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Abstract

Placing classes, methods, dependencies in wrong packages may generate
architectural problems such as dependency cycles. Developers, maintainers
and testers very often have to deal with dependency cycles that compromise
the modularity of their systems, prevent proper reuse, increase the cost of
maintenance and increase the cost of tests. We argue that reengineers do not
have adequate tools that support removing the dependencies forming cycles
at the package level.

We propose Marea, a tool that helps reengineers maintain their object-
oriented systems without cyclic dependencies between packages. In our
approach, we analyse object-oriented systems by detecting and suggesting to
the user which refactoring operations should be used to remove undesirable
dependencies. Marea suggests the best sequence of refactoring operations
based on the results of a model-based simulation. Moreover, the best path
is identified by applying a customised profit function adapted to the user’s
needs. Our approach has been validated on real-world Java open source
systems.

Keywords: Dependency cycles, package cycles, refactoring simulation,
software analysis, software quality.
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1
Introduction

In an object-oriented paradigm, we use classes and packages to build structured software
systems. A class represents a template for creating or instantiating specific objects within
a program. The relationships between classes represent how classes and objects are
interconnected together. These interconnections are also called dependencies since a
class is connected to another and it is also dependent on it. Software developers organise
classes into packages to reduce the complexity of large systems. The dependencies that
start from a package and return back to the same package result in cyclic dependencies.
For example, if package A depends on package B, package B depends on package C and
package C depends on package A then packages A, B and C are in a cyclic dependency.
Dependency cycles arise from bad design, maintenance and evolution of the software.
Activities such as placing classes in wrong packages, adding and removing new classes,
methods and properties lead to dependency cycles. In software engineering dependency
cycles are considered bad because they break the Acyclic Design Principle (ADP)[1],
increase the cost of various maintenance tasks and the cost of running tests, compromise
the modularity of the system as well as prevent proper reuse.

There are various tools for detecting, visualising and removing cycles in Java systems.
In the literature of the analysis of Java systems, cycle detection and visualisation use
different approaches such as, cycle detection when they arise, long cycles detection
among classes and visualisation of the dependencies among cycles with minimum
feedback arc set[2]. Concerning cycle removal one can find best practices for identifying
package layered structure and methods refactoring proposed by Fowler et al.[3] such
as, Move Class (MC) and Move Method (MM). MC and MM are common methods for
removing cycles but on the other hand they may cause unbalanced packages because
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CHAPTER 1. INTRODUCTION 5

dependencies are moved in one direction. Most of the tools only support MC and MM
and do not provide multi-scenario simulation. We will endeavour to solve this problem by
introducing refactoring strategies based on the Dependency Inversion Principle(DIP)[1].
The use of the new strategies remove undesirable dependencies and also make the systems
loosely coupled. A multi-scenario simulation is an approach for simulating the possible
refactoring strategies in order to compare between them and choose the best ones. As
a result a tree is created where each node corresponds to a refactoring operation. A
profit is calculated in every node based on the customised profit function. This approach
minimises the overall effort of cycle removal by offering an automated support tool
which can guide the user to choose the optimal sequence of refactoring operations. Our
approach, Marea, suggests the best refactoring strategy to the user according to the
customised profit function.

1.1 Solution in a Nutshell
In this thesis we propose a tool, called Marea to help the developers maintain their
object-oriented systems without cyclic dependencies and facilitate the life of testers. To
break the cycles we offer the reengineers suggestions on how to remove undesirable
dependencies using several refactoring methods. These suggestions are based on multi-
scenario simulation. We are considering object-oriented systems implemented in different
programming languages like C++, Java and Smalltalk. Our approach is applicable to
software that uses the cited languages, however our tool has been evaluated for Java
systems. The main features of Marea include cycles detection, refactoring strategies
simulation, creating a decision tree for the possible refactoring methods and suggesting
the best applicable refactoring to the user as well.

1.2 Benefits
The benefit of using our tool is that the changes are not made directly to the source
code. Instead, we build a model that reflects the main structural characteristics of a
target system in a separate platform called Moose1. In this way, the reengineers will
keep control on their original systems and execute the refactoring process by following
the analysis phase performed in Marea. Avoiding a fully automated refactoring process
benefits the reengineers to remove the cycles from their systems without any changes
in functionality. Furthermore, using Marea can benefit reengineers to maintain systems
without structural problems, having suggestions for solutions and improving the software
quality.

1http://www.moosetechnology.org

http://www.moosetechnology.org


CHAPTER 1. INTRODUCTION 6

1.3 Outline
This thesis is structured as follows: In Chapter 2 we provide the definition, the source and
the cost of dependency cycles. Following that we justify the need for a semi-automatic
tool for removing cycles. In Chapter 3 we review other existing solutions and describe
their limitations. In Chapter 4 we present our approach and solution in detail. In Chapter 5
we show the results of applying Marea in a real world Java projects. Finally, Chapter 6
summarises our work and addresses possible future work.



2
Cyclic Dependencies

In this chapter we start with terminology, later we describe which kind of dependencies
can be encountered in a system and give a definition of dependency cycle. We answer the
questions: What is the origin of dependency cycles? and: Why are dependency cycles
bad? We also show the need for a semi-automatic tool for breaking dependency cycles.

2.1 Terminology
In this section we define the terminology used to describe our solution.

Strongly Connected Component (SCC). In graph theory, strongly connected compo-
nents are graphs where every node (in our case, packages) is reachable from
every other node. In Figure 2.1, all nodes are in a single SCC. We use Tarjan’s
algorithm[4] to detect the strongly connected components.

Cycle. It is a circular dependency between two or more packages where the nodes do
not appear more than once in the sequence of the path that forms the cycle. In
Figure 2.2 we notice three different cycles: A-B-E, A-B-C and C-D. Cycles are of
two types:

• Direct Cycle is a cycle with two nodes depending on each other. Figure 2.2
shows the direct cycle C-D.

• Indirect Cycle is a cycle with more than 2 nodes. The cycles A-B-E and
A-B-C are indirect cycles as shown in Figure 2.2.

7
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Figure 2.1: Strongly Connected Component.
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Figure 2.2: Three cycles of the same Strongly Connected Component.

Concrete dependency (CD). A reference dependency or an inheritance dependency or
a method invocation dependency.

Logical dependency (LD). A conceptual dependency between two packages that con-
tains the concrete dependencies.

Shared dependency (SD). A logical dependency that is presents in at least two cycles.
In Figure 2.2 , the logical dependency between A and B is shared by the two cycles
A-B-E and A-B-C.

Depth-first search (DFS). DFS is a graph traversal technique that starts from an arbi-
trary node (root in case of a tree) and explore as far as possible along each branch
before backtracking.

2.2 Types of dependencies
Before defining what we mean by dependency cycles, we describe the types of dependen-
cies considered in our approach. We have 3 different kinds of dependencies: reference,
inheritance and invocation dependencies. To explain these kinds of dependencies, we
suppose that we have a class named Button and a class named Light. The light turns on
or off if the button is pressed.
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• Reference Dependency. There is a reference dependency from the Button class
to the Light class if the Button class contains an attribute or a local variable or a
parameter or a return type of the Light class. This subcategory of dependencies are
described in the examples below:

– Class Variable Dependency is caused by an attribute of the Button class with
the type of the Light class.

public class Button {
private Light light;

}

– Initialised Class Variable Dependency1 is caused by an initialised attribute of
the Button class with the type of the Light class.

public class Button {
private Light light = new Light();

}

– Local Variable Dependency results from a variable with method scope in the
Button class with the type of the Light class.

public class Button {
public boolean checkLight() {

Light light;
...

}
}

– Initialised Local Variable Dependency results from an initialised variable
with method scope in the Button class with the type of the Light class.

public class Button {
public boolean checkLight() {

Light light = new Light();
...

}
}

– Parameter Dependency results from a parameter of a method of the Button
class with the type of the Light class.

