defines the structure and the behavior of its instan
• Each object possesses its own set of values.

Programming in Smalltalk: Reading an Open Book
• Reading the interface of the classes: (table of co
• Understanding the way the classes are impleme
• Extending and changing the contents of the syst
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Messages, Methods and Protoc
Message: What  behavior to perform

aWindow openAroundCursorWithExtent: 0@0 extent: 100@100 and

Method: How  to carry out the behavior (...........)
openAroundCursorWithExtent: extent andType: aType

| pt box |

pt := WindowSensor cursorPoint.

box := pt - (extent // 2) extent: extent.

self openIn: box withType: aType

Protocol: The complete set of messages an object respond
#close, #damageRepairIsLazy:, #finishOpening,
#noticeOfWindowClose, #release, #beMaster, #bePartne
#checkForEvents, #receiveWindowEvents, #receiveWindow
#sendWindowEvents #sendWindowEvents: #windowEvent
#windowEventBlock:, #openAroundCursorWithExtent:andT
#openIn:withType:, #openWithExtent:andType:, #openWith
#dropTargetForSource:, #findObjectInterestedInDropAt:forS
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Objects, Classes and Metaclas

• Every object is instance of a class
• A class specifies the structure and the behavior of all its in
• Instances of a class share the same behavior and have sp

• Classes are objects that create other instances
• Metaclasses are just classes that create classes as instan
• Metaclasses described then class behavior and state (sub
instance variables...)
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Main References
+ (Intro) Smalltalk: an Introduction to application developme
Hopkins and Bernard Horan, Prentice-Hall,1995, 0-13-3183
+ (Intro) Smalltalk, programmation orientée objet et dévelop
Briffault and G. Sabah, Eyrolles, Paris. 2-212-08914-7
+ (Intro) On To Smalltalk, P. Winston, Addison-Wesley, 199

+ (Idioms) Smalltalk Best Practice Patterns, Kent Beck, Pre
476904-x
Praxisnahe Gebrauchsmuster, K. Beck, Prentice-Hall, 1997
+ (Idioms) Smalltalk with Style, S. Skublics and E. Klimas an
1996, 0-13-165549-3.

+(User Interface Reference) The Smalltalk Developer’s Gu
Howard, Sigs Books, 1995, 1-884842-11-9

+(Design) The Design Patterns Smalltalk Companion, S. A
Woolf, Addison-Wesley, 1998,0-201-18462-1
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Other References (Old or Other
Before buying a book ask me or consult the annotated bibli
page. Do not buy a book with translated code  in German!

+ (old but a reference) Smalltalk-80: The language, Adele G
Addison-Wesley, 1984-1989, 0-201-13688-0 (Purple book S
book)
• An introduction to Object-Oriented Programming and Sma
Richard S. Wiener, 1988, Addison-Wesley, ISBN 0-201-119

• Object-Oriented Programming with C++ and Smalltalk, Ca
1998, 0-13-103797-8
+ Smalltalk, Objects and Design, Chamond Liu, Manning-P
(IBM Smalltalk)
+ Smalltalk the Language, David Smith, Benjamin/Cummin
0908-X (IBM smalltalk)
• Discovering Smalltalk, John Pugh, 94 (Digitalk Smalltalk)
• Inside Smalltalk (I & II), Wilf Lalonde and Pugh, Prentice H
• Smalltalk-80: Bits of History and Words of Advice, G. Kran
201-11669-3
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Other References (ii)

• The Taste of Smalltalk, Ted Kaehler and Dave Patterson,
• Smalltalk The Language and Its Implementation, Adele Go
201-11371-6, 1982 (called The blue Book)

To understand the language, its design, its intention....
• Peter Deutsch, The Past, The Present and the Future of S
• Byte 81 Special Issues on Smalltalk
• Alan Kay, The Early History of Smalltalk, History of Porgam
Wesley, 1996
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2. The Taste of Smalltalk

Two examples:
- hello world
- a small LAN simulator

To give you an idea of:
- the syntax
- the elementary objects and classes
- the enviromnent
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Some Conventions and Precisio
• Code Transcript show: ‘Hello world’

• Return Value
1 + 3 -> 4

Node new -> aNode

Node new PrIt-> a Workstation with name:#pc and next node:#

• Method selector #add:

• Method scope
Node>>accept: aPacket

instance method defined in the class Nod
Node class>> withName: aSymbol

class method defined in the class Node (i
• aSomething  is an instance of the class Something

• DoIt, PrintIt and Accept
Accept = Compile: Accept a method or a class de
DoIt = send a message to an object
PrintIt = send a message to an object + print the r
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Hello World!

Transcript show: ‘hello world’

During implementation, we can dynamically ask the interpre
To evaluate an expression, select it and with the middle mo
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Everything is an object
The launcher is an object.
The icons are objects.
The workspace is an object.
The window is an object: instance of ApplicationWindow.
The text editor is an object: instance of ParagraphEditor.
The scrollbars are objects too.
‘hello word’ is an object: aString instance of String.
#show: is a Symbol that is also an object.
The mouse is an object.
The parser is an object instance of Parser.
The compiler is also an object instance of Compiler.
The process scheduler is also an object.
The garbage collector is an object: instance of MemoryObje
...
=> a world consistent , uniform  written in itself!
you can learn  how it is implemented, you can extend  it or e
=> Book concept.
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Objects communicate via mes
Transcript show: ‘hello world’

The above expression is a message:

– the object Transcript  is the receiver of the m

– the selector of the message is #show:

– an argument: a string ‘hello world’

Transcript

is a global variable (starts with an uppercase letter)
that refers to the Launcher’s report part.
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A LAN Simulator
A LAN contains nodes, workstations, printers, file 
Packets are sent in a LAN and the nodes treat the

mac1 node1 lw

m
pc
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Once the Classes Defined
We can invoke the following expressions in a workspace or

|mac1 pc node1 printer mac2 packet|

"nodes definition"

mac1 := Workstation withName: #Mac1.

pc := Workstation withName: #pc.

node1 := Node withName: #node1.

printer := Printer withName: #lw100.

mac2 := Workstation withName: #Mac2.

"Node connections"

mac nextNode: node1.

node1 nextNode: printer.

printer nextNode: mac2.

mac2 nextNode: pc.

pc nextNode: mac1.

"create a packet and start simulation"

packet := Packet send:  'This packet travelled around to the printer' to:  #lw100.

mac2 originate: packet.

(temporary, comments, classes, instance creation class me
methods, string, sequence, classes start with uppercase le
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A Step Further: Two Printer Meth
PrinterServer>>print: thePacket

"print the packet. Write this on the transcript"

Transcript show: 'printer ',

self  name printString,

' printing the packet with contents: ',

thePacket contents printString ; cr

In C++, Java: we would write
void Printer::print(thePacket Packet)

....

PrinterServer>>accept: thePacket

"If the packet is addressed to me, print it. Else just behave like a normal node"

(thePacket isAddressedTo: self )

ifTrue : [ self  print: thePacket]

ifFalse : [ super  accept: thePacket]

Printer>> is an home made convention to precise the scope
(method definition, invoking a method one myself, invoking
conditionals, message composition, blocks, parentheses)
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3. Syntax and Messages
Every

The syntax of Smalltalk is really simple and uniform

- Literals: numbers, strings, arrays....
- Variables names
- Pseudo-variables
- Assignment, return
- Message Expressions
- Block expressions
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Literals
Numbers: SmallInteger, Fraction, Float, Double

1232, 3/4, 4, 2.4e7, 2r101

Characters:
$F, Character space, Character tab, Character cr

Strings:
'This packet travelled around to the printer' 'l''idiot'

To introduce a single quote inside a string just double it.

Symbols:
#class #Mac1 #at:put:  #+

Arrays:
#(1 2 3) #('lulu' (1 2 3))  #('lulu' #(1 2 3)) #(lulu toto titi)

The last array is an array of symbols. When one prints it it shows #(#lulu #to

Byte Array:
#[1 2 255]

Comments:
"This is a comment"

A comment can be more several lines. Moreover, avoid to put a space betw
when there is no space, the system helps you to select a commented expres
and double click: all the commented expression is selected. After you can p
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Arrays
Heterogenous

#('lulu' (1 2 3)) PrIt-> #('lulu' #(1 2 3))

#('lulu' 1.22 1)  PrIt-> #('lulu' 1.22 1)

An array of symbols:
#(calvin hobbes suzie) PrIt-> #(#calvin #hobbes #suzie)

An array of strings:
#('calvin' 'hobbes' 'suzie') PrIt->  #('calvin' 'hobbes' 'suzie')

Literal or not
#(...) considers element as literals

#( 1 + 2 ) PrIt-> #(1 #+ 2)

Array with: (1 +2) PrIt->  #(3)

About Literals for the CuriousNote about literals. Literature (Goldbe
which value refer always to the same objet. This is a first approximati
if we check the literals according to this principle, this is false in Vis
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definition.) Literature defines literals as numbers, characters, strings
two strings , floats , arrays but they do not refer (hopefully) to the sa
In fact literals are objects created at compile-time or even already exi
compiled method literal frame. A compiled method is an object that h
source code. The literal frame is a part of a compiled method that sto
You can inspect a class->methodDict-> aCompiledMethod to see.
The following example can illustrate the difference between the litera
of Array created via Array new. Let us defined the following method

SmallInteger>m1

|anArray|

anArray := #(nil).

(anArray at: 1 ) isNil

ifTrue:[ Transcript show: ‘Put 1’;cr.

anArray at: 1 put: 1.]

1 m1

will only display the message Put 1 once. Because the array #(nil) is s
method and the #at:put: message modified the compiled method itself

m2

|anArray|

anArray := Array new: 1.



Smalltalk a Pure OO Language Syntax and Messages

U 3.26

array is always created at run-time.
nto the literal frame of the compiled
ods on a class, inspecting the class
niversität Bern Ducasse Stéphane

(anArray at: 1 ) isNil

ifTrue:[ Transcript show: ‘Put 1’;cr.

anArray at: 1 put: 1]

1 m2 will always display the message Put 1 because in that case the 
Therefore it is not detected as literals at compile-time and not stored i
method. You can find yourself this infomation by defining these meth
then its method dictionary and then the corresponding methods.
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Symbols vs. Strings
- Symbols are used as method selectors, unique k
- A symbol is a read-only object, strings are mutab
- A symbol is unique, strings not
- Only created using #symbol

#lulu == #lulu PrIt-> true

‘lulu’ == ‘lulu’ PrIt-> false

#lulu, #zeBest PrIt-> 'luluzeBest'

Comparing strings is a factor of 5 to 10 slower than symbols
symbol is more than 100 times more expensive.

Symbols are good candidates for identity based dictionary 
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Variables
- Maintain a reference to an object
- Untyped, can reference different types of objects
- Shared or private

variable

SharedVariable

instanceVariable

named indexed

: blockPa

| blockT

privateVari

ClassVariable

GlobalVariable

PoolVariable
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Temporary Variables
To hold temporary values during evaluation (method execu
Can be accessed by the expressions composing the metho

|mac1 pc node1 printer mac2 packet|

- Avoid to use the same name for a temporary variable than
variable or another temporary variable or block temporary. 
portable.
Instead of

aClass>>printOn: aStream

|aStream|

...

Write
aClass>>printOn: aStream

|anotherStream|

...

- Avoid to use the same temporary variable for referencing 
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Assigments

variable := aValue

three := 3 raisedTo: 1

variable1 := variable2 := aValue

But assignment is not done by message passing.
This is one of the few Smalltalk syntax element

p1 := p2 := 0@100

p1 x: 100

p1 PrIt->  100@100

p2 PrIt->  100@100
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Method Arguments
- Can be accessed by the expressions composing the meth
- Exist during the execution of the defining method.

- Method Name
add: newObject after: oldObject

"Add the argument newObject as an element of the receiver in the position just succeedi

In C++ or Java:
“Object” Printer::addafter(newObject “Object”, oldObject “Object”)

- But their values cannot be reassigned within the method.
Invalid Example, assuming name is an instance variable:
name: aString

aString := aString, 'Device'.

   name := aString

Valid Example
name: aString

name := aString , 'Device'
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Instance Variables
- Private to the object (not to the class like in C++),
- Can be accessed by all the methods of the defining class 
- Has the same lifetime that the object.

Declaration
Model subclass: #Node

instanceVariableNames: 'name nextNode '

...

Scope
Node>>setName: aSymbol nextNode: aNode

name := aSymbol.

nextNode := aNode

But preferably accessed with accessors
Node>>name

^name
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Six pseudo-variables (i)
Smalltalk expressions make references to these variables, 
value. They are hardwired in the compiler.