1We separate the initialised and not initialised dependencies because, as we show in Chapter 4, we use
different refactoring strategies to break them.
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public class Button {
private Light light;

public void setLight(Light light){
this.light = light;

}
}

– Return Type Dependency results from the return type of Light of a method in
the Button class.

public class Button {
private Light light;

public Light getLight(){
return light;

}
}

• Inheritance Dependency. There is an inheritance dependency from the Button
class to the Light class if the Button class is a direct subclass of the Light class, or
the Button class implements the Light interface (in case of Light is an interface).

public class ColoredButton extends Button{
...

}

public class Light implements Switchable{
...

}

• Method Invocation Dependency. There is a method invocation that goes from
the Button class to the Light class if there is a method in the Button class invoking
a method of the Light class.

public class Button {
Light light;
public void press {

light.turnOnOff();
...

}
}
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2.3 Dependency Cycles at the Package Level
Let us explain how dependencies result in a dependency cycle. In the following example,
Listing 1 and Listing 2 present a control panel that has a set of buttons for turning on and
off the lights. Pressing a button will turn the light on or off depending on the state of the
light. Each button is controlled by a control panel .

ControlPanel is part of the package control and has the following dependencies
towards the package components: class variable dependency, return type dependency,
parameter and method invocation dependency.

package control;
import components.Button;

public class ControlPanel {
private Button buttons[]; //class variable dependency
private String serialNumber;

public Button[] getButtons() { //return type dependency
return buttons;

}
public void setButtons(Button[] buttons) { //parameter dependency

this.buttons = buttons;
}
public String getSerialNumber() {

return serialNumber;
}
public void setSerialNumber(String serialNumber) {

this.serialNumber = serialNumber;
}
public int getIndex(String buttonSerialNumber){

//find and return button index
}
public void pressButton(String buttonSerialNumber){

buttons[getIndex(buttonSerialNumber)].press(); // method invocation dependency
}

}

Listing 1: The package control with 4 dependencies on the package components.

Button is part of the package components and is dependent on the package Control-
Panel because of the following dependencies: class variable dependency, parameter and
method invocation dependency.

package components;
import control.ControlPanel;

public class Button {
private ControlPanel controlledBy; //class variable dependency
private Light light;



CHAPTER 2. CYCLIC DEPENDENCIES 12

private String serialNumber;

public Button(ControlPanel controlledBy) { //parameter dependency
this.controlledBy = controlledBy;

}
public String getSerialNumber() {

return serialNumber;
}
public void setSerialNumber(String serialNumber) {

this.serialNumber = serialNumber;
}
public String controlledBy(){

return controlledBy.getSerialNumber(); //method invocation dependency
}
public void press(){

light.turnOnOff();
}

}

Listing 2: The package components with 3 dependencies on the package control.

As we mentioned, ControlPanel, and consequently control, has 4 dependencies
towards components and components has 3 dependencies towards control. This creates a
circular dependency or dependency cycle at the package level.

2.4 The Origin of Dependency Cycles
Classes are necessary but insufficient to keep the code organised, for this we use the
Principles of Package Architecture[1]. The question arises: How do we choose which
classes belong to which packages? The wrong placement of the classes breaks the design
of the system. However, there are three Package Cohesion Principles[5] that help the
software engineers deal with this matter:

• The Release Reuse Equivalency Principle (REP)[5]: the granule of reuse is the
granule of release. This principle suggests to software engineers to group reusable
classes together into packages, hence any release will have a version of reusable
elements. When the author upgrades the system with the new release, the users
should be able to use the old versions. Therefore, a good criterion is grouping
reused classes into packages.

• The Common Closure Principle (CCP)[5]: classes that change together, belong
together. The more packages change in any release, the greater the job is to rebuild,
test and deploy the release. In this case, it is better to keep classes that change
together and minimise the work for any release.



CHAPTER 2. CYCLIC DEPENDENCIES 13

• The Common Reuse Principle (CRP)[5]: classes that are not reused together
should not be grouped together. When a package changes, all the clients of that
package must revalidate even if they do not use anything within the package that
has changed. This principle recommends that classes that aren’t reused should not
belong with classes that are reused since any change in the reused group would
cost a lot for the clients that depend on the not reused classes.

Software engineers may fall into structural problems even if they follow these three
design principles because these principles are mutually exclusive and cannot always be
simultaneously satisfied. The REP and CRP principles help reusers, whereas the CCP
helps maintainers. The CCP strives to make packages bigger because when all classes
are in one package, the only one package will never change[1]. The CRP tries to make
packages smaller because in any release the classes that are not reused are grouped in
new packages[1].

When software evolves, it becomes bigger and more complex to understand. Adding
a new class, method or anything that creates a dependency in the wrong place will
generate structural problems for the system such as cyclic dependencies.

In maintenance the changes of the software are more concentrated on keeping the
availability of the software alive then keeping the design clean. Let us explain better
with the following example. Suppose we are maintaining a system for a big company of
insurance and there is a bug in production. The first think we care is to brink the system
alive fixing the bug with the fastest solution that we have. On the other hand, fastest
solutions may not be the best choose for the design. Therefore, there is a high risk of
introducing cycles.

2.5 The Cost of Dependency Cycles
There are many good reasons why to keep our systems free of cyclic dependencies. Let
us clarify it with the below example.

Figure 2.3 left side, shows a package diagram taken from the JHotDraw framework2.
Suppose that the engineers work on the figures package and deliver a new release. Before
release, they have to build it with the latest version of standard and run some tests. In this
case, figures does not depend on other packages so the engineers can test and release with
a minimal amount of work. In reality, the diagram has another dependency from standard
→ contrib and the situation changes. Let us consider the right side of the diagram in the
Figure 2.3.

In order for the engineers to deliver the figures package, they have to test figures,
standard, contrib and application as well. This is a bad practice as the amount of
work has been increased due to the dependency standard→ contrib. This example has

2http://www.jhotdraw.org

http://www.jhotdraw.org
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contrib
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Figure 2.3: JHotDraw package diagram. Acyclic dependencies on the left. Cyclic
dependencies on the right.

motivated us to provide the reengineers with a solution to find cycle dependencies and
suggest refactoring methods to break them.

In Section 2.4 we introduced one of the reasons why we obtain dependency cycles
when classes are not placed in the right package. This reason consequently compromises
the modularity of the system and packages are not well organised. Refactoring the code
to break the cycles helps to keep the systems well structured.

Our motivation focuses on the package level because we believe that cycles at the
class level are not necessarily harmful. Let us consider the following example: Class
Owner and class Vehicle, one owner has many vehicles and a vehicle has an owner.
So we expect that the Owner class has a collection of Vehicle or a method that returns
a collection of Vehicle and the Vehicle class has a property of type Owner or method
that returns the Owner. As we can see in this simple example, there are cases where
dependency cycles between classes are necessary and not particularly harmful.

2.6 The Need For a Semi-automated Tool
Our goal is to provide the software engineers with a tool to obtain a good structure
of code with good design and architecture. To satisfy engineers’ needs we thought of
two different solutions such as: a fully-automated tool and a semi-automated tool. We
found out that a semi-automated tool is an appropriate one to deal with the cycles. With
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semi-automated, we mean that the tool gets the source code as an input to analyse and
interacts with the user by suggesting the best refactoring strategy for breaking the desired
or suggested cycles. In contrast with a fully-automated tool, Marea analyses all the
refactoring options to break the cycles found in the system.

A semi-automated tool is suitable because the automatic refactoring of the source
code may change the complete structure of the system. Besides, it offers the user the
choice of refactoring. An automated tool would apply refactoring operations without
paying attention to the logical structure of the system which can be in contrast to the
expectations of the engineers. We want to suggest the best refactoring operations and
conserve the logical structure of the system.



3
Related Work

There are two different categories of solutions related to dependency cycles. The first
category is related to tools that detect and visualise cycles. The second refers to tools
that detect, visualise and break the cycles. Let us describe them in the next two sections.

3.1 Cycle Detection and Visualisation
The tools presented in this category were developed to detect and display dependency
cycles visually. Although these tools do not support cycle removal, they are still of
interest to us since they support different ways and algorithms for detecting cycles.

3.1.1 JooJ
JooJ[6] is a tool that specialises in detecting dependency cycles when they arise. It is an
Eclipse1 plugin developed for Java programs that detects code cycles when developers
write their code. One of the advantages of this tool is that it prevents the cycles before
they are in the system. Most of the other tools, detect and break the cycles afterwards.
However, Laval claimed in his thesis[7] that there was no empirical study that validates
this approach for removing cycles. Also he claimed that possible selected dependencies
should not be removed because they are valid in the domain of the program.

1http://www.eclipse.org

16

http://www.eclipse.org


CHAPTER 3. RELATED WORK 17

3.1.2 Jepends
Jepends[8] is another tool which was developed to analyse Java source code in order to
identify classes as possible refactoring candidates. The tool detects dependency cycles at
class level, particularly long cycles among Java classes in a program. The Jepends tool
centres around long cycles between classes because developers should understand every
class in the cycle which result in higher cost of maintenance. Similarly, when developers
test they should test every class in the cycle. The main objective of this tool is to detect
cycles which is regarded as the starting point for refactoring.

3.1.3 STAN
STAN[9] focuses on visualising design, understanding code, measuring quality and
reporting design flaws. In terms of dependency cycles, STAN considers the SCC theory
in order to visualise and highlight dependencies with the minimum feedback arc set[2].
This approach identifies light edges to remove or reverse in favour of dark ones by
selecting a minimum weight set of edges to break a SCC.

3.2 Cycle Removal
In this section we will discuss the tools related to cycle detection and cycle removal. This
category of tools is more related to our work since we detect and propose solutions to
break the cycles.

3.2.1 Hautus
Hautus presented the Package Structure Analysis Tool called PASTA[10]. The tool
analyses the modular structure of Java programs and focuses on avoiding cycles in the
dependency graph and layering. While PASTA visualises package structures it also
enables refactoring the structure by drag and drop of types and sub packages from one
package to another, updating and visualising the UML diagram. PASTA has limited
number of refactoring methods (i.e. MC and MM). Hautus mentioned that the use of
interfaces and abstract factories for breaking cycles could be future work. We will see in
Chapter 4 that these strategies are implemented in our solution.

3.2.2 Lattix
Lattix[11] is a commercial tool based on Dependency Structure Matrix (DSM)[12]
approach and layering organisation. It allows one to visualise, analyse and manage a
software system’s architecture. Moreover the main function of this tool is analysing the
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dependencies between software artefacts in a project. It is also used to measure quality
with key metrics. In addition it allows one to change the system architecture and track
the changes as well as recalculating quality metrics based on the change.

Laval in his earlier work[7] commented that the Lattix approach does not deal
adequately with cycle consideration and the identification of an effective layered structure
in presence of cycles. In contrast we have found that the refactors to break the cycles are
limited in moving and merging packages.

3.2.3 Structure101
Structure101[13] is another tool that aims at building layer organisation and analysing
dependencies for violations of the layered architectural style. The tool uses feedback
arc set to highlight the undesirable dependencies presented in a Tangle2. It enables
developers to use refactoring methods such as Move Class and Move Method for a
better reorganisation of the dependencies. However, the interaction with the developer to
remove dependency cycles and refactor methods is minimal.

3.2.4 ECOO
ECOO[7] is an approach that was also developed for large software architectures. It
identifies undesirable dependencies and proposes solutions to avoid modularity problem.
Laval argued in his work that there was a lack of approaches to perform the following
tasks: identifying and solving the problems; avoiding the degradation of the system; and
minimising change costs as well. Consequently he developed the following solutions:

• ECELL allows the user to visualise and understand deeply the content of a package
dependency.

• EDSM[14] was built around ECELL to provide micro-macro reading. The aim
of EDSM is to identify some problems (i.e. dependencies that create cycles) that
arise in the package architecture by highlighting cycles between packages. In this
way the reengineers could have enough information to make decisions about fixing
the undesirable dependencies.

• CYCLETABLE[15] is also a component used by the ECOO approach for visualis-
ing information about the cycles in more details. It highlights dependencies that
have high impact on cycles by decomposing SCC. This helps the reengineers to
remove cycles with minimum effort.

2Definition of a Tangle http://structure101.com/help/java/structure101/
Content/xs/tangle.html

http://structure101.com/help/java/structure101/Content/xs/tangle.html
http://structure101.com/help/java/structure101/Content/xs/tangle.html
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• OZONE[16] provides a semi-automated algorithm operated on EDSM and CY-
CLYTABLE. It proposes dependencies that can be removed to break the cycles
using the layering organisation. The considered dependencies are separated in to
two categories: dependencies that are in direct cycles and shared dependencies.
Therefore, both categories of dependencies have a high impact of removing the
cycles.

• ORION[17] is an interactive tool to simulate arbitrary refactoring operations in
source code models. It provides the possibility to simulate the changes of the
source code by creating multiple versions of models.

Our work is somehow the continuation of Laval’s work. We reuse part of his modules
such as: EDMS to detect the dependencies and Orion for simulation. However Laval’s
work was more focus on visualisation than cycle removal. As we show in Chapter 4, we
had to extended Orion with new refactoring methods.

3.3 Limitations of Existing Approaches
Considering all the tools mentioned above has encouraged us to develop a new approach
for breaking dependency cycles. All the tools in both categories have provided great
approaches for dependency cycles from different perspectives such as visualisation,
detecting and breaking cycles. These approaches are limited to particular techniques
such as drag and drop for moving classes and methods. Besides, they do not provide a
sufficient way to propose the best refactoring technique for breaking the unwanted de-
pendencies. Our current work improves over existing refactoring techniques, simulating
the possibilities of refactoring, comparing the source code models using metrics as well
as proposing the reengineers the best methods of change for removing the unwanted
dependencies.



4
Marea

In nature the cyclic rise and fall of the sea level is caused by the gravitational pull of the
sun and moon. This phenomenon is called Tide and, translated in Italian, Marea. The
reason why we called our tool Marea is that, as in the natural phenomenon, we also deal
with cycles. In this chapter we discuss in detail the solution that Marea proposes. We
start the next section with Overview and then we detail the various phases of Marea.

4.1 Overview
Marea is a semi-automated tool that takes an input extracted from the source code of
Java systems. The input is transformed by the Moose framework to a model for analysis.
The model complies to the FAMIX1 meta-model that enables analysis with queries and
navigation. Figure 4.1 shows that Marea consists of 4 different phases. We briefly
describe these phases as follows:

1. Analysis. In the analysis phase Marea detects all the cycles between packages
and extracts all the types of dependencies. After extracting the dependencies and
linking them with the appropriate cycles, Marea sorts the logical dependencies
based on the ratio between shared and concrete dependencies. The idea of sorting
the logical dependencies is to consider the first dependencies that allows Marea to
break as many cycles as possible with minimal effort.

1http://www.themoosebook.org/book/internals/famix
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Figure 4.1: Overview of Marea.

2. Simulation. As soon as Marea has all the dependencies and finds out which
dependency to start from, it simulates the possible refactoring strategies for the
selected logical dependency. The logical dependency has one or more concrete
dependencies and is part of at least one cycle. Removing a logical dependency
implies breaking the cycles where the dependency is present. Because there are
many concrete dependencies and each one can be broken in multiple ways, we
end up with different sequences of operations. Using one or another has different
impact in the number of the cycles, structure of the source code and design of the
system. The simulation allows one to choose the best way to refactor the system
by considering the minimum impact of change.

3. Define Refactoring Chain. For every simulation of breaking a logical dependency
we suggest the chain of refactoring operations with minimum impact of change
to the user. However, the user chooses what is more appropriate according to his
point of view. This phase could also be automated throughout selecting always
the tool’s suggestions. When the refactoring chain is defined, the user will be able
to decide whether to end the execution or continue. If there are more cycles, the
process will resume from the first phase.