- nil   (nothing) value for the uninitialized variables. Unique
UndefinedObject

- true  unique instance of the class True

- false  unique instance of the class False

Take care
False

ifFalse: [Transcript show: ‘False’]

Produces an error, but

false

ifFalse: [Transcript show: ‘False’]

works
(see most common bugs)
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Six pseudo-variables (ii)
The following variables can only be used in a method body
- self  in the method body refers to the receiver  of a mess
- super in the method body refers also to the receiver of th
affects the lookup of the method. It starts in the superclass 
method where the super was used and NOT the superclass
lookup semantics)

PrinterServer>>accept: thePacket

"If the packet is addressed to me, print it. Else just behave like

(thePacket isAddressedTo: self )

ifTrue : [ self  print: thePacket]

ifFalse : [ super  accept: thePacket]

- thisContext  refers to the instance of MethodContext
of a method (receiver, sender, method, pc, stack). Exists on
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Global Variables
• Capitalized

MyGlobal := 3.14

Smalltalk will prompt you.
Smalltalk at: #MyGlobal put: 3.14

Global PrIt-> 3.14

Smalltalk at: #MyGlobal PrIt-> 3.14

• Store in the default environment: Smalltalk  (aSystemD

• Accessible from everywhere
• Usually not really a good idea to use them, use a classVa
hierarchy or a instance variable of a class)
• To remove a global variable:

Smalltalk removeKey: #MyGlobal

• Some predefined global variables:
Smalltalk (classes + globals)

Undeclared (a Pool dictionary of undeclared variables accessible from

Transcript (System transcript)

ScheduledControllers (window controllers)

Processor (a ProcessScheduler list of all the process)
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Three Kinds of Messages
Unary

2.4 inspect

Binary
1 + 2 -> 3

Keyword based
6 gcd: 24 PrIt-> 6

(1 + 2) * (2 + 3) PrIt-> 15

Message composed by :
  - a receiver always evaluated (1+2)

   - a selector never evaluated
   - and a list possibly empty of arguments that are all evalu

Receiver linked with self  in a method body
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Message = Effect + Return

Three kind of message actions:

Affects the receiver and returns
pc nextNode: mac1 PrIt-> aWorkstation

Date new day: 12 year: 1997

PrIt-> January 12, 1997

Only returns a new object

3.14 truncated PrIt-> 3

Workstation withName: #Mac1 PrIt-> aWorkstation

Perform side effect and returns
Browser browseAllSendersOf: #open:label:

PrIt-> aBrowser  + open a Browser
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Unary Messages

aReceiver aSelector

1 class PrIt-> SmallInteger

false not PrIt-> true

Date today PrIt-> Date today September 19, 1997

Time now PrIt-> 1:22:20 pm

Double pi PrIt-> 3.1415926535898d
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Binary Messages
aReceiver aSelector anArgumen

Binary messages:
   - arithmetic, comparison and logical operations
   - one or two characters long taken from

   + - / \ * ~ < > = @ % | & ! ? ,

   1 + 2   2 >= 3  100@100     'the', 'best'

Restriction:
   - second character is never $-

   - no mathematical precedence
3 + 2 * 10 -> 50

3 + (2 * 10) -> 23
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Keyword Messages
receiver keyword1: argument1 keyword2: a

In C-like languages: receiver keyword1keyword2...(argument1 type1, argum

1@1 setX: 3

#(1 2 3) at: 2 put: 25

1 to: 10 -> (1 to: 10) anInterval

Browser newOnClass: Point

Interval from:1 to: 20 PrIt-> (1 to: 20)

12 between: 10 and: 20 PrIt-> true

x > 0 ifTrue:['positive'] ifFalse:['negative']

Workstation withName: #Mac2

mac nextNode: node1.

Packet send:  'This packet travelled around to the printer' to:  #lw100.
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Composition
69 class inspect

(0@0 extent: 100@100) bottomRight

Precedence Rules:

– (E) > Unary-E > Binary-E > Keywords-E

– at same level, from the left to the right

2 + 3 squared -> 11

2 raisedTo: 3 + 2 -> 32

#(1 2 3) at: 1+1 put: 10 + 2 * 3 ->  #(1 36 3)

Hints: Put () when two keyword based messages are conse
order is fine.

x isNil

ifTrue: [...]

(x includes: 3)

ifTrue: [...]
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Sequence
message1.
message2.
message3

Transcript cr.

Transcript show: 1 printString.

Transcript cr.

Transcript show: 2 printString

|mac1 pc node1 printer mac2 packet|

"nodes definition"

mac1 := Workstation withName: #Mac1.

pc := Workstation withName: #pc.

node1 := Node withName: #node1
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Cascade
receiver selector1 [arg] ; selector2 [a

Transcript show: 1 printString.

Transcript show: cr

Equivalent to:
Transcript

show: 1 printString ; cr

Important: the semantics of the cascade is to send all the m
cascade to the receiver of the FIRST message being involv

In the following example the FIRST message being involve
#add: and not #with: . So all the messages will be sent to
expression the newly created instance anOrderedCollection

(OrderedCollection with: 1) add: 25; add: 35

Workstation new name: #mac ; nextNode: aNode

name:  is sent to the newly created instance of workstation 
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yourself
One problem:

(OrderedCollection with: 1) add: 25; add: 35 PrIt-> 35

Returns 35  and not the collection!
Let us analyze a bit:
OrderedCollection>>add: newObject

"Include newObject as one of the receiver's elements.  Answer newObject."

^self addLast: newObject

OrderedCollection>>addLast: newObject

"Add newObject to the end of the receiver.  Answer newObject."

lastIndex = self basicSize ifTrue: [self makeRoomAtLast].

lastIndex := lastIndex + 1.

self basicAt: lastIndex put: newObject.

^newObject

How can we reference the receiver of the cascade?

By using yourself: yourself  returns the receiver o
(OrderedCollection with: 1) add: 25; add: 35 ; yourself

-> OrderedCollection(1 25 35)
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Have You Really Understood Yo

Yourself returns the receiver of the cascade:
Workstation new name: #mac ; nextNode: aNode ; yourself

Here the receiver of the cascade is aWorkstation the new
the class Workstation

In
(OrderedCollection with: 1) add: 25; add: 35 ; yourself

anOrderedCollection(1) = self

So if you are that sure that you really understand yourself, w

Object>>yourself

^ self
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Block (i): Definition
• A deferred sequence of actions
• Return values is the result of the last expression of the blo
• = Lisp Lambda-Expression, ~ C functions

[ :variable1 :variable2 |
| blockTemporary1 blockTemporary2 |
 expression1.
 ...variable1 ...
]

Two blocks without variables and temporary
PrinterServer>>accept: thePacket

"If the packet is addressed to me, print it. Else just behave like

(thePacket isAddressedTo: self)

ifTrue: [self print: thePacket]

ifFalse: [super accept: thePacket]
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Block (ii): Evaluation
[....]

   value

or value:

or value:value:

or value:value:value:

or valueWithArguments: anArray

Blocks are first class objects, they are created, pass as argu
fct(x) = x ^ 2 + x
fct (2) = 6
fct (20) = 420

|fct|

fct:= [:x | x * x + x].

fct value: 2 PrIt-> 6

fct value: 20 PrIt-> 420

fct PrIt-> aBlockClosure
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Block (iii)

|index bloc |

index := 0.

bloc := [index := index +1].

index := 3.

bloc value 4

Integer>>factorial

"Answer the factorial of the receiver. Fail if the

receiver is less than 0. "

   | tmp |

   ....

   tmp := 1.

   2 to: self do: [:i | tmp := tmp * i].

   ^tmp

For performance reason avoid as much as possible to refer
outside a block.
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Syntax Summary (i)

comment:  “a comment”

character: $c $h $a $r $a $c $t $e $r $s $# $@

string:  ‘a nice string’  ‘lulu’ ‘l’’idiot ’
symbol: #mac #+

array: #(1 2 3 (1 3) $a 4)

byte array: #[1 2 3]

point: 10@120

integer:  1

real: 1.5, 6.03e-34,4, 2.4e7, 2r101

float: 1/33

boolean: true, false
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Syntax Summary (ii)
block:  [:var ||tmp| expr...]

var := aValue

unary message: receiver selector
binary message: receiver selector selector
keyword based: receiver keyword1: arg1 keywor
cascade: message ; selector ...
sequence: message . message
result: ^

parenthesis: (...)

byte array: #[...]
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What You Should Know

- Syntax
- Basic objects
- Message constituants
- Message semantics
- Message precedence
- Block definition
- Block use
- yourself semantics
- pseudo-variables

To know all that, the best thing to do is to take a Smalltalk an
to look at the return expressions
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4. Basic Objects, Conditional a
- Common Shared Behavior (minimal version)
- Number (subclass of Magnitude )

Fraction
Integer

LargeInteger
SmallInteger

LimitedPrecisionReal
Double
Float

- Boolean : superclass of True  and False

- Collection super of more than 80 classes:
(Bag, Array , OrderedCollection , SortedColle

- Loops and Iteration abstraction

- Streams and Files
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Common Shared Behavior (i)
Object class is the root of inheritance tree
Defines the common and minimal behavior for all the objec

=> 161 instance methods + 19 class methods
• #class

• Comparison of objects: #==, #~~, #=, #=~, #isNil, #notNil

• Copy of objects: #shallowCopy, #copy

#shallowCopy  : the copy shares instance variables wit
    default implementation of #copy  is #shallowCopy

a a copy
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Identity vs. Equality
= anObject

    returns true  if the structures are equivalent (the same h

(Array with: 1 with: 2) = (Array with:1 with:2) PrIt-> 

== anObject

       returns true if the receiver and the argument point to th
       object. #== should never be overriden. On Object #= is
~= is not = , ~~  is not ==

(Array with: 1 with: 2 ) == (Array with: 1 with:2) Pr

(Array with: 1 with: 2 ) = (Array with: 1 with:2) PrIt

Take care when redefining #= one should override #hash  
(See most common bugs)
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Common Shared Behavior (ii)
Print and store objects: #printString, #printOn: aStream

#storeString, #storeOn: aStream
#(123 1 2 3) printString -> '#(123 1 2 3)'

Date today printString -> 'October 5, 1997'

Date today storeString -> '(Date readFromString: ''10/5/1997'')'

OrderedCollection new add: 4 ; add: 3 ; storeString ->

'((OrderedCollection new) add: 4; add: 3; yourself)'

Create instances from stored objects: class methods
readFrom: aStream, readFromString: aString

  Object readFromString:  '((OrderedCollection new) add: 4; add: 3; your

-> OrderedCollection (4 3)

Notifying the programmer:
   #error: aString, #doesNotUnderstand: aMessage,

   #halt, #shouldNotImplement, #subclassResponsibility

Examing Objects: #browse, #inspect
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Essential Common Shared Beha
#class  returns the class of the object

#inspect  opens an inspector

#browse  opens a browser

#halt stops the execution and opens a debugger (to be in

#printString   (calls #printOn: ) returns a string repres

#storeString  returns a string whom evaluation recreate
receiver

#readFromString: aStream  recreates an object
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Basics on Number
• Arithemic

5 + 6, 5 - 6, 5 * 6,

division 30 / 9 , integer division 30 // 9  , modu
square root 9 sqrt , square 3 squared

• Rounding
3.8 ceiling -> 4

3.8 floor -> 3

3.811 roundTo: 0.01 -> 3.81

• Range 30 between: 5 and: 40

• Tests
3.8 isInteger

3.8 even, 3.8 odd

• Signs
positive, negative, sign, negated

• Other
min:, max:, cos, ln, log, log: arcSin, exp, **
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Deeper on Numbers: Double D
How to select a method depending on the receiver  AND th
Send a message back to the argument passing the receive

Example: Coercion between Float and Integer

A not really good solution:
Integer>>+ aNumber

(aNumber isKindOf: Float)
ifTrue: [ aNumber asFloat + self]
ifFalse: [ self addPrimitive: aNumber]

Float>>+ aNumber
(aNumber isKindOf: Integer)

ifTrue: [aNumber asFloat + self]
ifFalse: [self addPrimitive: aNumber]
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ger>>sumFromInteger: anInteger

<primitive: 40>
at>>sumFromInteger: anInteger

^ anInteger asFloat + self

eger>>sumFromFloat: aFloat
^aFloat + self asFloat

t>>sumFromFloat: aFloat
<primitive: 41>
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Deeper on Numbers: Double D
(c) Inte

(d) Flo

(a) Integer>>+ aNumber
^ aNumber sumFromInteger: self

(b) Float>>+ aNumber
^ aNumber sumFromFloat: self

(e) Int

(f) Floa

Some Tests:
1 + 1: (a->c)
1.0 + 1.0: (b->f)
1 + 1.0: (a->d->b->f)
1.0 + 1: (b->e->b->f)
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Deeper on Numbers: Coercion
ArithmeticValue>>coerce: aNumber

"Answer a number representing the argument, aNumber, that is the same kind of Nu
as the receiver.  Must be defined by all Number classes."