4. Apply Refactoring. As explained earlier, Marea is based on the Moose framework
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and no change is reflected in the source code. Actual refactoring can be performed
in an additional complementary phase. We produce a tree containing the simulated
actions for each logical dependency. Considering that the user may break many
logical dependencies, there are many decision trees. These trees can be imported as
an input file for a tool (e.g. an plugin Eclipse), that will apply the real refactoring
to the source code.

4.2 Analysis
The starting point of Marea is the analysis phase which includes: cycle detection,
extraction of dependencies, building the data model that holds essential data (cycles,
logical dependencies and shared dependencies) and sorting the logical dependencies
based on the ratio between shared and concrete dependencies.

4.2.1 Cycle Detection
For cycle detection we use Tarjan’s algorithm[4]. This algorithm is based on depth
first search (DFS). DFS starts from an arbitrary node and traverses every node of the
graph only once. The traversed nodes are indexed in order they are discovered. While
returning from the recursion of DFS, every node is assigned with the least index that
can be reached from the node that DFS is considering. Nodes with the same assigned
index (while returning from the recursion) are located in the same strongly connected
component. Figure 4.2 provides an illustration of Tarjan’s algorithm. This algorithm is
an efficient method to detect SCCs in linear time as a function of the number of nodes
and edges of a graph, i.e. O(|V |+ |E|).

1
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2

3

1/1

4/1

5/1

2/1

3/1

4 4/4

Figure 4.2: Left side: Nodes are indexed as they are explored by DFS. Right side: Nodes
are re-indexed at the return of the recursion of DFS, those with the same assigned index
are in the same SCC.

A Java input project with cycles is displayed in Figure 4.3. We consider the SCCs
disconnected because the dependencies that connect the SCCs are out of scope since they
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do not form cycles. An SCC is composed of one or more cycles and if a cycle exists
in an SCC, it does not exist in another SCC. We extract the cycles from an SCC using
the algorithm that checks for each edge of the SCC if there is a cycle and, if there is, it
returns for each edge the smallest cycle. Bigger cycles are ignored because breaking the
smaller cycle will automatically break the bigger one. Breaking all the cycles in a SCC
will make the SCC disconnected. Based on graph theory disconnecting all the SCCs
makes the entire graph acyclic and this is our goal, to eliminate cyclic dependencies into
an input project.

SCC

SCC

SCC

Project SCC

A

C

D

B

E

Figure 4.3: An input project seen as a set of strongly connected components.

4.2.2 Extraction of Dependencies
As shown in Figure 4.4, Marea extracts the logical dependencies from each cycle within
an SCC. A logical dependency is composed of the concrete dependencies between 2
packages. The concrete dependencies are present in different classes and are extracted to
form every logical dependency. Furthermore, the logical dependencies that are present in
many cycles are considered as shared dependencies.

A

C

B
4

52

Logical DependenciesCycle Concrete Dependencies

A B
4

A B

……

 Reference Dep.

Inheritance Dep.

Method Invocation Dep.
extract     extract     

Figure 4.4: Extraction of logical dependencies from a cycle.
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4.2.3 Build the Data Model
The Moose framework and the Famix meta-model allow us to query an input model
and navigate over the entities of the model. For instance, if we need all the outgoing
dependencies of a class we can use the method queryOutgoingDependencies from the
Famix-Core package. Famix provides us the way to extract the information from a model.
However, we have to organise the data based on our needs. Considering the example
above we have all the outgoing dependencies but not their types. Therefore, in order to
have exactly what we need we have to extract more information and build a separate data
model. In this project, we designed our data model representing the information of our
scope. For the analysis phase we implemented the algorithm that extracts the needed
data using Famix queries and part of the DSM component implemented by Laval.

4.2.4 Sorting Logical Dependencies
The last step of the analysis phase is to prepare the input for the simulation phase. Now
we have all the cycles with all the dependencies, but the question is: Which dependency
can we first break for cycle removal? The answer to this question is to let the user choose
a starting point. In this case the user decides which undesirable dependencies should be
removed for breaking a cycle so he knows what he is doing. Otherwise, a random choice
may produce an inefficient output.

A logical starting point for breaking a cycle is to consider shared dependencies
because they are present in at least two cycles. Even though this process may sometimes
introduce new cycles, breaking a shared dependency will directly break the exact amount
of cycles the dependency is part of. New cycles are introduced because moving a
dependency from one package to another may generate new ones somewhere else. Let
us reconsider the package diagram in Figure 4.5. The logical dependency standard→
contrib is shared between the cycles standard→ contrib, standard→ contrib→ figures
and standard→ contrib→ application→ figures. Suppose that standard→ contrib
contains a concrete dependency of class variable and the package figures depends on
the class that contains the class variable dependency. Breaking the logical dependency
standard→ contrib using MC operation will break the cycles where the standard→
contrib is shared, but it will also introduce new cycles such us figure→ contrib and figure
→ contrib→ application because the package figure has a new dependency towards the
package contrib.

However, in some instances, shared dependencies may contain a large number of
concrete dependencies. Hence, breaking a shared dependency at this point will increase
the amount of work needed compared to a shared dependency that has few concrete
dependencies. Consequently, shared dependencies are not a good practice. To solve this
matter we need to consider the number of concrete dependencies present in a logical
dependency. Our tool addresses this matter by first considering the logical dependencies
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contrib
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Figure 4.5: Breaking a LD introducing of new cycles

with the highest ratio between the number of shared dependencies and the number of
concrete dependencies as explained in the following formula:

| Shared Dependencies |
| Concrete Dependencies |

(4.1)

4.3 Simulation
We have seen in the analysis phase how Marea proposes the input for the simulation.
We already know that the input is a logical dependency with one or more concrete
dependencies. In this phase we explore the possible options for breaking the logical
dependency with different refactoring strategies. The removal of the logical dependency
breaks all the cycles where the logical dependency is present.

In general we have an output from the simulation phase that contains different ways to
break the logical dependency since we use different strategies to remove several concrete
dependencies. During the simulation Marea generates a decision tree for the possible
ways of refactoring. As we see in the next phase, the user can choose the best way of
refactoring from the tree. Consequently this section is organised into 2 subsections:
Refactoring Methods and Decision Tree.
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4.3.1 Refactoring Methods
For breaking dependencies between packages, 4 types of refactoring are utilised:

1. Move Class (MC). This refactoring method moves a class from one package to
another. Figure 4.6 shows how class variable dependency is broken when moving
the Button class from package control to components. As a result, Button will be
part of components instead of control).

control componets

turnOnOff()
Light

press()
light: Light

Button

Move Class

control components

turnOnOff()
Light

press()
light:Light

Buttonslide()
Slider slide()

Slider

Figure 4.6: Move Class refactoring method.

2. Move Method (MM). This refactoring method moves a method from one class to
another. In our case the method is moved between two different packages since
we consider the cycles at the package level. Move method is used to break depen-
dencies related to a method of a class. For instance, the invocation dependency
can be broken by moving the method press(Light light){...} from Button to Light
(Figure 4.7).

control componets

turnOnOff()
Light

press(ight: Light)
Button

Move Method

components

turnOnOff()
press(light: Light)

Light

slide()
Slider

control

Button

slide()
Slider

Figure 4.7: Move Method refactoring method.

3. Abstract Server Pattern (ASP)[18]. Depend upon Abstractions. Do not depend
upon concretions. We use this simple pattern to remove a dependency that depends
on a concrete class by changing the target to an interface. Practically, ASP allows
one to change the direction of the dependence by adding an interface in the
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dependent package and implement it from the class depended upon. For instance:
in order to break the class variable dependency, we should add the interface
Switchable to control and implement it in Light (Figure 4.8). This refactoring
method is used in case the reference dependency is not initialised. If it is initialised
ASP is combined with Dependency Injection as explained next.

control componets

turnOnOff()
Light

press()
light: Light

Button
ASP

control components

turnOnOff()
Light

press()
light:Switchable

Button

light is not 
initialised

turnOnOff()

<<interface>>
Switchable

Figure 4.8: ASP utilised for a class variable dependency.

4. Abstract Server Pattern + Dependency Injection[19] (ASP+DI). This refactor-
ing method is an extension of the ASP refactoring that allows one breaking de-
pendencies where the initialisation occurs. Through ASP the dependency changes
its type from static to dynamic. In more details, the direction of the dependency
changes to the opposite. However, the dependency will persist since the initialisa-
tion of the object exists. In order to break the initialisation dependence, we use DI
pattern. Figure 4.9 shows an example to clarify how this method works. The Inject
class creates the Light object and inject it through the setLight(light:Switchable)
method. It is not necessary to simulate the injection of the objects because the
injector creates dependencies only in one direction and no classes depend on it.
We have shown a way how to inject the objects. However, there are frameworks
(i.e. Spring2) that enable engineers to implement the DI. We separate ASP and ASP
+ DI because they have different implementations in Marea. For the DI we have to
remove the initialised object dependency.

The refactoring methods that we described above are not applicable for all the types
of dependencies. Table 4.1 shows all the possibilities of the use of refactoring per
dependency.

In our context Move Method and ASP are limited in some cases. This is due to
the limitations of the Moose framework, the refactoring engine of Eclipse (i.e. not all
MMs are refactored by Eclipse) and the impossibility of the refactoring method itself.
Moose framework is limited because it does not provide all the information that we need
to simulate complex refactoring operation such as: the use of factory method, the use

2http://spring.io

http://spring.io
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control componets

turnOnOff()
Light

press()
light: Light

Button
ASP + DI

control components

turnOnOff()
Light

setLight(light:Switchable)
press()

light:Switchable
Button

light initialised
Light light=new Light(); turnOnOff()

<<interface>>
Switchable

injection

inject()
Inject Switchable l = new Light();

Button b= new Button();
b.setLight(l);

Injection of light 
by setter method

Figure 4.9: ASP + DI utilised for a initialised class variable dependency.

— Move Class Move Method ASP ASP + DI
Inheritance Yes No No No

Class Variable Yes No Yes No
Initialised

Class Variable Yes No No Yes

Local Variable Yes Yes (Limited) Yes No
Initialised

Local Variable Yes Yes (Limited) No Yes

Parameter Yes Yes (Limited) Yes No
Return Type Yes Yes (Limited) Yes No
Invocation Yes Yes (Limited) Yes (Limited) No

Table 4.1: Applicability of the refactoring methods.

of accessors and the clone of objects (See the examples below). Moose considers the
methods as a black box. The use of complex refactoring methods requires to read all
the statements of a method and extract assignments and values of objects. To do so, we
need to use an external parser to extract the information and change the signature and
the content of a method. These operations are not covered in this thesis. According to
the MM refactoring method it is limited in case the method that moves has one of the
following properties:

• The method is a constructor. It is not possible to move a constructor of a class
to another.

• The method returns this. If the method that moves returns this, then the refactor-
ing is not possible because this is bound to the class that contains that method.
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• The method has access to a variable with class-scope. If the method that moves
contains any access to a variable that is different from a parameter or a local
variable, then the refactoring is not possible because the access is related to the
class that contains the method.

• The method has an invocation to a static method defined in the same class. If
the method has an invocation to a static method defined in the same class, then the
refactoring is not possible.

Regarding the ASP refactoring method, it is also limited in the case of the invocation
method dependency because of the following points:

• The invoked method is static. Static methods are not supported by the interface.

• The invoked method is a constructor Constructor is not supported by the inter-
face.

• The invoked method is the call of the super constructor (i.e. super()). Con-
structors are not supported by the interface.

In the perfect world the limited operations could be implemented using other strate-
gies such as: the use of Factory Method Pattern[20] in case the method is a constructor
(Listing 3, Listing 4), creating and returning a clone object instead of this (Listing 5,
Listing 6) and changing the class access variable by using their accessors (Listing 7,
Listing 8).

package control;
import components.Light;

public class Button {
private Light light;

public Button(Light light) {
this.light = light;

}
}

Listing 3: The Button class and its But-
ton(Light light) constructor are depen-
dent on the Light class.

package components;
import control.Button;

public class FactoryButton {
Button makeButton(Light light){

Button b = new Button();
b.setLight(light);
return b;

}
}

Listing 4: Refactoring the Button(Light
light) constructor with the factory
method in the same package where
Light is located.
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package control;
import components.Light;

public class Button {

public Button getButton(){
Light light = new Light();
...
return this;

}
}

Listing 5: The Button class and the get-
Button() method are dependent on the
Light class. The getButton() method re-
turns this.

package components;
import control.Button;

public class Light {
public Button getButton(Button button)
{
Light light = new Light();
...
return button;
}

}

Listing 6: Refactoring the getButton()
method with the MM operation. The
getButton() method returns the button
parameter instead of this.

package control;
import components.Light;

public class Button {
private Light light;
private Slider slider;
//setter and getter of slider

public void press(){
slider.slide();
light.turnOnOff();

}
}

Listing 7: The Button class and the
press() method are dependent on the
Light class. The press() method has the
slider access class.

package components;
import control.Button;

public class Light {
public void turnOnOff(){

//turn on/off the light
}

public void press(Button button){
button.getSlider().slide();
turnOnOff();

}
}

Listing 8: Refactoring the press()
method with the MM operation. The
press() method uses the getSlider() ac-
cessor to access slider.

4.3.2 Implementation of Refactoring Methods
The simulation of the refactoring operations requires one to apply the same changes to
the model. The easiest approach is to duplicate the original model for each refactoring
operation. This is expensive in terms of memory and time. Laval proposed a solution
based on FAMIX, called Orion. Orion allows one to define incremental versions of a
model. Only the entities which are directly changed are redefined and copied into the
new version and the other entities are simply referenced. A reference table keeps track of
all the versions of the entities. The table is copied from the parent model when creating
the new version and is modified by actions such as entity creation, entity change and
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entity deletion. More details can be found in a publication by Laval et al.[17].
Laval implemented basic operations like add and remove entity as well as more

complex operations like Move Class and Move Method. We extended Orion by imple-
menting the new refactoring strategies ASP and ASP+DI and we also adapted the existing
operations for all the types of the dependencies that we have. The implementation of the
new refactoring operations are build on existing version of Orion that you find in the
following link3.

4.3.3 Decision Tree
The simulation starts from a parent model and new versions are generated for each
refactoring strategy. Considering the concrete dependencies and the fact that many
refactoring strategies can be used for removing each of them, we have a tree of models
rooted with the original one.

Let us consider the following example: Suppose we want to break a logical depen-
dency composed of 2 concrete dependencies. It is possible to use 2 strategies for the
former and 3 strategies for the latter. By applying 2 strategies to the first dependency we
obtain 2 new models corresponding to the nodes at the first level of the tree. The models
at the first level will be the parents of the models at the second level and children of the
root. As a result, 6 branches of 6 new versions will eventually be generated as a tree of
models.

Having different versions for each simulation of a refactoring strategy allows us to
compare the actions and calculate a profit for each node. Therefore the tree contains
more information and allows us to decide the best path with the best profit. In this way
we generate a decision tree for each logical dependency as an input.

The decision tree is a powerful approach for obtaining all the different alternatives of
simulated refactoring. As soon as we have all the simulations for a given input the user
will be able to choose the path suiting his needs. Figure 4.10 explains the general tree
with respect to the generated profit of each action.

Marea does not check for new introduction of dependencies because both cycles and
dependencies are reextracted, and the current logical dependency in the simulation is
updated in every refactoring operation. Each node of the tree represents a refactoring
action for a concrete dependency. For every node we generate a new Orion model by
modifying the model corresponding to the parent node. Also, the nodes contain the profit
of the single operation that is calculated step by step for all the operations. The profit is
calculated considering the root of the tree as the starting reference. The calculation of
the profit is based on 3 metrics:

1. Number of Cycles. We want to reduce the total number of cycles.

3http://www.squeaksource.com/@PjpQDnUTENDpIwKi/EYeqJcp5

http://www.squeaksource.com/@PjpQDnUTENDpIwKi/EYeqJcp5
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Figure 4.10: Simulation of all the possibilities of refactoring methods.