^self subclassResponsibility

ArithmicValue>>generality
"Answer the number representing the ordering of the receiver in the generality hie
in this hierarchy coerces to numbers higher in hierarchy (i.e., with larger generality

^self subclassResponsibility

Integer>>coerce: aNumber
"Convert a number to a compatible form"

^aNumber asInteger

Integer>>generality
^40

Generality
SmallInteger 20
Integer 40
Fraction 60
FixedPoint 70
Float 80
Double 90



Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.61

rcing:

e receiver and the
er the receiver or
neralities are the
ed."
niversität Bern Ducasse Stéphane

Deeper on Numbers: #retry:coe

ArithmeticValue>>sumFromInteger: anInteger
"The argument anInteger, known to be a kind of integer,
encountered a problem on addition. Retry by coercing either
anInteger or self, whichever is the less general arithmetic value."
Transcript show: 'here arthmeticValue>>sunFromInteger' ;cr.
^anInteger retry: #+ coercing: self

ArithmeticValue>>retry: aSymbol coercing: aNumber
"Arithmetic represented by the symbol, aSymbol, could not be performed with th
argument, aNumber, because of the differences in representation. Coerce eith
the argument, depending on which has higher generality, and try again. If the ge
same, then this message should not have been sent so an error notification is provid

self generality < aNumber generality
ifTrue: [^(aNumber coerce: self) perform: aSymbol with: aNumber].

self generality > aNumber generality
ifTrue: [^self perform: aSymbol with: (self coerce: aNumber)].

self error: 'coercion attempt failed'
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Boolean Objects
Boolean false and true are objects described by classes

- uniform
- but optimized, inlined

• Logical Comparisons &, |, xor:, not
aBooleanExpression comparison anotherBooleanExpre

(1 isZero) & false

• Lazy Logical operators

aBooleanExpression and: aBlock

aBlock will only be valued if aBooleanExpression 
false and: [1 error: 'crazy'] PrIt-> false

aBooleanExpression or: aBlock

 aBlock will only be valued if aBooleanExpression



Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.63

als

of true its unique instance!

uments of the message are
e both branchs.
niversität Bern Ducasse Stéphane

Boolean Objects and Condition
aBoolean ifTrue: aTrueBlock ifFalse: aFalseBlock

aBoolean ifTrue: aTrueBlock

aBoolean ifFalse: aTrueBlock ifTrue: aFalseBlock

aBoolean ifFalse: aFalseBlock

1 < 2 ifTrue: [...] ifFalse: [...]

1 < 2 ifFalse: [...] ifTrue: [...]

1 < 2 ifTrue: [...]

1 < 2 ifFalse: [...]

Take care true is the boolean value and True is the class

Note: Why conditional expressions use blocks?

Because, when a message is sent: the receiver and the arg
evaluated. So block uses are necessary to avoid to evaluat
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Loops
aBlockTest whileTrue

aBlockTest whileFalse

aBlockTest whileTrue: aBlockBody

aBlockTest whileFalse: aBlockBody

anInteger timesRepeat: aBlockBody

[x<y] whileTrue: [x := x + 3]

10 timesRepeat: [ Transcript show: 'hello'; cr]
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For the Curious
whileTrue:

BlockClosure>>whileTrue: aBlock

   ^ self value ifTrue:[aBlock value.

self whileTrue: aBlock]

BlockClosure>>whileTrue

   ^ [self value] whileTrue:[]

timesRepeat:

Integer>>timesRepeat: aBlock

"Evaluate the argument, aBlock, the number of times represented

   | count |

   count := 1.

   [count <= self] whileTrue: [aBlock value.

count := count + 1]
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Collections
• Only the most important
• Some criterias to identify them. Access: indexed, sequent
Size: fixed or dynamic. Element type: any or well-defined ty
Order: defined, defineable or no. Duplicate: possible or not
Sequenceable ordered

ArrayedCollection fixed size + key = integer
Array any kind of elements
CharacterArray elements = character

String
IntegerArray

Interval arithmetique progression
LinkedList dynamic chaining of the element
OrderedCollection size dynamic + arrival order

SortedCollection explicit order
Bag possible duplicate + no order
Set no duplicate + no order

IdentitySet identification based on identity
Dictionary element = associations + key based

IdentityDictionary key based on identity



Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.67

Duplicates Allowed

Bag Set

y n
niversität Bern Ducasse Stéphane

Another View

Keyed

Adds Allowed

Sorted

UniqueKey

Sorted

Ordered

Array
String

Identity Dictionary
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Dictionary

Collection

Collection
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Collection Methods
Will be defined, redefined, optimized or forbiden  in subc
Accessing: #size, #capacity, #at: anInteger, #at: anInteger 
anElement

Testing: #isEmpty, #includes: anElement, #contains: aBloc
occurencesOf: anElement

Adding: #add: anElement, #addAll: aCollection

Removing: #remove: anElement, #remove:anElement ifAbs
#removeAll: aCollection

Enumerating (See generic enumerating)
#do: aBlock, #collect: aBlock, #select: aBlock, #reject:
#detect:, #detect: aBlock ifNone: aNoneBlock, #inject: aval
into: aBinaryBlock

Converting: #asBag, #asSet, #asOrderedCollection,
#asSortedCollection, #asArray, #asSortedCollection: aBloc

Creation: #with: anElement, #with:with:, #with:with:with:,
#with:with:with:with:, #with:All: aCollection
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Sequenceable Specific (Array)
Accessing
#first, #last

#atAllPut: anElement, #atAll: anIndexCollection: put: anEle

Searching (*: + ifAbsent:)
#indexOf: anElement, #indexOf: anElement ifAbsent: aBloc

Changing
#replaceAll: anElement with: anotherElement

Copying
#copyFrom: first to: last, copyWith: anElement, copyWithou
anElement

|arr|

arr := #(calvin hates suzie).

arr at: 2 put: #loves.

arr PrIt-> #(#calvin #loves #suzie)
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KeyedCollection Specific (Dict
Accessing
#at: aKey, #at: aKey ifAbsent: aBlock, #at: aKey ifAbsentPu
aBlock, #at: aKey put: aValue, #keys, #values, #association

Removing:
#removeKey: aKey, #removeKey: aKey ifAbsent: aBlock

Testing:
#includeKey: aKey

Enumerating
#keysAndValuesDo: aBlock, #associationsDo: aBlock, #ke
aBlock

|dict|

dict := Dictionary new.

dict at: 'toto' put: 3.

dict at: 'titi' ifAbsent: [4]. -> 4

dict at: 'titi' put: 5.

dict removeKey: 'toto'.

dict keys -> Set ('titi')
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Choose your Camp!
You could write:

absolute: aCollection

|result|

result := aCollection species new: aCollection size.

1 to: aCollection size do:

[ :each | result at: each put: (aCollection at: each) abs].

^ result

Sure!
Or

absolute: aCollection

^ aCollection collect: [:each| each abs]

And contrary to the first solution, this solution works well for i
for sets.
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Iteration Abstraction: do:/colle
aCollection do: aOneParameterBlock

aCollection collect: aOneParameterBlock

aCollection with: anotherCollection do: aBinaryBlock

#(15 10 19 68) do:

   [:i | Transcript show: i printString ; cr ]

#(15 10 19 68) collect: [:i | i odd ]

PrIt-> #(true false true false)

#(1 2 3) with: #(10 20 30)

do: [:x :y| Transcript show: (y ** x) printString ; cr ]
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Iteration Abstraction: select:/re
aCollection select: aPredicateBlock

aCollection reject: aPredicateBlock

aCollection detect: aOneParameterPredi

aCollection

detect: aOneParameterPr

ifNone: aNoneBlock

#(15 10 19 68) select: [:i|i odd] -> #(15 19)

#(15 10 19 68) reject: [:i|i odd] ->  #(10 68)

#(12 10 19 68 21) detect: [:i|i odd] PrIt-> 19

#(12 10 12 68) detect: [:i|i odd] ifNone:[1] PrIt-> 1
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Iteration Abstraction: inject:into

aCollection inject: aStartValue into: aBinaryB

|acc|

acc := 0.

#(1 2 3 4 5) do: [:element | acc := acc + element].

acc

-> 15

#(1 2 3 4 5)

   inject: 0

   into: [:acc :element| acc + element]

-> 15
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Collection Abstraction

aCollection includes: anElement

aCollection size

aCollection isEmpty

#(1 2 3 4 5) contains: 4 -> true

#(1 2 3 4 5) size -> 5

#(1 2 3 4 5) isEmpty -> false
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Streams
• Allows the traversal of a collection
• Associated with a collection

- collection is a Smalltalk collection: InternalStream

- collection is a file or an object that behaves like a co
• Stores the current position

Stream (abstract)
PeekableStream (abstract)

PositionableStream (abstract)
ExternalStream

ExternalReadStream
ExternalReadAppendStream
ExternalReadWriteStream

ExternalWriteStream
InternalStream

ReadStream
WriteStream

ReadWriteStream
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An Example
|st|

st := ReadWriteStream on: (OrderedCollection new: 5).

st nextPut: 1.

st nextPutAll: #(4 8 2 6 7).

st contents. PrIt-> OrderedCollection (1 4 8 2 6 7)

st reset.

st next. -> 1

st position: 3.

st next. -> 2

st := #(1 2 5 3 7) readStream.

st next. -> 1
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printSring, printOn:
Object>>printString

"Answer a String whose characters are a description of the receiver.

| aStream |

aStream := WriteStream on: (String new: 16).

self printOn: aStream.

^aStream contents

Node>>printOn: aStream

super printOn: aStream .

aStream  nextPutAll: ' with name:'; print: self name.

self hasNextNode  ifTrue: [

aStream  nextPutAll: ' and next node:'; print: self nextNode nam
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Stream classes(i)
Stream.
#next  returns the next element
#next: n  returns the n next elements
#contents  returns all the elements
#nextPut: anElement  inserts element at the next positi
#nextPutAll: aCollection  inserts the collection elem
#atEnd  returns true if at the end of the collection

PeekableStream.
Access to the current without passing to the next
#peek

#skipFor: anAgrument

#skip: n  increases the position of n
#skipUpTo: anElement  increases the position after anE
Creation
#on: aCollection,

#on: aCol from: firstIndex to: lastIndex  (ind
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Stream Classes (ii)
PositionnableStream
#skipToAll: #throughAll: #upToAll:

#position

#position: anInteger

#reset #setToEnd #isEmpty

InternalStream
#size  returns the size of the internal collection
Creation #with: (without reinitializing the stream)

ReadStream WriteStream and ReadWriteStream
ExternalStream and subclasses
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Stream tricks
Transcript  is a TextCollector  that has aStream

TextCollector>>show: aString

self nextPutAll: aString.

self endEntry

#endEntry  via dependencies asks for refreshing the wind
If you want to speed up a slow trace, use #nextPutAll:  
#show:

|st sc|

st := ReadStream on: ‘we are the champions’.

sc := Scanner new on: st.

[st atEnd] whileFalse: [ Transcript nextPutAll: sc scanToken, ‘ * ‘].

Transcript endEntry
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Streams and Files
Filename.

#appendStream (addition + creation if file doesnot exists)

#newReadAppendStream, #newReadWriteStream (if receiver exists, co

#readAppendStream, #readWriteStream, #readStream, #writeStream

Example: removing Smalltalk comments of a file

|inStream outStream |

inStream := (Filename named: ‘/home/ducasse/test.st’) readStream.

outStream := (Filename named: ‘/home/ducasse/testout.st’) writeStream

“(or ‘/home/ducasse/ducasse’ asFilename)”

[inStream atEnd] whileFalse: [

outStream nextPutAll: (inStream upTo: $”).

inStream skipTo: $”].

^outStream contents
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What you should know
- Number protocol
- Boolean protocol
- Collection protocol
- Loops
- Conditional
- Iteration Abstraction
- Collection Abstraction

But the best way to know that is to play with a Smalltalk inte
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5. Dealing with Classes

- Class definition
- Method definition
- Inheritance semantics
- Basic class instanciation
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Class Definition

A template is proposed by the browser:
NameOfSuperclass subclass: #NameOfClass

   instanceVariableNames: ' instVarName1 instVarName2 '

   classVariableNames: 'ClassVarName1 ClassVarName2 '

   poolDictionaries: ''

   category: ' CategoryName '

Example
Object subclass: #Packet

instanceVariableNames: ' contents addressee originator

classVariableNames: ''

poolDictionaries: ''

category: ' LAN-Simulation '

Automatically a class named “Packet class ” is created.
Packet  is the unique instance of Packet class .
(To see it click on the class button in the browser)
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Named Instance Variables
NameOfSuperclass subclass: #NameOfClass

   instanceVariableNames: 'instVarName1 instVarName2'

       ...

Object subclass: #Packet

instanceVariableNames: ' contents addressee originator

...

• Begins with a lowercase letter
• Explicitly declared: a list of instance variables
• Name should be unique / inheritance
• Default value is nil

• Private to the instance: instance based (C++ class-based
• Can be accessed by all the methods of the class and sub
• But instance variables cannot be accessed by class meth
• A client cannot directly access to iv. No private, protected
• Accessing methods to access instance variable.
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classVariable
• A pretty bad name: should have been called Shared Varia
• Begins with a uppercase letter
• a classVariable is shared  and directly accessible by all th
• a classVariable can be directly accessed in instance meth

NameOfSuperclass subclass: #NameOfClass

...

classVariableNames: 'ClassVarName1 ClassVarName2 '

...

Object subclass: #Packet

instanceVariableNames: ' contents addressee originator

classVariableNames: ‘Domain’

Pay attention and be sure than you really need a classVaria

• Often classVariable can be replaced by class methods
 Packet class>>domain

      ^ ‘iam.unibe.ch’
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Class Instance Variables / Clas
• a classVariable is shared  and directly accessible by all th

• Class instance variables as normal instance variables can
message and accessors:

- an instance variable of a class is private
- an instance

• Take care when you change the value of a classVariable 
impacted!
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poolVariables
• Also called Pool Variables.
• Begins with a uppercase letter
• Variable shared by a group of classes not linked by inheri
• Each class possesses its own pool dictionary.
• They are not inherited.
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Example of PoolVariables
Instead of

Smalltalk at: #NetworkConstant put: Dictionary new.

NetworkConstant at: #rates put: 9000.

Node>>computeAverageSpeed

...

NetworkConstant at: #rates

Write:
Object subclass: #Packet

instanceVariableNames: ' contents addressee originator '

classVariableNames: ‘Domain’

poolDictionaries: 'NetworkConstant'

Node>>computeAverageSpeed

...