2. Tree Depth. We want to reduce the number of steps (refactoring actions) for
breaking the logical dependency.

3. Quality Metric(s). We want to improve the quality of the code.

The first metric concerns reducing the total number of cycles. The second metric is
the distance from the root to the node. The third is the quality metric which might use the
instability metric[21] or the abstractness metric[21] or both as our goal is to improve the
quality of the software. The stability metric is a consequence of the Stable Dependencies
Principle[21], depending on the direction of stability. A package is considered stable if
other packages depend on it. On the other hand a package is instable if no other packages
depend on it. In order to calculate the instability of a package we use the following
formula:

I =
Ce

Ce + Ca
(4.2)

where:

Ca, afferent coupling. The number of classes outside the package that depend upon
classes inside the package.

Ce, efferent coupling. The number of classes outside the package that classes inside the
package depend upon.
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I Instability. This metric is calculated by Formula 4.2 that has the range: [0,1]. Value
0 the package is stable, 1 the package is instable. If Ca and Ce are 0 then I = 0
because there are no outgoing and incoming dependencies into the package so the
package is stable.

The abstractness metric is derived from the Stable Abstractions Principle[21]: stable
packages should be abstract packages. Below is the formula for calculating this metric:

A =
Na
Nc

(4.3)

where:

Nc. Number of classes in the package.

Na. Number of abstract classes in the package. Remember, an abstract class is a class
with at least one pure interface, and cannot be instantiated.

A. Abstractness is calculated by Formula 4.3 and has the range: [0,1]. Value 0 means
that the package contains no abstract classes and 1 means that the package contains
only abstract classes. If Nc is 0 then A = 0 because the package is empty, thus no
abstract classes.

To satisfy our requirements we favor nodes (remember each node represent a simulated
refactoring operation) with an instability metric near to 0 (we want to obtain stable
packages) and abstractness metric near to 1 (stable packages should be abstract packages).
On the other hand we penalise the nodes that have a large number of operations and the
nodes with a large number of cycles. The refactoring operations involve 2 packages, from
and to. For this reason we calculate the average of instability and abstractness between
those 2 packages. Formula 4.4 calculates the profit based on the facts above:

P = wc×
1

# cycles + 1
+wd×

1
depth

+wi×
(1- Ifrom) + (1- Ito)

2
+wa×

(Afrom) + (Ato)
2

(4.4)
where:

wc is a constant weight for the cycles.

wd is a constant weight for the depth.

wi is a constant weight for the instability.

wa is a constant weight for the abstractness.
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Let us reconsider the example of Section 2.3 for calculating the profit of the logical
dependency components→ control. Remember that in this example there is one cycle
between the components and the control packages. Marea selected the components
→ control logical dependency as an input for breaking the cycle because it has less
concrete dependencies than control→ components (3 versus 4 concrete dependencies).
Figure 4.11 shows the decision tree with the best profit calculated for the simulation of
the refactoring of the 3 concrete dependencies. The best profit is the path on the left side
of the tree and it is calculated in Formula 4.5:

P = 1× 1
0 + 1

+ 1× 1
1
+ 1× (1 - 3/4) + (1 - 3/3)

2
+ 1× 1/2 + 0/2

2
(4.5)

where:

The Button class was moved from components to control and in components the Switch-
able interface implemented by Light is present. After the MC operation, the
number of classes and interfaces located in components is 2 and the number of
classes located in control is 2.

wc = wd = wi = wa = 1. In this case the same value is given to all the weighs.

# cycles = 0. The MC operation breaks all the concrete dependencies present in the
logical dependency.

depth = 1. The node is one step from the root.

Ifrom = 3/4. Ce = 3 and Ca = 1.

Ito = 3/3. Ce = 3 and Ca = 0.

Afrom = 1/2. Na = 1 and Nc = 2.

Ato = 0/2. Na = 0 and Nc = 2.

As the best path is chosen based on the profit it is important to point out that the
calculation of profit is flexible. The shown formula can be reimplemented based on
the user’s needs by using other metrics and considerations. This means that there is a
possibility to plug different Metrics into Marea if they are implemented.
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Figure 4.11: Calculation of the profit for the LD components→ control.

4.4 Define Refactoring Chain
The decision tree represents the possible refactoring operations (different paths of the
tree) of a certain logical dependency. Each path of the tree is characterised by the profit
that is calculated for each node. Because the total amount of the profit is calculated for
every refactoring operation, the leaves of the tree contain the significant profit value of
the path. The best path is identified by following the steps from the leaf with the biggest
value to the root. In our implementation we visualise the decision tree and also highlight
the best path for the user. The user has the option whether to select the suggested path or
another based on his need. The decision can also be automated by selecting always the
best path.

4.5 Apply Refactoring
As mentioned earlier Marea simulates the refactoring operations on the Moose framework
from the source code separately. The simulation has the advantage to preserve the original
version of the source code. On the other side the desired refactoring operations are not
directly applied to the source code. In our case to apply the refactoring chain, the user
has to rely on external tools. The most widely used development tool for Java projects
is Eclipse and our suggested refactoring operations are compatible with the refactoring
operations supported by Eclipse4, except for ASP and DI which have to be applied
manually. The advantage of this phase is that the developer or maintainer knows exactly
what he will change in his projects.

4Eclipse supports Move Class and Move Method. Move Method is limited to certain cases that we
described in Section 4.3.1



5
The Validation

In this chapter we outline the results of our work. We validate the results of Marea by
testing it on three Java projects. The first project is a web-based application that uses
the Spring MVC framework1. The second project is the Google Web Toolkit (GWT)2

component, gwt-cal3. This project is a web-based calendar component implemented
in Java. The third project is an open source project called JHotDraw4 that is used for
creating technical and structured graphics.

5.1 No Presence of Cycles
In this case the considered project is a web based application for renting rooms, developed
by bachelor students of the University of Bern. The application uses the Spring MVC
framework. Basically Spring implements the principle of Inversion of Control[22]
through the Dependency Injection pattern. In addition, the Spring MVC framework
implements the MVC architectural pattern. The layers of an application that is built on
Spring MVC are well defined and the dependencies between classes will, most likely, go
in one direction. Moreover the Dependency Injection reduces the number of unnecessary
dependencies. In our test, Marea found no presence of cycles. The correctness of the
result was confirmed through manual inspection.

1http://spring.io
2http://www.gwtproject.org
3https://code.google.com/p/gwt-cal/
4http://www.jhotdraw.org
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5.2 Presence of Cycles
In this section we validate Marea with GWT Calendar. The input consists of 27 total
packages and 8641 Famix entities. Excluding the system packages like java::* and
javax::* we have 14 packages and 92 classes. We ignore the Java API packages because
they do not have back dependencies to the implemented packages, and therefore do not
form cycles.

Remember that we use Tarjan’s algorithm to detect the strongly connected compo-
nents (SCCs), and that Marea extracts the cycles from each SCC. Considering an SCC,
Marea checks for each edge if there is a cycle and, if there is, it returns for each edge
the smallest cycle. Bigger cycles are ignored because breaking the smaller cycle will
automatically break the bigger one. After this consideration let us start analysing the
input following step by step the simulation of cycle removal until we transform the input
in a acyclic graph.

At the first step Marea finds 7 cycles formed by 12 logical dependencies all within
an SCC. After detecting the cycles and extracting the dependencies, Marea sorts in
descendent order the logical dependencies. The first logical dependency is the one that
has the biggest ratio between shared dependencies and concrete dependencies. Figure 5.1
shows the graph with the cycles. The logical dependency client→ monthview is the one
with the biggest ratio. It has the biggest value because is the most shared dependency
(amongst 3 cycles, remember that bigger cycles are ignored) and has only one concrete
dependency. The concrete dependency is an initialised class variable and, as indicated in
Table 4.1, there are two possibilities of refactoring: MC and ASP+DI. Marea simulates
the 2 refactoring methods and as result both methods break the logical dependency and
the cycles in which it is involved. At the end of the simulation, Marea returns a tree with
3 nodes (root included) and suggest the MC refactoring as it has a higher profit. The
profit for the MC is higher because it breaks a larger number of cycles than ASP+DI. We
chose ASP+DI as we do not want to change to location of the class even the profit is not
the best.

We have seen the first round of simulation and now we are going further to detect
again the cycles and the logical dependencies for the next round. Figure 5.2 shows
the situation of the graph after Marea has broken the first logical dependency and the
correspondent cycles. We can notice that the number of cycles is the same as the previous
situation but the cycles are different. Again the logical dependency highlighted is the
most convenient since it breaks the biggest number of cycles with the minimum effort
(one concrete dependency). This case is very similar to the previous one. The logical
dependency has one initialised class dependency and 2 applicable refactoring methods.
Like the previous case Marea returns the expected decision tree with 3 nodes. The profit
for both nodes is closer although ASP+DI is a bit higher. The number of broken cycles
is the same for both refactoring methods, as we were expecting. The choice was for
ASP+DI and now let us consider the next round.
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public class Calendar extends 
CalendarWidget implements 
RequiresResize, ProvidesResize { 
  
private MonthView monthView = null;
                ...
  monthView = new MonthView();

                ...
}

client --> dayview
client --> monthview
drop -->  dayview
drop -->  monthview
client --> monthview --> util
drop -->  client --> monthview
client --> dayview --> util

Cycle Detected

Figure 5.1: Cycles graph with the first LD to be simulated.
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public class Calendar extends 
CalendarWidget implements 
RequiresResize, ProvidesResize {
  private DayView dayView = null;
                ...
  dayView = new DayView();
                ...
}

drop -->  dayview
client --> dayview --> util
drop -->  client --> dayview
drop -->  monthview --> client --> dayview
client --> dayview
drop -->  monthview
drop -->  monthview --> util --> client --> dayview

Cycle Detected

Figure 5.2: Cycles graph in the second round of simulation

Figure 5.3 shows the graph with the involved cycles and the packages involved the
initial SCC. For this case Marea detected 2 cycles and 4 logical dependencies where all
of them are shared equally between cycles. As we expected Marea suggested the logical
dependency drop→ monthview since it has few concrete dependencies (3). We checked
manually in the source code and we found the method invocation dependencies indicated
in the right of Figure 5.3 corresponding to the concrete dependencies found by Marea.
In this case we only have one refactoring option: MC. The result is correct since the
concrete dependencies are in the same class and only MC refactoring can be applied.
Move method is not applicable because the onMove() method contains accesses that are
referring to the class where the method is located. For this case ASP is not supported as
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the invocation is coming from a casted variable and this is a case we can currently not
handle and will be considered in future work.
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/**
* getAppointment() is a method of the class
* AppointmentWidget part of the monthview package
*/
@Override
public void onMove(final DragContext context) {
                ...
 ((AppointmentWidget)draggable.widget).getAppointment()
                ...
 ((AppointmentWidget)draggable.widget).getAppointment()
                ...
}
@Override
public void onDrop(final DragContext context) {
                ...
 ((AppointmentWidget)draggable.widget).getAppointment()
                ...
}

drop -->  dayview
drop -->  monthview

Cycle Detected

Figure 5.3: Graph cycles in the third round of simulation.

The previous MC operation has removed 1 cycle. We now remain with the last cycle,
as shown in Figure 5.4. The highlighted logical dependency is obvious because it has
fewer concrete dependencies than the opposite logical dependence present in the cycle
drop→ dayview. The selected logical dependency has been manually verified and the 4
concrete dependencies are corresponding to real dependencies in the source code. Marea
simulates this input and returns the tree indicated in Figure 5.5
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public class DayViewResizeController extends 
AbstractDragController {
 public void dragEnd() {
   AppointmentWidget apptWidget =
   (AppointmentWidget)context.draggable.getParent();               
   int apptHeight = apptWidget.getOffsetHeight();
   Appointment appt = apptWidget.getAppointment();
 }              ...
}

public class DayViewDropController extends 
AbsolutePositionDropController {
  public void onDrop(final DragContext context) {
                    ...
   Appointment appt =
   ((AppointmentWidget)widget).getAppointment();
                    ...
  }
} 

drop -->  dayview

Cycle Detected

Figure 5.4: Graph cycles in the forth round of simulation.

We have 4 concrete dependencies where 1 is of type local variable and 3 are of type
invocation methods. For the local variable dependency it is possible to use MC and
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ASP. The MM is not excluded because the method dragEnd() that contains the local
variable contains other accesses that are related to the class where the method is located.
The 3 invocation method dependencies have the same structure as the previous case so
for the same reason it is possible to apply only MC. You can notice that the tree has
2 levels: the first suggests operations for breaking the local variable and the second
suggests operations for breaking the invocation method. Note that the local variable and
the invocation methods are not located in the same class. For this reason the first MC is
not removing the 3 invocation method dependencies. On the other hand the 3 invocation
dependencies are located in the same method so one MC operation is enough to remove
the 3 of them.

Root

MC --> Local
1.7018

ASP --> Local
1.8168

MC --> Invocation
1.9208

MC --> Invocation
1.8717

Figure 5.5: Decision tree for the LD drop→ dayview.

After the last simulation we finally reached the point that we do not have cycles in the
input project anymore. Figure 5.6 shows the initial graph transformed in a acyclic graph.
All the simulated operations have been successfully validated manually by applying them
on the source code within Eclipse.

5.3 Presence of Cycles with Many Relations
JHotdraw is our last test example. It consists of 26040 entities (number of entities in the
Moose model) and 38 packages in total. The number of considered packages is 11 and
the number of considered classes is 140. As you notice from the high number of entities
and the low number of packages this input has an elevated number of relationships.
Focusing on the decision tree and on the profit we will see that using different metrics
the results will change suggesting different paths.

The number of the initial cycles is 13 and the number of involved logical dependencies
is 18. After sorting the logical dependencies Marea suggested the logical dependency
standard→ contrib. This dependency consists of 5 concrete dependencies, 1 is of type
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Figure 5.6: Final acyclic graph.

standart contrib

getAutoscrollInsets():Insets
autoscroll(p: Point)

ash: ASH
StandartDrawingView

ASH
ASH(margin:int)inner

4
Call of the 

super(margin)
Invocation dependecy

getAutoscrollInsets():Insets
autoscroll(location: Point )

AutoScrollHelper

setCursor(x:int, y:int, view:DrawingView)
DragNDropTool

moveMouse(location: Point )
SelectionTool

1
Inheritance
dependecy

3, 5
Method call to 

autoscroll->autoscroll
getAutoscrollInsets -> getAutoscrollInsets 

Invocation dependecy

2
Method call to 

moveMouse->setCoursor 
Invocation dependecy

Figure 5.7: Logical dependency with 5 concrete dependencies.

inheritance dependency and 4 are of type invocation method dependencies. Analysing
the source code manually we found exactly the 5 dependencies as shown in Figure 5.7.

The simulation of the refactoring operations for the logical dependency that we
described above is shown in Figure 5.8. The indicated tree does not include the profit
because in this paragraph we are going to validate the single operations. The first input
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of simulation is the inheritance dependency of the inner class StandardDrawingView.
The only possible operation for this concrete dependency is the MC refactoring operation.
After moving the inner class we can notice that the next input is the initialised class
variable dependency. This concrete dependency is related to the attribute ash with type
ASH that is generated after moving the class ASH from package standard to package
contrib. For the initialised class variable there are 2 possibilities: MC and ASP+DI.
This is exactly what we can see at the second level of the tree: 2 subtrees referring to
the initialised class variable dependency. Both refactoring operations can be used to
remove this concrete dependency and in addition they will also remove the invocation
dependencies related to the attribute ash. At the third level of the tree we find the
invocation dependency related to the classes SelectionTool→ DragNDropTool. This
invocation dependency is refactored by MC and MM. The ASP refactoring for this case is
not possible because the invoked method is a static method and static methods cannot be
added in an interface. The last level shows a dependency that is generated after moving
SelectionTool class. The NullDrawingView class part of the standard package has an
invocation of the SelectionTool(...) constructor that now is part to the contrib package.
For this last dependency it is only possible to perform a MC, since MM and ASP are not
possible in constructor invocation dependencies.