.. rates

rates  is directly accessed in the global  dictionary Networ

As a beginner policy, never use poolDictionaries
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Method Definition
A template is proposed by the browser

message selector and argument names

   "comment stating purpose of message"

   | temporary variable names |

   statements

Example from PrinterServer

You type:
accept: thePacket

"If the packet is addressed to me, I print it. Else I just behav

(thePacket isAddressedTo: self)

ifTrue: [self print: thePacket]

ifFalse: [super accept: thePacket]

I show
PrinterServer>>accept: thePacket
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Iv Access Example

Packet>>isOriginatingFrom: aNode

^ self originator = aNode

is equivalent to:

Packet>>isOriginatingFrom: aNode

^ originator = aNode

Accessors are interesting to implement lazzy initialization

A lazzy initialization schema:
Packet>>originator

originator isNil

ifTrue: [originator := Node new]

^ originator
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Return Value
• Message = effect + return
• A message always returns an object as a result.
• In a method body, the ^ expression returns the value of th
the method execution.
• By default, a method returns self

accept: thePacket

"Having received the packet, send it on. This is the default behavior"

self send: thePacket

is equivalent to
accept: thePacket

"Having received the packet, send it on. This is the default behavior"

self send: thePacket.

^self

If we want to return the value returned by #send:
accept: thePacket

"Having received the packet, send it on. This is the default behavior"

^self send: thePacket.
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class instance variables
superclass

send: aString to: anAdress
asicNew initialize
ontents: aString ;
ddressee: anAddress

 methods
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Visibility of Variables

Packet>>printOn:

instance variables
addressee

classVariables
Domain

Packet>>
^self b

c
a

instance methods
class
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Example From The System: Geo

Object subclass: #Geometric

instanceVariableNames: ''

classVariableNames: 'InverseScale Scale '

...

Geometric class>>initialize

"Reset the class variables."

Scale := 4096.

InverseScale := 1.0 / Scale
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Circle
Geometric subclass: #Circle

instanceVariableNames: 'center radius '

classVariableNames: ''

...

Circle>>center

^center

Circle>>area

| r |

r := self radius asLimitedPrecisionReal.

^r class pi * r * r

Circle>>diameter

^self radius * 2

Circle class>>center: aPoint radius: aNumber

^self basicNew setCenter: aPoint radius: aNumber
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Quick Naming Conventions
• Shared variables begin with an upper case letter
• Private variables begin with a lower case letter
• Use imperative for methods performing action #openOn:

For accessor, use the same name as for the instance varia
upperLimit

^ upperLimit

upperLimit: aNumber

upperLimit := aNumber

• For predicate methods (returning a boolean) prefix the me
      isNil, hasBorder, isEmpty

• For converting methods prefix the method with as
       asString
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Inheritance in Smalltalk
• Single inheritance

• Static for the instance variables.
At class creation time the instance variables are collected fro
class. No repetition of instance variables.

• Dynamic for the methods.
Late binding (all virtual) methods are looked up at run-time
receiver.
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Message Sending & Method Lo
sending a message: receiver selector args  <=>
applying a method looked up associated with selector to th

Looking up a method:
When a message receiver selector args is sent, the method
the message selector is looked up through inheritance chai

=>  the lookup starts in the class of the receiver.
If the method is defined in the class dictionary, it is returned

Else the search continues in the superclasses of the receiv
If no method is found and that there is no superclas
a new method called #doesNotUnderstand: is
with a representation of the initial message.
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   self put: 33333

inherits-from

instance-of
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inherits-from

inherits-from
change
    self put: 11111
give
   ^i
put: aNumber
   i := aNumber

A

B
selfChange

self change

superChange
super chang

aA

aB

instance-of

instance-of
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Example
Object subclass: #A

       instanceVariableNames: 'i '...

A>>change

self put: 11111

A>>give

   ^i

A>>put: aNumber

   i := aNumber

A subclass: #B ...

B>>selfChange

   self change

B>>superChange

   super change

B subclass: #C

C>>change

   self put: 33333
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Run the messages

aA change give -> 11111

aB change give -> 11111

aC change give -> 33333

aC selfchange give -> 33333

aC superchange give -> 11111

aB selfchange give -> 11111

aB superchange give -> 11111
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Semantics of super
• As self , super  is a pseudo-variable that refers to the re
• Used to invoke overriden methods.

• When using self  the lookup of the method begins in the

• When using super the lookup of the method begins in th
the method containing the super expression and NOT in th
class.
Other said:
• super  causes the method lookup to begin searching in th
the method containing super
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Let us be Absurb!

Let us suppose the WRONG hypothesis:
"IF super semantics =

eiver class"

iver class.

A

B

C

m1
super m1

m1
  ...

aC
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starting the lookup of method in the superclass of the rec

What will happen for the following message:     aC m1
m1 is not defined in C
m1 is found in B

By Hypothesis: super = lookup in the superclass of the rece
And we know that the superclass of the receiver class = B

=> That's loop So Hypothesis is WRONG !!
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Lookup and Class Messages

inherits fro

Node

Workstation

Node class

Workstation class

aWorkstation

accept: aPacket

instance
method lookup

aWorkstation Workstation w
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Object Instantiation
Objects can created by:
- Direct Instance creation: (basic)new/new:

- Messages to Instances that Create Other Objects
- Class specific Instantiation Messages
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Direct Instance Creation: (basic
• #new/basicNew  and new: /basicNew:  are class method

• aClass new /basicNew  => returns a newly and UNINIT

OrderedCollection new -> OrderedCollection ()

Packet new -> aPacket

Packet new addressee: #mac ; contents: ‘hello mac’

Instance variable values = nil
• #new: /basicNew:  to precise the size of the created ins

    Array new: 4 -> #(nil nil nil nil)

• #new/#new:  can be specialized ot have a customized cre
• #basicNew /#basicNew:  should never be specialized
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Messages to Instances that Cre
1 to: 6  (an interval)

1@2 (a point)

(0@0) extent: (100@100)        (a rectangle)

#lulu asString                 (a string)

1 printString                  (a string)

3 asFloat                      (a float)

#(23 2 3 4) asSortedCollection (a sortedCollection)
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Opening the Box
1 to: 6 -> an Interval

Number>>to: stop

   "Answer an Interval from the receiver up to the argument, stop, with

   each next element computed by incrementing the previous one by 1."

^Interval from: self to: stop by: 1

1 printString -> aString

Object>>printString

   "Answer a String whose characters are a description of the receiver."

| aStream |

aStream := WriteStream on: (String new: 16).

self printOn: aStream.

^aStream contents

1@2 -> aPoint

Number>>@ y

   "Answer a new Point whose x value is the receiver and whose y value is the argument

<primitive: 18>

^Point x: self y: y
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Class specific Instantiation Mes
Array with: 1 with: 'lulu'

OrderedCollection with: 1 with:  2 with:  3

Rectangle fromUser  -> 179@95 corner: 409@219

Browser browseAllImplementorsOf: #at:put:

Packet send: ‘Hello mac’ to: #mac
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Two Views on Classes
• Named or indexed instance variables

Named: ‘addressee’  of Packet

Indexed: Array

• Or looking at them in another way:
Objects with pointers to other objects
Objects with arrays of bytes (word, long)

Difference for efficiency reason:
arrays of bytes (like C string) are faster than storing an arra
to a single byte.
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Types of Classes
Indexed Named Definition Method Exam
No Yes #subclass:... Packet, Wo

Yes Yes #variableSubclass: Array, Com

Yes No #variableByteSubclass String, Byte

Related Method to class types: #isPointers, #isBits, #isByt
#isVariable, #kindOfSubclass

• classes defined using #subclass:  support any kind of s

• classes defined using #variableSubclass:  support o
variableSubclass:  or variableByteSubclass: subc

• classes defined using #variableByteSubclass

- can only be defined if the superclass has no defi
- pointer classes anmd byet classes don’t mix
- only byte subclasses
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Indexed Classes
• For class that needs a variable number of instance variab

Example: the class Array

ArrayedCollection variableSubclass: #Array

   instanceVariableNames: ''

   classVariableNames: ''

   poolDictionaries: ''

   category: 'Collections-Arrayed'

Array new: 4 -> #(nil nil nil nil)

#(1 2 3 4) class isVariable -> true



Smalltalk a Pure OO Language Dealing with Classes

U 5.114

les
ariables
niversität Bern Ducasse Stéphane

Indexed Class/Instance Variab
• Indexed variable is implictly added to the list of instance v
• Only one indexed instance variable per class
• Access with #at:  and #at:put:

(#at:put:  answers the value not the receiver)
• First access: anInstance at: 1

• #size  returns the number of indexed instance variables
• Instantiated with #new:  max

|t|

t := (Array new: 4).

t at: 2 put: 'lulu'.

t at: 1 -> nil

• Subclasses should also be indexed
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What you should know

• Defining a class
• Defining methods
• Semantics of self

• Semantics of super

• Instance creation

Again open a browser and test!
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6. Basic Elements of Design and
Behavior

• Class definition
• Supporting Instance initialisation
• Supporting Instance creation

• Instance/Class methods
• Instance variable/ Class instance variables
• Class initialisation
• Abstract Classes
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A First Implementation of Packe

Object subclass: #Packet

instanceVariableNames: ‘contents addressee originator ‘

classVariableNames: ‘’

poolDictionaries: ‘’

category: ‘Lan-Simulation’

One instance method
Packet>>printOn: aStream

super printOn: aStream.

aStream nextPutAll: ‘ addressed to: ‘; print: self addressee.

aStream nextPutAll: ‘ with contents: ’; print: self contents

Some Accessors
Packet>>addressee

^addressee

Packet>>addressee: aSymbol

addressee := aSymbol
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Packet CLASS Definition
Packet Class is Automatically  defined

Packet class

   instanceVariableNames: ''

Example of instance creation

Packet new addressee: # mac ; contents: ‘hello mac’

Problems of this approach:
- responsibility of the creation relies on the clients
- can create packet without contents, without addr
- instance variable not initialized -> error (for exam

- > system fragile
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Assuring Instance Variable Initi
Problem.  By default #new class method returns instance w
variables. Remind that class methods cannot access to insta
-> How to initialize a newly created instance ?
Moreover, #initialize  method is not automatically calle
#new/new:

Solution. Defines an instance method that initializes the ins
#new to invoke it.

1 Packet class>>new

2 ^  super new initialize

3 Packet>>initialize

super initialize.

contents := ‘default message’

Packet new (1-2) -> aPacket initialize (3-4) -> returning anInitializedPac

Remind.  You cannot access instance variable from a class
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Other Instance Initialization
step 1.  SortedCollection sortBlock: [:a :b| a name < b name]

SortedCollection class>>sortBlock: aBlock

  "Answer a new instance of SortedCollection such that its elements are sorted

according to the criterion specified in aBlock."

^self new sortBlock: aBlock Class meth

step 2. self new = aSortedCollection

step 3. aSortedCollection sortBlock: aBlock Instance m

step 4.  returning the instance aSortedCollection

step 1. OrderedCollection with: 1

Collection class>>with: anObject

   "Answer a new instance of a Collection containing anObject."

| newCollection |

   newCollection := self new.

   newCollection add: anObject.

   ^newCollection
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Strengthen Instance Creation In
Problem.  A client can still create aPacket  without address
Solution.  Force the client to use the class interface creatio
creation and avoiding the use of #new

Packet send: ‘Hello mac’ to: #Mac

First try
Packet class>>send: aString to: anAddress

^ self new contents: aString ; addressee: anAddress

Problem! #new should raise an error!

The solution:
Packet class>>new

self error: 'Packet should only be created using send:to:'

Packet class>>send: aString to: anAddress

^ self basicNew contents: aString ; addressee: anAdress
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Class Methods - Class Instance
• Classes (Packet class ) represents class (Packet ).
• Class instance variable should represent the state of clas
instances, number of messages sent, superclasses, subcla
• Class methods represent CLASS behavior: instance crea
counting the number of instances....
• If you weaken the second point: class state and behavior ca
properties shared by all the instances

Ex: If we want to encapsulate the way “no next node” is cod
aNode nextNode isNil

=> aNode hasNextNode

Node>>hasNextNode

^ self nextNode = self class noNextNode

Node class>>noNextNode

^ nil
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Singleton Instance: A Class Beh
Problem.  We want a class with a unique instance.
Solution. We specialize the #new class method so that if on
will be the only one. When the first instance is created, we s
of #new.

|db|

db := LAN new.

db == LAN new -> true

LAN uniqueInstance == LAN new -> true
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Singleton Instance’s Implemen

LAN class

instanceVariableNames: 'uniqueInstance '

LAN class>>new

self error: ‘should use uniqueInstance’

LAN class>>uniqueInstance

uniqueInstance isNil ifTrue: [ uniqueInstance := s

^uniqueInstance

Providing access to the unique instance is not always nece
want to express. The difference between #new and #uniqu
- #new potentially initializes a new instance.
- #uniqueInstance only returns the unique instance there is

(see Smalltalk Companion for an interesting discussion)
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econdsInDay
niversität Bern Ducasse Stéphane

Class Initialization
Automatically called by the system at load time  or explicitly
- Used to initialize classVariable,  pool dictionary or class in
- ‘Classname initialize ’ at the end of the saved files.

Example: Date

Magnitude subclass: #Date

   instanceVariableNames: 'day year'

   classVariableNames: 'DaysInMonth FirstDayOfMonth MonthNames S

WeekDayNames'

   poolDictionaries: ''

   category: 'Magnitude-General'
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Date class>>initialize
Date class>>initialize

"Initialize class variables representing the names of the months an
number of seconds, days in each month, and first day of each month. "

   "Date initialize."

   MonthNames := #(January February March April May

June July August September October November December ).

   SecondsInDay := 24 * 60 * 60.

   DaysInMonth := #(31 28 31 30 31 30 31 31 30 31 30 31 ).

   FirstDayOfMonth := #(1 32 60 91 121 152 182 213 244 274

305 335 ).

   WeekDayNames := #(Monday Tuesday Wednesday Thursday

Friday Saturday Sunday )
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Abstract Classes
• Should not be instantiated (deferred class of Eiffel).
• Defines a protocol common to a hierarchy of classes that 
representation choices.
• A class is considered as abstract as soon as one of the m
respond to is not implemented (can be a inherited one).

• Deffered method send the message self subclassRespon

• Depending of the situation, override #new to produce an e

• Abstract classes are not syntactically distinguable from in
BUT as conventions use class comments: So look at the cl
and write in the comment which methods are abstract and 
Advanced tools check this situation.

Class Boolean is an abstract class that implements behavior common to true and fal

are True and False. Subclasses must implement methods for

logical operations &, not, |

controlling and:, or:, ifTrue:, ifFalse:, ifTrue:ifFalse:, ifFalse:ifTrue:
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True:,ifFalse:,
lse:,ifFalse:ifT r
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Case Study: Boolean, True and

Object ()
   Boolean ( &, not, |, and:, or:,ifTrue:,
   ifFalse:,ifTrue:ifFalse:,ifFalse:ifTrue:
      False ()
      True ()

Boolean

False True
and:, or:,ifTrue:,ifFalse:,
ifTrue:ifFalse:,ifFalse:ifTrue:
&, not, |

and:, or:,if
ifTrue:ifFa
&, not, |

eqv:, xor:, storeOn:,
shallowCopy
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Boolean
Abstract method

Boolean>>not

"Negation. Answer true if the receiver is false, answer false if th
true."

self subclassResponsibility

Concrete method efined in terms of an abstract method
Boolean>>xor: aBoolean

   "Exclusive OR.  Answer true if the receiver is not equivalent to aBoole

   ^(self == aBoolean) not

When #not  will be defined, #xor:  is automatically defined

Note that VisualWorks introduced a kind of macro expansion, optimisation fo
compilation. A method is executed once and after it is compiled in native co
the native code is executed.
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invoked because
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False and True
False>>not

"Negation -- answer true since the receiver is false."

   ^true

True>>not

"Negation--answer false since the receiver is true."

   ^false

False>>ifTrue: trueBlock ifFalse: falseBlock

   "Answer the value of falseBlock. This method is typically not invoked b
ifTrue:/ifFalse: expressions are compiled in-line for literal blocks."

^falseBlock value

True>>ifTrue: trueBlock ifFalse: falseBlock

"Answer the value of trueBlock. This method is typically not
ifTrue:/ifFalse: expressions are compiled in-line for literal blocks."

^trueAlternativeBlock value
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CaseStudy: Magnitude:
1 > 2  =  2 < 1 = false

Magnitude>> < aMagnitude

  ^self subclassResponsibility

Magnitude>> = aMagnitude

^self subclassResponsibility

Magnitude>> <= aMagnitude

^(self > aMagnitude) not

Magnitude>> > aMagnitude

^aMagnitude < self

Magnitude>> >= aMagnitude

^(self < aMagnitude) not

Magnitude>> between: min and: max

^self >= min and: [self <= max]

1 <= 2   = (1 > 2) not

         = false not

         = true
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Date
Date>>< aDate

   "Answer whether the argument, aDate, precedes the date of the receiv

year = aDate year

      ifTrue: [^day < aDate day]

      ifFalse: [^year < aDate year]

Date>>= aDate

   "Answer whether the argument, aDate, is the same day as the receive

self species = aDate species

      ifTrue: [^day = aDate day & (year = aDate year)]

      ifFalse: [^false]

Date>>hash

   ^(year hash bitShift: 3) bitXor: day
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7. Comparing C++, Java and S
Commented version

Overview
❑ History:

☞ target applications, evolution, design goals
❑ Language features:

☞ syntax, semantics, implementation technolog
❑ Pragmatics:

☞ portability, interoperability, environments & to
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BOL

a

Lisp

Prolog

Modula-2

Modula-3

Oberon

a 95
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History

1960

1970

1980

1990

FORTRAN
Algol 60

CO

PL/1
Simula 67

Smalltalk 72

Smalltalk 80

Objective C

C

C++ Ad

Pascal

ANSI C++

Self
Eiffel

Algol 68

Clu

Java Ad
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Target Application Domains

Smalltalk
Originally conceived as PL for children.
Designed as language and environment for “Dynabook”.
Now: Rapid prototyping. Simulation. Graphical user interfac

C++
Originally designed for simulation (C with Simula extension
Now: Systems programming. Telecommunications and oth
domains.

Java
Originally designed for embedded systems.
Now: Internet programming. Graphical user interfaces.
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rhauled to support a more
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Evolution
Smalltalk

❑ Originally (1972) every object was an independent
to incorporate a meta-reflective architecture.

❑ Now the language (Smalltalk-80) is stable, but the
frameworks continue to evolve.

C++
❑ Originally called C with classes, inheritance and v
❑ Since 1985 added strong typing, new and delete

templates, exceptions, and many, many other feat
❑ Standard libraries and interfaces are emerging. St

Java
❑ Originally called Oak, Java 1.0 was already a stab
❑ Java 1.1 and 1.2 introduced modest language exte

the most important).
❑ The Abstract Windowing Toolkit was radically ove

general-purpose event model. The libraries are sti
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Language Design Goals

Smalltalk
❑ “Everything is an object”
❑ Self-describing environment
❑ Tinkerability

C++
❑ C with classes

☞ and strong-typing, and ...
❑ “Every C program is also a C++ program” ... almo
❑ No hidden costs

Java
❑ C++ minus the complexity (syntactically, not sema
❑ Simple integration of various OO dimensions (few
❑ “Java — it’s good enough”
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Unique, Defining Features

Smalltalk
❑ Meta-reflective architecture

☞ The ultimate modelling tool
❑ Mature framework technology

C++
❑ “Portable assembler” with HL abstraction mechan

☞ Programmer is in complete control
❑ Templates (computationally complete!)

Java
❑ Dynamically loaded classes

☞ Applications are not “installed” in the convent
❑ First clean integration of many OO dimensions (co
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Java

pure

l automatic

l yes (it depends)

single

s no (coming soon?)

static

r files) packages

rated)
yes

(well integrated)

ries) yes (monitors)

limited
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Overview of Features
Smalltalk C++

object model pure hybrid

memory management automatic manua

dynamic binding always optiona

inheritance single multiple

generics no template

type checking dynamic static

modules no (categories) no (heade

exceptions
yes

(not commonly used)
yes

(weakly integ

concurrency yes (semaphores) no (libra

reflection
reflective

architecture
limited
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Syntax

Smalltalk
Minimal. Essentially there are only objects and messages.
A few special operators exist for assignment, statements, b

C++
Baroque. 50+ keywords, two commenting styles, 17 preced
expressions, various syntactic ambiguities.

Java
Simplified C++. Fewer keywords. No operator overloading.
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Object Model

Smalltalk
❑ “Everything is an object”
❑ Objects are the units of encapsulation
❑ Objects are passed by reference

C++
❑ “Everything is a structure”
❑ Classes are the units of encapsulation
❑ Objects are passed by value

☞ Pointers are also values; “references” are rea

Java
❑ “Almost everything is an object”
❑ Classes are the units of encapsulation (like C++)
❑ Objects are passed by reference

☞ No pointers
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Memory Management

Smalltalk
❑ Objects are either primitive, or made of references
❑ No longer referenced objects may be garbage col

☞ Garbage collection can be efficient and non-in

C++
❑ Objects are structures, possibly containing pointer
❑ Destructors should be explicitly programmed (cf. O

☞ Automatic objects are automatically destructe
☞ Dynamic objects must be explicitly delete d

❑ Reference counting, garbage collection libraries a

Java
❑ Objects are garbage collected

☞ Special care needed for distributed or multi-p
— closed world assumption!
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Dynamic Binding

Smalltalk
❑ Message sends are always dynamic

☞ aggressive optimization performed (automatic

C++
❑ Only virtual methods are dynamically bound

☞ explicit inling (but is only a “hint” to the compi
❑ Overloaded methods are statically disambiguated

☞ Overridden, non-virtuals will be statically boun
❑ Overloading, overriding and coercion may interfer
— A::f(float); B::f(float), B::f(int); A b = new A; b.f(3) calls A::f(fl

Java
❑ All methods (except “static,” and “final”) are dynam
❑ Overloading, overriding and coercion can still inter
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Inheritance, Generics

Smalltalk
❑ Single inheritance; single root Object
❑ Dynamic typing, therefore no type parameters nee

C++
❑ Multiple inheritance; multi-rooted
❑ Generics supported by templates (glorified macros

☞ multiple instantiations may lead to “code bloa

Java
❑ Single inheritance; single root Object

☞ Multiple subtyping (a class can implement mu
❑ No support for generics; you must explicitly “down

☞ Several experimental extensions implemente
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Types, Modules

Smalltalk
❑ Dynamic type-checking

☞ invalid sends raise exceptions
❑ No module concept — classes may be organized 

☞ some implementations support namespaces

C++
❑ Static type-checking
❑ No module concept

☞ use header files to control visibility of names
— C++ now supports explicit name spaces? does this help?

Java
❑ Static and dynamic type-checking (safe downcast
❑ Classes live inside packages
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Exceptions, Concurrency
Smalltalk

❑ Can signal/catch exceptions — se
❑ Multi-threading by instantiating Process

☞ synchronization via Semaphores

C++
❑ Try/catch clauses

☞ any value may be thrown
❑ No concurrency concept (various libraries exist)

☞ exceptions are not necessarily caught in the r

Java
❑ Try/catch clauses

☞ exception classes are subclasses of Exceptio
❑ Multi-threading by instantiating Thread (or a subcl

☞ synchronization by monitors (synchronized cla
☞ exceptions are caught within the thread in wh
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Class)
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ed at run-time

packages

ction”
and reacting on an object’s interface
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Reflection

Smalltalk
❑ Meta-reflective architecture:

☞ every class is a subclass of Object (including 
☞ every class is an instance of Class (including 
☞ classes can be created, inspected and modifi
☞ Smalltalk’s object model itself can be modified

C++
❑ Run-time reflection only possible with specialized 
❑ Compile-time reflection possible with templates

Java
❑ Standard package supports limited run-time “refle

☞ only supports introspection — i.e. inspecting
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Implementation Technology
Smalltalk
Virtual machine running “Smalltalk image.” Classes are com
then “interpreted” by the VM — now commonly compiled “ju
— Most of the Java VM techniques were pioneered in Smalltalk.
C++
Originally translated to C. Now native compilers.
Traditional compile and link phases. Can link foreign librarie
Opportunities for optimization are limited due to low-level la
Templates enable compile-time reflection techniques (i.e., t
compile-time; to select optimal versions of algorithms etc.)

Java
Hybrid approach.
Each class is compiled to byte-code. Class files may be dyn
virtual machine that either interprets the byte-code, or comp
target machine.
Standard libraries are statically linked to the Java machine;
dynamically.
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Portability, Interoperability

Smalltalk
❑ Portability through virtual machine
❑ Interoperability through special bytecodes and mid

C++
❑ Portability through language standardization (C as
❑ Interoperability through C interfaces and middlewa

Java
❑ Portability through virtual machine
❑ Interoperability through native methods and middl
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Environments and Tools

Advanced development environments exist for all three lan
hierarchy browsers, graphical debuggers, profilers, “make” 
configuration management etc.

In addition:

Smalltalk
❑ Incremental compilation and execution is possible

— NB: Envy supports programming by teams (version control etc.)
C++

❑ Special tools exist to detect memory leaks (e.g., P

Java
❑ Tools exist to debug multi-threaded applications.
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Development Styles

Smalltalk
❑ Tinkering, growing, rapid prototyping.
❑ Incremental programming, compilation and debug
❑ Framework-based (vs. standalone applications).

C++
❑ Conventional programming, compilation and debu
❑ Library-based (rich systems libraries).

Java
❑ Conventional, but with more standard libraries & fr
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The Bottom Line ...
You can implement an OO design in any of the three.

Smalltalk
❑ Good for rapid development; evolving applications
❑ Requires investment in learning framework techno
❑ Not suitable for connection to evolving interfaces (

— Not so great for intensive data processing, or client-side internet progra
C++

❑ Good for systems programming; control over low-
❑ Requires rigid discipline and investment in learnin
❑ Not suitable for rapid prototyping (too complex)

Java
❑ Good for internet programming
❑ Requires investment in learning libraries, toolkits a
❑ Not suitable for reflective programming (too static)
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8. The Model View Controller Pa
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Context

Building interactive applications with a Graphic

Obvious example: the Smalltalk Development Environment

Characteristics of such applications:
❑ Event driven user interaction, not predictable

☞ Interface Code can get very complex
❑ Interfaces are often subject of changes

Question:
➪ How can we reduce the complexity of the

applications

Answer:
➪ Modularity
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Program Architecture

A Software Architecture  is a collection of software and sy
connections between them and a number of constraints the

Goals we want to achieve with our architecture:
❑ manageable complexity
❑ reusability of the individual components
❑ pluggability,

i.e. an easy realization of the connections between

The Solution for the domain of GUI-driven applications:
We structure our application according to the following part

– Model

– View

– Controller
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Separation of Concerns I:

Functionality vs. User U
Model:

– Domain specific information

– Core functionality, where the computation/data
takes place

User Interface:

– Presentation of the data in various formats

– dealing with user input (Mouse, Keyboard, etc.
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Separation of Concerns II:

Display vs. Interac
View:

– displaying the data from the model

Controller:

– relaying the user input to the View (e.g. Scrollin
or the model (e.g. modification of the data)

View and Controller are very much related. There is always
views and controllers. There are examples of systems wher
separated.