Root

MC --> Inheritance

MC -->Init Class
ASP+DIP --> Init Class

MC --> Invocation MM --> Invocation

MC --> Invocation

MC --> Invocation MM --> Invocation

MC --> Invocation

Figure 5.8: Decision tree for the LD shown in Figure 5.7

Considering Formula 4.4, Marea generates the best profit as indicated in Figure 5.9.
In this example, we used the same weight constant for each term of the equation, wc =
wd = wi = wa = 1. The best path is indicated in green: in this case we found that the
total number of cycles is smaller and the abstractness is higher as ASP is adding a new
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interface to the standard package. You can notice that the leaves at the last level are
penalised as the depth is bigger and as a consequence the number of operations is higher.

Root

MC --> Inheritance
1.5950

MC -->Init Class
1.1013

ASP+DIP --> Init Class
1.1061

MC --> Invocation
0.9400

MM --> Invocation
1.0437

MC --> Invocation
0.9198

MC --> Invocation
0.9323

MM --> Invocation
0.9977

MC --> Invocation
0.9206

Figure 5.9: Decision tree with the best profit.

For the calculation of the profit we utilised the stability and the abstractness metrics.
As mentioned earlier, the user can influence the results by tuning the weights or using
other metrics (e.g. using only the stability metric). This makes Marea adaptable to the
user needs. Supposing that the user does not care about the abstractness but wants stable
packages, he could decide to increase the weight of the stability metric (wi = 10) and
exclude the abstractness metric. In this case he would get different results, as shown in
Figure 5.10. In this case the best path is on the left of the tree as the stability is higher.

5.4 Complexity
The complexity of the main operations as a function of the size of the graph is described
as following:

Complexity time for cycle detection. In Section 4.2.1 we explained that cycles are
extracted from each SCC. We explained as well that to detect the SCCs we used
Tarjan’s algorithm that operates in linear time, i.e. O(|V | + |E|) where V is
the number of vertices and E is the number of edges, in our case, number of
packages and number of logical dependencies respectively. The complexity of
cycle detection results in the number of SCCs times the time it takes to detect
the cycles from an SCC. The worse case to detect the cycles from an SCC is
where the whole graph is a strongly connected component. Therefore, to detect
the cycles we need to traverse all the nodes and edges of the graph, through the
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Root

MC --> Inheritance
4.4429

MC -->Init Class
4.0740

ASP+DIP --> Init Class
3.9916

MC --> Invocation
3.8986

MM --> Invocation
3.9911

MC --> Invocation
4.0398

MC --> Invocation
3.9021

MM --> Invocation
4.1142

MC --> Invocation
4.1269

Figure 5.10: Decision tree with the best profit utilising stability metric.

DFS procedure in time O(|V |+ |E|). After these considerations, the complexity
of cycle detection results in O(|S|(|V |+ |E|)) where S is the number of strongly
connected components.

Complexity time for sorting the logical dependency. The operation of sorting the logical
dependencies is needed in order to suggest to the user which logical dependency
is better to consider as an input for the simulation. In the previous paragraph we
mentioned that the number of logical dependencies is the number of edges of the
input graph. Notice that not all the edges are of interest because not all of them are
within the cycles. However, in the worse case, all the edges of the graph are within
the cycles. The sorting procedure copies the logical dependencies from a collection
into a sorted collection. This procedure takes time in O(|E|) since it iterates over
all the elements of the collection and adds them into the sorted collection one by
one.

Complexity time for simulating the logical dependency. This operation simulates the
refactoring methods for the concrete dependencies located in a logical dependency.
The execution time for this case depends on both the number of concrete depen-
dencies that are located in the logical dependency and the number of refactoring
methods. For this reason there are two considerations for the complexity time of
this operation. We describe these considerations as following:

The applicable refactoring methods do not introduce new dependencies. The
worst scenario is where all the refactoring methods are applicable to the con-
crete dependencies located in the logical dependency in process of simulation.
Based on Table 4.1 the total number of refactoring methods is 4 where 2 of
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them are mutual exclusive (ASP and ASP+DI). To calculate the complexity of
the simulation operation, we have to calculate all the possibilities of refactor-
ing operations of the concrete dependencies. The number of all possibilities
of the refactoring operations corresponds to the maximum number of nodes
of a ternary tree of height d where d is the number of concrete dependencies.
It is a ternary tree because we have 3 refactoring operations. The maximum
number of nodes of a ternary tree is calculated by Formula 5.1

Max(N) = 1 + 3 + 9 + ....+ 3d =
d∑

i=0

3i =
3d+1 − 1

2
(5.1)

Marea redetects the cycles and resorts the logical dependencies for each node
of the tree and the complexity time of these operations we described above. In
conclusion, the complexity time of the simulation of the logical dependency is
the maximum number of nodes of a ternary tree times the complexity of cycle
detection (for big E sorting time is ignored), i.e. O(|Max(N)|(|S|(|V | +
|E|))).

The applicable refactoring methods introduce new dependencies. In this case,
the decision tree may go to infinitely because there is always a new con-
crete dependency for simulation. Time complexity for the worst case is
O(infinite)5.

5.5 Performance
We measured the running time of the main components of Marea for the inputs that
we discussed above and reported the results in the Table 5.1. We calculated the sim-
ulation time for all the logical dependencies, the cycle detection time and the sorting
dependencies time for the inputs that we discussed above. Considering that for each
refactoring operation Marea has to redetect the cycles, the simulation time includes
as well the time of redetecting the cycles. We notice that the bigger is the number of
concrete dependencies in a logical dependency, the higher is the execution time of a
simulation as the depth of the tree grows.

5Marea stops the execution of a path if the simulation does not ends and looks for other path solutions
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Input LD - CDs Simulation (s) Cycle Detection (s) Sort Dependencies (s)

GWT-Cal

LD - 1 3

1 0
LD - 1 2
LD - 3 1
LD - 4 3

JHotDrow LD - 5 14 1 0

Table 5.1: Time in seconds of the main operations.
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Conclusion and Future Work

This chapter concludes the thesis summarising our work and future work.

6.1 Conclusion
Dealing with dependency cycles is a difficult topic, as engineers need to access source
code and understand dependencies. Without a proper tool support, developers, main-
tainers and testers cannot remove these problems from their systems. We implemented
Marea to assist engineers in resolving cyclic dependencies at the package level. Marea
simulates the refactoring operations in a separate platform without changing the structure
of the source code. In this way engineers can have suggestions for removing undesirable
dependencies and apply the refactoring operations in case they agree on the changes.
This approach allows engineers to improve the modular structure of their object-oriented
systems without changing their functionality.

In our solution we implemented common refactoring methods, such as Move Class
and Move Method. In addition to those we implemented other refactoring methods not
supported by current tools, such as Abstract Server Pattern and Dependency Injection
Pattern.

The suggestions that we provide are ranked based on profit function that is calculated
for each simulated refactoring operation. The profit function is designed to minimise the
number of refactoring steps as well as the number of cycles and to increase the overall
quality of the code. We show that the suggestions can be customised based on user needs
by adapting the profit function.

47
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Our validation with Java based projects shows that our approach works and can be
used to refactor a real object-oriented system.

6.2 Future Work
As future work we planned to address the following points:

• User interface interaction. We already implemented the graphical interface of the
the simulated tree. A graphical user interface can also be implemented for the
whole process of interaction with Marea as future work.

• Automate the refactoring decisions integrated with Eclipse plugin. The suggestions
that are given by Marea can be applied to the source code by implementing an
Eclipse plugin. The idea is to import the simulated trees (one tree for each logical
dependency) from a log file in Eclipse environment. A tree contains the simulated
refactoring operations as well as the path that the user decides to apply for breaking
a certain logical dependency (the best path is calculated by Marea by default). The
plugin will extract the refactoring decisions from the imported file and apply them
to the code using the API of Eclipse1.

1Move Class and Move Method are already implemented in Eclipse
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