Rationale for separating View and Controller:

– reusability of the individual components and fre
the same view with different controllers (differe
the same controller for different views (Action B



Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.158

rmed about changes in the

to dependent objects are not

B

niversität Bern Matthias Rieger

The notion of Dependency
An object B that depends on  another object A must be info
state of A, in order to be able to adapt its own state.

Dependencies that are realised via messages sent directly
very reusable and likely to break in times of change.

☞ Decoupling of subject and dependent

A

modification

change propagation

1

2

Subject
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Dependency Mechanism
The Publisher-Subscriber Pattern (a.k.a. Observer Pattern)

Intent: Define a one-to-many dependency between objects
changes state, all its dependents are notified and u

The pattern ensures the automatisation of
❑ adding and removing dependents
❑ change propagation

The publisher (subject) has a list of subscribers (observers
registers with a publisher.
Protocol:

1. a publisher receives a changed  message
2. all the subscribers receive update  messa
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Subscriber2

ent:Subscriber2
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Publisher-Subscriber: A Sample

Publisher Subscriber1

addDepend

addDependent:Subscriber1

changed

update

update

removeDependent:Subscriber1

changed

update
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 terminology) and other
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Change Propagation: Push and

How is the changed data trans
from the publisher to the subsc

❑ Push:  the publisher sends the changed data alon
Advantages: only one message per subscriber ne
Disadvantage: Either the publisher knows for each
it needs which enhances coupling between publis
many a subscriber receives unnecessary data.

❑ Pull : the subscriber after receiving the update me
the specific data he is interested in
Advantage: Only the necessary amount of data is 
Disadvantage: a lot of messages have to be excha

❑ Mixture: the publisher sends hints (“Aspects” in ST
parameters along with the update messages
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The MVC Pattern

Dependencies:

Other Messages:

Model

View

Contro

change propagation

Model

View

Controller

view messages

model access

and

editing messages

display ou

us

editing messages
us
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A Standard Interaction Cycle

<<diagram from the Buschmann et. al. book>>
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MVC: Benefits and Liabilities

Benefits:

❑ Multiple views of the same model
❑ Synchronized views
❑ ‘Pluggable’ views and controllers
❑ Exchangeability of ‘look and feel’

Liabilities:

❑ Incre
❑ Pote

upda
❑ Intim

view
❑ Clos

cont
❑ Ineff

view
❑ Inev

cont

75

75%

Multiple Views per Model
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MVC and Smalltalk

MVC is a pattern and can be used to desing applictions ind
programming language.

Examples:
❑ ET++ User Interface Framework (C++)
❑ Swing-Toolkit in the Java Foundation Classes 1.0

Nevertheless, the ties between MVC and Smalltalk are exc

❑ MVC was invented by a Smalltalker (Trygve Reen
❑ first implemented in Smalltalk-80; the Application F

built around it
❑ The first implementations of MVC in Smalltalk hav

evolution. Newer Implementations (for example in
the problems of the first, straightforward implemen
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Managment of Dependents

Protocol to manage dependents (defined in Object>>depen

– addDependent:  anObject

– removeDependent:  anObject

Attention: Storage of Dependents !

❑ Object : keeps the all his dependents in a class v
DependentsField  is an IdentityDictionary
the objects themselves and the values are the coll
for the corresponding objects.

❑ Model : defines an instance  variable dependents

☞ access is much more efficient than looking up
variable.
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Implementation of Change Pro

Change methods are implemented in Object>>changing

changed: anAspectSymbol

"The receiver changed. The change is denoted by the argument a
ally the argument is a Symbol that is part of the dependent’s chang
is, some aspect of the object’s behavior, and aParameter is addition
Inform all of the dependents."

self myDependents update: anAspectSymbol

Update methods are implemented in Object>>updating

update: anAspectSymbol

“Check anAspectSymbol to see if itequals some aspect of interest and
form the necessary action”

anAspectSymbol == anAspectOfInterest

ifTrue: [self doUpdate].



Smalltalk a Pure OO Language The Model-View-Controller Paradigm

U 8.168

ault-Ladder

 from: self
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Climbing up and down the Def
changed

self changed: nil

changed: anAspectSymbol

self changed: anAspectSymbol with: nil

changed: anAspectSymbol with: aParameter

self myDependents update: anAspectSymbol with: aParameter

update: anAspectSymbol with: aParameter fr

^self update: anAspectSymbol with: aPar

update: anAspectSymbol with: aParameter

^self update: anAspectSymbol

update: anAspectSymbol

^self
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 that change
 defined in different models
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lex objects.
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ethod that handles that
niversität Bern Matthias Rieger

Problems with the Vanilla Chan
Propagation Mechanism

❑ every dependent is notified about all the changes, e
(broadcast).

❑ the update: anAspect  methods are often long 
This is not clean object-oriented programming.

❑ all the methods changing something have to send s
might just be some dependent that is interested in

❑ danger of name clashes between apsects that are
that have to work together (can be solved by using

General problem:
complex objects depending on other comp

We need means to be more specific:
❑ publisher: send messages only to interested depe
❑ subscriber: being notified directly by a call to the m

specific change
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Dependency Transformer
A DependencyTransformer  is an intermediate object be
dependent. It

❑ waits for a specific update: anAspect  message
❑ sends a specific method to a specific object

A dependent that is only interested in a specific aspect o
to handle the update installs a DependencyTransformer

model expressInterestIn: anAspect

for: self

sendBack: aChangeMessage

dependents
collection

model

changed: #anAspect

update: #anAspect
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Inside a Dependency Transform

Initializing a DependencyTransformer :

setReceiver: aReceiver aspect: anAspect selector: aSymbol

receiver := aReceiver.

aspect := anAspect.

selector := aSymbol.

numArguments := selector numArgs.

numArguments > 2 ifTrue: [self error: ’selector expects too many arg

Transforming an update:  message:

update: anAspect with: parameters from: anObject

aspect == anAspect ifFalse: [^self].

numArguments == 0 ifTrue: [^receiver perform: selector].

numArguments == 1 ifTrue: [^receiver perform: selector with: param

numArguments == 2 ifTrue: [^receiver perform: selector with: param
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ValueHolder
A ValueHolder  is an object that encapsulates a value an
model, i.e. it notifies the dependents of the model automati

Creating a ValueHolder :

Accessing a ValueHolder :

Advantages:
❑ change propagation is triggered automatically by t

programmer does not have to do self changed

❑ objects can become dependents only of the value
(reduces broadcast problem)

ValueHolder with: anObject anOor

aValueholder value: aNewValue

aValueholder setValue: aNewValue (without notifying t

aValueholder value

(notifies the depen
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A UserInterface Window

The widge
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Widgets
A widget is responsible for displaying some aspect of a Use

❑ A widget can display an aspect of a model
❑ A widget can be combined with a controller, in whi

the aspect of the model displayed by the widget.

The connection between widgets and the model:
❑ Each component of a User Interface is a widget
❑ Each component of a model is an attribute or oper
❑ Most widgets modify an attribute or start an opera

The communication between a widget and the model compo
standardized:

Value Model Protocol

Each model component is put into an aspect model, which 
example. The Widget deals only with this aspect model.

☞ the widget does not have to know any specific
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The Application Model
An ApplicationModel is a model that is responsible for creat
user interface, usually consisting of a single window. It man
information. It leaves the domain information to its aspect m

Domain
Models

Application
Models

Customer

BankAccount

Transaction
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 Application

value
models

attributes
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The fine-grained Structure of an

Application
Model

Domain
Model

User
Interface

widgets
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9. Design Thoughts and Selecte

The Object Manifesto
Be lazy:

- Never do the job that you can delegate to anothe

Be private:
- Never let someone else plays with your private d

The Programmer Manifesto
- Say something only once
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About the Use of Accessors (i)
Literature says: “Access instance variables using methods”
- Be consistent inside a class, do not mix direct access and
- First think accessors as private methods that should not b
- Only when necessary put accessors in accessing protoco

Schedule>>initialize

tasks := OrderedCollection new.

Schedule>>tasks

^tasks

BUT: accessors methods should be PRIVATE by default at

Accessors are good for lazy initialization
Schedule>>tasks

tasks isNil ifTrue:[task := ...].

^tasks
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you provide a good data

c you could be tempted to

 tasks is now a dictionary

provide a good interface!

e collection (else people can
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About the Use of Public Access
This is not because there are methods in the interface that 
encapsulation.
If they are mentioned (no inforcement in Smalltalk) as publi
write in a client:

ScheduledView>>addTaskButton

...

model tasks add: newTask

What’s happen if we change the representation of tasks? If
THAT’S BREAK.

So take care about the coupling between your objects and 

Schedule>>addTask: aTask

tasks add: aTask

Returns consistenly the receiver or the element but the not th
look inside and modifies it)
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Composed Method
How do you divide a program into methods?

- Messages take time
- Flow of control is difficult with small methods
But:

- Reading is improved
- Performance tuning is simpler (Cache...)
- Easier to maintain / inheritance impact

Divide your program into methods that perform one identifia
the operations in a method at the same level of abstraction

Controller>>controlActvity

self controlInitialize.

self controlLoop.

self controlTerminate
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Constructor Method
How do you represent instance creation?
Most simple way: Packet new addressee: # mac ; contents

Good if there are different combinations of parameters. But
understand how to create an instance.
Alternative: make sure that there is a method to represent e
instance.

Provide methods in class “instance creation” protocol that c
instances. Pass all required parameters to them

Packet class>>send: aString to: anAddress

^ self basicNew contents: aString ; addressee: anAdress ; yourself

Point class>>x:y:

Point class>> r: radiusNumber theta: thetaNumber

^ self

x: radiusNumber * thetaNumber cos

y: radiusNumber * thetaNumber sin

SortedCollection class>>sortBlock: aBlock
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Constructor Parameter Method
Once you have the parameters of a Constructor Method to 
them to the newly created instance?
Packet class>>send: aString to: anAddress

^ self basicNew

contents: aString ;

addressee: anAdress ;

yourself

But violates the “say things only once and only once” rule (
Code a single method in the “private” procotol that sets all t
its name with “set”, then the names of the variables.

Packet class>>send: aString to: anAddress

^ self basicNew setContents: aString addressee: anAddress

Packet>>setContents: aString addressee: anAddress

contents:= aString.

addressee := anAddress.

^self

Note self (Interesting Result) in setContents:addressee
of the method will be used as the return of the caller
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Query Method
How do you represent testing a property of an object?
What to return from a method that tests a property?
Instead of:
Switch>>makeOn

status := #on

Switch>>makeOff

status := #off

Switch>>status

^status

Client>>update

self switch status = #on ifTrue: [self light makeOn]

self switch status = #off ifTrue: [self light makeOff]

Defines
Switch>>isOn, Switch>>isOff

Provide a method that returns a Boolean in the “testing” pro
prefacing the property name with a form of “ be” or “ ha

Switch>>on is not a good name... #on: or #isOn ?
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Boolean Property Setting Metho
How do you set a boolean property?

Switch>>on: aBoolean

isOn := aBoolean

• Expose the representation of the status to the clients
• Responsibility of who turn off/on the switch: the client and

Create two methods beginning with “be”. One has the proper
negation. Add “toggle” if the client doesn’t want to know ab

beVisible/beInvisible/toggleVisible
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Comparing Method
How do we order objects?

<,<=,>,>= are defined on Magnitude and its subclasses.

Implement “<=” in “comparing” protocol to return true if the 
ordered before the argument

But also we can use sortBlock:  of SortedCollection clas

...sortBlock: [:a :b | a income > b income]
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Execute Around Method
How do represent pairs of actions that have to be taken tog
When a filed is opened it has to be closed....
Basic solutions: under the client responsibility, he should inv
Code a method that takes a Block as an argument. Name the
“During: aBlock” to the name of the first method that have t
body of the Execute Around Method, invoke the first metho
then invoke the second method.
File>>openDuring: aBlock

self open.

aBlock value.

self close

Cursor>>showWhile: aBlock

|old|

old := Cursor currentCursor.

self show.

aBlock value.

old show
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Choosing Message
How do you execute one of several alternatives?
responsible := (anEntry isKindOf: Film)

ifTrue:[anEntry producer]

ifFalse:[anEntry author]

Use polymorphism
Film>>responsible

^self producer

Entry>>responsible

^self author

responsible := anEntry responsible

Send a message to one of several different of objects, each
alternative
Examples:
Number>>+ aNumber

Object>>printOn: aStream

Collection>>includes:

A Choosing Message can be sent to self in anticipation of f
inheritance. See also the State Pattern.



Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 189

tion is simple?

ystem will run in the same
.

ates what is to be done
the message.
niversität Bern Ducasse Stéphane

Intention Revealing Message
How do you communicate your intent when the implementa

We are not writing for computer but for reader
ParagraphEditor>>highlight: aRectangle

self reverse: aRectangle

If you would replace #highlight:  by #reverse:  , the s
way but you would reveal the implementation of the method

Send a message to self. Name the message so it communic
rather than how it is to be done. Code a simple method for 

Collection>>isEmpty

^self size = 0

Number>>reciprocal

^ 1 / self
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Intention Revealing Selector
What do you name a method?
If we choose to name after HOW it accomplished its task
Array>>linearSearchFor:

Set>>hashedSearchFor:

BTree>>treeSearchFor:

These names are not good because you have to know the 

Name methods after WHAT they accomplish
Better:

Collection>>searchFor:

Even better:
Collection>>includes:

Try to see if the name of the selector would be the same in
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Name Well your Methods (i)
Not precise, not good
setType: aVal

"compute and store the variable type"

self addTypeList: (ArrayType with: aVal).

currentType :=  (currentType computeTypes: (ArrayType with: aVal))

Precise, give to the reader a good idea of the functionality a
implementation
computeAndStoreType: aVal

"compute and store the variable type"

self addTypeList: (ArrayType with: aVal).

currentType :=  (currentType computeTypes: (ArrayType with: aVal))

Instead Of:
setTypeList: aList

"add the aList elt to the Set of type taken by the variable"

typeList add: aList.

Write:
addTypeList: aList

"add the aList elt to the Set of type taken by the variable"

typeList add: aList.
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do:
Instead of writing that:

|index|

index := 1.

[index <= aCollection size] whileTrue:

[... aCollection at: index...

index := index + 1]

Write that
aCollection do: [:each | ...each ...]
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collect:
Instead of :

absolute: aCollection

|result|

result := aCollection species new: aCollection size.

1 to: aCollection size do:

[ :each | result at: each put: (aCollection at: each) abs].

^ result

Write that:
absolute: aCollection

^ aCollection collect: [:each| each abs]

Note that this solution works well for indexable collection an
The previous one not!!!
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isEmpty, includes:
Instead of writing:
...aCollection size = 0 ifTrue: [...]

...aCollection size > 0 ifTrue: [...]

Write:
... aCollection isEmpty

Instead of writing:
|found|

found := false.

aCollection do: [:each| each = anObject ifTrue: [found : = true]].

...

Or:
|found|

found := (aCollection

detect: [:each| each | anObject]

ifNone:[ nil]) notNil.

Write:
|found|

found := aCollection includes: anObject
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Class Naming
• Name a superclass with a single word that conveys its pu

Number

Collection

View

Model

• Name subclasses in your hierarchy by prepending an adje

OrderedCollection

SortedCollection

LargeInteger
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10. Processes and Concurrency

- Concurrency and Parallelism
- Applications of Concurrency
- Limitations
- Atomicity
- Safety and Liveness
- Processes in Smalltalk:

Class Process, Process States, Process 
- Synchronization Mechanisms in Smalltalk:

Semaphores, Mutual Exclusion Semapho
- Delays
- Promises
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Concurrency and Parallelism

“A sequential program specifies sequential execution of a lis
is called a process. A concurrent program specifies two or m
may be executed concurrently as parallel processes”

A concurrent program can be executed by:
1. Multiprogramming: processes share one o
2. Multiprocessing: each process runs on i

with shared memory
3. Distributed processing: each process runs on i

connected by a networ

Motivations for concurrent programming:
1. Parallelism for faster execution
2. Improving processor utilization
3. Sequential model inappropriate
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Limitations

But concurrent applications introduce complexity:

- Safety
synchronization mechanisms are needed to maint

- Liveness
special techniques may be needed to guarantee p

- Non-determinism
debugging is harder because results may depend

- Run-time overhead
process creation, context switching and synchroni
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Atomicity

Programs P1 and P2 execute concurrently:

{ x = 0 }
P1: x := x + 1
P2: x := x + 2

{ x = ? }

What are possible values of x after P1 and P2 complete?
What is the intended final value of x?

Synchronization mechanisms are needed to restrict the pos
processes so that sets of actions can be seen as atomic.

Mutual exclusion ensures that statements within a critical s
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Safety and Liveness

There are two principal difficulties in implementing concurre

Safety - ensuring consistency:
+ mutual exclusion - shared resources must be
+ condition synchronization - operations may ne

resources are not in an appropriate state (e.g

Liveness - ensuring progress:
+ No Deadlock - some process can always acc
+ No Starvation - all processes can eventually a

Notations for expressing concurrent computation must add
1. Process creation : how is concurrent execution spe
2. Communication : how do processes communicate?
3. Synchronization : how is consistency maintained?



Smalltalk a Pure OO Language Processes and Concurrency

U 10.201

 class

ses.

f actions which can be
cesses.

ry)

alltalk. The simplest way to

es. This process is runnable
n as the current process
niversität Bern Juan Carlos Cruz

Processes in Smalltalk: Process

- A Smalltalk system supports multiple independent proces

- Each instance of class Process  represents a sequence o
executed by the virtual machine concurrently with other pro

- Processes share a common address space (object memo

- Blocks are used as the basis for creating processes in Sm
create aProcess  is to send a block a message #fork

[ Transcript cr; show: 5 factorial printString ] fork

- The new process is added to the list of scheduled process
(i.e scheduled for execution) and will start executing as soo
releases the control of the processor.
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Processes in Smalltalk: Process

- We can create a new instance of class Process which is n
#newProcess  message to a block:

| aProcess |

aProcess := [ Transcript cr; show: 5 factorial printString ] newPro

- The actual process is not actually runnable until it receive
aProcess resume

- A process can be created with any number of arguments:
aProcess := [ :n | Transcript cr; show: n factorial printString ]

 newProcessWithArguments: #(5).

- A process can be temporarily stopped using a #suspend
process can be restarted later using the #resume  message

- A process can be stopped definitely using a message #te
has received the #terminate  message it cannot be resta
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A process may be in one of
the five states:

1. suspended
2. waiting
3. runnable
4. running, or
5. terminated
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Processes in Smalltalk: Process

suspended

runnable

running

terminated

resume

suspend

newProcess
fork

suspend

terminate

waiting
signal*

wait*

*sent to aSemaphore

yield

scheduled
by the VM
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Process Scheduling and Prioritie
- Process scheduling is based on priorities associated to pr
- Processes of high priority run before processes of lower p
- Priority values go between 1 and 100.
- Eight priority values have assigned names.

Priority Name

100 timingPriority
Used by Proc
real time.

98 highIOPriority Used by tim

90 lowIOPriority Used by mos

70 userInterruptPriority
Used by use
immediate se

50 userSchedulingPriority
Used by proc
user interacti

30 userBackgroundPriority Used by us

10 systemBackgroundPriority Used by sy

1 systemRockBottonPriority The lowest
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Processes Scheduling and Prior
- Process scheduling is done by the unique instance of clas
called Processor .

- A runnable process can be created with an specific priorit
message:

[ Transcript cr; show: 5 factorial printString ]

forkAt: Processor userBackgroundPriority.

- The priority of a process can be changed by using a #prio
| process1 process2 |

Transcript clear.

process1 := [ Transcript show: ‘first’] newProcess.

process1 priority: Processor systemBackgroundPriority.

process2 := [ Transcript show: ‘second’ ] newProcess.

process2 priority: Processor highIOPriority.

process1 resume.

process2 resume.

The default process priority is userSchedu
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-The active process can be
identified by the expression:

Processor activeProcess

-The processor is given to
the process having the
highest priority.

-A process will run until it is
suspended or terminated
before giving up the
processor, or pre-empted
by a higher priority process.

-When the highest priority is
held by multiple processes,
the active process can give
up the processor by using
the message #yield .
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Processes Scheduling: The Algo

Processor(ProcessorScheduler)
activeProcess
quiescentProcessList

Array (indexed by priority)

100
99

50

3
2
1

...

...

Process

nextLink
suspendedContext
priority
myList

nil

50

firstLink
lastLink

firstLink
lastLink

Process Process

Process
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P0

Py

1

resume
newProcess

fork
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Process Scheduling

Active Process
P0

suspend

Processor

activeProcess
quiescentProcessList

P1 Px

100 50... ...scheduled
by the VM

yield
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Synchronization Mechanisms
Processes have references to some common objects, such
messages from several processes in an arbitrary order. Th
results. Synchronization mechanisms serve mainly to main
objects.

We can calculate the sum of the first N natural numbers:
| n |

n := 100000.

[ | i temp |

Transcript cr; show: ‘P1 running’.

i := 1. temp := 0.

[ i <= n ] whileTrue: [ temp := temp + i. i := i + 1 ].

Transcript cr; show: ‘P1 sum is = ‘; show: temp printString ] forkAt: 6

P1 running

P1 sum is = 5000050000
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forkAt : 60.
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Synchronization Mechanisms
What happens if at the same time another process modifies

| n d |

n := 100000.

d := Delay forMilliseconds: 400.

[ | i temp |

Transcript cr; show: ‘P1 running’.

i := 1. temp := 0.

[ i <= n ] whileTrue: [ temp := temp + i.

(i = 5000) ifTrue: [ d wait ].

i := i + 1 ].

Transcript cr; show: ‘P1 sum is = ‘; show: temp printString ]

[ Transcript cr; show: ‘P2 running’. n := 10 ] forkAt

P1 running

P2 running

P1 sum is = 12502500
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Synchronization using Semaph
A semaphore is an object used to synchronize multiple pro
an event to occur by sending the message #wait  to the se
then signals that the event has occurred by sending the me
semaphore.

| sem |

Transcript clear.

sem := Semaphore new.

[ Transcript show: ‘The’] fork.

[ Transcript show: ‘quick’. sem wait.

Transcript show: ‘fox’. sem signal ] fork.

[ Transcript show: ‘brown’. sem signal.

sem wait. Transcript show: ‘jumps over the lazy dog’; cr ] fork

- If a semaphore receives a #wait message for which no c
been sent, the process sending the #wait  message is sus
- Each semaphore maintains a linked list of suspended pro
- If a semaphore receives a #wait from two or more proce
process for each signal it receives
- A semaphore pays no attention to the priority of a process
the same order in which they “waited” on the semaphore.
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Semaphores
ActiveProcess

P0

suspend

Processor

activeProcess
quiescentProcessList

P1 Px

100 50... ...scheduled
by the VM

yield

aSemaphore

PP0

wait

z

Waiting Processes for aSemaphore

resume

signal*

*
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n
from a “critical region”. This
k argument is only executed
are evaluating.

forkAt : 60.

 n := 10 ] ] forkAt : 50.

xtra #signal , otherwise the
ation method is provided:
niversität Bern Juan Carlos Cruz

Semaphores for Mutual Exclusio
A semaphore is used frequently to provide mutual exclusion
is supported by the instance method #critical: . The bloc
when no other critical blocks sharing the same semaphore 

| n d sem |

n := 100000.

d := Delay forMilliseconds: 400.

[ | i temp |

Transcript cr; show: ‘P1 running’.

i := 1. temp := 0.

sem critical: [  [ i <= n ] whileTrue: [ temp := temp + i.

(i = 5000) ifTrue: [ d wait ].

i := i + 1 ]. ].

Transcript cr; show: ‘P1 sum is = ‘; show: temp printString ]

[ Transcript cr; show: ‘P2 running’. sem critical: [

A semaphore for mutual exclusion must start out with one e
critical section will never be entered. A special instance cre

Semaphore forMutualExclusion .
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Queue
tween processes. Its works

e main difference is that
access (multiple writes and/

ssage #nextPut: (1) and
e #next  (3).

] forkAt: 60.

sssage #next  is received,

ng the message #isEmpty
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Synchronization using a Shared
A SharedQueue enables to synchronize communication be
like a normal queue (First in First Out, reads and writes), th
aSharedQueue  protects itself against possible concurrent 
or multiple reads).

Processes add objects to the sharedqueue by using the me
read objects from the sharedqueue by sending the messag

| aSharedQueue d |

d := Delay forMilliseconds: 400.

aSharedQueue := SharedQueue new.

[ 1 to: 5 do:[:i | aSharedQueue nextPut: i ] ] fork.

[ 6 to: 10 do:[:i | aSharedQueue nextPut: i. d wait ] ] forkAt: 60.

[ 1 to: 5 do:[:i | Transcript cr; show:aSharedQueue next printString]

- If no object is available into the sharedqueue when the me
the process is suspended.
- We can request if the sharedqueue is empty or not by usi
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Delays

Instances of class Delay are used to cause a real time dela
process.

An instance of class Delay  will respond to the message #w
active process for a certain amount of time.

The time for resumption of the active process is specified w
created. Time can be specified relative to the current time w
#forMilliseconds:  and #forSeconds: .

| minuteWait |

minuteWait := Delay forSeconds: 60.

minuteWait wait.

The resumption time can also be specified at an absolute ti
system’s millisecond clock with the message #untilMilliseco
in this way cannot be sent the message wait repeatedly.
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 a concurrent process.

ssage #promise to a block:

riority of the process created.

essage value to the promise:

 that attempts to read the
 block has completed.

ompleted by sending the
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Promises

- Class Promise  provides a means of evaluating a block in

- An instance of promise can be created by sending the me
[ 5 factorial ] promise

- The message #promiseAt: can be used to specify the p

- The result of the block can be accessed by sending the m
| promise |

promise := [ 5 factorial ] promise.

Transcript cr; show: promise value printString.

If the block has not completed evaluation, then the process
value of a promise will wait until the process evaluating the

A promise may be interrogated to discover if process has c
message #hasValue
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n Analysis
books are to tasted,

to be swallowed,

me few to be chewed and digested

Francis Bacon, Of Studies

ll made less errors.
l
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11. Classes and Metaclasses: a
Some 

others 

and so

 At first look, a difficult topic!
You can live without really understand them
But metaclasses give a uniform model and you wi
And you will really understand the Smalltalk mode

Recap on Instantiation
Recap on Inheritance
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The meaning of “Instance of”

- Every object is an instance of a class.
- Every class is ultimately subclass of Object (except Object).
- When anObject receives a message, the method is lookup in
its class and/or its superclasses.

e

Printer

subclass
of

aPrinter send:...

instance of

send:....
.....

Node
send:...

self subclass
niversität Bern Ducasse Stéphane

-A class defines the structure and the behavior of all its
instances.
-Each instance possesses its own set of values.
- Each instance shares the behavior with other instances th
bevahior defined in its class via the instance of link.
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Concept of Metaclass & Respo
Concept:

- Everything is an object
- Each object is instance of one class
-A class is also an object instance of a metaclass
- An object is a class if and only if it can create ins

Metaclass Responsibilities:
- instance creation
- method compilation (different semantics can be i
- class information (inheritance link, instance varia

Examples:
Node allSubclasses -> OrderedCollection (WorkStation OutputServer Workstation FileSe

PrintServer allInstances -> #()

Node instVarNames -> #('name' 'nextNode')

Workstation withName: #mac -> aWorkstation

Workstation selectors  -> IdentitySet (#accept: #originate:)

Workstation canUnderstand: #nextNode -> true
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mac

Workstation

Workstation
class

instance of

class

inherits
from
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Classes, metaclasses and meth
 When anObject receives a message,
the method is lookup in its class and/or
its superclasses.

So when aClass receives a message,
the method is lookup in its class (a
metaclass) and/or its superclass

Here Workstation  receives withName: #mac

The method associated with #withName:  selector is looke
Workstation : Workstation class

Workstation withName: #



Smalltalk a Pure OO Language Classes and Metaclasses

U 11.220

ss classes

red by all the instances (final

ilation, method storing,

 a special one.
niversität Bern Ducasse Stéphane

Responsibilities of Object & Cla
Object
- represents the common behavior (like error, halting...) sha
instances and classes)
- so all the classes should inherit ultimately from Object

Workstation inherits from Node
Node inherits from Object

Class
- represents the common behavior of all the classes (comp
instance variable storing)
- Class inherits form Object because Class is an Object but
=> Class knows how to create instances
- So all the classes should inherit ultimately form Class
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A possible kernel for explicit m
The kernel of CLOS and ObjVlisp but not the kernel of Sma

Workstation

inherits
from

Object

aWorkstation

Class

inherits
from instance of

instance of

instance of
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instance of
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Singleton with explicit metacla

inherits
from

Object
Classinherits

from

inst

instance of

instance of

Unique
Instance

Workstation

Special

inherits
from

Workstation

aWork1

aWork2

aSpecWork
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new
 uniqueInstance isNil...
^ uniqueInstance

 new instance

tion new
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Deeper into it

Clas

instance of

instance of

U
In

Workstation

Special

inherits
from

Workstation

new
 returns a

Workstation new

SpecialWorksta
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Smalltalk Metaclasses in 7 poin
- no explicit metaclasses, only implicit non sharable metacl

(1): Every class is ultimately a subclass of Object (except O
Behavior

ClassDescription

Class

Metaclass

(2) Every object is instance of a class.
Each class is instacne of a class its metaclass.

(3) Every class is instance of A metaclass.
Every user defined class is the sole  instance of another cla
Metaclass are system generated so they are unamed you c
#class
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 (ii)

.

es of a Metaclass

Object

Object
class
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Smalltalk Metaclasses in 7 points

If X is a subclass of Y then X class is a subclass of Y class
But what is the superclass of the metaclass of Object ?
The superclass of Object  class is Class

(4) All metaclasses are (ultimately) subclasses of Class .

But metaclasses are also objects so they should be instanc

SmallInteger

SmallInteger
class

Integer

Integer
class

Number

Number
class

Object

Object
class

SmallInteger

SmallInteger
class

Integer

Integer
class

Number

Number
class

Class

Class
class
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ts (iii)

 is instance of itself

e instance)
behavior common to those

Object

Object
class
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Smalltalk Metaclasses in 7 poin

(5) Every metaclass is instance of Metaclass. Metaclass

Object  : common object behavior
Class : common class behavior (name, multiple instances)
Metaclass : common metaclass behavior (no name, uniqu
(6) The methods of Class and its superclasses support the 
objects that are classes.

SmallInteger

SmallInteger
class

Integer

Integer
class

Number

Number
class

Class

Class
class

Metaclass

Metaclass
class
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ts (iv)
ior specific to particular

 class” = class methods (for

ion , is available as a

Object

Object
class
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Smalltalk Metaclasses in 7 poin
(7) The methods of instances of Metaclass  add the behav
classes.
=> Methods of instance of Metaclass = methods of “Packet
example #withName: )

An instance method defined in Behavior  or ClassDescript
class method. Example: #new, #new:

ClassDescription

ClassDescription
class

Behavior

Behavior

Class

Class
class

Metaclass

Metaclass
class

class
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#subclasses,
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Behavior Responsibilities
- Minimum state necessary for objects that have instances.
- Basic interface to the compiler.
- State: class hierarchy link, method dictionary, description
and number)
Methods:
- creating a method dictionary, compiling method (#compile

- instance creation (#new, #basicNew, #new:, #basicNew:

- class into hierarchy ( #superclass:, #addSubclass:)

- accessing (#selectors, #allSelectors, #compiledMethodAt
- accessing instances and variables (#allInstances, #instVA
#allInstVarNames, #classVarNames, #allClassVarNames

- accessing clas hierarchy (#superclass, #allSuperclasses, 
#allSubclasses )
- testing (#hasMethods, #includesSelector, #canUnderstan
#inheritsFrom:, #isVariable )
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ClassDescription Responsibilitie
ClassDescription  adds a number of facilities to basic B

- named instance variables
- category organization for methods
- the notion of a name of this class (implemented a
- the maintenance of the Changes set, and logging
- most of the mechanism for fileOut

ClassDescription is an abstract class: its facilities are in
two subclasses, Class  and Metaclass .

Subclasses must implement
#addInstVarName:

#removeInstVarName:

Instance Variables:
- instanceVariables<Array of: String> names of instance fie
- organization <ClassOrganizer> provides organization 
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Metaclass Responsibilities
- initialization of class variables
- creating initialized instances of the metaclass’s sole instan

- instance creation (#subclassOf: )
- metaclass instance protocol (#name:inEnvironment:subcl
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d shared pool variables
)
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Class Responsibilities
Class  adds naming for class
Class  adds the representation for classVariable names an
(#addClassVaraNames, #addSharedPool:, #initialize
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12. Debugging

• Preventing: Most Common Mistakes
• Curing: Debugging Fast (from ST Report July 93)
• Extra
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 it already exists
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Most Common Beginner Bugs
- true  is the boolean value, True  its class
Instead of:

Book>>initialize

inLibrary := True

that:
Book>>initialize

inLibrary := true

- nil  is not acceptable for ifTrue:

- whileTrue  receiver must be a block
     [x<y] whileTrue: [x := x + 3]

- (weakness of the system) Before creating a class check if
Object subclass: #View

- Do not assign class
OrderedCollection := 2 will damage your system



Smalltalk a Pure OO Language Debugging Hints

U 12.234

reated instance
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Return Value

- In a method self  is returned by default,
    do not forget ^  for returning something else.

- In a #new method do not forget the ^ to return the newly c
  Packet class>>new

^ super new initialize

     returns self  : the class Packet  and not the newly crea

- Take care about loops
Book>>new

^self new initialize



Smalltalk a Pure OO Language Debugging Hints

U 12.235

ew:, #basicAt:,

n a hash = b hash

ck if this is not already done.
ice initialize
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Redefinition Bugs

- Never  redefine basic -methods  (#==, #basicNew, #basicN
#basicAt:Put: ...)

- Never  redefine #class

- Redefine #hash  when you redefine #= so that if a = b the

Book>>=aBook

^self title = aBook title & (self author = aBook author)

Book>>hash

^self title hash bitXor: self author hash

- Before redefining new like super new initialize che
Else twice that expression in the same hierarchy will call tw
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n the #new method.
niversität Bern Ducasse Stéphane

Compile time errors

- Do not try to access instance  variables to initialize them i
You do not have the rigth.
Define and invoke #initialize  method on instances.

- Do not try to modify self  and super

- Do not try to assign a method argument
  setName: aString

      aString := aString, 'Device'.

      name := aString
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Library Behavior-based Bugs

- #add:  returns the argument and not the receiver
So use yourself

-  Do not forget to specialize #copyEmpty  when adding na
    to a subclass  having indexed  instance variables (subcla

- Never iterate over a collection which the iteration someho
timers do:[:aTimer|

aTimer isActive ifFalse: ‘timers remove: aTimer]

Copy  first the collection
timers copy  do:[:aTimer|

aTimer isActive ifFalse: ‘timers remove: aTimer]

- Take care the iteration can involve different methods and can be less o
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Debugging Hints
Basic Printing

Transcript cr; show: ‘The total= ’, self total printString.

Use a global or a class to control printing information
Debug ifTrue:[Transcript cr; show: ‘The total= ’, self total printString]

Debug > 4

ifTrue:[Transcript cr; show: ‘The total= ’, self total printString]

Debug print:[Transcript cr; show: ‘The total= ’, self total printString]

Smalltalk removeKey: #Debug

Inspecting
Object>>inspect

you can create your own inspect method
MyInspector new inspect: anObject

Naming: usefull to add a id for debugging purpose
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Where am I and how did I get h
Identifying the current context
“if this is not a block”

Transcript show: thisContext printString; cr.

Debug ifTrue:[ “use this expression in a block”

Transcript show: thisContext sender home printString; cr]

Audible Feedback
Screen default ringBell

Catching It in the Act
<Ctrl-C> (VW2.5) <Ctrl-Shift-C> Emergency stop

<Ctrl-Y> (VW3.0) <Ctrl-Shift-C> Emergency stop

Suppose that you cannot open a debugger
Transcript cr; show: (Notifierview shortStackFor: thisContext ofSize: 5)

Or in a file
|file|

file := ‘errors’ asFilename appendStream.

file cr; nextPutAll: (NotifierView shortStackFor: thisContext ofSize: 5).

file close
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Source Inspection
Source Code for Blocks
aBlockClosure method getSource

aMethodContext sourceCode

Decompiling a Method
Shift + select the method is the browser
Interesting for literals modification or MethodWrapper bugs
initialize

arrayConst := #(1 2 3 4)

then somebody somewhere does
arrayConst at:1 put:100

So your array is polluted. Note that if you recompile the me
the literal array is restored. So think also to return copy of y

Entry Points
How a window is opened or what happens when the menu 
look into LauncherView  and UIVisualILauncher  imple
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Where am I going?
Breakpoints
self halt.

self error: ‘ invalid’

Conditional halt
i > 10 ifTrue:[self halt]

InputState default shiftDown ifTrue:[self halt]

InputState default altDown ifTrue:[self halt]

InputState default metaDown ifTrue:[self halt]

In a controller:
self sensor shiftDown ifTrue:[self halt]

Slowing Down Actions: usefull for complex graphics
Cursor wait showWhile: [(Delay forMilliseconfs: 800) wait]

(Do not forget the wait)
Until a mouse button is cliked.
Cursor crossHair showWhile:

[ScheduledControllers activeController sensor waitNoButton; waitClickButton]



Smalltalk a Pure OO Language Debugging Hints

U 12.242

method if you know it!

extent: 10@100)
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How do I get out?

1 <CTRl+Shift-C or Y> Emergency Debugger

2 ObjectMemory quit

3 <ESC> to evaluate the expression

An Advanced Emergency Procedure: recompile the wrong 
aClass compile: ‘methodname methodcode’ classified: ‘what you want’

ex:

Controller compile: ‘controlInitialize ^self’ classified: ‘basic’

Graphical Feedback
Where the cursor is:
ScheduledControllers activeController sensor cursorPoint

Position the cursor explicitly
ScheduledControllers activeController sensor cursorPoint: aPoint

Rectangle fromUser

Indicating an area with a filled rectangle
ScheduledControllers activeController view graphicsContext display Rectangle: (0@0
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Finding & Closing Open Files in
ExternalStream classPool at: #openStreams

How to ensure that an open file willl be close in case of erro
Use #valueNowOrOnUnwindDo:  or #valueOnUnwindDo:

|stream|

[ stream := (Filename named: aString) readStream.

...

] valueNowOrOnUnwindDo: [stream close ].

BlockClosure>>valueOnUnwindDo: aBlock

"Answer the result of evaluating the receiver. If an exception would cause

be abandoned, evaluate aBlock. "

BlockClosure>>valueNowOrOnUnwindDo: aBlock

"Answer the result of evaluating the receiver. If an exception would cause the evalua

be abandoned, evaluate aBlock.  The logic for this is in Exception.  If no exception o

also evaluate aBlock."
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